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ABSTRACT 

The Vehicle Routing Problem with Time Windows (VRPTW) is an important and 

computationally hard optimization problem frequently encountered in Scheduling and logistics. 

The Vehicle Routing Problem (VRP) can be described as the problem of designing the most 

efficient and economical routes from one depot to a set of customers using a limited number of 

vehicles. This research addresses the VRPTW under the following additional complicating 

features that are often encountered in practical problems: 

1. Customers have strict time windows for receiving a vehicle, i.e., vehicles are not allowed 

to arrive at the customer’s location earlier than the lower limit of the specified time 

window, which is relaxed in previous research work. 

2. There is a limited number of loading/unloading docks for dispatching/receiving the 

vehicles at the depot 

The main goal of this research is to propose a framework for solving the VRPTW with the 

constraints stated above by generating near-optimal routes for the vehicles so as to minimize the 

total traveling distance. First, the proposed framework clusters customers into groups based on 

their proximity to each other. Second, a Probabilistic Route Generation (PRG) algorithm is 

applied to each cluster to find the best route for visiting customers by each vehicle; multiple 

routes per vehicle are generated and each route is associated with a set of feasible dispatching 

times from the depot. Third, an assignment problem formulation determines the best dispatching 

time and route for each vehicle that minimizes the total traveling distance. 
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The proposed algorithm is tested on a set of benchmark problems that were originally developed 

by Marius M. Solomon and the results indicate that the algorithm works well with about 1.14% 

average deviation from the best-known solutions. The benchmark problems are then modified by 

adjusting some of the customer time window limits, and adding the staggered vehicle dispatching 

constraint.  For demonstration purposes, the proposed clustering and PRG algorithms are then 

applied to the modified benchmark problems. 
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CHAPTER 1:  INTRODUCTION 

1.1 Role of Distribution  

Distribution is an important domain in our daily life, as it supports most social and economic 

activities. Furthermore, it plays a key role in the fields of logistics and supply chains. Improving 

operational efficiencies in distribution is receiving greater attention as fuel costs are continually 

increasing. A small reduction in the traveled distance of a daily logistical operation directly 

translates to cost reduction and decreased environmental impacts. 

It has been estimated that distribution costs account for almost half of all logistics costs, and in 

some industries, such as the food and beverage business, distribution costs can account for up to 

70% of the value-added costs of the goods. In 1989, 76.5% of all transportation is by vehicles 

(Backer et al., 1997; Golden and Wasil, 1987; Halse, 1992).  

In 2007, it was estimated that American businesses made shipments valuing $11.8 trillion, 

totaling 13 billion tons, and contributing 3.5 trillion ton-miles on the nation’s transportation 

infrastructure, with 71% of these transportation operations carried out by truck (Duych, 2008). 

Figure 1 summarizes the different mode of transportations and the associated annual costs for the 

United States in 2007. 
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Figure 1: Transportation modes and its associated annual costs (Duych, 2008) 

 

The importance of the distribution management mandates achieving high performance levels in 

terms of the economic efficiency and service quality. The motivation to achieve economic 

efficiency is exceptionally high in this competitive industry. A distribution firm’s main objective 

is to make profit, while from a customer’s view (for a given level of quality) the major factor in 

selecting a carrier is the cost  

Further, lean manufacturing trends that target minimizing or eliminating inventory (just-in-time 

procurement), and the need for quality control of the entire logistics chain driven by customer 

demand and requirements impose a high service level.  Such high levels can be achieved by 

providing better total delivery time (be there fast), and reliable service (be there within specific 



3 

limits and be consistent in performance) (Crainic and Laporte, 1997).These and similar statistics 

about the role of distribution  in our society and the industry’s competitive nature propel the vast 

body of research undertaken on traveling salesperson, vehicle routing and scheduling problems.  

The Traveling Salesperson Problem (TSP) is considered the basic and simplest form of vehicular 

distribution, and is referred to as the Vehicle Routing Problem (VRP). The problem is defined as 

finding the shortest route that can be taken starting from a depot and passing through each of   

(N-1) points (customers), and then returning to the depot as shown in Figure 2, assuming that 

each pair of points (customers) is joined by a link and having specific distance (Flood, 1956). 

Attempts by researchers to study TSP were unsuccessful until the mid 1950’s when Dantzig, 

Fulkerson, and Johnson presented a formulation and a solution method (Dantzig et al., 1954).  
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Figure 2: Traveling Salesperson Problem. 

The Vehicle Routing Problem emerged with the evolution of industrial age, when large-scale 

production and supply became possible. The importance of vehicle routing optimization gained 

significance as the complexity and scale of production increased. 
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As illustrated in Figure 3, the VRP can be stated as the problem of designing least-cost/ shortest 

delivery routes for a number of vehicles from a depot to a set of geographically dispersed 

customers, subject to side constraints. This problem is central to distribution management and 

must be routinely solved by distribution companies (Laporte, 2009). 
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Figure 3: Vehicle Routing Problem. 

1.2 Vehicle Routing Problem Structure 

The VRP involves serving a set of customers using a fleet of vehicles and a road network. The 

objective is to minimize operating cost, such as minimizing the total distance traveled or the time 

taken to complete a tour, while considering operational constraints regarding vehicle capacity, 

customer availability (time windows), and driver availability; among others.  Common 

parameters, potential objectives, and constraints of the VRP are shown in Figure 4. The optimal 

solution of the VRP is a set of routes, each served by a single vehicle satisfying customers and 

operational constraints, while minimizing the total travel distances.  Typically, the problem 

requires that each vehicle starts and ends at a single depot.  
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Figure 4: Parameters, Constraints and Objectives of the VRP 

VRP is an NP hard problem due to its computational difficulty and its practical relevance 

(Maffioli, 2003). There are different variants of the VRP depending on the objectives of the 

problems and the constraints to be considered (Desrochers et al., 1990). The relations between 

different variants of VRP are shown in Figure 5. 
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Figure 5: Relations between different types of Vehicle Routing Problem (Toth and Vigo, 2002). 

The simplest form of the problem is the traveling salesperson problem (TSP), which has no 

constraints except serving all customers with only one vehicle. When there is a set of vehicles to 

serve all customers without constraints, the problem is called the vehicle routing problem (VRP). 

The name of the problem changes by considering constraints to the solution. By considering the 

capacity of the vehicle in the solution, the problem becomes the capacitated vehicle routing 

problem (CVRP). If the CVRP is additionally constrained by time windows for arrival and 
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departure to and from customers, it is called the vehicle routing problem with time windows 

(VRPTW).  

The Vehicle Routing Problem with Pickup and Delivery (VRPPD), another extension of the 

classical VRP, occurs when a number of goods are moved from a certain pickup location to a 

certain delivery location.  The objective is to identify the optimal routes to visit the pickup and 

delivery locations. The Vehicle Routing Problem with Backhauls (VRPB) is considered a special 

case of VRPPD in which there are two separate sets of customers: a set of customers to whom 

products are delivered, and a set of vendors whose goods need to be transported back to the 

distribution center; the main constraint in this type of problem is that all deliveries must be made 

before any pickups. When there are limitations on vehicle capacity and the maximum route 

distance, the problem is called the Distance Constrained Capacitated Vehicle Routing Problem 

(DCVRP) (Toth and Vigo, 2002).  

This research proposes a new algorithm for solving the VRPTW with additional constraints due 

to the necessity to stagger the vehicles’ dispatching times from the depot or the vehicles’ 

receiving time at the depot due to, for example, a limited number of loading docks and/or 

dispatching times.  

The problem is decomposed into several sub-problems as is discussed in CHAPTER 3:.  New 

heuristics are developed to efficiently generate near-optimal schedules and routes. Section 1.3 

presents the problem definition including the unique features studied in this research 

investigation.  
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1.3 Problem Definition 

The VRPTW problem has been studied extensively during the last decade, and researchers have 

proposed different algorithms and heuristics for solving this problem. Most of the proposed 

algorithms, however, ignore the lower bound of customers’ time windows. More specifically, 

most of the proposed algorithms and heuristics allow the vehicle to wait at a customer’s premises 

if the vehicle arrives before the start of the customer’s specified time window. Further, these 

algorithms assume that all vehicles can be dispatched from the depot at the same time, which 

might not be realistic in some practical situations, e.g., the depot might have a limited number of 

dispatching/receiving docks. 

In this research a new variant of the VRPTW has been studied, by adding two additional features 

(constraints): 

1. The vehicle schedule must satisfy both a lower limit  and an upper limit of the 

arrival time to customer . Therefore, vehicles are not allowed to wait at the customer 

upon early arrival. 

2. There is a limit on the number of vehicles that can be dispatched simultaneously from the 

depot.  This limit depends on the number of available docks (d) at the depot. 
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Represent 

customers

 

Figure 6: Schematic illustration of problem under study. 

As shown in Figure 6, the problem under study can be described as a company that provides 

delivery service through a single depot to N customers (nodes), using  vehicles, each having 

fixed homogeneous capacity . The problem has the following components:  

 Depot 

 Single depot that serves a set of N customers 

 A set of D homogeneous loading docks 

 Each dock requires a certain (fixed) period of time l to load each vehicle 

 Each dock can dispatch vehicles during a predefined finite set of time slots F. 
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 Vehicles 

 The depot has a set of K vehicles to serve customers  

 The vehicles have fixed homogeneous capacity Q 

 Each route is serviced by a vehicle k  K that starts and ends at the depot 

 Each vehicle k  K must be loaded by a one unique dock d  D at the depot. 

 Customers 

 Each customer i has demand qi 

 Each customer i is visited by only one vehicle 

 Each customer i has a specific time window to receive service denoted by [ai, bi], 

where ai and bi represent the earliest and latest time, respectively, for receiving 

service. 

 Each vehicle k  K spends a specific time  at customer i 

The objective is to find the schedule that minimizes the total traveling distance of visiting all 

customers within their time windows, subject to limitations on the number of dispatching docks 

at the depot, and vehicle capacity. 

Due to limited dispatching dock capacity at the depot, it is infeasible to dispatch all vehicles 

simultaneously, which mandates a staggered dispatch approach of the vehicles from loading 

docks over the allowed dispatching time. Figure 7 illustrates how changing the vehicle 

dispatching time from the depot can affect an already proposed route by violating the time 

windows of customers. In Figure 7, the y-axis represents the order of visiting the customers 



11 

starting from the depot in the top of the y-axis and ending at the depot at the bottom of the y-axis. 

The horizontal line represents the service time at customer’s location, while the declined line 

represent the traveling time from one customer to another. The solid line represents dispatching 

the vehicle from the depot at the appropriate time and how it meets all customers’ time windows, 

while the dotted line shows how the customers’ time windows might be violated if the 

dispatching time of the vehicle from the depot changed. 
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Figure 7: Effect of changing vehicle dispatching time on the time window constraints 

1.3.1 Problem Formulation 

The problem can be considered a graph G = (N, A) with a set of N nodes representing the 

customers and a set A of arcs with arc (i,j)  A connecting node i to node j; the depot is 

presented by Nodes 0 and (N + 1). A is the set of arcs that connect the different nodes. For each 
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arc (i,j)  A, i  j, there is a nonnegative cost cij that represents the travel distance between nodes 

i and j in the network. 

Parameters: 

We assume that all parameters are deterministic and fixed. 

cij = traveling distance from customer i to customer j 

N = |N| = number of customers 

K = |K| = number of vehicles 

D = |D| = number of docks available at the depot 

F = |F| = number of adjacent dispatching time slots at the depot 

ui = service time at customer i 

tij = traveling time from customer i to customer j 

ai = the earliest time to service customer i 

bi = the latest time to service customer i 

E = earliest time to leave the depot 

L = latest time to return to the depot 

qi= quantity to be delivered to customer i 
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Q = capacity of each vehicle k 

Tf= time a vehicle can be dispatched in time slot f, where f  F 

Assumptions: 

The following assumptions are considered in the problem 

­ All vehicles have the same capacity Q 

­ Vehicles maintain a constant speed from customer i to customer j  

­ F adjacent time slots are available at dispatching docks to dispatch vehicles 

­ Receiving (or Unload) dock capacity at a customer i is unlimited (i.e., vehicles do not 

have to wait for the availability of an unload dock) 

Decision variables:  

 

wik= the start time of service at customer  when serviced by vehicle k 

 

The VRPTW is formulated with dispatching constraints as follows: 
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s.t. 

 

(1) 

 

(2) 

 

(3) 

 

(4) 

 
(5) 

 

(6) 

 
(7) 
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(8) 

 
(9) 

 

(10) 

 

(11) 

 

(12) 

 
(13) 

In the mathematical model, constraints (1) to (9) are those presented by Toth and Vigo (Toth and 

Vigo, 2002) to formulate the VRPTW, and constraints (10) to (13) are the additional constraints 

required for the staggered dispatching feature of the problem. 

The objective is to minimize the total travel distance. Constraint (1) restricts the assignment of 

each customer to exactly one vehicle. While constraints sets (2)-(4) characterize the flow on the 

path to be followed by vehicle k. Constraints sets (5)-(7) and (8) guarantee schedule feasibility 

with respect to time windows and vehicle capacity limitations, respectively. Constraint (10) 

restricts the dispatching time of any of the vehicles to one of the available F dispatching time 
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slots.  While constraint (11) ensures that one and only one dispatching time period f will be 

assigned to each vehicle. Finally, constraint (12) ensures that the number of vehicles that can be 

dispatched in a given time slot is less than or equal to the number of the available docks. 

As previously mentioned, the VRP is NP hard due to its computational difficulty (Maffioli, 

2003). Adding the constraints of time windows and the limited capacity of dispatching docks 

increase the complexity of the problem and make it very difficult to solve in polynomial time. 

Therefore, it follows that the VRPTW with limited dock capacity is also in the class of NP. 

1.4 Research Objective 

The goal of this research is to propose a solution framework for the VRPTW problem with 

limited dispatching capacity constraint that generates a vehicle dispatching schedule for the 

depot in order to minimize the total vehicle traveling distance. The following steps are taken in 

order to develop this framework for solving the problem under study. 

1. Propose a clustering approach that partitions the customers into subgroups considering the 

proximity between customers and simultaneously satisfying the customers’ time window 

constraints; 

2. Propose an optimization procedure that produces near-optimal vehicle routes for each cluster 

considering the upper and lower bounds of time windows for each customer and the limited 

number of loading docks at the depot; and 

3. Evaluate the proposed solution framework against benchmark problems via a computational 

study. 
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As by-product of this research, a dock schedule can be developed compatible with the optimal 

routing of vehicles.  

