Multi-vehicle Dispatching And Routing With Time Window Constraints And Limited Dock Capacity

Ahmed El-Nashar
University of Central Florida

Part of the Industrial Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd
University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact STARS@ucf.edu.

STARS Citation

El-Nashar, Ahmed, "Multi-vehicle Dispatching And Routing With Time Window Constraints And Limited Dock Capacity" (2012). Electronic Theses and Dissertations, 2004-2019. 2281.
https://stars.library.ucf.edu/etd/2281

MULTI-VEHICLE DISPATCHING AND ROUTING WITH TIME WINDOW CONSTRAINTS AND LIMITED DOCK CAPACITY

 byAHMED EL-NASHAR
B.S. Industrial Engineering, Arab Academy for Science and Technology, Egypt, 1999
M.S. Management Engineering, Arab Academy for Science and Technology, Egypt, 2006
M.S. Industrial Engineering, University of Central Florida, 2009

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Industrial Engineering and Management Systems in the College of Engineering and Computer Science
at the University of Central Florida
Orlando, Florida

Fall Term

2012

Major Professor: Dima Nazzal

Abstract

The Vehicle Routing Problem with Time Windows (VRPTW) is an important and computationally hard optimization problem frequently encountered in Scheduling and logistics. The Vehicle Routing Problem (VRP) can be described as the problem of designing the most efficient and economical routes from one depot to a set of customers using a limited number of vehicles. This research addresses the VRPTW under the following additional complicating features that are often encountered in practical problems: 1. Customers have strict time windows for receiving a vehicle, i.e., vehicles are not allowed to arrive at the customer's location earlier than the lower limit of the specified time window, which is relaxed in previous research work. 2. There is a limited number of loading/unloading docks for dispatching/receiving the vehicles at the depot

The main goal of this research is to propose a framework for solving the VRPTW with the constraints stated above by generating near-optimal routes for the vehicles so as to minimize the total traveling distance. First, the proposed framework clusters customers into groups based on their proximity to each other. Second, a Probabilistic Route Generation (PRG) algorithm is applied to each cluster to find the best route for visiting customers by each vehicle; multiple routes per vehicle are generated and each route is associated with a set of feasible dispatching times from the depot. Third, an assignment problem formulation determines the best dispatching time and route for each vehicle that minimizes the total traveling distance.

The proposed algorithm is tested on a set of benchmark problems that were originally developed by Marius M. Solomon and the results indicate that the algorithm works well with about 1.14% average deviation from the best-known solutions. The benchmark problems are then modified by adjusting some of the customer time window limits, and adding the staggered vehicle dispatching constraint. For demonstration purposes, the proposed clustering and PRG algorithms are then applied to the modified benchmark problems.

TABLE OF CONTENTS

LIST OF FIGURES viii
LIST OF TABLES x
CHAPTER 1: INTRODUCTION 1
1.1 Role of Distribution 1
1.2 Vehicle Routing Problem Structure 4
1.3 Problem Definition 8
1.3.1 Problem Formulation 11
1.4 Research Objective 16
CHAPTER 2: LITERATURE REVIEW 18
2.1 Introduction 18
2.2 Exact Algorithms 20
2.3 Classical Heuristics 22
2.3.1 Sequential Route Construction Heuristics 22
2.3.2 Parallel Route Construction Heuristics 26
2.4 Meta-Heuristics 28
2.4.1 Trajectory Methods 28
2.4.1.1 Tabu Search 28
2.4.1.2 Simulated Annealing 31
2.4.1.3 Neighborhood Search Meta-Heuristics 33
2.4.2 Population Based Methods 36
2.4.2.1 Evolutionary Computation 37
2.4.2.2 Ant Colony Optimization 47
2.5 Summary and Research Gap 51
CHAPTER 3: PROPOSED METHODOLOGY FOR SOLVING VRPTW WITH LIMITED DISPATCHING CAPACITY 55
3.1 Proposed Solution Framework 55
3.2 Clustering Algorithm 56
3.2.1 The Mechanics of Clustering Algorithm 57
3.2.1.1 Determining the Acceptable Percent Increase in Route Length (R) 60
3.3 Routing Algorithm 61
3.3.1 Introduction 61
3.3.2 The Probabilistic Route Generation Algorithm 63
3.3.2.1 The Routes Table 64
3.3.2.2 The Frequency Table 65
3.3.2.3 The Probability Table 66
3.3.2.4 The Cumulative Probability Table 67
3.3.3 PRG Algorithm Mechanics 68
3.3.3.1 Algorithm Initialization 70
3.3.3.2 PRG Algorithm Description 70
3.3.4 Local Search 73
3.3.5 Assigning Dispatching Times 74
CHAPTER 4: MODEL AND ALGORITHM VALIDATION 78
4.1 Probabilistic Route Generation (PRG) Algorithm 78
4.1.1 Algorithm Convergence 78
4.1.2 Computational Results 79
4.2 VRPTW Benchmark Problems 83
4.2.1 Computational Results 84
CHAPTER 5: VRPTW BENCHMAK PROBLEMS MODIFICATION AND TESTING 87
5.1 VRPTW Benchmark Problems Structure 87
5.2 VRPTW Benchmark Problems Modification 89
5.2.1 Time Window Modification 90
5.2.2 Staggered Vehicle Dispatching 98
5.3 Vehicle Dispatching Time Assignment. 99
CHAPTER 6: RESEARCH SUMMARY AND FUTURE RESEARCH DIRECTIONS. 105
6.1 Research Summary 105
6.2 Research Contributions 106
6.3 Future Research Directions 107
REFERENCES 109

LIST OF FIGURES

Figure 1: Transportation modes and its associated annual costs (Duych, 2008) 2
Figure 2: Traveling Salesperson Problem 3
Figure 3: Vehicle Routing Problem 4
Figure 4: Parameters, Constraints and Objectives of the VRP 5
Figure 5: Relations between different types of Vehicle Routing Problem (Toth and Vigo, 2002). 6
Figure 6: Schematic illustration of problem under study 9
Figure 7: Effect of changing vehicle dispatching time on the time window constraints 11
Figure 8 Summary of reviewed publications 19
Figure 9: Swap Node and Swap Sequence mutation operators 44
Figure 10: Four steps of the proposed framework 55
Figure 11: Customers clustered in groups. 56
Figure 12: Clustering Algorithm. 58
Figure 13: Pareto analysis for route increase percentages 60
Figure 14: Best sequence for visiting customers. 61
Figure 15: Simple illustration of routing algorithm. 63
Figure 16: Generated Routes Table. 64
Figure 17: Frequency Counting Process 65
Figure 18: Probability Table Generation Process. 67
Figure 19: Cumulative Probability Table 68
Figure 20: Flowchart showing the steps of the PRG algorithm 69
Figure 21: Steps to construct route. 72
Figure 22: Applying local search algorithms to achieve better solutions 74
Figure 23: Algorithm outcome 79
Figure 24: Time windows of Solomon's tested benchmarking problems. 81
Figure 25: VRPTW benchmark problem structure 88
Figure 26: VRPTW modification procedure 91

LIST OF TABLES

Table 1: Different approaches for solving VRPTW 52
Table 2: Travel time per vehicle for dispatching time at 7:00 am 75
Table 3: Vehicle travel times for different dispatching times from the depot. 76
Table 4: Vehicle Loading, Dispatching and Dock Utilization. 76
Table 5: Travel time per vehicle for optimal dispatching time. 77
Table 6: Results of executing PRG algorithm on a set of TSPTW benchmark problems 82
Table 7: Results of applying the Clustering and PRG algorithms on a set of VRPTW benchmark problems 86
Table 8: Problem C101, 25 Customers 92
Table 9: Problem C101, 50 Customers 92
Table 10: Problem C103, 25 Customers 93
Table 11: Problem C103, 50 Customers 94
Table 12: Problem C107, 25 Customers 95
Table 13: Problem C107, 50 Customers 96
Table 14: Problem C109, 25 Customers 97
Table 15: Problem C109, 50 Customers 97
Table 16: Travel distance for each cluster at different dispatching distance (Problem C107-50
customers) 99
Table 17: Optimal vehicle dispatching time and total traveled distance (Problem C107-50
customers) 100
Table 18: Travel distance for each cluster at different dispatching distance (Problem C107-25
customers) 100
Table 19: Vehicle dispatching time and total traveling distance (Problem C107-25 customers)
\qquad
Table 20: Traveling distance for each cluster at different dispatching distance (Problem C103 -
50 customers) 101
Table 21: Vehicle dispatching time and total traveled distance (Problem C103 - 50 customers)
\qquad

Table 22: Traveling distance for each cluster at different dispatching distance (Problem C103-
\qquad

Table 23: Vehicle dispatching time and total traveled distance (Problem C103-25 customers)

Table 24: Traveling distance for each cluster at different dispatching distance (Problem C101 -
\qquad

Table 25: Vehicle dispatching time and total traveling distance (Problem C101-50 customers)
\qquad

Table 26: Traveling distance for each cluster at different dispatching times (Problem C101-25 customers) .. 103

Table 27: Vehicle dispatching time and total traveling distance (Problem C101-25 customers) 104

CHAPTER 1: INTRODUCTION

1.1 Role of Distribution

Distribution is an important domain in our daily life, as it supports most social and economic activities. Furthermore, it plays a key role in the fields of logistics and supply chains. Improving operational efficiencies in distribution is receiving greater attention as fuel costs are continually increasing. A small reduction in the traveled distance of a daily logistical operation directly translates to cost reduction and decreased environmental impacts.

It has been estimated that distribution costs account for almost half of all logistics costs, and in some industries, such as the food and beverage business, distribution costs can account for up to 70% of the value-added costs of the goods. In 1989, 76.5% of all transportation is by vehicles (Backer et al., 1997; Golden and Wasil, 1987; Halse, 1992).

In 2007, it was estimated that American businesses made shipments valuing $\$ 11.8$ trillion, totaling 13 billion tons, and contributing 3.5 trillion ton-miles on the nation's transportation infrastructure, with 71% of these transportation operations carried out by truck (Duych, 2008). Figure 1 summarizes the different mode of transportations and the associated annual costs for the United States in 2007.

Mode of transportation	2007 value (million \$)	2007 tons (thousands)	2007 ton-miles ${ }^{\text { }}$ (millions)	2007 average miles per shipment
All modes	$11,831,503$	$13,016,610$	$3,490,806$	580
Single modes	$9,554,880$	$12,087,756$	$2,953,076$	213
Truck 2	$8,363,657$	$8,957,687$	$1,390,102$	187
For-hire truck	$4,764,442$	$4,029,016$	$1,011,018$	527
Private truck	$3,599,215$	$4,928,670$	379,084	82
Rail	387,567	$1,928,530$	$1,294,921$	691
Water	106,905	423,282	175,973	330
Shallow draft	95,420	381,566	163,571	284
Great Lakes	705	13,261	4,830	S
Deep draft	10,779	28,455	S	390
Air (included truck and air)	209,611	3,525	4,014	1,299
Pipeline ${ }^{3}$	487,140	774,732	S	S
Multiple modes	$1,938,884$	626,539	489,767	915
Parcel, USPS or courier	$1,597,931$	36,029	29,535	914
Truck and rail	197,748	213,411	188,547	1,053
Truck and water	31,112	74,421	48,870	1,347
Rail and water	7,744	44,979	30,444	2,608
Other multiple modes	104,350	257,698	192,372	2,190
Other and unknown modes	337,739	302,315	47,964	149

Figure 1: Transportation modes and its associated annual costs (Duych, 2008)

The importance of the distribution management mandates achieving high performance levels in terms of the economic efficiency and service quality. The motivation to achieve economic efficiency is exceptionally high in this competitive industry. A distribution firm's main objective is to make profit, while from a customer's view (for a given level of quality) the major factor in selecting a carrier is the cost

Further, lean manufacturing trends that target minimizing or eliminating inventory (just-in-time procurement), and the need for quality control of the entire logistics chain driven by customer demand and requirements impose a high service level. Such high levels can be achieved by providing better total delivery time (be there fast), and reliable service (be there within specific
limits and be consistent in performance) (Crainic and Laporte, 1997).These and similar statistics about the role of distribution in our society and the industry's competitive nature propel the vast body of research undertaken on traveling salesperson, vehicle routing and scheduling problems.

The Traveling Salesperson Problem (TSP) is considered the basic and simplest form of vehicular distribution, and is referred to as the Vehicle Routing Problem (VRP). The problem is defined as finding the shortest route that can be taken starting from a depot and passing through each of (N-1) points (customers), and then returning to the depot as shown in Figure 2, assuming that each pair of points (customers) is joined by a link and having specific distance (Flood, 1956). Attempts by researchers to study TSP were unsuccessful until the mid 1950's when Dantzig, Fulkerson, and Johnson presented a formulation and a solution method (Dantzig et al., 1954).

Figure 2: Traveling Salesperson Problem.

The Vehicle Routing Problem emerged with the evolution of industrial age, when large-scale production and supply became possible. The importance of vehicle routing optimization gained significance as the complexity and scale of production increased.

As illustrated in Figure 3, the VRP can be stated as the problem of designing least-cost/ shortest delivery routes for a number of vehicles from a depot to a set of geographically dispersed customers, subject to side constraints. This problem is central to distribution management and must be routinely solved by distribution companies (Laporte, 2009).

Figure 3: Vehicle Routing Problem.

1.2 Vehicle Routing Problem Structure

The VRP involves serving a set of customers using a fleet of vehicles and a road network. The objective is to minimize operating cost, such as minimizing the total distance traveled or the time taken to complete a tour, while considering operational constraints regarding vehicle capacity, customer availability (time windows), and driver availability; among others. Common parameters, potential objectives, and constraints of the VRP are shown in Figure 4. The optimal solution of the VRP is a set of routes, each served by a single vehicle satisfying customers and operational constraints, while minimizing the total travel distances. Typically, the problem requires that each vehicle starts and ends at a single depot.

Parameters

- Road network
- Customers
- Depots
- Vehicles
- Drivers

Constraints

- Customer constraints e.g. Time windows
- Operational constraints e.g. Number of available vehicles, Number of Loading docks, Availability of loading docks

Objectives

- Optimization process e.g. Minimize total cost, Minimize traveling time, Minimize traveling distance

Routes

Figure 4: Parameters, Constraints and Objectives of the VRP

VRP is an NP hard problem due to its computational difficulty and its practical relevance (Maffioli, 2003). There are different variants of the VRP depending on the objectives of the problems and the constraints to be considered (Desrochers et al., 1990). The relations between different variants of VRP are shown in Figure 5.

Figure 5: Relations between different types of Vehicle Routing Problem (Toth and Vigo, 2002).
The simplest form of the problem is the traveling salesperson problem (TSP), which has no constraints except serving all customers with only one vehicle. When there is a set of vehicles to serve all customers without constraints, the problem is called the vehicle routing problem (VRP). The name of the problem changes by considering constraints to the solution. By considering the capacity of the vehicle in the solution, the problem becomes the capacitated vehicle routing problem (CVRP). If the CVRP is additionally constrained by time windows for arrival and
departure to and from customers, it is called the vehicle routing problem with time windows (VRPTW).

The Vehicle Routing Problem with Pickup and Delivery (VRPPD), another extension of the classical VRP, occurs when a number of goods are moved from a certain pickup location to a certain delivery location. The objective is to identify the optimal routes to visit the pickup and delivery locations. The Vehicle Routing Problem with Backhauls (VRPB) is considered a special case of VRPPD in which there are two separate sets of customers: a set of customers to whom products are delivered, and a set of vendors whose goods need to be transported back to the distribution center; the main constraint in this type of problem is that all deliveries must be made before any pickups. When there are limitations on vehicle capacity and the maximum route distance, the problem is called the Distance Constrained Capacitated Vehicle Routing Problem (DCVRP) (Toth and Vigo, 2002).

This research proposes a new algorithm for solving the VRPTW with additional constraints due to the necessity to stagger the vehicles' dispatching times from the depot or the vehicles' receiving time at the depot due to, for example, a limited number of loading docks and/or dispatching times.

The problem is decomposed into several sub-problems as is discussed in CHAPTER 3:. New heuristics are developed to efficiently generate near-optimal schedules and routes. Section $\mathbf{1 . 3}$ presents the problem definition including the unique features studied in this research investigation.

1.3 Problem Definition

The VRPTW problem has been studied extensively during the last decade, and researchers have proposed different algorithms and heuristics for solving this problem. Most of the proposed algorithms, however, ignore the lower bound of customers' time windows. More specifically, most of the proposed algorithms and heuristics allow the vehicle to wait at a customer's premises if the vehicle arrives before the start of the customer's specified time window. Further, these algorithms assume that all vehicles can be dispatched from the depot at the same time, which might not be realistic in some practical situations, e.g., the depot might have a limited number of dispatching/receiving docks.

In this research a new variant of the VRPTW has been studied, by adding two additional features (constraints):

1. The vehicle schedule must satisfy both a lower limit $\left(a_{i}\right)$ and an upper limit $\left(b_{i}\right)$ of the arrival time to customer i. Therefore, vehicles are not allowed to wait at the customer upon early arrival.
2. There is a limit on the number of vehicles that can be dispatched simultaneously from the depot. This limit depends on the number of available docks (d) at the depot.

Figure 6: Schematic illustration of problem under study.
As shown in Figure 6, the problem under study can be described as a company that provides delivery service through a single depot to N customers (nodes), using K vehicles, each having
fixed homogeneous capacity Q. The problem has the following components:

- Depot
- Single depot that serves a set of \mathbf{N} customers
- A set of \mathbf{D} homogeneous loading docks
- Each dock requires a certain (fixed) period of time l to load each vehicle
- Each dock can dispatch vehicles during a predefined finite set of time slots \mathbf{F}.
- Vehicles
- The depot has a set of \mathbf{K} vehicles to serve customers
- The vehicles have fixed homogeneous capacity Q
- Each route is serviced by a vehicle $k \in \mathbf{K}$ that starts and ends at the depot
- Each vehicle $k \in \mathbf{K}$ must be loaded by a one unique dock $d \in \mathbf{D}$ at the depot.
- Customers
- Each customer i has demand q_{i}
- Each customer i is visited by only one vehicle
- Each customer i has a specific time window to receive service denoted by $\left[a_{i}, b_{i}\right]$, where a_{i} and b_{i} represent the earliest and latest time, respectively, for receiving service.
- Each vehicle $k \in \mathbf{K}$ spends a specific time u_{i} at customer i

The objective is to find the schedule that minimizes the total traveling distance of visiting all customers within their time windows, subject to limitations on the number of dispatching docks at the depot, and vehicle capacity.

