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ABSTRACT 

 

The purpose of this study was to document the specific errors that introductory physics 

students make in each phase of the solution of Force and Motion problems.  A mixed methods 

design was used to identify those errors, and it was determined that the errors which students 

made  the most frequently were the omission of mgcosθ , mgsinθ, and the lack of a clearly 

defined coordinate system as part of the free-body diagram.   Additionally, there was a negative 

statistically significant relationship between the quality of the free-body diagram and the quality 

of equations that were produced to describe the object’s motion. The results indicate that 

students do not have a full understanding of the role of a free-body diagram or its relationship to 

the system of equations that are generated as a result of the application of Newton’s Second Law 

to the free-body diagram.  
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CHAPTER ONE: INTRODUCTION 

Students who have completed an introductory course in physics should be able to, at 

minimum, “think logically and coherently about technical issues, and be able to apply basic 

concepts of physics to more complex problems” (Knight, 2004, p. 10).  However, an 

investigation into students’ conceptual understanding by Dufresne, Gerace, and Leonard (1997), 

using the Force Concept inventory, revealed that “many of these students completed their 

introductory physics courses with a shallow understanding of concepts, and with a narrow set of 

problem-solving skills” (Dufresne, Gerace, and Leonard, 1997, p. 2).  The Force Concept 

Inventory (FCI), designed by Hestenes, Wells, and Swackhamer, (1992), is a multiple choice 

assessment designed to test students’ understanding of basic physics concepts and their ability to 

translate physics concepts to similar problems which are placed in a different context.  

According to Hestenes, Wells, and Swackhamer,(1992), the factors which contributed to the 

deficiency in students’ quantitative problem solving skills and their conceptual understanding of 

physics concepts need to be understood and documented, since the quality of a student’s 

conceptual knowledge affects the development of their problem solving skills and how to best 

apply those skills (Knight, 2004). 

The National Research Council(NRC) argued that “the ability to apply knowledge to novel 

situations, that is, transfer of learning, is affected by the degree to which students learn with 

understanding” (Bransford, Brown, Cocking, Donovan, and Pellegrino, 2000). The extent to 

which this transfer takes place depends on the students’ conceptual understanding of physics 

concepts.  Therefore, instructional strategies must be designed in such ways that facilitate a 

student’s conceptual growth.  The most effective form of instruction takes student 
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misconceptions into account (Heller and Reif, 1984).  There has been a considerable amount of 

research on student problem solving ability using multiple choice questions.  However, in order 

to get the most comprehensive characterization of the state of a student’s understanding, non-

multiple choice problems must be used in addition to the multiple choice test, since students 

perform differently on them (Berg and Smith, 1994).  Therefore, the major focus of this study 

was to characterize the quality of student understanding of physics concepts, by identifying the 

specific errors they made on their solution to non-multiple choice problems, since these problems 

allowed for a deeper analysis of the solutions.  These misconceptions can be used to inform 

instructional strategies used by educators so that they can model their instruction to address 

students’ misconceptions, which is likely to result in a deeper conceptual understanding.  

Physics is filled with many different classes of problems.  However, Force and Motion 

problems (F&M), which formed the basis of this study, rendered themselves as the best choice 

since they lay the foundation for other topics that students will encounter later in their physics 

course and other science courses.  Approximately 40% of all publications in Physics Education 

Research has been focused on Force and Motion problems (Duit, Niedderer, and Schecker, 2007; 

Etkina, Van Heuvelen, White-Brahmia, Brookes, Gentile, Murthy, Rosengrant, & Warren, 2006; 

Rosengrant, Van Heuvelen, & Etkina, 2005; Rosengrant, 2007; Rosengrant, Van Heuvelen, & 

Etkina, 2009; Heller & Reif,1984).  In addition, force and motion problems allowed for the 

investigation of a more detailed analysis of the quality of a student’s understanding of broad 

physics concepts, as their conceptual understanding is a major factor in the development of their 

overall problem solving skills (Knight, 2004), and their solution process is well defined in three 

distinct stages (Heller & Reif, 1984): 
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1. The generation of an initial problem description and qualitative analysis designed to 

facilitate the subsequent construction of a problem solution 

2. The generation of the actual solution by methods which facilitate the decisions making 

required for efficient search 

3. The assessment and improvement of this solution 

 

The first phase was of particular important since “the initial representation of the word 

problem ultimately determines how easily a problem is solved and what is learned in the 

process” (Dufresne, Gerace, & Leonard, 1997, p. 2). Therefore, by helping students increase 

their ability to perform well in phase one, their learning gains will likely be increased. This study 

focused on a specific representation in phase one, known as the free-body diagram (FBD), which 

is a diagrammatic representation that is used to show the forces acting on an object.  The second 

phase required the student to apply a specific physics concept know as Newton’s Second Law 

(NSL) to the representation in phase one. Unlike multiple choice problems, the results of each of 

these two phases of F&M problems provided more insight into student’s misconceptions which 

may ultimately affect their conceptual understanding of physics. The combination of the results 

of non-multiple choice and multiple choice problems provided a more complete description and 

understanding of the misconceptions that students have and the errors they made when they 

solved the problems.  
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Purpose 

The purpose of this study was to identify the conceptual difficulties that may hinder 

students as they solve non-multiple choice problems, by identifying the specific errors they made 

in the different phases of the Force and Motion problem solution.  

 

Research Questions 

1. What types of errors do students make in phase I of a Force and Motion physics 

problem that focuses on pulley and non-pulley type problems? 

2. What types of errors do students make in phase II of a Force and Motion physics 

problem that focuses on pulley and non-pulley type problems? 

3. Does quality of performance in Phase I predict the quality of performance in Phase 

II?  

 

Conceptual Framework 

The conceptual framework was couched in two major foci:  1) students’ conceptual 

understanding of force and motions concepts, and 2) error identification as it related to 

students’ demonstrated problem-solving performance assessed with the Force Concepts 

Inventory (FCI).  The National Research Council (NRC) argued that “the ability to apply 

knowledge to novel situations, that is, transfer of learning, is affected by the degree to which 

students learn with understanding” (Bransford, Brown, Cocking, Donovan, and Pellegrino, 

2000). The extent to which this transfer takes place depends on the students’ conceptual 
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understanding of physics concepts.  Therefore, instructional strategies must be designed in 

such a way that facilitates a student’s conceptual growth.  The most effective form of 

instruction takes student misconceptions into account (Heller and Reif, 1984).  There has been 

a considerable amount of research on student problem solving ability using multiple choice 

questions.  However, in order to get the most comprehensive characterization of the state of a 

student’s understanding, it was necessary to use non-multiple choice problems, in addition to 

the multiple choice test, since students perform differently on them (Berg and Smith, 1994).  

Therefore, the major focus of this study was to characterize the quality of student 

understanding of physics concepts, by identifying the specific errors they make on their 

solution to non-multiple choice problems.  Non-multiple choice problems allow for a more in 

depth analysis of students’ solutions.  Any identified student misconceptions can then be used 

to inform instructional strategies used by educators so that they can model instruction, which 

addressed these misconceptions into account.  By doing so, the conceptual knowledge and 

understanding of the students would likely increase, in addition to their ability to transfer the 

physics concepts to other problems. 

 

Overview of Research Design 

The study used a mixed methods design in order to uncover the specific misconceptions that 

students had, which were identified by assessing the errors they made in each phase of the force 

and motion solution process.  A rubric was designed to assess the overall quality level of 

students’ solutions at each phase.  Using a rubric, errors identified within each phase were 
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assigned a numeric rating according to the completeness and accuracy.  The numbers were 

summed to obtain a total score that was used to define the quality level. In order to determine if a 

statistically significant relationship existed between the phases that defined the process of 

obtaining the solution, a Linear Mixed Effects Model was used. 

 

Rationale 

The National Research Council(NRC) argued that  “the ability to apply knowledge to 

novel situations, that is, transfer of learning, is affected by the degree to which students learn 

with understanding”(Bransford, Brown, Cocking, Donovan, & Pellegrino, 2000). Therefore, it is 

imperative for students to obtain an adequate understanding of the conceptual ideas in physics if 

learning is to take place.  Learning is defined as a measure of a student’s ability to solve 

problems which are similar but may be situated in a different context.  The current state of 

physics students has been described by Dufresne, Gerace, and Leonard (1997),who asserts that 

the majority of students complete their physics course with problem solving skills that are not 

well defined and leave the course lacking a conceptual understanding of concepts. Until students’ 

understanding is increased, they will continue to leave the physics class with poor problem 

solving skills.  This assertion was based upon the results of student performance on the Force 

Concept Inventory (FCI) (Hestenes, Wells, & Swackhamer,1992), which is a multiple-choice test 

designed to assess a student’s conceptual understanding of physics concepts.   

In order to ensure that those students who leave the introductory physics classroom do so 

with a high degree of understanding, the instructional strategies that occur in the classroom must 
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be such that they are defined within the context of student misconceptions.  Heller (1984) notes 

instructional strategies must take student misconceptions, which are identified in the research, 

into account in order to be the most effective.  Many of the misconceptions which have been 

identified are defined in terms of how students perform on multiple choice problems 

(Rosengrant, 2007).  However, since students perform differently on multiple-choice and non-

multiple choice problems (Berg & Smith, 1994), the analysis of the students performance on 

non-multiple choice problems needed to be documented as well (Rosengrant, 2007). Therefore, 

in order to obtain a more complete understanding of student misconceptions related to physics 

concepts, student performance on both multiple-choice and non-multiple choice problems needs 

to be investigated. 

 

Significance of Study 

Much of the previous research has focused on the quality of student problem solving 

skills in physics. This study was significant since it contributed to filling the gap in the literature 

concerning how students perform on non-multiple choice problems.  This contribution has 

provided a more complete description of the problem solving behavior of students who enroll in 

a traditional introductory physics course.  By outlining the specific errors students made when 

they drew  non-mathematical representations, and applied Newton’s Second Law in component 

form to the non-mathematical representation, a better understanding of student’s misconceptions 

was identified. 
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Assumptions 

This study assumed that 1 hour was an adequate amount of time for students to solve the 

Force and Motion problems. Since the students did not receive credit (grade, points, etc) for the 

problems, it was assumed that they would have performed in the same way if credit were given.  

Limitations 

The research was done during the summer session.  In this case, the number of students 

who enrolled during the summer was fewer, which reduced the sample size “N”.  Also, the 

amount of time the students spend in lecture was less during the summer than the time spent by 

students who take the course in the fall or spring semester.   

