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ABSTRACT

We prove future nonlinear stability of homogeneous solutions to the
Einstein–Vlasov system with massive particles on manifolds with topol-

ogy M = R × 6, where 6 is either S2 or T2. For the sphere this
implies the existence of an open subset of the initial data manifold with
elements of strictly positive scalar curvature, whose developments are
future geodesically complete. In combination with an earlier result for
hyperbolic surfaces we conclude future completeness for the Einstein–
Vlasov system in 2+1 dimensions independent of the compact spatial
topology for an open set of initial data.
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1. Introduction

An intriguing open problem in general relativity concerns the e�ect of the spatial topology

on the long–time behavior of the Einstein �ow on spacetimes with topology I × 6 with

I ⊂ R, where6 is a closedmanifold. Themain competing scenarios are spacetimes which are

complete in one direction and incomplete in the other—we refer to those as past incomplete

and future complete—and those which are incomplete in both directions, i.e., recollapse. In

2+1 dimensions, the uniformization theorem implies that 6 is either the sphere, the torus

or a higher genus surface. It is believed that for the case of vanishing cosmological constant

positive spatial curvature causes recollapse of spacetimewhile negative spatial curvature leads

to future completeness (cf. [31]). The former behavior is been referred to as the closed universe

recollapse conjecture, stated by Barrow et al. [9]. It concerns the case of 3+1-dimensional

solutions to the Einstein-matter equations with vanishing cosmological constant and may be

reformulated following [31]:

Let (M, g) be a maximal globally hyperbolic cosmological solution to the Einstein-matter

equations with a compact hypersurface 6. If 6 is of positive Yamabe type, the spacetime admits

a foliation of constant mean curvature (CMC) hypersurfaces with mean curvature taking all

real values. This foliation covers the entire spacetime. In particular, validity of this conjecture

determines that the existence of aCMC—hypersurfacewith an inducedRiemannianmetric of

positive scalar curvature implies the recollapse of this spacetime, i.e., the geodesic incomplete-

ness in both time directions. The conjecture has been proven under simplifying assumptions

for the vacuum and nonvacuum case. Some results are given in the following. For the case of

Bianchi type IX solutions the conjecture was proved by Lin and Wald [23] (cf. also [28] for a
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detailed presentation of the proof), for spherically symmetric spacetimes by Burnett [11]. For

spatially homogeneous spacetimes with a perfect �uid or collisionless matter it was proved

by Rendall [32]. For spherically symmetric spacetimes on S
2 × S

1 with a massless scalar �eld

or collisionless matter the conjecture was proven by Rendall [33] and Burnett and Rendall

[12] under the assumption of the existence of a CMC surface. This assumption was then later

removed byHenkel [22]. For additional references and the relation to geometrization we refer

to the article by Anderson [1]. Complementary to the recollapse of positively curved initial

data, there are results proving that negative spatial curvature implies future completeness such

as the case of the Milne model and generalizations in di�erent dimensions [3].

The �rst main result of the present work is the nonlinear stability of a counterexample to

the recollapse conjecture, which has been constructed in [19]. We consider 2+1-dimensional

spacetimes with the spatial topology of the sphere. This class is delicate in the sense that there

are no vacuum solutions to the system with that topology, as discussed in the next section. A

key observation presented in [19] is the fact that an energy density created bymassive particles

allows for the construction of homogeneous future complete solutions with this topology—

despite the positive spatial curvature. Here, we upgrade this result to general initial data close

to the homogeneous models of [19], where closeness is de�ned in terms of suitable Sobolev

spaces. This is made precise below. The reason for future completeness results from the sign

of the energy density, which acts as a negative correction to the rescaled scalar curvature in

the Hamiltonian constraint. Moreover, for massive particles this e�ect is uniform in time as

we describe below. It allows for a solution of the Hamiltonian constraint despite the spherical

topology and avoids recollapse of spacetime. We used this fact to construct a class of explicit,

future complete solutions with spherical topology in [19]. The �rst theorem of this work states

their nonlinear stability.

In the second part of this paper we study the Einstein–Vlasov �ow on the 2-torus. Here,

similar to the sphere, the energy density is exploited to construct stable, future complete

solutions. We comment on details of the construction in the following.

We remark that the corresponding system formassless particles leads to di�erent classes of

spacetimes, which show a relation between the long-time behavior and the spatial topology.

These spacetimes are constructed and analyzed in [20].

1.1. Spacetimes with spherical spacelike topology

A necessary condition for the existence of solutions to the vacuum CMC-Einstein equations

on manifolds of the form

M = [T0,∞) × S
2, (1)

where T0 ∈ R, is positivity of the cosmological constant,3 > 0. This is a direct consequence

of the constraint equations for the induced metric g and the second fundamental form kwith

mean curvature τ = trgk,

R(g) − |k|2g + τ 2 = 2ρ + 23

∇ ikia − ∇a(trgk)= a,
(2)

as the vacuum-CMC momentum constraint (∂xiτ = 0 for i = 1, 2 and  = 0) implies that

the trace-free part of the second fundamental form k vanishes, which is due to the fact that

the 2-sphere admits no nontrivial transverse-traceless tensors. Then the le�-hand side of the
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vacuum Hamiltonian constraint (ρ = 0) is strictly positive, which implies that 3 needs to

be strictly positive to allow for the existence of solutions [4]. This follows from rewriting the

Hamiltonian constraint as an elliptic equation for the conformal factor (cf. (16)), [26].

In the general case, a CMC surface always exists [5, 8, 25] so S
2 topology is ruled out for

vacuum solutions with3 = 0. However, the presence of a non-vanishing energy-momentum

tensor may allow for solutions in the case of vanishing cosmological constant. It has been

demonstrated in [14] that a non-vanishing energy density allows for (local in time) solutions

of the Einstein equations with 3 = 0 for the case of a massless scalar �eld coupled to the

Einstein equations (which in this speci�c case originates from a U(1)-symmetry in 3 + 1

dimensions). The global structure of these solutions is however not investigated in [14]. We

consider from now on the case 3 = 0 for the remainder of the paper. A key observation

of [19] is discussed in the following. If one couples massive Vlasov matter to the Einstein

equations the asymptotic behavior is more accessible in the following sense. The L1-norm of

the energy density ρ, taken with respect to the Riemannianmetric induced on S2, is bounded

from below by the total mass of the slice
∫

ρ(f )µg > m∞ ≡
∫

TS2
fµTS2 , (3)

where f denotes the representation of the distribution function with domain TS2 (cf.

Section 2.4 for details). m∞ is a conserved quantity in the homogeneous case, which is

an immediate consequence of the transport equation for f (cf. Section 2.5). For initial data

satisfying the condition

4π < m∞, (4)

this lower bound on the mass is preserved during the evolution and assures the solvability of

the Hamiltonian constraint and in particular a sharp lower bound on the conformal factor,

in terms of the time function. We conclude the existence of future complete homogeneous

solutions, which are future-asymptotically of the form

g∞ = −4dt2 + m∞ − 4π

2π
t2 · σS2 . (5)

Here σS2 denotes the round metric on the 2-sphere with volume 8π and constant scalar

curvature R(σS2) = 1. The exact solution is given in (42). Note in particular that the

asymptotic behavior of these solutions is uniquely determined by the totalmassm∞.Weprove

future global-in-time existence for solutions with initial data close to these homogeneous

solutions. The asymptotics imply future completeness of the future-development of any initial

data close to these solutions. The main result is

Theorem 1.1. Every homogeneous solution to the Einstein–Vlasov system on [T0,∞) × S
2

of type (42) is future nonlinearly stable. In particular, for any T0 > 0, there is an open set of

initial data at T0 containing the initial data induced by the homogeneous solution, such that the

future development of each of its elements is globally hyperbolic and future timelike- and null

geodesically complete and remains in a �xed neighborhood of the homogeneous solution.

Remark 1.2. We make the speci�cations of the above theorem precise. By homogeneous

solution we refer to solutions of the type (42). By initial data we refer to data (λ, h,N,X, f0) ∈
H5 × H4 × H6 × H5 × HVl,c,4 solving (15)–(18), where Hk are standard Sobolev spaces

(cf. Section 2.1.1) andHVl,c,k, are Sobolev spaces for distribution functions (cf. Section 2.4.2).
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The considered set of initial data is open in the sense of the aforementioned function space

topology.

1.2. Spacetimes with toroidal spacelike topology

The spatial topology of the 2-torus,T2, allows for solutions to the vacuum Einstein equations

[4, 13, 27]. However, the problem of their nonlinear stability is a priori di�cult as the

conformal geometry degenerates asymptotically (cf. the introduction of [15] and Chapter 3.3

of [13]). The reason for this behavior is the vanishing scalar curvature of the conformalmetric

in the Hamiltonian constraint. If the conformal factor is spatially constant it is essentially

equal to the square of the trace-free part of the second fundamental form, h = k − τ/2g. If

one considers nonvacuumEinstein–Vlasov initial data, the energy-density in theHamiltonian

constraint li�s this sensitive dependence on h and yields a behavior which resembles the case

of negative spatial curvature. In the homogeneous case this yields solutions of the following

form. We consider the homogeneous equations (44) for initial data with m∞ > 0. The

homogeneous Hamiltonian constraint takes the form

0 = e2λτ 2/2 − e2λρ. (6)

In particular,

e2λτ 2 = 2e2λρ
t→∞−→ 2m∞

volσ
T2

(T2)
. (7)

This yields future complete spacetimes on T
2, with the future-asymptotic form

g∞ = −4dt2 + 2m∞
volσ

T2
(T2)

t2 · σT2 , (8)

where here σT2 denotes a �xed Riemannianmetric onT2 with vanishing scalar curvature. The

exact form of the solutions is (155). These have �rst been constructed in [19]. The following

is the second main theorem.