Due to limited dispatching dock capacity at the depot, it is infeasible to dispatch all vehicles simultaneously, which mandates a staggered dispatch approach of the vehicles from loading docks over the allowed dispatching time. Figure 7 illustrates how changing the vehicle dispatching time from the depot can affect an already proposed route by violating the time windows of customers. In Figure 7, the y-axis represents the order of visiting the customers
starting from the depot in the top of the y-axis and ending at the depot at the bottom of the y-axis. The horizontal line represents the service time at customer's location, while the declined line represent the traveling time from one customer to another. The solid line represents dispatching the vehicle from the depot at the appropriate time and how it meets all customers' time windows, while the dotted line shows how the customers' time windows might be violated if the dispatching time of the vehicle from the depot changed.

Figure 7: Effect of changing vehicle dispatching time on the time window constraints

1.3.1 Problem Formulation

The problem can be considered a graph $G=(\mathbf{N}, \mathbf{A})$ with a set of \mathbf{N} nodes representing the customers and a set \boldsymbol{A} of arcs with arc $(i, j) \in \mathbf{A}$ connecting node i to node j; the depot is presented by Nodes 0 and $(N+1)$. A is the set of arcs that connect the different nodes. For each
$\operatorname{arc}(i, j) \in \mathbf{A}, i \neq j$, there is a nonnegative $\operatorname{cost} c_{i j}$ that represents the travel distance between nodes i and j in the network.

Parameters:

We assume that all parameters are deterministic and fixed.
$c_{i j}=$ traveling distance from customer i to customer j
$N=|\mathbf{N}|=$ number of customers
$K=|\mathbf{K}|=$ number of vehicles
$D=|\mathbf{D}|=$ number of docks available at the depot
$F=|\mathbf{F}|=$ number of adjacent dispatching time slots at the depot
$u_{i}=$ service time at customer i
$t_{i j}=$ traveling time from customer i to customer j
$a_{i}=$ the earliest time to service customer i
$b_{i}=$ the latest time to service customer i
$E=$ earliest time to leave the depot
$L=$ latest time to return to the depot
$q_{i}=$ quantity to be delivered to customer i
$Q=$ capacity of each vehicle k
$T_{f}=$ time a vehicle can be dispatched in time slot f, where $f \in \mathbf{F}$

Assumptions:

The following assumptions are considered in the problem

- All vehicles have the same capacity Q
- Vehicles maintain a constant speed from customer i to customer j
- F adjacent time slots are available at dispatching docks to dispatch vehicles
- Receiving (or Unload) dock capacity at a customer i is unlimited (i.e., vehicles do not have to wait for the availability of an unload dock)

Decision variables:

$x_{i j k}= \begin{cases}1, & \text { if vehicle } k \text { travels from customer } i \text { to } j \\ 0, & \text { otherwise }\end{cases}$
$w_{i k}=$ the start time of service at customer i when serviced by vehicle k
$S_{f k}= \begin{cases}1, & \text { if vehicle } k \text { is dispatched in time slot } f \\ 0, & \text { otherwise }\end{cases}$

The VRPTW is formulated with dispatching constraints as follows:
$\min \sum_{k \in \mathbf{K}} \sum_{(i, j) \in \mathbf{A}} c_{i j} x_{i j k}$
s.t.
$\sum_{k \in \mathbf{K}} \sum_{j \in \mathbf{N}} x_{i j k}=1, \forall i \in \mathbf{N}$

$$
\begin{equation*}
\sum_{i \in \mathbb{N}} x_{0 j k}=1, \forall k \in \mathbf{K} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i \in \mathbb{N}} x_{i h k}-\sum_{j \in \mathbb{N}} x_{h j k}=0, \forall k \in \mathbf{K}, \forall h \in \mathbf{N} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i \in \mathbf{N}} x_{i, N+1, k}=1, \forall k \in \mathbf{K} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
x_{i j k}\left(w_{i k}+u_{i}+t_{i j}-w_{j k}\right) \leq 0, \forall k \in \mathbf{K},(i, j) \in \mathbf{A} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
a_{i} \sum_{j \in \mathbf{N}} x_{i j k} \leq w_{i k} \leq b_{i} \sum_{j \in \mathbf{N}} x_{i j k}, \forall k \in \mathbf{K}, i \in \mathbf{N} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
E \leq w_{i k} \leq L, \forall k \in \mathbf{K}, i \in\{0, N+1\} \tag{7}
\end{equation*}
$$

$$
\begin{align*}
& \sum_{i \in \mathbf{N}} q_{i} \sum_{j \in \mathbf{N}} x_{i j k} \leq Q, \forall k \in \mathbf{K} \\
& x_{i j k} \in\{0,1\}, \forall k \in \mathbf{K},(i, j) \in \mathbf{A} \tag{9}\\
& w_{0 k}=\sum_{f \in \mathbf{F}} T_{f} S_{f k}, \forall k \in \mathbf{K} \tag{10}\\
& \sum_{f \in \mathbf{F}} S_{f k} \leq 1, \forall k \in \mathbf{K} \tag{11}\\
& \sum_{k \in \mathbf{K}} S_{f k} \leq D, \forall f \in \mathbf{F} \tag{12}\\
& S_{f k} \geq 0, \forall k \in \mathbf{K}, f \in \mathbf{F}
\end{align*}
$$

In the mathematical model, constraints (1) to (9) are those presented by Toth and Vigo (Toth and Vigo, 2002) to formulate the VRPTW, and constraints (10) to (13) are the additional constraints required for the staggered dispatching feature of the problem.

The objective is to minimize the total travel distance. Constraint (1) restricts the assignment of each customer to exactly one vehicle. While constraints sets (2)-(4) characterize the flow on the path to be followed by vehicle k. Constraints sets (5)-(7) and (8) guarantee schedule feasibility with respect to time windows and vehicle capacity limitations, respectively. Constraint (10) restricts the dispatching time of any of the vehicles to one of the available F dispatching time
slots. While constraint (11) ensures that one and only one dispatching time period f will be assigned to each vehicle. Finally, constraint (12) ensures that the number of vehicles that can be dispatched in a given time slot is less than or equal to the number of the available docks.

As previously mentioned, the VRP is NP hard due to its computational difficulty (Maffioli, 2003). Adding the constraints of time windows and the limited capacity of dispatching docks increase the complexity of the problem and make it very difficult to solve in polynomial time. Therefore, it follows that the VRPTW with limited dock capacity is also in the class of NP.

1.4 Research Objective

The goal of this research is to propose a solution framework for the VRPTW problem with limited dispatching capacity constraint that generates a vehicle dispatching schedule for the depot in order to minimize the total vehicle traveling distance. The following steps are taken in order to develop this framework for solving the problem under study.

1. Propose a clustering approach that partitions the customers into subgroups considering the proximity between customers and simultaneously satisfying the customers' time window constraints;
2. Propose an optimization procedure that produces near-optimal vehicle routes for each cluster considering the upper and lower bounds of time windows for each customer and the limited number of loading docks at the depot; and
3. Evaluate the proposed solution framework against benchmark problems via a computational study.

As by-product of this research, a dock schedule can be developed compatible with the optimal routing of vehicles.

Due to the vast body of literature on VRP, the literature review in Chapter 2 chiefly focuses on the Vehicle Routing Problem with Time Windows and its variants, because it is the closest representation to the problem under investigation in this research. Chapter 3 illustrates the details of the research methodology and discusses the proposed algorithms for solving the research problem. Chapter 4 presents the results of testing the performance of the proposed algorithms and discusses the obtained results. Chapter 5 discusses the modification of VRPTW benchmark problems and applies the proposed algorithms on the modified benchmark problems.

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

Due to the importance and wide applicability of the VRP, it is continuously investigated to enhance existing algorithms and develop new exact algorithms and heuristics to achieve better solutions in a reasonable time. Numerous researchers discuss the VRPTW and propose different approaches for solving it. They propose three main approaches: Exact Algorithms, Heuristics, or Metaheuristics. Figure 8 summarizes existing research on the VRPTW.

- Simulating Annealing

-Chiang Russell, 1996 (Apply simulated annealing to VRPTW)
-Czech \& Czarnas, 2002 \& Debudaj-Grabysz, 2005 (parallel computation simulated annealing)
-Hiquebran, et al., 1993 (apply simulated annealing to cluster-first route-second strategy to VRPTW)

Neighborhood Search Meta-Heuristic

-Braysy, 2003 (apply Variable neighborhood Search to VRPTW)
-Prescott-Gagnon, 2009 (apply Large Neighborhood Search to VRPTW)

Evolutionary Computation

- Blanton \& Wainwright, 1993 (first apply GA to VRPTW)
-Thangiah, 1995a,1995b (use GA with cluster-first route-second algorithm)
- Benyahia \& Potvin, 1995 \& Potvin et al., 1996 (use GA with parallel insertion heuristic)
- Potvin \& Bengio, 1996 (extension of GA with insertion heuristic)
- Berger et al., 1998 (hybridize GA with Construction heuristics)
- Zhu, 2000 \& Tan, 2001 (integer representation of solution, and new crossover operators)
- Berger et al., 2003 (parallel evolving of populations)
- Alvarengaa et al., 2007 (combine GA with set partitioning formulation)
- Chenga \& Wangb, 2009 (use GA for clustering)
- Nazif \& lee, 2010 (extension of GA for VRPTW)

Ant Colony Optimization

-Gambardella et al., 1999 \& Tan et al., 2006 (multi-objective ant colony system for VRPTW)

- Gong et al., 2007 (two generation ant colony for VRPTW)
- Qi \& sun, 2008 (modified ant colony algorithm)

Figure 8 Summary of reviewed publications

2.2 Exact Algorithms

Over the last four decades, extensive research in the field of VRP proposes exact solution algorithms. These algorithms range from basic branch-and-bound schemes to highly sophisticated mathematical programs.

An Algorithm for the Vehicle Dispatching Problem proposed by Christofides \& Eilon (1969) is considered one of the first known branch-and-bound algorithms, the authors propose to add $m-1$ artificial depots to the graph and setting the distance between those artificial depots to infinity. By adding those artificial depots the problem changes from VRP to TSP, this new problem is called m-TSP. Each new TSP is solved by branching on arcs as proposed by Little et al. (1963). Christofides \& Eilon (1969) claim that they can improve the results of the Little et al. algorithm by determining the lower bound of the traveling salesperson tour by calculating the minimal spanning tree.

Kolen et al. (1987) propose a branch-and-bound method for VRPTW. The authors state that they propose the first optimization method for VRPTW. The proposed branch-and-bound algorithm is based on a branching rule, in which each node in the search tree corresponds to: (1) a set of fixed routes that start and end at the depot, (2) a partial route starting at the depot, and (3) a set of customers that are forbidden to be the next route stop. Initially, the fixed routes and the set of forbidden customers are empty, while the partial route consists only of the depot. In the branching process the algorithm starts with a customer who does not appear in any fixed or partial route and is not forbidden. A lower bound is calculated at each node of the search tree for
the possible feasible extensions of the partial route by relaxing the constraint that forces each customer not being served yet to be visited only once.

Desrochers et al. (1992) propose an algorithm that considers hard time windows; the time windows of any of the customers can not be violated. For example, a vehicle waits at the customer's location, if it arrives earlier than the customer's specified time window. Such case is applicable in the fields of bank deliveries, postal deliveries, industrial refusal collection and bus routing and scheduling. In this paper, the authors use column generation approach in conjunction with branch-and-bound to generate an optimal solution.

Liberatore (2009) proposes an exact algorithm for solving the vehicle routing problem with soft time windows (VRPSTW) using column generation method. Soft time windows are not considered as constraints, but as preferences on the time of visiting the customer's location. If a customer is visited out of the preferred time window, a penalty is incurred in terms of additional costs that are added to the total cost of the route rather than considering it a time window violation. The main advantage of routing with soft time windows is that more stops can be added to routes than in the case of hard time windows. The authors propose an algorithm that solves VRPSTW as a resource constrained elementary shortest path problem with soft time windows, which forms the basis to develop a branch-and-price algorithm for the exact optimization of the VRPSTW.

The concept of the VRP is simple and easy to understand, and from the first impression we may think that it is very easy to get an optimal solution for it. However, the problem is very complex, and time consuming to reach an optimal solution and is considered NP-hard problem. Further,
adding constraints to the problem will increase its complexity. Christofides and Eilon (1969) and Lenstra and Kan (1981) have shown that the vehicle routing problem is an NP-hard problem, and consequently we can consider vehicle routing problem with time windows as an NP-hard problem.

The work done by Savelsbergh (1985) and Solomon (1986) show that adding the time window constraint to the vehicle routing problem increases the complexity of the problem and the difficulty of reaching an optimal solution, and consequently reaching an optimal solution within polynomial time is not expected.

2.3 Classical Heuristics

Heuristics may be considered as successful alternatives to provide promising solutions for practical (realistic) size problems in reasonable computational time and requirement, but their main limitation is the quality of the solution (Koskosidis et al., 1992), and the optimality gap.

2.3.1 Sequential Route Construction Heuristics

Clarke and Wright (1964) propose the saving algorithm. The algorithm starts by developing one tour from the depot to each customer and back to the depot. The number of initial tours will be equal to the number of customers. After setting the initial tours we start combining the different tours together in order to reduce the total traveled distance. In order to determine the tours that should be combined together, the saving that results from combining any two tours together $\left(S_{i j}\right)$ are calculated, by adding distance from the depot to customer $i\left(d_{i 0}\right)$ and distance from the depot to customer $j\left(d_{0 j}\right)$ and subtracting from them the distance from customer i to customer $j\left(d_{i j}\right)$.

After calculating the savings we rank them and list them in descending order of magnitude, and we start joining tours together in such way that maximizes the savings. We keep combining tours together until all customers are assigned to routes. The number of vehicles used in the solution is an output of the algorithm. Gaskell (1967), Yellow (1970) and Paessens (1988) have also proposed a number of variants of this method.

Gillett and Miller (1974) propose a heuristic algorithm, named the sweep algorithm for solving medium and large scale vehicle routing problem with load and distance constraint for each vehicle. The sweep algorithm divides the locations into a number of routes and then operates on the individual routes until an optimum or near optimum solution is obtained. The authors state that when the problem is broken down into a number of smaller sub-problems, the computation time required for reaching the optimal solution increases somewhat in a linear, rather than, in an exponential manner as more locations are added to a given problem. The sweep algorithm consists mainly of two parts: a forward sweep and backward sweep. In the forward sweep, locations are added to the route according to their polar-coordinate angle from the depot, the locations with smaller polar-coordinate angles are added first to the route until the vehicle capacity or distance constraint is reached. When the vehicle capacity or the distance constraint is reached a new route is started. This process is repeated until all locations are assigned to routes. In order to check if there is better solution that can be reached, a replacement process takes place between consecutive routes by replacing the locations that are near to each other in the consecutive routes. The replacement process takes place only if the total distance of the routes is decreased. The backward sweep is similar to the forward sweep, except that the backward sweep uses the locations with larger polar-coordinate angle from the depot to be added first to the
routes, and also the replacement process takes place between the constructed routes to check any further improvement. The authors state that forward and backward sweep algorithms produce different routes, and the smallest output of these two algorithms is considered the best solution.

Solomon (1987) propose a set of heuristics for solving the vehicle routing problem with time windows. The first heuristic is an extension of the saving heuristic proposed by Clarke and Wright (1964). The main savings algorithm is extended by considering the time window, and consequently the route orientation becomes a very important issue to satisfy customer requirements, as changing customers visiting sequence may affect satisfying customers' time windows. The second heuristic is a time-oriented nearest neighbor, in this algorithm the route construction process starts by finding the closest customer to the depot that is not assigned to a route yet, and then the heuristic searches among the feasible customers (with respect to time windows, vehicle arrival time at the depot, and vehicle capacity constraint) for the closest one to the last customer added to the route and adds it at the end of the route. A new route is started whenever the heuristic fails to find a feasible insertion, unless there are no more customers left. The third heuristic is the insertion heuristic; route construction in this heuristic is initialized with a "seed" customer and the remaining un-routed customers are added into the route until an operating constraint is violated. The seed customers are selected by finding either the farthest unrouted customers from the depot or the un-routed customer with the lowest allowed starting time for service. After initializing the route with a seed customer, the heuristic uses two criteria, $\mathrm{c}_{1}(i, u, j)$ and $\mathrm{c}_{2}(i, u, j)$, to select customer u for insertion between customers i and j in the current route. The first criteria $\mathrm{c}_{l}(i, u, j)$ finds the insertion that minimizes the cost, while the second criteria $\mathrm{c}_{2}(i, u, j)$ finds the best position for the nominated insertion to provide the optimal feasible
solution (inserting a new insertion would affect the time of starting service in the successive customers). The fourth heuristic is called "A Time-Oriented Sweep Heuristic"; this heuristic is based on the idea of decomposing the problem into a clustering phase and a scheduling phase. In the clustering phase, customers are assigned to vehicles as in the original sweep heuristic proposed by Gillett and Miller (1974). In the scheduling phase a one-vehicle schedule is created for the customers assigned to the vehicle, using a tour building heuristic like the insertion heuristic.

Ioannou et al. (2001) propose a heuristic for solving the VRPTW, this heuristic is considered a route construction sequential approach as it builds vehicle routes, one at a time. The proposed heuristic is based on the generic insertion framework proposed by Solomon (1987). After initializing a route with a 'seed' customer the heuristic uses two criteria to insert a new customer to that route. The first criterion selects the best customer to be inserted in the current route, while the second criterion determines the best place that the selected customer can be inserted in the current route. This heuristic is based on the minimization function of the greedy look-ahead solution approach of Atkinson (1994); the basic idea of the new selection and insertion criteria is that a customer u is selected for insertion into a route if it minimizes the impact of the insertion on the route under construction, and on customer u 's time window. The procedures are repeated until no further customers can be added to the current route, and then a new 'seed' customer is identified to form the un-routed customers to initiate a new route. The overall process is performed until all customers are being assigned to routes.

Balakrishnan (1993) propose three heuristics for solving the vehicle routing problem with soft time windows. The proposed heuristics are based on the nearest neighbor, the Clacke-Wright saving rules, and space time. The difference between the proposed heuristic in this paper and the original heuristics are in the way of determining the first customer in a route and the method used for selecting customers to be added in each route. The proposed heuristics are considered sequential as each truck is scheduled before the next one is considered.

Fisher and Jaikumar (1981) propose a cluster first, route second heuristic for solving VRP. This heuristic starts by selecting seeds that initiate clusters construction, the number of seeds is equal to the number of available vehicles, and customers are joining seeds to form the cluster in such a way that minimizes the distance between the seed and the customers, while satisfying the capacity constraint. The process of distributing customers among clusters is done using general assignment problem (GAP). The second part of this heuristic is to find the delivery sequence of the customers assigned to each vehicle by solving traveling salesperson problem (TSP).