Terms and Definitions 

This section provided a list of the terms and definitions that were be used throughout the 

dissertation.  However, they are explained in more detail in the appropriate chapters. 

Expert vs. Novice 

While there is not a single definition which defines an expert or novice problem solver, 

there is a set of characteristics which contrasts the two groups.  The table below presents these 

characteristics (Gerace, Dufresne, Leonard, & Mestre, 2001) 
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Table 1:  Expert vs. Novice Characteristics 

Expert Novice 
Conceptual knowledge impacts problem solving Problem solving largely independent of 

concepts 
 

Often performs qualitative analysis, especially 
when stuck 
 

Usually manipulates equations 

Uses forward-looking concept-based strategies Uses backward-looking means-ends 
techniques 
 

Has a variety of methods for getting unstuck Cannot usually get unstuck without 
outside help 
 

Is able to think about problem solving while 
problems solving 
 

Problem solving uses all available mental 
resources 

Is able to check answer using an alternative 
native method 

Often has only one way of solving 
problem 

 
 

Newton’s Second Law 

Force is defined as a push or pull on an object which results in a change in the object’s 

motion.   By definition, a change in an object’s velocity provides acceleration to that object.  

Newton’s Second Law states that this acceleration, which the object experiences, is directly 

proportional to the net force acting on the object, and inversely proportional to its mass.  The law 

can also be written in mathematical form as: 

  (1)  
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Here, a is the acceleration, F is the force, and m is the mass. This expression can also be 

separated into x and y components so that the motion along each of these directions can be 

analyzed separately. 

  (2)  

 

 ∑
 (3)  

 

Free-Body Diagram 

A free-body diagram (FBD) is a type of representation used to show the forces acting on 

a body by other objects. The construction of the FBD is often considered as the first and most 

important step in the solution to problems involving the application of Newton’s Second Law, 

as it is useful in helping to solve the problem.  There are many different ways to construct the 

free- body diagram, but this study focused on the standard construction of it which was shown 

in Figure 3, where it showed a car resting on an incline, and its corresponding free- body 

diagram.  The black dot represented the car, and the lines with the arrow tips (vectors) 

represented the directions of the various forces acting on the car. 
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Figure 1: Car resting on incline and the corresponding free-body diagram 

 

Problem Category 

The problems in this study were grouped into one of two categories.  Category one 

consisted mainly of objects moving along an incline as shown in Figure 2a, and those in 

category two consisted of pulleys connected to objects which may or may not move along an 

incline as shown in Figure 2b.  These two categories best represented many of the types of 

problems, and various combinations of them, students are required to solve in the standard 

introductory physics class which require the application of Newton’s Second Law. 

 

 
Figure 2:  a. Incline problem   b. Pulley problem 
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Problem Solution 

The general solution to the type of problems in this study can be separated into three 

general phases (Heller and Reif, 1984):   

1. The generation of an initial problem description, and qualitative analysis, designed to 

facilitate the subsequent construction of a problem solution 

2. The generation of the actual solution by methods which facilitate the decisions making 

required for efficient search 

3. The assessment and improvement of this solution. 

Phase one required the construction of a free body diagram and phase two required the 

application of Newton’s Second Law of Motion (NSL) in component form, which produced a 

system of equations that were used to solve for the desired variable asked for in the word 

problem.  Figure 3 shows a typical solution to the type of problem that was addressed within this 

study.  The solution contains all of the essential elements which indicated that the student has a 

firm understanding of the concepts and of the mathematical skills that are necessary to 

successfully solve the problem.  The solution to the problem was separated into three major 

phases which include the physical representation (phase I), mathematical representation (phase 

II), and the mathematical manipulation (phase III). However, for purposes of this study, the focus 

was on phases I and II. 
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Figure 3: Sample solution of Force and Motion problem  

 

Assessment Rubric 

The first skill that the student was required to master was an adequate drawing of a free 

body diagram.  Etkina et al., 2006 developed a rubric to assess the quality of the free body 

diagram.  It was be used in this study.  The values range from zero, indicating that the student 
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showed no evidence of a free body diagram to three which indicated that an adequate free 

body diagram exist.  The important components that students should be able to include in the 

free body diagram during this phase are summarized in the table below (Etkina et al., 2006) 

Table 2: Scoring rubric for free-body diagram  

     
Scientific ability 0 (Missing) 1 (Inadequate) 2 (Needs 

improvement) 
3 (Adequate) 

Is able to 
construct a free-
body diagram  

No free-body 
diagram is 
constructed 

FBD is constructed 
but contains major 
errors such as 
incorrect force 
vectors; length of 
vectors; wrong 
direction; extra 
incorrect force 
vector, or missing 
vector. 

FBD contains 
no errors in 
vectors but 
lacks a key 
feature such as 
labels of forces 
with two 
subscripts; 
vectors are not 
drawn from a 
single point; or 
axes are 
missing. 

The diagram 
contains no 
errors and each 
force is labeled 
so that it is clear 
what each force 
represents.  

 

 

 

Summary 

Chapter 1 provided an overview of the context for this study, the research questions that were 

answered, and the limitations of the study.  An overview of the relevant research, and results 

were presented in Chapter 2.  The methodology with an explanation of the instruments used in 

this study was discussed in Chapter 3.  Chapter 4 provided the analysis of the data and results. A 

detailed discussion of the results, and their implications was presented in Chapter 5 along with 

future directions for research.   
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CHAPTER TWO: LITERATURE REVIEW 

Introduction 

There are three basic areas of empirical research as it relates to problem solving 

identified in the literature (Chi, Feltovich, & Glaser, 1981).  The first area includes the 

identification of methods used for the investigation of the cognitive domain and the way that 

knowledge is structured in the minds of problem solvers (Shavelson, 1975;1975). The second 

area of research focused on the effect of prior knowledge on a student’s problem solving 

ability (McCloskey, Caramazza, and Green, 1980; Halloun and Hestenes, 1985).  The third 

area of research, which provided the context for this study, focused specifically on the 

identification of strategies and processes that students use as they solve problems (Siegler, 

1978). 

 It was determined by Duit (2007) that in order to become a successful problem solver 

in physics, the problem solver was required to have both a conceptual understanding of the 

physics concepts, in addition to an understanding of the specific processes of how to solve the 

problem.   However, many students who have taken physics do not have basic conceptual 

understanding (FCI), nor do they have an adequate set of technical problem solving skills 

(Dufresne, 1997).  While there are many factors which affect their conceptual understanding 

of physics concepts, the main factor that determines the strategies and decisions students 

make during the problem solving process are generally made within the context of what they 

experience in their everyday lives.  The major problem with this is that, not only are these 

beliefs, which are a function of their experiences, inconsistent with physics concepts, they are 
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resistant to change (Duit and Schecker, 2007).  In order to work towards changing the ideas 

that students have, instructional strategies must be aligned with them ( Heller & Reif, 1984). 

Two major perspectives on teaching and learning are situated within the context of 

acknowledging that students bring their own ideas in to the classroom, and that they are 

difficult to change (Maloney, 1994).  However, in order for the instruction to be relevant and 

effective, it must be based on a comprehensive understanding of the misconceptions that 

students have when they enter the classroom ( Heller and Reif, 1984), which was addressed in 

this study.   

Problem Solving 

Approximately forty percent of  all publications in Physics Education Research has been 

focused on Mechanics; specifically with forces and kinematics (Duit, Niedderer, and Schecker, 

2007; Etkina et al., 2006; Rosengrant et al., 2005; Rosengrant et al., 2009; Heller and Reif, 1984; 

Reddish, 1994).  One of the major findings that came out of this research was the 

characterization of the novice and expert problem solver.  The major differences are outlined in 

Table 3.  
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Table 3: Expert vs. Novice characteristics 

Expert Novice 
 

Conceptual knowledge impacts problem 
solving 
 

Problem solving largely independent of 
concepts 

Often performs qualitative analysis, 
especially when stuck 
 

Usually manipulates equations 

Uses forward-looking concept-based 
strategies 
 

Uses backward-looking means-ends 
techniques 

Has a variety of methods for getting unstuck Cannot usually get unstuck without outside 
help 

Is able to think about problem solving while 
problems solving 
 

Problem solving uses all available mental 
resources 

Is able to check answer using an alternative 
native method 

Often has only one way of solving problem 

 

Table 3 provides the basic differences that exist in the methods that the novice and expert 

use when they solve problems. While this list is not exhaustive, it does, however, provide the 

major differences that exist between the two groups of problem solvers.  It is important to note 

that although these differences between the two groups have been identified, a few of them have 

been under debate as to whether or not they exist.   When an [expert] is asked to solve a problem 

that they are unfamiliar with, their problem solving ability becomes more like that of the novice 

(Singh, 2002).  Also, Priest (1992), argues that the expert may not use forward inferences when 

they solve problems.  Other strategies which have been identified that are used by the expert, or 

the more successful problem solver, include think-aloud techniques (Dhillon, 1998; Simon & 

Simon, 1978), chunking (Larkin and Reif, 1979), self-monitoring and transfer skills (Smith, 

1991).  These strategies identified are in addition to those described by Gerace et al.( 2001). 
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The ability to solve problems that require the transfer of concepts in a systematic way is 

one of the most challenging skills for students  (Dufresne, 1988), including those who have 

completed a traditional introductory physics class.  An objective of this research is to identify the 

errors that problem solvers make as they solve a problem in order to inform the physics 

community.  In this way, the instructional strategies can be modified to take them into account, 

because instruction that is centered on difficulties that students have is the most effective form of 

instruction (Heller and Reif, 1984).   It has been documented that when students enter the physics 

classroom, they have many “common-sense” ideas about the physical world which are 

incompatible with physics concepts (Sherin, 2006).  However, this incompatibility that exists 

between the students common-sense ideas of the physical world, and physics concepts, can be 

used to promote the necessary state of cognitive dissonance which promotes learning (Piaget, 

1928).  Piaget (1928) defines this state as being necessary as it allows the students to explore the 

differences between their current beliefs about phenomena and the extent to which it differs from 

the correct interpretation.  Here, the student is afforded the opportunity to attempt to consolidate 

the discrepancy that exists between any misconceptions they may have and the related physics 

concept.  The degree of difference that exists between these misconceptions, which consequently 

affect their problem solving ability, and the physics concepts can be defined in terms of the Zone 

of Proximal Development (ZPD) (Vygotskiĭ and Cole, 1978).  The ZPD is a qualitative measure 

of the difference between the actual problem solving ability of the student, and the desired 

problem solving ability that best represents a firm qualitative and quantitative understanding of 

physics concepts.  In order to minimize the difference which may exist between the current and 

the desired state of a students’ problem solving ability, it is important to fully understand and 
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characterize the factors that prevent this minimization.  These factors were identified as errors 

that students made in this study. 