Theorem 1.3. Every homogeneous solution to the Einstein–Vlasov system on [T0,∞) × T
2 of

the form (155) is future nonlinearly stable. In particular, for any T0 > 0, there is an open set of

initial data at T0 containing the initial data induced by the homogeneous solution, such that the

future development of each of its elements is globally hyperbolic and future timelike- and null

geodesically complete and remains in a uniformly bounded neighborhood of the homogeneous

solution.

Remark 1.4. The same speci�cations as in Remark 1.2 apply to Theorem 1.3.

1.3. Massive particles—oblivion to topology

In a more general sense, the connection between the spatial topology and the asymptotics

of the Einstein �ow has been analyzed for the case of a positive cosmological constant by

Ringström in [30] andwithVlasovmatter in [29]. For a certain class of initial data the Einstein

�ow localizes and the spatial topology has no in�uence on its asymptotic behavior. The latter

has been referred to as oblivion to topology.
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The results in the present work, in combination with the main result of [17], where it

is shown that the Einstein–Vlasov �ow on hyperbolic surfaces yields future complete and

stable solutions, directly imply that a variation of oblivion to topology holds for the Einstein–

Vlasov �ow in 2+1 dimensions with massive particles but vanishing cosmological constant.

In particular, for an open set of initial data, the future behavior of the Einstein–Vlasov �ow

is independent of the spatial topology—all solutions are future complete and expand at a

quadratic rate in inverse mean curvature time t = −τ−1. This is concluded by the following

corollary, which is an immediate consequence of Theorems 1.1, 1.3, and the main result of

[17]. For a closed surface 6 we denote its genus by gen(6).

Corollary 1.5. Let 6 be a closed surface and σ6 a �xed Riemannian metric of constant scalar

curvature on6, R(σ ) ∈ {−1, 0, 1}. Then there exists initial data to the massive Einstein–Vlasov

�ow on 6 such that its maximal development is future geodesically complete and the spacetime

is future-asymptotically of the form

g∞ = −4dt2 + c · t2σ6 , (9)

where c = c(gen(6),m∞) is a positive constant depending only on the genus of 6 and its total

mass. These solutions are future stable.

1.4. Remarks

The existence of an open set of future complete spacetimes with topology [T0,∞) × S
2 is in

fact desirable as it provides the possibility to study the Einstein-�owwith vanishing cosmolog-

ical constant on one of the most accessible topological models—the 2-sphere. This provides

a basis to consider large data perturbations of the homogeneous background geometry by

studying for instance the future development of surfaces of revolution “far away” from the

geometry of the round sphere. Similarly, future complete models with torus topology may be

investigated with respect to large perturbations under an additional symmetry assumption.

In the symmetric case, both models provide e�ectively 1+1-dimensional systems, which can

serve as examples to study large data perturbations.

In the context of quantum gravity, where 2+1-dimensional spacetimes are a well-studied

system (cf. [13]), models with these topologies and vanishing cosmological constant provide

a new class of explicit solutions.

Finally, we remark that the results presented in this paper and the corresponding result

in [17] relate, in a broader sense, to a recent series of results on nonlinear stability for the

Einstein–Vlasov system [2, 21, 24, 35].

1.5. Organization of this paper

The paper is divided into two parts. Sections 2 to 4 are concerned with the case of the sphere,

i.e., the proof of Theorem 1.1. Section 5 treats the case of the torus and contains the proof of

Theorem 1.3.

We remark that the Einstein–Vlasov system in 2+1 dimensions has been discussed for

the case of hypersurfaces of genus gen(6) > 1 in [17]. Some fundamentals are similar for

the topologies considered here. But several details di�er in the present case, in particular,

the matter sources are not small as in [17]. For the sphere the energy density is necessarily
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large (cf. (4)). This requires a number of additional steps in the proof compared to the case

considered in [17].

For further background on the Einstein equations in CMC-gauge we refer to [3, 4, 15,

17]. Some relevant geometric facts for the sphere are taken from [14]. These fundamentals

on the geometry are given in Section 2. Main facts about the energy-momentum tensor and

the distribution function for Vlasov matter as well as the transport equation are revisited in

Section 2.4. For a thorough introduction to the Einstein–Vlasov systemwe refer to [6, 29, 34].

In Section 2.5, we review the class of explicit homogeneous solutions with spherical

topology introduced in [19]. Starting from there, we begin with the preparations of the proof

of Theorem 1.1. Section 3 contains the proof of the main energy estimates, which are used in

conjunction with a bootstrap argument in the proof of Theorem 1.1. To allow for a concise

deduction and presentation of the relevant estimates, we initially make a number of bootstrap

assumptions (cf. (53)), which reduce the estimates to a compact form. Namely, we present the

conditional decay for the perturbation of geometry and matter directly in terms of the time

function. Section 3 is organized as follows. In Section 3.1 we make the bootstrap assumptions

which are the basis for all following estimates in the remainder concerning the spherical case.

Sections 3.2 and 3.3 treat the elliptic estimates for the trace-free part of the second fundamen-

tal form, the conformal factor, the lapse function and the shi� vector. Also, we derive estimates

for the time-derivative of the lapse function and the shi� vector, which appear in the Vlasov

equation. In Section 3.4 we use the evolution equation for the conformal factor and the trace-

free part of the second fundamental form to derive energy estimates for Sobolev norms of

both quantities. These are necessary in addition to the elliptic estimates, since they provide

a smallness factor coming from the initial data or the inverse of the initial time, T0, which,

by means of Cauchy stability, can then also be turned into a smallness factor. We distinguish

between an energy for the rescaled conformal factor and one for its gradient, as the latter is

required to be small, while the former is not. This is discussed inmore detail in Section 3.4.We

then summarize all estimates on the perturbation of the geometry in Section 3.5. Section 3.6

presents all estimates on the relevant matter quantities, the total mass, the bound on the

momentum support, the L2-energies for the distribution function and the resulting estimates

on the Sobolev norms of the matter quantities which appear in the Einstein equations. The

L2-energies for distribution functions have been introduced in [17] and a mechanism of

correction has been set up therein. This idea is brie�y revisited in Section 3.6 for the sake

of completeness, but the computations are essentially similar to [17] and not repeated. These

estimates require certain decay properties of the perturbations of the geometry, which are

assured by the bootstrap assumptions. Eventually, Section 4 presents the proof of Theorem1.1.

The proof of Theorem 1.3 is given in Section 5. The main approach is similar to the case of

spherical topology, except that a non-trivial evolution of the conformal metric occurs, which

requires additional control. For the sake of completeness, we give all relevant estimates and

prove those explicitly, which deviate from the case of the sphere.

2. The Einstein-�ow on the 2-sphere

2.1. Notations and elliptic estimates

We begin with some general notations and collect some standard tools from elliptic theory

and Sobolev spaces.
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2.1.1. General setup

We consider the manifoldM = [T0,∞) × S
2 for T0 > 0 and with the standard ADM ansatz

for the Lorentzian metric onM,

(3)g = −N2dt ⊗ dt + gab(dx
a + Xadt) ⊗ (dxb + Xbdt), (10)

where N is the lapse function, X the shi� vector �eld and g the physical metric on S
2. We

denote by k the second fundamental form. A useful notation is X̂ ≡ X/N. Furthermore,

σS2 denotes the round metric on S
2 with scalar curvature R(σS2) = 1 and D be its covariant

derivative. The corresponding Laplacian is1σ . This implies that the volume ofS2with respect

to σS2 is volσS2 (S
2) = 8π . We de�ne all Sobolev spaces Ws,p and Hk and standard Sobolev

norms ‖.‖Hs on S
2 with respect to the metric σS2 and its covariant derivative D (cf. [7]). We

use ‖.‖ = ‖.‖L2 . As σS2 is �xed, all relevant constants for elliptic regularity estimates and

Sobolev embedding up to a chosen order are bounded by a uniform constant denoted by C.

Further notations and de�nitions will be introduced throughout the work.

2.1.2. Standard elliptic estimate

The following generalization of the standard elliptic regularity estimate is relevant for elliptic

operators with nontrivial kernel as occurring below in particular for the shi� vector.

Lemma 2.1 ([10], p. 463). Consider a linear, second order elliptic, operator L on a closed

manifold 6. Let ℓ ≥ 0 be an integer, then there are positive constants C1, C2 s.t.

‖u‖Hℓ+2 ≤ C1‖Lu‖Hℓ + C2‖u‖L1 ∀u ∈ Hℓ+2(6). (11)

If in addition one restricts to the set of functions

{u | u is L2-orthogonal to ker L}, (12)

then the estimate holds with C2 = 0.