2.3.2 Parallel Route Construction Heuristics

Potvin and Rousseau (1993) propose a parallel version of the insertion heuristic proposed by Solomon (1987), where the routes are constructed at the same time. The authors use Solomon's sequential insertion heuristic to determine the initial number of routes and consequently the seed customer of each route. The selection of the next customer to be inserted in the route is determined using a generalized regret measure over all routes. The regret is an estimator of the loss if a given customer is not immediately inserted in its best route. A large regret measure implies a large gap between the best insertion place for a customer and its best insertion place in
the other routes. Obviously, the un-routed customers with large regrets must be considered first, as the number of alternative routes for inserting them is small, while those with small regret measure can be easily inserted into alternative.

Russell (1995) propose a parallel heuristic for solving the VRPTW, the proposed heuristic is similar to the one proposed by Potvin and Rousseau (1993), but differs primarily in the way of determining the seed points, the order in which points are inserted to routes, and the post processing of any un-routed customers. This heuristic starts by specifying the initial number of routes either by determining it from the existing routes or estimating it by applying Solomon's insertion heuristic, after that N seed points of each route (cluster) are generated using the procedures of Fisher and Jaikumar (1981). Customers are selected to be inserted into a route according to three ordering rules that facilitate time windows feasibility during route construction. The best location for inserting a customer into a route is determined by using certain criteria that consider local time and distance; the selected customer is inserted in the location that minimizes the distance and satisfies the time window constraints. The insertion process is repeated until all customers are assigned to routes, un-routed customers are assigned to routes by using Solomon's insertion heuristic. After constructing the initial solution, the interchange heuristic (local search heuristic) exchanges nodes between routes to explore the neighborhood for a better solutions. The authors claim that a greater improvement can be achieved by applying the improvement procedure (interchange procedure) to the partially constructed routes after inserting a certain number of customers to routes.

2.4 Meta-Heuristics

Meta-Heuristics are a set of strategies that guide the search process to efficiently explore the search space in order to find a near optimal solution. Meta-Heuristic algorithms are approximate, usually nondeterministic, and range from simple local search procedures to complex learning processes. These Meta-Heuristics are usually incorporated by its own mechanisms that avoid trapping in confined areas of search space (Osman and Laporte, 1996; Voss et al., 1999). MetaHeuristics can be considered as the shift from algorithms that are based on a single paradigm to hybrid methods that are based on several principles. Search strategies of different meta-heuristics are highly dependent on the philosophy behind the meta-heuristic itself, these strategies can be broadly classified into: trajectory methods and population based methods.

2.4.1 Trajectory Methods

The meta-heuristic trajectory search method is considered an intelligent extension of local search algorithms, the main idea behind the trajectory search method is to escape from local minima in order to continue exploring the search space and reach a better solution (Blum and Roli, 2003). Examples of meta-heuristics that use this search mechanism are discussed next.

2.4.1.1 Tabu Search

Tabu Search (TS) a popular meta-heuristic for solving combinatorial optimization problems. The basic ideas of TS were first introduced by Glover (1986). Basically, TS uses the history of search (solutions) to escape from local minima and to explore the search space to attain a better solution.

TS uses a short term memory that plays the role of a Tabu list to keep track of the recently visited solutions and prevents moving toward these solutions, and consequently the neighborhood of the current solution will be restricted to the solutions that are listed in the Tabu list; this neighborhood solution set is known as the allowed set. In each iteration, the best solution from the allowed set is selected as the new current solution and is added to the Tabu list, and one of the solutions that exist in the Tabu list is removed. This process continues until a termination condition is met.

Garcia et al. (1994) were the first to apply TS for the VRPTW. The authors present a simple TS based heuristic that starts by using Solomon's insertion heuristic to construct an initial solution, and applying 2-opt* and Or-opt exchange on that initial solution for further improvement. Whenever a better solution is reached, this solution is set as the current solution and is added to the Tabu list, the purpose of this list of best reached solutions is to prevent returning back to these solutions again during the search process. The authors implemented TS on a network of 16 Meiko T-800 Transputers (concurrent computing microprocessor); the synchronization between the different Transputers is carried out by implementing the "master-slave" relationship. The master processor controls the TS, while the slaves are called to explore different neighborhoods of the current solution.

Backer and Furnon (1997) propose a two phase approach for solving VRPTW similar to that proposed in Garcia et al. (1994). The difference here is in the way of constructing the initial route. The authors use the savings heuristic (Clarke and Wright, 1964) to construct the initial routes, which are subsequently optimized using the local search techniques combined with TS to
prevent the search process from getting trapped in a local minimum. TS is implemented by creating two lists, one for storing the added arcs and the other for storing the removed arcs.

Schulze and Fahle (1999) propose a parallel TS algorithm for solving the VRPTW. The proposed TS performs several search threads in parallel starting from different initial solutions and tries to improve it by a local search process combined with TS. The authors use modified savings heuristic that is adapted for handling time window constraints, while neighborhood solutions are explored by using a simple customer shifts, each shift moves a customer from one route to another generating a new solution.

Tan et al. (2001a) propose a TS for VRPTW that combines short term memory and long term frequency memory. The short term memory stores the recently made moves and the solution configuration, while the long term frequency memory (candidate list) stores the elite solutions the system has discovered in the search process. The proposed TS procedure begins by constructing the initial solution by using Solomon's insertion heuristic (Solomon, 1987). Afterwards, the initial solution is enhanced by undergoing a 2-interchange local search descent procedure in which two customers are swapped between two different routes at one time. Whenever a better solution is reached, it is added to the elite list for future exploration.

Cordeau et al. (2001) propose a unified TS heuristic for the VRPTW, the authors claim that major benefits of the proposed approach are its speed, simplicity and flexibility. The proposed meta-heuristic starts by constructing the initial solution using a modified version of the sweep heuristic developed by Gillett and Miller (1974). The solution space is explored by adapting the

GENIUS insertion and post-optimization procedure developed by Gendreau et al. (1992) for solving the traveling salesperson problem.

Lau et al. (2003) propose a two phase approach for solving the VRPTW with limited number of vehicles. In the first phase the authors use a construction heuristic to generate a possible initial solution, and customers are assigned to a set of feasible routes in such way that minimizes the total cost. After constructing the initial solution, the second phase applies an iterative improvement heuristic to explore solution neighborhood space. The authors use k-opt local search procedure to improve the initial solution. In the second phase, TS is used to prevent the algorithm from being trapped at a local optimal and to explore a larger search space. The authors introduced the concept of holding list, which is simply a list of customers that are not serviced. In the beginning, all customers are listed in the holding list, and the customers of a selected route undergo a set of transfer to/from or exchange with customers in the holding list. A feasible solution of the VRPTW is found when all the customers are driven out of the holding list.

2.4.1.2 Simulated Annealing

Simulated Annealing (SA) is considered a probabilistic meta-heuristic for globally optimizing large combinatorial optimization problems. SA was first introduced by Kirkpatrick et al. (1983). The name "Simulated Annealing" is inspired from the annealing process in metallurgy; this process involves heating and controlled cooling of material until the particles arrange themselves in the ground state of the solid, the slow cooling allows the material to find configurations with lower internal energy than the initial one. Analogically to this physical process, the SA heuristic generates a sequence of solutions that replaces the current solution randomly, based on a
probability that depends on the difference between the new explored solution and the current solution values and on a global parameter that is called temperature, which is gradually reduced during the search process. SA does not search for the best solution in the neighborhood of the current solution, but it draws a random solution from the neighborhood, and if the selected solution is better than the current solution it replaces it, otherwise it accepts it with a certain probability (Aarts et al., 2005; Fleischer, 1995).

Chiang and Russell (1996) develop an SA meta-heuristics for the VRPTW. The proposed metaheuristic starts by constructing an initial solution using the parallel construction approach of Russell (1995). During the parallel construction process of the routes, the SA tour improvement heuristic is invoked periodically to search for a better solution while constructing the routes. After constructing an initial solution, SA tour improvement heuristic using local search techniques (k -node interchange and λ-interchange) are applied to explore the neighborhood of the initial solution for a better one. The SA randomizes the local search procedures and in some instances, according to certain probability, the heuristic accepts solutions that are worse than the current ones to avoid getting trapped in a local optimum. Since SA is a memoryless heuristic, the authors used a Tabu list to keep track of the best solutions that the heuristic reaches during the search process.

Czech and Czarnas (2002) and Debudaj-Grabysz and A. Czech (2005) describe how to apply the parallel computation SA heuristic to solve the VRPTW developed by Chiang and Russell (1996) to accelerate the search process and enhance the accuracy of the solution. The authors distribute the computation process over a set of processors (each processor generates a set of neighbors for
the current solution) that co-operates with each other after a certain number of steps and pass their best local solutions found so far, among which the best global solution is selected and set as the current solution; this process is repeated until no more improvement over the current solution is achieved.

Hiquebran et al. (1993) apply the SA meta-heuristic with cluster-first route-second strategy for solving VRPTW. The proposed met-heuristic starts by constructing initial routes using nearest neighborhood heuristic. Nodes (customers) of different routes can be moved from one route to another either by swapping or inserting. In a swap move two routes are selected randomly and then one node from each route is selected at random, these two nodes are then swapped between routes and the new objective function value is calculated. In an insert move, a route and node are selected randomly, and a second route and position in that route are also selected at random, then the node is removed from the first route and inserted in the selected position in the second route. The swap and insert moves are performed until the SA decision function rejects the generated solution, then the move type is switched to the other type. In each iteration the best move is retained and this best solution is considered the current solution.

2.4.1.3 Neighborhood Search Meta-Heuristics

Variable Neighborhood Search (VNS) is a meta-heuristic for solving optimization problems, this meta-heuristic is based on dynamically changing the neighborhood structure. This meta-heuristic depends on changing the structure of the neighborhood systematically, that may be performed in a deterministic way (Variable Neighborhood Descent, VND) or randomly VNS (Blum and Roli, 2003; Moreno-Vega and Melián, 2008). The variable neighborhood search meta-heuristic starts
by randomly selecting an initial solution, and then a local search is applied repeatedly until a local optimum is reached. If no better solution is reached, then another neighborhood is examined to search for a better solution, this other neighborhood is selected randomly in the case of VNS and is selected in a deterministic way in the case of VND (Hansen and Mladenovic, 2001).

Bräysy (2003) proposes a deterministic meta-heuristic based on a modification of the variable neighborhood search for solving VRPTW. The proposed strategy in this paper is divided into four phases. In the first phase, initial solutions are created using the cheapest-insertion-based heuristic where the routes are built sequentially. In the second phase, the number of routes are reduced by using ejection chain algorithm, in which a customer in a certain route is removed and replaced by another customer from a different route (if it is possible), the removed customer is inserted into any other route whenever it is feasible, and by that a chain is completed and another customer is selected to initialize another chain. Applying the chain ejection procedures repeatedly may lead to reducing the number of routes. Finally, in the third and fourth phases a modified Variable Neighborhood Descent (VND) technique, a deterministic version of the Variable Neighborhood Search (VNS), is applied to enhance the current solution. In this phase, the VND oscillates between four local search operators, two of them (ICROSS, and IRP) exchange customers between a pair of routes (inter-routes), while the other two operators (IOPT, and O-opt) exchange the positions of the customers of a certain route between each other (intraroute) to improve the quality of the solution. In addition to varying the neighborhood structure, problem parameter values are also modified after all operators are applied successfully.

Another Neighborhood search strategy proposed by Pisinger and Ropke (2009) is Large Neighborhood Search. The main idea behind the Large Neighborhood Search meta-heuristic is that the large neighborhood allows the heuristic to navigate in the solution space easily, even with the tightly constrained problems. The Large Neighborhood Search meta-heuristic explores a neighborhood by using destroy and repair method. The destroy method destructs part of the current solution by removing a percentage of the customers from this solution and then shortcutting the routes where customers have been removed; the removed customers are selected randomly. The repair method rebuilds the destroyed solution by inserting the removed customers by scanning all possible insertion positions, and each removed customer is inserted in the position that provides the lowest cost.

Prescott-Gagnon et al. (2009) propose a large neighborhood search algorithm that relies on a heuristic branch-and-price method for neighborhood exploration. The proposed heuristic can be divided into two main phases. In the first phase the number of the used vehicles is minimized, while in the second phase the total traveled distance is reduced using a fixed number of vehicles that is obtained from the first phase. The algorithm starts by computing an initial solution using Solomon's insertion heuristic (Solomon, 1987). In the next step a lower bound for the required number of vehicles is calculated by dividing the total demand of customers by the capacity of the vehicle, while the upper bound for the required number of vehicles is considered to be equal to the number of vehicles attained from the initial solution. If the upper and lower bounds of the required number of vehicles are equal, the first phase is terminated, otherwise the upper bound is reduced by one and the large neighborhood search heuristic is applied to the existing routes by removing a set of customers (destruction process) and reconstructing routes while enforcing the
new upper bound of the vehicles in each iteration during the reconstruction process, allowing some customers not to be serviced by applying a penalty cost. If no feasible solution is obtained after a predetermined number of iterations, the search process is abandoned for that upper bound of vehicles and the second phase starts from the best solution reached. Otherwise, the upper bound is reduced by one again and the large neighborhood search heuristic starts again for a number of iterations to find a feasible solution. While applying the large neighborhood search algorithm, the customers are removed from routes using four different operators that are selected randomly in the beginning. Afterwards, the operator is selected according to its contribution in enhancing the solution. The reconstruction process is performed by re-optimizing the resulting problem from the destruction process, which is a VRPTW with fixed parts in the route. This restricted problem is solved using branch-and-price heuristic to accelerate the process of creating a new solution, which is a heuristic column generation method embedded into a heuristic branch-and-bound search.

2.4.2 Population Based Methods

Population based methods deal in each iteration with a population, which is a set of solutions. Algorithms based on these methods use naturally inspired ways to explore the solution space for the best solution. Evolutionary Computation (EC) and Ant Colony Optimization (ACO) are the most studied population based methods in the field of combinatorial optimization (Blum and Roli, 2003).

2.4.2.1 Evolutionary Computation

Evolutionary Computation (EC) heuristics are based on the natural biological process of evolution that the living beings use to adapt to their environment, and these algorithms are computational models that mimic this natural process. In each iteration, EC heuristics apply a number of operators on the individuals of the current population to generate the individuals of the population of the next generation (offsprings). These operators are usually called recombination or crossover to recombine two or more individuals to produce new individuals. They also use what is called mutation, which are modification operators that cause a self adaption of individuals (Blum and Roli, 2003; Bräysy et al., 2004; Hertz and Kobler, 2000).

The main factor in evolutionary algorithms is the selection process of individuals, which is based on the quality of these individuals that is measured by using the fitness function. The selection process favors those individuals of higher fitness function value to reproduce more often than those of lower fitness. Evolutionary Computation algorithms can be categorized into 3 main groups: Evolutionary Programming (EP), Evolutionary Strategies (ES), and Genetic Algorithms (GA). Evolutionary Programming and Evolutionary Strategies are mainly proposed for continuous optimization problems, while Genetic algorithms are mainly applied to solve combinatorial optimization problems (Blum and Roli, 2003; Bräysy et al., 2004; Bäck and Schwefel, 1993), which is the case for vehicle routing problems.

The Genetic Algorithms (GA) is an adaptive heuristic search method that is developed by (Holland, 1975). It is considered an iterative process that produces a renewable pool of candidates (chromosomes) that is simulated over a number of generations. Each generation is
subjected to a set of operators like selection, crossover, and mutation to produce the succeeding generation. Most of the evolutionary methods developed for the VRPTW are combining construction heuristics and local searches; however, they are called genetic algorithms in the literature (Bräysy et al., 2004)

Blanton and R.L.Wainwright (1993) were the first to apply GA to VRPTW. The authors combine together GA with a greedy construction heuristic. The main role of the GA is to search for the best sequence of the customers, while the feasible solution construction is handled by the greedy heuristic based on the sequence that is previously defined by the GA. The mutation operator randomly exchanges the position of customer indices in the sequence, while the crossover operator considers the global precedence relationships among customers to determine the sequence of customers in the offspring. For example, if customer (i)'s time window occurs before time window of customer (j), then it is desirable to insert customer (i) before customer (j) during the greedy insertion phase. Such relationship is used by the genetic operator to push customers with early time windows to be visited before those that have late time windows.

Thangiah (1995a) proposes a cluster-first, route-second algorithm, that the authors calls GIDEON. Customers are clustered by using GA, while the customers of each cluster are routed by using the cheapest insertion heuristic (Golden and Stewart, 1991), and finally the routes are improved by using λ-interchanges (Osman, 1993). The process of constructing routes and improving them runs iteratively for a finite number of times to improve the quality of the solution. In the clustering process, clusters are determined by dividing customers into number of sectors using a set of seed angles. These seed angles are determined by using a fixed angle and
an offset from the fixed angle. The fixed angle is determined by dividing the maximum polar coordinate angle within the set of customers by 2 K , where K is the initial number of vehicles with which the GIDEON system is invoked, and is considered as the upper bound on the number of vehicles that can be used for serving all the customers. The offset from the fixed angle is determined using GA in such a way that minimizes the total cost of routing the vehicles. Customer C_{i} is assigned to vehicle V_{k} if its polar angle S_{i} is greater than the seed angle S_{k} but is less than or equal to the seed angle $\mathrm{S}_{\mathrm{k}+1}$. The fitness value of each chromosome is determined by calculating the total cost of routing K vehicles for serving N customers developed by the set of seed angle that is defined by each chromosome.

Thangiah (1995b) proposes another approach similar to GIDEON, the author calls this new approach GenClust. In GenClust, each chromosome defines a set of circles, one for each cluster, instead of the offsets from the fixed angle in GIDEON. GA is used to search for the appropriate set of circles that leads to the best solution. When any of the customers is not assigned to any of the predefined circles (clusters), the author applies a set of different heuristic rules to assign those customers to a cluster.

Potvin et al. (1996) combine competitive neural networks and genetic algorithms to improve the initialization and construction phase of a parallel insertion heuristic for the VRPTW proposed by Potvin and Rousseau (1993) that is based on Solomon's classical insertion heuristic (Solomon, 1987). The main role of the competitive neural network is to identify seed customers for the cluster that are distributed over the entire geographical area. While the GA is used to determine the appropriate parameter settings for the route construction phase that are defined in Solomon's
insertion heuristic. The fitness value of each chromosome depends on the quality of the solution produced by the parallel insertion heuristic, using the parameter settings that are previously defined on the chromosome. The quality of the solution is based on the number of routes and the total route time.

Benyahia and Potvin (1995) use a similar approach like the one presented by Potvin et al. (1996) for optimizing the parameter settings of sequential and parallel versions of Solomon's insertion heuristic (Solomon, 1987). However, the seed customers in this proposed algorithm are determined by using the same methods used in Solomon (1987) and in Potvin and Rousseau (1993) instead of neural networks. The authors introduce additional extensions to the insertion cost measures that include slack and waiting times. Saving when customers are inserted into a route instead of being serviced individually, and insertion cost (ratio between additional distance to original distance when inserting a customer between a pair of consecutive customers).