Approximately 40% of the research in physics, and the misconceptions associated with it, 

has centered on mechanics (Duit et al., 2007).  Specifically, this research is in the area of Force 

and Motion, where the main focus in the investigation deals with the ability of students to 

transform mechanics problems from a verbal representation into a non-mathematical 

representation and the factors which affect their ability to do so (Hinrichs, 2005). The ability of a 

student to transfer the word problem representation to the non-mathematical representation, in 

particular, has been discussed with respect to the quality of the non-mathematical representation 

and the relationship that it has to the final solution of the problem (Rosengrant et al., 2005).  It 

was documented that the representation is necessary but not sufficient for problem solving 

success, so an investigation of the entire problem solving process is necessary. The problem 

solving process is well defined, and consists of three different phases. Although there are many 

different representations that students may choose, the most common representation, and the one 

that has received the most attention is the free body diagram.  This is a diagrammatic 

representation showing the forces acting on an object, and the quality of it has been correlated to 

how successful the student is at arriving at a correct solution (Rosengrant et al., 2005; 

Rosengrant, van Heuvelen, and Etkina, 2006; Rosengrant, 2007).  It was found that students who 

drew high quality free-body diagrams were more successful, in general than those who did not 

(Rosengrant, 2007).  
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Many of the studies which have been done regarding problem solving were performed 

using multiple choice problems. This study extended the investigation to increase the lack of 

focus that has been placed on non-multiple choice problems (Rosengrant, 2007).  It is important 

to include them since the performance of students vary depending on whether or not the question 

is a multiple choice or non-multiple choice format (Berg and Smith, 1994) and the way the 

questions are phrased (Meltzer, 2005; Beichner, 1994).  The characterization of student problem 

solving abilities may provide a more comprehensive set of difficulties.  This does not, however, 

suggest that this list of difficulties be created and used as a way to “teach to” the problems, but 

rather as a guide to help ensure that the most common difficulties are addressed.  Independent of 

the problem format, the ability of the student to construct adequate representations is an 

important skill to develop.   

Representations play a critical role in the physics classroom and can be used in many 

different ways during instruction (Dufresne et al., 1997)  

1.  As a means to elucidate a problem, as occurs when a student draws a sketch of a physical 

situation and provides a summary of given information 

2.  As the focus of a problem, as occurs when a student is explicitly asked to draw a graph 

or find the value of a physics quantity from a given graph 

3.  As a step in a formal procedure, as occurs when students are required to draw a free-

body diagram as one of the initial steps in applying Newton’s laws to solve a problem 
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However, mode three described above is best aligned with the strategies and instruction 

that instructors use in the physics classroom; therefore, it forms the basis of this study.  In 

particular, the free-body diagram was used as the vehicle through which the student’s conceptual 

understanding was explored as it related to the first step in the solution process of the class of 

problems that were explored in this study.  The solution process to these problems is well 

defined ( Heller & Reif, 1984) and is shown below. 

1. The generation of an initial problem description, and qualitative analysis, designed to 

facilitate the subsequent construction of a problem solution 

2. The generation of the actual solution by methods which facilitate the decisions making 

required for efficient search 

3. The assessment and improvement of this solution. 

The three phases above in the solution process document the class of word problems that 

were investigated in this study. The first phase in the process is considered the most important 

phase due to its requirement for the student to translate the initial word problem into a non-

mathematical representation. The second phase of the problem solving process requires the 

student to translate the non-mathematical representation from phase I into a mathematical 

representation.  This is accomplished by using a specific physics concepts known as Newton’s 

Second Law (NSL).  Force is defined as a push or pull on an object which results in a change in 

the object’s velocity. A change in an object’s velocity provides acceleration to that object.  By 

definition NSL states that this acceleration, which the object experiences, is directly proportional 

to the net force acting on the object, and inversely proportional to its mass.  The law can also be 

written in mathematical form as: 
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  (4)  

 

where a is the acceleration, F is the force, and m is the mass. This expression can also be 

separated into x and y components so that the motion along each of these directions can be 

analyzed separately. 

  (5)  

 

 ∑
 (6)  

 

The application of NSL to the free-body diagram, which was generated in phase I 

requires a firm conceptual understanding of NSL and other physics concepts.  Due to the 

conceptual understanding that is required in these two steps, they were both used to explore the 

difficulties that students have with problem solving.   

The third phase of the problem solving process requires the student to generate the actual 

solution to the problem by solving the mathematical equations which are the result of phase II.  

Since this phase requires the assessment of the mathematical skills of the student before a 

conclusion regarding their ability to successfully solve the problem in its entirety, it was not 

addressed in this study.  This study was more focused on the conceptual difficulties that students 

have as they progress through the solution phase, and not necessarily their mathematical ability 

with respect to solving a system of equations; therefore, the study focused on phases I and II.  

The lack of attention to phase III is not meant to suggest that mathematical skills are not 
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important.  Champagne and Kloper (1980) defines math as the language of science and it is an 

important element in the process of generating the solution.  

The most common difficulty among most students, related to problem solving, centers on 

their inability to transfer concepts from one problem to another (Dufresne, 1988; Savelsbergh, 

19997), including those who have completed a traditional introductory physics class.  Phases I 

and II were used to help identify the difficulties and errors that affect students’ successful 

transfer of basic physics concepts to different word problems.  The ability to transfer concepts 

from familiar situations to those which are unfamiliar serves as the “meter stick of learning.”   It 

is a measure of how efficiently a student can take the skills that they have learned in the class 

and apply both qualitative and quantitative skills to various different problems.  When students 

are able to successfully transfer the learning and apply the aforementioned skills, it can be said 

that “learning” has occurred. This philosophy is echoed by the National Research Council (NRC) 

which reports, “The ability to apply knowledge to novel situations, that is, transfer of learning, is 

affected by the degree to which students learn with understanding”(Bransford et al., 2000). 

Good problem solving skills are not only important in physics but other areas as well, due 

to the major qualitative reasoning skills which are necessary to become an adequate problem 

solver (Ploetzner, Fehse, Kneser, and Spada, 1999; Clement, 1982a).  Some general factors that 

affect the ability to solve problems in an efficient way have been documented and include 

students’ inability to see the patterns that exist from other problems they may have solved 

(Larkin, McDermott, Simon, and Simon, 1980).  This is, perhaps, due to the way the information 



24 
 

is organized, indexed in their brain, and structured; the organization determines the ease in which 

information can be retrieved (Simon & Simon, 1978; Chi et al., 1981). 

In order to help students become better problem solvers it has been suggested that they be 

required to explain problems in multiple ways and from different perspectives. Studies have 

shown that students who are able to explain problems from multiple perspectives are more likely 

to solve word problems correctly compared to those who may only be able to see the problem 

from a single perspective (Chi, Bassok, Lewis, Reimann, and Glaser, 1989). Additionally, group 

discussions, which are conceptual in nature rather than mathematical, should be encouraged.  

This discussion should also include different strategies on how to categorize problems beyond 

their surface features (Hardiman, Dufresne, and Mestre, 1989; Hegarty, 1995), which has been 

shown to help increase the problem solving skills of students (Heller, 1992a; 1992b; Linder, 

1996; Van Domelen and Van Heuvelen, 2002).  An environment should also be created that 

allows for the discussion of students’ alternative views of the problem (Tao, 2001).  These 

suggestions along with providing the student with a specific set of problem solving instructions 

(Zhaoyao, 1993), which focus on their problem solving difficulties, may ensure that they have a 

firm basis of strategies, tools, and resources that they can use to help solve problems in an array 

of different contexts.  

Multiple Representations 

The first step in obtaining the solution to the problems in this study was the translation of 

the verbal representation of the word problem into a non-mathematical representation (Heller & 

Reif, 1984).  The translation of word problems into this more useful format can be accomplished 
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by using any one of the many different representations, which are collectively referred to as 

multiple representations (MRs).  They refer to “any of the widely diverse forms in which physics 

concepts may be understood and communicated (Meltzer, 2005), and are useful in solving an 

array of problems in all areas of physics.  Although this is a very important step in the process, 

many students struggle with this stage of the process. Perhaps they struggle due to the conceptual 

demands of this stage, and are consequently less likely to get the problem correct.  Additionally, 

much of the focus in the traditional classroom setting is on the quantitative aspect of the problem 

solving process, and less focus is placed on the necessary conceptual aspect of problem solving 

process.  In this case, attention needs to be given to the traditional classroom and ensure that the 

classroom is aligned with needs of the students, especially focused on the conceptual aspect of 

the problem solving process.  Although the discussion of problem solving should include the use 

of representations in the problem solving process, it is important for the instructor to realize that 

this discussion cannot begin with an assumption that students necessarily understand them 

(Beichner, 1994) or how to use them, because many students do not.   Instructors often begin the 

discussion of the problem solving process by drawing a free-body diagram, for example, and 

many of the students in the class copy down the free body diagram without understanding its 

meaning.   This practice can lead to the inability of the student to make connections to other 

problems which may require the same process to solve them.  The students need to view the free 

body diagram as a tool, rather than a formal step in the process that is disconnected from the 

problem; the free-body diagram “is the problem,” it is just represented in a more useful format.  

The inability to view the free-body diagram as such hinders students’ ability to make the 

connection between the diagram and phenomena that occur in the real world (. McDermott, 
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Rosenquist, and van Zee, 1987), and leads to the student only being able to view the 

representation and problem in terms of surface features ( Kozma, 2003).  The surface view also 

promotes the creating of modified forms of representations which points to a fragmented 

understanding of concepts which are embedded in the free-body diagram (Greeno & Hall, 1997). 

