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Abstract 

Background: Jet injectors are advantageous over needle injectors by eliminating 

sharps hazards. The Government Accountability Office estimates 29% 

preventable sharp injuries with an estimated direct cost of more than $500 million 

out of the CDC’s reported incidence of 385,000 needle stick injuries per year 

among US hospital healthcare workers. Yet the forces required to set and trigger 

devices using spring mechanisms for medication delivery have not been 

explored. This laboratory experiment measured forces exerted by healthcare 

workers (HCWs) using a particular jet injector approved by FDA in 2011. 

 

Objectives: In order to quantify the ergonomic impact on OCHWs using a 

needle-free injector, the first objective was to evaluate the dynamic forces 

required to activate the trigger injector button and the reset station for the 

injector, with their respective means, for each of the parameters studied. The 

second objective was to compare these forces to those required to use four 

previously analyzed retractable intramuscular syringes with needles. Finally, the 

third objective was to assess potential psychophysics ergonomic impact on 

OHCWs with use of these devices to formulate future design changes and 

recommendations for manufacturers and HCWs, respectively.   
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Methods: This laboratory experiment was conducted through a multi-disciplinary 

team approach. It included a total of 136 trials (10 validation trials, 116 

experimental trials and 10 padded trials for soft tissue simulation), which were 

conducted using the PharmaJet™ Injector. A force gauge and a load cell were 

integrated into the triggering setup and reset station, correspondingly, enabling 

force measurements to be obtained directly from the human-machine interfaces. 

These force data allowed for observations of force profiles in time by the 

healthcare worker as researcher while preparing for and administering injections. 

Data collection used three software applications for force conversions and data 

manipulation. Data were analyzed using descriptive statistics and analytical 

results by using ANOVA for the trigger injector & reset station with multiple 

comparison tests for parametric and non-parametric distributions, respectively. 

 

Results: The descriptive results indicated an average force for triggering the 

injector in the 116 trials was 15.92 lbs. (70.8 N) with a range of 9.77-26.46 lbs. 

(43.46-117.69 N). The measured forces for the reset station ranged from 5.35-

82.78 lbs. (5.35-368.22 N) with an average of 25.32 lbs. (112.62 N) (SD 12.36). 

Spurious findings presented with tensile forces to fill the syringes resulting in 

hand strain in the first metacarpal joint after repetitive pinprick motion. The 

analytical results showed an ANOVA for trigger injector with a parametric-normal 

distribution with an F (2,133) Ratio 10.0472, p- value (F) 0.0001<0.05, showing 

statistical significance and with a Tukey’s comparison test showing a significant   
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difference in between the means of the padded trials vs. the validation & 

experimental trial groups. The ANOVA for the reset station showed a Kruskal 

Wallis H-statistic of 0.2568, p-value (H) 0.8795>0.05 presenting NO statistical 

significance with a Dunn’s comparison test confirming NO difference in between 

the medians or mean ranks of all three groups. 

 

Conclusions: Triggering the injector and resetting the station required 

considerable effort in comparison to activating 4 retractable intramuscular 

syringes with needles from our previous studies, the range of mean forces were 

3.63-17 lbs (16.19-77.53 N) for those syringes with the trigger injector maximum 

voluntary force of 71 N being above the recommend 56.6 N.  

  The jet injector required more force per effort than 2 (4.4x) syringes & 

similar to other 2 syringes (0.9x) previously tested when considering the 

compression forces related with the trigger injector.  

Additional vector forces (displacement & gripping of reset station) could 

increase the cumulative effort affecting different musculoskeletal components 

when the whole components of the procedure are taken into account.  

Suggestions for the manufacturer regarding design changes to facilitate 

HCWs’ use of this device are warranted, since some of the summation forces 

during the 12 mini-steps could be avoided to achieve a higher efficiency. This 

information may be useful for health care facilities when choosing devices to 

protect their workers from ergonomic injuries.  
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Application: The information might be useful for future research to achieve 

accurate predictions of maximal acceptable efforts for repetitive motion tasks 

when integrating all cumulative force components of a duty cycle for 8-hour work 

tasks to establish tolerance limit values. Implications and future research will be 

leakage of fluids while loading the syringe; fluid in the cap and immediate vicinity-

splatter of body fluids or live vaccines; recommended personal protective 

equipment (PPE) for potential wet shots and splatter; effect of compression and 

tensile forces with viscous solutions and measurement of dynamic forces with 

analytical multiple-sensor gloves.  
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Chapter I 

Introduction 

Needle-free injector devices (NFIDs) are engineered devices used to 

deliver a liquid medication by the intramuscular (IM) or subcutaneous (SC) route 

with a pressure jet stream that is an alternative to conventional needle syringes. 

Jet injectors are potentially advantageous over needle syringes in employee 

safety by eliminating sharps and waste disposal. Studies reveal potential 

advantages for the patient safety, vaccine efficacy, compliance, relative overall 

comparative cost, reduced psychological stress, reduced pain, lower vaccine 

volume, antigenic dispersion, elimination of broken needles, reduction of 

accidental needle stick injuries and occupational preference regarding use of 

NFIDs over safety engineered needle devices versus the disadvantages of 

higher start-up cost, higher cost against traditional needle syringes, and higher 

requirements for training and maintenance of equipment (Christopher 2008; 

Morrison, 2009; Brito 2010; Weniger, 2005). In spite of much scientific evidence 

favoring NFIDs’ use, the ergonomic forces required for setting and triggering the 

injector devices exerted by occupational healthcare workers (HCWs) using jet 

spring mechanisms for liquid medication delivery have not been explored. 

Measurement of dynamic forces can be expressed in Newtons (N) and pounds 

(lbs.) exerted by HCWs using a particular jet injector for quantifying the human 

factor impact on healthcare workers when using NFIDs.    
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NFIDs are mainly beneficial over needle injectors by eliminating sharps hazards 

along with compliance of 1991 OSHA standards for Blood Borne Pathogens, by 

reducing transmission of Hepatitis B & C and HIV, among many others blood 

borne diseases (Plog, 1973). The U.S. Government Accountability Office (GAO) 

estimates 29% preventable sharp injuries by using safety engineering needle 

devices and NFIDs. GAO and the U.S. Centers for Disease Control and 

Prevention (CDC) estimated direct costs that supersede $500 million. This is 

without taking into consideration the indirect costs related long term treatment 

resulting from infectious disease transmission through blood borne pathogens 

such as Hepatitis B &C and HIV, worker’s compensation system & disability, 

laborer absenteeism and other psychological implications (Saia, 2010).  The 

CDC reported an incidence of 385,000 needle-stick and sharp injuries among 

hospital-based U.S. healthcare workers (HCWs), without taking into 

consideration other healthcare settings that approximate the number of cases to 

800,000 injuries overall for the nation per year (Saia, 2010; Panlilio, 2000; Henry, 

1995; Haiduven, 2006).  

NFIDs have been available for humans since the 1930s and used 

extensively for mass vaccination over a period of five decades for programs of 

smallpox, polio, and measles. Historically the devices have been gas, spring or 

electrically powered. NFIDs are reemerging after being put aside for a few 

decades with FDA fomenting the use of spring powered technology (Reis, 1998; 

Hingson, 1963; Christopher 2008).  According to the Defense Logistics Agency 

(1997) on chapter 2 of the biological defense program, the U.S. military realm 
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had some historic concerns with contamination avoidance and individual 

protection with lacerations and cross contamination regarding re-use of injector 

systems leaving some caveats and paradigms with the use of this technology in 

the past. With today’s revamping technology with spring-powered regulated 

injection systems, which penetrate the skin for IM or SC medication 

administration in less than 1/3 of a second, PharmaJet™ needle-free devices 

and other injectors eliminate needle re-use and cross-contamination between 

patients. The polycarbonate cylinder is a sterile, single use with auto-disabling 

properties and minimization of hazardous waste eliminate the aforementioned 

risk hazards (Morris, 2009). Safety and effectiveness with Flu vaccines and other 

potential hazards has been a restraint for many needle-free injector 

manufacturers to release their products in today’s market, even though the 

PharmaJet™ needle-free device was approved by the Federal Food and Drug 

Administration in 2011 (Hartman, 2011).  A few recent manufacturers, scientific 

and clinical studies have been done regarding benefits of immunization with 

safety engineered needles and needle-free injectors to overall effectiveness, 

efficacy and efficiency of such devices from a patient and occupational safety 

perspective based on the 2011 World Health Organization (WHO) global vaccine 

safety Blueprints (Amarasinghe, 2012), while others are comparing the 

occupational time efficiency in between both methods in humans and animal 

populations (Morris, 2009; Christopher 2008). Evaluating the forces required to 

activate the trigger injector button and the reset station for the injector, with their 

respective means, for each of the parameters studied, attained our first objective.  
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Comparing forces required between NFIDs to the use of safety-

engineered needles with retractable intramuscular syringes with needles was our 

second objective. Since 1984, there are more than a thousand patents related 

with safety devices with approximately 25 different designs (Ippolito, 1997; 