Potvin and Bengio (1996) develop a GA called GENEROUS that applies genetic operators directly on solutions, avoiding the encoding issues, because it is very difficult to encode multiple routes on a chromosome, and to design crossover operators that would generate feasible encoded offsprings. The initial population is generated using Solomon's insertion heuristic (Solomon, 1987), while the fitness value in this GA is determined based on the number of vehicles and the total route time for each generated solution. The selection process in the proposed heuristic is stochastic, that is biased toward the best solutions. A linear ranking scheme is used to guide the selection process to be biased towards the best solutions. During the recombination phase, two different types of crossover operators (sequence-based crossover and route-based crossover) are
used to merge two parents into a single one, so as to guarantee the feasibility of the new solution. In the sequence-based crossover, a link is randomly removed from each parent, and then the customers that are serviced before the break point in parentl are linked to the customers that are serviced after the breakpoint on the route of parent2, while in route-based crossover a route of parent 2 is replaced by a route of parent1. A repair operator is applied on the offspring generated from any of the previously mentioned crossover operators to remove duplicates and insert missing customers into the solution. Mutation operator is applied on the offspring (solutions) to enhance the solution by reducing the number of routes by trying to insert the customers of randomly selected short routes into other routes, either directly by removing a customer from one route and inserting it into another route or by exchanging customers by removing a customer (customer1) from a certain route to make a room for a new customer (customer2) to be inserted into this route and the removed customer (customer1) is inserted into any other route except that the new customer (customer2) is coming from. Finally, a mutation operator based on Or-opt exchange is applied on the solutions in order to locally optimize them.

Berger et al. (1998) hybridize a GA with the well known construction heuristics. The authors avoid encoding issues and represent an individual solution as a chromosome formed of multiple segments. Each segment is a sequence of genes that represents a feasible route that is delimited by two separators to specify a certain route. The initial population is created with a nearest neighbor inserted heuristic inspired by Solomon (1987). The fitness values of the individuals are based on the number of routes and total distance of routes in each solution. The selection procedure is a stochastic process that is biased towards the best solution using a roulette-wheel scheme, in which the probability to select a certain individual is proportional to its fitness. In this
proposed heuristic, the crossover operator creates an offspring by combining iteratively various routes r 1 of a parent solution P1 with a subset of customers that are formed from r1 nearestneighbor routes from parent solution P2. A removal procedure is applied first in order to remove key customers from r1. The selection of the key customers depends on the suitability to be relocated within alternate routes. Then, an insertion heuristic inspired by Solomon (1987) combined with a random customer acceptance procedure is locally applied to build a feasible route, considering the partial route rl as an initial solution. The mutation operators aim to reduce the total number of routes by removing customers from smaller routes to alternate existing ones, these operators aim also to enhance the current solution or escape from local minima by locally reordering customers by applying nearest-neighbor procedure to each route.

Zhu (2000) presents a GA based on an integer representation of solutions and new crossover operators. The solution in this algorithm is presented in the form of an integer string (chromosome) of length N , where N is the number of customers to be serviced. Each gene in the string represents a certain customer, and the sequence of the genes in the string is the order of visiting these customers. In this proposed algorithm, part of the initial population is generated by using Push-Forward Insertion heuristic (Solomon, 1987) and its random neighbors, while the rest of the population is generated randomly to diversify the pool of the population. In the selection process, tournament selection mechanism is used to select parents for mating and reproduction. Two populations of the same size are maintained at every generation, the individuals of each population are ranked according to their fitness value (a smaller fitness value qualifies to be a potential parent), and the ranked individuals of the two populations are mated to produce new generations. The recombination is based on selecting randomly one or two cut-off points in both
parents and then the crossover is completed by swapping portions after the cut-off point in both parents, correction procedures are performed to replace duplicate customers by the replaced one. Mutation is based on reversing the order of a pair or sequence of nodes, a special hill-climbing technique is used, where a randomly selected part of the population is improved by partial λ exchanges.

Tan et al. (2001a) present a GA that is similar to that proposed by Zhu (2000), the chromosome representation, strategy of generating an initial solution, and the selection process are identical. In this paper the authors combine two crossover operators to produce two children for each pair of parents. During the crossover process, not every pair of parents mate to reproduce new generation, the crossover is governed by a certain probability. The individuals that are selected not to crossover are copied exactly to the next generation. For mutation, the authors used swap node and swap sequence operators, the mechanisms of these operators are shown in Figure 9, the authors also used an adaptive mutation probability scheme that adapts the standard deviation of the population depending on the population size, the fitness value of individuals, and the average fitness of the population.

Figure 9: Swap Node and Swap Sequence mutation operators.
(Tan et al., 2001b)
Moreover, a special hill-climbing technique is used, where a portion of the population is randomly selected to undergo a few iterations of removal and reinsertion operations using partial λ-exchanges.

Berger et al. (2003) propose a new approach in which two populations are evolved in parallel. The first population is used to minimize the total traveled distance, while the second population minimizes the number of violations of time window constraints. The initial populations are first generated by using a sequential insertion heuristic in which customers are inserted in a random order at randomly selected positions within the route; this insertion heuristic is combined with λ exchanges and a re-initialization procedures based on the insertion procedures of Liu and Shen (1999a). The selection process of parents in this paper is similar to that used by Berger et al. (1998), in which the selection process is stochastic and biased toward a solution using roulettewheel scheme. The probability of individual selection in this scheme is proportional to its fitness
value. The authors use two recombining operators, the first operator is the same as that used by Berger et al. (1998), while the second operator is an extension of the first operator, as it removes illegal routed customers and uses the insertion procedure that is proposed by Liu and Shen (1999a) instead of Solomon (1987) insertion heuristic. Five mutation operators are used randomly by the authors; one of these operators is based on large neighborhood search, while the other mutation operators involve λ-exchanges (inter-route improvement), elimination of the shortest route using the procedure of Liu and Shen (1999a), and within route reordering using the heuristic proposed by Solomon (1987).

Alvarengaa et al. (2007) propose an algorithms that combines GA with set partitioning formulation for solving VRPTW. The authors propose a GA to generate routes for the main set partitioning formulation. The chromosome is defined as a string of integers that represents a route to be serviced by only one vehicle. A modified Push Forward Insertion Heuristic (PFIH) called stochastic PFIH is used to generate the initial population for the GA. A k-way tournament selection method is used for nominating the parents for a crossover. The individuals in the proposed algorithm are evaluated by using a fitness function that depends on the inverse of the total traveled distance. A new crossover strategy is used to produce new generations, in which the algorithm makes a random route choice from each parent individual in turns, and after all feasible routes have been inserted in the offspring, the insertion of remaining customers is tested in existing routes. If some customers continue to be un-routed, stochastic PFIH is applied to insert un-routed customers. In order to maintain the quality of solution achieved so far, the elitism strategy is adopted, in which best individuals from the current solution are added to the
population of the next generation. Finally after generating routes, a set partitioning formulation is used to determine the routes for the final solution.

Chenga and Wangb (2009) propose a new algorithm that adopts the concept of problem decomposition to split the original problem of VRPTW to clustering problem (main problem) and a set of mutually independent traveling salesperson problems (sub-problems) with time window constraints, such decomposition reduces the problem size and expands the choice for searching strategies. A GA is developed to solve the clustering problem, the chromosome is represented by an integer string of length N , where N is the number of customers to be serviced, and the integers in the string represent the cluster that each customer belongs to. In the beginning of the algorithm, a pool of chromosomes is randomly generated, where each chromosome represents a clustering result. The fitness value of each chromosome is determined by solving the traveling salesperson problems (sub-problems). The selection process is carried out by using tournament selection procedure, in which chromosomes with better fitness values in the pool are selected for reproduction, and roulette wheel selection procedure or uniform selection procedure is used to pick chromosomes from the selected ones for crossover. The two point crossover is used to generate new generations by swapping designated bits of a pair of chromosomes. Orderbased mutation operator is used to produce a heterogeneous pool of chromosomes to avoid early convergence of the algorithm, in which two randomly selected bits in a randomly selected chromosome are swapped. A heuristic algorithm is developed to solve the traveling salesperson sub-problems, in which the sequence of visiting customers in each sub-problem (cluster) is determined by ordering the customers in a route in such a way that reduces the likelihood of violating the time window constraint. The solution of the main problem which is the clustering
process is obtained through iterative interactions between the main problem and the set of subproblems.

Nazif and Lee (2010) propose a GA for VRPTW that the authors call the Optimized Crossover Genetic Algorithm (OCGA). The representation of a solution is in the form of an integer string of length N , where N is the number of customers to be serviced, and each gene (integer) in the string represents a number that is assigned originally to a certain customer, while the sequence of the genes in the string is the order of visiting these customers. The initial population is generated randomly by using a random number generator, while the selection process is based on a probabilistic tournament scheme to select parents from the population. The authors propose an optimized crossover scheme that uses undirected bipartite graph to determine all perfect matching that finally produces two new children which are called O-child and E-child. The authors use two different mutation operators called inversion and swap sequence operators, the inversion operator reverses the sequence of visiting customers between two randomly selected points, while the swap sequence operator exchanges the positions of the two sub-strings of customers that are randomly selected.

2.4.2.2 Ant Colony Optimization

Ant Colony Optimization (ACO) is a meta-heuristic proposed by Dorigo et al. (1996); Dorigo \& Caro (1999); Dorigo \& Stützle (2003). ACO is inspired by the foraging behavior of real ants; the behavior that enables ants to find the shortest paths between food sources and their nest.

In the real ant colony, as ants walk from food sources to the nest and vice versa, they deposit a substance called pheromone on the ground. Ant selection of direction to follow between food sources and nest is determined according to the strength of pheromone concentration; such basic behavior leads to the emergence of the shortest paths.

ACO algorithms are based on a probabilistic model (pheromone model) that is used to model the chemical pheromone trails. The artificial ants incrementally construct feasible solutions sequentially. To achieve this, the ants perform randomized walks on a completely connected graph $G=(C, L)$ whose vertices (nodes) are the solution components C and the set L are the connections. Each ant chooses each successive node with a probability that is a function of the node distance and the amount of pheromone trail (trail intensity) present on the connecting edge. The move from certain node to the next is one iteration. A complete tour is constructed by performing n iterations that visit the n available customers. In order to ensure tour validity, the transition to the already visited nodes is prohibited until a tour is completed (controlled by a Tabu list). When a tour is completed, each ant lays a substance called a trail on each visited edge. This process is iterated until the tour reaches the maximum number of cycles or all ants make the same tour which is called stagnation behavior.

Gambardella et al. (1999) propose a Multi-objective Ant Colony System for solving VRPTW (MACS-VRPTW). The objective of this ant colony system is to minimize the number of used vehicles and the total travel distance. The proposed algorithm uses a hierarchy of two artificial ant colonies; each one dealing with one of the objectives. The first colony is named ACS-VEI and deals with the number of tours (vehicles) minimization while ACS-Time minimizes the
travel time. The MACS-VRPTW algorithm coordinates the activities of the two colonies simultaneous looking for an enhanced feasible solution (a solution that has smaller number of tours, or it has the same number of tours with a shorter distance). Initially, a feasible VRPTW solution is determined by using the nearest neighbor heuristic, this solution is defined as a global solution for the MACS-VRPTW, and then this solution is improved by the two colonies. When ACS-VEI is activated, it tries to find a feasible solution with one vehicle less than the number of vehicles achieved by using the nearest neighbor heuristic, while the goal of ACS-Time is to optimize the total travel time of solutions that use the same number of vehicles achieved by the nearest neighbor heuristic. Once an improved solution achieved by any of the two colonies is reached, the global solution of MACS-VRPTW is updated by setting the new improved solution as the global solution for the algorithm. MACS-VRPTW uses a solution model in which each ant starts from the depot and selects the next customer using a probability that is a function of the trail intensity and the distance from the customer. Once the current vehicle reaches its capacity and cannot serve more customers, the ant starts a new route by adding another vehicle, unless the allowed number of vehicles has been reached. Unassigned customers are inserted to routes by sorting them by delivery quantities in a descending order. Each customer is searched for the best insertion (shortest travel time) until no further feasible insertion is possible. In addition, ACSTime implements a local search procedure like CROSS exchange to switch customers between routes, to improve the quality of the feasible solutions.

Tan et al. (2006) use a similar approach to Gambardella et al. (1999) by using the idea of developing two ant colonies to successively achieve a multiple objective minimization. Nearest Neighbor Heuristic is used to generate an initial solution so that the ants can start from a
favorable beginning. The objectives of the two ant colonies are to minimize the number of vehicles (ACS_vehicle) and to minimize the total travel time (ACS_time). In addition to ACS, the authors use a sequential insertion heuristic method to improve the performance of the proposed algorithm. The main difference in this paper is that the authors apply the algorithm on a different set of benchmark problems.

Gong et al. (2007) propose a two-generation (father and child) ant colony algorithm for VRPTW. The proposed heuristic allows $5-10 \%$ time windows violation for the aim of fleet size reduction. The children ants compose subroutes with no permission of time violation in order to guarantee customer satisfaction, then the subroutes composed by the children are combined together forming father-routes. The phase of combining subroutes starts by selecting the longest subroute and adding it to the solution, then the node insertion with other subroutes is calculated and the subroute with the smallest insertion value is added to the solution. After subroute introduction to the solution, there is usually a set of nodes that are not visited, these nodes are inserted into routes allowing some extent of time windows violation. The authors did not explain in details how the subroutes are constructed and how the construction process stops, but the authors claim that the proposed algorithm provides better results.

Qi and Sun (2008) propose a modified ACO called the Randomized Ant Colony system (RACS), the proposed algorithm is similar to the one proposed by Gambardella et al., (1999) as it also uses two ant colonies: one for minimizing the number of vehicles, and the other is to minimize the travel time. In this modified algorithm, the authors compute the transition probability of only N nodes, where N is a subset of all the nodes n nodes; these N customers are selected randomly.

2.5 Summary and Research Gap

Much of the research on VRPTW focuses on finding an optimal or near-optimal solution to the problem through the use of exact algorithms, heuristics or metaheuristics.

A summary of the different approaches proposed in literature to solve the problem of VRPTW are presented in Table 1.

No previous work addresses the problem of scheduling the dispatching of vehicles from a depot with limited number of docks while satisfying customer time windows. Often in real-life settings, the number of vehicles to be dispatched simultaneously from a depot is larger than the number of docks. This creates an additional constraint in the VRPTW forcing the vehicles to be dispatched at different times, which has a direct impact on satisfying the customers' time windows. Hence, a VRPTW schedule that is created while ignoring the limited number of docks may not be feasible. This research investigates the VRPTW with limited number of docks at the depot. Chapter 3 presents the proposed methodology to solve this problem.

Table 1: Different approaches for solving VRPTW

	Exact Algorithms			Heuristics						Routeconstruction		$\begin{array}{c}\text { Solution improving } \\ \text { methods }\end{array}$			Meta-Heuristics						
															GA			ACO			
Christofides \& Eilon (1969)	X							X													
Kolen et al. (1987)	X																				
Desrochers et al. (1992)	X	X																			
Liberatore (2009)	X	X							X												
Clarke and Wright (1964)				X						X											
Gillett and Miller (1974)					X					X											
Solomon (1987)				X					X	X											
Solomon (1987)						X				X											
Solomon (1987)							X		X	X											
Solomon (1987)					X				X	X											
Ioannou et al. (2001)						X			X	X											
Balakrishnan (1993)				X					X	X											
Potvin and Rousseau (1993)						X					X										
Russell (1995)						X			X		X	X									
Garcia et al. (1994)						X				X		X	X								
Backer and Furnon (1997)				X						X		X	X								
Schulze and Fahle (1999)				X					X		X	X	X								
Tan et al. (2001a)						X				X		X	X								

	Exact Algorithms			Heuristics						Routeconstruction		Solution improving methods			Meta-Heuristics						
								$\%$								GA			ACO		
		$\begin{aligned} & \text { 鄢 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { on } \\ & \text { E } \\ & \text { E } \\ & \text { E } \\ & \text { む } \\ & 0 \end{aligned}$																		
Cordeau et al. (2001)					X	X			X	X			X								
Lau et al. (2003)						X				X		X	X								
Chiang and Russell (1996)						X					X	X		X							
Czech and Czarnas (2002)						X					X	X		X							X
Debudaj-Grabysz and A. Czech						X					X	X		X							X
Hiquebran et al. (1993)							X			X		X		X							
Bräysy (2003)							X					X									
Blanton and R.L.Wainwright						X				X		X									
Thangiah (1995a)					X	X				X		X			X						
Thangiah (1995b)						X				X		X			X						
Potvin et al. (1996)						X					X					X					
Benyahia and Potvin (1995)						X			X		X					X					
Potvin and Bengio (1996)						X					X				X	X	X				
Berger et al. (1998)						X					X				X	X	X				
Zhu (2000)						X					X	X			X	X	X				
Tan et al. (2001a)						X					X	X			X	X	X				
Berger et al. (2003)						X					X	X			X	X	X				
Alvarengaa et al. (2007)			X			X					X				X	X	X				
Chenga and Wangb (2009)				X					X		X				X						
Nazif and Lee (2010)											X				X	X	X				
Gambardella et al. (1999)							X			X		X						X			

CHAPTER 3: PROPOSED METHODOLOGY FOR SOLVING VRPTW WITH LIMITED DISPATCHING CAPACITY

3.1 Proposed Solution Framework

The proposed solution approach is to decompose the problem into sub-problems to reduce the computation time to reach a near-optimal solution. The problem is decomposed into two main stages: clustering and scheduling. The scheduling stage is implemented through three sub-stages:

Routing, Dispatching, and Assignment. Figure 10 illustrates the proposed solution framework.

Figure 10: Four steps of the proposed framework

3.2 Clustering Algorithm

The purpose of the clustering algorithm is to divide the customers into groups (clusters) according to their proximity from each other, as shown in Figure 11, while considering the time windows of the members in each group and the vehicle's capacity. The members of each cluster are grouped together in such a way that does not violate the time windows of the cluster members or the capacity of the vehicles.

Figure 11: Customers clustered in groups.
The clustering algorithm uses a minimal spanning tree algorithm to assign members to a cluster. The minimal spanning tree algorithm has used as it is very efficient in selecting the candidate
customer to be added to cluster, this algorithm has been used by Christofides et al., (1981) for constructing routes in the case of Vehicle Routing Problem.

3.2.1 The Mechanics of Clustering Algorithm

The mechanism and steps of the clustering algorithm are illustrated in details in Figure 12. Initially, each cluster has one customer, and therefore, the number of clusters is equal to the number of customers.

Figure 12: Clustering Algorithm

The algorithm starts with the first customer (cluster), and the minimal spanning tree algorithm is used to determine the nearest customer (candidate) i to the current cluster y. After determining the nearest customer i, the Probabilistic Route Generation (PRG) algorithm that will be discussed in Section 3.3 is executed to determine if adding the candidate customer i to the cluster y will violate the time window of any of the current cluster members. Further, the clustering algorithm checks if adding the candidate customer i to the cluster y will violate the vehicle capacity Q.