It is difficult to find a physics professor who does not rely on the use of a particular 

representation to explain concepts when they teach physics, yet only 10-20% of students use 

them when they solve word problems (Van Heuvelen, 1991).  There may be several reasons for 

this, including students who do not see the role of the representation or understanding the 

meaning of the descriptors that are used in the diagram ( Dufresne et al., 1997), or they don’t 

have a basic understanding of the variable and descriptors that are used in the diagram and their 

relationship to the verbal word problem (Van Heuvelen, 1991; McDermott, 1984).  For the 

students who do use them, the lack of conceptual understanding they have with kinematics in 

general (McDermott, 1984) directly affects their ability to successfully generate an adequate 

representation of the verbal problem. While there are numerous factors that affect students’ 

ability to successfully generate and use representations, conventional instruction does very little 

to increase their ability to do so (Halloun & Hestenes, 1985; Van Heuvelen, 1991).  However, 

the emphasis placed on the use of multiple representations needs to be such that they are actually 

explained and students are shown how they help facilitate the problem solving process. They are 

not just multiple ways of solving the same problems but rather they should be used to show, for 

example, if a student is having trouble with understanding one of the concepts from the 

perspectives of one of the MRs, the other representations can be used to help the student get a 

firmer grasp on the concept with which they are struggling with (Ainsworth, 1999).  
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Multiple representation are also useful in other courses that students may take (Paivio, 

1971;Janvier, 1987;Lesh, Post, and Behr, 1987), which include calculus (White and 

Mitchelmore, 1996) and other science courses where their use has also been shown to increase a 

student’s conceptual understanding (Cheng, 1999), such as chemistry (Kozma and Russell, 

1997).  Hinrichs (2005) documented how the pre and post test scores of students who were in an 

environment that focused on the use of MRs were different, in a significant way, from the scores 

of the students who were not in the modified classroom environment.  The  pre and post test  

results of those who used MR’s, and those who did not, respectively, were  1.1 ± 1.0 pretest and 

3.7 ± 0.8 post, and 1.2 ±1.0 pretest and 2.8±1.2 post.  The results show the power of 

representations. de Leone and  Gire (2006) also showed that students who used more 

representations when solving problems solved a greater number of problems correctly  compared 

to those students who used a fewer number of representations to solve word problems.  It was 

concluded that the more ways a student is able to represent a problem, the better their conceptual 

understanding. The free body diagram was used as a specific representation in this study to 

explore the quality of student problem solving. 
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Free-body diagram 

What types of errors do students make in phase I of a Force and Motion physics 

problem that focuses on pulley and non-pulley type problems? 

 

The first step in the problem solving process, of the problems in this study, was the 

translation of the word problem into a non-mathematical representation. Here, the non-

mathematical representation was free body diagram.  The free body diagram, shown in Figure 4 

is a representation that shows all of the forces acting on an object.   

 

Figure 4: Free body diagram 

 

There are many different ways to construct the free body diagram (Fisher, 1999; 

Hinrichs, 2005; Lane, 1993; Maloney, 1990; Mattson, 2004; Puri, 1996; Sperry, 1994).  

However, we wish to focus on the basic qualitative features outlined in the rubric defined by 

Etkina (2006).  Problem solvers who are more successful during the problem solving process 

construct the free-body diagram that is more closely related to the actual physics concepts and 
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the specific factors that affect the motion of the object, whereas the novice draws a diagram that 

is more closely related to the general or naïve components of the free body diagram.  This 

difference in conceptualization causes some difficulties for the novice as they attempt to solve 

problems.  The purpose of the free body diagram is to provide problem solvers with a tool that 

they can use to help organize the physics concepts in the problem, which ultimately makes the 

problem solving process easier.    However, the free-body diagram, while it is a very useful tool, 

requires that the student employs a variety of skills to construct one that is of high quality.  The 

difficulties that students have with free-body diagrams vary, and range from not knowing how to 

construct them, to not knowing what to do with them once they are constructed.  This creates a 

huge problem for instructors since it is understood as a matter of common practice to create a 

non-mathematical representation as a first step to solving a word problem in physics, yet only 

10-20% of students do so when they solve problems in the traditional introductory physics 

classroom setting.    

In order to understand why such a small percentage of students use the free-body diagram 

when they solve problems, researchers have conducted studies to investigate this question. The 

research that has been done on the free-body diagram can be separated into two major lines of 

research (Rosengrant, 2007; Rosengrant et al., 2005; 2007;2009).  These lines include 

1. What effect does the free-body diagram have on the likely hood of the 

student soling a problem correctly? 

2. What was the thought process of the student as they used the free-body 

diagram to solve their problem? 
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The major results of these questions concluded that students who construct free-body 

diagrams when they solve problems have a greater likelihood of correctly solving a problem 

compared to those who do not construct one (Rosengrant et al., 2006; Rosengrant et al., 2005;  

Rosengrant et al., 2006).  Additionally, it was found that the student who constructed a free-body 

diagram that was incorrect was less likely to get the problem correct than a student who did not 

draw one (Rosengrant et al., 2005; Rosengrant, 2007). With respect to the thought process, it was 

found that students, independent of the instructor they had still drew pictures, even if they knew 

credit was not given for the drawing.  However, only the high achieving student drew correct 

free body diagrams and used them to evaluate their final solution to the problem ( Rosengrant et 

al., 2006).   

 Many of the studies that have been done, were done so in a modified classroom 

environment (Rosengrant et al., 2005;  Rosengrant et al., 2006;  Rosengrant, 2007;  Rosengrant, 

2007;  Rosengrant et al., 2009).  Here, there was a specific and intentional emphasis placed on 

the use of the free-body diagram during the lecture, and other activities in the class. Also, the 

questions given to the students during these studies were multiple choice questions.  However, 

the research needs to be extended to include the performance of students who are in a traditional 

introductory class (Rosengrant, 2007), to determine if they perform differently in the traditional 

classroom setting when given non-multiple choice problems as opposed to multiple choice 

problems (de Leone and Gire, 2006).   

Kotovsky (1985) investigated whether students used free body diagrams when they 

solved problem by comparing  students in a traditional course, where the emphasis is placed on 
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mathematical manipulation, to the students who were enrolled in a reformed course, where the 

use of multiple representations were explicitly taught.  They found that when the students in each 

class were given a multiple choice test, approximately 58% of the students in the reformed 

course chose to use free body diagrams to help solve the problems, and only 15% of the students 

in the traditional course used a free body diagram to help solve the problems. While diagrams are 

important in helping to solve problems de Leone and Gire, (2006) conclude that simply 

constructing the free-body diagram is not enough to ensure successful completion of the 

problem; the student must understand what to do with it.  Rosengrant, et al (2009) found that 

high achieving students used the diagrams to help solve the problems and as a tool to evaluate 

their work while low achieving students only used representations as aids in the problem-solving 

process. 

In order to help with some of the difficulties that students have with the conceptual 

understanding, it has been suggested that there be some modifications to the classroom 

environment, such as a stronger focus on helping the students develop a better conceptual 

understanding (Linder, 1996). Additionally, the students should be required or encouraged to 

view each problem from a different perspective; when they are successful at it, this shows 

evidence of a much deeper understanding of the problem (Tao, 2001).  Also, students who were 

involved in an inquiry based lab (Thornton and Sokoloff, 1998) that allowed them to investigate 

the physics concepts in a laboratory setting, Constructing and Applying Concepts of Physics 

(CACP)((Van Domelen and Van Heuvelen, 2002), developed a deeper conceptual 

understanding. Currently, instructional strategies which do not allow for the student to get 

adequate exposure to the multiple skills that are available to solve problems on a deeper level, 
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and consequently students perform poorly on assessments that measure their thinking skills 

(Schoenfeld, 1992).  

 

Application of Newton’s Second Law 

What types of errors do students make in phase II of a Force and Motion physics 

problem that focuses on pulley and non-pulley type problems? 

The second phase of the problem solving process requires the student to translate the non-

mathematical representation from phase I into a mathematical representation.  This is 

accomplished by using a specific physics concept known as Newton’s Second Law (NSL).  

Force is defined as a push or pull on an object which results in a change in the object’s velocity. 

It is well known in the science community that a change in an object’s velocity provides 

acceleration to that object.  By definition NSL states that this acceleration, which the object 

experiences, is directly proportional to the net force acting on the object and inversely 

proportional to its mass.  The law can also be written in mathematical form as: 

  (7)  

 

where a is the acceleration, F is the force, and m is the mass. This expression can also be 

separated into x and y components so that the motion along each of these directions can be 

analyzed separately. 

  (8)  
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 ∑
 (9)  

 

The application of NSL to the free-body diagram, which was generated in phase I, requires a 

firm conceptual understanding of NSL and other physics concepts.  Due to the deep conceptual 

understanding that is required in these two steps, they were used to explore the difficulties that 

students have with problem solving.  It has determined that a correlation exists between the 

quality of the free-body diagram a student drew and their final solution (Rosengrant et al., 2006; 

Rosengrant, 2007).  However, there have been no reported detailed analyses of how the student 

progresses through each stage of the problems solving process other than the work done by 

Heller and  Reif, (1984) to create a model of what factors should be included to replicate good 

problem solving skills. This dissertation included the study of how students progress through the 

different stages of obtaining the solution to the problem.  

 

Math in Physics 

The final phase of the problem solving process, phase III, requires the student to solve the 

system of equations that are generated in phase II.  Equations 10 and 11 represent a system of 

equations that a student is likely to find in an algebra course.   

 

 2 5 7 (10)  
   

 
 3

7
5 6  (11)  
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It has been determined that many students who are in science courses cannot solve basic 

algebra equations (Clement, 1982b), such as those shown in Equations 10 and 11. They also 

struggle to define and identify variables in the algebraic equations, which is a necessary skill in 

order to solve algebraic equations (Rosnick, 1981).  Students view the process of solving the 

equation for a given variable as being isolated from the problem, rather than viewing the variable 

as representing a physical quantity (Van Heuvelen, 1991; Clement, 1982b).  Many students also 

struggle to solve for variables in the equations, especially when there are not any numbers to 

plug into the equation, and if variables other than the variable x are present.  They are more 

comfortable plugging in numbers since it reduces the cognitive load when solving the equation 

(Hsu, 2004).   

Equations 14 and 15 represent two typical equations that students are likely to encounter 

in their physics course during phase II of the problem solving process, and they also represent 

the types of equations that students are expected to solve in phase III.  Comparing Equations 12 

and 13 with Equations 14 and 15 reveal that their form is strikingly similar.  Therefore, it is 

feasible to assume that the skills that are necessary to solve Equations 12 and 13 are the same 

that is required to solve Equations 14 and 15.  In addition to the “algebraic skills” that are 

required to solve Equations 12 and 13, Equations 14 and 15 require an additional skill set in 

order to solve them. 

 2 5 7 (12)  
 

 3
7

5 6  (13)  
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 sin  (14)  
 

 FN mg cos θ ma  (15)  
 

Equations 14 and 15 contains  sin   cos  , respectively.  They also contain ax and ay.  