2.2. Geometry of the 2-sphere

In the following some relevant geometric properties of the 2-sphere are discussed, which are

used to bring the Einstein equations into a more concise form.

Lemma 2.2 (cf. [14]).

(i) S
2 admits no non-trivial TT-tensors, i.e., for a Riemannian metric g on S

2 and some

vector �eld Y the conditions trgY = 0 and ∇ iYij = 0 imply Y ≡ 0.

(ii) Every Riemannian metric gt on S
2 is conformally equivalent to the canonical metric σS2

with scalar curvature R(σS2) = 1, i.e.,

gt = e2λtϕ∗
t σS2 (13)

for a conformal factor λt and an arbitrary di�eomorphism ϕt : S
2 → S

2.

(iii) S
2 admits 6 linearly independent conformal Killing vectors Z(A), A ∈ {1, . . . , 6}, i.e.,

DaZ
(A)

b + DbZ
(A)

b − σS2 abDcZ
(A),c = 0. (14)
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2.3. Nonvacuum Einstein �ow on the 2-sphere

We discuss in the following the choice of gauge and the corresponding reduced Einstein

equations.

2.3.1. Choice of gauge

The gauge freedom is �xed by additional choices following [14, 26]. The family of di�eomor-

phisms (ϕt) is chosen to be the identity (idS2). The second fundamental form is decomposed

into k = h + τ/2g, where h is the trace-free part of k and τ the mean curvature. The mean

curvature is chosen to be constant on every spatial slice S2t and the time coordinate is chosen

to be t = −τ−1. Finally, the shi� vector is chosen orthogonal to the space of conformal Killing

vector �elds {Z(A)}.

2.3.2. The reduced Einstein equations

The reduced Einstein equations read

Dbh
b
a = −e2λa (15)

21σλ = e2λ/2τ 2 + 1 − 2e2λρ − e−2λ|h|2σ (16)

1σN = Ne2λ
(
e−4λ|h|2σ + τ 2/2 + η

)
− ∂tτe

2λ (17)

[Lσn]ab = 2Ne−2λhab, (18)

∂tλ = −1

2

[
Nτ −g∇cX

c
]

(19)

∂thab = (N − 1)τ 2/ngab − ∇a∇bN − N(Tab − gabT)

+LXhab + N(Ricab − 2haih
i
b). (20)

trT denotes the (3)g-trace of the energy-momentum tensor and R(g) and Ric are scalar and

Ricci curvature of g, respectively. We use the notation na ≡ Xae
−2λ, where the index is

lowered by g and Lσ denotes the conformal Killing operator, [LσY]ab ≡ DaYb + DbYa −
σS2 abDcY

c. The matter quantities are the energy density ρ = N2T00, the matter current

a = NT0
a and the pressure η = gabTab. The individual equations are momentum constraint,

Hamiltonian constraint, lapse and shi� equation as well as the evolution equation for the

conformal factor and the trace free part of the second fundamental form, respectively. A

solution to (15)–(18) with divergence-free energy momentum tensor solves the original

Einstein equations [14]. To allow for a more concise treatment of the evolution, we de�ne

the rescaled conformal factor

φ2 ≡ τ 2e2λ. (21)

To obtain a preview on the approximate values of the metric variables in the small data

setting considered in the nonlinear stability analysis we refer to the exact background

solution (39), (42) (whose perturbations we consider) and the eventual decay rates given in

Proposision 3.24.
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2.4. Vlasovmatter

For a detailed introduction to the geometric fundamentals of the Vlasov model as discussed

here the reader is referred to [6, 29, 34]. We recall the relevant notations. Moreover, the

presentation in this section includes the spatial topology of the torus as there is no substantial

di�erence concerning the setup of the structure for the transport equation. In this section 6

denotes either the sphere or the torus.

We consider the tangent bundle of the spacetime M = [T0,∞) × 6, TM and its subset,

the mass-shell

TM ⊃ P ≡
{
(x, p) ∈ TM

∣∣ − m2 = |p|2(3)g(x), p
0 > 0

}
. (22)

We set m = 1. Let Px denote the corresponding �bre over the point x ∈ M and µPx the

induced volume for onPx. A distribution function is of the type f̂ ∈ C1(P)with im(f̂ ) ⊂ R+.
The energy-momentum tensor of a distribution function f̂ is given by

Tαβ(x) =
∫

Px

f̂ pαpβµPx . (23)

Let X denote the geodesic �ow �eld on P. In the frame corresponding to horizontal and

vertical directions onTM, {Aα = ∂α −pµŴν
µα∂pν ,Ba = ∂pa} the geodesic �ow �eld readsX =

pαAα . The Vlasov equation is then given by Xf̂ = 0. For the projection π : TM → I × T6,

we consider the pushed forward Vlasov equation for a function f : R × T6 → [0,∞) of the

form [π∗X]f = 0. In coordinates this equation takes the form

pα∂αf − Ŵe
αβp

αpβ∂pe f = 0, (24)

where the Christo�el symbols have the form

Ŵa
00 = ∂tX

a − 2τXa + Ŵ̃a
1 ,

2Ŵa
(b0)=−2τδab + 2Ŵ̃ a

2,b,

Ŵa
bc =Ŵa

bc + Ŵ̃ a
3,bc.

(25)

We made the abbreviations

Ŵ̃a
1 = (2 − N)τXa + Xb∇bX

a − 2NhacX
c + N∇aN

− 1

N
Xa(∂tN + Xb∇bN − |X|2h − τ/2|X|2g)

2Ŵ̃ a
2,b = (2 − N)τδab − 2Nhab + 2∇bX

a

− 2

N
Xa∇bN + 2

N
(hbc + τ/2gbc)X

cXa

Ŵ̃ a
3,bc =

1

N
(hbc + τ/2gbc)X

a,

(26)

which are all tensors on 6. The �nal form of the Vlasov equation reads

∂tf = −pe/p0Aef − 2τpeBef + p0(∂tX
e − 2τXe)Bef

+ p0Ŵ̃eBef + pu2Ŵ̃e
uBef + papbŴ̃e

abBef . (27)
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The form of the equation is adapted to the expected behavior of the terms on the right-hand

side. The terms in the �rst line are leading order, i.e., they are present in the background

geometry or in case of the shi� vector terms, have too slow decay to be estimated with the

perturbative terms. The second line contains all fast decaying terms, which are treated as

perturbative terms.

De�nition 2.3. For a given distribution function f , we de�ne the total mass of a slice 6t with

respect to f by

m∞ ≡
∫

T6

fµT6 , (28)

where the volume form is given by µT6 = |g|dpdx.

Remark 2.4. In the case X ≡ 0, the total mass coincides with the number of particles and is

therefore conserved.

2.4.1. The characteristic system

A simpli�ed representation of the distribution function by the characteristic system for the

Vlasov equation,

dxa

ds
= Pa,

dt

ds
= P0

dPa

ds
=−(3)Ŵa

µνP
µPν

(29)

for curves (x, P)(s) in [T0,∞) × T6 with initial data x(t) = (t, x′) and P(t) = p, is given by

f (t, x′, p) = f0((x, P)(0; t, x′, p)) (30)

where f0 is the restriction of f to the hypersurface given by {x0(s = 0) = 0} and (x, P)(s; t, x′, p)
is the solution to (29).

2.4.2. Sobolev norms

We make use of the L2-energies introduced in [17], which are partially weighted Sobolev

norms of the distribution function with respect to the Sasaki metric on the tangent bundle

T6. These norms are the essential tool to control higher Sobolev norms of the energy

momentum tensor. The pointwise control and that of the L2-norm result from estimates on

the momentum-support and the constancy of the supremum of the distribution function.We

recall the de�nition of the Sobolev norms.

De�nition 2.5. Let

‖f ‖Vl,s,µ ≡
√√√√

∑

0≤ℓ≤s

∫

T6

p2µ|∇ℓ
f |2ĝµT6 . (31)

We denote the corresponding weighted Sobolev space on T6 by HVl,s,µ(T6). Furthermore,

let HVl,c,s(T6) denote the subspace with distribution functions of compact momentum

support.
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Here, g denotes the Sasaki metric with respect to g on T6, in coordinates gab = gabdx
a ⊗

dxb + gabDp
a ⊗ Dpb for Dpi = dpi + pjŴi

jkdx
k with covariant derivative ∇ and p =√

1 + e2λ|p|2g , µ ∈ R. ĝ = τ 2gabdx
a ⊗ dxb + (ωt−4 + |p|2σ )−1τ 2gabDp

a ⊗ Dpb denotes

the weighted Sasaki metric, with parameter 0 < ω ≤ R. The factors τ 2 have been chosen so

that the resulting metric τ 2gab is essentially constant in time in case of the sphere or constant

up to a perturbation in case of the torus. The volume form on T6 is µT6 = |g|d2x ∧ d2p.

2.4.3. Energy density, pressure, energy �ux

We recall the explicit form of the energy momentum tensor as it appears in the Einstein

equations.