The candidate customer will be added to the cluster if none of the following criteria is violated:

- Vehicle capacity
- Cluster customers' time windows
- The percentage increase in performance criterion (time, distance or cost) as a result of adding the candidate customer is less than or equal to a predetermined ratio " R "; the method for determining R is illustrated in the Section 3.2.1.1

After adding the candidate customer i to the cluster y, the clustering algorithm searches again for the nearest customer to the current cluster members, and the same previous procedures will be implemented to add the candidate customer to the cluster.

The clustering algorithm terminates when a specific number of consecutive candidate customers P could not be added to the cluster due to vehicle capacity violation, time window violation, or when the percentage increase in route length (time, distance or cost) is higher than the acceptable ratio R.

3.2.1.1 Determining the Acceptable Percent Increase in Route Length (R)

The acceptable percent increase in route length, denoted as R, is a function of the geographical distribution of the customers that we need to cluster. A pilot clustering study is executed to collect the percentage increase in route length with the addition of each new customer followed by conducting a Pareto analysis to determine R by selecting the highest route increase percentage
within those responsible for 80% of route increases as shown in Figure 13. The purpose of this ratio is to prevent the algorithm from adding a customer to the route that might cause a significant increase in the total distance.

Figure 13: Pareto analysis for route increase percentages

3.3 Routing Algorithm

This step generates multiple routes (sequences for visiting the customers) for each cluster that minimizes the total traveled distance while considering customers' time window constraints. Each generated route for a cluster is associated with a different dispatching time from the depot. An example of a generated route is shown in Figure 14. This research proposes the Probabilistic Route Generation (PRG) algorithm for generating the route for each cluster, followed by a local search algorithm that aims to improve the solution. This step is further illustrated in the numerical example provided at the end of this chapter.

Figure 14: Best sequence for visiting customers.

3.3.1 Introduction

The proposed routing algorithm solves the general TSPTW of visiting n customers in the minimum amount of traveling distance, where each customer should be visited once. The time
of visiting each customer is constrained by a time window $T W$ that is determined according to the preference of each customer. The route (sequence of visiting customers) always starts and ends at the same customer.

A high-level overview of the routing algorithm is presented in Figure 15. After parameter initialization, the Probabilistic Route Generation (PRG) Algorithm is executed, wherein routes are generated based on the frequency of assigning customers to positions "sequence in route" in previously-generated routes. The routes are generated by executing the PRG algorithm for several iterations, in each iteration, a number of routes (M) are generated and evaluated according to the performance criterion, which is the total traveling distance.

Finally, the routes generated in each iteration are added to the routes generated from previous iterations. The PRG algorithm terminates when no further improvement in the generated routes is obtained for (Z) number of iterations.

Upon termination of the PRG algorithm, 2-OPT, 3-OPT, and Insert local search algorithms are applied to search for a better solution. In the 2-OPT and 3-OPT algorithms, 2 or 3 edges are removed from the tour and the created paths are reconnected, in the 2-OPT there is only one way to reconnect the created paths, while in the case of the 3-OPT there are 2 ways to reconnect the created paths. In the insert algorithm, one customer in the tour is removed from its location in the tour and inserted in a new location. Local search techniques have been used extensively in literature to improve the solution of different proposed heuristics as shown in Table 1, the most well known tour improvement heuristics are 2-OPT and 3-OPT (Dorigo and Gambardella, 1997). Due to their popularity in literature and simplicity in application, the 2-OPT, 3-OPT, and Insert
algorithms have been selected to be applied on the output of the PRG algorithm to improve its solution.

Figure 15: Simple illustration of routing algorithm.

3.3.2 The Probabilistic Route Generation Algorithm

We introduce the following four tables that are utilized in the PRG algorithm:

1. The Routes Table stores the sequence of visited customers in each route.
2. The Frequency Table stores the number of times each customer appears in each route position.
3. The Probability Table stores the probability of having each customer in each position (referred to as customer-position combination) of the route.
4. The Cumulative Probability Table stores the cumulative probability associated with each customer-position combination in a route.

The role of each table in the routing algorithm is discussed next.

3.3.2.1 The Routes Table

An example of a generated Routes Table is shown in Figure 16. The rows in iteration z represent the routes generated by the algorithm up to and including iteration z . The number of rows in this table represents the number of generated routes to this point across all iterations, denoted by $\left(r_{2}\right)$, where $r_{z}=M^{*} z$, and therefore, at initialization, $z=0$, and $r_{z}=0$, and the Routes Table is empty. The table has $\left(N_{y}+1\right)$ columns, where N_{y} represent the number of customers in cluster y, and without loss of generality, the first and the last columns have the value " 1 ", which represents the starting and ending customer of the route. The rows are always ranked from best to worst value for the performance criterion.

Generated route	Generated Route										
	-1	9	5	8	2	7	4	10	3	6	1
The second position in each route	1	10	3	7	4	8	9	5	2	6	1
	1	9	2	7	4	10	3	6	8	5	1
	1	-4	7	3	10	5	8	2	6	9	1
	!	:	:	:	!	\vdots	:	:	!	:	!
	1	3	2	4	8	7	6	5	9	10	1
	1	9	7	10	8	6	4	5	2	3	1
	1	3	2	8	10	9	7	6	4	5	1

Distance
596
610
611
616
\vdots
766
768
774
:---:
distance to that
route

Figure 16: Generated Routes Table.

3.3.2.2 The Frequency Table

The Frequency Table displays the number of times each customer i appears in the same position j for the different routes. This table has $\left(N_{c}-1\right)$ columns since all routes start and end at customer 1, the number of rows in the Frequency Table is $\left(N_{c}-1\right)$. An important parameter here is the number of stored best solutions $\left(M_{b}\right)$, which is predetermined prior to executing the algorithm and is defined as the number of rows that will be considered to generate the Probability Table, discussed in Section 3.3.2.3. An example of the Frequency Table and its relationship to the Routes Table is shown in Figure 17. In the example below, $N_{c}=10, M_{b}=10$ and the performance criterion is total traveled distance. In Figure 17, the numbers in the cells in the Frequency table represent the number of times each customers appeared in the different route positions in the first best M_{b} solutions. For example customer number 5 appeared 2 times in the second position of the route in the first M_{b} solutions, while customer 7 appeared 3 times in the same position.

Figure 17: Frequency Counting Process

3.3.2.3 The Probability Table

After finishing the counting process, the Probability Table is generated by calculating $P_{i j}$, which denotes the probability of having customer i in position i in the route using the following equation.
$p_{i j}=\frac{\text { number of times customer (i) appeared in position }(j)}{M_{b}}$
where $i=2, \ldots, n_{c}$ and $j=2, \ldots, n_{c}$

In Figure 18, the probabilities shown in the probability table are calculated by simply dividing the frequency of having each customer in the different positions in the route by the number of the stored best solutions (M_{b}).

Figure 18: Probability Table Generation Process.

3.3.2.4 The Cumulative Probability Table

For constructing the Cumulative Probability Table, the cumulative probability is determined for each customer in each route position as shown in Figure 19. This cumulative probability is used later for generating the routes using random number generation. In Figure 19 the probabilities in the Cumulative Probability Table are calculated by simply adding the probability in each cell in the Probability table to the preceding ones in the same column starting from the bottom of the column to the top.

Figure 19: Cumulative Probability Table

The main purpose of the four tables is to update the cumulative probabilities after each iteration. Initially, when algorithm starts generating the first iteration's route, the customers have equal probabilities of appearing in each position in the route.

3.3.3 PRG Algorithm Mechanics

The overall routing algorithm is summarized in the flow chart illustrated in Figure 20.

Figure 20: Flowchart showing the steps of the PRG algorithm

3.3.3.1 Algorithm Initialization

At initialization of the algorithm, the probabilities in the Probability Table are all equal, indicating that each customer has equal probability of appearing in any position. This assumption allows the algorithm to generate random routes by allocating any customer to any position "sequence" in the route without any prior preference.

3.3.3.2 PRG Algorithm Description

Each iteration (z) consists of (M) routes; a predetermined parameter. Each of the (M) routes are obtained by first generating a random number to determine the customer that should be visited in each position in the route, we assume, without loss of generality, that customer " 1 " is the first customer in the route. To determine the customer in the $j^{\text {th }}$ position, the generated random number is compared to the $j^{\text {th }}$ column in the Cumulative Probability Table to determine the customer number i corresponding to that random number.

In order to prevent customers' replication in a route, we check if customer i is already in the route. If it does not exist, we add customer i to position j in the route; otherwise, we go back and generate another random number.

After customer i is added to the route we update the Probability Table by setting the probability of customer i in columns $j+1$ through N_{y} to zero, and then we normalize these columns by dividing each element in these columns by the current total of each column to ignore customer i when generating the rest of the route, and finally we regenerate the Cumulative Probability Table to be used in the generation of the next route. The previously illustrated steps are repeated until the route is completed, in other words until all N_{y} customers have joined the route.

The process of constructing the routes is repeated until (M) routes are generated, which are sorted later from best to worst in terms of the performance criterion, the total traveling distance of the route, and then used to update the Probability Table. The process of generating routes, sorting them and updating the Probability Table is continued until the maximum number of iterations is reached or until the enhancement in the performance criterion stops or stagnates. An illustrative example for route construction process is shown in Figure 21. In this example let's start with the table in upper left corner as the route is completely empty. The first step is to generate a random number to determine the corresponding customer in the Cumulative Probability Table to be added to the route, it has been found in this example to be customer 5. As long as the route is empty, customer 5 is added to the route in its first position after the depot, and then another random number is generated to determine the customer in the second position. This process is repeated until all N_{y} customers are added to the route.

Figure 21: Steps to construct route.

3.3.4 Local Search

When the improvement in the solution stagnates, local search algorithms 2-OPT, 3-OPT, and Insert local are applied on each route of the best H solutions achieved form the PRG algorithm to achieve better results. The best output of the three algorithms is selected and set as the current route. The three algorithms are continued to be applied and the best route is selected until no more improvement in the performance criterion is achieved. This process is summarized in the flow chart shown in Figure 22.

Figure 22: Applying local search algorithms to achieve better solutions

3.3.5 Assigning Dispatching Times

This step assigns a dispatching time from the depot to each cluster (vehicle) in order to minimize the total traveled distance. The problem is solved as an assignment problem, the assignment process is illustrated with a numerical example that consists of 241 customers, 50% of which have time window constraints. The customers are to be served in a one day shift of 12 hours.

The depot has two docks for loading the vehicles operating from 7:00-10:00am. Loading time per vehicle is 30 minutes.

The clustering algorithm results in nine clusters/ routes, each to be served by one vehicle. Table 2 lists the travel time for each of the nine vehicles for a 7:00 am dispatching time. An Infeasible entry indicates that assigning that vehicle a 7:00 am dispatching time results in a violation of at least one customer's time window constraint.

Table 2: Travel time per vehicle for dispatching time at 7:00 am

Route / Vehicle	Route Time (Minutes)
1	Infeasible
2	Infeasible
3	Infeasible
4	Infeasible
5	300
6	Infeasible
7	Infeasible
8	Infeasible
9	247

Table 3 presents all feasible vehicle dispatching time from the depot combinations and the associated total route time for each combination. The empty cells in the table indicate that there is no feasible route at that dispatching time.

Table 3: Vehicle travel times for different dispatching times from the depot

	Dockl							Dock2						
	7:00	7:30	8:00	8:30	9:00	9:30	10:00	7:00	7:30	8:00	8:30	9:00	9:30	10:00
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Vehicle 1			292	292	290	290				292	292	290	290	
Vehicle 2					207	201						207	201	
Vehicle 3						236							236	
Vehicle 4					273	243	231					273	243	231
Vehicle 5	300	288						300	288					
Vehicle 6		281		278	269	269	269		281		278	269	269	269
Vehicle 7						226	223						226	223
Vehicle 8			352	367						352	367			
Vehicle 9	247	181	172	175	175			247	181	172	175	175		

Applying the Assignment Model Formulation to determine the best assignment of dispatching times to vehicles results in the solution displayed in Table 4, where five vehicles are loaded from Dock 1 during the period from 8:00am to 10:00am dispatching a vehicle every 30 minutes, while Dock 2 dispatches four vehicles at 8:00am, 9:00am, 9:30am, and 10:00 am.

Table 4: Vehicle Loading, Dispatching and Dock Utilization.

Loading interval	Dock \#1	Dock \#2
7:30-8:00	Vehicle/Route 9	Vehicle/Route 8
8:00-8:30	Vehicle/Route 5	
8:30-9:00	Vehicle/Route 6	Vehicle/Route 1
9:00-9:30	Vehicle/Route 3	Vehicle/Route 2

9:30-10:00	Vehicle/Route 7	Vehicle/Route 4
Availability	150 min	150 min
Utilization	150 min	120 min
Utilization $\%$	100%	80%

The total travel time of the recommended solution is 2262 minutes (36.7 hours), which corresponds to an average travel time of 244.7 minutes (4.1 hours) for each vehicle as shown in Table 5.

Table 5: Travel time per vehicle for optimal dispatching time.

Route Vehicle	Route Time (Minutes)
1	290
2	201
3	236
4	231
5	288
6	269
7	223
8	352
9	172
Total	2262

In the following sections, a detailed description of each proposed algorithm is presented. Section 3.3 presents the Probabilistic Route Generation algorithm, and Section 3.2 presents the clustering algorithm.

CHAPTER 4: MODEL AND ALGORITHM VALIDATION

4.1 Probabilistic Route Generation (PRG) Algorithm

The proposed PRG algorithm is used to solve the TSPTW, and therefore we use a variety of well-known TSPTW benchmark problems provided by Potvin and Bengio (1996), Langevin et al., (1993), and Dumas et al., (1995) which include instances that are diverse in structure.

4.1.1 Algorithm Convergence

In order to test the algorithm's ability to converge to a solution, the proposed routing algorithm is implemented to solve one of the well-known TSPTW benchmark problems (rc_202.2Solomon_Potvin_Bengio Instances). Figure 23 shows the outcome of the proposed algorithm over the different iterations.

Figure 23: Algorithm outcome

The blue line and the black line in Figure 23 represent the objective function value and its moving average, respectively. The moving average is illustrated to minimize the noise and show the decreasing trend and eventual stagnation in the objective as better routes are found.

4.1.2 Computational Results

The performance of the proposed algorithm is tested over different sets of well-known TSPTW benchmarking problems discussed in Potvin and Bengio (1996), Langevin et al. (1993), and Dumas et al. (1995). All benchmark problems use the total traveled distance as the performance criterion.

The benchmarking problems range in size from 6 to 21 customers. The best known solutions for these instances and the results obtained from the proposed routing algorithm are presented in Table 6. Due to its probabilistic nature, the routing algorithm has been executed five times for each test problem to check the ability of the proposed algorithm to reach the best known solution. The best distance obtained by the algorithm in the five replications and its associated execution time are summarized in Table 6 . The results in Table 6 show that the proposed routing algorithm reaches the best known solution for all except two of the benchmarking problems: Problem instances 3 and 5.

By investigating the structure of problem instances 3 and 5, we notice that almost 50% of the cities of these two problems have narrow time windows. The time windows of Solomon's tested benchmarking problems are presented in Figure 24, wherein the time windows are arranged in an ascending order. The time windows of the tested problems that the proposed algorithm is not able to reach the best known solution in all five runs are represented by lines that have marks.

Figure 24: Time windows of Solomon's tested benchmarking problems.

Table 6: Results of executing PRG algorithm on a set of TSPTW benchmark problems

				Algorithm Solution					Execution Time (Sec)					best solution	average solution	average processing	\% of deviatio
\#	Problem name	number of cities	best solution	Run 1	Run 2	Run 3	Run 4	Run 5	Run 1	Run 2	Run 3	Run 4	Run 5				
1	rc_203.4	15	314.29	314.29	314.29	314.29	314.29	314.29	136.00	140.00	130.00	144.00	124.00	314.29	314.29	134.80	
2	rc_205.1	14	343.21	343.21	343.21	343.21	343.21	343.21	108.00	102.00	99.00	103.00	108.00	343.21	343.21	104.00	
3	rc_202.2	14	304.14	308.14	304.14	363.08	308.08	308.08	115.00	187.00	194.00	99.00	105.00	304.14	318.30	140.00	4.66\%
4	rc_201.1	20	444.54	444.54	444.54	444.54	444.54	444.54	314.00	321.00	329.00	315.00	321.00	444.54	444.54	320.00	
5	rc_203.1	19	453.48	453.48	476.22	476.22	476.22	476.22	213.00	227.00	233.00	206.00	202.00	453.48	471.67	216.20	4.01\%
6	rc_207.4	6	119.64	119.64	119.64	119.64	119.64	119.64	59.00	59.00	58.00	59.00	58.00	119.64	119.64	58.60	
7	N20ft301	20	661.6	661.60	661.60	661.60	661.60	661.60	280.00	292.00	275.00	295.00	279.00	661.60	661.60	284.20	
8	N20ft302	20	684.2	684.20	684.20	684.20	684.20	684.20	268.00	277.00	278.00	281.00	282.00	684.20	684.20	277.20	
9	N20ft303	20	746.4	746.40	746.40	746.40	746.40	746.40	298.00	298.00	278.00	278.00	280.00	746.40	746.40	286.40	
10	N20ft304	20	817	817.00	817.00	817.00	817.00	817.00	277.00	279.00	289.00	284.00	278.00	817.00	817.00	281.40	
11	N2Oft305	20	716.5	716.50	716.50	716.50	716.50	716.50	289.00	285.00	313.00	292.00	288.00	716.50	716.50	293.40	
12	N20ft306	20	727.8	727.80	727.80	727.80	727.80	727.80	269.00	245.00	258.00	263.00	249.00	727.80	727.80	256.8	
17	n20w20.001	21	378	378.00	378.00	378.00	378.00	378.00	339.00	324.00	414.00	336.00	417.00	378.00	378.00	366.00	
18	n20w20.002	21	286	286.00	286.00	286.00	286.00	286.00	304.00	268.00	271.00	383.00	381.00	286.00	286.00	321.40	
19	n20w20.003	21	394	394.00	394.00	394.00	394.00	394.00	353.00	247.00	386.00	335.00	312.00	394.00	394.00	326.60	
20	n20w20.004	21	396	396.00	396.00	396.00	396.00	396.00	264.00	373.00	590.00	335.00	431.00	396.00	396.00	398.60	
21	n20w20.005	21	352	352.00	352.00	352.00	352.00	352.00	274.00	284.00	300.00	263.00	311.00	352.00	352.00	286.40	
22	n20w40.001	21	254	254.00	254.00	254.00	254.00	254.00	351.00	279.00	274.00	311.00	315.00	254.00	254.00	306.00	
23	n20w40.002	21	333	333.00	333.00	333.00	333.00	333.00	305.00	290.00	276.00	269.00	296.00	333.00	333.00	287.20	
24	n20w40.003	21	317	317.00	317.00	317.00	317.00	317.00	315.00	254.00	268.00	288.00	332.00	317.00	317.00	291.40	

4.2 VRPTW Benchmark Problems

The performance of the proposed clustering and routing algorithms is tested over different sets of known VRPTW benchmark problems like R, C, and RC problem instances generated by Solomon (1987).