Therefore, the additional skills needed to solve the equations are such that the student has to 

identify those variables from the word problem in order for the student to be able to solve the 

equations.  However, the variable may not be explicitly defined in the problem.  The word 

problem may describe an object moving, for example, at a constant speed.  In this case, the 

student must recall that acceleration is defined as the change in velocity per unit time as shown 

in Equation 16 

 ∆
∆

 (16)  

 

However, since the speed is constant, the acceleration is zero; ax = 0. Therefore, math plays a 

fundamental role in physics and may affect how successful a student is solving problems.  for he 

purpose of this study, phase III was not addressed. 

  

Summary 

 Problem solving skills are, perhaps, the most important skills for a student to develop in 

their physics class. Not only are these skills important for physics, but they are useful in other 

science courses as well.  In order to be successful, the student must have mastered both the 
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quantitative and qualitative skills that are a necessary part of the problem solving process.  

Research is currently underway to understand the specific difficulties that students have as they 

solve problems in order to help ensure that their classroom experience provides them with all of 

the necessary tools to maximize their learning gains.  There are many different types of problems 

that the student will encounter on their physics journey.   However there is a specific class of 

problems that provides the best representation for, and lays the foundation for, many other 

problems they will encounter.  These problems are in the area of mechanics and have a solution 

process that is well defined.  Independent of the type of problem that a student encounters in 

physics, or any other science, there are certain basic skills that are required in order to be 

successful.  One of the most important skills requires the student’s ability to represent the 

problem in as many different ways as possible, which is one of the major ways that the student is 

able to show that he or she has obtained a firm conceptual understanding of the content. 

However, there may be gaps in the student’s conceptual understanding as it relates to problem 

solving.  This study sought to identify the factors which contribute to the gap in the student’s 

understanding.  Chapter three discussed the methods, research design and data collection process 

that were used to identify the conceptual difficulties that students have as they solve word 

problems.  
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CHAPTER THREE: METHODOLOGY 

Introduction 

This study investigated the specific errors that students who were enrolled in an 

introductory physics class made as they solved force and motion problems.  The solution to the 

problems in this study consisted of three phases.  This chapter discussed the research design and 

the quantitative and qualitative methods that were used to collect and analyze the data.  The 

chapter outlined and explained how the instruments were used within the context of an actual 

problem solved by a student who was part of this study.  

Research Design 

This study used a mixed methods design. Each student was given 1 hour to solve problems 

whose solution consisted of three phases. They were give separate sheets of paper that was   used 

to solve the problems.  Quantitative methods were necessary in this study since each phase was 

analyzed separately to determine if a significant correlation existed between the quality of the 

free-body diagram and the quality of the mathematical equations, and also if  the performance in 

one of the phases could be used to predict the performance in one of the other phases.  In order to 

investigate if a prediction can be made, it was appropriate to use linear mixed effects model.  

Qualitative methods were appropriate since this study also sought to identify the specific errors 

that students make within each of the phases.  

Setting 

The study was conducted in a calculus-based physics course, during the summer at a large 

research based university located in the south east.   The average enrollment during the summer 
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in a calculus based physics course was approximately 180 students. The number of students who 

participated in this study was N = 65, and were enrolled in the calculus based section of physics.  

The majority of the students in the class were mostly males.  The physics courses, at this 

university, were taught in the traditional way, meaning that there was a major focus on problem 

solving with an emphasis placed mostly on the quantitative aspect.  The students had 3 exams, 

including a midterm and final.  The problems on the exams were the standard problems that are 

generally given during the first semester of physics, which are primarily modeled after the end of 

chapter problems in the text.  The course included a lecture and lab component.  The lab 

component, which was taught by Graduate Teaching Assistant, to the course met once each week 

for three hours.  The first hour of the lab component was used to allow students an opportunity to 

get additional help with homework questions if they needed it, or to ask questions about general 

questions they may have had.  IRB permission was requested and granted to carry out this study. 

(Appendix A). 

Research Questions 

1. What types of errors do students make in phase I of a Force and Motion physics 

problem that focuses on pulley and non-pulley type problems? 

2. What types of errors do students make in phase II of a Force and Motion physics 

problem that focuses on pulley and non-pulley type problems? 

3. Does quality of performance in Phase I predict the quality of performance in Phase 

II?  
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Questions and Solution 

The questions in this study were in one of two categories.  Category one consisted mainly 

of objects moving along an incline as shown in Figure 5a, and those in category two consisted of 

pulleys connected to objects which move along an incline as shown in Figure 5b.  These two 

categories best represent many of the types of problems, and various combinations of them, 

students are required to solve in the standard introductory physics class.  These problems 

required the students to apply Newton’s Second Law in component form. 

 

 
   Figure 5: a. Incline   b. Pulley problems 

 

The question below is a sample of the type of question and its solution that were used in 

this study:  

“A block of mass m has just begun descending a slope at an angle θ.  Assuming the coefficient of 

kinetic friction is , what is the blocks acceleration?” 

Following the phases as outline by ( Heller & Reif, 1984), the first step is to draw the free 

body diagram, as shown below 
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Figure 6:  Free body diagram 

 

The construction of the free –body diagram, shown in Figure 6 is followed by the 

application of Newton’s second Law in component form to the free body diagram that resulted in 

a system of equations, shown below  

Applying Newton’s second Law in the x direction, we obtain: 

  (17)  
   
 sin  (18)  

 

Applying Newton’s Second Law to the y-direction, we obtain 

  (19)  
 

 FN mg cos θ ma  (20)  
   

 

Thus, the resulting two equations of this phase II are shown below 

 sin  (21)  
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 cos  (22)  
 

These two phases were analyzed using the instruments discussed in the following section. 

 

Instruments 

The main focus in this category had to do with the quality of the free body diagram in 

phase I above.  The quality of the free-body diagram was evaluated using the rubric, shown in 

Table 4, created by (Etkina et al., 2006).  The reliability and validity of the rubric was addressed 

in an article by (Etkina et al., 2006) as well. The rubric provided a way to systematically assess 

the quality of the free body diagrams that students draw as a first step in the solution of word 

problems.  The scale ranges from zero, which indicated that the student did not draw a free body 

diagram as part of their solution process to three, indicating that not only did the student draw the 

diagram, but it was adequate; it had all of the necessary components and was clear what each of 

them represented.  
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Table 4: Free body diagram rubric 

Scientific ability 0 (Missing) 1 (Inadequate) 2 (Needs 
improvement) 

3 (Adequate) 

Is able to 
construct a free-
body diagram  

No free-body 
diagram is 
constructed 

FBD is 
constructed but 
contains major 
errors such as 
incorrect force 
vectors; length of 
vectors; wrong 
direction; extra 
incorrect force 
vector, or 
missing vector. 

FBD contains no 
errors in vectors 
but lacks a key 
feature such as 
labels of forces 
with two 
subscripts; 
vectors are not 
drawn from a 
single point; or 
axes are missing. 

The diagram 
contains no 
errors and each 
force is labeled 
so that it is clear 
what each force 
represents.  

 

Heller and Reif (1984) created a list of scientific abilities, that best describes the problem solving 

behaviors of a student who has a good conceptual understating of physics concepts.  These 

abilities were validated with human problems solvers to ensure reliability of the results of the 

rubric. In order to assess the major scientific abilities (Heller & Reif, 1984) that are required to 

produce a high quality set of equations in phase 2 of the solution process were identified.  Table 

5 is a summary of the abilities. 

Table 5:  Scientific Abilities 

Scientific Ability 
Adequacy of Motion:  Was information about the magnitude and direction of each system's 
acceleration correctly included in the equations? (i.e. did they explicitly show ay = 0 and ax ≠ 0) 

 
Adequacy of Interaction: Were all required forces included in the equations with the correct 
magnitude? 
 
Adequacy of Equations: Were the number of equations correct? 
 
Adequacy of direction: Was the direction of the force consistent with the coordinate system 
provided? 
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A more detailed explanation of how these rubrics were used will be provided in a different 

section. 

Methods 

Data Collection and Analysis 

                       The data collected were analyzed using two rubrics (Heller & Reif, 1984; 

Etkina, 2006), due to the two different phases that define the solution process. The first step in 

solving a word problem is the generalization of an initial problem description, and qualitative 

analysis, designed to facilitate the subsequent construction of a problem solution ( Heller & Reif, 

1984) this initial description helped highlight the major details in the problem.  Representations 

play a critical role in the physics classroom and can be used in many different ways during 

instruction (Dufresne et al., 1997)  

1.  As a means to elucidate a problem, as occurs when a student draws a sketch of a physical 

situation and provides a summary of given information 

2.  As the focus of a problem, as occurs when a student is explicitly asked to draw a graph 

or find the value of a physics quantity from a given graph 

3.  As a step in a formal procedure, as occurs when students are required to draw a free-

body diagram as one of the initial steps in applying Newton’s laws to solve a problem 

 

However, mode three described above is best aligned with the strategies and instruction 

that instructors use in the physics classroom; therefore, it forms the basis of this study.  In 

particular, the free-body diagram was used as the vehicle through which the student’s conceptual 
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understanding was explored as it related to the first step in the solution process of the class of 

problems that were explored in this study.  The solution process to these problems is well 

defined ( Heller & Reif, 1984) and is shown below. 

 

1. The generation of an initial problem description, and qualitative analysis, designed to 

facilitate the subsequent construction of a problem solution 

2. The generation of the actual solution by methods which facilitate the decisions making 

required for efficient search 

3. The assessment and improvement of this solution. 

The three phases above in the solution process document the class of word problems that were 

investigated in this study. The first phase in the process is considered the most important phase 

due to its requirement for the student to translate the initial word problem into a non-

mathematical representation. The second phase of the problem solving process requires the 

student to translate the non-mathematical representation from phase I into a mathematical 

representation.  This is accomplished by using a specific physics concepts known as Newton’s 

Second Law (NSL).  Force is defined as a push or pull on an object which results in a change in 

the object’s velocity. A change in an object’s velocity provides acceleration to that object.  By 

definition NSL states that this acceleration, which the object experiences, is directly proportional 

to the net force acting on the object, and inversely proportional to its mass.   