Haiduven, 2006).  Several generations of such devices, coined “devices with 

engineered sharps injury protection” or (ESIP) have been established, but for 

practical reasons there are 4 generations. The first generation comprises 

syringes with sheaths that slide frontward after usage. The second generation 

consists of accessories snapped into the needle. The third generation has 

retractable needle mechanisms, which retract while still in the patient’s soft 

tissues (Haiduven, 2006). The forth generation will be described as the re-

emerging NFIDs with spring-powered technologies. Even though the mechanism 

involved for operating these devices might be technically different, comparisons 

can be attained with previous studies comparing the compressive forces utilized 

while injecting saline into simulated patient material (SPM). The category 3 

studies showed a range of saline injection on SPM for compressive force 

experiments in between 16 and 77 N, with an average of 57 N or 13 lbs. The kind 

of the design for category 3 and category 4 devices is to elude reuse (Haiduven, 

2006 & 2010). Dynamic force gauge measurement of compressive forces will be 

utilized to measure forces in N and lbs for the trigger injector button of the NFIDs 

for category 4 devices.  

One of the challenges of human factors engineering is to evaluate 

different workplace demands and contrast them to their functional capacities at 
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work to establish tolerance limit values (TLV). The potential psychophysics 

impact on ergonomic impact on HCWs with use of NFIDs has to be analyzed to 

create an appropriate tool that would avoid damage to the HCWs during and 

after the utilization of the tool with repetitive motion (Potvin, 2012). In order to 

formulate future design changes and recommendations for manufacturers and 

HCWs, respectively, we need to understand some basic concepts of ergonomics, 

to ensure safe and productive activities within the workplace while using the tools 

(LaDou, 2004), especially the ones related with psychophysics to predict the 

maximum acceptable efforts (MAE) for repetitive tasks for an 8-hr workday, while 

using the duty cycle (DC), which is the total effort duration divided by the cycle 

time. By using the Potvin equation and principals, which go, beyond the scope of 

detailing for this specific project, the maximal acceptable efforts can be obtained 

as a percentage of the single maximal voluntary effort (MVE), which are 

multiplied by the DC.   The resultant equation after detailed meta-analysis results 

in the simplified formula 1:  

MAE= 1- DC (0.24)          Formula 1  (Potvin, 2012) 

The resultant equation describes a strong negative exponential relationship 

between DC and MAE. This relationship shows a rapid decline in MAE at low 

DCs with a slow decrease as DC increased to higher values. The advantage of 

using the equation consists in estimating the absolute magnitude of MAE without 

specific previous published data. Once MAE is calculated, you can determine the 

maximal average force (MAF) by multiplying MAE by the recommended MVE 

(rec MVE) (see formula 2).  
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MAF= MAE x rec MVE           Formula2   (Potvin, 2013) 

In this case, we can extract previous published information from Potvin’s 

equation studies and NASA’s ergonomic human performance capabilities and 

forces for the hand and thumb-finger strength. The first author describes the 

MVEs for the pulp pinch push and finger tip push to be 58.8 N (13.21 Lbs.) and 

56.6 N (12.72 lbs.), respectively. This will apply to the study related with the 

trigger injector button. Other studies relating right-thumb pinch forces are more 

conservative and use an injury threshold of 10 N (2.24 lbs.) but involve prolonged 

pushing actions (Shergill, 2009). MAE results were 35 Nm at a low frequency of 2 

per minute at the recommended 56.6 Newtons for finger tip push (Potvin, 2013), 

which is relevant when taking into consideration that the fastest rate for an HCW 

might be 2 per minute if it takes 30 seconds to give the NFIDs shot (Morrison, 

2009).  NASA STD-3000 203 describes the thumb-finger tip strength with a limit 

of 58 Newton’s (13 lbs.) for brief hold and 35 N (8 lbs.) for sustained hold (2008).  

The MVF for the pushing down a hose is 130.2 N, which is a similar motion when 

comparing the activation of the reset station (Adrews, 2008; Potvin, 2006). All of 

the values are taking into consideration a neutral wrist position. The need for 

recuperation time increases exponentially with effort duration (Rohmert, 1973). 

Long prolonged efforts, even if low forces are applied increase the risk for muscle 

pain and injury (Veiersted, 1993). Taking into consideration that an 8-hour shift 

has 480 minutes, it is not recommended to go above this level even at a 

frequency of 1 per minute for most repetitive activities without taking into 

consideration the force measurements. The Potvin equation is good for isolated   
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tasks, but a caveat arises when entirely combined activities like triggering injector 

button press, resetting station and other tensile forces for loading syringes come 

into play.  The Potvin equation is suitable with a conventional task with similar 

features for the 75th percentile of the female exertion forces (2011). Studies 

relating monotonous work with physical factors such as force, repetitive motion 

and anatomical position related preponderance of force over the other two, 

showing increasing levels of incidence of hand pain and tendonitis. Studies 

showing repetitive work are less consistent of hand injury, even though they are 

always reasonable (Thomsen, 2013). Anatomical position has less 

predominance, even though neutral anatomical position was utilized in the 

present project (Thomsen, 2013). 
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Chapter II 

Specific Objectives and Hypothesis 

Specific Objectives 

1. The first objective was to evaluate the dynamic forces required to activate 

the trigger injector button and the reset station for the injector for the 

NFID-category 4 device, with their respective means, for each of the 

parameters studied.  

2. The second objective was to compare these forces to those required to 

use four previously analyzed retractable intramuscular syringes at the VA 

lab with needles- category 3 devices.  

3. The third objective was to assess potential psychophysics ergonomic 

impact on HCWs with use of these devices to formulate future intervention 

design changes and recommendations for manufacturers and HCWs, 

respectively. 

Hypothesis 

1. The Ho null hypothesis for the trigger injector was that there is no 

difference in between the three means of force measurements by using F-

statistics: 

Null Hypothesis: Trigger Injector 

Ho:   the means of measured forces (lbs or Newton’s) are all equal 

H0: µ =1, µ =2, µ =3        df=2  
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2. The Ho or null hypothesis for the reset station was analyzed to compare 

the medians in between each three sets of groups by using the H-

statistics: 

Null hypothesis:  Reset Station 

Ho:   the medians of measured forces (lbs or Newton’s) are all equal 

H0: M=1, M =2, M =3        (Mean Ranks or Medians) 
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Chapter III 

Materials and Methods 

Support for materials and facilities:  This research was funded & supported by 

the NIOSH SERC- COPH-USF, Department of Environmental & Occupational 

Health & in part is based upon work supported by the USF-COPH Department of 

Global Health & Office of Research & Development, Department of Veterans 

Affairs (DVA), Tampa FL. Conducted by multi-disciplinary team: Occupational 

Medicine, Infection Control, Mechanical & Biomedical engineers. Research 

team: H. Olivero Lara, MD USF OMR resident; and employees of DVA  

P. Ramaiah, MSBME; D. Haiduven, PhD; & M. Kerrigan, MSBME. Other 

collaborators are mentioned in the acknowledgement (left to right Figure 1).  

 

*Photo by VA multi-disciplinary team 

Figure 1. Multi-disciplinary team researchers at VAD facility 
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Materials 

One commercially available NFID, approved by FDA in 2011, was utilized 

for the experiment. The aforesaid device is the Stratis PharmaJet TM System 

Needle-free injector device, which is composed of an injector, reset station, 

needleless syringe and filling adaptor (see figure 2. Read L to R).  

