Taylor & Francis
Taylor &Francis Group

COMMUNICATIONS
IN

PARTIAL
DIFFERENTIAL
EQUATIONS

Communications in Partial Differential Equations

ISSN: 0360-5302 (Print) 1532-4133 (Online) Journal homepage: https://www.tandfonline.com/loi/lpde20

The nonvacuum Einstein flow on surfaces of
nonnegative curvature

David Fajman

To cite this article: David Fajman (2018) The nonvacuum Einstein flow on surfaces of
nonnegative curvature, Communications in Partial Differential Equations, 43:3, 364-402, DOI:
10.1080/03605302.2018.1446159

To link to this article: https://doi.org/10.1080/03605302.2018.1446159

8 Published with license by Taylor & Francis©
David Fajman

@ Published online: 19 Mar 2018.

N
G/ Submit your article to this journal &

||I| Article views: 898

A
& View related articles &'

@ View Crossmark data (&'

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journallnformation?journalCode=lpde20


https://www.tandfonline.com/action/journalInformation?journalCode=lpde20
https://www.tandfonline.com/loi/lpde20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/03605302.2018.1446159
https://doi.org/10.1080/03605302.2018.1446159
https://www.tandfonline.com/action/authorSubmission?journalCode=lpde20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=lpde20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/03605302.2018.1446159
https://www.tandfonline.com/doi/mlt/10.1080/03605302.2018.1446159
http://crossmark.crossref.org/dialog/?doi=10.1080/03605302.2018.1446159&domain=pdf&date_stamp=2018-03-19
http://crossmark.crossref.org/dialog/?doi=10.1080/03605302.2018.1446159&domain=pdf&date_stamp=2018-03-19

Taylor & Francis

Taylor &Francis Group

2018, VOL. 43, NO. 3, 364-402

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS e
https://doi.org/10.1080/03605302.2018.1446159

8 OPEN ACCESS ‘ ] Checkforupdates‘

The nonvacuum Einstein flow on surfaces of nonnegative
curvature
David Fajman

Gravitational Physics, Faculty of Physics, University of Vienna, Vienna, Austria

ABSTRACT ARTICLE HISTORY
We prove future nonlinear stability of homogeneous solutions to the Received 28 November 2016
Einstein-Vlasov system with massive particles on manifolds with topol- Accepted 28 October 2017

ogy M = R x %, where X is either S? or T2. For the sphere this  keywoRps
implies the existence of an open subset of the initial data manifold with Closed universe recollapse;

elements of strictly positive scalar curvature, whose developments are Einstein equations;
future geodesically complete. In combination with an earlier result for Einstein-Vlasov system;
hyperbolic surfaces we conclude future completeness for the Einstein— nonlinear stability

Vlasov system in 2+1 dimensions independent of the compact spatial

L 2010 MATHEMATICS
topology for an open set of initial data.

SUBJECT CLASSIFICATION
53705; 83C05; 35Q75

1. Introduction

An intriguing open problem in general relativity concerns the effect of the spatial topology
on the long-time behavior of the Einstein flow on spacetimes with topology I x X with
I C R, where X is a closed manifold. The main competing scenarios are spacetimes which are
complete in one direction and incomplete in the other—we refer to those as past incomplete
and future complete—and those which are incomplete in both directions, i.e., recollapse. In
2+1 dimensions, the uniformization theorem implies that X is either the sphere, the torus
or a higher genus surface. It is believed that for the case of vanishing cosmological constant
positive spatial curvature causes recollapse of spacetime while negative spatial curvature leads
to future completeness (cf. [31]). The former behavior is been referred to as the closed universe
recollapse conjecture, stated by Barrow et al. [9]. It concerns the case of 3+1-dimensional
solutions to the Einstein-matter equations with vanishing cosmological constant and may be
reformulated following [31]:

Let (M, g) be a maximal globally hyperbolic cosmological solution to the Einstein-matter
equations with a compact hypersurface X. If X is of positive Yamabe type, the spacetime admits
a foliation of constant mean curvature (CMC) hypersurfaces with mean curvature taking all
real values. This foliation covers the entire spacetime. In particular, validity of this conjecture
determines that the existence of a CMC—hypersurface with an induced Riemannian metric of
positive scalar curvature implies the recollapse of this spacetime, i.e., the geodesic incomplete-
ness in both time directions. The conjecture has been proven under simplifying assumptions
for the vacuum and nonvacuum case. Some results are given in the following. For the case of
Bianchi type IX solutions the conjecture was proved by Lin and Wald [23] (cf. also [28] for a
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detailed presentation of the proof), for spherically symmetric spacetimes by Burnett [11]. For
spatially homogeneous spacetimes with a perfect fluid or collisionless matter it was proved
by Rendall [32]. For spherically symmetric spacetimes on S? x S! with a massless scalar field
or collisionless matter the conjecture was proven by Rendall [33] and Burnett and Rendall
[12] under the assumption of the existence of a CMC surface. This assumption was then later
removed by Henkel [22]. For additional references and the relation to geometrization we refer
to the article by Anderson [1]. Complementary to the recollapse of positively curved initial
data, there are results proving that negative spatial curvature implies future completeness such
as the case of the Milne model and generalizations in different dimensions [3].

The first main result of the present work is the nonlinear stability of a counterexample to
the recollapse conjecture, which has been constructed in [19]. We consider 2+1-dimensional
spacetimes with the spatial topology of the sphere. This class is delicate in the sense that there
are no vacuum solutions to the system with that topology, as discussed in the next section. A
key observation presented in [19] is the fact that an energy density created by massive particles
allows for the construction of homogeneous future complete solutions with this topology—
despite the positive spatial curvature. Here, we upgrade this result to general initial data close
to the homogeneous models of [19], where closeness is defined in terms of suitable Sobolev
spaces. This is made precise below. The reason for future completeness results from the sign
of the energy density, which acts as a negative correction to the rescaled scalar curvature in
the Hamiltonian constraint. Moreover, for massive particles this effect is uniform in time as
we describe below. It allows for a solution of the Hamiltonian constraint despite the spherical
topology and avoids recollapse of spacetime. We used this fact to construct a class of explicit,
future complete solutions with spherical topology in [19]. The first theorem of this work states
their nonlinear stability.

In the second part of this paper we study the Einstein-Vlasov flow on the 2-torus. Here,
similar to the sphere, the energy density is exploited to construct stable, future complete
solutions. We comment on details of the construction in the following.

We remark that the corresponding system for massless particles leads to different classes of
spacetimes, which show a relation between the long-time behavior and the spatial topology.
These spacetimes are constructed and analyzed in [20].

1.1. Spacetimes with spherical spacelike topology

A necessary condition for the existence of solutions to the vacuum CMC-Einstein equations
on manifolds of the form

M = [Ty, 00) x S?, (1)

where Ty € R, is positivity of the cosmological constant, A > 0. This is a direct consequence
of the constraint equations for the induced metric g and the second fundamental form k with

mean curvature T = trgk,
R(g) — [kl; + 2 =2p +2A o)
Vikia — Va(trgk) = Ja,

as the vacuum-CMC momentum constraint (d,;,t = 0 for i = 1,2 and j = 0) implies that
the trace-free part of the second fundamental form k vanishes, which is due to the fact that
the 2-sphere admits no nontrivial transverse-traceless tensors. Then the left-hand side of the
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vacuum Hamiltonian constraint (o = 0) is strictly positive, which implies that A needs to
be strictly positive to allow for the existence of solutions [4]. This follows from rewriting the
Hamiltonian constraint as an elliptic equation for the conformal factor (cf. (16)), [26].

In the general case, a CMC surface always exists [5, 8, 25] so S? topology is ruled out for
vacuum solutions with A = 0. However, the presence of a non-vanishing energy-momentum
tensor may allow for solutions in the case of vanishing cosmological constant. It has been
demonstrated in [14] that a non-vanishing energy density allows for (local in time) solutions
of the Einstein equations with A = 0 for the case of a massless scalar field coupled to the
Einstein equations (which in this specific case originates from a U(1)-symmetry in 3 + 1
dimensions). The global structure of these solutions is however not investigated in [14]. We
consider from now on the case A = 0 for the remainder of the paper. A key observation
of [19] is discussed in the following. If one couples massive Vlasov matter to the Einstein
equations the asymptotic behavior is more accessible in the following sense. The L!-norm of
the energy density p, taken with respect to the Riemannian metric induced on S?, is bounded
from below by the total mass of the slice

/p(f)ug > Moo E/ fiirse (3)
TS?

where f denotes the representation of the distribution function with domain TS? (cf.
Section 2.4 for details). my, is a conserved quantity in the homogeneous case, which is
an immediate consequence of the transport equation for f (cf. Section 2.5). For initial data
satisfying the condition

4T < Moo, (4)

this lower bound on the mass is preserved during the evolution and assures the solvability of
the Hamiltonian constraint and in particular a sharp lower bound on the conformal factor,
in terms of the time function. We conclude the existence of future complete homogeneous
solutions, which are future-asymptotically of the form

Goo = —4dt® + Moo =47 os2. (5)
2

Here os2 denotes the round metric on the 2-sphere with volume 87 and constant scalar
curvature R(og2) = 1. The exact solution is given in (42). Note in particular that the
asymptotic behavior of these solutions is uniquely determined by the total mass mo,. We prove
future global-in-time existence for solutions with initial data close to these homogeneous
solutions. The asymptotics imply future completeness of the future-development of any initial
data close to these solutions. The main result is

Theorem 1.1. Every homogeneous solution to the Einstein-Vlasov system on [Tp,00) x S?
of type (42) is future nonlinearly stable. In particular, for any To > 0, there is an open set of
initial data at T containing the initial data induced by the homogeneous solution, such that the
future development of each of its elements is globally hyperbolic and future timelike- and null
geodesically complete and remains in a fixed neighborhood of the homogeneous solution.