Solomon (1987) generates six sets of VRPTW benchmark problems to be used as a base for testing the performance of the different algorithms. The design of these benchmark problems considers several factors that can affect the performance of the routing and scheduling heuristics. These factors include the following:

- Geographical data
- The number of customers serviced by a vehicle
- The time window characteristics such as the percentage of time-constrained customers, and narrowness and positioning of the time windows.

The customers' coordinates and demand data used in generating the VRPTW benchmark problems are based on the data for some of the problems from the standard set of routing test problems given in Christofides et al. (1979).

The geographical data for the six VRPTW benchmark problem sets are randomly generated by:

- Random uniform distribution (problem sets R1 and R2)
- Clustered (problem sets C1 and C2)
- Semi-clustered (problem sets RC1 and RC2), these sets of problems contain a mix of randomly-generated data and clusters.

Problem sets R1, C1, and RC1 have narrow time windows and small vehicle capacity, which allow only a few customers to be serviced by the same vehicle. In contrast, sets R2, C2 and RC2 have wide time windows and large vehicle capacities, which permit many customers to be serviced by the same vehicle.

The time windows of the different problem sets are generated with various widths to achieve different time window densities, defined as the percentages of customers with time windows, specifically, $25,50,75$, and 100% time window densities are observed in the benchmark problems.

4.2.1 Computational Results

The proposed algorithm has been tested for R101-104, C101-104, and RC101-104 VRPTW benchmark problems, and the best known solutions for these instances and the results obtained from the proposed algorithm are summarized in Table 7.

The results presented in Table 7 show that the proposed algorithm is able to reach the best documented solution with deviation ranges from $0.23 \%-3.75 \%$ for C101-104 benchmark problems. While for R101-104 benchmark problems, the deviation from the best known solutions ranges from $7.12 \%-27.70 \%$. The deviation for RC101-104 benchmark problems is a mix between the deviations for the C and R problems.

The percent deviation is influenced by the structure of the benchmark problem. In the C-type problems the customers are clustered into groups, which enable the proposed clustering
algorithm to reach the best known solution with a very small deviation percentage. While in the R-type problems the customers' geographical locations are randomly generated resulting in solutions that have wide-apart customers joining the same cluster.

Table 7: Results of applying the Clustering and PRG algorithms on a set of VRPTW benchmark problems

	Best known solution						Algorithm output									Deviation					
	25\%		50\%		100\%		25\%			50\%			100\%			25\%		50\%		100\%	
	Veh	Dist	Veh	Dist	Veh	Dist	Veh	Dist	Time	Veh	Dist	Time	Veh	Dist	Time	Veh	Dist	Veh	Dist	Veh	Dist
C101	3	191.3	5	362.4	10	827.3	3	192	26.7	5	363	55.33	10	830	107	0	0.27\%	0	0.23\%	0	0.29\%
C102	3	190.3	5	361.4	10	827.3	3	191	14.83	5	370	29.75	10	840	60	0	0.23\%	0	2.35\%	0	1.57\%
C103	3	190.3	5	361.4	10	826.3	3	191	15.77	5	375	31.42	10	837	59.1	0	0.23\%	0	3.75\%	0	1.25\%
C104	3	186.9	5	358	10	822.9	3	187	16.4	5	365	31.87	10	833	57.8	0	0.29\%	0	2.02\%	0	1.26\%
R101	8	617.1	12	1044	20	1637.7	8	706	39.76	14	1303	86.82	23	1954	72.5	0	14.38\%	2	24.84\%	3	19.32\%
R102	7	547.1	11	909	18	1466.6	7	590	51.09	12	1065	127	19	1735	89.4	0	7.77\%	1	17.14\%	1	18.28\%
R103	5	454.6	9	772.9	14	1208.7	6	496	27.55	9	972	66.5	16	1529	171	1	9.05\%	0	25.76\%	2	26.48\%
R104	4	416.9	6	625	11	971.5	4	447	20.03	7	792	45.84	11	1241	126	0	7.12\%	1	26.78\%	0	27.70\%
RC101	4	461.1	8	944	15	1619.8	5	499	40.32	9	1056	89.88	17	1855	91	1	8.16\%	1	11.91\%	2	14.50\%
RC102	3	351.8	7	822.5	14	1457.4	3	353	16.78	7	856	59.56	15	1718	77	0	0.27\%	0	4.01\%	1	17.87\%
RC103	3	332.8	6	710.9	11	1258	3	334	17.97	6	740	40.44	12	1513	90.1	0	0.34\%	0	4.06\%	1	20.31\%
RC104	3	306.6	5	545.8			3	336	16.5	5	551	29.05	11	1360	88.1	0	9.46\%	0	0.96\%		

CHAPTER 5: VRPTW BENCHMAK PROBLEMS MODIFICATION AND TESTING

In the previous chapter, the performance of the proposed Clustering and Routing algorithms is evaluated over a set of VRPTW benchmark problems. To the best of our knowledge, there are no benchmark problems for the VRPTW variant studied in this research which includes two additional constraints enforcing the earlier limit of the time windows and the limited dock dispatching capacity. Therefore, in this chapter we first modify some of the existing VRPTW benchmark problems to accommodate the two extra constraints. Then, we demonstrate the three proposed algorithms of Clustering, Routing, and Assignment by applying them to the modified benchmark problems.

5.1 VRPTW Benchmark Problems Structure

Figure 25 illustrates the structure of the well known VRPTW benchmark problems discussed in Section 4.2. Each customer in the problem is characterized by four main characteristics. The first characteristic is the geographical structure of the customers (X \& Y coordinates) that determines the relative distance between each customer.

CUST No.	$C 101$					4
	1		2	3		
	XCOORD.	YCOORD.	DEMAAND	READY TTME	DUE DATE	SERVICE TIME
1	40.00	50.00	0.00	0.00	1236.00	0.00
2	45.00	68.00	10.00	912.00	967.00	90.00
3	45.00	70.00	30.00	825.00	870.00	90.00
4	42.00	66.00	10.00	65.00	146.00	90.00
5	42.00	68.00	10.00	727.00	782.00	90.00
6	42.00	65.00	10.00	15.00	67.00	90.00
7	40.00	69.00	20.00	621.00	702.00	90.00
8	40.00	66.00	20.00	170.00	225.00	90.00
9	38.80	68.00	20.00	255.00	324.00	90.00
10	38.00	70.00	10.00	534.00	605.00	90.00
11	35.00	66.00	10.00	357.00	410.00	90.00
12	35.00	69.00	10.00	448.00	505.00	90.00
13	25.00	85.00	20.00	652.00	721.00	90.00
14	22.00	75.00	30.00	30.00	92.00	90.00
15	22.00	85.00	10.00	567.00	620.00	90.00
16	20.00	80.00	40.00	384.00	429.00	90.00
17	20.00	85.00	40.00	475.00	528.00	90.00
18	18.00	75.00	20.00	99.00	148.00	90.00
19	15.00	75.00	20.00	179.00	254.00	90.00
20	15.00	80.00	10.00	278.00	345.00	90.00
21	30.00	50.00	10.00	10.00	73.00	90.00
22	30.00	52.00	20.00	914.00	965.00	90.00
23	28.00	52.00	20.00	812.00	883.00	90.00
24	28.00	55.00	10.00	732.00	777.00	90.00
25	25.00	50.00	10.00	65.00	144.00	90.00
26	25.00	52.00	40.00	169.00	224.00	90.00
27	25.00	55.00	10.00	622.00	701.00	90.00
28	23.00	52.00	10.00	261.00	316.00	90.00
29	23.00	55.00	20.00	546.00	593.00	90.00

Figure 25: VRPTW benchmark problem structure

The second characteristic is the demand of each customer, which consumes vehicle capacity. Note that the demand quantity is different from one customer to another. The third characteristic is the time windows of the customers. The time windows of the customers differ from one customer to another and each problem has a certain percentage of customers that have narrow time windows. The fourth and last characteristic of each customer is the service time at customer premises, in other words it is the time that the vehicle spends at customer premises to provide the service.

These well known VRPTW problems are associated with a set of features:

- All vehicles serve one depot
- All vehicles start and return back to the same depot
- All vehicles are dispatched at the same time
- There is no limitation on the number of dispatching docks
- Vehicles can wait at customers' premises upon arrival before the start of the time window specified by the customer.

Many of the benchmark problem instances are infeasible when the two additional constraints we propose in this research are added to the VRPTW formulation. The following section discusses the required modifications to create feasible benchmark problem instances.

5.2 VRPTW Benchmark Problems Modification

The benchmark problems are modified by adding two main features that distinguish the VRPTW problem studied in this research from traditional VRPTW investigations:

- The vehicles should arrive at customers' premises within the specified time windows. Specifically, a vehicle cannot wait at the customer's premises in case it arrives before the start of the time window. This constraint requires us to modify the time windows of some customers in the benchmark problems as will be discussed in Section 5.2.1.
- The number of dispatching docks is limited. In other words, vehicles cannot all be dispatched at the same time, and therefore vehicle dispatching from the depot should be staggered. This constraint will be discussed in Section 0

5.2.1 Time Window Modification

When we specify that the vehicles must arrive within the time windows listed in the benchmark problems of Figure 25, we encounter infeasibility in the problem and therefore we have to modify the time windows for some of the customers to make the problems feasible. The procedure for modifying the customers' time windows is outlined in Figure 26 and described next.

1. We apply the Clustering and PRG algorithms on the problems without allowing the vehicles to wait at customers' premises.
2. Time windows for those customers that were not assigned to any of the resulting clusters (due to time window infeasibilities) are modified by increasing or decreasing the upper and /or lower limit of the time window in such a way to make the customers fit into one of the clusters.
3. The Clustering and PRG algorithms are applied again to all customers to make sure that all customers can fit within a cluster.
a. If there are customers that were not assigned to any of the resulting clusters (due to time window infeasibilities), go to step 2 .
b. Otherwise, stop.

Figure 26: VRPTW modification procedure

The modification procedure has been applied to eight of the VRPTW benchmark problems: C101-25, C101-50, C103-25, C103-50, C107-25, C107-50, C109-25, and C109-50. These problems have been selected because they represent a wide range for the narrowness of the time windows in the VRPTW benchmark problems. The time windows of the benchmark problems are presented in

Table 9 and

Table 15, wherein the modified time windows are highlighted in green. The tables also include a column named "Cluster" that identifies the cluster number associated with each customer. Clusters have been formed in such a way that ensures that each customer can fit within a cluster without violating any of the other customers' time windows.

Table 8: Problem C101, 25 Customers

$\begin{gathered} \mathrm{C} 101- \\ 25 \end{gathered}$	$\begin{gathered} \mathrm{X}- \\ \text { COORD. } \end{gathered}$	$\begin{gathered} \mathrm{Y}- \\ \text { COORD. } \end{gathered}$	DEMAND	$\begin{gathered} \text { TW- } \\ \text { LL } \end{gathered}$	TWUL	SERVICE TIME	Cluster
2	45	68	10	10	120	90	1
3	45	70	30	33	420	90	1
4	42	66	10	65	146	90	2
5	42	68	10	15	200	90	1
6	42	65	10	15	67	90	2
7	40	69	20	90	460	90	1
8	40	66	20	170	225	90	1
9	38	68	20	10	255	90	2
10	38	70	10	250	605	90	1
11	35	66	10	90	410	90	2
12	35	69	10	448	505	90	1
13	25	85	20	50	520	90	3
14	22	75	30	30	92	90	3
15	22	85	10	10	620	90	3
16	20	80	40	150	429	90	3
17	20	85	40	12	245	90	3
18	18	75	20	99	148	90	3
19	15	75	20	9	254	90	4
20	15	80	10	278	345	90	3
21	30	50	10	10	73	90	5
22	30	52	20	15	321	90	5
23	28	52	20	109	452	90	2
24	28	55	10	125	777	90	1
25	25	50	10	5	144	90	4
26	25	52	40	85	224	90	4

Table 9: Problem C101, 50 Customers

C101- 50	X- COORD.	Y- COORD.	DEMAND	TW- LL	TW- UL	SERVICE TIME	Cluster
2	45	68	10	10	120	90	1
3	45	70	30	33	420	90	1
4	42	66	10	65	146	90	2
5	42	68	10	15	200	90	1
6	42	65	10	15	67	90	2
7	40	69	20	90	460	90	1
8	40	66	20	170	225	90	1
9	38	68	20	10	255	90	2
10	38	70	10	250	605	90	1
11	35	66	10	90	410	90	2
12	35	69	10	448	505	90	1
13	25	85	20	50	520	90	3
14	22	75	30	30	92	90	3
15	22	85	10	10	620	90	3
16	20	80	40	150	429	90	3
17	20	85	40	12	245	90	3
18	18		20	99	148	90	3

$\begin{gathered} \mathrm{C} 101- \\ 50 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{X}- \\ \text { COORD. } \end{gathered}$	$\begin{gathered} \mathrm{Y}- \\ \mathrm{COORD} \end{gathered}$	DEMAND	TW- LL	TW- UL	SERVICE TIME	Cluster
19	15	75	20	9	254	90	4
20	15	80	10	278	345	90	3
21	30	50	10	10	73	90	5
22	30	52	20	15	321	90	5
23	28	52	20	109	452	90	2
24	28	55	10	125	777	90	1
25	25	50	10	5	144	90	5
26	25	52	40	85	224	90	5
27	25	55	10	10	220	90	6
28	23	52	10	33	420	90	4
29	23	55	20	65	146	90	4
30	20	50	10	15	400	90	6
31	20	55	10	15	67	90	4
32	10	35	20	90	460	90	7
33	10	40	30	170	225	90	6
34	8	40	40	10	255	90	7
35	8	45	20	250	605	90	7
36	5	35	10	90	410	90	8
37	5	45	10	250	505	90	6
38	2	40	20	50	520	90	7
39	0	40	30	5	192	90	7
40	0	45	20	10	620	90	7
41	35	30	10	20	429	90	9
42	35	32	10	12	245	90	9
43	33	32	20	99	148	90	9
44	33	35	10	9	854	90	10
45	32	30	10	278	345	90	9
46	30	30	10	10	73	90	9
47	30	32	30	15	321	90	8
48	30	35	10	109	452	90	5
49	28	30	10	125	777	90	7
50	28	35	10	5	144	90	8
51	26	32	10	15	224	90	8

Table 10: Problem C103, 25 Customers

C103- 25	X- COORD.	Y- COORD.	DEMAND	TW- LL	TW- UL	SERVICE TIME	Cluster
2	45	68	10	0	1127	90	1
3	45	70	30	0	1125	90	1
4	42	66	10	0	1129	90	1
5	42	68	10	10	782	90	1
6	42	65	10	0	1130	90	1
7	40	69	20	169	702	90	1
8	40	66	20	0	1130	90	1
9	38	68	20	255	324	90	1
10	38	70	10	534	605	90	1
11	35	66	10	300	410	90	1
12	35	69	10	448	505	90	1
13	25	85	20	0	1107	90	2
14	22	75	30	100	300	90	2

C103- 25	X- COORD.	Y- COORD.	DEMAND	TW- LL	TW- UL	SERVICE TIME	Cluster
15	22	85	10	0	1106	90	2
16	20	80	40	384	429	90	2
17	20	85	40	0	1105	90	2
18	18	75	20	99	148	90	2
19	15	75	20	0	1110	90	2
20	15	80	10	0	1106	90	2
21	30	50	10	0	1136	90	3
22	30	52	20	0	1135	90	3
23	28	52	20	100	350	90	3
24	28	55	10	732	777	90	2
25	25	50	10	0	1131	90	3
26	25	52	40	169	224	90	3

Table 11: Problem C103, 50 Customers

$\begin{gathered} \hline \text { C103- } \\ 50 \end{gathered}$	$\begin{gathered} \mathrm{X}- \\ \mathrm{COORD} \end{gathered}$	$\begin{gathered} \mathrm{Y}- \\ \mathrm{COORD} \end{gathered}$	DEMAND	$\begin{gathered} \text { TW- } \\ \text { LL } \end{gathered}$	TW- UL	SERVICE TIME	Cluster
2	45	68	10	0	1127	90	1
3	45	70	30	0	1125	90	1
4	42	66	10	0	1129	90	1
5	42	68	10	10	782	90	1
6	42	65	10	0	1130	90	1
7	40	69	20	169	702	90	1
8	40	66	20	0	1130	90	1
9	38	68	20	255	324	90	1
10	38	70	10	534	605	90	1
11	35	66	10	300	410	90	1
12	35	69	10	448	505	90	1
13	25	85	20	0	1107	90	2
14	22	75	30	100	300	90	2
15	22	85	10	0	1106	90	2
16	20	80	40	384	429	90	2
17	20	85	40	0	1105	90	2
18	18	75	20	99	148	90	2
19	15	75	20	0	1110	90	2
20	15	80	10	0	1106	90	2
21	30	50	10	0	1136	90	3
22	30	52	20	0	1135	90	3
23	28	52	20	100	350	90	3
24	28	55	10	50	450	90	3
25	25	50	10	0	1131	90	3
26	25	52	40	169	224	90	3
27	25	55	10	0	1130	90	2
28	23	52	10	261	316	90	3
29	23	55	20	0	1128	90	4
30	20	50	10	0	1126	90	3
31	20	55	10	10	200	90	4
32	10	35	20	0	1112	90	4
33	10	40	30	0	1114	90	4

34	8	40	40	30	150	90	5
35	8	45	20	0	1113	90	4
36	5	35	10	90	344	90	5
37	5	45	10	90	234	90	4
38	2	40	20	0	1106	90	5
39	0	40	30	200	522	90	5
40	0	45	20	150	400	90	5
41	35	30	10	90	321	90	6
42	35	32	10	166	235	90	6
43	33	32	20	68	149	90	6
44	33	35	10	0	1129	90	3
45	32	30	10	359	412	90	6
46	30	30	10	200	600	90	4
47	30	30	0	1125	90	3	
48	30	30	10	0	1127	90	3
49	28	35	10	0	1122	90	4
50	28	32	10	68	349	90	4
51	26		10	0	1123	90	4