 

*Photo by VA multi-disciplinary team with permission of manufacturer (L to R) 

Figure 2. Components of the Stratis PharmaJet TM NFIDs 

 

The device works by injecting a liquid under pressure by a spring powered 

technology, which uses a blue tipped safety feature that avoids misfiring if the 

device is not aligned perpendicular to the skin with concomitant synchronous 

pressure applied. Other safety features include a polycarbonate syringe for single 

use, that cracks without expelling fragments to the surroundings when air 

contents in the form of bubbles are within the cylinder of the syringe, described 

by the prior manufacturer as a “wet shot”. (PharmaJetTM, Colorado, U.S.A.).   
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One hundred and thirty-six needleless syringes were prefilled with saline 

solution, consisting up bacteriostatic 0.9% sodium chloride injection, USP, 30 

mL. Liquid was drawn with the needleless syringe by using the filling adapter 

shown in the right lower corner of figure 2.  

Other important materials consist of a laptop, HP Pavilion entertainment 

notebook PC, with an operating system of Microsoft 7 with 64 bits; a load sensor 

with PCB piezotronics, model 260A02, three component force sensor; a signal 

conditioner, PCB piezotronic, model 480B, with three channel 1 CP sensor signal 

conditioners (see Figure 3).  

 

 

*Photo by VA multi-disciplinary team 

Figure 3. Instruments utilized to measure forces 

 

Additional materials include a digital force gauge by COM-TEN (Com Ten 

Industries, Pinellas Park, Florida) Andilog technology Stentor II, which draws   
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curves vs. travel, with incorporation of force gauge sensors with internal sensor 

up to 100 N and an accuracy of 0.01N.  

Other materials include: ductless fume hood from Sentry systems (Sentry 

Air Systems, Inc., Houston, TX) thermometer, for room temperature variations 

(Figure 4); disposable gloves; a holding bin, to hold the prefilled syringes; waste 

bin, to hold the used syringes after firing; safety goggles, to protect against 

inadvertent exposure to solutions or moving parts; a wide base metal stand and 

ante-cubital fossa simulation pad (ACF PAD) for tissue simulation of injection 

(see Figure 5) (Limbs & Things, Savannah, GA); a communications cable, three 

USB two RS-232 DB 9/DB-25 serial adapter; the cable; data-transfer software for 

force gauge to laptop called termite terminal emulator software; a data transfer  

 

 

*Photo by VA multi-disciplinary team 

Figure 4. Safety ductless fume hood and thermometers 
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from load to sensor on reset station to the laptop, which consists of Lab VIEW 

software from National Instruments (National Instruments, Austin, TX) (Figure 6.); 

a metal stand with a wooden sockets inside straps, to hold injector and force 

gauge for each trial; a stylus to tare the force gauge; and a wooden ruler, to set 

the position for the rotating handle on the force gauge. 

In addition, a level, adhesive labels, and heavy utility gloves to wear while 

bracing the ACF pad against the tip of the syringe for safety purposes (see 

Figure 5), a non-slip mesh liner, a microfiber towel, compressed air can, 

clipboard and waste basket were materials used for the elaboration of the 

experiment.  

 

 

*Photo by VA multi-disciplinary team 

Figure 5. Ante-cubital fossa simulation pad (ACF Pad) and normal saline 
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*Photo by VA multi-disciplinary team 

Figure 6. Reset station with load sensor adhered on surface 

 

Procedures 

The following experiment was conducted by using a rigorous protocol of 

force measurements for the Pharm jet TM injector that is described in full detail as 

part of the annex A for this laboratory research study. It portrays all the materials, 

activities performed, protocols for pre-trial activities, which include the set-up of 

the reset station equipment and the force gauge equipment. It displays the force 

gauge settings set with the Termite software™ (Hernel Hempstead, UK), which 

occurred pre-experiment. Description of the protocol activities while running the 

trials, which consist of a rigorous 94-step protocol developed for conducting trials 

to avoid variability.  Activities for the experiment trials were done by having three 

personnel labeled as R1, R2 and R3. R1 activities consists mainly of handling all 

technological software and computer activities, from a spectrum of setting to 

analyzing the data, R2 activities are mainly described as the executing and 
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reporting trials for all measured activities, and R3 main role is recording and 

supervising all activities followed in chronological order.  

A total of 136 total trials were conducted using the PharmaJet™ Injector 

(10 validation, 116 trials, & 10 trials with padding) for both the trigger injector 

button and the reset station, follow-up by a 94-step protocol developed for 

conducting trials to avoid variability with repeat step description for additional 

trials (Annex A).  

 A force gauge and load cell was integrated into the triggering setup & 

reset station, respectively, enabling force measurements to be obtained directly 

from the human-machine interfaces (See Figure 7 a & b). 

 

 

*Photo by VA multi-disciplinary team 

Figure 7. a  & b)  Trigger injector setup  &  Reset station setup 
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Data collection used 4 software applications for force conversions & data 

manipulation, which include Termite Terminal Emulator software (Hernel 

Hempstead, UK), Lab View software from National Instruments (Austing, TX, 

U.S.A), Mat lab (Natick, Massachusetts, U.S.A.) and Excel spreadsheets 

(Redmond, WA, U.S.A.)(See figure 8 a & b and Figure 9 a & b). 

 

*Photo by VA multi-disciplinary team            

Figure 8. a & b) Injector mount for deactivation of  safety tip 

 

The injector mount consists of a milled-out wooden block which defeats the 

safety tip for the trigger injector device and the researcher uses a hand lever to 

activate the injector in which the force is detected by the manual force gauge with 

an RS232 interfacing through the Termite software application (Figure 8 a & b). 

The experimental set up for force measurement of the reset station 

consists of a load sensor adhered to the arm of the reset station with a sample   



 

 18 

rate of 1,000/second for duration of 7 seconds, with subsequent data collection to 

a laptop by using a USB port to Lab View Software (Figure 9 a & b). 

Floor markings were used on the floor with the shape of two “WW”. That 

way the operator will have less room for variation with the lower stance that 

indirectly affects the trunk and upper body position (Figure 10). 

 

 

 

*Photo by VA multi-disciplinary team 

 

Figure 9. a & b)  Reset station force measurements and data collection 
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Figure 10. Markings on the floor-determining stance of R2 operator 

 

Methods 

 This work consisted of an investigational experimental project for product 

evaluation of technological development with an interventional aim towards future 

manufacturing designs and practices towards HCWs. The research consisted of 

the product evaluation of the NFIDs Stratis manufactured by PharmaJet TM- 

category 4 devices. During the time the project protocol plans commenced late 

2011, it was the only product that was approved by FDA in the market that 

allowed the bench testing of the product as well. Another manufacturer was 

getting clearance at that time, but was not allowing the product to be tested.  

That is why the product was not compared to similar products of its kind 

(category 4) for its use and the objectives generated were very specific to allow 

measurements of the device, compare the measurements with previously studied  
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category 3 devices in the VAD lab, and future interventional aims towards the 

ergonomically designed NFIDs regarding utilization for HCWs. 

 

Study design and population: The project entailed of an experimental 

prospective cohort study design that studied three different groups of trials with 

similar effort-conditions across time with an expected outcome measurement of 

dynamic forces for both trigger injector button and reset station for the NFID. A 

total of 136 total trials were conducted using the PharmaJet™ Injector. The 

experiment consisted of 10 validation trials, 116 experimental trials, and 10 trials 

with padding simulation for both the trigger injector button and the reset station.  

 

Variables: Those that might come into consideration for the reproducibility of the 

study will be age, gender, body constitution of operator, precision of measuring 

devices, smoking habits, educational level, maturation of operator, padding finger 

simulation, prior health conditions and injuries.  In order to control threats for 

internal variability, three researchers, R1, R2 and R3 were involved in the 

experiment. R1 ran the software applications for all operations involved and R3 

supervised both R1 and R2 step-by-step operations. A single R2 operator 

executed all 136 trials. A protocol consisting of 94-steps was created to promote 

repeatability for the trials and reproducibility for future comparison studies; 

maturation of operator was taken into consideration as part of the validation trial 

group and differentiated from the experimental group (Annex A).   
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The idea was to come close to a summation equation of dynamic forces for the 

revamping technology involving the device. Since several steps could potentially 

be excluded, several criteria where taken into consideration.  During the 

procedure we only measured the trigger injector forces and reset station forces 

with only one operator R2 doing all the sampling execution to avoid additional 

interpersonal variability. Excluded criteria included measurement of tensile forces 

related with the filling of the needless syringes due to the potential for the user of 

buying prefilled syringes, displacement forces while gripping, and different users 

during the operation of the device. Even though the excluded criteria might affect 

the overall summation of forces, annotations were done with detail by R3 

regarding any discomfort or pain while filling the needleless syringes with saline 

reported as spurious findings.  