ρ(f ) = N2

∫

Tx6
f
(p0)2

p̂

√
gdp, a(f ) = N

∫

Tx6
f
pap

0

p̂

√
gdp,

η(f ) =
∫

Tx6
f
|p + p0X|2g

p̂

√
gdp, Tab =

∫

Tx6
f
papb

p̂

√
gdp.

(32)

In the remainder, we denote the spatial components of the energy-momentum tensor by T or

Tab. Let X̂ = X/N, then the following relations hold.

p0 = N−1(1 − |X̂|2g)−1
[
X̂jp

j +
√

(X̂jpj)2 + (1 − |X̂|2g)(1 + |p|2g)
]
, (33)

p0 = 1

N

1

p̂ − 〈X̂, p〉g
(1 + |p|2g), (34)

where

p̂ =
√

(X̂jpj)2 + (1 − |X̂|2g)(1 + |p|2g). (35)

In addition, p0 = −Np̂. We de�ne a bound on the rescaled momentum-support.

De�nition 2.6. Consider a distribution function of compact momentum-support. Then, we

de�ne the rescaled volume of the momentum-support by

P∞(t) ≡ sup
x∈6

{ ∫

Tx6∩supp f (t,x,.)
e2λ

√
gdp

}
. (36)

Remark 2.7. Note, that the de�nition of P∞ contains an overall factor of e4λ, which is

essentially t4. This factor is absorbed by the expected decay of the volume of the momentum-

support,

sup
x∈6

vol(supp f (t, x, .)) ≈ t−4. (37)

In combination, this implies that P∞ is of the order of a constant. This is rigorously inferred

in Corollary 3.32.

In the following lemma we estimate the components of the energy-momentum tensor, as

they appear in the Einstein equations, in terms of the L2-energies of the distribution function

and the bound on the momentum support.
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Lemma 2.8 (Estimates for matter quantities). Let ‖X̂‖H4 ≤ c < ∞ for some c su�ciently

small, then

‖e2λρ(f )‖H4 + ‖e2λ (f )‖H4 ≤C‖f ‖Vl,4,1,

‖e2λη(f )‖H4 ≤C(τ 2‖φ−2‖H4 + ‖X̂‖H3)‖f ‖Vl,4,2,
‖T‖H4 ≤Cτ 2‖φ−2‖H4‖f ‖Vl,4,2,

(38)

where C = C(c, ‖∇λ‖H3 ,P∞).

Proof. These estimates are a straightforward consequence of the structure of ρ,  , η and T

and the energies ‖.‖Vl,k. We also use ‖u · v‖Hk ≤ C‖u‖Hk‖v‖Hk for k ≥ 2 for functions

u, v.

2.5. Homogeneous future complete solutions

We consider in the following the homogeneous Einstein–Vlasov system on [T0,∞)×S
2 and

begin by de�ning isotropic distribution functions.

De�nition 2.9. Let gt be a Riemannian metric on S
2
t , then a distribution function f :

[T0,∞) × TS2 → [0,∞) is gt-isotropic, i� f = f (t, |p|gt ).

The following lemma implies that all relevant matter quantities are spatially constant for

isotropic distribution functions.

Lemma 2.10. Let X ≡ 0 and N = N(t). Then, if f is a gt-isotropic distribution function the

following holds.

(i) Aaf = 0, where Aa is the horizontal li� of ∂a with respect to gt .

(ii) ∂aρ(f ) = 0,

(iii) a(f ) = 0,

(iv) ∂aη(f ) = 0.

Proof. This follows fromdirect computations.Note that the volume form,
√
gdp yields a terms

containing a Christo�el symbol, when the derivative is taken. This term is manipulated via

integration by parts in p.

Lemma 2.11 (Homogeneous initial data). Initial data of the form

(h, e2λ,N,X, f ) =
(
0,

2

4ρ − τ 2
,

τ 2

τ 2/2 + η
, 0, f0(|p|g)

)
(39)

on S2, where f is a g = e2λσ -isotropic distribution function and ρ(f0) > τ 2/4, exists and solves

the constraint equations (15), (16) and the elliptic system (17), (18).

Proof. We �rst show that data of the form above solves equations (15)–(18). The g-isotropy

of f0 implies that the matter current vanishes,  (f0) = 0. In turn, the momentum constraint

implies that h is a TT-tensor and consequently vanishes, cf. Lemma 2.2. In particular, the

momentum constraint holds.
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With the vanishing shi� vector, the shi� equation holds as the right-hand side vanishes.

The right-hand side of the lapse equation is constant on the slice S
2, so the equation can

be solved by the given constant for the lapse, where the conformal factor appears only as a

common factor. Finally, the Hamiltonian constraint can be solved uniquely by the given term

under the condition ρ(f0) > τ 2/4.

Concerning the existence of such initial data we have to note that the energy density and

the pressure contain factors of the form e2λ in the density
√
g. In the previous construction

we only used that f0 is g-isotropic and that ρ(f0) > τ 2/4. It remains to show that there is in

fact a f0 with these features. We �rst �x a number v∗ > 0 , and consider the positive solution

u+ to the equation

u2v∗ − uτ 2/2 − 1 = 0, (40)

Then u+ ·v∗ > τ 2/4, since v∗ is positive. We set now e2λ = u+. We choose now a σ -isotropic

function f0 such that

v∗ = 2

∫

TxS2

√
1 + u+|p|2σ f0

√
σdp. (41)

The choice of f0 is not unique, but it su�ces to pick one possible f0 to obtain existence. As the

conformal factor is spatially constant and as f0 is σ -isotropic, it is automatically g = e2λσ -

isotropic. In addition, with ρ(f0) = e2λv∗ = u+v∗ > τ 2/4 by construction.

Proposition 2.12 (Future complete homogeneous solutions). Homogeneous initial data of the

form (39) with smooth isotropic f0 has a future development of the form

ghom = −
(

2τ 2

τ 2 + 2η

)2

dt2 + 2τ 2

4ρ(f ) − τ 2
· t2σS2 , (42)

on [T0,∞) × S
2, which is time- and null-geodesically complete in future direction. Asymptoti-

cally,

lim
t→∞

2τ 2

τ 2 + 2η
= 2

lim
t→∞

2τ 2

4ρ(f ) − τ 2
= m∞ − 4π

2π
.

(43)

Proof. In the homogeneous and isotropic case, the set of equations reduces to

0= e2λ/2τ 2 + 1 − 2e4λρ̃(f )

0=N
(
τ 2/2 + η(f )

)
− ∂tτ

∂tf = −NτpeBef ,

(44)

where ρ̃ = e−2λρ. Given functions e2λ and N on a time interval the Vlasov equation can be

rewritten for a function f = f (t, |p|σ ) to

∂tf = −Nτeλ|p|σ f ′, (45)

where f ′ is the derivative with respect to the second variable. The system (44), (45) is a

simpli�ed version of an elliptic-hyperbolic system coupled to a transport equation, which has
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a local-in-time unique solution given su�ciently regular initial data (cf. [18]). In particular,

the system (44), (45) has a unique smooth solution on a short time interval [T0, T1] given
smooth initial data f0 at T0. Global existence for these solutions follows straightforward, since

lapse and the conformal factor are given explicitly and remain bounded with the asymptotics

given above. For the distribution function a simpli�ed version of the energy estimates in

Corollary 3.35 holds, which proves that they remain uniformly bounded as well and have

the desired decay properties. By the standard criterion [16] future completeness for these

solutions holds.

The asymptotic behavior in (43) follows immediately for the �rst relation as η decays in

time. For the second relation we use the Hamiltonian constraint integrated over S2, which by

the Gauss-Bonnet theorem implies

τ 2/2volg(S
2) + 4πχ(S2) − 2

∫

S2
ρµg = 0, (46)

where χ(S2) = 2 is the Euler characteristic. Asympotically for t → ∞, this yields

τ 2/2volg(S
2) + 8π − 2m∞ → 0, (47)

which implies the second relation in (43).

Remark 2.13. Proposition 2.12 yields a large family of solutions—one for each su�ciently

regular non-vanishing initial datum f0, which realizes the boundm∞ > 4π . The asymptotics

of the geometry of the spacetimes are however uniquely determined by the totalmassm∞(6).

For further details on this class of solutions we refer to [19].

2.6. Local well-posedness

The required lemma for the local existence theory is given in the following. We de�ne a

relevant notation before.

De�nition 2.14. Let B
(ℓ)
R ((λ, h,N,X, f )) denote the open ball of radius R > 0 in the function

space Hℓ × Hℓ−1 × Hℓ+1 × Hℓ × HVl,ℓ−1 centered at (λ, h,N,X, f ).

Lemma 2.15 (Local well-posedness). Consider a homogeneous solution (ghom = (λhom, 0,

Nhom, 0), fhom) of the type constructed in Proposition 5.1. Let T0 > 0.

1. There exists a δloc > 0 such that for CMC-initial data (λ0, h0,N0,X0, f0) with

(λ0, h0,N0,X0, f0) ∈ B
(5)
δloc

((ghom, fhom)(T0)) (48)

there exists a T1 > T0 and a unique solution to the Einstein–Vlasov system (15)–(20), (27),

(λ, h,N,X, f ) ∈ H5 ×H4 ×H6 ×H5 ×HVl,4 on [T0, T1)×S
2, that coincides with the initial

data in T0, such that the shi� vector �eld is orthogonal to the space of Killing vector �elds on

σS2 .