The diagrams in Figure 11 show an example of two free body diagrams of a block sliding 

down an incline. The methods that may be used to construct them are numerous (Fisher, 1999; 
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Heller and Reif, 1984; Lane, 1999; Maloney, 1990, Mattason, 2004; Newburgh, 1994; Puri, 

1996; Van Heuvelen 1991b), but the qualitative features of an adequate drawing should be the 

same.  In this case the rubric that was used was modified slightly to take into account more 

details of the free body diagram.  The free body diagram serves two main purposes. The first was 

to allow the problem solver with a consistent way to identify all of the forces acting on the object 

in the problems. These forces are indicated by the arrow tipped lines in the figures.  The second 

purpose was to identify a coordinate as it provided a way for the problem solver to identify if the 

arrow tipped line is pointing in the positive or negative direction.  Although there are many 

techniques that may be used to construct these free-body diagrams, only the major qualitative 

requirements were used during the analysis, which are to identify the forces of the object and to 

define a system for identifying the directions of the force.  Using the rubric by (Etkina et al., 

2006) two guiding factors were used to determine the quality of the free body diagram. In 

general, when and object is resting on a surface, the force of gravity acts directly downward.  If 

that same object is placed on an incline, gravity is still acting downward on the object, however 

the force has to be “resolved into components” to reflect the fact the object is on an incline and 

the weight is distributed in a direction along the incline (parallel to it) and into the incline 

(perpendicular to it), which was indicated in Figure 7. 
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Figure 7: Free body diagram and forces 

 

 This was indicated by the F1 in Figure 7 along with the two lighter grey lines which form 

a small triangle.  The angle in that same small triangle indicated by α, is correlated with the angle 

to which the incline itself is raised, which is also indicated by α.  An x and y axis coordinate 

system was draw above the incline. The coordinate system indicated that an arrow-tipped line 

directed downward along the incline will be identified as directed in the positive x direction, and 

likewise an arrow tipped line directed upward, but perpendicular to the surface of the incline is 

said to be directed in the positive y direction.  Comparing this to diagram in the second figure, 

we have a similar situation, with the exception that the coordinate system is part of the incline 

drawn at the base of the incline, and the components that result in the resolution of the force of 

gravity are label as 12 and 12; these two values correspond to the two lighter grey 

lines in the first figure.   At this point, the decision has to be made on how to assess the quality 

for the free body diagram using the rubric in order to differentiate collected data. We must first 

ask, if there was a coordinate system?  In both of these cases, we find that the students drew a 
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proper coordinate system.  The second question assessed whether or not the students drew all of 

the necessary forces; for both examples the answer is yes, including the fact they resolved force 

of gravity into its proper components.  Using the rubric, the first diagram received a score of 2 

according to the rubric.  It did not receive a 3 since the components of the weight are not labeled.  

The second diagram, where the force arrows are somewhat unconventional still received a score 

of 3.  The diagram demonstrated that the student understands the concept of resolving force and 

the relationship that they resolved force has with the angle of inclination. In this case, since the 

student had identified all of the forces, provided a proper coordinate system, and labeled all of 

the forces correctly, the student was awarded a quality level of three.  These two examples were 

used to guide the analysis of all students’ responses.  

 

Phase I Data Collection and Analysis 

Research Question one: What types of errors do students make in phase I of a Force and 

Motion physics problem that focuses on pulley and non-pulley type problems? 

 

 The research questions and study design were submitted to university’s Institutional 

Review Board (IRB).  After a thorough review of the documentation, the study received 

approval to be carried out at the university by the IRB office.  The first research question that 

was addressed in this study was: 
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To answer this question, I used the rubric in Table 6 (Etkina,2006), along with the coding 

scheme in Table 7.  Table 6 was designed to assess the quality level of the free-body diagram. 

The values range from zero, indicating that the student showed no evidence of a free body 

diagram to three which indicates that an adequate free body diagram existed.  Since this study 

was concerned with identifying the specific errors that students enrolled in an introductory 

calculus based physics class made, when they constructed a free-body diagram, it was 

necessary to create Table 7. 

 

 Table 6:  Free-body diagram rubric 

Scientific ability 0 (Missing) 1 (Inadequate) 2 (Needs 
improvement) 

3 (Adequate) 

Is able to 
construct a free-
body diagram  

No free-body 
diagram is 
constructed 

FBD is 
constructed but 
contains major 
errors such as 
incorrect force 
vectors; length of 
vectors; wrong 
direction; extra 
incorrect force 
vector, or 
missing vector. 

FBD contains no 
errors in vectors 
but lacks a key 
feature such as 
labels of forces 
with two 
subscripts; 
vectors are not 
drawn from a 
single point; or 
axes are missing. 

The diagram 
contains no 
errors and each 
force is labeled 
so that it is clear 
what each force 
represents.  

 

Table 7 is essentially a more detailed version of Table 6.  According to Table 6, a score of 3, 

indicating the highest quality, indicates that the student created a free-body diagram free of 

errors.  In order to received a score of three, the free body diagram must exceed the descriptions 

which correspond to a score of 0,1 or 2 in Table 6.  For example, the free-body diagram must 

have a clearly defined coordinate system, all forces must be included, and all forces must be 
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pointed in the correct directions, etcetera, according to Table 6.  On the other hand, if the student 

does not have a clearly defined coordinate system, or they did not included all of the forces, or 

some of the forces they included were not pointing in the correct directions, these were identified 

as errors.  Table 7 shows all of the possible errors that the student could make, based on Table 6, 

that would ultimately reduce the quality level of their free body diagram.  Each of the possible 

errors was assigned a code that was used to track the errors. So, if a student drew a free-body 

diagram that did not included mg, that error was coded as “1”; if they free body diagram included 

“irrelevant forces”, that error was coded as “7”, etcetera.   

Table 7: Coding Scheme for errors 

Code Error 
1 Missing mg 
2 Missing mgcosθ 
3 Missing mgsinθ 
4 Missing FN
5 Missing coordinate system 
6 Missing Fk
7 Addition of extra forces(irrelevant  forces) 
8 Forces pointed in wrong direction 
9 Missing free-body diagram 

 

A description of how this rubric was applied to assess the quality of the free-body diagram was 

described below. Figure 9 shows a free body diagram that was constructed by one of the 

students. 
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Figure 8:  Sample free body diagram 

 

 

In order to assess the quality level of the free body diagram in Figure 8, the rubric in Table 6 and 

Table 7 were used. An excel spread sheet was used to track the errors that the student made in 

this diagram.  Table 8 shows a sample of the Excel spreadsheet that was used to track the errors. 

 

Table 8:  Sample Excel sheet used to track errors 

Participant Problem 
ID 

FBD 
error 

FBD 
Score 

Error1 Error2 Error 3 Error 4 Error 5 Error 6

3 

 

2 2,5 1  2   5  

 

Table 8 consists of two columns.  A description of each column is shown in Table 9. 
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Table 9:  Explanation of columns in Table 6 

Column Label Explanation 
Participant This refers to the student ID 

Problem ID This refers to the problem number 

FBD error This refers to the errors made based on Table 8 

FBD score This refers to the quality of the FBD diagram 
in Figure 5  based on Table 9 

 
Error 1 A number appears here only if it appears in the 

FBD error column, which is repeated 
  

This method was repeated for each participant, N = 65 and all four problems.  

Phase II Data Collection and Analysis 

 

Research Question 2: What are the specific errors that that students make in phase 2 

of the problem solving process? 

In order to answer the second research question, methods similar to those used in the 

Phase I Data Collection section were employed. The main difference was in the rubric that was 

used.  Figure 9 showed an example of a set of equations that were produced by one of the 

students. 
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Figure 9:  Sample student equations in phase II 

 

 

 To assess the quality of the equations in Figure 9, the rubric in Table 9 was used which 

identifies the major scientific abilities (Heller and Reif, 1984) that are necessary to understand in 

order to produce a high quality set of equations.  Table 10 summarizes these abilities: 
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Table 10:  Scientific Abilities 

Scientific Ability 
Adequacy of Motion:  Was information about the magnitude and direction of each system's 
acceleration correctly included in the equations? (i.e. did they explicitly show ay = 0 and ax ≠ 0) 

 
Adequacy of Interaction: Were all required forces included in the equations with the correct 
magnitude? 
 
Adequacy of Equations: Were the number of equations correct? 
 
Adequacy of direction: Was the direction of the force consistent with the coordinate system 
provided? 
 

The four scientific abilities outlined in Table 10 were recoded to make them more useful in the 

data collection.  Table 10 thru Table 14 show the coding that was used to assess each of the 

abilities defined in Table 10. If the student provided the correct number of equations in their 

solution, they received the corresponding score.  In order to track the specific errors students 

made in the Phase II, Table 11 was created. 

 

       Table 11: Error Codes for Phase II 

Code Error 
1 Did not identify magnitude of 

acceleration 
 

2 Did not have correct number of 
equations 

 
3 Incorrect magnitudes 

4 Inconsistent use of coordinate system 
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         Table 12:  Equation Scientific Ability 

Scientific ability 0 1 
Adequacy of equations:  Were the 
number of equations correct No Yes 

 

Table 13:  Forces Scientific Ability 

Scientific ability 0 1 2 
Adequacy of interaction 
information: Were all 
required forces and correct 
magnitudes included in the 
equations? 

No equations No Yes 

 

 

       Table 14: Direction Scientific Ability 

Scientific Ability 0 1 2 
Adequacy of direction: Was the 
direction of the force consistent 
with the coordinate system provided 

No 
coordinate 
system 
provided 

No Yes 

 

Table 15 showed a sample of the Excel spreadsheet that was used in order to track the errors 

each student made.  Table 16 is a description of the columns in Table 15.  

Table 15:  Excel Sheet to track equation errors 

Participant Problem 
ID 

Equation 
error 

Error1 Direction Equation 

14 

 

1 2,5 3 0 1 
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Table 16:  Explanation of columns in Table 13 

Column Label Explanation 
Participant This refers to the student ID 

Problem ID This refers to the problem number 

Equation error This refers to the errors made based on Table 

10 

Equation This refers to the error made based on 11 
 

Error 1 A number appears here only if it appears in 
the Equation error column, which is repeated 

 

This method was repeated for all 65 students. 

 

Linear Mixed Methods Design 

Research Question 3: Can the quality of a student’s performance in phase 1 be used to predict 

their performance in phase 2? 

To answer this question, it was necessary to determine if there was a significant relationship 

between the quality of the free-body diagram in phase I, and the quality of the equations in Phase 

2.  This analysis required the comparison between two numbers; the numerical quality of the 

free-body diagram and the numerical quality of the equations.  These numerical quality values 
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were obtained from the Excel spreadsheets created in each section above.  This data were then 

computed in PASW Predictive Analytics SoftWare (PASW).  

Summary 

In Chapter 3 a review of research questions, research design, methods, data collection and 

analysis were presented.  In order to answer the first two questions the solutions that students 

provided had to be coded into a form that could be analyzed more easily.  It was necessary since, 

the research questions sought to identify the specific errors that students make when they solve 

Force and Motion problems. A Linear Mixed Model was necessary in order to answer the third 

research question since it sought to determine if a relationship existed between two categories. 