Due to the vast body of literature on VRP, the literature review in Chapter 2 chiefly focuses on 

the Vehicle Routing Problem with Time Windows and its variants, because it is the closest 

representation to the problem under investigation in this research. Chapter 3 illustrates the details 

of the research methodology and discusses the proposed algorithms for solving the research 

problem. Chapter 4 presents the results of testing the performance of the proposed algorithms 

and discusses the obtained results. Chapter 5 discusses the modification of VRPTW benchmark 

problems and applies the proposed algorithms on the modified benchmark problems. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

Due to the importance and wide applicability of the VRP, it is continuously investigated to 

enhance existing algorithms and develop new exact algorithms and heuristics to achieve better 

solutions in a reasonable time. Numerous researchers discuss the VRPTW and propose different 

approaches for solving it. They propose three main approaches: Exact Algorithms, Heuristics, or 

Metaheuristics. Figure 8 summarizes existing research on the VRPTW. 
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Ioannou, Kritikos, & Prastacos, 2001 (extension of insertion heuristic)

Balakrishnan, 1993 (extensions of saving algorithm and nearest neighbor algorithm)

Fisher & Jaikumar, 1981 (Cluster first-Route second heuristic)

Parallel route construction heuristics
Potvin & Rousseau, 1993 (Parallel version of insertion heuristic)

Russell, 1995 (extension of the Parallel version of insertion heuristic)

Tabu Search
Garcia, 1994 (Apply tabu search to VRPTW)

Backer & Furnon, 1997 (Two phase approach, construct rout first and then applying local search 

techniques combined with tabu search)

Schulze & Fahle, 1999 (Parallel tabu search for VRPTW)

Tan, 2001 (extension of tabu search to VRPTW)

Cordeau, 2001 (extension of tabu search to VRPTW)

Lau, et al., 2003 (extension of Two phase approach)

Simulating Annealing
Chiang Russell, 1996 (Apply simulated annealing to VRPTW)

Czech & Czarnas, 2002 & Debudaj-Grabysz, 2005 (parallel computation simulated annealing)

Hiquebran, et al., 1993 (apply simulated annealing to cluster-first route-second strategy to 

VRPTW)

Neighborhood Search Meta-Heuristic
Braysy, 2003 (apply Variable neighborhood Search to VRPTW)

Prescott-Gagnon, 2009 (apply Large Neighborhood Search to VRPTW)

Evolutionary Computation
•Blanton & Wainwright, 1993 (first apply GA to VRPTW)

•Thangiah, 1995a,1995b (use GA with cluster-first route-second algorithm)

•Benyahia & Potvin, 1995 & Potvin et al., 1996 (use GA with parallel insertion heuristic)

• Potvin & Bengio, 1996 (extension of GA with insertion heuristic)

•Berger et al., 1998 (hybridize GA with Construction heuristics)

•Zhu, 2000 & Tan, 2001 (integer representation of solution, and new crossover operators) 

•Berger et al., 2003 (parallel evolving of populations)

•Alvarengaa et al., 2007 (combine GA with set partitioning formulation)

•Chenga & Wangb, 2009 (use GA for clustering)

•Nazif & lee, 2010 (extension of GA for VRPTW)

Ant Colony Optimization
•Gambardella et al., 1999 & Tan et al., 2006 (multi-objective ant colony system for VRPTW)

•Gong et al., 2007 (two generation ant colony for VRPTW)

•Qi & sun, 2008 (modified ant colony algorithm)
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Figure 8 Summary of reviewed publications 
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2.2 Exact Algorithms 

Over the last four decades, extensive research in the field of VRP proposes exact solution 

algorithms. These algorithms range from basic branch-and-bound schemes to highly 

sophisticated mathematical programs. 

An Algorithm for the Vehicle Dispatching Problem proposed by Christofides & Eilon (1969) is 

considered one of the first known branch-and-bound algorithms , the authors propose to add m-1 

artificial depots to the graph and setting the distance between those artificial depots to infinity. 

By adding those artificial depots the problem changes from VRP to TSP, this new problem is 

called m-TSP. Each new TSP is solved by branching on arcs as proposed by Little et al. (1963). 

Christofides & Eilon (1969)  claim that they can improve the results of the Little et al. algorithm 

by determining the lower bound of the traveling salesperson tour by calculating the minimal 

spanning tree. 

Kolen et al. (1987) propose a branch-and-bound method for VRPTW. The authors state that they 

propose the first optimization method for VRPTW. The proposed branch-and-bound algorithm is 

based on a branching rule, in which each node in the search tree corresponds to: (1) a set of fixed 

routes that start and end at the depot, (2) a partial route starting at the depot, and (3) a set of 

customers that are forbidden to be the next route stop. Initially, the fixed routes and the set of 

forbidden customers are empty, while the partial route consists only of the depot. In the 

branching process the algorithm starts with a customer who does not appear in any fixed or 

partial route and is not forbidden. A lower bound is calculated at each node of the search tree for 
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the possible feasible extensions of the partial route by relaxing the constraint that forces each 

customer not being served yet to be visited only once. 

Desrochers et al. (1992) propose an algorithm that considers hard time windows; the time 

windows of any of the customers can not be violated. For example, a vehicle waits at the 

customer’s location, if it arrives earlier than the customer’s specified time window. Such case is 

applicable in the fields of bank deliveries, postal deliveries, industrial refusal collection and bus 

routing and scheduling. In this paper, the authors use column generation approach in conjunction 

with branch-and-bound to generate an optimal solution. 

Liberatore (2009) proposes an exact algorithm for solving the vehicle routing problem with soft 

time windows (VRPSTW) using column generation method. Soft time windows are not 

considered as constraints, but as preferences on the time of visiting the customer’s location. If a 

customer is visited out of the preferred time window, a penalty is incurred in terms of additional 

costs that are added to the total cost of the route rather than considering it a time window 

violation. The main advantage of routing with soft time windows is that more stops can be added 

to routes than in the case of hard time windows. The authors propose an algorithm that solves 

VRPSTW as a resource constrained elementary shortest path problem with soft time windows, 

which forms the basis to develop a branch-and-price algorithm for the exact optimization of the 

VRPSTW. 

The concept of the VRP is simple and easy to understand, and from the first impression we may 

think that it is very easy to get an optimal solution for it. However, the problem is very complex, 

and time consuming to reach an optimal solution and is considered NP-hard problem. Further, 
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adding constraints to the problem will increase its complexity. Christofides and Eilon (1969) and 

Lenstra and Kan (1981) have shown that the vehicle routing problem is an NP-hard problem, and 

consequently we can consider vehicle routing problem with time windows as an NP-hard 

problem. 

The work done by Savelsbergh (1985) and Solomon (1986) show that adding the time window 

constraint to the vehicle routing problem increases the complexity of the problem and the 

difficulty of reaching an optimal solution, and consequently reaching an optimal solution within 

polynomial time is not expected. 

2.3 Classical Heuristics 

Heuristics may be considered as successful alternatives to provide promising solutions for 

practical (realistic) size problems in reasonable computational time and requirement, but their 

main limitation is the quality of the solution (Koskosidis et al., 1992), and the optimality gap. 

2.3.1 Sequential Route Construction Heuristics 

Clarke and Wright (1964) propose the saving algorithm. The algorithm starts by developing one 

tour from the depot to each customer and back to the depot. The number of initial tours will be 

equal to the number of customers. After setting the initial tours we start combining the different 

tours together in order to reduce the total traveled distance. In order to determine the tours that 

should be combined together, the saving that results from combining any two tours together (Sij) 

are calculated, by adding distance from the depot to customer i (di0) and distance from the depot 

to customer j (d0j) and subtracting from them the distance from customer i to customer j (dij). 
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After calculating the savings we rank them and list them in descending order of magnitude, and 

we start joining tours together in such way that maximizes the savings. We keep combining tours 

together until all customers are assigned to routes. The number of vehicles used in the solution is 

an output of the algorithm. Gaskell (1967), Yellow (1970) and Paessens (1988) have also 

proposed a number of variants of this method. 

Gillett and Miller (1974) propose a heuristic algorithm, named the sweep algorithm for solving 

medium and large scale vehicle routing problem with load and distance constraint for each 

vehicle. The sweep algorithm divides the locations into a number of routes and then operates on 

the individual routes until an optimum or near optimum solution is obtained. The authors state 

that when the problem is broken down into a number of smaller sub-problems, the computation 

time required for reaching the optimal solution increases somewhat in a linear, rather than, in an 

exponential manner as more locations are added to a given problem. The sweep algorithm 

consists mainly of two parts: a forward sweep and backward sweep. In the forward sweep, 

locations are added to the route according to their polar-coordinate angle from the depot, the 

locations with smaller polar-coordinate angles are added first to the route until the vehicle 

capacity or distance constraint is reached. When the vehicle capacity or the distance constraint is 

reached a new route is started. This process is repeated until all locations are assigned to routes. 

In order to check if there is better solution that can be reached, a replacement process takes place 

between consecutive routes by replacing the locations that are near to each other in the 

consecutive routes. The replacement process takes place only if the total distance of the routes is 

decreased. The backward sweep is similar to the forward sweep, except that the backward sweep 

uses the locations with larger polar-coordinate angle from the depot to be added first to the 
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routes, and also the replacement process takes place between the constructed routes to check any 

further improvement. The authors state that forward and backward sweep algorithms produce 

different routes, and the smallest output of these two algorithms is considered the best solution.  

Solomon (1987) propose a set of heuristics for solving the vehicle routing problem with time 

windows. The first heuristic is an extension of the saving heuristic proposed by Clarke and 

Wright (1964). The main savings algorithm is extended by considering the time window, and 

consequently the route orientation becomes a very important issue to satisfy customer 

requirements, as changing customers visiting sequence may affect satisfying customers’ time 

windows. The second heuristic is a time-oriented nearest neighbor, in this algorithm the route 

construction process starts by finding the closest customer to the depot that is not assigned to a 

route yet, and then the heuristic searches among the feasible customers (with respect to time 

windows, vehicle arrival time at the depot, and vehicle capacity constraint) for the closest one to 

the last customer added to the route and adds it at the end of the route. A new route is started 

whenever the heuristic fails to find a feasible insertion, unless there are no more customers left. 

The third heuristic is the insertion heuristic; route construction in this heuristic is initialized with 

a “seed” customer and the remaining un-routed customers are added into the route until an 

operating constraint is violated. The seed customers are selected by finding either the farthest un-

routed customers from the depot or the un-routed customer with the lowest allowed starting time 

for service. After initializing the route with a seed customer, the heuristic uses two criteria, 

c1(i,u,j)  and c2(i,u,j), to select customer u for insertion between customers i and j in the current 

route. The first criteria c1(i,u,j)finds the insertion that minimizes the cost, while the second 

criteria c2(i,u,j) finds the best position for the nominated insertion to provide the optimal feasible 
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solution (inserting a new insertion would affect the time of starting service in the successive 

customers). The fourth heuristic is called “A Time-Oriented Sweep Heuristic”; this heuristic is 

based on the idea of decomposing the problem into a clustering phase and a scheduling phase. In 

the clustering phase, customers are assigned to vehicles as in the original sweep heuristic 

proposed by Gillett and Miller (1974). In the scheduling phase a one-vehicle schedule is created 

for the customers assigned to the vehicle, using a tour building heuristic like the insertion 

heuristic. 

Ioannou et al. (2001) propose a heuristic for solving the VRPTW, this heuristic is considered a 

route construction sequential approach as it builds vehicle routes, one at a time. The proposed 

heuristic is based on the generic insertion framework proposed by Solomon (1987). After 

initializing a route with a ‘seed’ customer the heuristic uses two criteria to insert a new customer 

to that route. The first criterion selects the best customer to be inserted in the current route, while 

the second criterion determines the best place that the selected customer can be inserted in the 

current route. This heuristic is based on the minimization function of the greedy look-ahead 

solution approach of Atkinson (1994); the basic idea of the new selection and insertion criteria is 

that a customer u is selected for insertion into a route if it minimizes  the impact of the insertion 

on the route under construction, and on customer u’s time window. The procedures are repeated 

until no further customers can be added to the current route, and then a new ‘seed’ customer is 

identified to form the un-routed customers to initiate a new route.  The overall process is 

performed until all customers are being assigned to routes. 
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Balakrishnan (1993) propose three heuristics for solving the vehicle routing problem with soft 

time windows. The proposed heuristics are based on the nearest neighbor, the Clacke-Wright 

saving rules, and space time. The difference between the proposed heuristic in this paper and the 

original heuristics are in the way of determining the first customer in a route and the method 

used for selecting customers to be added in each route. The proposed heuristics are considered 

sequential as each truck is scheduled before the next one is considered.  

Fisher and Jaikumar (1981) propose a cluster first, route second heuristic for solving VRP. This 

heuristic starts by selecting seeds that initiate clusters construction, the number of seeds is equal 

to the number of available vehicles, and customers are joining seeds to form the cluster in such a 

way that minimizes the distance between the seed and the customers, while satisfying the 

capacity constraint. The process of distributing customers among clusters is done using general 

assignment problem (GAP). The second part of this heuristic is to find the delivery sequence of 

the customers assigned to each vehicle by solving traveling salesperson problem (TSP).   

2.3.2 Parallel Route Construction Heuristics 

Potvin and Rousseau (1993) propose a parallel version of the insertion heuristic proposed by 

Solomon (1987), where the routes are constructed at the same time. The authors use Solomon’s 

sequential insertion heuristic to determine the initial number of routes and consequently the seed 

customer of each route. The selection of the next customer to be inserted in the route is 

determined using a generalized regret measure over all routes. The regret is an estimator of the 

loss if a given customer is not immediately inserted in its best route. A large regret measure 

implies a large gap between the best insertion place for a customer and its best insertion place in 
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the other routes. Obviously, the un-routed customers with large regrets must be considered first, 

as the number of alternative routes for inserting them is small, while those with small regret 

measure can be easily inserted into alternative. 

Russell (1995) propose a parallel heuristic for solving the VRPTW, the proposed heuristic is 

similar to the one proposed by Potvin and Rousseau (1993), but differs primarily in the way of 

determining the seed points, the order in which points are inserted to routes, and the post 

processing of any un-routed customers. This heuristic starts by specifying the initial number of 

routes either by determining it from the existing routes or estimating it by applying Solomon’s 

insertion heuristic, after that N seed points of each route (cluster) are generated using the 

procedures of Fisher and Jaikumar (1981). Customers are selected to be inserted into a route 

according to three ordering rules that facilitate time windows feasibility during route 

construction. The best location for inserting a customer into a route is determined by using 

certain criteria that consider local time and distance; the selected customer is inserted in the 

location that minimizes the distance and satisfies the time window constraints. The insertion 

process is repeated until all customers are assigned to routes, un-routed customers are assigned to 

routes by using Solomon’s insertion heuristic. After constructing the initial solution, the 

interchange heuristic (local search heuristic) exchanges nodes between routes to explore the 

neighborhood for a better solutions. The authors claim that a greater improvement can be 

achieved by applying the improvement procedure (interchange procedure) to the partially 

constructed routes after inserting a certain number of customers to routes. 
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2.4 Meta-Heuristics  

Meta-Heuristics are a set of strategies that guide the search process to efficiently explore the 

search space in order to find a near optimal solution. Meta-Heuristic algorithms are approximate, 

usually nondeterministic, and range from simple local search procedures to complex learning 

processes. These Meta-Heuristics are usually incorporated by its own mechanisms that avoid 

trapping in confined areas of search space (Osman and Laporte, 1996; Voss et al., 1999). Meta-

Heuristics can be considered as the shift from algorithms that are based on a single paradigm to 

hybrid methods that are based on several principles. Search strategies of different meta-heuristics 

are highly dependent on the philosophy behind the meta-heuristic itself, these strategies can be 

broadly classified into: trajectory methods and population based methods. 

2.4.1 Trajectory Methods 

The meta-heuristic trajectory search method is considered an intelligent extension of local search 

algorithms, the main idea behind the trajectory search method is to escape from local minima in 

order to continue exploring the search space and reach a better solution (Blum and Roli, 2003). 

Examples of meta-heuristics that use this search mechanism are discussed next. 

2.4.1.1 Tabu Search 

Tabu Search (TS) a popular meta-heuristic for solving combinatorial optimization problems. The 

basic ideas of TS were first introduced by Glover (1986). Basically, TS uses the history of search 

(solutions) to escape from local minima and to explore the search space to attain a better 

solution.  
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TS uses a short term memory that plays the role of a Tabu list to keep track of the recently 

visited solutions and prevents moving toward these solutions, and consequently the 

neighborhood of the current solution will be restricted to the solutions that are listed in the Tabu 

list; this neighborhood solution set is known as the allowed set. In each iteration, the best 

solution from the allowed set is selected as the new current solution and is added to the Tabu list, 

and one of the solutions that exist in the Tabu list is removed. This process continues until a 

termination condition is met. 

Garcia et al. (1994) were the first to apply TS for the VRPTW. The authors present a simple TS 

based heuristic that starts by using Solomon’s insertion heuristic to construct an initial solution, 

and applying 2-opt* and Or-opt exchange on that initial solution for further improvement. 

Whenever a better solution is reached, this solution is set as the current solution and is added to 

the Tabu list, the purpose of this list of best reached solutions is to prevent returning back to 

these solutions again during the search process. The authors implemented TS on a network of 16 

Meiko T-800 Transputers (concurrent computing microprocessor); the synchronization between 

the different Transputers is carried out by implementing the “master-slave” relationship. The 

master processor controls the TS, while the slaves are called to explore different neighborhoods 

of the current solution. 

Backer and Furnon (1997) propose a two phase approach for solving VRPTW similar to that 

proposed in Garcia et al. (1994). The difference here is in the way of constructing the initial 

route. The authors use the savings heuristic (Clarke and Wright, 1964) to construct the initial 

routes, which are subsequently optimized using the local search techniques combined with TS to 
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prevent the search process from getting trapped in a local minimum. TS is implemented by 

creating two lists, one for storing the added arcs and the other for storing the removed arcs. 