Remark 1.2. We make the specifications of the above theorem precise. By homogeneous
solution we refer to solutions of the type (42). By initial data we refer to data (A, h, N, X, fo) €
H® x H* x H® x H®> x Hyycy solving (15)-(18), where H* are standard Sobolev spaces
(cf. Section 2.1.1) and Hy k. are Sobolev spaces for distribution functions (cf. Section 2.4.2).
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The considered set of initial data is open in the sense of the aforementioned function space
topology.

1.2. Spacetimes with toroidal spacelike topology

The spatial topology of the 2-torus, T2, allows for solutions to the vacuum Einstein equations
[4, 13, 27]. However, the problem of their nonlinear stability is a priori difficult as the
conformal geometry degenerates asymptotically (cf. the introduction of [15] and Chapter 3.3
of [13]). The reason for this behavior is the vanishing scalar curvature of the conformal metric
in the Hamiltonian constraint. If the conformal factor is spatially constant it is essentially
equal to the square of the trace-free part of the second fundamental form, h = k — t/2g. If
one considers nonvacuum Einstein—-Vlasov initial data, the energy-density in the Hamiltonian
constraint lifts this sensitive dependence on h and yields a behavior which resembles the case
of negative spatial curvature. In the homogeneous case this yields solutions of the following
form. We consider the homogeneous equations (44) for initial data with my,, > 0. The
homogeneous Hamiltonian constraint takes the form

0= ez’\rz/2 — ezx,o. (6)
In particular,
2m
el = 262)‘,0 o T (7)
voly , (T2)

This yields future complete spacetimes on T2, with the future-asymptotic form

goo = —dde* + 2 o, (®)

e t
volo , (T2)
where here o2 denotes a fixed Riemannian metric on T2 with vanishing scalar curvature. The
exact form of the solutions is (155). These have first been constructed in [19]. The following
is the second main theorem.

Theorem 1.3. Every homogeneous solution to the Einstein-Vlasov system on [Ty, 00) x T? of
the form (155) is future nonlinearly stable. In particular, for any Ty > 0, there is an open set of
initial data at T containing the initial data induced by the homogeneous solution, such that the
future development of each of its elements is globally hyperbolic and future timelike- and null
geodesically complete and remains in a uniformly bounded neighborhood of the homogeneous
solution.

Remark 1.4. The same specifications as in Remark 1.2 apply to Theorem 1.3.

1.3. Massive particles—oblivion to topology

In a more general sense, the connection between the spatial topology and the asymptotics
of the Einstein flow has been analyzed for the case of a positive cosmological constant by
Ringstrom in [30] and with Vlasov matter in [29]. For a certain class of initial data the Einstein
flow localizes and the spatial topology has no influence on its asymptotic behavior. The latter
has been referred to as oblivion to topology.
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The results in the present work, in combination with the main result of [17], where it
is shown that the Einstein-Vlasov flow on hyperbolic surfaces yields future complete and
stable solutions, directly imply that a variation of oblivion to topology holds for the Einstein-
Vlasov flow in 2+1 dimensions with massive particles but vanishing cosmological constant.
In particular, for an open set of initial data, the future behavior of the Einstein-Vlasov flow
is independent of the spatial topology—all solutions are future complete and expand at a
quadratic rate in inverse mean curvature time t = —t 1. This is concluded by the following
corollary, which is an immediate consequence of Theorems 1.1, 1.3, and the main result of
[17]. For a closed surface X we denote its genus by gen(X).

Corollary 1.5. Let ¥ be a closed surface and o, a fixed Riemannian metric of constant scalar
curvature on X, R(o) € {—1,0, 1}. Then there exists initial data to the massive Einstein-Vlasov
flow on X such that its maximal development is future geodesically complete and the spacetime
is future-asymptotically of the form

Zoo = —4dt* 4 ¢ - oy, (9)

where ¢ = c(gen(X), myo) is a positive constant depending only on the genus of X and its total
mass. These solutions are future stable.

1.4. Remarks

The existence of an open set of future complete spacetimes with topology [Ty, 00) x S? is in
fact desirable as it provides the possibility to study the Einstein-flow with vanishing cosmolog-
ical constant on one of the most accessible topological models—the 2-sphere. This provides
a basis to consider large data perturbations of the homogeneous background geometry by
studying for instance the future development of surfaces of revolution “far away” from the
geometry of the round sphere. Similarly, future complete models with torus topology may be
investigated with respect to large perturbations under an additional symmetry assumption.
In the symmetric case, both models provide effectively 1+1-dimensional systems, which can
serve as examples to study large data perturbations.

In the context of quantum gravity, where 2+1-dimensional spacetimes are a well-studied
system (cf. [13]), models with these topologies and vanishing cosmological constant provide
a new class of explicit solutions.

Finally, we remark that the results presented in this paper and the corresponding result
in [17] relate, in a broader sense, to a recent series of results on nonlinear stability for the
Einstein—Vlasov system [2, 21, 24, 35].

1.5. Organization of this paper

The paper is divided into two parts. Sections 2 to 4 are concerned with the case of the sphere,
i.e., the proof of Theorem 1.1. Section 5 treats the case of the torus and contains the proof of
Theorem 1.3.

We remark that the Einstein-Vlasov system in 2+1 dimensions has been discussed for
the case of hypersurfaces of genus gen(X) > 1 in [17]. Some fundamentals are similar for
the topologies considered here. But several details differ in the present case, in particular,
the matter sources are not small as in [17]. For the sphere the energy density is necessarily
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large (cf. (4)). This requires a number of additional steps in the proof compared to the case
considered in [17].

For further background on the Einstein equations in CMC-gauge we refer to [3, 4, 15,
17]. Some relevant geometric facts for the sphere are taken from [14]. These fundamentals
on the geometry are given in Section 2. Main facts about the energy-momentum tensor and
the distribution function for Vlasov matter as well as the transport equation are revisited in
Section 2.4. For a thorough introduction to the Einstein-Vlasov system we refer to [6, 29, 34].

In Section 2.5, we review the class of explicit homogeneous solutions with spherical
topology introduced in [19]. Starting from there, we begin with the preparations of the proof
of Theorem 1.1. Section 3 contains the proof of the main energy estimates, which are used in
conjunction with a bootstrap argument in the proof of Theorem 1.1. To allow for a concise
deduction and presentation of the relevant estimates, we initially make a number of bootstrap
assumptions (cf. (53)), which reduce the estimates to a compact form. Namely, we present the
conditional decay for the perturbation of geometry and matter directly in terms of the time
function. Section 3 is organized as follows. In Section 3.1 we make the bootstrap assumptions
which are the basis for all following estimates in the remainder concerning the spherical case.
Sections 3.2 and 3.3 treat the elliptic estimates for the trace-free part of the second fundamen-
tal form, the conformal factor, the lapse function and the shift vector. Also, we derive estimates
for the time-derivative of the lapse function and the shift vector, which appear in the Vlasov
equation. In Section 3.4 we use the evolution equation for the conformal factor and the trace-
free part of the second fundamental form to derive energy estimates for Sobolev norms of
both quantities. These are necessary in addition to the elliptic estimates, since they provide
a smallness factor coming from the initial data or the inverse of the initial time, T, which,
by means of Cauchy stability, can then also be turned into a smallness factor. We distinguish
between an energy for the rescaled conformal factor and one for its gradient, as the latter is
required to be small, while the former is not. This is discussed in more detail in Section 3.4. We
then summarize all estimates on the perturbation of the geometry in Section 3.5. Section 3.6
presents all estimates on the relevant matter quantities, the total mass, the bound on the
momentum support, the L?-energies for the distribution function and the resulting estimates
on the Sobolev norms of the matter quantities which appear in the Einstein equations. The
Lz-energies for distribution functions have been introduced in [17] and a mechanism of
correction has been set up therein. This idea is briefly revisited in Section 3.6 for the sake
of completeness, but the computations are essentially similar to [17] and not repeated. These
estimates require certain decay properties of the perturbations of the geometry, which are
assured by the bootstrap assumptions. Eventually, Section 4 presents the proof of Theorem 1.1.

The proof of Theorem 1.3 is given in Section 5. The main approach is similar to the case of
spherical topology, except that a non-trivial evolution of the conformal metric occurs, which
requires additional control. For the sake of completeness, we give all relevant estimates and
prove those explicitly, which deviate from the case of the sphere.

2. The Einstein-flow on the 2-sphere
2.1. Notations and elliptic estimates

We begin with some general notations and collect some standard tools from elliptic theory
and Sobolev spaces.
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2.1.1. General setup
We consider the manifold M = [Ty, 00) x S? for Ty > 0 and with the standard ADM ansatz
for the Lorentzian metric on M,

O = —N?dt ® dt + gop(dx® + Xdt) @ (dx® + XPdt), (10)

where N is the lapse function, X the shift vector field and g the physical metric on S?. We
denote by k the second fundamental form. A useful notation is X = X/N. Furthermore,
o2 denotes the round metric on S? with scalar curvature R(os2) = 1 and D be its covariant
derivative. The corresponding Laplacian is A, . This implies that the volume of S? with respect
to o2 is vol, (S?) = 87. We define all Sobolev spaces W and H¥ and standard Sobolev
norms ||.||gs on S? with respect to the metric o2 and its covariant derivative D (cf. [7]). We
use |l.|| = |I.ll2- As og2 is fixed, all relevant constants for elliptic regularity estimates and
Sobolev embedding up to a chosen order are bounded by a uniform constant denoted by C.
Further notations and definitions will be introduced throughout the work.

2.1.2. Standard elliptic estimate
The following generalization of the standard elliptic regularity estimate is relevant for elliptic
operators with nontrivial kernel as occurring below in particular for the shift vector.