 

Timing and setting: The protocol was elaborated during the first monthly quarter 

of 2012, and the experimental project preparation was in April 2012. The actual 

research was done during the month of June 2012. Subsequently, software 

analysis and tabulation of data with further statistical analysis was done. The 

experiment took place in the Department of Veterans Affairs (DVA) Research 

Center of Excellence in Tampa, Florida. The Product Evaluation Laboratory, 

directed by Donna Haiduven, PhD, RN, CIC. was funded by the DVA 

Occupational Health Strategic Healthcare Group in the Office of Public Health. 

This laboratory, using simulated patient materials, has as its initial charge, 

evaluation of devices with engineered sharps injury protection.  
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Short training of use of device was provided by manufacturer, which is also found 

on the web site for future inquires. There were no financial relationships with 

commercial interests between the manufacturer and the research team. 

 

Data collection: A force gauge and load cell was integrated into the triggering 

setup & reset station, enabling force measurements to be obtained directly from 

the human-machine interfaces. Data collection used 4 software applications for 

force conversions & data manipulation. All the information was finally stored in 

the Excel database for simplicity of further use. Observations of specific events 

were annotated in paper with timing for each of the experimental trials. 

 

Statistical Analysis: For simplicity of understanding, the results were divided 

into descriptive statistics and analytical statistics. The first part of the study 

consisted of graph tracings displayed to obtain clear pattern of force vs. time 

(effort across time or sample rate) for the trigger injector and the reset station. 

Several tables demonstrating the average force, minimum force, maximum force, 

standard deviation and range were obtained for the three group sets of data 

described as validation trials (n=10), experimental trials (n=116), and trials with 

padding simulation (n=10) with their respective trigger injector button and reset 

station. Values obtained will be recorded and compared to literature standards 

and subsequently, compared to 4 previously studied category 3-syringe devices 

from the VAD previous studies.   
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The second part of the study consists of analytical study in which 

validation trials (n=10), experimental trials (n=116), and trials with padding 

simulation (n=10) with their respective trigger injector button and reset station are 

analyzed to compare the means in between each three sets of groups for the 

trigger injector and mean ranks or medians for the reset station. For this part, 

Excel spreadsheets were used as database and the information was analyzed by 

using the Prism 6 Statistical Software, 2013. For the trigger injection button a 

one-way ANOVA was utilized to compare the means for forces in pounds of the 

three different groups of trials. Since the study is not comparing two different 

injector devices, the comparison was done in between the three abovementioned 

trials. The validation and the experimental trials are easy to understand, but the 

padded simulation trials were done to notice any differences with the curves of 

force vs. timed effort-sample rate obtained to analyze any benefit by adding a 

soft tissue that will simulate the tip of the finger fat pad simulating the human-

machine interference. An ACF padding simulating soft tissue was used for this 

purpose.  

The Ho or null hypothesis was that there is no difference in between the 

three means of force measurements by using F-statistics, known as the one-way 

analysis of variance. µ =1, µ =2, µ =3 were representing the validation trial, 

experimental trials and trials with padding simulation force means that were 

compared in pounds, respectively. In addition, the valued were also given in 

Newtons to provide adequate comparisons with prior studies:  
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Null hypothesis:  Trigger Injector Button 

Ho:   the means of measured forces (lbs or Newton’s) are all equal 

H0: µ =1, µ =2, µ =3         (Means) 

 

Analytical studies were also done for the reset station by using non-

parametric one-way ANOVA Kruskal-Wallis. Data was tested for normality and 

converted to logarithmic values.  The reset station validation trials (n=10), 

experimental trials (n=116), and trials with padding simulation (n=10) were 

analyzed to compare the medians in between each three sets of groups by using 

the H-statistics: 

 

Null hypothesis:  Reset Station 

Ho:   the medians of measured forces (lbs or Newton’s) are all equal 

H0: M=1, M =2, M =3        (Mean Ranks or Medians) 

 

Multiple comparison tests were performed on both trigger injector and 

reset station to notice group differences. The data was finally compared to 

previous recommended limit values and analyzed by comparing it to the 

ergonomic equations that are in use for finger and arm measurement forces, 

particularly to the current recommended ergonomic values and Potvin’s equation 

for repetitive motion equations to develop future suggestions for manufacturers 

and HCWs recommendations. 
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Ethical considerations: In spite of the fact that it was mainly a product 

evaluation under controlled laboratory conditions, the ethical standards and 

training were highly taken into consideration prior starting the analysis, by 

following requirements for the VA IRB and USF-NIOSH ERC to maintain 

excellence in research standards. The research project, which this experiment 

was part of, received approval from the VA Office of Research & Development, 

Protocol #006142, “Laboratory Evaluation of Sharps Devices to Prevent Blood 

Exposures and Ergonomic Injuries in Healthcare Workers.” 
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Chapter IV 

Results 

The results presented in this experimental investigational project for 

product evaluation will be presented in sequence with the established objectives 

in matter. For ease of interpretation, the results were divided into descriptive 

statistics and analytical statistics.  

Results for Descriptive Statistics 

In the descriptive statistics, the compressive force experiments were 

analyzed in a series of 136 graphs in an Excel spreadsheet for the trigger injector 

and for the reset station. Figure 11 displays a single graph for the   

 

Figure 11. Trigger injector single data trial of sample rate (1000/sec)  

                 Vs. Dynamic force (lbs.) 
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trigger injector that was randomly picked showing a sample rate of the x-axis 

across time vs. the dynamic force on the Y- axis. The graph shows three peak 

spikes and an acute slump after the second spike. The sample rate was set at 

1000 Hz and the measured forces in pounds. All graphs analyzed had a similar 

pattern with slight variations in between each other.  

 

 

Figure 12.   Reset station single data trial of sample rate  

                  (1,000/sec * 7 seconds) Vs. Dynamic force (lbs.) 

 

In Figure 12, there is a graph representing a typical tracing of a reset 

station in between a sample rate of 1000 Hz during a total period of seven 

seconds vs. force measured in pounds. There is some interference in the first 

part of the tracing and then a sudden up-rise of the slope with a variable peak 

followed by a sudden decrease in the force until it plateaus to zero. The areas   
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under the curve will be representative for the total workload exerted by the 

individual without taking into account the initial artifact. A picture displays the 

force vector that was summarized as a dynamic force across time.  

To evaluate the PharmaJet™ Needle-free trigger injector button and the reset 

station, with their respective means, for each of the parameters studied the 

results were tabulated exhibiting the average force, minimum force, maximum 

force, standard deviation and range. 

 

The average force for the 10 validation trials for the trigger injector was 16.29 lbs 

(72.2 N) with a standard deviation of 5.78 lbs. (25 N) and a range of 9.69 -28.17 

lbs. (43.25 – 125.75 Newton’s) (See table 1). The average force for the 116 

experimental trials for the trigger injector was 15.92 lbs (71.07 N) with a standard 

deviation of 5.78 lbs. (25.8 N) and a range of 9.77 -26.46 lbs. (43.61- 118.12 

Newton’s) (See table 3). The average force for the 10 padding simulation trials 

for the trigger injector was 21.84 lbs (97.5 N) with a standard deviation of 6.74 

lbs. (30.08 N) and a range of 11.74 -33.17 lbs. (52.41- 148.08 Newton’s) (See 

table 5). 

 The average force for the 10 validation trials for the reset station was 

23.10 lbs (103.25 N) with a standard deviation of 6.95 lbs. (31.02 N) and a range 

of 11.94 -33.36 lbs. (53.3 – 148.92 Newton’s) (See table 2). The average force 

for the 116 experimental trials for the reset station was 25.32 (113.03 N) with a 

standard deviation of 12.36 lbs. (55.17 N) and a range of 5.35 -82.78 lbs. (23.88- 

369.55 Newton’s) (See table 4). The average force for the 10 padding simulation 
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trials for the reset station was 22.03 (98.34 N) with a standard deviation of 8.02 

lbs. (35.80 N) and a range of 10.29-32.94 lbs. (45.93- 147.05 Newton’s) (See 

table 6).  

 

Table 1.    Descriptive data for validation trials (n=10) for trigger injector 

applied force measured in pounds 

Average 

Force 

Minimum  

Force 

Maximum  

Force 

 Standard 

Deviation 

Range 

16.29 9.69 28.17 5.78 18.48 

 

Average, minimum, maximum, standard deviation and range of forces in pounds 

were described in Tables 1 through 6.  