Schulze and Fahle (1999) propose a parallel TS algorithm for solving the VRPTW. The proposed 

TS performs several search threads in parallel starting from different initial solutions and tries to 

improve it by a local search process combined with TS. The authors use modified savings 

heuristic that is adapted for handling time window constraints, while neighborhood solutions are 

explored by using a simple customer shifts, each shift moves a customer from one route to 

another generating a new solution. 

Tan et al. (2001a) propose a TS for VRPTW that combines short term memory and long term 

frequency memory. The short term memory stores the recently made moves and the solution 

configuration, while the long term frequency memory (candidate list) stores the elite solutions 

the system has discovered in the search process. The proposed TS procedure begins by 

constructing the initial solution by using Solomon’s insertion heuristic (Solomon, 1987). 

Afterwards, the initial solution is enhanced by undergoing a 2-interchange local search descent 

procedure in which two customers are swapped between two different routes at one time. 

Whenever a better solution is reached, it is added to the elite list for future exploration.  

Cordeau et al. (2001) propose a unified TS heuristic for the VRPTW, the authors claim that 

major benefits of the proposed approach are its speed, simplicity and flexibility. The proposed 

meta-heuristic starts by constructing the initial solution using a modified version of the sweep 

heuristic developed by Gillett and Miller (1974). The solution space is explored by adapting the 
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GENIUS insertion and post-optimization procedure developed by Gendreau et al. (1992) for 

solving the traveling salesperson problem. 

Lau et al. (2003)   propose a two phase approach for solving the VRPTW with limited number of 

vehicles. In the first phase the authors use a construction heuristic to generate a possible initial 

solution, and customers are assigned to a set of feasible routes in such way that minimizes the 

total cost. After constructing the initial solution, the second phase applies an iterative 

improvement heuristic to explore solution neighborhood space. The authors use k-opt local 

search procedure to improve the initial solution. In the second phase, TS is used to prevent the 

algorithm from being trapped at a local optimal and to explore a larger search space. The authors 

introduced the concept of holding list, which is simply a list of customers that are not serviced. 

In the beginning, all customers are listed in the holding list, and the customers of a selected route 

undergo a set of transfer to/from or exchange with customers in the holding list. A feasible 

solution of the VRPTW is found when all the customers are driven out of the holding list.  

2.4.1.2 Simulated Annealing 

Simulated Annealing (SA) is considered a probabilistic meta-heuristic for globally optimizing 

large combinatorial optimization problems. SA was first introduced by Kirkpatrick et al. (1983). 

The name “Simulated Annealing” is inspired from the annealing process in metallurgy; this 

process involves heating and controlled cooling of material until the particles arrange themselves 

in the ground state of the solid, the slow cooling allows the material to find configurations with 

lower internal energy than the initial one. Analogically to this physical process, the SA heuristic 

generates a sequence of solutions that replaces the current solution randomly, based on a 
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probability that depends on the difference between the new explored solution and the current 

solution values and on a global parameter that is called temperature, which is gradually reduced 

during the search process. SA does not search for the best solution in the neighborhood of the 

current solution, but it draws a random solution from the neighborhood, and if the selected 

solution is better than the current solution it replaces it, otherwise it accepts it with a certain 

probability (Aarts et al., 2005; Fleischer, 1995). 

Chiang and Russell (1996) develop an SA meta-heuristics for the VRPTW. The proposed meta-

heuristic starts by constructing an initial solution using the parallel construction approach of 

Russell (1995). During the parallel construction process of the routes, the SA tour improvement 

heuristic is invoked periodically to search for a better solution while constructing the routes. 

After constructing an initial solution, SA tour improvement heuristic using local search 

techniques (k-node interchange and λ-interchange) are applied to explore the neighborhood of 

the initial solution for a better one. The SA randomizes the local search procedures and in some 

instances, according to certain probability, the heuristic accepts solutions that are worse than the 

current ones to avoid getting trapped in a local optimum. Since SA is a memoryless heuristic, the 

authors used a Tabu list to keep track of the best solutions that the heuristic reaches during the 

search process.    

Czech and Czarnas (2002) and Debudaj-Grabysz and A. Czech (2005) describe how to apply the 

parallel computation SA heuristic to solve the VRPTW developed by Chiang and Russell (1996) 

to accelerate the search process and enhance the accuracy of the solution. The authors distribute 

the computation process over a set of processors (each processor generates a set of neighbors for 
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the current solution) that co-operates with each other after a certain number of steps and pass 

their best local solutions found so far, among which the best global solution is selected and set as 

the current solution; this process is repeated until no more improvement over the current solution 

is achieved.  

Hiquebran et al. (1993) apply the SA meta-heuristic with cluster-first route-second strategy for 

solving VRPTW. The proposed met-heuristic starts by constructing initial routes using nearest 

neighborhood heuristic. Nodes (customers) of different routes can be moved from one route to 

another either by swapping or inserting.  In a swap move two routes are selected randomly and 

then one node from each route is selected at random, these two nodes are then swapped between 

routes and the new objective function value is calculated. In an insert move, a route and node are 

selected randomly, and a second route and position in that route are also selected at random, then 

the node is removed from the first route and inserted in the selected position in the second route. 

The swap and insert moves are performed until the SA decision function rejects the generated 

solution, then the move type is switched to the other type. In each iteration the best move is 

retained and this best solution is considered the current solution. 

2.4.1.3 Neighborhood Search Meta-Heuristics 

Variable Neighborhood Search (VNS) is a meta-heuristic for solving optimization problems, this 

meta-heuristic is based on dynamically changing the neighborhood structure. This meta-heuristic 

depends on changing the structure of the neighborhood systematically, that may be performed in 

a deterministic way (Variable Neighborhood Descent, VND) or randomly VNS (Blum and Roli, 

2003; Moreno-Vega and Melián, 2008). The variable neighborhood search meta-heuristic starts 
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by randomly selecting an initial solution, and then a local search is applied repeatedly until a 

local optimum is reached. If no better solution is reached, then another neighborhood is 

examined to search for a better solution, this other neighborhood is selected randomly in the case 

of VNS and is selected in a deterministic way in the case of VND (Hansen and Mladenovic, 

2001). 

Bräysy (2003) proposes a deterministic meta-heuristic based on a modification of the variable 

neighborhood search for solving VRPTW. The proposed strategy in this paper is divided into 

four phases. In the first phase, initial solutions are created using the cheapest-insertion-based 

heuristic where the routes are built sequentially. In the second phase, the number of routes are 

reduced by using ejection chain algorithm, in which a customer in a certain route is removed and 

replaced by another customer from a different route (if it is possible), the removed customer is 

inserted into any other route whenever it is feasible, and by that a chain is completed and another 

customer is selected to initialize another chain. Applying the chain ejection procedures 

repeatedly may lead to reducing the number of routes. Finally, in the third and fourth phases a 

modified Variable Neighborhood Descent (VND) technique, a deterministic version of the 

Variable Neighborhood Search (VNS), is applied to enhance the current solution. In this phase, 

the VND oscillates between four local search operators, two of them (ICROSS, and IRP) 

exchange customers between a pair of routes (inter-routes), while the other two operators (IOPT, 

and O-opt) exchange the positions of the customers of a certain route between each other (intra-

route) to improve the quality of the solution. In addition to varying the neighborhood structure, 

problem parameter values are also modified after all operators are applied successfully.    
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Another Neighborhood search strategy proposed by Pisinger and Ropke (2009) is Large 

Neighborhood Search. The main idea behind the Large Neighborhood Search meta-heuristic is 

that the large neighborhood allows the heuristic to navigate in the solution space easily, even 

with the tightly constrained problems. The Large Neighborhood Search meta-heuristic explores a 

neighborhood by using destroy and repair method. The destroy method destructs part of the 

current solution by removing a percentage of the customers from this solution and then 

shortcutting the routes where customers have been removed; the removed customers are selected 

randomly. The repair method rebuilds the destroyed solution by inserting the removed customers 

by scanning all possible insertion positions, and each removed customer is inserted in the 

position that provides the lowest cost.  

Prescott-Gagnon et al. (2009) propose a large neighborhood search algorithm that relies on a 

heuristic branch-and-price method for neighborhood exploration. The proposed heuristic can be 

divided into two main phases. In the first phase the number of the used vehicles is minimized, 

while in the second phase the total traveled distance is reduced using a fixed number of vehicles 

that is obtained from the first phase. The algorithm starts by computing an initial solution using 

Solomon’s insertion heuristic (Solomon, 1987). In the next step a lower bound for the required 

number of vehicles is calculated by dividing the total demand of customers by the capacity of the 

vehicle, while the upper bound for the required number of vehicles is considered to be equal to 

the number of vehicles attained from the initial solution. If the upper and lower bounds of the 

required number of vehicles are equal, the first phase is terminated, otherwise the upper bound is 

reduced by one and the large neighborhood search heuristic is applied to the existing routes by 

removing a set of customers (destruction process) and reconstructing routes while enforcing the 
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new upper bound of the vehicles in each iteration during the reconstruction process, allowing 

some customers not to be serviced by applying a penalty cost. If no feasible solution is obtained 

after a predetermined number of iterations, the search process is abandoned for that upper bound 

of vehicles and the second phase starts from the best solution reached. Otherwise, the upper 

bound is reduced by one again and the large neighborhood search heuristic starts again for a 

number of iterations to find a feasible solution. While applying the large neighborhood search 

algorithm, the customers are removed from routes using four different operators that are selected 

randomly in the beginning. Afterwards, the operator is selected according to its contribution in 

enhancing the solution. The reconstruction process is performed by re-optimizing the resulting 

problem from the destruction process, which is a VRPTW with fixed parts in the route. This 

restricted problem is solved using branch-and-price heuristic to accelerate the process of creating 

a new solution, which is a heuristic column generation method embedded into a heuristic branch-

and-bound search.  

2.4.2 Population Based Methods 

Population based methods deal in each iteration with a population, which is a set of solutions. 

Algorithms based on these methods use naturally inspired ways to explore the solution space for 

the best solution. Evolutionary Computation (EC) and Ant Colony Optimization (ACO) are the 

most studied population based methods in the field of combinatorial optimization (Blum and 

Roli, 2003).  



37 

2.4.2.1 Evolutionary Computation 

Evolutionary Computation (EC) heuristics are based on the natural biological process of 

evolution that the living beings use to adapt to their environment, and these algorithms are 

computational models that mimic this natural process. In each iteration, EC heuristics apply a 

number of operators on the individuals of the current population to generate the individuals of 

the population of the next generation (offsprings). These operators are usually called 

recombination or crossover to recombine two or more individuals to produce new individuals. 

They also use what is called mutation, which are modification operators that cause a self 

adaption of individuals (Blum and Roli, 2003; Bräysy et al., 2004; Hertz and Kobler, 2000).  

The main factor in evolutionary algorithms is the selection process of individuals, which is based 

on the quality of these individuals that is measured by using the fitness function. The selection 

process favors those individuals of higher fitness function value to reproduce more often than 

those of lower fitness. Evolutionary Computation algorithms can be categorized into 3 main 

groups: Evolutionary Programming (EP), Evolutionary Strategies (ES), and Genetic Algorithms 

(GA). Evolutionary Programming and Evolutionary Strategies are mainly proposed for 

continuous optimization problems, while Genetic algorithms are mainly applied to solve 

combinatorial optimization problems (Blum and Roli, 2003; Bräysy et al., 2004; Bäck and 

Schwefel, 1993), which is the case for vehicle routing problems. 

The Genetic Algorithms (GA) is an adaptive heuristic search method that is developed by 

(Holland, 1975). It is considered an iterative process that produces a renewable pool of 

candidates (chromosomes) that is simulated over a number of generations. Each generation is 
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subjected to a set of operators like selection, crossover, and mutation to produce the succeeding 

generation. Most of the evolutionary methods developed for the VRPTW are combining 

construction heuristics and local searches; however, they are called genetic algorithms in the 

literature (Bräysy et al., 2004) 

Blanton and R.L.Wainwright (1993) were the first to apply GA to VRPTW. The authors 

combine together GA with a greedy construction heuristic. The main role of the GA is to search 

for the best sequence of the customers, while the feasible solution construction is handled by the 

greedy heuristic based on the sequence that is previously defined by the GA. The mutation 

operator randomly exchanges the position of customer indices in the sequence, while the 

crossover operator considers the global precedence relationships among customers to determine 

the sequence of customers in the offspring. For example, if customer (i)’s time window occurs 

before time window of customer (j), then it is desirable to insert customer (i) before customer (j) 

during the greedy insertion phase. Such relationship is used by the genetic operator to push 

customers with early time windows to be visited before those that have late time windows. 

Thangiah (1995a) proposes a cluster-first, route-second algorithm, that the authors calls 

GIDEON. Customers are clustered by using GA, while the customers of each cluster are routed 

by using the cheapest insertion heuristic (Golden and Stewart, 1991), and finally the routes are 

improved by using λ-interchanges (Osman, 1993). The process of constructing routes and 

improving them runs iteratively for a finite number of times to improve the quality of the 

solution. In the clustering process, clusters are determined by dividing customers into number of 

sectors using a set of seed angles. These seed angles are determined by using a fixed angle and 
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an offset from the fixed angle. The fixed angle is determined by dividing the maximum polar 

coordinate angle within the set of customers by 2K, where K is the initial number of vehicles 

with which the GIDEON system is invoked, and is considered as the upper bound on the number 

of vehicles that can be used for serving all the customers. The offset from the fixed angle is 

determined using GA in such a way that minimizes the total cost of routing the vehicles. 

Customer Ci is assigned to vehicle Vk if its polar angle Si is greater than the seed angle Sk but is 

less than or equal to the seed angle Sk+1. The fitness value of each chromosome is determined by 

calculating the total cost of routing K vehicles for serving N customers developed by the set of 

seed angle that is defined by each chromosome. 

Thangiah (1995b) proposes another approach similar to GIDEON, the author calls this new 

approach GenClust. In GenClust, each chromosome defines a set of circles, one for each cluster, 

instead of the offsets from the fixed angle in GIDEON. GA is used to search for the appropriate 

set of circles that leads to the best solution. When any of the customers is not assigned to any of 

the predefined circles (clusters), the author applies a set of different heuristic rules to assign 

those customers to a cluster. 

Potvin et al. (1996) combine competitive neural networks and genetic algorithms to improve the 

initialization and construction phase of a parallel insertion heuristic for the VRPTW proposed by 

Potvin and Rousseau (1993)  that is based on Solomon’s classical insertion heuristic (Solomon, 

1987). The main role of the competitive neural network is to identify seed customers for the 

cluster that are distributed over the entire geographical area. While the GA is used to determine 

the appropriate parameter settings for the route construction phase that are defined in Solomon’s 
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insertion heuristic. The fitness value of each chromosome depends on the quality of the solution 

produced by the parallel insertion heuristic, using the parameter settings that are previously 

defined on the chromosome. The quality of the solution is based on the number of routes and the 

total route time. 

Benyahia and Potvin (1995) use a similar approach like the one presented by Potvin et al. (1996) 

for optimizing the parameter settings of sequential and parallel versions of Solomon’s insertion 

heuristic (Solomon, 1987). However, the seed customers in this proposed algorithm are 

determined by using the same methods used in Solomon (1987) and in Potvin and Rousseau 

(1993) instead of neural networks. The authors introduce additional extensions to the insertion 

cost measures that include slack and waiting times.  Saving when customers are inserted into a 

route instead of being serviced individually, and insertion cost (ratio between additional distance 

to original distance when inserting a customer between a pair of consecutive customers).     

Potvin and Bengio (1996) develop a GA called GENEROUS that applies genetic operators 

directly on solutions, avoiding the encoding issues, because it is very difficult to encode multiple 

routes on a chromosome, and to design crossover operators that would generate feasible encoded 

offsprings. The initial population is generated using Solomon’s insertion heuristic (Solomon, 

1987), while the fitness value in this GA is determined based on the number of vehicles and the 

total route time for each generated solution. The selection process in the proposed heuristic is 

stochastic, that is biased toward the best solutions. A linear ranking scheme is used to guide the 

selection process to be biased towards the best solutions. During the recombination phase, two 

different types of crossover operators (sequence-based crossover and route-based crossover) are 
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used to merge two parents into a single one, so as to guarantee the feasibility of the new solution. 