2. Let T+ be the maximal time of existence of the solution. Then either T+ = ∞ or

lim sup
t→T+

|||(λ, h,N,X)(t) − ghom(t)|||5 + ‖η(f ) − η(fhom),  (f ) −  (fhom)‖4 ≥ 2δloc. (49)
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3. For every T2 > T0 and d > 0 there exists an ε = ε(T2, d) > 0 such that every solution

(λ, h,N,X, f ) with initial data (λ0, h0,N0,X0, f0) ∈ B
(5)
ε ((ghom, fhom)(T0)) exists on the

interval [T0, T2] and

(λ(T2), h(T2),N(T2),X(T2), f (T2)) ∈ B
(5)
d ((ghom, fhom)(T2)). (50)

Remark 2.16. The proof of the previous lemma is analogous to the case considered in

[18]. Some adaptions are required, which result from the di�erent background geometry

considered in the present case. These issues only concern the geometry and have been

discussed in [14], in particular that it is necessary to choose the shi� vector �eld orthogonal

to the space of conformal Killing �elds of σS2 . We note in particular that the smallness of the

matter quantities discussed in [18] concerns the pressure η and the energy �ux  and does

allow for a large energy density ρ as considered here (cf. Remark 5.6 in [18]), by choosing the

momentum support with a su�ciently small upper bound, which does not a�ect the energy

density as f can still be chosen su�ciently large to realize the lower bound (4).

3. Energy estimates

In view of the nonlinear stability problem for the homogeneous solutions of Proposition 2.12

we require a number of a priori estimates for general solutions to the system (16)–(20) with

initial data close to that induced by a �xed homogeneous solution. These estimates will

be derived in the following. To allow for a more concise presentation we impose a set of

bootstrap assumptions on the data, which are consistent with the behavior of data close to the

homogeneous solutions. We derive a number of estimates on the perturbation, which, due to

the bootstrap assumptions, take a concise form. These conditional estimates will eventually

improve the assumptions, which allows for a closure of the continuity argument in the proof

of Theorem 1.1, which is presented in Section 4.

3.1. Assumptions

Throughout this section we consider a �xed solution, (h, λ,N,X, f ) on [T0, T1)×S
2 for T1 >

T0. Without loss of generality we assume T0 > 1. Moreover, we de�ne an indicator function

for the mass, which measures the positivity, necessary for the solvability of the Hamiltonian

constraint, by

δ(t) ≡ m∞(t)

4π
− 1. (51)

Recall that solutions of the type (42) requirem∞ − 4π > 0, which is equivalent to (51). We

also recall that volσ
S2

(S2) = 8π . In addition, we consider initial data with δ(T0) ≥ 1.

Remark 3.1. We choose this lower bound on δ(T0), however, every positive number would

work similarly. Therefore this does not restrict the initial data we consider, but makes the

presentation somewhat easier. We proceed with these assumptions without loss of generality.
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We also de�ne the energy of the rescaled conformal factor and the related energy without

the L2-component by

E0(φ)≡ ‖φ2‖2
H4 ,

E(φ)≡ ‖Dφ2‖2
H3 .

(52)

We formulate the bootstrap assumptions.

3.1.1. Bootstrap assumptions

We assume that the following estimates hold for t ∈ [T0, T1].
E0(φ) ≤ 10 · (8π)2δ(t)2

‖φ2 − 2δ(t)‖∞ ≤ δ(t)

‖φ−2‖H4 ≤ 10 · (8π)2

P∞(f )[t] ≤C1

‖e2λρ(f )‖H4 + ‖e2λ (f )‖H4 ≤CVl

‖e2λη(f )‖H4 ≤ τ 2CVl

δ(t)>
1

2
|m∞(t) − m∞(T0)| ≤ m∞(T0)

10

‖Ṅ‖H4 ≤C1 · t−2

‖Ẋ‖H4 ≤C1 · t−2

(53)

Here, C1 is some �xed positive constant. Note, CVl is chosen large with respect to the initial

data of the distribution function.We chooseCVl ≥ 10·‖f0‖Vl,4. As an immediate consequence

of the assumptions we obtain the bounds

φ2 >
1

2
,

1

2
< δ(t) ≤ δ(T0) + 1

4π

m∞(T0)

10
.

(54)

3.2. The constraints

In this subsection, we derive the relevant elliptic estimates from the constraint equations.

3.2.1. High derivatives of h

The momentum constraint yields an estimate for derivatives of h. Consider

Dbh
b
a = −e2λa. (55)

In general, h decomposes into a TT-tensor q and a conformal Lie derivative. Since there are

no TT-tensors on S
2 except the zero tensor, we have

hab = DaYb + DbYa − σS2 abDcY
c (56)
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for some vector �eld Yc on S
2. Taking the covariant derivative and the trace yields

1σYb + 1

2
R(σS2)Yb = −e2λa. (57)

Since there are no non-trivial TT tensors on S
2 the tracefree solution to the momentum

constraint is unique and Lemma 2.1 applied to (57), where Y is chosen orthogonal to

conformal Killing �elds, which yields uniqueness, implies that h ful�lls an estimate of the

following form.

Lemma 3.2. For k ∈ Z+,

‖h‖Hk ≤ Cσ‖e2λ‖Hk−1 . (58)

Corollary 3.3. If the assumptions (53) hold, then

‖h‖H4 ≤ CσCVl. (59)

3.2.2. Conformal factor

We derive estimates on the conformal factor. For derivatives up to fourth order in L2 we use

the evolution equation in the following section (cf. Corollary 3.19), while here we use the

Hamiltonian constraint

21σλ = φ2/2 + 1 − 2e2λρ − τ 2φ−2|h|2σ . (60)

Elliptic regularity (cf. [7]) implies the following lemma.

Lemma 3.4. Let λ denote the mean value of λ, λ = volσ (S2)−1 ·
∫

λµσ . Then,

‖λ − λ‖H5 ≤ Cσ

(
‖φ2/2 + 1 − 2e2λρ − τ 2φ−2|h|2σ ‖H3

)
+ C‖λ − λ‖. (61)

Using the Poincaré inequality for λ − λ̄ (cf. [15], Section 8.2), yields

‖λ − λ‖ ≤ Iσ‖Dλ‖ = Iσ /2‖φ−2Dφ2‖, (62)

where Iσ is the inverse of the �rst positive eigenvalue of−1σ , i.e., a constant of typeCσ , yields

Corollary 3.5. Under the assumption (53),

‖λ − λ‖H5 ≤ C(CVl,Cσ )[1 + τ 2]. (63)

Proof. Beside assumptions (53) the estimate for h, (59) is used.

3.3. The elliptic system

We prove the essential a priori estimates for the solutions to the elliptic system

1σN =N
(
τ 2φ−2|h|2σ + φ2/2 + e2λη

)
− φ2

[Lσn]ab = 2Nτ 2φ−2hab

(64)

in the following.
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3.3.1. Lapse equation

The maximum principle applied to the lapse equation implies 0 < N ≤ 2. Let K > 0 denote

a �xed positive constant, which we choose explicitly further below. We then rewrite the lapse

equation to

1σ (2 − N) − K · (2 − N) = −N
(
φ−2τ 2|h|2σ + e2λη

)
+ (2 − N)(φ2/2 − K), (65)

where K as above. Then, at a minimum of N we have

0 ≥ K(2 − N) − N
(
φ−2τ 2|h|2σ + e2λη

)
+ (2 − N)(φ2/2 − K). (66)

This is

N
(
φ−2τ 2|h|2σ + e2λη

)
≥ K · (2 − N) + (2 − N)(φ2/2 − K). (67)

Under the condition (φ2/2 − K) ≥ 0 for all points on S
2, this implies

N
(
φ−2τ 2|h|2σ + e2λη

)
≥ K · (2 − N) (68)

at a minimum of N and thereby for all points on S
2, when we replace the le�-hand side by its

supremum. In particular, in combination with the upper bound on N we deduce

Lemma 3.6. For K > 0 s.t. (φ2/2 − K) ≥ 0 for all points on S
2,

2 − N ≤ 2K−1
[
τ 2‖φ−2‖∞‖|h|2σ ‖∞ + ‖e2λη‖∞

]
. (69)

In particular, in view of the �rst bound in (54) an admissible constant is K = 1/8 and we

infer

Corollary 3.7. Under the assumption (53)

2 − N ≤ C(Cσ ,CVl) · t−2. (70)

For higher derivatives of N the following estimate holds.

Lemma 3.8.