 

Table 2.   Descriptive data for validation trials (n=10) for reset station 

applied force measured in pounds 

Average 

Force 

Minimum  

Force 

Maximum  

Force 

 Standard 

Deviation 

Range 

23.10 11.94 33.36 6.95 21.41 
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Table 3.     Descriptive data for experimental trials (n=116) for trigger 

injector applied force measured in pounds 

Average 

Force 

Minimum  

Force 

Maximum  

Force 

 Standard 

Deviation 

Range 

15.92 9.77 26.46 3.51 16.69 

 

 

Table 4    Descriptive data for experimental trials (n=116) for reset station 

applied force measured in pounds  

Average 

Force 

Minimum  

Force 

Maximum  

Force 

 Standard 

Deviation 

Range 

25.32 5.35 82.78 12.36 77.43 

 

 

Table 5     Descriptive data for padding simulation trials (n=10) for trigger 

injector applied force measured in pounds  

Average 

Force 

Minimum  

Force 

Maximum  

Force 

 Standard 

Deviation 

Range 

21.84 11.74 33.17 6.74 21.43 
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Table 6      Descriptive data for padding simulation trials (n=10) for reset 

station applied force measured in pounds  

Average 

Force 

Minimum  

Force 

Maximum  

Force 

 Standard 

Deviation 

Range 

22.03 10.29 32.94 8.02 22.65 

 

Spurious findings:  The tensile forces to fill the syringes were not measured in 

this experiment with a tensile force gauge device, but observational recording 

showed an increase of pain and hand strain in both R1 and R2 subjects while 

filling the syringes with normal saline after approximately 50 consecutive syringe 

fills. Pain was notorious in the 1st Metacarpal joint and first dorsal compartment 

while doing repetitive pinprick motion when the normal saline was extracted by 

pulling the emboli of the syringe that had a round flat surface. 

 

Results for analytical statistics for trigger Injector 

The results for the analytical statistics were presented as a series of tables 

and figures by distinguishing the statistical analysis ANOVA for the Trigger 

Injector for parametric data and the ANOVA Kruskal Wallis Reset Station for non-

parametric data, by comparing the validation trials (n=10), the experimental trials 

(n=116) and the padding simulation trials (n=10). All of the comparisons 

presented in the tables are in pounds (lbs.). 

.  
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The one-way ANOVA for the trigger injector are described in Table 7 with 

their means and medians with standard deviations. Additional information 

displays confidence intervals for the three groups of trials. 

 

Table    7                 One Way ANOVA – for Trigger Injector (TI)  
                                 Descriptive Statistics  
Descriptive 
Statistic  

Trigger Injector-
Validation (lbs) 

Trigger Injector - 
Experimental 
(lbs.) 
 

Trigger Injector - 
Padded (lbs) 

 
    Validation Experimental Padded 

Number of values 10 116 10 
    Minimum 9.690 9.770 11.74 
25% Percentile 13.14 13.20 16.97 
Median 13.97 16.18 20.56 
75% Percentile 18.88 18.14 27.87 
Maximum 28.17 26.46 33.17 
    Mean 16.30 15.93 21.84 
Std. Deviation 5.780 3.516 6.742 
Std. Error of Mean 1.828 0.3264 2.132 
    Lower 95% CI of mean 12.16 15.28 17.02 
Upper 95% CI of mean 20.43 16.58 26.67 
    95% CI of median 

   Actual confidence level 97.85% 96.77% 97.85% 
Lower confidence limit 11.99 15.55 16.68 
Upper confidence limit 24.75 17.00 31.24 
 
    

 

 

The p- value summary for the trigger injector data is shown on table 8, 

with results consistent with an F ratio of 10.05 with a significant p-value below 

0.0001 with significant differences among the mean values while using 2,133 

degrees of freedom, with a total of three treatment columns and 136 number of 

total values.  
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Table   8                  One Way ANOVA– P-Value Summary 
                                 Parametric ANOVA for Trigger Injector (TI) 
                                                                                        

Table Analyzed One-way ANOVA data 
 

 

ANOVA summary 
 F 10.05 

P value < 0.0001 
P value summary **** 
Are differences among means statistically significant?  
(P < 0.05) Yes 
R square 0.1313 

ANOVA table SS DF MS 
F (DFn, 

DFd)   P value 
Treatment 
(between 
columns) 322.0 2 161.0 

F (2, 133) = 
10.05 

P < 
0.0001 

Residual (within 
columns) 2131 133 16.03 

  Total 2453 135 
   

 

 
 
Data summary 

 Number of treatments (columns) 3 
Number of values (total) 136 

 

 
  

 

 

The results on Table 9 for the trigger injector consisted of normality tests to 

assess the distribution of the data. By using D'Agostino & Pearson omnibus, 

Shapiro-Wilk normality test and Kolmogorov Smirnoff we saw normality in 2 out 

of 3 tests with an alpha set at 0.05. That allowed us to proceed with the one-way 

ANOVA tests, meaning that the data were normally distributed with a similar 

Gaussian distribution. From the normality tests, the D’Agostino & Pearson 

Omnibus test and the Kolmogorov Smirnoff passed the normality test in 

comparison to Shapiro-Wilk normality test.  
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Table  9                   One Way ANOVA – Normality Test for Trigger Injector  
                                                                                        
Column 
Statistics 

Trigger Injector-
Validation (lbs) 

Trigger Injector- 
Experimental (lbs) 

Trigger Injector- 
Padded (lbs) 

                                                          Validation        Experimental         Padded 
 
Mean 16.30 15.93 21.84 
Std. Deviation 5.780 3.516 6.742 
Std. Error of Mean 1.828 0.3264 2.132 
     
D'Agostino & Pearson omnibus 
normality test 

   K2 4.487 1.650 0.5706 
P value 0.1061 0.4383 0.7518 
Passed normality test (alpha=0.05)? Yes Yes Yes 
P value summary ns ns ns 
    Shapiro-Wilk normality test 

   W 0.8373 0.9716 0.9496 
P value 0.0410 0.0145 0.6632 
Passed normality test (alpha=0.05)? No No Yes 
P value summary * * ns 
    KS normality test 

   KS distance 0.2570 0.06492 0.1665 
P value 0.0600 0.2000 0.2000 
Passed normality test (alpha=0.05)? Yes Yes Yes 
P value summary ns ns ns 
    

 

 

On table 10, a one-way ANOVA with Tukey’s multiple comparison tests for 

means of the force outcomes obtained showed a significant difference between 

the simulated padded trials vs. the validation and experimental trial. A trigger 

injector (TI) padded trials vs. TI validation trials p-value less than 0.0067; a TI 

padded trials vs. TI validation trials less than 0.0001; and a compared to TI 

experimental trials vs. TI validation trials p-value above 0.9584. The means were 

greater by almost 6 lbs (27 N) for the padded simulation trials.  
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Table  10                 One Way ANOVA – Multiple Comparisons of Means 
                                 Parametric ANOVA for Trigger Injector (TI) 
                                                                                       
Tukey’s Multiple Comparison Test and Test Details 
 
 
Number of families 1 

    Number of comparisons per 
family 3 

    Alpha 0.05 
          Tukey's multiple 

comparisons test 
Mean 

Diff. 
95% CI of 

diff. 
Signific

ant? 
Summ

ary 
Adjusted P 

Value 
      TI- Experimental (lbs) vs. TI-
Validation (lbs) -0.3663 

-3.494 to 
2.761 No ns 0.9584 

TI- Padded (lbs) vs. TI-
Validation (lbs) 5.547 

1.304 to 
9.790 Yes ** 0.0067 

TI- Padded (lbs) vs. TI- 
Experimental (lbs) 5.913 

2.786 to 
9.041 Yes **** < 0.0001 

            
Test details Mean 1 Mean 2 

Mean 
Diff. 