Lemma 2.1 ([10], p.463). Consider a linear, second order elliptic, operator L on a closed
manifold X. Let £ > 0 be an integer, then there are positive constants Cy, Cy s.t.

lullge < Crlllullge + Collullp Yu € H(E). (11)
If in addition one restricts to the set of functions
{uluis L2—orthogonal to ker L}, (12)

then the estimate holds with C, = 0.

2.2. Geometry of the 2-sphere

In the following some relevant geometric properties of the 2-sphere are discussed, which are
used to bring the Einstein equations into a more concise form.

Lemma 2.2 (cf. [14]).
(i) S? admits no non-trivial TT-tensors, i.e., for a Riemannian metric g on S* and some
vector field Y the conditions trgY = 0 and V'Y;; = 0 imply Y = 0.
(ii)  Every Riemannian metric g; on S? is conformally equivalent to the canonical metric o
with scalar curvature R(oge) = 1, i.e.,

g = eMgfog (13)

for a conformal factor A; and an arbitrary diffeomorphism ¢; : S — S,
(iii) ~S? admits 6 linearly independent conformal Killing vectors ZY, A € {1,...,6}, i.e.,

D.Z" + Dz — 02 D2 = 0. (14)
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2.3. Nonvacuum Einstein flow on the 2-sphere

We discuss in the following the choice of gauge and the corresponding reduced Einstein
equations.

2.3.1. Choice of gauge

The gauge freedom is fixed by additional choices following [14, 26]. The family of diffeomor-
phisms (¢;) is chosen to be the identity (ids2). The second fundamental form is decomposed
into k = h + t/2g, where h is the trace-free part of k and t the mean curvature. The mean
curvature is chosen to be constant on every spatial slice S? and the time coordinate is chosen
tobet = —t 1. Finally, the shift vector is chosen orthogonal to the space of conformal Killing
vector fields {Z(M)}.

2.3.2. Thereduced Einstein equations
The reduced Einstein equations read

Dyh? = ey, (15)

28050 = /217 41— 2e* p — e 2|2 (16)
AN = Ne** (e"*|h2 + 12/2+ 1) — dpre? (17)
[Lon]ap = 2Ne > hgp, (18)

A = —% [Nt -8V .X°] (19)

dthay = (N — D)7 /ngay — VaVpN — N(Top — gapT)

+ Lxhgp + N(Ricgy — 2hgih}). (20)

tr T denotes the P)g-trace of the energy-momentum tensor and R(g) and Ric are scalar and
Ricci curvature of g, respectively. We use the notation n, = X,e 2", where the index is
lowered by ¢ and L, denotes the conformal Killing operator, [Ly Y], = D,Yy, + DpY, —
052 oD Y¢. The matter quantities are the energy density p = N2T%, the matter current
Ja = NT? and the pressure = g T,;,. The individual equations are momentum constraint,
Hamiltonian constraint, lapse and shift equation as well as the evolution equation for the
conformal factor and the trace free part of the second fundamental form, respectively. A
solution to (15)-(18) with divergence-free energy momentum tensor solves the original
Einstein equations [14]. To allow for a more concise treatment of the evolution, we define
the rescaled conformal factor

* = 2. (21)

To obtain a preview on the approximate values of the metric variables in the small data
setting considered in the nonlinear stability analysis we refer to the exact background
solution (39), (42) (whose perturbations we consider) and the eventual decay rates given in
Proposision 3.24.
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2.4. Vlasov matter

For a detailed introduction to the geometric fundamentals of the Vlasov model as discussed
here the reader is referred to [6, 29, 34]. We recall the relevant notations. Moreover, the
presentation in this section includes the spatial topology of the torus as there is no substantial
difference concerning the setup of the structure for the transport equation. In this section X
denotes either the sphere or the torus.

We consider the tangent bundle of the spacetime M = [Ty, 00) x X, TM and its subset,
the mass-shell

T™M>P= {(x,p) e TM | — m? = Iply . P° > o} . (22)

We set m = 1. Let P denote the corresponding fibre over the point x € M and up, the
induced volume for on P,. A distribution function is of the type f € C'(P) with im(f) C Ry.
The energy-momentum tensor of a distribution function f is given by

Top(x) =/g)fpap,su?x- (23)

Let X denote the geodesic flow field on P. In the frame corresponding to horizontal and
vertical directions on TM, {Ay, = 0y — p"“Ffw dpv, By = 0pa} the geodesic flow field reads X =

Pp*Ay. The Vlasov equation is then given by %f’ = 0. For the projectionw : TM — I x TZX,
we consider the pushed forward Vlasov equation for a function f : R x TX — [0, 00) of the
form [, X]f = 0. In coordinates this equation takes the form

P 0uf — Topp®pPopef =0, (24)
where the Christoffel symbols have the form
[d) = 8:X" — 2tX* + T},
21'G,0) = 218§ + 21, §, (25)
FZC = FZC + fS,l?c’
We made the abbreviations
9= 2 — N)TX? + XV, X* — 2Nh?X + NV°N
1
- NX“(atN + XPVpN — |X[} — 7/21X12)

2T, ¢ = (2 — N)18f — 2Nh{ 4 2V} X 06

2 a 2 cya
- NX VyN + N(hbc + T/ngc)X X

~ 1
F3,bac = N(hhc + T/ngc)Xa’

which are all tensors on X. The final form of the Vlasov equation reads
f = —p°/p°Aef — 2Tp°Bef + p (3, X° — 2TX)B,f

+ PO TBof + p“2TB.f + p*p'T", B.f. (27)
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The form of the equation is adapted to the expected behavior of the terms on the right-hand
side. The terms in the first line are leading order, i.e., they are present in the background
geometry or in case of the shift vector terms, have too slow decay to be estimated with the
perturbative terms. The second line contains all fast decaying terms, which are treated as
perturbative terms.

Definition 2.3. For a given distribution function f, we define the total mass of a slice ¥, with
respect to f by

my = furs, (28)
TS

where the volume form is given by urs = |g|dpdx.

Remark 2.4. In the case X = 0, the total mass coincides with the number of particles and is
therefore conserved.

2.4.1. The characteristic system
A simplified representation of the distribution function by the characteristic system for the
Vlasov equation,

éff — p@ éf = po
ds 7 ds
(29)
dp?
=34 pupy
ds #v
for curves (x, P)(s) in [Ty, 00) x T with initial data x(t) = (t,x) and P(t) = p, is given by
ft,x,p) = fo(x, P)(0; £, ¥/, p)) (30)

where fj is the restriction of f to the hypersurface given by {x%(s = 0) = 0}and (x, P)(s; 1, X/, p)
is the solution to (29).

2.4.2. Sobolev norms

We make use of the L?-energies introduced in [17], which are partially weighted Sobolev
norms of the distribution function with respect to the Sasaki metric on the tangent bundle
TX. These norms are the essential tool to control higher Sobolev norms of the energy
momentum tensor. The pointwise control and that of the L?>-norm result from estimates on
the momentum-support and the constancy of the supremum of the distribution function. We
recall the definition of the Sobolev norms.

Definition 2.5. Let

awe= | 3 [ 7 urs. (31)

0<l<s

We denote the corresponding weighted Sobolev space on T by Hyy,, (TX). Furthermore,
let Hy|cs(TX) denote the subspace with distribution functions of compact momentum
support.
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Here, g denotes the Sasaki metric with respect to g on T'Y, in coordinates 8ab = gahdx X
dx? 4+ guDp® ® Dp® for Dp' = dp' + p/F’ dx* with covariant derivative V and p =

/l—l—en|p|§,, n e R g = t2gupdx® @ dxb + (wt™ + |p|2) " t%gDp® ® Dp® denotes

the weighted Sasaki metric, with parameter 0 < w < R. The factors 2 have been chosen so
that the resulting metric 2g,, is essentially constant in time in case of the sphere or constant
up to a perturbation in case of the torus. The volume form on T is urs = |g|d>x A d*p.

2.4.3. Energy density, pressure, energy flux
We recall the explicit form of the energy momentum tensor as it appears in the Einstein
equations.

02 0
(f)zNZ/ f(pA) Jgdp, Ja<f>=NfTEfp“ff JEdp,
" (32)

| a
1) = /fp iy o= [ P2
.y P

In the remainder, we denote the spatial components of the energy-momentum tensor by T or
Tap- Let X = X/N, then the following relations hold.

P =NTa—-xpH [X,p’ + &ip)2 + (1 — K21+ |p|§)], (33)
P’ = 1 —————(1+|pl3), (34)
Np - (X)P>g
where
B=JGp)? + (1 - KR + pl2). (35)
In addition, py = —Np. We define a bound on the rescaled momentum-support.

Definition 2.6. Consider a distribution function of compact momentum-support. Then, we
define the rescaled volume of the momentum-support by

R
Ty ZNsupp f (¢,%,.)

xeX

Remark 2.7. Note, that the definition of Ps, contains an overall factor of e**, which is
essentially 4. This factor is absorbed by the expected decay of the volume of the momentum-
support,
sup vol(supp f (¢, x,.)) ~ 4, (37)
xX€eX
In combination, this implies that P, is of the order of a constant. This is rigorously inferred
in Corollary 3.32.

In the following lemma we estimate the components of the energy-momentum tensor, as
they appear in the Einstein equations, in terms of the L?-energies of the distribution function
and the bound on the momentum support.
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Lemma 2.8 (Estimates for matter quantities). Let I1X]| m < ¢ < oo for some c sufficiently
small, then

le* ()t + 1€ 1 (Dllgs < Cllf i
e n(N) s < CE2 112l + IX M) f Ivians (38)

I Tlles < CT2l1¢ 211 1 via,2s
where C = C(c, || VAl g3, Pxo)-

Proof. These estimates are a straightforward consequence of the structure of p, j, nand T
and the energies ||.|lvix. We also use [|u - v|[gx < Cllullgkllvllgk for k > 2 for functions
U, v. L]

2.5. Homogeneous future complete solutions

We consider in the following the homogeneous Einstein-Vlasov system on [Tp, o0) x S? and
begin by defining isotropic distribution functions.