‖2 − N‖H6 ≤ Cσ

[
τ 2‖φ−2‖H4‖|h|2σ‖H4 + ‖e2λη‖H4

+
[
1 + τ 2‖φ−2‖H4‖|h|2σ‖H4 + ‖φ2/2 − K‖H4

]

·
[
τ 2‖φ−2‖H4‖|h|2σ ‖H4 + ‖e2λη‖H4

+
(
1 + τ 2‖φ−2‖H4‖|h|2σ ‖H4 + ‖e2λη‖H4

+ ‖φ2/2 − K‖H4

)
·
(
‖2 − N‖ + τ 2‖Nφ−2|h|2σ ‖

+ ‖Ne2λη‖ + ‖(2 − N)(φ2/2 − K)‖
)]]

(71)

with K as above.
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Corollary 3.9. Under the assumptions (53)

‖DN‖H5 ≤ C(C1,Cσ ,CVl) · t−2. (72)

3.3.2. Shift equation

We consider the equation for the rescaled shi� vector,

[Lσn]ab = Danb + Dbna − σabDcn
c = 2Nτ 2φ−2hab, (73)

where na = Xae
−2λ. Taking the covariant derivative and the trace in the �rst index, this

implies

1σnb + 1

2
nb = 2Da(Nτ 2φ−2hab). (74)

The kernel of the elliptic operator acting on n is non-zero on the sphere, but the condition

0 =
∫

S2
〈X,Z(A)〉σµσ , A ∈ {1, . . . , 6}, (75)

assures uniqueness for X and thereby Lemma 2.1 implies

Lemma 3.10.

‖n‖Hk ≤ Cσ τ 2‖N‖Hk−1‖φ−2‖Hk−1‖h‖Hk−1 (76)

for k ≥ 3.

Corollary 3.11. If the assumptions (53) hold, then

‖X‖H5 ≤ C(Cσ ,C1,CVl) · t−2. (77)

3.3.3. Time-derivatives of lapse and shift

The following estimates hold for the time derivatives of lapse and shi�. The time derivatives

of the lapse and shi� are solutions to the following elliptic system.

1σ Ṅ − (φ2/2)Ṅ = −∂t(φ
2/2)(2 − N) + Ṅ(φ−2τ 2|h|2σ + e2λη)

+N∂t(φ
−2τ 2|h|2σ + e2λη)

≡ FṄ (78)

Daṅb + Dbṅa − σabDcṅ
c = 2

[
− 2N(∂t(φ

−2)τ 2 + φ−2∂tτ
2)hab

+ Ṅφ−2τ 2hab + Nφ−2τ 2∂thab

]

≡ Fṅ (79)

Proposition 3.12. Consider a set of solutions (h, λ,N,X, η) ∈ H4×H5×H5×H5×H3. Then

the time derivative of the lapse Ṅ and of the rescaled shi� vector ṅ ful�ll the following estimates.

‖Ṅ‖∞ ≤ 2‖φ−2‖∞‖FṄ‖∞

‖Ṅ‖H4 ≤C
[
φ2

]
Cσ‖FṄ‖H2

‖ṅ‖H4 ≤Cσ‖Fṅ‖H3

(80)
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where the constant C depends on φ2 = e2λτ 2 such that 0 < c1 < e2λτ 2 < c2 < ∞ implies C is

bounded.

Proof. The �rst estimate results from an application of the maximum principle. The second

estimate follows from standard elliptic regularity and the third estimate is analog to that for

the shi� equation, as the elliptic operators are identical.

Corollary 3.13. If the assumptions (53) hold, then

‖Ṅ‖∞ ≤C(C1,Cσ ,CVl) · t−3

‖Ṅ‖H4 ≤C(C1,Cσ ,CVl) · t−3

‖ṅ‖H4 ≤C(C1,Cσ ,CVl) · t−3

(81)

Proof. The estimates are a straightforward consequence of the preceding proposition. The

only important step is improving the decay for the shi� vector before that of the lapse. As

the lapse contains the time derivative of the distribution function, which in turn has to be

replaced using the Vlasov equation—the resulting term containing the time derivative of the

shi� vector would prevent one from improving the bootstrap assumption for the lapse. With

the optimal decay of the time derivative of the shi� vector this does not occur.

3.4. Energy estimates for the evolution equations

In this section we use the evolution equations (19) and (20) to derive a number of energy

estimates for the energies E(φ) and E0(φ) and deduce a pointwise estimate for φ2. Moreover

we derive an energy estimate for the H4-norm of h. These estimates are necessary, as they

include smallness factors resulting from smallness at T0 or a su�ciently small T−1
0 , which can

be achieved by using the Cauchy stability argument in the eventual continuity argument.

3.4.1. Pointwise estimates for the rescaled conformal factor

We consider the rescaled conformal factor, φ2 = τ 2e2λ. The following adapted evolution

equation holds.

∂tφ
2 =

[
(2 − N)τ +g∇cX

c
]
φ2 (82)

Consider the H3-norm of Dφ2. We compute the time derivative

∂t‖Dφ2‖2H3 =
4∑

k=1

2

∫

S2
σ
a1b1
S2

..σ
akbk
S2

Da1 ..Dak(φ
2)Db1 ..Dbk∂t(φ

2)µσ

=
4∑

k=1

2

∫

S2
σ
a1b1
S2

..σ
akbk
S2

Da1 ..Dakφ
2Db1 ..Dbk(

[
(1 − N/2)τ +g∇cX

c
]
φ2)µσ

≤ 2‖φ2‖2H4‖(1 − N/2)τ +g∇cX
c‖H4 , (83)

where ai, bi ∈ {1, 2} are spatial indices. Recall,
E(φ) ≡ ‖Dφ2‖2H3 and E0(φ) ≡ ‖φ2‖2H4 . (84)
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Lemma 3.14 (Energy estimate).

|∂tE(φ)| ≤ 2‖(1 − N/2)τ +g∇cX
c‖H4E0(φ) (85)

Remark 3.15. We note that the coe�cient on the right-hand side of the previous energy

estimate again contains third derivatives of λ in L2. These are however multiplied with

eventually decaying shi�-vector terms. In addition, we have the full energy E0 on the right-

hand side including the L2 term. Also this termwill be bootstrapped and eventually smallness

ofE(φ) can therefore be established under the present conditions by beginning at a su�ciently

large initial time T0.

Corollary 3.16. Under the assumption (53)

|∂tE(φ)| ≤ C(C1,Cσ ,CVl)E0(φ) · t−2. (86)

Therefore

E(φ(t)) ≤ E(φ(T0)) + C(C1,Cσ ,CVl) · T−1
0 . (87)

We need to estimate the L2-norm of φ2 in the following. We proceed by de�ning the mean

value with respect to σS2 , by

φ2 ≡ 1

8π

∫

S2
φ2µσ

S2
. (88)

From the Hamiltonian constraint we obtain by integration,

0 = φ2 + 2 − 4̺

8π
− 2τ 2

8π

∫

S2
φ−2|h|2σµσ , (89)

where ̺ ≡
∫
e2λρµσ . This, in turn, can be reformulated to

φ2 = 2
(m∞
4π

− 1
)

+ Rφ2 = 2δ(t) + Rφ2 (90)

where

Rφ2 = 4(̺ − m∞)

8π
+ 2τ 2

8π

∫

S2
φ−2|h|2σµσ (91)

is a perturbation term. In addition, we quote the Poincaré inequality

‖φ2 − φ2‖ ≤ Iσ‖Dφ2‖, (92)

where Iσ is a constant. In combination this yields

‖φ2 − φ2‖H2 ≤ (1 + Iσ )‖Dφ2‖ + ‖D2φ2‖. (93)

With Sobolev embedding, we infer

‖φ2 − φ2‖∞ ≤ Cσ

(
(1 + Iσ )‖Dφ2‖ + ‖D2φ2‖

)
. (94)
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With the previous notation and in combination with the expression for the mean value this

gives

Lemma 3.17.

‖φ2 − 2δ(t)‖∞ ≤ Cσ (2 + Iσ )E(φ) + |Rφ2 | (95)

Corollary 3.18. Under the assumption (53),

‖φ2 − 2δ(t)‖∞ ≤ C(Cσ ,C1,CVl)
[
E(φ(T0)) + T−1

0

]
+ C(Cσ ,C1,CVl) · t−2. (96)

Note,

‖φ2‖2L2 ≤ ‖φ2 − 2δ(t)‖2L2 + (8π)2‖2δ(t)‖2∞

≤ (8π)2
[
‖φ2 − 2δ(t)‖2∞ + ‖2δ(t)‖2∞

]
. (97)

This implies

‖φ2‖2L2 ≤ C(Cσ ,C1,CVl)
[
E(φ(T0)) + T−1

0

]2

+C(Cσ ,C1,CVl) · t−4 + 2(8π)2δ(t)2. (98)

Finally, we combine the previous estimates to obtain an estimate for E0(φ).

Corollary 3.19. The assumptions (53) imply the following estimate.

E0(φ) ≤ 2(8π)2δ(t)2 + E(φ(T0)) + C(C1,Cσ ,CVl) ·
[
T0

−1 + E(φ(T0))
2
]
. (99)

To improve the bootstrap assumption on φ−2 we deduce the relevant estimate.

Corollary 3.20. Under the assumptions (53) the following estimate holds

‖φ−2‖H4 ≤ vol2σ ·
[ 1

2δ(t)
+ ‖φ2 − 2δ(t)‖∞

2δ(t)
[
2δ(t) − ‖φ2 − 2δ(t)‖∞

]
]

+Cφ(κ) ·
[
‖Dφ2‖2H2

]
(100)

where

κ = ‖φ2 − 2δ(t)‖∞

2δ(t)
[
2δ(t) − ‖φ2 − 2δ(t)‖∞

] (101)

and Cφ(κ) is a function that is bounded if κ is bounded.