SE of 
diff. n1 

      TI- Experimental (lbs) vs. TI-
Validation (lbs) 15.93 16.30 -0.3663 1.319 116 
TI- Padded (lbs) vs. TI-
Validation (lbs) 21.84 16.30 5.547 1.790 10 
TI- Padded (lbs) vs. TI- 
Experimental (lbs) 21.84 15.93 5.913 1.319 10 

 

 

In Figures 13 & 14 there is a graph representing the force with standard deviation 

for each of the three groups with, and a comparison of the means and 95% 

confidence intervals with Tukey’s post-test showing the difference between group 

means for the padded simulation trials for the injector button. In Figure 15, there 

is an overall summary of the ANOVA statistical data for the trigger injector 

showing the F ratio of 10.0472 with two degrees of freedom.  
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Figure 13. One-Way ANOVA data for trigger injector (TI) 

 
 

 
Figure 14. One-Way ANOVA with Tukey’s Multiple Comparison  
                 Confidence intervals for trigger injector 
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Figure 15. One-Way ANOVA overall summary for trigger injector 
 

Notice that the null hypothesis is that there is no difference in between means of 

outcome forces for the trigger injector. The null hypothesis was rejected due to 

significant difference between groups with a p-value less than 0.0001 and an F 

ratio slightly greater than ten. On the Tukey’s multiple comparison test, the group 

that is different is the Padding simulation trial, which is marked on Figure 15 as 

*A. There was no difference in the post-test between validation and experimental 

trials. 

 

Results for Analytical Statistics  

Reset Station 

 The results for the reset station were converted to logarithmic values to 

achieve closeness to normality of data. Then, Kruskal Wallis test for non-

parametric data was applied to the data. If the reader wants to see descriptions 

of the gross value data, please refer to tables 2, 4 & 6.  The mean and standard 

deviation for the converted data are shown is table 11, with mean ranks of 67 for 

group 1- validation trials, 69.13 for group 2-experimental trials and 62.75 for   
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group 3, padded simulation. The Kruskal Wallis test displays an H-statistic of 

0.2568 and a p-value of 0.8795 (see table 12), with no significant variation in the 

median values.  The results on Table 13 for the reset station consisted of 

normality tests to assess the distribution of the data. By using D'Agostino &  

Pearson omnibus, Shapiro-Wilk normality test and Kolmogorov Smirnoff 

normality was verified after converting the data to logarithmic values.  In 3 out of 

3 tests with an alpha set at 0.05, Dunn’s multiple comparison tests showed no 

significant difference in between the mean rank or median obtained (see table 

14).  

 

Table 11                   Kruskal-Wallis Test – Descriptive Statistic 
                                  Nonparametric ANOVA for Reset Station (RS) 
                                                                                        
                                         *Logarithmic conversion of data 
 
Descriptive Statistics 

 

RS- Validation 
(lbs) 

RS-Experimental 
(lbs) 

RS-Padded 
(lbs) 

Number of values 10 116 10 
    Minimum 1.077 0.7287 1.013 
25% Percentile 1.208 1.228 1.149 
Median 1.370 1.363 1.386 
75% Percentile 1.469 1.488 1.439 
Maximum 1.523 1.918 1.518 
    Mean 1.344 1.357 1.313 
Std. Deviation 0.1436 0.2020 0.1797 
Std. Error of Mean 0.04542 0.01876 0.05681 
    Lower 95% CI 1.241 1.320 1.184 
Upper 95% CI 1.446 1.394 1.441 
    Mean ranks 67.00 69.13 62.75 
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Figures 16 a & b, show graphic distribution of the three groups with their 

respective confidence intervals and the rank distribution for the data set of the 

reset station. Values show a distribution of rank data points with similar 

distribution of data and similar confidence intervals. Obviously the RS 

experimental shows an abundant number of data ranks, due to the uneven 

number of trials, in which the experimental group had n=116. 

 

Table 12                   Kruskal-Wallis Test – P-Value Summary 
                                  Nonparametric ANOVA for Reset Station (RS) 
                                                                                        
                                         *Logarithmic conversion of data 
 

Table Analyzed One-way ANOVA data 
 

Kruskal-Wallis test 
  

P value 0.8795 
 
Exact or approximate P value? Approximate 
 
P value summary ns 
 
Do the medians vary significantly (P < 0.05) No 
Number of groups 3 
 
Kruskal-Wallis H- statistic 0.2568 
  Data summary 

  
Number of treatments (columns) 3 
Number of values (total) 136 
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Table 13                    Kruskal-Wallis Test Normality Test  
                                  Nonparametric ANOVA for reset station (RS) 
                                                                                        
                                     *Logarithmic conversion of data 
 
Column 
Statistics 

Reset Station- 
Validation (lbs) 

Reset Station-
Experimental (lbs) 

Reset Station-
Padded (lbs) 

Number of values 10 116 10 
    Minimum 1.077 0.7287 1.013 
25% Percentile 1.208 1.228 1.149 
Median 1.370 1.363 1.386 
75% Percentile 1.469 1.488 1.439 
Maximum 1.523 1.918 1.518 
        D'Agostino & Pearson omnibus normality 
test 

   K2 1.080 0.6791 1.327 
P value 0.5828 0.7121 0.5150 
Passed normality test (alpha=0.05)? Yes Yes Yes 
P value summary ns ns ns 
    Shapiro-Wilk normality test 

   W 0.9388 0.9934 0.8938 
P value 0.5399 0.8587 0.1871 
Passed normality test (alpha=0.05)? Yes Yes Yes 
P value summary ns ns ns 
    KS Kolmogorov Smirnoff normality test 

   KS distance 0.1869 0.05124 0.2426 
P value 0.2000 0.2000 0.0980 
Passed normality test (alpha=0.05)? Yes Yes Yes 
P value summary ns ns ns 
    Coefficient of variation 10.69% 14.89% 13.69% 
    Geometric mean 1.336 1.342 1.301 
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Table 14             Kruskal-Wallis Test – Multiple Comparisons of mean ranks 
                            Nonparametric ANOVA for reset station (RS) 
                                                                                        
                            *Logarithmic conversion of data 
 
Multiple Comparison Test and Test Details 
Alpha 0.05 

          Dunn's multiple 
comparisons test 

Mean 
rank diff. 

Significant 
?    ? Summary 

Adjusted P 
Value 

       RS-Experimental (lbs) vs. RS- 
Validation (lbs) 2.125 No ns > 0.9999 

 RS-Padded (lbs) vs. RS- 
Validation (lbs) -4.250 No ns > 0.9999 

 RS-Padded (lbs) vs. RS-
Experimental (lbs) -6.375 No ns > 0.9999 

             
Test details 

Mean 
rank 1 

Mean  
rank 2 

Mean 
rank diff.   

      RS-Experimental (lbs) vs. RS- 
Validation (lbs) 69.13 67.00 2.125   
RS-Padded (lbs) vs. RS- 
Validation (lbs) 62.75 67.00 -4.250   
RS-Padded (lbs) vs. RS-
Experimental (lbs) 62.75 69.13 -6.375   
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Trial groups for reset station 

 
Figure 16 a & b. Kruskal Wallis One-Way ANOVA data for reset station   

and ranks distribution 
 

  

 
Figure 17.           ANOVA Kruskal Wallis (KW) Reset Station  
 

Figure 17 shows an overall summary for the KW for the reset station. The null 

hypothesis was that there is no difference in between the medians or mean ranks 

of the three different groups. KW analysis shows no difference in between groups 

with an H-statistic of 0.2568 and a p-value of 0.8795, which was not significant. 

On Dunn’s multiple comparison test the letter B on the three groups describes no 

difference for validation, experimental and padded trials. So the null hypothesis is 

not rejected.  
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Chapter V 

Discussion 

Many authors have discussed the needle free injector devices advantages 

over needle devices with ESIP with regards to patient safety and elimination of 

sharp hazards. This requires health care workers to learn and train how to use 

new devices. Many of these recently acquired skills require human factors 

engineering processes yet to be measured and determined when using practical 

tools. Even though technology helps to simplify many of the steps in a procedure, 

or gain efficacy over predecessor instruments, in many instances the ergonomics 

in the design of new tools tend to be one of the last details taken into 

consideration. The different components of the PharmaJet TM Stratis System will 

be taken into consideration for the experimental product evaluation with the aim 

of creating simple intervention or suggestions for both the manufactures and the 

HCWs when using category 4 devices.  