Definition 2.9. Let g be a Riemannian metric on S7, then a distribution function f :
[To,00) x TS? — [0, 00) is Si-isotropic, iff f = f (¢, |plg,).

The following lemma implies that all relevant matter quantities are spatially constant for
isotropic distribution functions.

Lemma 2.10. Let X = 0 and N = N(t). Then, if f is a g-isotropic distribution function the
following holds.
(1) Agf =0, where A, is the horizontal lift of 9, with respect to g;.
(i) 9zp(f) =0,
(iii)  ja(f) =0,
(iv)  dan(f) = 0.

Proof. This follows from direct computations. Note that the volume form, , /gdp yields a terms
containing a Christoffel symbol, when the derivative is taken. This term is manipulated via
integration by parts in p. O

Lemma 2.11 (Homogeneous initial data). Initial data of the form
2 2
p—12 12247

(b N f) = (0, 0.folply) (39)

on S?, where f is a g = e**o-isotropic distribution function and p(fo) > T2/4, exists and solves
g p

the constraint equations (15), (16) and the elliptic system (17), (18).

Proof. We first show that data of the form above solves equations (15)-(18). The g-isotropy
of fo implies that the matter current vanishes, j (fy) = 0. In turn, the momentum constraint
implies that h is a TT-tensor and consequently vanishes, cf. Lemma 2.2. In particular, the
momentum constraint holds.
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With the vanishing shift vector, the shift equation holds as the right-hand side vanishes.
The right-hand side of the lapse equation is constant on the slice S?, so the equation can
be solved by the given constant for the lapse, where the conformal factor appears only as a
common factor. Finally, the Hamiltonian constraint can be solved uniquely by the given term
under the condition p(fy) > 72/4.

Concerning the existence of such initial data we have to note that the energy density and
the pressure contain factors of the form e?* in the density ,/g. In the previous construction
we only used that fy is g-isotropic and that p(fy) > 72/4. It remains to show that there is in
fact a fy with these features. We first fix a number v* > 0, and consider the positive solution
u4 to the equation

v —ut?/2—1=0, (40)

2)

Then u, -v* > 12/4, since v* is positive. We set now e** = . We choose now a o -isotropic

function fy such that
V* = 2/ o . 1+ 1/l+|p|(27f()\/gdp (41)
Tx

The choice of f; is not unique, but it suffices to pick one possible fj to obtain existence. As the
conformal factor is spatially constant and as f; is o -isotropic, it is automatically g = e**o-

isotropic. In addition, with p(fo) = e?*v* = uyv* > t2/4 by construction. O

Proposition 2.12 (Future complete homogeneous solutions). Homogeneous initial data of the
form (39) with smooth isotropic fo has a future development of the form

272 2 272
=—(—— ) dP+——— . F , 42
ghom <T2 + 27}) + 4,0(f) _ _[2 GSZ ( )

on [To, 00) x S?, which is time- and null-geodesically complete in future direction. Asymptoti-
cally,

, 272
hm 2 . =
t—o0 7% + 2;7
(43)
. 272 my, — 41
lim = .
t—o00 4p(f) — 72 2

Proof. In the homogeneous and isotropic case, the set of equations reduces to
0=e*/212 + 1 — 2" 5(f)
0=N(2?/2+n(f)) — o (44)
0f = —NTp°B,f,

where 5 = e=**p. Given functions ¢?* and N on a time interval the Vlasov equation can be
rewritten for a function f = f(t, |p|s) to

df = —Nze*plof', (45)

where f” is the derivative with respect to the second variable. The system (44), (45) is a
simplified version of an elliptic-hyperbolic system coupled to a transport equation, which has
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a local-in-time unique solution given sufficiently regular initial data (cf. [18]). In particular,
the system (44), (45) has a unique smooth solution on a short time interval [Ty, T;] given
smooth initial data f; at Tp. Global existence for these solutions follows straightforward, since
lapse and the conformal factor are given explicitly and remain bounded with the asymptotics
given above. For the distribution function a simplified version of the energy estimates in
Corollary 3.35 holds, which proves that they remain uniformly bounded as well and have
the desired decay properties. By the standard criterion [16] future completeness for these
solutions holds.

The asymptotic behavior in (43) follows immediately for the first relation as n decays in
time. For the second relation we use the Hamiltonian constraint integrated over S, which by
the Gauss-Bonnet theorem implies

% /2voly(S?) + 4m x (S*) — 2 / pug =0, (46)
S2
where x (S?) = 2 is the Euler characteristic. Asympotically for ¢ — oo, this yields
t2/2volg(Sz) + 87 — 2mg, — 0, (47)
which implies the second relation in (43). O

Remark 2.13. Proposition 2.12 yields a large family of solutions—one for each sufficiently
regular non-vanishing initial datum f;, which realizes the bound my, > 47. The asymptotics
of the geometry of the spacetimes are however uniquely determined by the total mass mq, (X).
For further details on this class of solutions we refer to [19].

2.6. Local well-posedness

The required lemma for the local existence theory is given in the following. We define a
relevant notation before.

Definition 2.14. Let Bl(f) ((A, h,N, X, f)) denote the open ball of radius R > 0 in the function
space HY x H™! x H**! x H® x Hyyy_; centered at (A, h, N, X, f).

Lemma 2.15 (Local well-posedness). Consider a homogeneous solution (ghom = (Ahom> 0,
Nhom» 0), fhom) of the type constructed in Proposition 5.1. Let To > 0.
1. There exists a Sjoc > 0 such that for CMC-initial data (Lo, ho, No, Xo, fo) with

(20, ho, No, X0, /o) € By ((ghoms fhom) (T0)) (48)

there exists a T1 > To and a unique solution to the Einstein-Vlasov system (15)-(20), (27),
(M AN, X, f) € H® x H* x H® x H> x Hyy4 on [Ty, T1) X S?, that coincides with the initial
data in Ty, such that the shift vector field is orthogonal to the space of Killing vector fields on
0s2.
2. Let T be the maximal time of existence of the solution. Then either T, = 00 or
lim sup [| (A, b, N, X) () = ghom (D5 + [11(f) = n(hom)> 7 (f) — J (hom) 4 = 2810c. (49)

t—Ty
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3. For every Ty > Ty and d > 0 there exists an ¢ = &(T,,d) > 0 such that every solution
(M h, N, X, f) with initial data (Ao, ho, No, Xo,fo) € Bés)((ghom,fhom)(To)) exists on the
interval [Ty, T2] and

(M(T2), h(T2), N(T2), X(T2),f(T2)) € BY (ghoms from) (T2)). (50)

Remark 2.16. The proof of the previous lemma is analogous to the case considered in
[18]. Some adaptions are required, which result from the different background geometry
considered in the present case. These issues only concern the geometry and have been
discussed in [14], in particular that it is necessary to choose the shift vector field orthogonal
to the space of conformal Killing fields of og2. We note in particular that the smallness of the
matter quantities discussed in [18] concerns the pressure n and the energy flux ; and does
allow for a large energy density p as considered here (cf. Remark 5.6 in [18]), by choosing the
momentum support with a sufficiently small upper bound, which does not affect the energy
density as f can still be chosen sufficiently large to realize the lower bound (4).

3. Energy estimates

In view of the nonlinear stability problem for the homogeneous solutions of Proposition 2.12
we require a number of a priori estimates for general solutions to the system (16)-(20) with
initial data close to that induced by a fixed homogeneous solution. These estimates will
be derived in the following. To allow for a more concise presentation we impose a set of
bootstrap assumptions on the data, which are consistent with the behavior of data close to the
homogeneous solutions. We derive a number of estimates on the perturbation, which, due to
the bootstrap assumptions, take a concise form. These conditional estimates will eventually
improve the assumptions, which allows for a closure of the continuity argument in the proof
of Theorem 1.1, which is presented in Section 4.

3.1. Assumptions

Throughout this section we consider a fixed solution, (h, 1, N, X, f) on [Ty, T1) x S? for Ty >
To. Without loss of generality we assume Ty > 1. Moreover, we define an indicator function
for the mass, which measures the positivity, necessary for the solvability of the Hamiltonian
constraint, by

5(t) = Moo ()

- 1. (51)

Recall that solutions of the type (42) require my, — 47 > 0, which is equivalent to (51). We
also recall that VOIUSZ (S?) = 8. In addition, we consider initial data with §(Tg) > 1.

Remark 3.1. We choose this lower bound on §(Ty), however, every positive number would
work similarly. Therefore this does not restrict the initial data we consider, but makes the
presentation somewhat easier. We proceed with these assumptions without loss of generality.
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We also define the energy of the rescaled conformal factor and the related energy without
the L?-component by

Eo(¢) = 16* 11745

- (52)
E(@) = |Dp” |75
We formulate the bootstrap assumptions.
3.1.1. Bootstrap assumptions
We assume that the following estimates hold for ¢ € [T, T1].
Eo(¢) <10 - (87)%8(1)>
1% — 28(8)lloo < 8(2)
g2 llge <10 - (87)°
Poo (N1 <G
e o(llps + 1€ 7 (Dl < Cwi
(53)

le** n() g+ < T2Cwi
1
() > 3
Moo () — Moo (Tp)| < Meelle)
INJ|ge < Cy - £72
Xl < Cr - 72

Here, C; is some fixed positive constant. Note, Cy; is chosen large with respect to the initial
data of the distribution function. We choose Cy; > 10-|fo [l y14. As an immediate consequence
of the assumptions we obtain the bounds
1
2
> -,

¢ 2

(54)

1 lmoo(To)
2 < 8(t) < 8(Tp) 4+ — ool 20)
; <0 =300+ -0

3.2. The constraints

In this subsection, we derive the relevant elliptic estimates from the constraint equations.