In the sequence-based crossover, a link is randomly removed from each parent, and then the 

customers that are serviced before the break point in parent1 are linked to the customers that are 

serviced after the breakpoint on the route of parent2, while in route-based crossover a route of 

parent2 is replaced by a route of parent1. A repair operator is applied on the offspring generated 

from any of the previously mentioned crossover operators to remove duplicates and insert 

missing customers into the solution. Mutation operator is applied on the offspring (solutions) to 

enhance the solution by reducing the number of routes by trying to insert the customers of 

randomly selected short routes into other routes, either directly by removing a customer from one 

route and inserting it into another route or by exchanging customers by removing a customer 

(customer1) from a certain route to make a room for a new customer (customer2) to be inserted 

into this route and the removed customer (customer1) is inserted into any other route except that 

the new customer (customer2) is coming from. Finally, a mutation operator based on Or-opt 

exchange is applied on the solutions in order to locally optimize them. 

Berger et al. (1998) hybridize a GA with the well known construction heuristics. The authors 

avoid encoding issues and represent an individual solution as a chromosome formed of multiple 

segments. Each segment is a sequence of genes that represents a feasible route that is delimited 

by two separators to specify a certain route. The initial population is created with a nearest 

neighbor inserted heuristic inspired by Solomon (1987). The fitness values of the individuals are 

based on the number of routes and total distance of routes in each solution. The selection 

procedure is a stochastic process that is biased towards the best solution using a roulette-wheel 

scheme, in which the probability to select a certain individual is proportional to its fitness. In this 
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proposed heuristic, the crossover operator creates an offspring by combining iteratively various 

routes r1 of a parent solution P1 with a subset of customers that are formed from r1 nearest-

neighbor routes from parent solution P2. A removal procedure is applied first in order to remove 

key customers from r1. The selection of the key customers depends on the suitability to be 

relocated within alternate routes. Then, an insertion heuristic inspired by Solomon (1987) 

combined with a random customer acceptance procedure is locally applied to build a feasible 

route, considering the partial route r1 as an initial solution. The mutation operators aim to reduce 

the total number of routes by removing customers from smaller routes to alternate existing ones, 

these operators aim also to enhance the current solution or escape from local minima by locally 

reordering customers by applying nearest-neighbor procedure to each route. 

Zhu (2000) presents a GA based on an integer representation of solutions and new crossover 

operators. The solution in this algorithm is presented in the form of an integer string 

(chromosome) of length N, where N is the number of customers to be serviced. Each gene in the 

string represents a certain customer, and the sequence of the genes in the string is the order of 

visiting these customers. In this proposed algorithm, part of the initial population is generated by 

using Push-Forward Insertion heuristic (Solomon, 1987) and its random neighbors, while the rest 

of the population is generated randomly to diversify the pool of the population. In the selection 

process, tournament selection mechanism is used to select parents for mating and reproduction. 

Two populations of the same size are maintained at every generation, the individuals of each 

population are ranked according to their fitness value (a smaller fitness value qualifies to be a 

potential parent), and the ranked individuals of the two populations are mated to produce new 

generations. The recombination is based on selecting randomly one or two cut-off points in both 
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parents and then the crossover is completed by swapping portions after the cut-off point in both 

parents, correction procedures are performed  to replace duplicate customers by the replaced one. 

Mutation is based on reversing the order of a pair or sequence of nodes, a special hill-climbing 

technique is used, where a randomly selected part of the population is improved by partial λ-

exchanges. 

Tan et al. (2001a) present a GA that is similar to that proposed by Zhu (2000), the chromosome 

representation, strategy of generating an initial solution, and the selection process are identical. 

In this paper the authors combine two crossover operators to produce two children for each pair 

of parents. During the crossover process, not every pair of parents mate to reproduce new 

generation, the crossover is governed by a certain probability. The individuals that are selected 

not to crossover are copied exactly to the next generation. For mutation, the authors used swap 

node and swap sequence operators, the mechanisms of these operators are shown in Figure 9, the 

authors also used an adaptive mutation probability scheme that adapts the standard deviation of 

the population depending on the population size, the fitness value of individuals, and the average 

fitness of the population. 
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Figure 9: Swap Node and Swap Sequence mutation operators. 

(Tan et al., 2001b) 

Moreover, a special hill-climbing technique is used, where a portion of the population is 

randomly selected to undergo a few iterations of removal and reinsertion operations using partial 

λ-exchanges. 

Berger et al. (2003) propose a new approach in which two populations are evolved in parallel. 

The first population is used to minimize the total traveled distance, while the second population 

minimizes the number of violations of time window constraints. The initial populations are first 

generated by using a sequential insertion heuristic in which customers are inserted in a random 

order at randomly selected positions within the route; this insertion heuristic is combined with λ-

exchanges and a re-initialization procedures based on the insertion procedures of Liu and Shen  

(1999a). The selection process of parents in this paper is similar to that used by Berger et al. 

(1998), in which the selection process is stochastic and biased toward a solution using roulette-

wheel scheme. The probability of individual selection in this scheme is proportional to its fitness 
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value. The authors use two recombining operators, the first operator is the same as that used by 

Berger et al. (1998), while the second operator is an extension of the first operator, as it removes 

illegal routed customers and uses the insertion procedure that is proposed by Liu and Shen  

(1999a) instead of Solomon (1987) insertion heuristic. Five mutation operators are used 

randomly by the authors; one of these operators is based on large neighborhood search, while the 

other mutation operators involve λ-exchanges (inter-route improvement), elimination of the 

shortest route using the procedure of Liu and Shen (1999a), and within route reordering using the 

heuristic proposed by Solomon (1987). 

Alvarengaa et al. (2007) propose an algorithms that combines GA with set partitioning 

formulation for solving VRPTW. The authors propose a GA to generate routes for the main set 

partitioning formulation. The chromosome is defined as a string of integers that represents a 

route to be serviced by only one vehicle. A modified Push Forward Insertion Heuristic (PFIH) 

called stochastic PFIH is used to generate the initial population for the GA. A k-way tournament 

selection method is used for nominating the parents for a crossover. The individuals in the 

proposed algorithm are evaluated by using a fitness function that depends on the inverse of the 

total traveled distance. A new crossover strategy is used to produce new generations, in which 

the algorithm makes a random route choice from each parent individual in turns, and after all 

feasible routes have been inserted in the offspring, the insertion of remaining customers is tested 

in existing routes. If some customers continue to be un-routed, stochastic PFIH is applied to 

insert un-routed customers. In order to maintain the quality of solution achieved so far, the 

elitism strategy is adopted, in which best individuals from the current solution are added to the 
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population of the next generation. Finally after generating routes, a set partitioning formulation is 

used to determine the routes for the final solution. 

Chenga and Wangb (2009) propose a new algorithm that adopts the concept of problem 

decomposition to split the original problem of VRPTW to clustering problem (main problem) 

and a set of mutually independent traveling salesperson problems (sub-problems) with time 

window constraints, such decomposition reduces the problem size and expands the choice for 

searching strategies. A GA is developed to solve the clustering problem, the chromosome is 

represented by an integer string of length N, where N is the number of customers to be serviced, 

and the integers in the string represent the cluster that each customer belongs to. In the beginning 

of the algorithm, a pool of chromosomes is randomly generated, where each chromosome 

represents a clustering result. The fitness value of each chromosome is determined by solving the 

traveling salesperson problems (sub-problems). The selection process is carried out by using 

tournament selection procedure, in which chromosomes with better fitness values in the pool are 

selected for reproduction, and roulette wheel selection procedure or uniform selection procedure 

is used to pick chromosomes from the selected ones for crossover. The two point crossover is 

used to generate new generations by swapping designated bits of a pair of chromosomes. Order-

based mutation operator is used to produce a heterogeneous pool of chromosomes to avoid early 

convergence of the algorithm, in which two randomly selected bits in a randomly selected 

chromosome are swapped. A heuristic algorithm is developed to solve the traveling salesperson 

sub-problems, in which the sequence of visiting customers in each sub-problem (cluster) is 

determined by ordering the customers in a route in such a way that reduces the likelihood of 

violating the time window constraint. The solution of the main problem which is the clustering 
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process is obtained through iterative interactions between the main problem and the set of sub-

problems. 

Nazif and Lee (2010) propose a GA for VRPTW that the authors call the Optimized Crossover 

Genetic Algorithm (OCGA). The representation of a solution is in the form of an integer string 

of length N, where N is the number of customers to be serviced, and each gene (integer) in the 

string represents a number that is assigned originally to a certain customer, while the sequence of 

the genes in the string is the order of visiting these customers. The initial population is generated 

randomly by using a random number generator, while the selection process is based on a 

probabilistic tournament scheme to select parents from the population. The authors propose an 

optimized crossover scheme that uses undirected bipartite graph to determine all perfect 

matching that finally produces two new children which are called O-child and E-child. The 

authors use two different mutation operators called inversion and swap sequence operators, the 

inversion operator reverses the sequence of visiting customers between two randomly selected 

points, while the swap sequence operator exchanges the positions of the two sub-strings of 

customers that are randomly selected. 

2.4.2.2 Ant Colony Optimization 

Ant Colony Optimization (ACO) is a meta-heuristic proposed by Dorigo et al. (1996); Dorigo & 

Caro (1999); Dorigo & Stützle (2003).  ACO is inspired by the foraging behavior of real ants; the 

behavior that enables ants to find the shortest paths between food sources and their nest.  
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In the real ant colony, as ants walk from food sources to the nest and vice versa, they deposit a 

substance called pheromone on the ground. Ant selection of direction to follow between food 

sources and nest is determined according to the strength of pheromone concentration; such basic 

behavior leads to the emergence of the shortest paths. 

ACO algorithms are based on a probabilistic model (pheromone model) that is used to model the 

chemical pheromone trails. The artificial ants incrementally construct feasible solutions 

sequentially. To achieve this, the ants perform randomized walks on a completely connected 

graph  whose vertices (nodes) are the solution components C and the set L are the 

connections. Each ant chooses each successive node with a probability that is a function of the 

node distance and the amount of pheromone trail (trail intensity) present on the connecting edge. 

The move from certain node to the next is one iteration. A complete tour is constructed by 

performing n iterations that visit the n available customers. In order to ensure tour validity, the 

transition to the already visited nodes is prohibited until a tour is completed (controlled by a 

Tabu list). When a tour is completed, each ant lays a substance called a trail on each visited edge. 

This process is iterated until the tour reaches the maximum number of cycles or all ants make the 

same tour which is called stagnation behavior.     

Gambardella et al. (1999) propose a Multi-objective Ant Colony System for solving VRPTW 

(MACS-VRPTW). The objective of this ant colony system is to minimize the number of used 

vehicles and the total travel distance. The proposed algorithm uses a hierarchy of two artificial 

ant colonies; each one dealing with one of the objectives. The first colony is named ACS-VEI 

and deals with the number of tours (vehicles) minimization while ACS-Time minimizes the 
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travel time. The MACS-VRPTW algorithm coordinates the activities of the two colonies 

simultaneous looking for an enhanced feasible solution (a solution that has smaller number of 

tours, or it has the same number of tours with a shorter distance).  Initially, a feasible VRPTW 

solution is determined by using the nearest neighbor heuristic, this solution is defined as a global 

solution for the MACS-VRPTW, and then this solution is improved by the two colonies. When 

ACS-VEI is activated, it tries to find a feasible solution with one vehicle less than the number of 

vehicles achieved by using the nearest neighbor heuristic, while the goal of ACS-Time is to 

optimize the total travel time of solutions that use the same number of vehicles achieved by the 

nearest neighbor heuristic. Once an improved solution achieved by any of the two colonies is 

reached, the global solution of MACS-VRPTW is updated by setting the new improved solution 

as the global solution for the algorithm. MACS-VRPTW uses a solution model in which each ant 

starts from the depot and selects the next customer using a probability that is a function of the 

trail intensity and the distance from the customer. Once the current vehicle reaches its capacity 

and cannot serve more customers, the ant starts a new route by adding another vehicle, unless the 

allowed number of vehicles has been reached. Unassigned customers are inserted to routes by 

sorting them by delivery quantities in a descending order. Each customer is searched for the best 

insertion (shortest travel time) until no further feasible insertion is possible. In addition, ACS-

Time implements a local search procedure like CROSS exchange to switch customers between 

routes, to improve the quality of the feasible solutions. 

Tan et al. (2006) use a similar approach to Gambardella et al. (1999) by using the idea of 

developing two ant colonies to successively achieve a multiple objective minimization. Nearest 

Neighbor Heuristic is used to generate an initial solution so that the ants can start from a 
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favorable beginning. The objectives of the two ant colonies are to minimize the number of 

vehicles (ACS_vehicle) and to minimize the total travel time (ACS_time). In addition to ACS, 

the authors use a sequential insertion heuristic method to improve the performance of the 

proposed algorithm. The main difference in this paper is that the authors apply the algorithm on a 

different set of benchmark problems. 

Gong et al. (2007) propose a two-generation (father and child) ant colony algorithm for VRPTW. 

The proposed heuristic allows 5-10% time windows violation for the aim of fleet size reduction. 

The children ants compose subroutes with no permission of time violation in order to guarantee 

customer satisfaction, then the subroutes composed by the children are combined together 

forming father-routes. The phase of combining subroutes starts by selecting the longest subroute 

and adding it to the solution, then the node insertion with other subroutes is calculated and the 

subroute with the smallest insertion value is added to the solution. After subroute introduction to 

the solution, there is usually a set of nodes that are not visited, these nodes are inserted into 

routes allowing some extent of time windows violation. The authors did not explain in details 

how the subroutes are constructed and how the construction process stops, but the authors claim 

that the proposed algorithm provides better results.  

Qi and Sun (2008) propose a modified ACO called the Randomized Ant Colony system (RACS), 

the proposed algorithm is similar to the one proposed by Gambardella et al., (1999) as it also 

uses two ant colonies: one for minimizing the number of vehicles, and the other is to minimize 

the travel time. In this modified algorithm, the authors compute the transition probability of only 

N nodes, where N is a subset of all the nodes n nodes; these N customers are selected randomly. 
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2.5 Summary and Research Gap 

Much of the research on VRPTW focuses on finding an optimal or near-optimal solution to the 

problem through the use of exact algorithms, heuristics or metaheuristics. 

A summary of the different approaches proposed in literature to solve the problem of VRPTW 

are presented in Table 1. 

No previous work addresses the problem of scheduling the dispatching of vehicles from a depot 

with limited number of docks while satisfying customer time windows. Often in real-life 

settings, the number of vehicles to be dispatched simultaneously from a depot is larger than the 

number of docks. This creates an additional constraint in the VRPTW forcing the vehicles to be 

dispatched at different times, which has a direct impact on satisfying the customers’ time 

windows. Hence, a VRPTW schedule that is created while ignoring the limited number of docks 

may not be feasible. This research investigates the VRPTW with limited number of docks at the 

depot. Chapter 3 presents the proposed methodology to solve this problem.  
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Table 1: Different approaches for solving VRPTW 
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Christofides & Eilon (1969) X       X              

Kolen et al. (1987) X                     

Desrochers et al. (1992) X X                    

Liberatore (2009) X X       X             

Clarke and Wright (1964)    X      X            

Gillett and Miller (1974)     X     X            

Solomon (1987)    X     X X            

Solomon (1987)      X    X            

Solomon (1987)       X  X X            

Solomon (1987)     X    X X            

Ioannou et al. (2001)      X   X X            

Balakrishnan (1993)    X     X X            

Potvin and Rousseau (1993)      X     X           

Russell (1995)      X   X  X X          

Garcia et al. (1994)      X    X  X X         

Backer and Furnon (1997)    X      X  X X         

Schulze and Fahle (1999)    X     X  X X X         

Tan et al. (2001a)      X    X  X X         
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Cordeau et al. (2001)     X X   X X   X         

Lau et al. (2003)      X    X  X X         

Chiang and Russell (1996)      X     X X  X        

Czech and Czarnas (2002)      X     X X  X       X 

Debudaj-Grabysz and A. Czech 
(2005) 

     X     X X  X       X 

Hiquebran et al. (1993)       X   X  X  X        

Bräysy (2003)       X     X          

Blanton and R.L.Wainwright 
(1993) 

     X    X  X          

Thangiah (1995a)     X X    X  X   X       

Thangiah (1995b)      X    X  X   X       

Potvin et al. (1996)      X     X     X      

Benyahia and Potvin (1995)      X   X  X     X      

Potvin and Bengio (1996)      X     X    X X X     

Berger et al. (1998)      X     X    X X X     

Zhu (2000)      X     X X   X X X     

Tan et al. (2001a)      X     X X   X X X     

Berger et al. (2003)      X     X X   X X X     

Alvarengaa et al. (2007)   X   X     X    X X X     

Chenga and Wangb (2009)    X     X  X    X       

Nazif and Lee (2010)           X    X X X     

Gambardella et al. (1999)       X   X  X      X    
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Tan et al. (2006)      X    X  X      X    

Gong et al. (2007)                   X   

Qi and Sun (2008)      X   X X  X      X    

El-Nashar (2012)        X  X  X X       X  
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CHAPTER 3: PROPOSED METHODOLOGY FOR SOLVING VRPTW WITH 

LIMITED DISPATCHING CAPACITY    

3.1 Proposed Solution Framework 

The proposed solution approach is to decompose the problem into sub-problems to reduce the 

computation time to reach a near-optimal solution. The problem is decomposed into two main 

stages: clustering and scheduling. The scheduling stage is implemented through three sub-stages: 

Routing, Dispatching, and Assignment. Figure 10 illustrates the proposed solution framework.    