Even though many variables can come into play in any experiment, our 

approach was to reduce threat to the internal validity of the study by creating an 

elaborate protocol with more than 94 steps that will guide the researcher to 

ensure repeatability and promote reproducibility for studies. Sophisticated 

technological software and computers were employed to obtain precise 

measurements and recordings of the forces involved in the compressive force 

experiments for the trigger injector and reset station.  Even though our initial  



 

 44 

 intent was to create a formula that incorporated a summation of forces and 

vectors involved during the whole sequence of steps involved in the use of the 

device to provide a full injection, the complexity of the different maneuvers and 

steps in the procedure impeded the elaboration of a formula to attain a precise 

threshold limit value for the repetitive motion analysis. In spite of the complexity, 

the measurement of compressive forces for the trigger injector button and 

loading of the injector with a manual reset station were taken into consideration. 

The implication of tensile forces for filling the syringes appeared to be of less 

concern during the initial phase, due to the fact that any employer could 

potentially buy the pre-filled needless syringes for injection.  Another factor not 

taken into account was the horizontal hand displacement forces when defeating 

the blue tip safety feature. This was not considered important for the present 

experiment because the safety feature for the injector was disabled when placing 

it inside the wooden injector mount, but a factor to take into consideration for the 

overall summation of forces. Our best approach was to come up with the 

compressive dynamic force measurements across time, and subsequently 

compare these measurements with 4 previously measured category 3 devices. 

One of the challenges of human factors engineering is to evaluate different 

workplace demands and contrast them to their functional capacities at work to 

establish tolerance limit values (TLV). The potential psychophysics ergonomic 

impact on HCWs with use of NFIDs was discussed to create appropriate 

suggestions for manufacturer design and administrative considerations for future 

usage implication for HCWs during and after procedure with repetitive motion   
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involving fingertip push and pushing down with the upper extremity (Potvin, 

2012).  

 

Compressive forces for trigger injector button: The results for the descriptive 

analysis were first preceded by a depiction of 136 graphs that were carefully 

analyzed for shape and variability of the trigger injector. The compressive forces 

were achieved by using a manual Andilog digital Com-Ten force gauge with an 

external sensor that was in direct contact with the trigger injector button. As 

shown in figure 11, the trigger injector displays a sample rate on the x-axis 

across time vs. the dynamic force on the Y- axis. The graph shows three peak 

spikes and an acute slump after the second spike. The sample rate was set at 

1000 Hz and the measured forces in pounds. The first peak was generated when 

the manual force gauge sensor area came in contact with the trigger injector 

button. The second peak was generated to defeat the trigger mechanism 

blocking the release of kinetic energy in the spring. The abrupt slump or down-

slope was generated when the trigger mechanism was physical defeated through 

a pushing down an effort. The third peak was interesting because it was initially 

thought to be the counter force generated by the spring device in the machine-to-

machine interface. That led to the ideas of creating three different groups. The 

first one will include the n=10 validation trials, the second n=116 experimental 

trials, and the third group n=10 padding simulation trials. The padding simulation 

trials were initially thought to make it more realistic when considering that the 

human thumb has a soft-tissue pad before coming into contact with bone.  
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The second potential advantage was to study the effect of adding a soft 

tissue pad to help explain the phenomenon noticed on the third peak of the 

trigger injector graph in Figure 11. 

 For our surprise, the peak effect did not disappear when the pad 

simulation was added in case it was a counter force related with the spring 

device. Instead, the peak only increased in width and height. That led us to 

believe that is was not related to the counter force for the recoil spring device, but 

the simple reaction time of the operator to react when pushing the TUP lever 

back which was timed slightly under 0.2 seconds. That by itself increased the 

average force of the trigger injector from 15.92 lbs. to 21.84 lbs. with a difference 

of 6 lbs. of added force when adding a padded simulation or soft cushion 

compared to the experimental trials.  

After comparing the average forces obtained in all three-group trials for 

the trigger injector, it was noticeable to appreciate a significant increase in 

dynamic force required when adding the padded simulation, which resembles the 

human-to-machine interference. Adding a rubber or soft cushion will not be a 

recommended for comfort purposes, since it can potentially increase the force 

required to defeat the trigger button.  

That also accomplished the first part of the objectives and became an 

average force measurement for further comparison to achieve the second set of 

the objectives which consists of comparing the forces obtained to those required 

to use with four previously analyzed retractable intramuscular syringes with 

needles or category three devices.  
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Triggering the injector button through thumb push   required considerable 

effort in comparison to activating 4 retractable intramuscular syringes with 

needles from our previous lab studies (Haiduven, 2011), the range of mean 

forces were 3.63-17 lbs (16.19-77.53 N) for those syringes. The jet injector 

required more force per effort than 2 (4.4 times for effort) syringes & similar to 

other 2 syringes (0.9 times the effort) previously tested.  

Compared to the best category three devices in terms of ergonomic 

efficiency, there is almost a 12 lbs. (53.57 N) excess of compression force 

implied in the action. This comparison might be considered a simple relative 

value, but it becomes significant once it is compared against the NASA STD-

3000 203 which describes the thumb-finger tip strength with a limit of 13 lbs.(58 

N) for momentary hold (2008) and the maximal voluntary forces for the finger tip 

push of 56.6 N described by Potvin (2012). Since each effort time is short in the 

order of 0.5-0.9 seconds, when plotting the value in Potvin’s equation it is above 

the recommended level, with the advantage that there is no sustained effort.   

The average maximal voluntary force for the experimental trials was 70.07 

N, with a machine-to-machine interface, which can only be suggested to be of 

higher value when using the real thumb soft tissue by 26.78 N. Even though the 

trigger button was softer than prior the prior version of the NFIDs, it is above the 

recommended value for maximal voluntary effort, which can be translated into 

additional conflict once there is consideration of 480 minutes in an 8-hour period 

with a potential of 480 shots or more during a day per operator use during  
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 massive vaccination campaigns. This outcome value of force measured could 

potentially higher if taken into consideration that a skilled operator goes through 

12 mini-steps of the procedure in less than 30 seconds. In that case maximal 

achievable effort will have to cut the trigger button resistance by almost half of 

the current value to around 35 N. Instead of limiting the number of thumb efforts 

per cycle, the suggestion for the manufacturer will be either to further improve the 

mechanism of the trigger injector or redesigning the trigger button to be used with 

the palmar grasp of a squeezing mechanism consisting of pulling with 4 fingers 

rather than pushing with the thumb. If not taken into consideration, that could 

potentially result in hand and wrist pain secondary to strain of the metacarpal 

joint or first ventral and dorsal compartment. Even though the time used per trial 

averaged in between 3 to 4 minutes per trial due to strict adherence to the 

protocol, no sustained effort for the critical measurements were done that would 

affect the outcome. That is without considering the spurious finding that after 

filling more than 50 syringes with tensile forces not being measured in the 

experiment, two operators had pain and discomfort in the first metacarpal joint of 

the dominant hand. Even though similar forces will be exerted when filling a 

regular syringe, pre-filled syringes might be beneficial for HCWs’ prevention of 

occupational hand injuries. In massive campaigns, it is recommended to have an 

hour break in between and administrative controls consisting of rotating the 

personnel activities, if the activities are segregated and encouraging frequent 

recovery breaks to avoid repetitive motion injury.  
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  The one-way ANOVA for the trigger injector data with normal distribution 

are described in Table 7 with their means and medians with standard deviations. 

Additional information displays confidence intervals for the three groups of trials. 

The p- value summary for the trigger injector data is shown on table 8, with 

results consistent with an F ratio of 10.05 with a significant p-value below 0.0001 

with significant differenced among the mean values of the three groups while 

using 2,133 degrees of freedom. The null hypothesis of equality of the mean 

force values was rejected, and a difference in between the groups was noted.  

When comparing the three groups with Tukey’s multiple comparison post-test, 

the padded simulation trials were significantly different than the validation and 

experimental trials. Since there was no significant change in the shape for the 

third peak of the trigger injector graph, and only an increase was seen in the 

amount of force require to push which was 6 additional pounds, our simple 

reasonable deduction will be that having the soft tissue of the thumb will add 

force when measured in real human-to-machine interface. Even though that was 

an additional suggestion by ergonomists to make it more real with respect to the 

human body, that might potentially increase 26 N to the 71 N obtained for the 

trigger injector button of machine-to-machine interface. Regardless of the prior, 

the 71 N is already above the recommended level of 56.6 obtained by Potvin 

(2012). 
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Compressive forces for reset station: As shown in  (Figures 9 a & b), the 

experimental set up for force measurement of the reset station consists of a 

small load sensor adhered to the arm of the reset station with a sample rate of 

1,000/second for duration of 7 seconds, with subsequent data collection to Lab 

View Software depicts a common graph tracing as seen in Figure 12. This graph 

represented a typical tracing of a reset station in between a sample rate of 1000 

Hz during a total period of seven seconds vs. force measured in pounds. There 

was some interference in the first part of the tracing and then a sudden up-rise of 

the slope with a variable peak followed by a sudden decrease in the force until it 

plateaus to zero. That represents the push down arm exertion done by the R2 

experimenter. The areas under the curve will be representative for the total 

workload exerted by the individual without taking into account the initial artifact. 