3.2.1. High derivatives of h
The momentum constraint yields an estimate for derivatives of h. Consider

Dth = —e* .. (55)

In general, 1 decomposes into a TT-tensor q and a conformal Lie derivative. Since there are
no TT-tensors on S? except the zero tensor, we have

hay = DyYy + Dy Y, — 052 D Y (56)
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for some vector field Y on S2. Taking the covariant derivative and the trace yields
1 21
Ay Yy + ER(USZ)YZJ = —e" (57)

Since there are no non-trivial TT tensors on S? the tracefree solution to the momentum
constraint is unique and Lemma 2.1 applied to (57), where Y is chosen orthogonal to
conformal Killing fields, which yields uniqueness, implies that h fulfills an estimate of the
following form.

Lemma 3.2. Fork € Z,

Il < Colle® J 1 gt (58)

Corollary 3.3. If the assumptions (53) hold, then

[hllgs < CoCi. (59)
3.2.2. Conformal factor
We derive estimates on the conformal factor. For derivatives up to fourth order in L? we use

the evolution equation in the following section (cf. Corollary 3.19), while here we use the
Hamiltonian constraint

2Agh = ¢*/2 4+ 1 —2¢%p — 2 2|h)2. (60)

Elliptic regularity (cf. [7]) implies the following lemma.

Lemma 3.4. Let A denote the mean value of A, A =voly (S*)~ L. f MLy Then,

I = Rlps < cg(ncpz/z +1-2¢"p - r2¢*2|h|§||Hs) + Cll2 = 2ll. (61)

Using the Poincaré inequality for A — X (cf. [15], Section 8.2), yields
A =Xl < I IDA|l = I /2]1¢ > D>, (62)

where I,; is the inverse of the first positive eigenvalue of — A, i.e., a constant of type Cy, yields

Corollary 3.5. Under the assumption (53),
1A = Allgs < C(Cvi, Co)[1 + 721, (63)

Proof. Beside assumptions (53) the estimate for , (59) is used. O

3.3. Theelliptic system

We prove the essential a priori estimates for the solutions to the elliptic system

AsN=N (t2¢p2|hlZ + ¢*/2 + ¢¥'n) — ¢*
(64)
(Lo n]ab = 2NT2¢_2hab

in the following.
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3.3.1. Lapse equation

The maximum principle applied to the lapse equation implies 0 < N < 2. Let K > 0 denote
a fixed positive constant, which we choose explicitly further below. We then rewrite the lapse
equation to

Ag2=N)=K-@Q2—=N)=-N(¢22*|hl; +’n) + 2= N)@*/2—K),  (65)
where K as above. Then, at a minimum of N we have
0> K(@2—N) =N (¢ 2T*hl; + ) + 2 = N)(¢*/2 - K). (66)
This is
N (¢ 22?|h2 +e?n) = K- (2—N) + 2 - N)(¢*/2 — K). (67)
Under the condition (¢?/2 — K) > 0 for all points on S?, this implies
N (¢ |hl} +€n) = K- 2= N) (68)

at a minimum of N and thereby for all points on S?, when we replace the left-hand side by its
supremum. In particular, in combination with the upper bound on N we deduce

Lemma 3.6. For K > 0s.t. (p?/2 — K) > 0 for all points on S?,

2= N = 2K 221972 oo 1L oo + ™ llc | (69)

In particular, in view of the first bound in (54) an admissible constant is K = 1/8 and we
infer

Corollary 3.7. Under the assumption (53)
2—N = C(Cy, Cyp) - 72 (70)

For higher derivatives of N the following estimate holds.
Lemma 3.8.
12— Nlgs < Co [r2||¢—2||H4|||h|§,||H4 + lle™ 1l
[+ 2102 B s + 197/2 = Kl |
220072 NI s + el
(1 220D 2 I s + el
+112/2 = Klls) - (12 = NIl + 22 INg 2 2|

+INe )l + 112 = N)(@*/2 — K)II)H (71)

with K as above.
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Corollary 3.9. Under the assumptions (53)
IDN||gs < C(C1,Cy,Cyy) - 2. (72)

3.3.2. Shift equation
We consider the equation for the rescaled shift vector,

[Lonlap = Dany + Dypng — GuchnC = 2N72¢_2hab’ (73)
where n, = X, e 2*. Taking the covariant derivative and the trace in the first index, this
implies

1
Ay + > = 2D (NT2¢ 2hy). (74)

The kernel of the elliptic operator acting on # is non-zero on the sphere, but the condition

oz/ X, Z"oue, A€{l,...,6}, (75)
§2

assures uniqueness for X and thereby Lemma 2.1 implies

Lemma 3.10.
Ik < Cot?IN i1 ™l ggiet 12l e (76)
fork = 3.

Corollary 3.11. If the assumptions (53) hold, then
IXllgs < C(Co, C1, Cyp) - 2. (77)
3.3.3. Time-derivatives of lapse and shift

The following estimates hold for the time derivatives of lapse and shift. The time derivatives
of the lapse and shift are solutions to the following elliptic system.

AoN — (#*/2)N = —3(¢*/2)(2 — N) + N(@22*|hl2 + e**n)
+ N (¢ 2[R + e*'n)
= Fy (78)

Daity + Dyta = 0D = 2| = 2N@(9™ 7> + ¢ty

+ Nd’_ztzhab + Nd)_zfzathab]
=F; (79)
Proposition 3.12. Consider a set of solutions (h, A, N, X, n) € H* x H> x H®> x H®> x H>. Then
the time derivative of the lapse N and of the rescaled shift vector n fulfill the following estimates.
INlloo <2016~ 2llooll Figlloo
INlgs < C[¢?] Co Iyl (80)

7l s < Co llFill



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS . 383

2\ 212

where the constant C depends on ¢* = e**t% such that 0 < ¢; < e**1? < ¢; < oo implies C is

bounded.

Proof. The first estimate results from an application of the maximum principle. The second
estimate follows from standard elliptic regularity and the third estimate is analog to that for
the shift equation, as the elliptic operators are identical. O

Corollary 3.13. If the assumptions (53) hold, then
INlloo < C(C1, Con Cv) - 17
INllzs < C(Cr, Cor Cv) - 17 (81)
72l s < C(C1, C, Cyp) - £
Proof. The estimates are a straightforward consequence of the preceding proposition. The
only important step is improving the decay for the shift vector before that of the lapse. As
the lapse contains the time derivative of the distribution function, which in turn has to be
replaced using the Vlasov equation—the resulting term containing the time derivative of the

shift vector would prevent one from improving the bootstrap assumption for the lapse. With
the optimal decay of the time derivative of the shift vector this does not occur. O

3.4. Energy estimates for the evolution equations

In this section we use the evolution equations (19) and (20) to derive a number of energy
estimates for the energies E(¢) and Ey(¢) and deduce a pointwise estimate for ¢. Moreover
we derive an energy estimate for the H*-norm of h. These estimates are necessary, as they
include smallness factors resulting from smallness at Ty or a sufficiently small Ty !, which can
be achieved by using the Cauchy stability argument in the eventual continuity argument.

3.4.1. Pointwise estimates for the rescaled conformal factor

We consider the rescaled conformal factor, ¢> = t2e**. The following adapted evolution

equation holds.
%9 = [2 = N)T +EVeX] 2 (82)

Consider the H>-norm of D¢?. We compute the time derivative

4
b b,
D17 =D 2 /S g 10gE " Doy Doy ($7) Do, Dy 0e (@) 1o
k=1

4
b,
=> 2 /S i aggh‘..agg “Da, .Day$*Dp, Dy ([(1 — N/2)T +8VeX ] ¢ 1o
k=1

< 2[¢? I Fll(1 = N/2)T +8VeX g, (83)
where a;, b; € {1,2} are spatial indices. Recall,

E(¢) = |D$*||7;5 and Eg(¢) = (42|34 (84)



384 D. FAJMAN

Lemma 3.14 (Energy estimate).

10:E(@)| < 2[1(1 = N/2)T +8 VX || s Eo(9) (85)
Remark 3.15. We note that the coefficient on the right-hand side of the previous energy
estimate again contains third derivatives of A in L?. These are however multiplied with
eventually decaying shift-vector terms. In addition, we have the full energy Ej on the right-
hand side including the L? term. Also this term will be bootstrapped and eventually smallness

of E(¢) can therefore be established under the present conditions by beginning at a sufficiently
large initial time Tj.

Corollary 3.16. Under the assumption (53)
18:E($)| < C(C1, Co, CvEo() - 2, (86)
Therefore

E(¢ (1)) < E(¢(To)) + C(C1,Cy, Cy) - Ty . (87)

We need to estimate the L?-norm of ¢ in the following. We proceed by defining the mean
value with respect to og2, by

=5 [ e (88)
From the Hamiltonian constraint we obtain by integration,
— 40 272
0=¢2 42— — — —— h% o, 89
R T R (89)

where 0 = [ €** pi,. This, in turn, can be reformulated to
¢_2—2(m—°°—1)+Rz—25(t)+Rz (90)
AT ¢ ¢
where
4( m )
Ry = Q = / ¢ 1h12 1o (91)

is a perturbation term. In addition, we quote the Poincaré inequality

1% — ¢2|| < I, |IDg?|, (92)

where I; is a constant. In combination this yields

1% — @212 < (1 + I,) D2 + D*p2]. (93)

With Sobolev embedding, we infer

162 = $lloe = Co (1 +1)IDS | + ID621)). (94)
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With the previous notation and in combination with the expression for the mean value this
gives

Lemma 3.17.
% — 28(B)lloc < Co (2 + I5)E($) + |Ry2| (95)
Corollary 3.18. Under the assumption (53),
1% = 28(!)ls0 < C(Co, Cu Cu | E@(To)) + T3 | + C(Con CriOw) - 172 (96)
Note,
192117, < lI9* — 28117 + (87)*1128 (1) 15
= 872192 = 280 1% + 126 11% |- ©7)
This implies
2
16717 < C(Co, C1, Cv) [ E@(To) + Ty ']

4 C(Cy, C1, Cyy) - t74 4 2(87)28 (1) (98)

Finally, we combine the previous estimates to obtain an estimate for Ey(¢).
Corollary 3.19. The assumptions (53) imply the following estimate.
Eg(9) = 287)%8(t)° + B (To)) + O(C1, Co, ) [To ™! + E@(To)?|. (99)
To improve the bootstrap assumption on ¢ 2 we deduce the relevant estimate.