The results of the analysis were reported in the Chapter 4. 
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CHAPTER FOUR: DATA ANALYSIS 

Introduction 

This chapter discussed the mixed methods design that was used to document the difficulties that 

students have with word problems, and the potential factors that may affect their ability to master 

physics concepts and translate concepts to problems that are presented in a different context.   

The solution process of the problems in this study consisted of three phases.  Each phase was 

analyzed separately to determine the qualitative features of the solution, which were 

subsequently used to characterize the quality level of each phase.  After determining the quality 

level of each phase, a linear mixed effects model was used to determine if a significant 

relationship existed between the quality of the phases.  

Free-Body Diagram 

What types of errors do students make in phase I of a Force and Motion physics 

problem that focuses on pulley and non-pulley type problems? 

 

The first step in the problem solving process required the student to express the initial word 

problems in the form of a non-mathematical representation, known as a free-body diagram.  In 

order to assess the quality level of these free body diagrams, the rubric in Table 17 was used.  
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Table 17:  Free body diagram rubric 

Scientific ability 0(missing) 1(Inadequate) 2(Needs 
improvement) 

3 
(Adequate) 

Is able to construct 
a free-body 

diagram 

No free-body 
diagram is 
constructed 

FBD is 
constructed but 
contains major 
errors such as 

incorrect forces 
vectors; length of 

vectors; wrong 
direction; extra 
incorrect force 

vector, or missing 
vector 

FBD contains no 
errors in vectors 
but lacks a key 
feature such as 
labels of forces 

with two 
subscripts; vectors 

are not drawn 
from a single point 

or axes are 
missing 

The diagram 
contains no 
errors and 

each force is 
labeled so 
that it is 

clear what 
each force 
represents 

 

Table 17 was expanded into a format that was more suitable for tracking the specific errors that 

students made as they solve word problems.  For example, a score of 2, according to Table 17, 

indicates that the free-body diagram needs improvement.  The free-body diagram lacks features 

such as the inclusion of all of the necessary forces to fully characterize the word problem.   

However, since this study was focused on the specific errors, we needed a way to identify the 

particular force, or any other error, that the student neglected to include in their free-body 

diagram. Table 18 showed the coding that was used to accomplish this.  The first column 

represents the code that was used to identify the specific errors, which are located in column 2.  
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Table 18: Coding rubric for error types 

Code Error 
1 Missing mg 

 
2 Missing mgcosθ 

 
3 Missing mgsinθ 

 
4 Missing FN 

5 Missing coordinate system 
 

6 Missing Fk 

7 Addition of extra forces(irrelevant  
forces) 

 
8 Forces pointed in wrong direction 

 
9 Missing free-body diagram 

 

 

Each student was given a problem and their solution was analyzed using the rubric in Table 17 

and Table 18.  Figure 13 is a free body diagram submitted by one of the students who 

participated in this study.  
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Figure 10: Sample student free-body diagram of quality 1 

 

Figure 11 showed the free-body diagram that one of the students drew.  Here, the student 

received a score of 1, according to the rubric in Table 17.  This free-body diagram received a 

score of 1 since the student did not included all of the relevant forces in the diagram, nor does it 

have a clearly identifiable coordinate system.  In addition to assigning it a quality score of 1, the 

specific errors needed to be identified.  Referring to Table 18, since the free body diagram is 

missing a force, in particular mgcosθ, and it was  missing a clearly defined coordinate system, it 

was  coded 2( missing mgcosθ) and  5 (missing coordinate system). 

The free-body diagram in Figure 14 is an example student response that would receive a score of 

3 since it has all of the appropriate forces labeled, and has a clearly identifiable coordinate 

system.  
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Figure 11: Sample student free-body diagram of quality 3 
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Problem 1 
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                  Table 19:  Error Types on Problem #1 

Error Type 1 2 3 4 5 6 7 8 

Total number of error 
type for problem #1 6 49 46 7 45 7 16 13 

 
%  of student who 
answered making a 
specific error type 
 

9 75 71 11 69 11 24 20 

overall % of each error 
type 3 26 24 4 24 4 8 7 

 

Table 19 shows that 75% of the students did not include the mgcosθ vector in their 

free-body diagram, which accounted for 26% of the errors.  The next most frequent type of 

error, which was the omission of mgsinθ, which accounted for 24% of the errors was made by 

71% of the students.  Sixty-nine percent of the student did not include a clearly identifiable 

coordinate system, which accounted for 24% of the errors.   Nine percent of the students did 

not did not include the mg vector in their diagram, which accounted for 3% of the errors.  
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Problem 2 

 

Table 20 shows that 71% of the students did not include the mgcosθ vector in their free-

body diagram, which accounted for 21% of the errors.  The omission of mgsinθ also 

accounted for 21% of the errors and was also made by 21% of the students. The next most 

frequent type of error, which was the omission of coordinate system, accounted for 23% of 

the errors and was made by 77% of the students. Only 11% of the students omitted the normal 

force (Fn) from their diagram.  
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Table 20:  Error Types on Problem #2 

Error Type 1 2 3 4 5 6 7 8

 
total number of error 
type for problem #2 

16 46 46 7 50 14 21 16

 
% of student who 
answered making 
specific error type 
 

25 71 71 11 77 21 32 25

Overall % of each error 
type 7 21 22 33 23 6 10 7

 

 

Problem 4 
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Table 21 shows that 66% of the students did not include mgcosθ, which accounted for 25% of 

the total number of errors.  The omission of mgsinθ and corrdinate system accounted for 22% 

and 58% of the total number of errors, respectively. Twenty-three percents of the students had 

forces pointed in the wrong direction, which accounted for 9% of all the errors. The error type 

that occurred the least was the omission of Fk  ,which accounted for 7% of the errors, and was 

made by 5% of the students 

Table 21:  Error Types on Problem #4 

Error Type  1  2  3 4 5 6 7  8

TOTAL NUMBER 
OF ERROR TYPE 
FOR PROBLEM #4 

10  43  38 10 38 3 12  15

% of student who 
answered making 
specific error 
type 

15  66  58 15 58 5 18  23

overall % of each 
error type  6  26  22 6 22 2 7  9

 

 

Problem # 5 was analyzed in the same way except that since it is a category II problem, not all of 

the error types were relevant. Table 22 shows the relevant possible errors for problem 5. 
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Table 22:  Category II problems 

Code Error 
1 Missing mg 
5 Missing coordinate system 
7 Addition of extra forces(irrelevant  forces) 
8 Forces pointed in wrong direction 

 

Table 23 shows that most of the students did not included a coordinate system when on 

their free-body diagram, which accounted for approximately 70% of the total number of errors, 

and were made by 40% of the students.  Irrelevant forces errors account for 22% of the errors, 

and was made by 12% of the students.  The least number of errors accounted for 8 percent of the 

total number of errors and were made by 5% of the students.  

               Table 23:  Error for problem #5 

Error Type  1 5 7 8 

TOTAL NUMBER OF 
ERROR TYPE FOR 
PROBLEM #5 

0 26 8 3 

% of student who 
answered making 
specific error type 

0 40 12 5 

overall % of each error 
type  0 70 22 8 

 

 

Application of Newton’s Second Law 

What types of errors do students make in phase II of a Force and Motion physics 

problem that focuses on pulley and non-pulley type problems? 
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The second phase of the problem solving process requires the student to use the Newton’s 

Second Law in component form to a set of equations, which is a mathematical representation of 

the problem. Each of the problems were analyzed against the rubric in Table 24. 

 

Table 24:  Rubric for phase II 

Code Error 
1 Did not identify magnitude of 

acceleration 
 

2 Did not have correct number of 
equations 

 
3 Incorrect magnitudes 

 
4 Inconsistent use of coordinate system

 

Table 25 shows that an inconsistent use of the coordinate system accounted for 62% of 

the total number of errors, and were made by 95% of the students.  Very few students identified 

the magnitude of the acceleration; this error accounted for 61% of the errors, and was made by 

94% of the students.  The least number of errors accounted for 42 % of the total number of errors 

and were made by 66% of the students.  
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               Table 25: Error Types on Problem #1 

Equation Error Type for 
problem 1  1 2 3 4 

TOTAL NUMBER OF 
ERROR TYPE FOR 
PROBLEM #1  61 42 43 62 

% of student who 
answered making 
specific error type 94 65 66 95 
overall % of each error 
type  29 20 21 30 

 

Table 26 shows that 94% of the students did not identify the magnitude of the 

acceleration, which accounted for 61% of the total number of errors. Additionally incorrect 

magnitude also contributed to the total errors, they accounted for 52% of the errors, and was 

made by 80% of the students.  30 % of the total number of errors was due to incorrect 

magnitudes of the force , and was made by 46% of the students.  

 

     Table 26:  Error Types on Problem #2 

Equation Error 
Type for problem 
2  1 2 3 4 

TOTAL NUMBER 
OF ERROR TYPE 
FOR PROBLEM #2 61 42 30 52 

% of student who 
answered making 
specific error type 94 65 46 80 
overall % of each 
error type  33 23 16 28 
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Table 27 shows 98% of the students did not identify the correct magnitude for the 

acceleration, which accounted for 64% of the total number of errors. Additionally, many students 

did not correctly use the coordinate system, which accounted for 61% of the errors, and was 

made by 94% of the students.  Incorrect magnitudes of  the forces were identified 31% of the 

time and accounted for 31 % of the total number of errors and were made by 48% of the students  

Table 27:  Error Types on Problem #4 

Equation Error 
Type for problem 
4 

1 2 3 4 

TOTAL NUMBER 
OF ERROR TYPE 
FOR PROBLEM #4 

64 58 31 61 

% of student who 
answered making 
specific error type 

98 89 48 94 

overall % of each 
error type  30 27 14 29 

 

 

Table 28 shows, 26% of the total number of errors we due to forces being labeled with 

the incorrect magnitude were made by all of the students.  Students did not identify the correct 

magnitude of the acceleration where those errors accounted for 25% of the errors, and was made 

by 94% of the students.  Although a greater number of students did not have the correct number 

of equation, which occurred the least, account accounted for 31 % of the total number of errors 

and were made by 48% of the students. 
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Table 28:  Error Types on Problem #5 

Equation Error 
Type for problem 
5 

1 2 3 4 

Total number of 
error type for 
problem #5 

64 59 65 65 

% of student who 
answered making 
specific error type 

94 91 100 100 

Overall % of each 
error type  25 23 26 26 

 

 

Qualitative Analysis 

A linear mixed effects model was used in order to determine if a significant 

relationship existed between the quality of the free-body diagram and the quality of the 

equations that were produced in phase 2 of the solution process.   It was determined that there 

was a statistically significant relationship, t(245) = -4.48, p <.001, B = -0.153, SE = .034, 

between the quality of the free-body diagram and the quality of the equations that were 

generated as a result of the application of Newton’s Second Law in component form.  Since 

the relationship was significant, we conclude that students who obtained a high score on the 

quality on the free-body diagram obtained a low on the quality of the equations.   In order to 

gain more insight into the relationship between the equations and the free-body diagram, It 

was also determined that there is a statistically significant relationship, t(207) = 3.45, p =.001, 

B = .649, SE = .188, between the quality of the equations produced in pulley type problems 

and non-pulley type problems. However, the quality of the equations that were produced in 
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the pulley type problems was higher than the quality of the equations that were produced in 

the non-pulley type problems, so students performed better on the problems that involved 

pulleys.  Additionally, it was determined that there was a statistically significant difference, 

t(126) = -10.3, p <.001, B = -1.42, SE = .139,in the quality of the equations that are generated 

by the students depending on if the problem asks for a numerical computation as opposed to a 

purely abstract representation of the answer. The statistical significance showed that the 

predictive model was such that students who perform well on problems that require numerical 

computations, will likely perform poorly on problems that require and abstract representation. 