To evaluate the PharmaJet™ Needle-free reset station, with their respective 

means, for each of the parameters studied the results were tabulated exhibiting 

the average force, minimum force, maximum force, standard deviation and 

range. 

After statistically comparing the average forces obtained in all three-group 

trials for the reset station, it was clear that there was no obvious difference in the 

average forces for the three compared group trials. Comparing this value to 

similar activities consisting of pushing down from prior literature, the maximal 

volume effort for pushing down a hose is 130.2 N, which is a similar motion when 

comparing the activation of the reset station (Adrews, 2008; Potvin, 2006). The 

average was below that reported repetitive motion effort which is considered to 
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be safe. Even though it is a simple and clever reloading device for the needle-

less injector, this action can potentially be eliminated completely out of the 

summation equation if an automated device similar to the automatic staplers 

commonly used for daily working tasks mechanisms was employed. That comes 

into play especially during massive vaccination campaigns in which the R2s or 

HCWs will have to push down constantly and potentially end up with pain in the 

hand, wrist or upper arm strains. No pain was reported while using the device 

because it was carefully placed in between waist level and below nipple level for 

maximal protection of the R2 operator. If that simple principle is not respected, 

the groups of muscles that will come into consideration above nipple level could 

potentially induce excessive strain to the shoulder muscle group or lower back. 

This was an additional force vector measurement when comparing to the effort to 

category 3 devices. It adds time and effort when comparing to the simplicity of 

the needle syringe devices. That is why this author recommends the optional 

automated reload station for massive campaign vaccinations to avoid excess 

repetitive motion.  

In addition, the data for the reset station was not normally distributed, so it 

was converted to logarithmic values to approximate normal distributed data, and 

the three groups were subsequently analyzed to see any difference in the 

medians or mean ranks among the groups which were evenly distributed Ranks 

as seen in Figure 16 a and b. There was no statistical significance with a p-value 

of 0.8795 and an H statistic of 0.2568. The null hypothesis cannot be rejected 

and the Dunn’s multiple comparison-test showed no difference among the three 
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groups. The mean ranks were 67, 69.13 and 62.75 for the three groups for the 

validation, experimental and padded trials, respectively. We can conclude that 

the reset station step for loading the injector is an easy step with a similar 

learning distribution curve, but one that can be fully avoided if automatizing the 

process is considered.  

Additional comments will include additional consideration for the tensile 

forces required to fill the syringes, since pain was elicited in two operators R1 

and R2 after filling more than 50 syringes. The suggestions will be to buy pre-

filled syringes or implement a design with a spherical holder instead of a flat 

circular holder to avoid the pinprick action that elicits pain. Instead, the action for 

filling the syringe can be done with the first, second and third fingers. The 

anatomical consideration was not added to the factor of the summation equation, 

since the recommended suggestions by the manufacturer teach the usage of the 

device in a neutral position. That assumption can be violated if the injection is not 

given at the HCWs’ height in between the waist and the shoulders. The third 

additional factor into consideration was that minimal amounts of air within the 

syringe could lead to a wet shot or breaking of the needleless syringe. There was 

only one wet shot during the learning phase, and it was observed under the 

stereoscope with a cracked polycarbonate syringe with no missing pieces. That  

provides a safety component for both the patient and the HCWs. The fourth 

component was based on observations with regards to leakage of fluid while 

loading the needleless syringe, and fluid in the cap with immediate vicinity-

splatter. Even though it occurred in less than 5-10 % of the trials, the use of live 
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vaccine components should be warranted and gloves and safety goggles were 

considered wise when dealing with such tools, to avoid exposures of HCWs to 

live vaccine  

 

Strengths and limitations of the study: The strengths consisted of a strict 

protocol to guard for internal validity. The R3 was double-checking all the steps 

throughout. The recommendations and training from the manufacturer were 

completely followed and practices with safe protocol of personal protective 

equipment was ensured. Constant visual confirmation of injector alignment was 

attained with the reset station. The fluid shot was simulated in ACF pad to notice 

the effects on skin. The experimental study was conducted by a group of multi-

disciplinary team members and dynamic force measurement attained. The 

author, R2, was the only one testing the device after thorough training, increasing 

intra-rater reliability 

 The limitations were a delay in the data recorder, a small sensitive load 

sensor area for evaluation of ergonomic issues in case the protocol is not 

reproduced with precision in future studies, cost of the experiment, presence of 

bubbles in syringes that might induce wet shots, increased time for visual 

confirmation by R3 during the experiments, leveling and handle rotation, along 

with the fact that strict adherence to the protocol might make a 30-45 second 

trials into a 4 to 5 minutes strict trial per injection evaluated.   
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Chapter VI 

Conclusions 

Triggering the injector and resetting the station required considerable 

effort in comparison to activating 4 retractable intramuscular syringes with 

needles from our previous studies. The range of mean forces was 3.63-17 lbs 

(16.19-77.53 N) for those syringes with the trigger injector maximum voluntary 

force of 71 N being above the recommend 56.6 N.  

  The jet injector required more force per effort than 2 (4.4x) syringes & 

similar to other 2 syringes (0.9x) previously tested when considering the 

compression forces related with the trigger injector (Haiduven et al., 2006; 2010).  

Additional vector forces (displacement & gripping of reset station) could 

increase the cumulative effort affecting different musculoskeletal components 

when the whole components of the procedure are taken into account.  

Suggestions for the manufacturer regarding design changes to facilitate 

HCWs’ use of this device are warranted, since some of the summation forces 

during the 12 mini-steps could be avoided to achieve a higher efficiency. This 

information may be useful for health care facilities when choosing devices to 

protect their workers from ergonomic injuries. Suggested automated reset 

station, power grip with four fingers for trigger injector button and using prefilled 

syringes or changing the pin-prick action to the use of three fingers. 
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Future research implications with analytical sensor gloves to attain the full 

effect of compression and tensile forces during the entire procedure will be ideal 

to improve laboratory measures that will translate into clinical effectiveness to 

make it more functionally appealing for its use for HCWs when compared to 

simple category 3 devices.  

This author wishes to emphasize that this work is not intended to discredit 

the exhaustive effort of the manufacturer in question, but to aid in the fine-tuning 

of a useful tool already showing clinical effectiveness throughout clinical trials 

and revamping it to a state of the art tool that is safer and more efficient for use 

by HCWs.  

 

Suggestions for future research include but are not limited to the following: 

Need to replicate with more than one HCW as operator, including shorter and 

taller individuals and both genders; need to test with reset station moving versus 

stationary, need to test with different orientations of the hand on the reset station, 

need to use multi-sensor glove for dynamic measurements during a complete 

duty cycle. 
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Appendix A 
 

IRB VA & USF-NIOSH ERC 

Product evaluation under controlled laboratory conditions; the ethical 

standards and training were highly taken into consideration prior starting the 

analysis, by following requirements for the VA IRB and USF-NIOSH ERC to 

maintain excellence in research standards with CITI search training completed.  

The research project, which this experiment was part of, received approval 

from the VA Office of Research & Development, Protocol #006142, “Laboratory 

Evaluation of Sharps Devices to Prevent Blood Exposures and Ergonomic 

Injuries in Healthcare Workers.”  

The abstract initial date was 11/10/2011 with a protocol original proposal 

on 06/09/2010. Approval to conduct this research was granted on 06/18/2012 by 

Dr. William R. Gower, Hr., Ph.D. as the ACOS for Research Service  as well as 

the executive Secretary of the R&D Committee.  

The proposal for this project was reviewed both scientifically and 

administratively and fully approved by the Research and Development 

Committee. 

 Documentation from the USF Health Sciences IRB was granted approval, 

having both R&D, IRB, and Privacy Officer approvals, the project was approved 

and subjects were allowed to be admitted to the study as stated in paragraph 2 of 

the last page of the document of the current appendix. 
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Appendix A (continued) 
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