 

Figure 10: Four steps of the proposed framework 
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3.2 Clustering Algorithm 

The purpose of the clustering algorithm is to divide the customers into groups (clusters) 

according to their proximity from each other, as shown in Figure 11, while considering the time 

windows of the members in each group and the vehicle’s capacity. The members of each cluster 

are grouped together in such a way that does not violate the time windows of the cluster 

members or the capacity of the vehicles.   

  

Figure 11: Customers clustered in groups. 

The clustering algorithm uses a minimal spanning tree algorithm to assign members to a cluster. 

The minimal spanning tree algorithm has used as it is very efficient in selecting the candidate 
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customer to be added to cluster, this algorithm has been used by Christofides et al., (1981) for 

constructing routes in the case of Vehicle Routing Problem. 

3.2.1 The Mechanics of Clustering Algorithm  

The mechanism and steps of the clustering algorithm are illustrated in details in Figure 12.    

Initially, each cluster has one customer, and therefore, the number of clusters is equal to the 

number of customers. 



58 

Assume that each customer represents 

a cluster

Apply minimal spanning tree concept to 

determine the nominated customer to be added 

to cluster y

Demandt = 0  

y = y + 1

Demandt = Demandt + Demandi

Demandt = Demandt + Demandi

Demandt <= Q

No

Exclude nominated 

customer 
No

Apply routing algorithm (PRG)

Yes

Time window 

violation?
Yes

Add nominated customer to cluster y

No

p = p + 1

p >= P

Route distance 

increase <= R
No

Yes

p = 0

Yes

y:  cluster number

Demandt : represents the total demand of 

customers assigned to a cluster

Demandi : demand of candidate customer i to be 

added to cluster y 

p : excluded customers number

P : maximum number of customers to be excluded

Q : vehicle capacity

R : maximum allowable increase ratio in route 

distance

Initialization

 

Figure 12: Clustering Algorithm 
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The algorithm starts with the first customer (cluster), and the minimal spanning tree algorithm is 

used to determine the nearest customer (candidate) i to the current cluster y. After determining 

the nearest customer i, the Probabilistic Route Generation (PRG) algorithm that will be discussed 

in Section 3.3 is executed to determine if adding the candidate customer i to the cluster y will 

violate the time window of any of the current cluster members. Further, the clustering algorithm 

checks if adding the candidate customer i to the cluster y will violate the vehicle capacity Q. 

The candidate customer will be added to the cluster if none of the following criteria is violated: 

­ Vehicle capacity  

­ Cluster customers’ time windows  

­ The percentage increase in performance criterion (time, distance or cost) as a result of 

adding the candidate customer is less than or equal to a predetermined ratio “ ”; the 

method for determining  is illustrated in the Section 3.2.1.1 

After adding the candidate customer i to the cluster y, the clustering algorithm searches again for 

the nearest customer to the current cluster members, and the same previous procedures will be 

implemented to add the candidate customer to the cluster. 

The clustering algorithm terminates when a specific number of consecutive candidate customers 

P could not be added to the cluster due to vehicle capacity violation, time window violation, or 

when the percentage increase in route length (time, distance or cost) is higher than the acceptable 

ratio . 
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3.2.1.1 Determining the Acceptable Percent Increase in Route Length (R)  

The acceptable percent increase in route length, denoted as R, is a function of the geographical 

distribution of the customers that we need to cluster. A pilot clustering study is executed to 

collect the percentage increase in route length with the addition of each new customer followed 

by conducting a Pareto analysis to determine  by selecting the highest route increase percentage 

within those responsible for 80% of route increases as shown in Figure 13. The purpose of this 

ratio is to prevent the algorithm from adding a customer to the route that might cause a 

significant increase in the total distance. 
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Figure 13: Pareto analysis for route increase percentages 
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3.3 Routing Algorithm 

This step generates multiple routes (sequences for visiting the customers) for each cluster that 

minimizes the total traveled distance while considering customers’ time window constraints. 

Each generated route for a cluster is associated with a different dispatching time from the depot.  

An example of a generated route is shown in Figure 14. This research proposes the Probabilistic 

Route Generation (PRG) algorithm for generating the route for each cluster, followed by a local 

search algorithm that aims to improve the solution. This step is further illustrated in the 

numerical example provided at the end of this chapter.  

 

Figure 14: Best sequence for visiting customers. 

3.3.1 Introduction 

The proposed routing algorithm solves the general TSPTW of visiting n customers in the 

minimum amount of traveling distance, where each customer should be visited once.  The time 
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of visiting each customer is constrained by a time window TW that is determined according to 

the preference of each customer. The route (sequence of visiting customers) always starts and 

ends at the same customer.  

A high-level overview of the routing algorithm is presented in Figure 15.  After parameter 

initialization, the Probabilistic Route Generation (PRG) Algorithm is executed, wherein routes 

are generated based on the frequency of assigning customers to positions “sequence in route” in 

previously-generated routes. The routes are generated by executing the PRG algorithm for 

several iterations, in each iteration, a number of routes (M) are generated and evaluated 

according to the performance criterion, which is the total traveling distance.  

Finally, the routes generated in each iteration are added to the routes generated from previous 

iterations. The PRG algorithm terminates when no further improvement in the generated routes is 

obtained for (Z) number of iterations.  

Upon termination of the PRG algorithm, 2-OPT, 3-OPT, and Insert local search algorithms are 

applied to search for a better solution. In the 2-OPT and 3-OPT algorithms, 2 or 3 edges are 

removed from the tour and the created paths are reconnected, in the 2-OPT there is only one way 

to reconnect the created paths, while in the case of the 3-OPT there are 2 ways to reconnect the 

created paths. In the insert algorithm, one customer in the tour is removed from its location in the 

tour and inserted in a new location. Local search techniques have been used extensively in 

literature to improve the solution of different proposed heuristics as shown in Table 1, the most 

well known tour improvement heuristics are 2-OPT and 3-OPT (Dorigo and Gambardella, 1997). 

Due to their popularity in literature and simplicity in application, the 2-OPT, 3-OPT, and Insert 
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algorithms have been selected to be applied on the output of the PRG algorithm to improve its 

solution. 

Generate Routes
(See Section 3.3.2)

Evaluate generated routes using evaluation criterion

Add the newly generated routes to previously generated 

routes 

Rank all available routes from best to worst according to the 

evaluation criteria

Use ranked routes to update the probability table

Algorithm stagnates?

Stop

Yes

No

Apply OPT2, OPT3, Insert local search algorithms to look 

for better solutions

 

Figure 15: Simple illustration of routing algorithm.  

3.3.2 The Probabilistic Route Generation Algorithm 

We introduce the following four tables that are utilized in the PRG algorithm: 

1. The Routes Table stores the sequence of visited customers in each route. 
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2. The Frequency Table stores the number of times each customer appears in each route 

position. 

3. The Probability Table stores the probability of having each customer in each position 

(referred to as customer-position combination) of the route. 

4. The Cumulative Probability Table stores the cumulative probability associated with each 

customer-position combination in a route. 

The role of each table in the routing algorithm is discussed next. 

3.3.2.1 The Routes Table 

An example of a generated Routes Table is shown in Figure 16. The rows in iteration  represent 

the routes generated by the algorithm up to and including iteration z.  The number of rows in this 

table represents the number of generated routes to this point across all iterations, denoted by (r2) , 

where rz = M * z, and therefore, at initialization, z = 0, and rz = 0, and the Routes Table is empty. 

The table has (Ny + 1) columns, where Ny represent the number of customers in cluster y, and 

without loss of generality, the first and the last columns have the value “1”, which represents the 

starting and ending customer of the route. The rows are always ranked from best to worst value 

for the performance criterion. 

 

Generated 

route

Corresponding 

distance to that 

route  

The second position 

in each route

 

Figure 16: Generated Routes Table. 
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3.3.2.2 The Frequency Table  

The Frequency Table displays the number of times each customer i appears in the same position 

j for the different routes. This table has (Nc - 1) columns since all routes start and end at customer 

1, the number of rows in the Frequency Table is (Nc - 1). An important parameter here is the 

number of stored best solutions (Mb), which is predetermined prior to executing the algorithm 

and is defined as the number of rows that will be considered to generate the Probability Table, 

discussed in Section 3.3.2.3. An example of the Frequency Table and its relationship to the 

Routes Table is shown in Figure 17. In the example below, Nc = 10, Mb = 10 and the 

performance criterion is total traveled distance. In Figure 17, the numbers in the cells in the 

Frequency table represent the number of times each customers appeared in the different route 

positions in the first best Mb solutions. For example customer number 5 appeared 2 times in the 

second position of the route in the first Mb solutions, while customer 7 appeared 3 times in the 

same position.     

Routes Table Frequency Table

 

Figure 17: Frequency Counting Process 
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3.3.2.3 The Probability Table 

After finishing the counting process, the Probability Table is generated by calculating Pij, which 

denotes the probability of having customer  in position  in the route using the following 

equation. 

 

(14) 

 

 

In Figure 18, the probabilities shown in the probability table are calculated by simply dividing 

the frequency of having each customer in the different positions in the route by the number of the 

stored best solutions (Mb). 
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 Routes Table Frequency Table

2/10

3/10

Probability Table

 

Figure 18: Probability Table Generation Process.  

3.3.2.4 The Cumulative Probability Table 

For constructing the Cumulative Probability Table, the cumulative probability is determined for 

each customer in each route position as shown in Figure 19. This cumulative probability is used 

later for generating the routes using random number generation. In Figure 19 the probabilities in 

the Cumulative Probability Table are calculated by simply adding the probability in each cell in 

the Probability table to the preceding ones in the same column starting from the bottom of the 

column to the top.   
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Routes Table Frequency Table

2/10

3/10

Probability TableCumulative Probability Table

 

Figure 19: Cumulative Probability Table 

The main purpose of the four tables is to update the cumulative probabilities after each iteration. 

Initially, when algorithm starts generating the first iteration’s route, the customers have equal 

probabilities of appearing in each position in the route. 

3.3.3 PRG Algorithm Mechanics 

The overall routing algorithm is summarized in the flow chart illustrated in Figure 20.  
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Set j = 2

Generate Random Number (RN) 

Check RN with column (j) in cumulative probability 

table to determine corresponding customer (i)  

Customer (i) already exist in route?

Yes

Update Probability Tables

No

j = j + 1

j > N ?

No

Stop

Yes

Add customer (i) to the route in position (j)

m = m + 1

m ≤ M ?

No

Set i = 2

z = z + 1

Yes

z ≤ Z

No

Stagnation?

No

Yes

Yes

Calculate generated route distance

In Probability Table update columns 

(j+1) to (Ny), set probability of city (i) 

in columns (j+1) to (Ny) by Zero

In probability table normalize columns 

(j+1) to (Ny), divide elements of each 

columns by its current total.

Recalculate Cumulative Probability 

Table (update)

Initialization

Update Frequency Table from previously generated routes

Sort the Routes Table from best to worst 

according to the performance criterion

Update Frequency Table by determining 

the frequency of appearance of each 

customer  in the same position for the 

different routes

Update Probability Table by calculating 

the probability of having each customer i  

in position j in the route

Update Cumulative Probability Table by 

determine the cumulative probability for 

each customer in each route positions

Set M (number of routes to be generated in iteration z)

Set Mb (number of the best solutions to be considered)

Set Z (number of iterations)

Set j (position in the route)

Set Ny (number of customers in cluster y)

(m) generated route number

(z) generated iteration number

(i) customer number

 

Figure 20: Flowchart showing the steps of the PRG algorithm 



70 

3.3.3.1 Algorithm Initialization 

At initialization of the algorithm, the probabilities in the Probability Table are all equal, 

indicating that each customer has equal probability of appearing in any position. This assumption 

allows the algorithm to generate random routes by allocating any customer to any position 

“sequence” in the route without any prior preference.  

3.3.3.2 PRG Algorithm Description 

Each iteration (z) consists of (M) routes; a predetermined parameter. Each of the (M) routes are 

obtained by first generating a random number to determine the customer that should be visited in 

each position in the route, we assume, without loss of generality, that customer “1” is the first 

customer in the route. To determine the customer in the j
th position, the generated random 

number is compared to the j
th column in the Cumulative Probability Table to determine the 

customer number i corresponding to that random number.  

In order to prevent customers’ replication in a route, we check if customer i  is already in the 

route. If it does not exist, we add customer i to position j in the route; otherwise, we go back and 

generate another random number.  

After customer i is added to the route we update the Probability Table by setting the probability 

of customer i in columns j + 1 through Ny to zero, and then we normalize these columns by 

dividing each element in these columns by the current total of each column to ignore customer i 

when generating the rest of the route, and finally we regenerate the Cumulative Probability Table 

to be used in the generation of the next route. The previously illustrated steps are repeated until 

the route is completed, in other words until all Ny customers have joined the route.  
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The process of constructing the routes is repeated until (M) routes are generated, which are 

sorted later from best to worst in terms of the performance criterion, the total traveling distance 

of the route, and then used to update the Probability Table. The process of generating routes, 

sorting them and updating the Probability Table is continued until the maximum number of 

iterations is reached or until the enhancement in the performance criterion stops or stagnates. An 

illustrative example for route construction process is shown in Figure 21. In this example let’s 

start with the table in upper left corner as the route is completely empty. The first step is to 

generate a random number to determine the corresponding customer in the Cumulative 

Probability Table to be added to the route, it has been found in this example to be customer 5. As 

long as the route is empty, customer 5 is added to the route in its first position after the depot, 

and then another random number is generated to determine the customer in the second position. 

This process is repeated until all Ny customers are added to the route.  
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Figure 21: Steps to construct route. 
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3.3.4 Local Search 

When the improvement in the solution stagnates, local search algorithms 2-OPT, 3-OPT, and 

Insert local are applied on each route of the best H solutions achieved form the PRG algorithm to 

achieve better results. The best output of the three algorithms is selected and set as the current 

route. The three algorithms are continued to be applied and the best route is selected until no 

more improvement in the performance criterion is achieved. This process is summarized in the 

flow chart shown in Figure 22. 
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Set h = 1

Apply OPT2 Algorithm on route h

Apply OPT3 Algorithm on route h

Apply Insert Algorithm on route h

Select the best output of the 3 

algorithms 

Set current solution = solution of route h

Best 

output better than current 

solution?

Set current route = route h

Set current solution = solution of best 

output

Set current route = route of best output

Yes

Set h = h +1

No

h > H?

Stop

Yes

No

Initialization
Set (H) number of routes, the local 

search applied on

 

Figure 22: Applying local search algorithms to achieve better solutions 

3.3.5 Assigning Dispatching Times 

This step assigns a dispatching time from the depot to each cluster (vehicle) in order to minimize 

the total traveled distance. The problem is solved as an assignment problem, the assignment 

process is illustrated with a numerical example that consists of 241 customers, 50% of which 

have time window constraints.  The customers are to be served in a one day shift of 12 hours. 
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The depot has two docks for loading the vehicles operating from 7:00-10:00am. Loading time 

per vehicle is 30 minutes.  