 

Summary 

Chapter 4 presented a detailed analysis of students’ errors and results.  The mixed methods 

revealed several findings.  The errors that students made have been identified, and the errors that 

occur the most frequently in problems that were on an incline included the omission of mgcosθ , 

mgsinθ, and a clearly defined coordinate system.  While the students made other errors, these 

errors were made the most frequently.  Additionally, there was a negative statistically significant 

relationship between the free-body diagram and the equations that produced in phase 2 of the 

solution process. With respect to the quality of the equations, the types of errors that students 

made seem to make up on average 20-30 % of the total errors on each of the problems.  The 

implications and a more detailed discussion of these results were reported in chapter 5.  
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CHAPTER FIVE: CONCLUSION 

Introduction 

 It was determined by Duit (2007) that in order to become a successful problem solver 

in physics, the problem solver was required to have both a conceptual understanding of the 

physics concepts, in addition to an understanding of the specific processes of how to solve the 

problem.  In order to work towards changing the ideas that students have, instructional 

strategies must be aligned with them, and it must be based on a comprehensive understanding 

of the misconceptions that students have when they enter the classroom ( Heller and Reif, 

1984).  This chapter outlined the major findings related to the errors that students made as 

they solved Force and Motion problems and gave a brief discuss of the implications of the 

findings.  This chapter concluded with some possible directions for future research.  

 

Research Question1 

What types of errors do students make in phase I of a Force and Motion physics problem that 

focuses on pulley and non-pulley type problems? 

The results of the study indicated that students consistently make certain errors when they solve 

Force and Motion problems.  However, it was determined that certain errors occurred more 

frequently than others. These errors include the omission of two particular forces; namely 

mgcosθ , mgsinθ.   In addition to these forces students did not include a clearly defined 

coordinate system as part of their free-body diagram.   



74 
 

In almost every case, the student included the mg vector as part of their diagram; however 

they did not resolve the force into the appropriate components.  The resolution of mg into 

components serve as the fundamental distinction between objects that move along on a flat 

surface (θ = 0), and objects that move along an incline (θ≠ 0), where θ is the angle of the incline.  

Since the students included all of the other forces on the diagram, but not the components of the 

weight, it appears that, perhaps, they view these components as being “understood” to be part of 

the free-body diagram and which do not need to explicitly labeled; in some cases the “vectors” 

were included but not labeled. This interpretation, as a reason to explain the omission of these 

forces, leads to a more general conclusion, and that is the student does not understand the 

function of the free-body diagram, or their understanding is partial.  This partial understanding 

ultimately creates a challenge when students are given similar problems and asked to solve them.  

An example of this could include the application of a force that is applied in a direction that is at 

an angle α relative to the direction of motion.  In this case, the student may not be able to answer 

any quantitative or qualitative questions which require them to focus on the components of the 

force, rather than the magnitude of the force.  

The lack of clearly defined coordinate systems was another component of the free-body 

diagram that many students did not include. This is another indication that the student has a 

partial understanding of the definition of a free-body diagram.  Although, it may even point out 

the lack of a conceptual understanding with respect to the definition of a vector; they have both 

magnitude and direction. However the operative part of that definition is the “direction”.  If the 

student did not include a coordinate system, this is, perhaps, an indication that they do not 

understand the importance of specifying the direction of a vector. The coordinate system can be 
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viewed as the “road map” of the free body diagram; it is essentially the connecting factor that 

bridges phase I and II together in the problem solving process. Without a coordinate system, the 

transition from phase I to phase II is based on the random assignment of directions to the forces, 

which result from the application of Newton’s Second Law in component form.  In cases where 

the assignment of the direction of these forces is not random, they may be based on “recall” of 

what they have seen in the lecture.  Since many of the free-body diagrams that students 

encounter in class consist of a coordinate system which choose +x in the direction of motion of 

the object and +y in the direction that is perpendicular to the direction of motion, or in a direction 

parallel to the normal force.   

The analysis of one question in particular led to interesting results.  Question # 4 was 

similar to the other questions in the same category.  The major difference was that instead of 

asking for a numerical computation, the students were asked to solve the problem in an abstract 

way, expressing the answer in terms of variables rather than using numbers.  There was one error 

that contributed significantly to the overall errors made in the problem, which was the addition of 

an extra force.  The specific force that was added was friction fk. The addition of this force was 

significant since the problem never mentioned friction.  However, 72% percent of the students 

added this extra frictional force to the free body diagram.  The data do not provide a definitive 

reason as to why so many students added this extra force.  However, it may provide some insight 

into the possibility of a behavior that is consistent with a similar behavior displayed by students 

when they solve word problems.  It has been document that when students are presented with a 

word problem that required the use of an equation in order to solve the problem, to reduce their 

cognitive load, they simply write down several equations, even if they are not related to the 
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problem (Hsu. 2004).  The results of question four may point to a similar strategy displayed by 

students as they construct free body diagram; the inclusion of unrelated forces, instead of 

equations, to reduce the cognitive load that they may experience as they create free body 

diagrams.  Another explanation may be that some sort of a “carry-over” or “recency” effect is at 

play.  The problems that preceded question four were all similar in what was asked in the 

problem, except that those problems required the inclusions of a frictional force in the free body 

diagram. Perhaps, it was just natural to include friction in the free-body diagram due to the 

“habit” of doing so in the previous problems.  A final interpretation may be that when students 

are presented with several problems that differ in a minor way, the quality of the attention that is 

given to the question stem begins to decrease with an increase in the number of questions which 

are similar. However, each of these explanations warrants further investigation.  

 

Research Question 2 

What types of errors do students make in phase II of a Force and Motion physics problem that 

focuses on pulley and non-pulley type problems? 

The purpose of the free body diagram was to identity all of the forces acting on an object 

in a compact and convenient way that can be used with Newton’s Second Law in component 

form to generate a set of mathematical equations that can be used to facilitate in the generation of 

the solution of the word problem.  Therefore, it was a reasonable conclusion to assume that if the 

student truly has an understanding of all the appropriate forces in the free body diagram, the 

relevant forces would also appear in the equations that are generated in phase II of the process of 
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obtaining the solution.  However, after analyzing the quality of the equations that students 

generated, they were found to be inconsistent with what was represented in the free body 

diagram.  

The fact many of the students made these errors raises a serious question as to what role 

the free body diagram plays in the solution of the problem. In particular, many students did not 

resolve mg into it appropriate components in the free-body diagram, however they included the 

same components as terms in the equation. 

 

Research Question 3 

Does quality of performance in Phase I predict the quality of performance in Phase II? 

The general result of this study indicated that students who create high quality equations, were 

likely to produce low quality free-body diagrams or vice versa.  This negative relationship was 

somewhat counterintuitive since the equations that are generated in phase II of the problem 

solving process result from the application of Newton’s Second Law in component form to the 

free-body diagram in phase one. This discrepancy, between these two phases, point to the need to 

investigate the reason that the negative correlation existed.   

Discussion 

Students who are enrolled in an introductory physics calculus based physics class 

consistently make errors when they solve word problems.  Therefore, instructional strategies 

need to be such that they focus on the errors since they may interfere with students’ ability to 
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learn.  In particular a focus needs to be placed on the role that the free body diagram serves, 

and it must include a clear definition of how to properly construct one.  This discussion must 

include a specific explanation of the role that the coordinate system plays in the process of 

obtaining the solution.  Additionally, a connection needs to be made between the equations in 

phase two and the free-body diagram.  Students appear to view them as two separate problems 

rather than connected parts of the same problem.  In order to make the connection stronger, 

the coordinate system can be embedded within the discussion of phase I and II.  In this way, 

the equations in phase II can be seen as having two parts, which are the “magnitudes of the 

forces” and “the signs of the magnitudes”, where the signs of the magnitudes of the forces can 

be connected to the coordinate system.  By connecting all three of these components the 

student may get a holistic view of the problem solving process rather than an isolated 

discussion of each.  It seems that the fragmented discussion seems to encourage 

misconceptions that students hold about the problem solving process and the role that each 

component plays.  

 

Areas of Future Research 

There needs to be more research into the relationship that each phase on the final solution on the 

problem.  Additionally, more work needs to be done to find out what additional factors 

contribute to the negative relationship that existed between phase I and phase II of the problem 

solving process.  Also, the investigation into a possible relationship between the phase II and the 

final solution should also be investigated.  The investigation of different instructional strategies 
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that may help to improve student’s understanding of the coordinate system should also be 

explored, which should include an analysis of student understanding of vectors.  

 

Conclusion 

The results of this study identified the specific problem solving errors made by 

students as they solve physics problems. These errors hinder the process of transferring basic 

physics concepts to other problems which are situated within a different context. Since the 

ability to do so is a measure that learning has taken place, it is important to ensure that the 

classroom environment is such that students are provided with an opportunity to reflect upon 

these misconceptions.  Therefore, educational researchers must continue to work teachers to 

ensure they are aware of the difficulties that students have with problem solvers, since 

effective instruction takes them into account, and also with curriculum developers to ensure 

that the specific misconceptions are problem solving errors are addressed within the 

development of the curriculum.  
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