From the bootstrap assumptionswe infer 0 ≤ κ ≤ 1, which implies the following corollary.

Corollary 3.21. Under the assumptions (53) the following estimate holds.

‖φ−2‖H4 ≤ 2(8π)2 + C(Cσ ,C1,CVl)(E(φ(T0)) + T−1
0 ) (102)



386 D. FAJMAN

3.4.2. Energy estimates for the trace-free part of the second fundamental form

De�ning the higher order energy of h by Hk(t) ≡ 1
2‖h‖2Hk we obtain the following energy

estimate forHk. This estimate is based on themodi�ed evolution equation for h, which follows

from (20) in combination with the Hamiltonian constraint. This reads

∂th = (N/2 − 1)τ 2/2gab − ∇a∇bN − N(Tab − gabg
ijTij) + LXhab

+N
[1
2
|h|2ggab − 2haih

i
b

]
. (103)

Lemma 3.22. Let h ∈ H4 be a solution to the evolution equation (20) with data (λ,N,X,T) ∈
H5 × H6 × H5 × H4, then

|∂tH4| ≤ C
[
‖divσX‖∞ + Cσ‖D≤5X‖

]
H4 + 2‖Fh‖H4

√
H4, (104)

where

Fh = (N/2 − 1)φ2/2σab − ∇a∇bN − N(Tab − gabg
ijTij)

+N

(
1

2
|h|2ggab − 2haih

i
b

)
+ 2hi(bDa)X

i. (105)

Proof. The estimate is a direct consequence of Eq. (103).

Corollary 3.23. Under the assumption (53) the following estimate holds.

|∂tH4| ≤ C(C1,Cσ ,CVl) · t−2
[
H4 +

√
H4

]
. (106)

In particular,

H4(t) ≤ C(C1,Cσ ,CVl) · T−1
0 exp

(
C(C1,Cσ ,CVl) · T−1

0

)
. (107)

3.5. Total estimate for the perturbation of themetric

Wegive in the following a collection of all previously established estimates on the perturbation

of the metric under the given assumptions (53).

Proposition 3.24. Let T0 > 1. Under the assumptions (53) the following estimates hold for

t ∈ [T0, T1].
‖h‖H4 ≤ C2

H4(t) ≤ C2 · T0
−1 exp

(
C2 · T0

−1
)

‖λ − λ‖H5 ≤ C2

2 − N ≤ C2 · t−2

‖DN‖H4 ≤ C2 · t−2

‖X‖H5 ≤ C2 · t−2

E(φ(t)) ≤ E(φ(T0)) + C2 · T0
−1
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‖φ2 − 2δ(t)‖∞ ≤ C2

[
E(φ(T0)) + T0

−1
]

+ C2 · t−2

E0(φ) ≤ 2(8π)2δ(t)2 + E(φ(T0)) + C2

[
E(φ(T0))

2 + T−1
0

]

‖φ−2‖H4 ≤ 2(8π)2 + C2(E(φ(T0)) + T−1
0 )

‖Ẋ‖H4 ≤ C2 · t−3

‖Ṅ‖H4 ≤ C2 · t−3, (108)

where C2 = C2(C1,Cσ ,CVl).

Proof. The estimates have all been proven in the foregoing part of the section.

3.5.1. Implications for the perturbation terms

For the energy estimates for the distribution function in the following section we require the

following estimate. Recall the de�nition of Ŵ̃i in (26) and that these are tensors.

Lemma 3.25. Under assumptions (53) the following estimates hold.

‖t2 · Ŵ̃1‖H4 + ‖Ŵ̃2‖H4 + ‖t−2Ŵ̃3‖H4 ≤ C2 · t−2 (109)

Proof. The estimate is a direct consequence of the explicit form of Ŵ̃i and Proposition 3.24.

We state another improved estimate for the shi�, which is a direct consequence of (107)

and Lemma 3.10.

Corollary 3.26. Under assumptions (53) we have

‖X‖H5 ≤ C2T
−1
0 · t−2. (110)

3.6. Energy estimates for the distribution function

We have at hand now all necessary estimates concerning the perturbation of the metric. We

proceed in this section by deriving the relevant estimates for the distribution function.

3.6.1. Evolution ofm∞

For the time derivative of the total mass, the following energy estimate holds.

Lemma 3.27. The evolution equation for the total mass reads

d

dt
m∞ =

∫

TS2

[
〈p,A(p0)−1〉g − Ŵe

00Bep
0 − 2Ŵ̃ e

2,e − 2(N − 2)τ

+ Ŵ̃ e
3,abBe(p

apb(p0)−1) + gabLXgab

]
· fµTS2 . (111)
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In particular, the energy estimate for the total mass takes the form
∣∣∣∣
d

dt
m∞

∣∣∣∣ ≤ Rm∞ · m∞, (112)

where Rm∞ is de�ned as the supremum of the term enclosed by the brackets [.] in (111) taken

over the set supp f ⊂ TS2.

Proof. The equality is obtained by a straightforward computation using the Vlasov equation

(27) and integration by parts. The energy estimate follows directly.

Corollary 3.28. Under the assumptions (53) the energy estimate takes the form
∣∣∣∣
d

dt
m∞(t)

∣∣∣∣ ≤ C(C1) · t−2 · m∞(t). (113)

This implies, in particular,

|m∞(t) − m∞(T0)| ≤ m∞(T0)C(C1)·T−1
0 exp

[
C(C1) · T−1

0

]
. (114)

For δ(t) (cf. (51)) this implies

|δ(t) − δ(T0)| ≤ m∞(T0)C(C1) · T−1
0 exp

[
C(C1) · T−1

0

]
. (115)

This simpli�es to

|δ(t) − δ(T0)| ≤ C(C1,m∞(T0)) · T−1
0 . (116)

Proof. The energy estimate is a straightforward consequence of the decay assumptions (53).

The estimate (114) follows by an application of Grönwall’s lemma and the estimate for δ is an

immediate consequence.

3.6.2. Evolution of themomentum-support

The decay of the momentum-support of f is established by use of a di�erential inequality for

the auxilliary quantity

G(t, x, p) ≡ τ−2|p + X/2|2g . (117)

The derivative of G = G(t, x, p) along geodesics is given in

Proposition 3.29. Let (t(s), x(s), p(s)) be a solution to the characteristic system (29) and G as

de�ned above, then the following estimate holds for the time derivative of G.
∣∣∣dG
dt

∣∣∣ ≤
[
|τ ||2 − N| + 2|N||h|g + 4|Ŵ̃2|g

]
G

+ |τ−1|
[
2|∂tX|g |

1

2
− p0| + |p0||Ŵ̃1|g + 2|X|g |Ŵ̃2|g + 2|[p0]−1||Ŵ̃3|g |p|2g

+ |[p0]−1||∇X|g |p|g + 4|X|g |p0 − 1

2
|
]√

G (118)

Proof. The estimate is a direct consequence of the characteristic system (29).
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Corollary 3.30. Under the assumptions (53) the energy estimate takes the form
∣∣∣dG
dt

∣∣∣ ≤ C(C1,CVl) · t−2 ·
[
G +

√
G

]
. (119)

In particular,

|
√
G −

√
G0| ≤ (

√
G0 + 1) · C(C1,CVl) · T−1

0 · exp(C(C1,CVl) · T−1
0 ) (120)

where G0 = G(T0, x(T0), p(T0)).

Recall De�nition 2.6 of P∞ and let

G+(t) ≡ sup
{
G(t, x, p)

∣∣∣(x, p) ∈ supp f (t, . , .)
}
. (121)

De�ne G0,+ analogously for t = T0.

Lemma 3.31. Let f be continuous and of compact support. Then

P∞(t) ≤ Cσ‖φ2‖∞
[
G+ + ‖|X|g‖2∞

]
. (122)

In combination, this yields the following estimate.

Corollary 3.32. Under the assumptions (53), the following estimate holds.

P∞(t) ≤ C(C1,CVl) ·
[
G0,+ + (G0,+ + 1) · T−2

0 + C2 · t−2
]
. (123)

Finally, we de�ne the supremum of the momentum-support,

p∞(t) ≡ sup
{
|p|σ

∣∣ p ∈ supp f (t, . , .)
}
. (124)

3.6.3. Corrected energies and Energy estimates

To estimate the Sobolev norms of the matter quantities via Lemma 2.8 we require energy

estimates for the L2-norms of the distribution function de�ned in (31). It is however not

direct to obtain such estimates. A straightforward approach by taking the time derivative of

the energy and integrating by parts yields perturbation terms, which have insu�cient decay

and yield a small polynomial t-growth of the energies. This is however incompatible with

the perturbation analysis of the geometry, which in that case would yield terms growing in

time, which cannot be compensated. Therefore, it is necessary to avoid these “bad” terms in

the energy estimates. This can be achieved by a correction mechanism. These estimates, in

combination with the bootstrap assumptions, then imply uniformly bounded Sobolev norms

of the distribution function.