The clustering algorithm results in nine clusters/ routes, each to be served by one vehicle. Table 

2 lists the travel time for each of the nine vehicles for a 7:00 am dispatching time. An Infeasible 

entry indicates that assigning that vehicle a 7:00 am dispatching time results in a violation of at 

least one customer’s time window constraint. 

Table 2: Travel time per vehicle for dispatching time at 7:00 am 

Route /  

Vehicle 

Route Time 

(Minutes) 

1 Infeasible 
2 Infeasible 
3 Infeasible 
4 Infeasible 
5 300 
6 Infeasible 
7 Infeasible 
8 Infeasible 
9 247 

 

 

 

 

 

Table 3 presents all feasible vehicle dispatching time from the depot combinations and the 

associated total route time for each combination. The empty cells in the table indicate that there 

is no feasible route at that dispatching time. 
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Table 3: Vehicle travel times for different dispatching times from the depot 

 Dock1 Dock2 

 7:00 7:30 8:00 8:30 9:00 9:30 10:00 7:00 7:30 8:00 8:30 9:00 9:30 10:00 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Vehicle 1   292 292 290 290    292 292 290 290  
Vehicle 2     207 201      207 201  
Vehicle 3      236       236  
Vehicle 4     273 243 231     273 243 231 
Vehicle 5 300 288 

288 288 288 288 
 300 288 

288 288 288 288 
 

Vehicle 6  281  278 269 269 269  281  278 269 269 269 
Vehicle 7      226 223      226 223 
Vehicle 8   352 367      352 367    
Vehicle 9 247 181 172 175 175   247 181 172 175 175   

 

Applying the Assignment Model Formulation to determine the best assignment of dispatching 

times to vehicles results in the solution displayed in Table 4, where five vehicles are loaded from 

Dock 1 during the period from 8:00am to 10:00am dispatching a vehicle every 30 minutes, while 

Dock 2 dispatches four vehicles at 8:00am, 9:00am, 9:30am, and 10:00 am. 

Table 4: Vehicle Loading, Dispatching and Dock Utilization. 

Loading interval Dock #1 Dock #2 

7:30-8:00 Vehicle/Route 9 Vehicle/Route 8 

8:00-8:30 Vehicle/Route 5  

8:30-9:00 Vehicle/Route 6 Vehicle/Route 1 

9:00-9:30 Vehicle/Route 3 Vehicle/Route 2 
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9:30-10:00 Vehicle/Route 7 Vehicle/Route 4 

 

Availability 150 min 150 min 

Utilization 150 min 120 min 

Utilization % 100% 80% 

 

The total travel time of the recommended solution is 2262 minutes (36.7 hours), which 

corresponds to an average travel time of 244.7 minutes (4.1 hours) for each vehicle as shown in 

Table 5. 

Table 5: Travel time per vehicle for optimal dispatching time. 

Route /  

Vehicle 

Route Time 

(Minutes) 

1 290 

2 201 

3 236 

4 231 

5 288 

6 269 

7 223 

8 352 

9 172 

Total 2262 

 

In the following sections, a detailed description of each proposed algorithm is presented. Section 

3.3 presents the Probabilistic Route Generation algorithm, and Section 3.2 presents the clustering 

algorithm. 
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CHAPTER 4: MODEL AND ALGORITHM VALIDATION 

4.1 Probabilistic Route Generation (PRG) Algorithm 

The proposed PRG algorithm is used to solve the TSPTW, and therefore we use a variety of 

well-known TSPTW benchmark problems provided by Potvin and Bengio (1996), Langevin et 

al., (1993), and Dumas et al., (1995) which include instances that are diverse in structure. 

4.1.1 Algorithm Convergence 

In order to test the algorithm’s ability to converge to a solution, the proposed routing algorithm is 

implemented to solve one of the well-known TSPTW benchmark problems (rc_202.2- 

Solomon_Potvin_Bengio Instances). Figure 23 shows the outcome of the proposed algorithm 

over the different iterations.  
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Figure 23: Algorithm outcome 

The blue line and the black line in Figure 23 represent the objective function value and its 

moving average, respectively. The moving average is illustrated to minimize the noise and show 

the decreasing trend and eventual stagnation in the objective as better routes are found.  

4.1.2 Computational Results 

The performance of the proposed algorithm is tested over different sets of well-known TSPTW 

benchmarking problems discussed in Potvin and Bengio (1996), Langevin et al. (1993), and 

Dumas et al. (1995). All benchmark problems use the total traveled distance as the performance 

criterion. 
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The benchmarking problems range in size from 6 to 21 customers. The best known solutions for 

these instances and the results obtained from the proposed routing algorithm are presented in 

Table 6.  Due to its probabilistic nature, the routing algorithm has been executed five times for 

each test problem to check the ability of the proposed algorithm to reach the best known 

solution. The best distance obtained by the algorithm in the five replications and its associated 

execution time are summarized in Table 6. The results in Table 6 show that the proposed routing 

algorithm reaches the best known solution for all except two of the benchmarking problems: 

Problem instances 3 and 5.  

By investigating the structure of problem instances 3 and 5, we notice that almost 50% of the 

cities of these two problems have narrow time windows. The time windows of Solomon’s tested 

benchmarking problems are presented in Figure 24, wherein the time windows are arranged in an 

ascending order. The time windows of the tested problems that the proposed algorithm is not 

able to reach the best known solution in all five runs are represented by lines that have marks. 
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Figure 24: Time windows of Solomon’s tested benchmarking problems.  
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Table 6: Results of executing PRG algorithm on a set of TSPTW benchmark problems 

    

Algorithm Solution Execution Time (Sec) 

     

# 

Problem 

name 

number 

of cities 

best 

solution 

known 

Run 1 Run 2 Run 3 Run 4 Run 5 Run 1 Run 2 Run 3 Run 4 Run 5 
best 

solution 

average 

solution 

average 

processing 

time 

% of 

deviatio

n 
1 rc_203.4 15 314.29 314.29 314.29 314.29 314.29 314.29 136.00 140.00 130.00 144.00 124.00 314.29 314.29 134.80   

2 rc_205.1 14 343.21 343.21 343.21 343.21 343.21 343.21 108.00 102.00 99.00 103.00 108.00 343.21 343.21 104.00   

3 rc_202.2 14 304.14 308.14 304.14 363.08 308.08 308.08 115.00 187.00 194.00 99.00 105.00 304.14 318.30 140.00 4.66% 

4 rc_201.1 20 444.54 444.54 444.54 444.54 444.54 444.54 314.00 321.00 329.00 315.00 321.00 444.54 444.54 320.00   

5 rc_203.1 19 453.48 453.48 476.22 476.22 476.22 476.22 213.00 227.00 233.00 206.00 202.00 453.48 471.67 216.20 4.01% 

6 rc_207.4 6 119.64 119.64 119.64 119.64 119.64 119.64 59.00 59.00 58.00 59.00 58.00 119.64 119.64 58.60   

7 N20ft301 20 661.6 661.60 661.60 661.60 661.60 661.60 280.00 292.00 275.00 295.00 279.00 661.60 661.60 284.20   

8 N20ft302 20 684.2 684.20 684.20 684.20 684.20 684.20 268.00 277.00 278.00 281.00 282.00 684.20 684.20 277.20   

9 N20ft303 20 746.4 746.40 746.40 746.40 746.40 746.40 298.00 298.00 278.00 278.00 280.00 746.40 746.40 286.40   

10 N20ft304 20 817 817.00 817.00 817.00 817.00 817.00 277.00 279.00 289.00 284.00 278.00 817.00 817.00 281.40   

11 N20ft305 20 716.5 716.50 716.50 716.50 716.50 716.50 289.00 285.00 313.00 292.00 288.00 716.50 716.50 293.40   

12 N20ft306 20 727.8 727.80 727.80 727.80 727.80 727.80 269.00 245.00 258.00 263.00 249.00  727.80  727.80  256.8   

17 n20w20.001 21 378 378.00 378.00 378.00 378.00 378.00 339.00 324.00 414.00 336.00 417.00 378.00 378.00 366.00   

18 n20w20.002 21 286 286.00 286.00 286.00 286.00 286.00 304.00 268.00 271.00 383.00 381.00 286.00 286.00 321.40   

19 n20w20.003 21 394 394.00 394.00 394.00 394.00 394.00 353.00 247.00 386.00 335.00 312.00 394.00 394.00 326.60   

20 n20w20.004 21 396 396.00 396.00 396.00 396.00 396.00 264.00 373.00 590.00 335.00 431.00 396.00 396.00 398.60   

21 n20w20.005 21 352 352.00 352.00 352.00 352.00 352.00 274.00 284.00 300.00 263.00 311.00 352.00 352.00 286.40   

22 n20w40.001 21 254 254.00 254.00 254.00 254.00 254.00 351.00 279.00 274.00 311.00 315.00 254.00 254.00 306.00   

23 n20w40.002 21 333 333.00 333.00 333.00 333.00 333.00 305.00 290.00 276.00 269.00 296.00 333.00 333.00 287.20   

24 n20w40.003 21 317 317.00 317.00 317.00 317.00 317.00 315.00 254.00 268.00 288.00 332.00 317.00 317.00 291.40   
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4.2 VRPTW Benchmark Problems  

The performance of the proposed clustering and routing algorithms is tested over different sets of 

known VRPTW benchmark problems like R, C, and RC problem instances generated by 

Solomon (1987). 

Solomon (1987) generates six sets of VRPTW benchmark problems to be used as a base for 

testing the performance of the different algorithms. The design of these benchmark problems 

considers several factors that can affect the performance of the routing and scheduling heuristics. 

These factors include the following:  

­ Geographical data 

­ The number of customers serviced by a vehicle 

­ The time window characteristics such as the percentage of time-constrained customers, 

and narrowness and positioning of the time windows. 

The customers’ coordinates and demand data used in generating the VRPTW benchmark 

problems are based on the data for some of the problems from the standard set of routing test 

problems given in Christofides et al. (1979). 

The geographical data for the six VRPTW benchmark problem sets are randomly generated by: 

­ Random uniform distribution (problem sets R1 and R2) 

­ Clustered (problem sets C1 and C2) 

­ Semi-clustered (problem sets RC1 and RC2), these sets of problems contain a mix of 

randomly-generated data and clusters. 
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Problem sets R1, C1, and RC1 have narrow time windows and small vehicle capacity, which 

allow only a few customers to be serviced by the same vehicle. In contrast, sets R2, C2 and RC2 

have wide time windows and large vehicle capacities, which permit many customers to be 

serviced by the same vehicle. 

The time windows of the different problem sets are generated with various widths to achieve 

different time window densities, defined as the percentages of customers with time windows, 

specifically, 25, 50, 75, and 100% time window densities are observed in the benchmark 

problems. 

4.2.1 Computational Results 

The proposed algorithm has been tested for R101-104, C101-104, and RC101-104 VRPTW 

benchmark problems, and the best known solutions for these instances and the results obtained 

from the proposed algorithm are summarized in Table 7. 

The results presented in Table 7 show that the proposed algorithm is able to reach the best 

documented solution with deviation ranges from 0.23% - 3.75% for C101-104 benchmark 

problems. While for R101-104 benchmark problems, the deviation from the best known 

solutions ranges from 7.12% - 27.70%. The deviation for RC101-104 benchmark problems is a 

mix between the deviations for the C and R problems. 

The percent deviation is influenced by the structure of the benchmark problem. In the C-type 

problems the customers are clustered into groups, which enable the proposed clustering 
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algorithm to reach the best known solution with a very small deviation percentage. While in the 

R-type problems the customers’ geographical locations are randomly generated resulting in 

solutions that have wide-apart customers joining the same cluster. 
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Table 7: Results of applying the Clustering and PRG algorithms on a set of VRPTW benchmark problems 

 

Best known solution   Algorithm output   Deviation 

 

25% 50% 100%   25% 50% 100%   25% 50% 100% 

Veh Dist Veh Dist Veh Dist   Veh Dist Time Veh Dist Time Veh Dist Time   Veh Dist Veh Dist Veh Dist 

C101 3 191.3 5 362.4 10 827.3   3 192 26.7 5 363 55.33 10 830 107   0 0.27% 0 0.23% 0 0.29% 

C102 3 190.3 5 361.4 10 827.3   3 191 14.83 5 370 29.75 10 840 60   0 0.23% 0 2.35% 0 1.57% 

C103 3 190.3 5 361.4 10 826.3   3 191 15.77 5 375 31.42 10 837 59.1   0 0.23% 0 3.75% 0 1.25% 

C104 3 186.9 5 358 10 822.9   3 187 16.4 5 365 31.87 10 833 57.8   0 0.29% 0 2.02% 0 1.26% 

                                                

R101 8 617.1 12 1044 20 1637.7   8 706 39.76 14 1303 86.82 23 1954 72.5   0 14.38% 2 24.84% 3 19.32% 

R102 7 547.1 11 909 18 1466.6   7 590 51.09 12 1065 127 19 1735 89.4   0 7.77% 1 17.14% 1 18.28% 

R103 5 454.6 9 772.9 14 1208.7   6 496 27.55 9 972 66.5 16 1529 171   1 9.05% 0 25.76% 2 26.48% 

R104 4 416.9 6 625 11 971.5   4 447 20.03 7 792 45.84 11 1241 126   0 7.12% 1 26.78% 0 27.70% 

                                                

RC101 4 461.1 8 944 15 1619.8   5 499 40.32 9 1056 89.88 
17 1855 91 

  1 8.16% 1 11.91% 2 14.50% 

RC102 3 351.8 7 822.5 14 1457.4   3 353 16.78 7 856 59.56 
15 1718 77 

  0 0.27% 0 4.01% 1 17.87% 

RC103 3 332.8 6 710.9 11 1258   3 334 17.97 6 740 40.44 12 1513 90.1   0 0.34% 0 4.06% 1 20.31% 

RC104 3 306.6 5 545.8       3 336 16.5 5 551 29.05 11 1360 88.1   0 9.46% 0 0.96%     
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CHAPTER 5: VRPTW BENCHMAK PROBLEMS MODIFICATION AND 

TESTING 

In the previous chapter, the performance of the proposed Clustering and Routing algorithms is 

evaluated over a set of VRPTW benchmark problems. To the best of our knowledge, there are no 

benchmark problems for the VRPTW variant studied in this research which includes two 

additional constraints enforcing the earlier limit of the time windows and the limited dock 

dispatching capacity. Therefore, in this chapter we first modify some of the existing VRPTW 

benchmark problems to accommodate the two extra constraints. Then, we demonstrate the three 

proposed algorithms of Clustering, Routing, and Assignment by applying them to the modified 

benchmark problems.     

5.1 VRPTW Benchmark Problems Structure 

Figure 25 illustrates the structure of the well known VRPTW benchmark problems discussed in 

Section 4.2. Each customer in the problem is characterized by four main characteristics. The first 

characteristic is the geographical structure of the customers (X & Y coordinates) that determines 

the relative distance between each customer. 
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1 2 3 4

 

Figure 25: VRPTW benchmark problem structure 

The second characteristic is the demand of each customer, which consumes vehicle capacity. 

Note that the demand quantity is different from one customer to another. The third characteristic 

is the time windows of the customers. The time windows of the customers differ from one 

customer to another and each problem has a certain percentage of customers that have narrow 

time windows. The fourth and last characteristic of each customer is the service time at customer 

premises, in other words it is the time that the vehicle spends at customer premises to provide the 

service.   
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These well known VRPTW problems are associated with a set of features: 

­ All vehicles serve one depot 

­ All vehicles start and return back to the same depot 

­ All vehicles are dispatched at the same time 

­ There is no limitation on the number of dispatching docks 

­ Vehicles can wait at customers’ premises upon arrival before the start of the time window 

specified by the customer. 

Many of the benchmark problem instances are infeasible when the two additional constraints we 

propose in this research are added to the VRPTW formulation. The following section discusses 

the required modifications to create feasible benchmark problem instances.  