Corollary 3.20. Under the assumptions (53) the following estimate holds

> —28(t) oo ]
28(t) 258 [25(t) — |l¢? — 28(t)||oo]

1672 lzs < vol2 -

+Ctw) - [ IDR? 1 (100)
where

2_
‘ — ¢~ —25(8) oo (101)

260260 — 192 = 251l ]

and Cy (k) is a function that is bounded if k is bounded.

From the bootstrap assumptions we infer 0 < x < 1, which implies the following corollary.

Corollary 3.21. Under the assumptions (53) the following estimate holds.
16721+ < 2(87)° + C(Cor, C1, C1) (¢ (To)) + T ) (102)
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3.4.2. Energy estimates for the trace-free part of the second fundamental form

Defining the higher order energy of h by Hi(¢) = %||h||12qk we obtain the following energy
estimate for H. This estimate is based on the modified evolution equation for /i, which follows
from (20) in combination with the Hamiltonian constraint. This reads

dh = (N/2 — 1)1%/2g0 — VaVpN — N(Tap — gapg” Tij) + Lxhap

1 .
+N[£|h|§gab — 2hgih} . (103)

Lemma 3.22. Let h € H* be a solution to the evolution equation (20) with data (A, N, X, T) €
H’ x H® x H> x H*, then

|0:Hy| < c[ndwoxuoo +cC, ||D55X||]H4 4 21|l g/ Ha, (104)
where
Fy = (N/2 = 1)¢* /200 — VaVeN — N(Tap — gavg” Tij)
1 . .
+N (E|h|§gab — 2hm‘h2) + 2hj(bDa)X1. (105)
Proof. The estimate is a direct consequence of Eq. (103). O

Corollary 3.23. Under the assumption (53) the following estimate holds.

[0:Hy| < C(Cy, Gy, Cyi) - t_Z[H4 + VH4]- (106)
In particular,
Ha(t) = C(C1, Co, Cv) - Tg " exp (C(C1, G O - T ). (107)

3.5. Total estimate for the perturbation of the metric

We give in the following a collection of all previously established estimates on the perturbation
of the metric under the given assumptions (53).

Proposition 3.24. Let Ty > 1. Under the assumptions (53) the following estimates hold for
te [TO; Tl]

hll < Co
Hy(®) = G- To exp (G- To ™)
% —Allgs < Cy
2-N<GC-t?
IDN|jgs < Cy - 72
IXllgs < Co - t72

E(¢ (D) < E(¢(Tp)) + Cy - To
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197 = 28(0)lloe < Co E@(T0) +To ™' |+ Gy 172

Eo(¢) < 2(8m)*8(t)* + E(¢(Tp)) + Ca [E(czs (To))* + Tgl]
21 s < 2(87)? + Co(E(@(To)) + Ty)
IXlgs < Cp - t73

Nl < Cy - t73, (108)

where C, = C,(Cy, Cy, Cy).

Proof. The estimates have all been proven in the foregoing part of the section. O

3.5.1. Implications for the perturbation terms
For the energy estimates for the distribution function in the following section we require the
following estimate. Recall the definition of I'; in (26) and that these are tensors.
Lemma 3.25. Under assumptions (53) the following estimates hold.
122 Tillgs 4+ IT2llgs + 1t Fsllgs < Gy -t (109)

Proof. The estimate is a direct consequence of the explicit form of I'; and Proposition 3.24.
O

We state another improved estimate for the shift, which is a direct consequence of (107)
and Lemma 3.10.
Corollary 3.26. Under assumptions (53) we have
IXllps < Gyt - 172 (110)

3.6. Energy estimates for the distribution function

We have at hand now all necessary estimates concerning the perturbation of the metric. We
proceed in this section by deriving the relevant estimates for the distribution function.

3.6.1. Evolution of my,
For the time derivative of the total mass, the following energy estimate holds.

Lemma 3.27. The evolution equation for the total mass reads
d

7Moo = / [(p,A(pO)_l)g — T§Bep” —2I,% — 2(N — 2)T
t TS?

+ T 5B (0 ™) + g Lxga | Frrse (111)
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In particular, the energy estimate for the total mass takes the form

_mOO

dt

where R, is defined as the supremum of the term enclosed by the brackets [.] in (111) taken
over the set supp f C TS?.

< RmOC * Moo, (112)

Proof. The equality is obtained by a straightforward computation using the Vlasov equation
(27) and integration by parts. The energy estimate follows directly. O

Corollary 3.28. Under the assumptions (53) the energy estimate takes the form

<Moo (t) < C(Cy) - t7% - muo(2). (113)
This implies, in particular,
Moo () — Moo (To)| < Moo (T)C(C1)- Ty exp [C(Cl) : Tgl]. (114)
For 8(t) (cf. (51)) this implies
18() — 5(To))| 5xnmxib)C(cl)-Tglexp[cxch)-Tgl] (115)
This simplifies to
|8(t) — 8(To)| < C(Cr,muo(To)) - Ty . (116)

Proof. The energy estimate is a straightforward consequence of the decay assumptions (53).
The estimate (114) follows by an application of Gronwall’s lemma and the estimate for § is an
immediate consequence. O

3.6.2. Evolution of the momentum-support
The decay of the momentum-support of f is established by use of a differential inequality for
the auxilliary quantity

G(t,x,p) = f2|p+X/2|§. (117)

The derivative of G = G(%, x, p) along geodesics is given in

Proposition 3.29. Let (t(s), x(s), p(s)) be a solution to the characteristic system (29) and G as
defined above, then the following estimate holds for the time derivative of G.

dG -
|55 | = [Ir12 = NI+ 2IN11hlg + 41T |6
177! [210:X] 15 = 21+ IVl g + 21Xl 210 s
tdlgly =P Pl g gll2lg p 3lglPlg
1
1 IV X glple + 41Xglp° — 51]VG (118)

Proof. The estimate is a direct consequence of the characteristic system (29). O
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Corollary 3.30. Under the assumptions (53) the energy estimate takes the form
dG
| =cenew i [a+ VG, (119)

In particular,

VG — /Gol < (v/Go + 1) - C(Cy, Cyp) - Ty L - exp(C(C1, Cyy) - Ty ) (120)
where Go = G(To, x(Tp), p(To)).

Recall Definition 2.6 of P4, and let

Gy (t) = sup {G(t,x,p)‘(x,p) € suppf(t,.,.)}. (121)

Define Go 4+ analogously for t = Tj.

Lemma 3.31. Let f be continuous and of compact support. Then

Po(®) = Coll9 o] G + X126 | (122)

In combination, this yields the following estimate.

Corollary 3.32. Under the assumptions (53), the following estimate holds.

Po(t) = C(C1,Cv) - [Gost + (Go + 1) Tg? + G- 172, (123)

Finally, we define the supremum of the momentum-support,

Poo(t) = sup {Ipls | p € suppf(t,., )} (124)

3.6.3. Corrected energies and Energy estimates

To estimate the Sobolev norms of the matter quantities via Lemma 2.8 we require energy
estimates for the L?-norms of the distribution function defined in (31). It is however not
direct to obtain such estimates. A straightforward approach by taking the time derivative of
the energy and integrating by parts yields perturbation terms, which have insufficient decay
and yield a small polynomial t-growth of the energies. This is however incompatible with
the perturbation analysis of the geometry, which in that case would yield terms growing in
time, which cannot be compensated. Therefore, it is necessary to avoid these “bad” terms in
the energy estimates. This can be achieved by a correction mechanism. These estimates, in
combination with the bootstrap assumptions, then imply uniformly bounded Sobolev norms
of the distribution function.

The problematic terms in the Vlasov equation appear in the I'j, component and read
3:X? + 27X (cf. (25)). Their pointwise decay is of the order < Ct~3, which is insufficient to
compensate for the missing momentum variable |p|, in these terms, which appears in front
of Bf in the energies. It is possible to avoid the appearance of the corresponding perturbation
terms in the final estimate by considering a corrected energy which consists of the square
of the L?-norm (2.5) and a correction term, whose time derivative cancels the problematic
terms and leaves only perturbation terms with sufficiently strong decay. The premise, for these
corrected energies to be equivalent with the standard energies arising from (2.5), is quadratic
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decay in time of the shift vector, which holds in the present setting (cf. Proposition 3.24).
A detailed construction of these corrected energies and of the related energy estimates has
been worked out in [17] for low orders of regularity. As the construction does not depend
on the spatial topology we shall not repeat the proof here. Rather we formulate a more
general version of these estimates without giving the explicit expression of the correction
terms—which is lengthy and not necessary for their application. What matters is only the
fact that such correction terms exist, which follows identically to [17]. We formulate the
according conditional estimates in the following lemma. The equivalence to the Vlasov energy
is given under a smallness condition on the shift vector and bounds on the rescaled conformal
factor ¢>.