Table 12: Problem C107, 25 Customers

$\begin{gathered} \text { C107- } \\ 25 \end{gathered}$	$\begin{gathered} \mathrm{X}- \\ \text { COORD. } \end{gathered}$	$\begin{gathered} \mathrm{Y}- \\ \mathrm{COORD} \end{gathered}$	DEMAND	TW- LL	TWUL	SERVICE TIME	Cluster
2	45	68	10	10	1030	90	1
3	45	70	30	15	938	90	1
4	42	66	10	16	196	90	1
5	42	68	10	150	845	90	1
6	42	65	10	15	195	90	1
7	40	69	20	15	752	90	1
8	40	66	20	108	288	90	1
9	38	68	20	10	380	90	1
10	38	70	10	100	660	90	1
11	35	66	10	294	474	90	1
12	35	69	10	387	567	90	1
13	25	85	20	90	777	90	2
14	22	75	30	30	210	90	2
15	22	85	10	30	250	90	2
16	20	80	40	15	497	90	2
17	20	85	40	10	592	90	2
18	18	75	20	34	214	90	2
19	15	75	20	127	777	90	2
20	15	80	10	222	402	90	2
21	30	50	10	10	667	90	3
22	30	52	20	10	1030	90	3
23	28	52	20	15	407	90	3
24	28	55	10	10	845	90	2
25	25	50	10	15	195	90	3
26	25	52	40	10	287	90	3

Table 13: Problem C107, 50 Customers

$\begin{gathered} \text { C107- } \\ 50 \end{gathered}$	$\begin{gathered} \mathrm{X}- \\ \mathrm{COORD} \end{gathered}$	$\begin{gathered} \mathrm{Y}- \\ \mathrm{COORD} \end{gathered}$	DEMAND	$\begin{gathered} \text { TW- } \\ \text { LL } \end{gathered}$	TW-UL	SERVICE TIME	Cluster
2	45	68	10	10	1030	90	1
3	45	70	30	15	938	90	1
4	42	66	10	16	196	90	1
5	42	68	10	150	845	90	1
6	42	65	10	15	195	90	1
7	40	69	20	15	752	90	1
8	40	66	20	108	288	90	1
9	38	68	20	10	380	90	1
10	38	70	10	100	660	90	1
11	35	66	10	294	474	90	1
12	35	69	10	387	567	90	1
13	25	85	20	90	777	90	2
14	22	75	30	30	210	90	2
15	22	85	10	30	250	90	2
16	20	80	40	15	497	90	2
17	20	85	40	10	592	90	2
18	18	75	20	34	214	90	2
19	15	75	20	127	777	90	2
20	15	80	10	222	402	90	2
21	30	50	10	10	667	90	3
22	30	52	20	10	1030	90	3
23	28	52	20	15		90	3
24	28	55	10	10	845	90	2
25	25	50	10	15	195	90	3
26	25	52	40	10	287	90	3
27	25	55	10	15	752	90	3
28	23	52	10	199	379	90	3
29	23	55	20	50	660	90	3
30	20	50	10	292	472	90	3
31	20	55	10	10	567	90	4
32	10	35	20	15	309	90	4
33	10	40	30	31	211	90	4
34	8	40	40	33	213	90	4
35	8	45	20	100	694	90	4
36	5	35	10	20	404	90	5
37	5	45	10	15	335	90	4
38	2	40	20	100	499	90	5
39	0	40	30	80	445	90	5
40	0	45	20	200	686	90	4
41	35	30	10	12	383	90	6
42	35	32	10	111	291	90	6
43	33	32	20	19	199	90	6
44	33	35	10	16	196	90	6
45	32	30	10	296	476	90	5
46	30	30	10	481	661	90	5
47	30	32	30	389	569	90	5
48	30	35	10	12	1127	90	3
49	28	30	10	50	753	90	5
50	28	35	10	350	1124	90	3
51	26	32	10	8	660	90	5

Table 14: Problem C109, 25 Customers

$\begin{gathered} \text { C109- } \\ 25 \end{gathered}$	$\begin{gathered} \mathrm{X}- \\ \text { COORD. } \end{gathered}$	$\begin{gathered} \mathrm{Y}- \\ \mathrm{COORD} \end{gathered}$	DEMAND	TW- LL	TW-UL	SERVICE TIME	Cluster
2	45	68	10	100	338	90	1
3	45	70	30	5	550	90	1
4	42	66	10	16	376	90	1
5	42	68	10	10	200	90	1
6	42	65	10	15	375	90	1
7	40	69	20	240	680	90	1
8	40	66	20	18	378	90	2
9	38	68	20	110	470	90	1
10	38	70	10	390	750	90	1
11	35	66	10	35	200	90	3
12	35	69	10	10	100	90	2
13	25	85	20	507	867	90	1
14	22	75	30	30	390	90	2
15	22	85	10	414	774	90	2
16	20	80	40	10	750	90	2
17	20	85	40	322	682	90	2
18	18	75	20	33	393	90	3
19	15	75	20	37	397	90	3
20	15	80	10	132	492	90	3
21	30	50	10	10	370	90	2
22	30	52	20	760	1120	90	1
23	28	52	20	668	1028	90	1
24	28	55	10	575	935	90	1
25	25	50	10	15	375	90	3
26	25	52	40	17	750	90	2

Table 15: Problem C109, 50 Customers

$\begin{gathered} \mathrm{C} 109- \\ 50 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{X}- \\ \text { COORD. } \end{gathered}$	$\begin{gathered} \mathrm{Y}- \\ \mathrm{COORD} \end{gathered}$	DEMAND	$\begin{aligned} & \text { TW- } \\ & \text { LL } \end{aligned}$	TW- UL	SERVICE TIME	Cluster
2	45	68	10	100	338	90	1
3	45	70	30	5	550	90	1
4	42	66	10	16	376	90	1
5	42	68	10	10	200	90	1
6	42	65	10	15	375	90	1
7	40	69	20	240	680	90	1
8	40	66	20	18	378	90	2
9	38	68	20	110	470	90	1
10	38	70	10	390	750	90	1
11	35	66	10	35	200	90	3
12	35	69	10	10	100	90	2
13	25	85	20	507	867	90	2
14	22	75	30	30	390	90	2
15	22	85	10	414	774	90	3
16	20	80	40	10	750	90	3
17	20	85	40	322	682	90	3
18	18	75	20	33	393	90	3
19	15	75	20	37	397	90	3

$\begin{gathered} \mathrm{C} 109- \\ 50 \end{gathered}$	$\begin{gathered} \mathrm{X}- \\ \text { COORD. } \end{gathered}$	$\begin{gathered} \mathrm{Y}- \\ \text { COORD. } \end{gathered}$	DEMAND	TW- LL	TWUL	SERVICE TIME	Cluster
20	15	80	10	132	492	90	4
21	30	50	10	10	370	90	2
22	30	52	20	760	1120	90	1
23	28	52	20	668	1028	90	1
24	28	55	10	575	935	90	1
25	25	50	10	15	375	90	3
26	25	52	40	17	750	90	2
27	25	55	10	482	842	90	1
28	23	52	10	109	469	90	2
29	23	55	20	390	750	90	2
30	20	50	10	202	562	90	3
31	20	55	10	297	657	90	2
32	10	35	20	10	399	90	4
33	10	40	30	31	391	90	4
34	8	40	40	33	393	90	4
35	8	45	20	30	964	90	3
36	5	35	10	10	494	90	5
37	5	45	10	5	272	90	4
38	2	40	20	50	589	90	4
39	0	40	30	50	681	90	4
40	0	45	20	100	776	90	4
41	35	30	10	10	200	90	6
42	35	32	10	21	381	90	6
43	33	32	20	19	379	90	5
44	33	35	10	16	376	90	5
45	32	30	10	206	566	90	5
46	30	30	10	5	272	90	5
47	30	32	30	100	659	90	5
48	30	35	10	10	1127	90	3
49	28	30	10	10	494	90	5
50	28	35	10	766	1126	90	3
51	26	32	10	50	1028	90	4

5.2.2 Staggered Vehicle Dispatching

In order to apply the constraint of limited number of dispatching docks to the newly modified problems, we assume that two docks are available to dispatch vehicles simultaneously. Each dock has its own crew that prepares vehicles for dispatch, and each vehicle requires 30 minutes to be ready for dispatch. Finally, the docks have to dispatch all vehicles within 2 hours, in other words each dock has 5 available time slots to dispatch vehicles.

5.3 Vehicle Dispatching Time Assignment

The proposed clustering and PRG algorithms are executed to determine the feasibility and route distances for the different available dispatching times, and finally the Assignment problem algorithm is applied to assign each vehicle to the proper dispatching time in order to minimize the total traveling distance of the vehicles. The results are presented next.

We present two solutions for each problem instance. The first solution allows waiting at the customer premises if a vehicle arrives earlier than the lower limit of the time window (this is an assumption made in the original benchmark problems). The second solution forces the vehicles to arrive within the time windows. In both cases, the presence of a "-" in the cell of the table indicates that it is infeasible to dispatch that particular vehicle to the corresponding dispatching time. We also present for each problem instance the optimal assignment of vehicles to dispatching times.

Table 16 and Table 17 present the results for the modified benchmark problems C107 with 50 customers.

Table 16: Travel distance for each cluster at different dispatching distance (Problem C107-50 customers)

No Waiting Allowed						
Cluster	0	30	60	90	120	
1	69.1	69.1	71.6	-	-	
2	120.2	-	-	-	-	
3	87.3	87.0	87.0	-	-	
4	125.6	-	-	-	-	
5	108.9	108.9	-	-	-	
6	44.2	44.2	44.2	-	-	

Waiting Allowed					
Cluster	0	30	60	90	120
1	67.0	67.0	71.6	-	-
2	120.2	-	-	-	-
3	87.0	87.0	87.0	-	-
4	125.6	-	-	-	-
5	106.8	106.8	-	-	-
6	44.2	44.2	44.2	-	-

Table 17: Optimal vehicle dispatching time and total traveled distance (Problem C107-50 customers)

No Waiting Allowed		
Cluster (Vehicle)	Dispatching time	Distance
1	30	69.1
2	0	120.2
3	60	87.0
4	0	125.6
5	30	108.9
6	60	44.2
Total distance		554.84

Waiting Allowed		
Cluster (Vehicle)	Dispatching time	Distance
1	30	67.0
2	0	120.2
3	60	87.0
4	0	125.6
5	30	106.8
6	60	44.2
Total distance		550.66

Table 18 - Table 19 present the results for the modified benchmark problems C107 with 25 customers.

Table 18: Travel distance for each cluster at different dispatching distance (Problem C107-25 customers)

No Waiting Allowed						Waiting Allowed					
Cluster	0	30	60	90	120	Cluster	0	30	60	90	120
1	69.1	69.1	71.6	-	-	1	67.0	67.0	71.6	-	-
2	120.2	-	-	-	-	2	120.2	-	-	-	-
3	32.2	32.2	32.2	32.2	34.0	3	32.2	32.2	32.2	32.2	34.0

Table 19: Vehicle dispatching time and total traveling distance (Problem C107-25 customers)

No Waiting Allowed		
Cluster (Vehicle)	Dispatching time	Distance
1	30	69.1
2	0	120.2
3	0	32.2
Total distance		221.43

Waiting Allowed		
Cluster (Vehicle)	Dispatching time	Distance
1	30	67.0
2	0	120.2
3	0	32.2
Total distance		219.41

Table 20 - Table 23 present the results for the modified benchmark problems C103.

Table 20: Traveling distance for each cluster at different dispatching distance (Problem C103-50 customers)

No Waiting Allowed						
Cluster	0	30	60	90	120	
1	61.8	-	63.7	61.7	-	
2	111.8	-	-	112.3	-	
3	89.3	-	-	80.4	-	
4	133.1	136.3	136.3	136.3	-	
5	96.1	96.1	96.1	96.8	-	
6	50.6	-	-	-	-	

Waiting Allowed						
Cluster	0	30	60	90	120	
1	58.4	58.4	58.4	58.4	63.6	
2	105.0	105.0	105.0	105.0	-	
3	79.5	80.4	80.4	80.4	-	
4	133.1	136.3	136.3	136.3	-	
5	96.1	96.1	96.1	96.8	-	
6	50.6	-	-	-	-	

Table 21: Vehicle dispatching time and total traveled distance (Problem C103-50 customers)

No Waiting Allowed		
Cluster (Vehicle)	Dispatching time	Distance
1	60	63.7
2	0	111.8
3	90	80.4
4	90	136.3
5	60	96.1
6	0	50.6
Total distance		538.95

Waiting Allowed		
Cluster (Vehicle)	Dispatching time	Distance
1	30	58.4
2	30	105.0
3	90	80.4
4	0	133.1
5	90	96.8
6	0	50.6
Total distance		524.32

Table 22: Traveling distance for each cluster at different dispatching distance (Problem C103-25 customers)

No Waiting Allowed					
Cluster	0	30	60	90	120
1	61.4	-	64.2	67.0	-
2	165.9	-	-	179.8	-
3	32.2	-	-	34.0	-

Waiting Allowed					
Cluster	0	30	60	90	120
1	58.4	58.4	58.4	58.4	58.4
2	150.7	150.7	150.7	150.7	-
3	32.2	34.0	34.0	34.0	38.9

Table 23: Vehicle dispatching time and total traveled distance (Problem C103-25 customers)

No Waiting Allowed		
Cluster (Vehicle)	Dispatching time	Distance
1	60	64.2
2	30	165.9
3	30	32.2
Total distance		262.25

Waiting Allowed		
Cluster (Vehicle)	Dispatching time	Distance
1	0	58.4
2	30	150.7
3	0	32.2
Total distance		241.28

Table 24 - Table 27 present the results for the modified benchmark problems C101.

Table 24: Traveling distance for each cluster at different dispatching distance (Problem C101-50 customers)

No Waiting Allowed					
Cluster	0	30	60	90	120
1	75.2	-	-	-	-
2	52.0	52.0	-	-	-
3	106.5	-	-	-	-
4	86.6	-	-	-	-
5	57.0	-	-	-	-
6	79.5	-	79.9	102.3	-
7	119.9	119.9	123.4	134.9	-
8	86.1	90.1	90.1	-	-
9	56.5	56.5	-	-	-

Waiting Allowed					
Cluster	0	30	60	90	120
1	75.2	-	-	-	-
2	52.0	52.0	-	-	-
3	106.5	-	-	-	-
4	86.6	-	-	-	-
5	57.0	-	-	-	-
6	79.5	79.9	79.9	102.3	-
7	119.9	119.9	123.4	134.9	-
8	86.1	90.1	90.1	-	-
9	56.5	56.5	-	-	-

Table 25: Vehicle dispatching time and total traveling distance (Problem C101 - 50 customers)

No Waiting Allowed		
Cluster (Vehicle)	Dispatching time	Distance
1	0	75.2
2	30	52.0
3	0	106.5
4	0	86.6

Waiting Allowed		
Cluster (Vehicle)	Dispatching time	Distance
1	0	75.2
2	30	52.0
3	0	106.5
4	0	86.6

No Waiting Allowed		
Cluster (Vehicle)	Dispatching time	Distance
5	0	57.0
6	60	79.9
7	30	119.9
8	0	86.1
9	30	56.5
Total distance		719.78

Waiting Allowed		
Cluster (Vehicle)	Dispatching time	Distance
5	0	57.0
6	60	79.9
7	30	119.9
8	0	86.1
9	30	56.5
Total distance		719.78

Applying the proposed Clustering and PRG algorithms and the assignment algorithm on problem C101 (50 customers) divides the 50 customers into 9 clusters, and dispatches five vehicles during time slot 0 , three vehicles during time slot 30 , and one vehicle during time slot 60 with a total traveled distance of 719.78 in both cases of not allowing and allowing vehicles to wait at customers' premises. The need to dispatch five vehicles at the same time violates the resource limitation of 2 dispatching docks, and this requires either to increase the dispatching docks to satisfy the need to dispatch all five vehicles at the same time, or to negotiate with the customers to change their time windows in order to be able to dispatch all vehicles using the available resources.

Table 26: Traveling distance for each cluster at different dispatching times (Problem C101-25 customers)

No Waiting Allowed						
Cluster	0	30	60	90	120	
1	75.2	-	-	-	-	
2	52.0	52.0	-	-	-	
3	106.5	-	-	-	-	
4	77.4	77.4	-	-	-	
5	22.2	22.2	22.2	-	-	

Waiting Allowed						
Cluster	0	30	60	90	120	
1	75.2	-	-	-	-	
2	52.0	52.0	-	-	-	
3	106.5	-	-	-	-	
4	77.4	77.4	-	-	-	
5	22.2	22.2	22.2	-	-	

Table 27: Vehicle dispatching time and total traveling distance (Problem C101-25 customers)

No Waiting Allowed		
Cluster	Dispatching time	Distance
1	0	75.2
2	0	52.0
3	0	106.5
4	30	77.4
5	30	22.2
Total distance		333.37

Waiting Allowed		
Cluster	Dispatching time	Distance
1	0	75.2
2	0	52.0
3	0	106.5
4	30	77.4
5	30	22.2
Total distance		333.37

From the results, we conclude that the proposed Clustering and PRG algorithms are able to assign customers into clusters according to their proximity to each other, find a good sequence of visiting customers for each cluster, and assign each cluster to the best dispatching time in such a way that minimizes the total traveled distance. Furthermore, the proposed algorithms are able to determine the least number of dispatching docks needed to serve all customers without time window violations.

This chapter contributes to the body of VRPTW research a newly developed set of benchmark problems that accommodate the two practical features introduced in this VRPTW research: 1) strictly follow the early limits of customers' time windows, and 2) stagger the dispatching of the vehicles from the depot based on the number of docks and the required dispatching time. These developed benchmark problems may be used by future researchers should they desire to test any newly developed algorithms of their own.

CHAPTER 6: RESEARCH SUMMARY AND FUTURE RESEARCH DIRECTIONS

6.1 Research Summary

This research studied the VRPTW with additional features that often arise in practical situations but are generally ignored in the theoretical VRPTW literature. The special features are:

1. Customers have strict time windows for receiving a vehicle, i.e., vehicles are not allowed to arrive at the customer's location earlier than the lower limit of the specified time window
2. There is a limited number of loading/unloading docks for dispatching/receiving the vehicles at the depot

The special features added new constraints to the VRPTW formulation that necessitated the development of new efficient algorithms to deal with such constraints.

The proposed solution approach decomposed the problem into three stages: Clustering, Scheduling, and Dispatching Time Assignment. Two novel algorithms are proposed for clustering and routing, which along with the assignment algorithm work interdependently to cluster customers into groups, generate the routes, and determine the best dispatching time from the depot for each vehicle.

The developed Routing algorithm, named the Probabilistic Routing Generation (PRG) algorithm was tested on a set of well-known TSPTW benchmark problems. The PRG algorithm reached the
best known solution for all tested benchmark problems. Next, the Clustering and the PRG algorithms were tested on a set of well-known VRPTW benchmark problems. In most cases, the outcome of the proposed algorithms was close to the best known solutions for these problems. The deviation from the best-known solution depended on the tested problem instance.