5.2 VRPTW Benchmark Problems Modification 

The benchmark problems are modified by adding two main features that distinguish the VRPTW 

problem studied in this research from traditional VRPTW investigations: 

­ The vehicles should arrive at customers’ premises within the specified time windows. 

Specifically, a vehicle cannot wait at the customer’s premises in case it arrives before the 

start of the time window. This constraint requires us to modify the time windows of some 

customers in the benchmark problems as will be discussed in Section 5.2.1. 

­ The number of dispatching docks is limited.  In other words, vehicles cannot all be 

dispatched at the same time, and therefore vehicle dispatching from the depot should be 

staggered. This constraint will be discussed in Section 0 
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5.2.1 Time Window Modification 

When we specify that the vehicles must arrive within the time windows listed in the benchmark 

problems of Figure 25, we encounter infeasibility in the problem and therefore we have to 

modify the time windows for some of the customers to make the problems feasible. The 

procedure for modifying the customers’ time windows is outlined in Figure 26 and described 

next. 

1. We apply the Clustering and PRG algorithms on the problems without allowing the 

vehicles to wait at customers’ premises.  

2. Time windows for those customers that were not assigned to any of the resulting clusters 

(due to time window infeasibilities) are modified by increasing or decreasing the upper 

and /or lower limit of the time window in such a way to make the customers fit into one 

of the clusters.  

3. The Clustering and PRG algorithms are applied again to all customers to make sure that 

all customers can fit within a cluster.  

a. If there are customers that were not assigned to any of the resulting clusters (due 

to time window infeasibilities), go to step 2. 

b. Otherwise, stop. 
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Apply Clustering and PRG algorithms

(Do not allow vehicles to wait at customers’ premises)

Customers did not fit in any of 

developed clusters?

Change customers’ time windows that 
did not fit in any of developed clusters 

Yes

Stop

No

 

Figure 26: VRPTW modification procedure 

The modification procedure has been applied to eight of the VRPTW benchmark problems: 

C101-25, C101-50, C103-25, C103-50, C107-25, C107-50, C109-25, and C109-50. These 

problems have been selected because they represent a wide range for the narrowness of the time 

windows in the VRPTW benchmark problems. The time windows of the benchmark problems 

are presented in  

Table 9 and  

Table 15, wherein the modified time windows are highlighted in green. The tables also include a 

column named “Cluster” that identifies the cluster number associated with each customer. 

Clusters have been formed in such a way that ensures that each customer can fit within a cluster 

without violating any of the other customers’ time windows.  
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Table 8: Problem C101, 25 Customers 

C101-
25 

X-
COORD. 

Y-
COORD. 

DEMAND 
TW-
LL 

TW-
UL 

SERVICE 
TIME 

Cluster 

2 45 68 10 10 120 90 1 
3 45 70 30 33 420 90 1 
4 42 66 10 65 146 90 2 
5 42 68 10 15 200 90 1 
6 42 65 10 15 67 90 2 
7 40 69 20 90 460 90 1 
8 40 66 20 170 225 90 1 
9 38 68 20 10 255 90 2 

10 38 70 10 250 605 90 1 
11 35 66 10 90 410 90 2 
12 35 69 10 448 505 90 1 
13 25 85 20 50 520 90 3 
14 22 75 30 30 92 90 3 
15 22 85 10 10 620 90 3 
16 20 80 40 150 429 90 3 
17 20 85 40 12 245 90 3 
18 18 75 20 99 148 90 3 
19 15 75 20 9 254 90 4 
20 15 80 10 278 345 90 3 
21 30 50 10 10 73 90 5 
22 30 52 20 15 321 90 5 
23 28 52 20 109 452 90 2 
24 28 55 10 125 777 90 1 
25 25 50 10 5 144 90 4 
26 25 52 40 85 224 90 4 

 

Table 9: Problem C101, 50 Customers 

C101-
50 

X-
COORD. 

Y-
COORD. 

DEMAND 
TW-
LL 

TW-
UL 

SERVICE 
TIME 

Cluster 

2 45 68 10 10 120 90 1 
3 45 70 30 33 420 90 1 
4 42 66 10 65 146 90 2 
5 42 68 10 15 200 90 1 
6 42 65 10 15 67 90 2 
7 40 69 20 90 460 90 1 
8 40 66 20 170 225 90 1 
9 38 68 20 10 255 90 2 

10 38 70 10 250 605 90 1 
11 35 66 10 90 410 90 2 
12 35 69 10 448 505 90 1 
13 25 85 20 50 520 90 3 
14 22 75 30 30 92 90 3 
15 22 85 10 10 620 90 3 
16 20 80 40 150 429 90 3 
17 20 85 40 12 245 90 3 
18 18 75 20 99 148 90 3 
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C101-
50 

X-
COORD. 

Y-
COORD. 

DEMAND 
TW-
LL 

TW-
UL 

SERVICE 
TIME 

Cluster 

19 15 75 20 9 254 90 4 
20 15 80 10 278 345 90 3 
21 30 50 10 10 73 90 5 
22 30 52 20 15 321 90 5 
23 28 52 20 109 452 90 2 
24 28 55 10 125 777 90 1 
25 25 50 10 5 144 90 5 
26 25 52 40 85 224 90 5 
27 25 55 10 10 220 90 6 
28 23 52 10 33 420 90 4 
29 23 55 20 65 146 90 4 
30 20 50 10 15 400 90 6 
31 20 55 10 15 67 90 4 
32 10 35 20 90 460 90 7 
33 10 40 30 170 225 90 6 
34 8 40 40 10 255 90 7 
35 8 45 20 250 605 90 7 
36 5 35 10 90 410 90 8 
37 5 45 10 250 505 90 6 
38 2 40 20 50 520 90 7 
39 0 40 30 5 192 90 7 
40 0 45 20 10 620 90 7 
41 35 30 10 20 429 90 9 
42 35 32 10 12 245 90 9 
43 33 32 20 99 148 90 9 
44 33 35 10 9 854 90 10 
45 32 30 10 278 345 90 9 
46 30 30 10 10 73 90 9 
47 30 32 30 15 321 90 8 
48 30 35 10 109 452 90 5 
49 28 30 10 125 777 90 7 
50 28 35 10 5 144 90 8 
51 26 32 10 15 224 90 8 

 

Table 10: Problem C103, 25 Customers 

C103-
25 

X-
COORD. 

Y-
COORD. 

DEMAND 
TW-
LL 

TW-
UL 

SERVICE 
TIME 

Cluster 

2 45 68 10 0 1127 90 1 

3 45 70 30 0 1125 90 1 

4 42 66 10 0 1129 90 1 

5 42 68 10 10 782 90 1 

6 42 65 10 0 1130 90 1 

7 40 69 20 169 702 90 1 

8 40 66 20 0 1130 90 1 

9 38 68 20 255 324 90 1 

10 38 70 10 534 605 90 1 

11 35 66 10 300 410 90 1 

12 35 69 10 448 505 90 1 

13 25 85 20 0 1107 90 2 

14 22 75 30 100 300 90 2 
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C103-
25 

X-
COORD. 

Y-
COORD. 

DEMAND 
TW-
LL 

TW-
UL 

SERVICE 
TIME 

Cluster 

15 22 85 10 0 1106 90 2 

16 20 80 40 384 429 90 2 

17 20 85 40 0 1105 90 2 

18 18 75 20 99 148 90 2 

19 15 75 20 0 1110 90 2 

20 15 80 10 0 1106 90 2 

21 30 50 10 0 1136 90 3 

22 30 52 20 0 1135 90 3 

23 28 52 20 100 350 90 3 

24 28 55 10 732 777 90 2 

25 25 50 10 0 1131 90 3 

26 25 52 40 169 224 90 3 

 

Table 11: Problem C103, 50 Customers 

C103-
50 

X-
COORD. 

Y-
COORD. 

DEMAND 
TW-
LL 

TW-
UL 

SERVICE 
TIME 

Cluster 

2 45 68 10 0 1127 90 1 

3 45 70 30 0 1125 90 1 

4 42 66 10 0 1129 90 1 

5 42 68 10 10 782 90 1 

6 42 65 10 0 1130 90 1 

7 40 69 20 169 702 90 1 

8 40 66 20 0 1130 90 1 

9 38 68 20 255 324 90 1 

10 38 70 10 534 605 90 1 

11 35 66 10 300 410 90 1 

12 35 69 10 448 505 90 1 

13 25 85 20 0 1107 90 2 

14 22 75 30 100 300 90 2 

15 22 85 10 0 1106 90 2 

16 20 80 40 384 429 90 2 

17 20 85 40 0 1105 90 2 

18 18 75 20 99 148 90 2 

19 15 75 20 0 1110 90 2 

20 15 80 10 0 1106 90 2 

21 30 50 10 0 1136 90 3 

22 30 52 20 0 1135 90 3 

23 28 52 20 100 350 90 3 

24 28 55 10 50 450 90 3 

25 25 50 10 0 1131 90 3 

26 25 52 40 169 224 90 3 

27 25 55 10 0 1130 90 2 

28 23 52 10 261 316 90 3 

29 23 55 20 0 1128 90 4 

30 20 50 10 0 1126 90 3 

31 20 55 10 10 200 90 4 

32 10 35 20 0 1112 90 4 

33 10 40 30 0 1114 90 4 
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34 8 40 40 30 150 90 5 

35 8 45 20 0 1113 90 4 

36 5 35 10 90 344 90 5 

37 5 45 10 90 234 90 4 

38 2 40 20 0 1106 90 5 

39 0 40 30 200 522 90 5 

40 0 45 20 150 400 90 5 

41 35 30 10 90 321 90 6 

42 35 32 10 166 235 90 6 

43 33 32 20 68 149 90 6 

44 33 35 10 0 1129 90 3 

45 32 30 10 359 412 90 6 

46 30 30 10 200 600 90 4 

47 30 32 30 0 1125 90 3 

48 30 35 10 0 1127 90 3 

49 28 30 10 0 1122 90 4 

50 28 35 10 68 349 90 4 

51 26 32 10 0 1123 90 4 

 

Table 12: Problem C107, 25 Customers 

C107-
25 

X-
COORD. 

Y-
COORD. 

DEMAND 
TW-
LL 

TW-
UL 

SERVICE 
TIME 

Cluster 

2 45 68 10 10 1030 90 1 

3 45 70 30 15 938 90 1 

4 42 66 10 16 196 90 1 

5 42 68 10 150 845 90 1 

6 42 65 10 15 195 90 1 

7 40 69 20 15 752 90 1 

8 40 66 20 108 288 90 1 

9 38 68 20 10 380 90 1 

10 38 70 10 100 660 90 1 

11 35 66 10 294 474 90 1 

12 35 69 10 387 567 90 1 

13 25 85 20 90 777 90 2 

14 22 75 30 30 210 90 2 

15 22 85 10 30 250 90 2 

16 20 80 40 15 497 90 2 

17 20 85 40 10 592 90 2 

18 18 75 20 34 214 90 2 

19 15 75 20 127 777 90 2 

20 15 80 10 222 402 90 2 

21 30 50 10 10 667 90 3 

22 30 52 20 10 1030 90 3 

23 28 52 20 15 407 90 3 

24 28 55 10 10 845 90 2 

25 25 50 10 15 195 90 3 

26 25 52 40 10 287 90 3 
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Table 13: Problem C107, 50 Customers 

C107-
50 

X-
COORD. 

Y-
COORD. 

DEMAND 
TW-
LL 

TW-UL 
SERVICE 

TIME 
Cluster 

2 45 68 10 10 1030 90 1 

3 45 70 30 15 938 90 1 

4 42 66 10 16 196 90 1 

5 42 68 10 150 845 90 1 

6 42 65 10 15 195 90 1 

7 40 69 20 15 752 90 1 

8 40 66 20 108 288 90 1 

9 38 68 20 10 380 90 1 

10 38 70 10 100 660 90 1 

11 35 66 10 294 474 90 1 

12 35 69 10 387 567 90 1 

13 25 85 20 90 777 90 2 

14 22 75 30 30 210 90 2 

15 22 85 10 30 250 90 2 

16 20 80 40 15 497 90 2 

17 20 85 40 10 592 90 2 

18 18 75 20 34 214 90 2 

19 15 75 20 127 777 90 2 

20 15 80 10 222 402 90 2 

21 30 50 10 10 667 90 3 

22 30 52 20 10 1030 90 3 

23 28 52 20 15 407 90 3 

24 28 55 10 10 845 90 2 

25 25 50 10 15 195 90 3 

26 25 52 40 10 287 90 3 

27 25 55 10 15 752 90 3 

28 23 52 10 199 379 90 3 

29 23 55 20 50 660 90 3 

30 20 50 10 292 472 90 3 

31 20 55 10 10 567 90 4 

32 10 35 20 15 309 90 4 

33 10 40 30 31 211 90 4 

34 8 40 40 33 213 90 4 

35 8 45 20 100 694 90 4 

36 5 35 10 20 404 90 5 

37 5 45 10 15 335 90 4 

38 2 40 20 100 499 90 5 

39 0 40 30 80 445 90 5 

40 0 45 20 200 686 90 4 

41 35 30 10 12 383 90 6 

42 35 32 10 111 291 90 6 

43 33 32 20 19 199 90 6 

44 33 35 10 16 196 90 6 

45 32 30 10 296 476 90 5 

46 30 30 10 481 661 90 5 

47 30 32 30 389 569 90 5 

48 30 35 10 12 1127 90 3 

49 28 30 10 50 753 90 5 

50 28 35 10 350 1124 90 3 

51 26 32 10 8 660 90 5 
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Table 14: Problem C109, 25 Customers 

C109-
25 

X-
COORD. 

Y-
COORD. 

DEMAND 
TW-
LL 

TW-UL 
SERVICE 

TIME 
Cluster 

2 45 68 10 100 338 90 1 
3 45 70 30 5 550 90 1 
4 42 66 10 16 376 90 1 
5 42 68 10 10 200 90 1 
6 42 65 10 15 375 90 1 
7 40 69 20 240 680 90 1 
8 40 66 20 18 378 90 2 
9 38 68 20 110 470 90 1 

10 38 70 10 390 750 90 1 
11 35 66 10 35 200 90 3 
12 35 69 10 10 100 90 2 
13 25 85 20 507 867 90 1 
14 22 75 30 30 390 90 2 
15 22 85 10 414 774 90 2 
16 20 80 40 10 750 90 2 
17 20 85 40 322 682 90 2 
18 18 75 20 33 393 90 3 
19 15 75 20 37 397 90 3 
20 15 80 10 132 492 90 3 
21 30 50 10 10 370 90 2 
22 30 52 20 760 1120 90 1 
23 28 52 20 668 1028 90 1 
24 28 55 10 575 935 90 1 
25 25 50 10 15 375 90 3 
26 25 52 40 17 750 90 2 

 

Table 15: Problem C109, 50 Customers 

C109-
50 

X-
COORD. 

Y-
COORD. 

DEMAND 
TW-
LL 

TW-
UL 

SERVICE 
TIME 

Cluster 

2 45 68 10 100 338 90 1 
3 45 70 30 5 550 90 1 
4 42 66 10 16 376 90 1 
5 42 68 10 10 200 90 1 
6 42 65 10 15 375 90 1 
7 40 69 20 240 680 90 1 
8 40 66 20 18 378 90 2 
9 38 68 20 110 470 90 1 

10 38 70 10 390 750 90 1 
11 35 66 10 35 200 90 3 
12 35 69 10 10 100 90 2 
13 25 85 20 507 867 90 2 
14 22 75 30 30 390 90 2 
15 22 85 10 414 774 90 3 
16 20 80 40 10 750 90 3 
17 20 85 40 322 682 90 3 
18 18 75 20 33 393 90 3 
19 15 75 20 37 397 90 3 
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C109-
50 

X-
COORD. 

Y-
COORD. 