Lemma 3.33. Let ¢, C € R be such that
IXllps < Ct2 (125)
and
'=¢’=q (126)
then there exists an wy = wo(c, C) > 0, s.t. for wy < w there exists a function
® = ®(PL X, VX,..., VX, Vf,...V'f.p) (127)

with domain dom® C supp f and im(®P) C R, such that for the corrected energy

1 120se = IF130, + f  Gurs (128)
T

equivalency to the L-energy holds, i.e.,

1
E”f”VlA,c < Ifllvia < 2lflIvia.e (129)

where both energies are defined with respect to w (cf. Definition 2.5 and w is independent of t).
Furthermore, an energy estimate of the form

[l Iviae| < RO - If v (130)
holds, where
R() = C(6,C, G, o, IRmI ) [ 1+ Fllgs + 1T s + 172 Fallge
+ ”[(2 —N)t +chXc]||oo

_ =<4
+POl(t72 oy XI5, 10X 15, sup  [V'p"Tg) | (131)
(x.p)esupp f

and pol(.) is a polynomial with vanishing constant term and V=4p° represents at least the first
derivative of p° (not the zeroth order).

Proof. The proof is identical to the corresponding one in [17]. O
Remark 3.34. Note that in particular under assumptions (53) the conditions on the shift

vector and on ¢2 hold. Note also that all terms on the right-hand side of (131) decay at least
like t~2.
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In combination with the decay estimates of Proposition 3.24, applied to estimate the
coefficient R, this implies the following boundedness estimate for the corrected energy and

in turn the corresponding estimate for the uncorrected energies.

Corollary 3.35. Under the assumptions (53), we have

If ®llviae < If(To)llviaeexp (C(C1, G Ty ) (132)
For the L*-energy this implies, by the equivalence of the energies,
f®)llvia < 4- 1 (To)llvia exp (C(C1, Cv) Ty ). (133)

3.6.4. Total estimate for the perturbation of the matter
The following proposition collects all estimates on the matter quantities from the foregoing
section.

Proposition 3.36. Under the assumptions (53) the following estimates hold for t € [Ty, T1].
Poc(NIHI = C2 - [Gos +T57
10Dl + 12 (Dllss =4I (To)llvia exp (CT5") [ 1+ Co(Tg? + o)
Il = Ca - 2 (To)lvisz - [ Gy +To7 (134)
8(t) > 8(Tp) — C Ty
Mo (8) = Moo (To)| < Mo (T Ty exp | C2T5 |

where C; = C,(Cy, Cy, Cy).

Proof. The estimates follow directly using Tg > 1, Corollary 3.26 and Corollary 3.35. O

4, Proof of Theorem 1.1

We are now able to prove the first theorem.

Proof of Theorem 1.1. We begin by fixing positive constants
Ci <1land

Cv1 > 10(lfollv1,4-

Then, let C, = C,(Cy, Cy) be the constant defined in Proposition 3.24. Choose Ty > 1 large
enough to assure

(135)

L (1 1
CTyl<minf—, 2, —— 1 (136)
200 2 20exp(Cy - Ty )
Note, that choosing Ty as above does not affect the lower bound on Cy; as the norm of fy by
local stability remains close to its original value, independent of the choice of T.
So far these constants are not related to any interval of existence. By virtue of the Cauchy
stability, Lemma 2.15, for the system, it is possible to choose ¢ at the initial time sufficiently
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small to assure existence of the solution on an open interval containing Ty and moreover to
deduce smallness with respect to the background solution at the time Ty. We may therefore
without loss of generality begin the evolution at a T such that (136) holds and choose the
data at T small. We refer to € now as the smallness at Ty. We may further increase T below
if necessary.

Define

Ty = sup {T > Ty | the solution exists on [T, T') and (53) holds on [Ty, T)}. (137)

The local theory yields that choosing ¢ sufficiently small implies the existence of T, €
(Tp, 00) U {oo}. We consider from now on the solution on [Ty, T,). By construction, the
bounds (53) hold on [Ty, Tx). We use in the following Proposition 3.24 to improve the
bootstrap assumptions one by one. Combining the smallness of T, !as chosen in (136) with
Proposition 3.24 we obtain the following estimates on [Ty, Tx), where for some we further
decrease the smallness ¢ at T.

Eo(¢p) <4 - (87m)28(1)?

)
192 —25(t>||oo_%

=2l s <4 - (8m)* (138)
. <,
N <— .t
1Nl <
. C
X e < 71 2

We obtain the complementary set of estimates for the matter quantities using Proposition 3.36
on the interval [Ty, T,). We possibly further decrease smallness at T and infer the following
inequalities.

Poo(f)[t]fcl/z
le** o (Hllgs + e 1 (Dl < Ci/2
e n()llgs < Ci/2-t72
1 2 (139)
(1) >+

1
Mo (1) — meo (To)| < %moo(TO)

Note that (138) and (139) improve (53) on [T, T4). As a result of (138) and (139) as well as
the continuation criterion in Lemma 2.15 we intend to conclude existence of the solution on
the interval [Ty, T,]. If the existence of the solution is assured, the bounds (53) hold by the
previous arguments. To show existence on [Ty, T] it suffices to ensure that an upper bound on
the norm in (49) of the form 3/2-8jc holds on [Ty, T,). This can be inferred straightforwardly
from the estimates for E(¢), ¢p>—28(t), N and X in Proposition 3.24 as well as the estimates for
n and ; in Proposition 3.36 by possibly increasing Ty again as discussed above and choosing ¢
sufficiently small. By continuity, the bounds (53) hold on [Ty, T]. It is important to note that
the smallness of ¢ and the choice of Ty do not depend on T,. This implies that for this fixed
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pair (g, Tp), the solution defined on [Ty, T) for the corresponding T as defined in (137) can
be extended to [Ty, Tx]. Then, a standard argument implies T, = oo, which is future global
existence of the solution. Using the estimates for the lapse, shift and trace-free part of the
second fundamental form as given in Proposition 3.24, the main result of [16] implies future
completeness of the solution. This finishes the proof of the theorem. O

5. Nonvacuum Einstein-flow on the 2-torus

In the remainder of this work we prove Theorem 1.3. The mechanism of proof here is similar
to the case of the sphere, which is the fact that the energy density acts similar to a negative
conformal curvature and therefore gives access to good estimates on the conformal factor.
However, due to some differences between both systems, a detailed discussion of the case
of the torus is necessary. The main difference is the non-trivial Teichmiiller space of the
torus, which yields an evolution of the conformal metric o2 similar to the case of hyperbolic
surfaces [17]. This changes the continuity argument for the proof of global existence. In
particular, terms containing the time derivative of the conformal metric are non-vanishing
and several constants and norms now depend on time due to the evolution of the conformal
metric. In the continuity argument we assume a uniform bound on the point in Teichmiiller
space to overcome this complication analogous to [15]. We give a brief presentation of the
Einstein-flow on the 2-torus and outline the proof of global existence. Details which follow
identical arguments as in the case of the sphere are omitted to avoid redundancies in the
presentation.

5.1. Gauge fixing

The Einstein equations on the 2-torus have been addressed in different works including [14],
[27]. We employ their essential techniques.

Every Riemannian metric g on T? is conformally equivalent to a flat metric o via 0 =
e~ "¢, where A is the conformal factor determined by the Hamiltonian constraint. We denote
the space of flat metrics on T? by Mo(T?). The group of diffeomorphisms of T? homotopic to
the identity, Dy, acts on Mo (T?). One may fix a gauge by passing to a slice of this group action
in which the flat metrics are represented by spatially constant metrics on T? of fixed volume.
For an extensive discussion of Teichmiiller spaces cf. [27] or the previous applications in [15,
17]. We set vol,,, (T?) = 1. In the following o2 denotes a spatially constant Riemannian
metric on T? of unit volume and scalar curvature R(o2) = 0. We refer to o2 as the conformal
metric. We denote the volume form of o2 by s The remaining gauge freedom is fixed by
the CMC condition t = —7 L.

5.2. Evolution of the conformal metric

The space of conformally inequivalent metrics, in which the equivalence class of o2 evolves
is two-dimensional. The evolution can be determined by the solvability condition of the shift
equation as done in [15] for hyperbolic surfaces. The shift equation reads

1
Lon =2Ne *h + 80 — Eatrg(ata), (140)
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with [Lyn],, = Danyp + Dyng — ogDcn®. The shift equation is solvable iff the right-hand
side of the equation is orthogonal to the kernel of L,. The kernel is the space of TT-tensors
on (T?, o2). This space is 2-dimensional with a basis {X; (o72), X2 (oq2)}. The orthogonality
condition reads

o X3 = —2vol,, (T~ /T i Ne*hgp X8 g, I € (1,2}, (141)

where we used the constancy of o and Xy in space. The metric o (f) may be parametrized
by two parameters (q;(¢),q,(t)) = q(#) as o is spatially constant and of fixed volume. The
condition (141) can be modified into the form

G1(t) = —2voly (T?) "' AJ(@) - /T Ne ™ hap X}’ 1o, (142)

where @ = (qi1,q2) and A is a matrix depending on q such that for q being uniformly
bounded, the components of A are uniformly bounded. The symbol - denotes the matrix
product. Equation (142) controls the evolution of . The time derivative of ¢ in terms of g is
given by an equation of the form

8t0' = B(CI) . C'L (143)

where B is of the same type as A. These considerations are sufficient to control the evolution
of o in terms of the evolution of perturbations.

5.3. Einstein equations on the torus

With the non-vanishing time derivative of the conformal metric the full set of equations
determining the Einstein flow on the 2-torus reads

Dyt = —e*j, (144)

2060 = ¢?)2 — e p — p 2T b2 (145)

AgN = N[ 2T} + ¢*/2 + '] — ¢ (146)
[Lonlg = 2N¢ > T2hap + d00p — %Uahaajato'cd (147)
Othay = (N — 1)/n¢* gy, — VaVeN — N(Tap, — gap T) (148)
+ Lxhgp + N(Ricgy — 2hgih}) (149)

oA = —% |:N7: + %tr(7 (0y0) — dngX:| (150)

Gr(t) = —2voly (T*) "' Af(@) - T° /T NOha X[ o (151)

do =B(q) - q, (152)
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where we rescaled using ¢? = t2e**. The kernel of the conformal Killing operator L, is the

space of conformal Killing fields on (T?, oT2), which is non-trivial. As an additional restriction
we require X to be L?-orthogonal to this space yielding a unique solution. We consider in the
following a solution to the foregoing system with initial data (qy, hg, X0, No, Xo, fo) sufficiently
regular and e-close to the fixed background solutions. Local stability for this system holds
analogously to the case of the sphere. q is controlled with respect to the euclidian norm on R?
and the continuation criterion is generalized to include the case [ — qy| — coast — T4
(cf. notations in Lemma 2.15). The analogous continuation criterion for the case of hyperbolic
surfaces is formulated in [17] and contains the condition on q.