We noted that, in their current structure, the benchmark problems cannot be used to accommodate the two special features of the VRPTW of 1) strictly following the early limit of time window, and 2) staggering the dispatching of the vehicles from the depot based on the number of docks and the required dispatching time. The benchmark problems were slightly modified using a documented systematic procedure, and the proposed Clustering, Routing, and Assignment algorithms were implemented on the modified benchmark problems.

6.2 Research Contributions

The contributions of this research can be summarized as follow:

1. A new variant of VRPTW has been proposed and studied by adding two new features to the original problem, these new features are:
a. Vehicles are not allowed to wait at customer's premises in case of arrival before the start of the desired time window.
b. Limited availability of loading docks at the depot
2. A new approach has been developed for solving the VRPTW problem that considers the two additional constraints. The proposed approach simultaneously clusters customers, routes vehicles, and assigns vehicles to dispatching times from the depot.
3. A new routing algorithm, the Probabilistic Routing Algorithm PRG, has been proposed and developed to find the best sequence of visiting customers while satisfying the time windows. The PRG algorithm can be applied alongside the clustering algorithm to solve the VRPTW, or can be applied independently to solve the TSPTW.
4. A new clustering algorithm has been developed that divides customers into groups according to their proximity from each other. The clustering algorithm works concurrently with the PRG algorithm to develop clusters while considering the time windows of the customers.
5. A new set of benchmark problems has been created by modifying several well-known VRPTW benchmark problems. This new set of benchmark problems allows future testing of any newly developed algorithms to solve the VRPTW when considering the two extra features listed above.

6.3 Future Research Directions

The following areas are believed to be potential areas for further research:

1. Enhance the performance of the current Clustering algorithm by graphically modifying the developed clusters to improve the obtained results and prevent cases in which the last cluster is formed of geographically dispersed customers.
2. Study the parameters affecting the performance of the PRG algorithm to determine the conditions under which the performance of the algorithm is at its best. This study will also involve mining our solutions of the benchmark problems to investigate correlations between PRG algorithm parameters and its performance.
3. Improve the computational speed of the clustering algorithm by redesigning the process of customer assignment to clusters. Specifically, an unassigned customer i is added to cluster x if and only if the early limit of the time window of customer i is lower than the departure time from the last customer in cluster x. This will improve the computational efficiency of the clustering algorithm as it will reduce the number of iterations required to find a customer that can fit within cluster x.
4. Develop a new heuristic inspired by the PRG algorithm for solving special cases in job shop scheduling to determine the best sequence of processing jobs on single and multiple machines. This may require us to modify the objective function and some of the algorithm mechanics.
5. Apply the PRG algorithm to solve a special version of the Facility Layout Design Problem, the Looped Layout Design Problem, in which we desire to determine the allocation of manufacturing cells to locations around a loop so as to minimize the congestion in the facility. Because of the computational efficiency of the PRG algorithm, we will investigate the impact of designing the layout (or allocation) of the machines around the loop so as to maximize the throughput capacity of a vehicle-based material handling system. Each iteration of the PRG algorithm generates a layout for the machines based on the frequency of assigning machines to positions around the loop in layouts generated in previous iterations.

REFERENCES

Aarts, E., J. Korst, and W. Michiels, 2005, Simulated Annealing, Search Methodologies
Introductory Tutorials in Optimization and Decision Support Techniques p. 187-210.
Alvarengaa, G. B., G. R. Mateusb, and G. d. Tomic, 2007, A genetic and set partitioning twophase approach for the vehicle routing problem with time windows: Computers and Operations Research, v. 34, p. 1561-1584.

Atkinson, J. B., 1994, A Greedy Look-ahead Heuristic for Combinatorial Optimization: An Application to Vehicle Scheduling with Time Windows: The Journal of the Operational Research Society, v. 45, p. 673-684.

Backer, B. D., and V. Furnon, 1997, Meta-heuristics in Constraint Programming Experiments with Tabu Search on the Vehicle Routing Problem, 2nd International Conference on Metaheuristics.

Backer, B. D., V. Furnon, P. Kilby, P. Prosser, and P. Shaw, 1997, Local Search in Constraint Programming: Application to the Vehicle Routing Problem: Constraint Programming 97, Proceedings of Workshop on Industrial Constraint-Directed Scheduling.

Balakrishnan, N., 1993, Simple Heuristics for the Vehicle Routeing Problem with Soft Time Windows: The Journal of the Operational Research Society, v. 44, p. 279-287.

Benyahia, I., and J.-Y. Potvin, 1995, Generalization and Refinement of Route Construction Heuristics using Genetic Algorithms: Proceedings of the 1995 IEEE International Conference on Evolutionary Computation, p. 39-43.

Berger, J., M. Barkaoui, and O. Braysy, 2003, A Route-directed Hybrid Genetic Approach for the Vehicle Routing Problem with Time Windows: Information Systems and Operations Research v. 41, p. 179-194.

Berger, J., M. Salois, and R. Begin, 1998, A hybrid genetic algorithm for the vehicle routing problem with time windows, Advances in Artificial Intelligence: Lecture Notes in Computer Science, v. 1418/1998, Springer Berlin / Heidelberg.

Blanton, J. L., and R.L.Wainwright, 1993, Multiple Vehicle Routing with Time and Capacity Constraints Using Genetic Algorithms: Proceedings of the Fifth International Conference on Genetic Algorithms.

Blum, C., and A. Roli, 2003, Metaheuristics in Combinatorial Optimization: Overview and Conceptual Comparison: ACM Computing Surveys, v. 35, p. 268-308.

Bräysy, O., 2003, A Reactive Variable Neighborhood Search for the Vehicle-Routing Problem with Time Windows: INFORMS Journal on Computing, v. 15, p. 347-368.

Bräysy, O., W. Dullaert, and M. Gendreau, 2004, Evolutionary Algorithms for the Vehicle Routing Problem with TimeWindows: Journal of Heuristics, v. 10, p. 587-611.

Bäck, T., and H.-P. Schwefel, 1993, An Overview of Evolutionary Algorithms for Parameter Optimization: Evolutionary Computation, v. 1, p. 1-23.

Chenga, C.-B., and K.-P. Wangb, 2009, Solving a vehicle routing problem with time windows by a decomposition technique and a genetic algorithm: Expert Systems with Applications, v. 36, p. 7758-7763.

Chiang, W.-C., and R. A. Russell, 1996, Simulated annealing metaheuristics for the vehicle routing problem with time windows: Annals of Operations Research, v. 63, p. 3-27.

Christofides, N., and S. Eilon, 1969, An Algorithm for the Vehicle- dispatching Problem: Operations Research, v. 20, p. 309-318.

Christofides, N., A. Mingozzi, and P. Toth, 1979, The vehicle routing problem: Chichester, Wiley.

Christofides, N., A. Mingozzi, and P. Toth, 1981, Exact algorithms for the vehicle routing problem, based on spanning tree and shortest path relaxation: Mathematical Programming, v. 20, p. 255-282.

Clarke, G., and J. W. Wright, 1964, Scheduling of Vehicles from a Central Depot to a Number of Delivery Points: Operations Research, v. 12, p. 568-581.

Cordeau, J.-F., G. Laporte, and A. Mercier, 2001, A Unified Tabu Search Heuristic for Vehicle Routing Problems with Time Windows: The Journal of the Operational Research Society, v. 52, p. 928-936.

Crainic, T. G., and G. Laporte, 1997, Planning models for freight transportation: European Journal of Operational Research, v. 97, p. 409-438.

Czech, Z. J., and P. Czarnas, 2002, Parallel Simulated Annealing for the Vehicle Routing Problem with Time Windows: 10th Euromicro Workshop on Parallel, Distributed and Network-Based Processing.

Dantzig, G., R. Fulkerson, and S. Johnson, 1954, Solution of a Large-Scale Traveling-Salesman Problem: Journal of Operations Research, v. 2, p. 393-410.

Debudaj-Grabysz, and Z. J. A. Czech, 2005, A Concurrent Implementation of Simulated Annealing and Its Application to the VRPTW Optimization Problem KLUWER International Series In Engineering And Computer Science, v. 777, p. 201-209.

Desrochers, M., J. Desrosiers, and M. Solomon, 1992, A New Optimization Algorithm for the Vehicle Routing Problem with Time Windows Operations Research, v. 40, p. 342-354.

Desrochers, M., J. K. Lenstra, and M. W. P. Savelsbergh, 1990, A Classification Scheme for Vehicle Routing and Scheduling Problems.: European Journal of Operational Research, p. 322-332.

Dorigo, M., and G. D. Caro, 1999, The ant colony optimization meta-heuristic, New ideas in optimization: Maidenhead, UK, McGraw-Hill Ltd.

Dorigo, M., and L. M. Gambardella, 1997, Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem: IEEE Transactions on Evolutionary Computation, v. 1, p. 53-66.

Dorigo, M., V. Maniezzo, and A. Colorni, 1996, The Ant System: Optimization by a colony of cooperating agents: IEEE Transactions on Systems, Man, and Cybernetics-Part B, v. 26, p. 29-41.

Dorigo, M., and T. Stützle, 2003, The Ant Colony Optimization Metaheuristic: Algorithms, Applications, and Advances Handbook of Metaheuristics: International Series in Operations Research \& Management Science, v. 57: New York, Springer

Dumas, Y., J. Desrosiers, E. Gelinas, and M. Solomon, 1995, An optimal algorithm for the traveling salesman problem with time windows: Operations Research, v. 43, p. 367-371.

Duych, R. J., 2008, Transportation Statistics Annual Report, Washington, DC, U.S. Department of Transportation.

Fisher, M. L., and R. Jaikumar, 1981, A Generalized Assignment Heuristic for Vehicle Routing: Networks, v. 11, p. 109-124.

Fleischer, M., 1995, Simulated Annealing: Past, Present, and Future, Winter Simulation Conference.

Flood, M. R., 1956, The Traveling-Salesman Problem: Operations Research, v. 4, p. 61-75.

Gambardella, L. M., É. Taillard, and G. Agazzi, 1999, MACS-VRPTW: A Multiple Ant Colony System for Vehicle Routing Problems with Time Windows, in M. D. a. F. G. D. Corne, ed., New Ideas in Optimization: London, UK, McGraw-Hill, p. 63-76.

Garcia, B.-L., J.-Y. Potvin, and J.-M. Rousseau, 1994, A Parallel Implementation of the Tabu Search Heuristic For Vehicle Routing Problems with Time Window Constraints: Computers and Operations Research, v. 21, p. 1025-1033.

Gaskell, T. J., 1967, Bases for Vehicle Fleet Scheduling: Operational Research Society, v. 18, p. 281-295.

Gendreau, M., A. Hertz, and G. Laporte, 1992, New Insertion and Postoptimization Procedures for the Traveling Salesman Problem: Operations Research, v. 40, p. 1086-1094.

Gillett, B. E., and L. R. Miller, 1974, A Heuristic Algorithm for the Vehicle-Dispatch Problem: Operations Research, v. 22, p. 340-349.

Glover, F., 1986, Future paths for integer programming and links to artificial intelligence: Computers and Operations Research, v. 13, p. 533-549.

Golden, B., and W. Stewart, 1991, Empirical Analysis of Heuristics, in J. K. L. E. L. Lawler, A. H. G. Rinnooy Kan, D. B. Shmoys ed., The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization: Chichester, John Wiley \& Sons.

Golden, B. L., and E. A. Wasil, 1987, Computerized vehicle routing in the soft drink industry: Operations Research, v. 35.

Gong, W., X. Liu, J. Zhang, and Z. Fu, 2007, Two-Generation Ant Colony System for Vehicle Routing Problem with Time Windows: 2007 International Conference on Wireless Communications Networking and Mobile Computing.

Halse, K., 1992, Modeling and solving complex vehicle routing problems, Technical University of Denmark, Lyngby, Denmark.

Hansen, P., and N. Mladenovic, 2001, Variable neighborhood search: Principles and applications European Journal of Operational Research, v. 130, p. 449-467.

Hertz, A., and D. Kobler, 2000, A framework for the description of evolutionary algorithms: European Journal of Operational Research, v. 126, p. 1-12.

Hiquebran, D. T., A. S. Alfa, J. A. Shapiro, and D. H. Gittoes, 1993, A Revised Simulated Annealing and Cluster-First Route-Second Algorithm Applied to The Vehicle Routing Problem: Engineering Optimization, v. 22, p. 77-107.

Holland, J. H., 1975, Adaptation in Natural and Artificial Systems: Ann Arbor, University of Michigan Press.

Ioannou, G., M. Kritikos, and G. Prastacos, 2001, A Greedy Look-Ahead Heuristic for the Vehicle Routing Problem with Time Windows: The Journal of the Operational Research Society, v. 52, p. 523-537.

Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi, 1983, Optimization by Simulated Annealing: Science, v. 220, p. 671-680.

Kolen, A. W. J., A. H. G. R. Kan, and H. W. J. M. Trienekens, 1987, Vehicle Routing with Time Windows: Operations Research, v. 35, p. 266-273.

Koskosidis, Y. A., W. B. Powell, and M. M. Solomon, 1992, An optimization-Based Heuristic for Vehicle Routing and Scheduling with Soft Time Window Constraints: Transportation Science, v. 26, p. 69-85.

Langevin, A., M. Desrochers, J. Desrosiers, S. Gélinas, and F. Soumis, 1993, A two-commodity flow formulation for the traveling salesman and the makespan problems with time windows: Networks, v. 23, p. 631-640.

Laporte, G., 2009, Fifty Years of Vehicle Routing: Transportation Science, v. 43, p. 408-416.
Lau, H. C., M. Sim, and K. M. Teo, 2003, Vehicle routing problem with time windows and a limited number of vehicles: European Journal of Operational Research, v. 148, p. 559569.

Lenstra, J. K., and A. H. G. R. Kan, 1981, Complexity of vehicle routing and scheduling problems: Networks, v. 11, p. 221-227.

Liberatore, F., G. Righini, and M. Salani, 2009, A Pricing Algorithm for the Vehicle Routing Problem with Soft Time Windows, Innovations in Distribution Logistics, p. 251-266.

Little, J. D. C., K. G. Murty, D. W. Sweeney, and C. Karel, 1963, An Algorithm for the Traveling Salesman Problem: Operations Research, v. 11, p. 972-989.

Liu, F.-H. F., and S.-Y. Shen, 1999a, A Route-Neighborhood-Based Metaheuristic for Vehicle Routing Problem with Time Windows: European Journal of Operational Research, v. 118, p. 485-504.

Maffioli, F., 2003, The vehicle routing problem: A book review: Quarterly Journal of the Belgian, French and Italian Operations Research Societies, p. 149-153.

Moreno-Vega, J. M., and a. B. Melián, 2008, Introduction to the special issue on variable neighborhood search: Journal of Heuristics, v. 14, p. 403-404.

Nazif, H., and L. S. Lee, 2010, Optimized Crossover Genetic Algorithm for Vehicle Routing Problem with Time Windows: American Journal of Applied Sciences, v. 7, p. 95-101.

Osman, I. H., 1993, Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem Annals of Operations Research, v. 41, p. 421-451.

Osman, I. H., and G. Laporte, 1996, Metaheuristics: A bibliography: Annals of Operations Research, v. 63, p. 511-623.

Paessens, H., 1988, The savings algorithm for the vehicle routing problem: European Journal of Operational Research, v. 34, p. 336-344.

Pisinger, D., and S. Ropke, 2009, Large neighborhood search, in M. Gendreau, and J. Y. Potvin, eds., Handbook of Metaheuristics.

Potvin, J.-Y., and S. Bengio, 1996, The Vehicle Routing Problem with Time Windows Part II: Genetic Search: Informs Journal on Computing, v. 8, p. 165-172.

Potvin, J.-Y., D. Dubé, and C. Robillard, 1996, A Hybrid Approach to Vehicle Routing using Neural Networks and Genetic Algorithms: Applied Intelligence, v. 6, p. 241-252.

Potvin, J.-Y., and J.-M. Rousseau, 1993, A parallel route building algorithm for the vehicle routing and scheduling problem with time windows: European Journal of Operational Research, v. 66, p. 331-340.

Prescott-Gagnon, E., G. Desaulniers, and L.-M. Rousseau, 2009, A Branch-and-Price-Based Large Neighborhood Search Algorithm for the Vehicle Routing Problem with Time Windows: Networks, v. 54, p. 190-204.

Qi, C., and Y. Sun, 2008, An Improved Ant Colony Algorithm for VRPTW: Proceedings of the 2008 International Conference on Computer Science and Software Engineering, p. 455458.

Russell, R. A., 1995, Hybrid Heuristics for the Vehicle Routing Problem with Time Windows: Transportation Science, v. 29, p. 156-166.

Savelsbergh, M. W. P., 1985, Local search in routing problems with time windows: Local search in routing problems with time windows, v. 4, p. 285-305.

Schulze, J., and T. Fahle, 1999, A parallel algorithm for the vehicle routing problem with time window constraints: Annals of Operations Research, v. 86, p. 585-607.

Solomon, M. M., 1986, On the worst-case performance of some heuristics for the vehicle routing and scheduling problem with time window constraints: Networks, v. 16, p. 161-174.

Solomon, M. M., 1987, Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints: Operations Research, v. 35, p. 254-265.

Tan, K. C., L. H. Lee, Q. L. Zhu, and K. Ou, 2001a, Heuristic methods for vehicle routing problem with time windows: Artificial Intelligence in Engineering, v. 15, p. 281-295.

Tan, K. C., L. H. Leeb, Q. L. Zhua, and K. Oua, 2001b, Heuristic methods for vehicle routing problem with time windows: Artificial Intelligence in Engineering, v. 15, p. 281-295.

Tan, X., X. Zhuo, and J. Zhang, 2006, Ant Colony System for Optimizing Vehicle Routing Problem with Time Windows (VRPTW), Computational Intelligence and Bioinformatics: Lecture Notes in Computer Science, v. 4115: Berlin / Heidelberg, Springer

Thangiah, S. R., 1995a, Vehicle Routing with Time Windows Using Genetic Algorithms, in I. L. Chambers, ed., Application Handbook of Genetic Algorithms:New Frontiers, v. II: Boca Raton, CRC Press, p. 253-277.

Thangiah, S. R., 1995b, An Adaptive Clustering Method Using a Geometric Shape for Vehicle Routing Problems with Time Windows: Proceedings of 6th International Conference on Genetic Algorithms, p. 536-543.

Toth, P., and D. Vigo, 2002, The Vehicle Routing Problem: Discrete Mathematics and Applications: Philadelphia, PA, USA, Society for Industrial and Applied Mathematics.

Voss, S., I. H. Osman, and C. Roucairol, 1999, Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, Kluwer Academic Publishers Norwell, MA, USA.

Yellow, P. C., 1970, A Computational Modification to the Savings Method of Vehicle Scheduling: Journal of the Operational Research Society, v. 21, p. 281-283.

Zhu, K. Q., 2000, A New Genetic Algorithm for VRPTW: IC-AI 2000.