DEMAND 
TW-
LL 

TW-
UL 

SERVICE 
TIME 

Cluster 

20 15 80 10 132 492 90 4 
21 30 50 10 10 370 90 2 
22 30 52 20 760 1120 90 1 
23 28 52 20 668 1028 90 1 
24 28 55 10 575 935 90 1 
25 25 50 10 15 375 90 3 
26 25 52 40 17 750 90 2 
27 25 55 10 482 842 90 1 
28 23 52 10 109 469 90 2 
29 23 55 20 390 750 90 2 
30 20 50 10 202 562 90 3 
31 20 55 10 297 657 90 2 
32 10 35 20 10 399 90 4 
33 10 40 30 31 391 90 4 
34 8 40 40 33 393 90 4 
35 8 45 20 30 964 90 3 
36 5 35 10 10 494 90 5 
37 5 45 10 5 272 90 4 
38 2 40 20 50 589 90 4 
39 0 40 30 50 681 90 4 
40 0 45 20 100 776 90 4 
41 35 30 10 10 200 90 6 
42 35 32 10 21 381 90 6 
43 33 32 20 19 379 90 5 
44 33 35 10 16 376 90 5 
45 32 30 10 206 566 90 5 
46 30 30 10 5 272 90 5 
47 30 32 30 100 659 90 5 
48 30 35 10 10 1127 90 3 
49 28 30 10 10 494 90 5 
50 28 35 10 766 1126 90 3 
51 26 32 10 50 1028 90 4 

 

5.2.2 Staggered Vehicle Dispatching  

In order to apply the constraint of limited number of dispatching docks to the newly modified 

problems, we assume that two docks are available to dispatch vehicles simultaneously. Each 

dock has its own crew that prepares vehicles for dispatch, and each vehicle requires 30 minutes 

to be ready for dispatch. Finally, the docks have to dispatch all vehicles within 2 hours, in other 

words each dock has 5 available time slots to dispatch vehicles.  
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5.3 Vehicle Dispatching Time Assignment 

The proposed clustering and PRG algorithms are executed to determine the feasibility and route 

distances for the different available dispatching times, and finally the Assignment problem 

algorithm is applied to assign each vehicle to the proper dispatching time in order to minimize 

the total traveling distance of the vehicles. The results are presented next. 

We present two solutions for each problem instance. The first solution allows waiting at the 

customer premises if a vehicle arrives earlier than the lower limit of the time window (this is an 

assumption made in the original benchmark problems). The second solution forces the vehicles 

to arrive within the time windows. In both cases, the presence of a “-“ in the cell of the table 

indicates that it is infeasible to dispatch that particular vehicle to the corresponding dispatching 

time. We also present for each problem instance the optimal assignment of vehicles to 

dispatching times.  

Table 16 and Table 17 present the results for the modified benchmark problems C107 with 50 

customers. 

Table 16: Travel distance for each cluster at different dispatching distance (Problem C107 – 50 customers) 

No Waiting Allowed 
 

Waiting Allowed 
Cluster 0 30 60 90 120 

 
Cluster 0 30 60 90 120 

1 69.1 69.1 71.6 - - 
 

1 67.0 67.0 71.6 - - 
2 120.2 - - - - 

 
2 120.2 - - - - 

3 87.3 87.0 87.0 - - 
 

3 87.0 87.0 87.0 - - 
4 125.6 - - - - 

 
4 125.6 - - - - 

5 108.9 108.9 - - - 
 

5 106.8 106.8 - - - 
6 44.2 44.2 44.2 - - 

 
6 44.2 44.2 44.2 - - 
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Table 17: Optimal vehicle dispatching time and total traveled distance (Problem C107 – 50 customers) 

No Waiting Allowed  Waiting Allowed 
Cluster 

(Vehicle) 
Dispatching 

time 
Distance  Cluster 

(Vehicle) 
Dispatching 

time 
Distance 

1 30 69.1  1 30 67.0 
2 0 120.2  2 0 120.2 
3 60 87.0  3 60 87.0 
4 0 125.6  4 0 125.6 
5 30 108.9  5 30 106.8 
6 60 44.2  6 60 44.2 

Total distance 554.84  Total distance 550.66 

 

Table 18 - Table 19 present the results for the modified benchmark problems C107 with 25 

customers. 

Table 18: Travel distance for each cluster at different dispatching distance (Problem C107 – 25 customers) 

No Waiting Allowed 
 

Waiting Allowed 
Cluster 0 30 60 90 120 

 
Cluster 0 30 60 90 120 

1 69.1 69.1 71.6 - - 
 

1 67.0 67.0 71.6 - - 
2 120.2 - - - - 

 
2 120.2 - - - - 

3 32.2 32.2 32.2 32.2 34.0 
 

3 32.2 32.2 32.2 32.2 34.0 

 

Table 19: Vehicle dispatching time and total traveling distance (Problem C107 – 25 customers) 

No Waiting Allowed  Waiting Allowed 
Cluster 

(Vehicle) 
Dispatching 

time 
Distance  Cluster 

(Vehicle) 
Dispatching 

time 
Distance 

1 30 69.1  1 30 67.0 
2 0 120.2  2 0 120.2 
3 0 32.2  3 0 32.2 

Total distance 221.43  Total distance 219.41 
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Table 20 - Table 23 present the results for the modified benchmark problems C103. 

Table 20: Traveling distance for each cluster at different dispatching distance (Problem C103 – 50 customers) 

No Waiting Allowed 
 

Waiting Allowed 
Cluster 0 30 60 90 120 

 
Cluster 0 30 60 90 120 

1 61.8 - 63.7 61.7 - 
 

1 58.4 58.4 58.4 58.4 63.6 
2 111.8 - - 112.3 - 

 
2 105.0 105.0 105.0 105.0 - 

3 89.3 - - 80.4 - 
 

3 79.5 80.4 80.4 80.4 - 
4 133.1 136.3 136.3 136.3 - 

 
4 133.1 136.3 136.3 136.3 - 

5 96.1 96.1 96.1 96.8 - 
 

5 96.1 96.1 96.1 96.8 - 
6 50.6 - - - - 

 
6 50.6 - - - - 

 

Table 21: Vehicle dispatching time and total traveled distance (Problem C103 – 50 customers) 

No Waiting Allowed  Waiting Allowed 
Cluster 

(Vehicle) 
Dispatching 

time 
Distance  Cluster 

(Vehicle) 
Dispatching 

time 
Distance 

1 60 63.7  1 30 58.4 
2 0 111.8  2 30 105.0 
3 90 80.4  3 90 80.4 
4 90 136.3  4 0 133.1 
5 60 96.1  5 90 96.8 
6 0 50.6  6 0 50.6 
Total distance 538.95  Total distance 524.32 

 

Table 22: Traveling distance for each cluster at different dispatching distance (Problem C103 – 25 customers) 

No Waiting Allowed 
 

Waiting Allowed 
Cluster 0 30 60 90 120 

 
Cluster 0 30 60 90 120 

1 61.4 - 64.2 67.0 - 
 

1 58.4 58.4 58.4 58.4 58.4 
2 165.9 - - 179.8 - 

 
2 150.7 150.7 150.7 150.7 - 

3 32.2 - - 34.0 - 
 

3 32.2 34.0 34.0 34.0 38.9 
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Table 23: Vehicle dispatching time and total traveled distance (Problem C103 – 25 customers) 

No Waiting Allowed  Waiting Allowed 
Cluster 

(Vehicle) 
Dispatching 

time 
Distance  Cluster 

(Vehicle) 
Dispatching 

time 
Distance 

1 60 64.2  1 0 58.4 
2 30 165.9  2 30 150.7 
3 30 32.2  3 0 32.2 

Total distance 262.25  Total distance 241.28 

 

Table 24 - Table 27 present the results for the modified benchmark problems C101. 

Table 24: Traveling distance for each cluster at different dispatching distance (Problem C101 – 50 customers) 

No Waiting Allowed 
 

Waiting Allowed 
Cluster 0 30 60 90 120 

 
Cluster 0 30 60 90 120 

1 75.2 - - - - 
 

1 75.2 - - - - 
2 52.0 52.0 - - - 

 
2 52.0 52.0 - - - 

3 106.5 - - - - 
 

3 106.5 - - - - 
4 86.6 - - - - 

 
4 86.6 - - - - 

5 57.0 - - - - 
 

5 57.0 - - - - 
6 79.5 - 79.9 102.3 - 

 
6 79.5 79.9 79.9 102.3 - 

7 119.9 119.9 123.4 134.9 - 
 

7 119.9 119.9 123.4 134.9 - 
8 86.1 90.1 90.1 - - 

 
8 86.1 90.1 90.1 - - 

9 56.5 56.5 - - - 
 

9 56.5 56.5 - - - 

 

Table 25: Vehicle dispatching time and total traveling distance (Problem C101 – 50 customers) 

No Waiting Allowed  Waiting Allowed 
Cluster 

(Vehicle) 
Dispatching 

time 
Distance  Cluster 

(Vehicle) 
Dispatching 

time 
Distance 

1 0 75.2  1 0 75.2 
2 30 52.0  2 30 52.0 
3 0 106.5  3 0 106.5 
4 0 86.6  4 0 86.6 
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No Waiting Allowed  Waiting Allowed 
Cluster 

(Vehicle) 
Dispatching 

time 
Distance  Cluster 

(Vehicle) 
Dispatching 

time 
Distance 

5 0 57.0  5 0 57.0 
6 60 79.9  6 60 79.9 
7 30 119.9  7 30 119.9 
8 0 86.1  8 0 86.1 
9 30 56.5  9 30 56.5 
Total distance 719.78  Total distance 719.78 

 

Applying the proposed Clustering and PRG algorithms and the assignment algorithm on problem 

C101 (50 customers) divides the 50 customers into 9 clusters, and dispatches five vehicles during 

time slot 0, three vehicles during time slot 30, and one vehicle during time slot 60 with a total 

traveled distance of 719.78 in both cases of not allowing and allowing vehicles to wait at 

customers’ premises. The need to dispatch five vehicles at the same time violates the resource 

limitation of 2 dispatching docks, and this requires either to increase the dispatching docks to 

satisfy the need to dispatch all five vehicles at the same time, or to negotiate with the customers 

to change their time windows in order to be able to dispatch all vehicles using the available 

resources.   

Table 26: Traveling distance for each cluster at different dispatching times (Problem C101 – 25 customers) 

No Waiting Allowed 
 

Waiting Allowed 
Cluster 0 30 60 90 120 

 
Cluster 0 30 60 90 120 

1 75.2 - - - - 
 

1 75.2 - - - - 
2 52.0 52.0 - - - 

 
2 52.0 52.0 - - - 

3 106.5 - - - - 
 

3 106.5 - - - - 
4 77.4 77.4 - - - 

 
4 77.4 77.4 - - - 

5 22.2 22.2 22.2 - - 
 

5 22.2 22.2 22.2 - - 
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Table 27: Vehicle dispatching time and total traveling distance (Problem C101 – 25 customers) 

No Waiting Allowed  Waiting Allowed 
Cluster Dispatching 

time 
Distance  Cluster Dispatching 

time 
Distance 

1 0 75.2  1 0 75.2 
2 0 52.0  2 0 52.0 
3 0 106.5  3 0 106.5 
4 30 77.4  4 30 77.4 
5 30 22.2  5 30 22.2 
Total distance 333.37  Total distance 333.37 

From the results, we conclude that the proposed Clustering and PRG algorithms are able to 

assign customers into clusters according to their proximity to each other, find a good sequence of 

visiting customers for each cluster, and assign each cluster to the best dispatching time in such a 

way that minimizes the total traveled distance. Furthermore, the proposed algorithms are able to 

determine the least number of dispatching docks needed to serve all customers without time 

window violations.   

This chapter contributes to the body of VRPTW research a newly developed set of benchmark 

problems that accommodate the two practical features introduced in this VRPTW research: 1) 

strictly follow the early limits of customers’ time windows, and 2) stagger the dispatching of the 

vehicles from the depot based on the number of docks and the required dispatching time. These 

developed benchmark problems may be used by future researchers should they desire to test any 

newly developed algorithms of their own. 
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CHAPTER 6: RESEARCH SUMMARY AND FUTURE RESEARCH 

DIRECTIONS 

6.1 Research Summary 

This research studied the VRPTW with additional features that often arise in practical situations 

but are generally ignored in the theoretical VRPTW literature. The special features are:  

1. Customers have strict time windows for receiving a vehicle, i.e., vehicles are not allowed 

to arrive at the customer’s location earlier than the lower limit of the specified time 

window 

2. There is a limited number of loading/unloading docks for dispatching/receiving the 

vehicles at the depot 

The special features added new constraints to the VRPTW formulation that necessitated the 

development of new efficient algorithms to deal with such constraints.  

The proposed solution approach decomposed the problem into three stages: Clustering, 

Scheduling, and Dispatching Time Assignment. Two novel algorithms are proposed for 

clustering and routing, which along with the assignment algorithm work interdependently to 

cluster customers into groups, generate the routes, and determine the best dispatching time from 

the depot for each vehicle. 

The developed Routing algorithm, named the Probabilistic Routing Generation (PRG) algorithm 

was tested on a set of well-known TSPTW benchmark problems. The PRG algorithm reached the 
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best known solution for all tested benchmark problems. Next, the Clustering and the PRG 

algorithms were tested on a set of well-known VRPTW benchmark problems. In most cases, the 

outcome of the proposed algorithms was close to the best known solutions for these problems. 

The deviation from the best-known solution depended on the tested problem instance. 

We noted that, in their current structure, the benchmark problems cannot be used to 

accommodate the two special features of the VRPTW of 1) strictly following the early limit of 

time window, and 2) staggering the dispatching of the vehicles from the depot based on the 

number of docks and the required dispatching time. The benchmark problems were slightly 

modified using a documented systematic procedure, and the proposed Clustering, Routing, and 

Assignment algorithms were implemented on the modified benchmark problems. 

6.2 Research Contributions 

The contributions of this research can be summarized as follow: 

1. A new variant of VRPTW has been proposed and studied by adding two new features to 

the original problem, these new features are: 

a. Vehicles are not allowed to wait at customer’s premises in case of arrival before 

the start of the desired time window. 

b.  Limited availability of loading docks at the depot 

2. A new approach has been developed for solving the VRPTW problem that considers the 

two additional constraints. The proposed approach simultaneously clusters customers, 

routes vehicles, and assigns vehicles to dispatching times from the depot.  
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3. A new routing algorithm, the Probabilistic Routing Algorithm PRG, has been proposed 

and developed to find the best sequence of visiting customers while satisfying the time 

windows. The PRG algorithm can be applied alongside the clustering algorithm to solve 

the VRPTW, or can be applied independently to solve the TSPTW. 

4. A new clustering algorithm has been developed that divides customers into groups 

according to their proximity from each other. The clustering algorithm works 

concurrently with the PRG algorithm to develop clusters while considering the time 

windows of the customers. 

5. A new set of benchmark problems has been created by modifying several well-known 

VRPTW benchmark problems. This new set of benchmark problems allows future testing 

of any newly developed algorithms to solve the VRPTW when considering the two extra 

features listed above. 

6.3 Future Research Directions 

The following areas are believed to be potential areas for further research: 

1. Enhance the performance of the current Clustering algorithm by graphically modifying 

the developed clusters to improve the obtained results and prevent cases in which the last 

cluster is formed of geographically dispersed customers. 

2. Study the parameters affecting the performance of the PRG algorithm to determine the 

conditions under which the performance of the algorithm is at its best. This study will 

also involve mining our solutions of the benchmark problems to investigate correlations 

between PRG algorithm parameters and its performance. 
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3. Improve the computational speed of the clustering algorithm by redesigning the process 

of customer assignment to clusters. Specifically, an unassigned customer  is added to 

cluster  if and only if the early limit of the time window of customer  is lower than the 

departure time from the last customer in cluster x.  This will improve the computational 

efficiency of the clustering algorithm as it will reduce the number of iterations required to 

find a customer that can fit within cluster x. 

4. Develop a new heuristic inspired by the PRG algorithm for solving special cases in job 

shop scheduling to determine the best sequence of processing jobs on single and multiple 

machines. This may require us to modify the objective function and some of the 

algorithm mechanics.    

5. Apply the PRG algorithm to solve a special version of the Facility Layout Design 

Problem, the Looped Layout Design Problem, in which we desire to determine the 

allocation of manufacturing cells to locations around a loop so as to minimize the 

congestion in the facility. Because of the computational efficiency of the PRG algorithm, 

we will investigate the impact of designing the layout (or allocation) of the machines 

around the loop so as to maximize the throughput capacity of a vehicle-based material 

handling system. Each iteration of the PRG algorithm generates a layout for the machines 

based on the frequency of assigning machines to positions around the loop in layouts 

generated in previous iterations. 
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