5.4. Homogeneous solutions

Analogously to the sphere we obtain the following proposition on the existence of future
complete homogeneous solutions. Prior, we define

o(f) = e p(f). (153)

Proposition 5.1 (Future complete homogeneous solutions on T2). Let o2 be a Riemannian
metric with constant coefficients on T2 of unit volume. Then, there exists homogeneous initial
data of the form

2 2

T 0.f(Iply) (154)
“4p(fo) T2+ JoliPlg

with smooth fy. This initial data has the future complete development on [Ty, 00) x T2 of the
form

(0, h, e N, X, f) = (00,0

202\’ , Tt
gh0m=—<_[2+2n> dt +5-t0'r]1~2. (155)

Asymptotically,

272

lim =
t—00 1'2 + 2r]

(156)
. 74 4my
lim

t>004p  vol, (T2)

Remark 5.2. We refer to [19] for a detailed discussion of these background solutions.

5.5. Energy estimates

We establish in the following a number of estimates on the perturbation of the metric and
the distribution function on an interval where we impose a set of bootstrap assumptions.
The estimates are similar to those in the spherical case except for some adaptions, which
are discussed explicitly. All Sobolev norms used in the following, i.e., ||.|| g, are defined with
respect to the evolving metric o2 (). The same holds for the related Sobolev constants. For
definitions which are formally identical with the case of the sphere we keep the same notations.
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5.5.1. Bootstrap assumptions
We define in this section

M (1)

5(t) = W.

(157)

We impose the following assumptions for ¢ € [Ty, T ].
Al < Cy
Ep(¢) <10 - moo(To)
lp* = 28(1)[loo < 8(D)
|62l < 10 volg,

P (N[t <Cy

e ol + 1€ (Hlls < Cwi

I (Pl < C - £ (158)

56>
2

Moo () — Moo (To)| < mwl—E)T")

[Nl < Cy - t72
IX| e < Cy - t72

g —qol <G

Note that Cyy is large with respect to the initial data of the distribution function. We choose

Cvi = 10 - |Ifollvi,a- (159)

Remark 5.3. For simplicity we assume the lower bound on § as above by % Any positive
constant would work similarly. So this choice does not restrict the validity of the proof.

5.5.2. Estimates on the perturbation of the geometry
The purpose of this section is to collect the relevant energy estimates for the solution to (144)-
(152). Their proofs are mostly similar to those in the case of the sphere.

Proposition 5.4. Let Tg > 1. Then, under the assumptions (158) the following estimates hold
fort € [To, T1].

Ikl < Co

Hy(t) < Gy - Ty exp (C2/To)
1A =Algs < Cs

2-N<GC-t2

IDN||gs < Cy - t72
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Xl < Co- 172
E(¢ (1) < E@(To)) + Cy - Ty

162 = 26(0)llo0 < Co| E@(To)) + T3 | + Cat ™2

Ey(@) < 2voR 50 + E(@(To) + C:Ty ' + o[ E@ (o)) + T, ||

IXllgs < Co -t

INllgs < Cp-£7°
1g — qol < C2Ty " exp (C2/Ty)
30|l < Co-t™2

670 lls < Co- 17,
(160)
with C; = C,(Cy, Cyy).
Proof. We discuss the individual estimates in the following. We note that due to the uniform

bound on the coordinates in Teichmiiller space, all constants depending on ¢ are uniformly
bounded. We denote a bound on these constants by C.

Second fundamental form. We decompose the trace-free part of the second fundamental form
into h = hT + h'*, where h™T is a TT-tensor and h' is a conformal Lie derivative. For h' we
obtain the following estimate analogous to section 3.2.1.

It e < Colle® g 11, (161)

For the TT-part, since all Sobolev norms are equivalent on this finite dimensional space
(cf. [15]), we have

1 s < Co T < Co [+ I (162)
In total, this yields
Vllzs < Co [ WA+ e g1 (163)

With the bootstrap assumptions, this implies the estimate for A.

Conformal metric. With the uniform bound on the point in Teichmiiller space, Eq. (151)
implies an estimate of the form

lal < Cat?llg 2Rl (164)

which in turn yields

d
19— dol = Ca(lq — qol + ap)7° (165)
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and by Gronwall’s lemma
lq— dol < Cy- Ty ' exp (C2/To). (166)
Equation (152) in combination with Eq. (151) immediately yields
|80 llgs < Co - 172 (167)

Conformal factor. Analogously to Lemma 3.4 we have
1A = Xlps < ca[uabz/z —etp— r2¢>—2|h|§||Hs] + Cl, /2]l¢~*Dg?|l. (168)

In combination with the previous estimates and the bootstrap assumptions this implies the
estimate for the conformal factor.

Lapse. The estimates for the lapse function follow identically to those for the sphere discussed
in Section 3.3.1.

Shift. The estimate for the shift vector follows similarly to that one in Corollary 3.11. However,
there are additional terms arising from the time derivative of the conformal metric, which can
be estimated using (167).

Time derivatives of lapse and shift. The corresponding estimate for the lapse follows analo-
gously as for the sphere in Corollary 3.13. For the time derivative of the shift there is an
important difference with respect to the case of the sphere. The time derivative of the shift
equation takes the form

Lo’h = BtFn, (169)

where Lonn = Dyny + Dyng — ogDc11¢ and F,, denotes the right-hand side of the shift
equation. The term on the right-hand side can be computed using (151) and (152). As the
conformal Killing operator L, has a non-trivial kernel, which is the space of the conformal
Killing fields with respect to o. Equation (169) therefore only provides estimates for the part
of 9,X orthogonal to this space. We split,

X = 9,x* + a,.x1, (170)
where
/ (08X, ZP) g po = 0. (171)
'I[‘Z
Then, a representation of the following form exists,
X!l = ry 7AW, (172)

where ry = r(t) and {Z@} is a basis of the space of conformal Killing fields. The vector of
coefficients can be determined by the time derivative of the orthogonality condition for the
shift vector, which reads

0= / (30X, ZW) oy + / (X, ZD) g 110
T2 T2

+ / X, ZM) g0 10 + / (X, 20 dy1t0
T2 T2
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—p f (Z®, 28y + / X, 280 1o
T2 T2

+ / X ZMY oo to + / X VAN T (173)
T T

where the orthogonality condition for X is used. Let Z be the invertible matrix with entries
ZAaB = sz (Z(B),Z(A))a,ug and Y the vector with components YA = sz (X, BtZ(A))g;LJ +
Jp2 (X, ZMY a0 the + Jr2 (X, ZM) 5 3. Then, the following equation holds,

r=z"'.y (174)
and implies
Irl < CIZ|JY]. (175)

By the bootstrap assumptions |Z| is uniformly bounded as it just depends on the conformal
metric. For the components of Y we evaluate

t 4 = —aZ(A) @

0z . 176
aq; dt (176)

This implies, in combination with Eq. (164), (167) and the estimate on the L>-norm of the
shift vector,

Ir| < Cy -t (177)
In combination with Lemma 2.1 applied to Eq. (169) for 3, X, this yields
13Xl pze < 19X gz + 10X s < Co - 73, (178)

which is the desired estimate for 9;X.

Estimate for 320 Taking the time derivative of the equation for d;0 in terms of ¢ we obtain

IB(q) . ..
3o = aq? a' +B(q) - §. (179)

Using in turn (151) in combination with the evolution equation for /4 and the previous
estimate for N we can infer the estimate for 320

Energy estimate for h.
The energy estimate of the form derived in Lemma 3.22 holds similarly in the case of the
torus. In combination with the previously established estimates it implies

0Ha| < Cot ™[ Hy + VH; | (180)
An immediate consequence is
Hy(0) = G- Ty exp (G- T3). (181)

Rescaled conformal factor.
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The evolution equation for the conformal factor (150) implies
1
at(ﬁz = |:(2 —N)Tt — Etrg (0:0) +ngXC:| ¢2. (182)

This differs from the analogous equation for the sphere by the term containing the time
derivative of the conformal metric. However, this term obeys the same bound as the shift
vector term and therefore can be handled identically. Following similarly to (87) we obtain

E(¢ (1) < E(¢(To)) + C - Ty (183)

Asin Corollary 3.18, noting the vanishing conformal curvature in the Hamiltonian constraint
in the case of the torus, we obtain

197 = 2800 < Ca| B (To) + T3 | + Cat ™2, (184)

Finally, analogous to Corollary 3.19 we obtain
2

Eg(9) = 2v0R8(0° + E@(To) + CTy" + G[E¢ T + T3, (189)

where here §(f) = mo () /voly,, (T?). This completes the list of estimates and the proof. [

5.5.3. Estimates for the perturbation of the distribution function
Proposition 5.5. Under the assumptions (158) estimates of the same form as in Proposition 3.36

hold.

Proof. The estimates follow analogous to the those in Proposition 3.36. 0

5.6. Proof of Theorem 1.3

Proof of Theorem 1.3. The proof is analogous to the one of Theorem 1.1 in the foregoing
section. The only difference concerns the non-trivial evolution in Teichmiiller space for
the torus. The initial bootstrap assumption on boundedness of q is improved as shown in
Proposition 5.4. The other steps in the proof follow the foregoing one and are therefore not
repeated. O
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