The problematic terms in the Vlasov equation appear in the Ŵa
00 component and read

∂tX
a + 2τXa (cf. (25)). Their pointwise decay is of the order. Ct−3, which is insu�cient to

compensate for the missing momentum variable |p|σ in these terms, which appears in front

of Bf in the energies. It is possible to avoid the appearance of the corresponding perturbation

terms in the �nal estimate by considering a corrected energy which consists of the square

of the L2-norm (2.5) and a correction term, whose time derivative cancels the problematic

terms and leaves only perturbation termswith su�ciently strong decay. The premise, for these

corrected energies to be equivalent with the standard energies arising from (2.5), is quadratic
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decay in time of the shi� vector, which holds in the present setting (cf. Proposition 3.24).

A detailed construction of these corrected energies and of the related energy estimates has

been worked out in [17] for low orders of regularity. As the construction does not depend

on the spatial topology we shall not repeat the proof here. Rather we formulate a more

general version of these estimates without giving the explicit expression of the correction

terms—which is lengthy and not necessary for their application. What matters is only the

fact that such correction terms exist, which follows identically to [17]. We formulate the

according conditional estimates in the following lemma. The equivalence to theVlasov energy

is given under a smallness condition on the shi� vector and bounds on the rescaled conformal

factor φ2.

Lemma 3.33. Let c,C ∈ R+ be such that

‖X‖H5 ≤ Ct−2 (125)

and

c−1 ≤ φ2 ≤ c, (126)

then there exists an ω0 = ω0(c,C) > 0, s.t. for ω0 ≤ ω there exists a function

8 = 8(φ2,X,∇X, . . . ,∇4X,∇f , . . . ,∇4
f , p) (127)

with domain dom8 ⊂ supp f and im(8) ⊂ R, such that for the corrected energy

‖f ‖2Vl,s,c ≡ ‖f ‖2Vl,4 +
∫

TS2
8µTS2 (128)

equivalency to the L2-energy holds, i.e.,

1

2
‖f ‖Vl,4,c ≤ ‖f ‖Vl,4 ≤ 2‖f ‖Vl,4,c, (129)

where both energies are de�ned with respect to ω (cf. De�nition 2.5 and ω is independent of t).

Furthermore, an energy estimate of the form
∣∣∂t‖f ‖Vl,4,c

∣∣ ≤ R(t) · ‖f ‖Vl,4,c (130)

holds, where

R(t) = C(c,C,G+,ω0, ‖Rm‖H3)
[
‖t2 · Ŵ̃1‖H4 + ‖Ŵ̃2‖H4 + ‖t−2 · Ŵ̃3‖H4

+ ‖
[
(2 − N)τ +g∇cX

c
]
‖∞

+ pol
(
t−2, p∞, ‖X‖H5 , ‖∂tX‖H5 , sup

(x,p)∈supp f
|∇≤4

p0 |̂g
)]

(131)

and pol(.) is a polynomial with vanishing constant term and ∇≤4p0 represents at least the �rst

derivative of p0 (not the zeroth order).

Proof. The proof is identical to the corresponding one in [17].

Remark 3.34. Note that in particular under assumptions (53) the conditions on the shi�

vector and on φ2 hold. Note also that all terms on the right-hand side of (131) decay at least

like t−2.
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In combination with the decay estimates of Proposition 3.24, applied to estimate the

coe�cient R, this implies the following boundedness estimate for the corrected energy and

in turn the corresponding estimate for the uncorrected energies.

Corollary 3.35. Under the assumptions (53), we have

‖f (t)‖Vl,4,c ≤ ‖f (T0)‖Vl,4,c exp
(
C(C1,CVl)T

−1
0

)
. (132)

For the L2-energy this implies, by the equivalence of the energies,

‖f (t)‖Vl,4 ≤ 4 · ‖f (T0)‖Vl,4 exp
(
C(C1,CVl)T

−1
0

)
. (133)

3.6.4. Total estimate for the perturbation of thematter

The following proposition collects all estimates on the matter quantities from the foregoing

section.

Proposition 3.36. Under the assumptions (53) the following estimates hold for t ∈ [T0, T1].

P∞(f )[t] ≤C2 ·
[
G0,+ + T−2

0

]

‖e2λρ(f )‖H4 + ‖e2λ (f )‖H4 ≤ 4‖f (T0)‖Vl,4 exp
(
C2T

−1
0

)[
1 + C2(T

−2
0 + G0,+)

]

‖e2λη(f )‖H4 ≤C2 · t−2‖f (T0)‖Vl,4,2 ·
[
G2
0,+ + T−2

0

]

δ(t)> δ(T0) − C2T
−1
0

|m∞(t) − m∞(T0)| ≤m∞(T0)C2T
−1
0 exp

[
C2T

−1
0

]

(134)

where C2 = C2(C1,Cσ ,CVl).

Proof. The estimates follow directly using T0 > 1, Corollary 3.26 and Corollary 3.35.

4. Proof of Theorem 1.1

We are now able to prove the �rst theorem.

Proof of Theorem 1.1. We begin by �xing positive constants

C1 < 1 and

CVl ≥ 10‖f0‖Vl,4.
(135)

Then, let C2 = C2(C1,CVl) be the constant de�ned in Proposition 3.24. Choose T0 > 1 large

enough to assure

C2T
−1
0 < min

{
1

20
,
C1

2
,

1

20 exp(C2 · T−1
0 )

}
. (136)

Note, that choosing T0 as above does not a�ect the lower bound on CVl as the norm of f0 by

local stability remains close to its original value, independent of the choice of T0.

So far these constants are not related to any interval of existence. By virtue of the Cauchy

stability, Lemma 2.15, for the system, it is possible to choose ε at the initial time su�ciently
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small to assure existence of the solution on an open interval containing T0 and moreover to

deduce smallness with respect to the background solution at the time T0. We may therefore

without loss of generality begin the evolution at a T0 such that (136) holds and choose the

data at T0 small. We refer to ε now as the smallness at T0. We may further increase T0 below

if necessary.

De�ne

T∗ ≡ sup
{
T > T0

∣∣ the solution exists on [T0,T) and (53) holds on [T0,T)
}
. (137)

The local theory yields that choosing ε su�ciently small implies the existence of T∗ ∈
(T0,∞) ∪ {∞}. We consider from now on the solution on [T0, T∗). By construction, the

bounds (53) hold on [T0, T∗). We use in the following Proposition 3.24 to improve the

bootstrap assumptions one by one. Combining the smallness of T−1
0 as chosen in (136) with

Proposition 3.24 we obtain the following estimates on [T0,T∗), where for some we further

decrease the smallness ε at T0.

E0(φ) ≤ 4 · (8π)2δ(t)2

‖φ2 − 2δ(t)‖∞ ≤ δ(t)

2

‖φ−2‖H4 ≤ 4 · (8π)2

‖Ṅ‖H4 ≤ C1

2
· t−2

‖Ẋ‖H4 ≤ C1

2
· t−2

(138)

We obtain the complementary set of estimates for thematter quantities using Proposition 3.36

on the interval [T0,T∗). We possibly further decrease smallness at T0 and infer the following

inequalities.

P∞(f )[t] ≤C1/2

‖e2λρ(f )‖H4 + ‖e2λ (f )‖H4 ≤CVl/2

‖e2λη(f )‖H4 ≤CVl/2 · t−2

δ(t)>
1

2
+ 2

5

|m∞(t) − m∞(T0)| ≤
1

20
m∞(T0)

(139)

Note that (138) and (139) improve (53) on [T0, T∗). As a result of (138) and (139) as well as

the continuation criterion in Lemma 2.15 we intend to conclude existence of the solution on

the interval [T0, T∗]. If the existence of the solution is assured, the bounds (53) hold by the

previous arguments. To show existence on [T0, T∗] it su�ces to ensure that an upper bound on

the norm in (49) of the form 3/2·δloc holds on [T0, T∗). This can be inferred straightforwardly
from the estimates forE(φ),φ2−2δ(t),N andX in Proposition 3.24 as well as the estimates for

η and  in Proposition 3.36 by possibly increasing T0 again as discussed above and choosing ε

su�ciently small. By continuity, the bounds (53) hold on [T0, T∗]. It is important to note that

the smallness of ε and the choice of T0 do not depend on T∗. This implies that for this �xed



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 393

pair (ε, T0), the solution de�ned on [T0,T∗) for the corresponding T∗ as de�ned in (137) can

be extended to [T0,T∗]. Then, a standard argument implies T∗ = ∞, which is future global

existence of the solution. Using the estimates for the lapse, shi� and trace-free part of the

second fundamental form as given in Proposition 3.24, the main result of [16] implies future

completeness of the solution. This �nishes the proof of the theorem.

5. Nonvacuum Einstein-�ow on the 2-torus

In the remainder of this work we prove Theorem 1.3. The mechanism of proof here is similar

to the case of the sphere, which is the fact that the energy density acts similar to a negative

conformal curvature and therefore gives access to good estimates on the conformal factor.

However, due to some di�erences between both systems, a detailed discussion of the case

of the torus is necessary. The main di�erence is the non-trivial Teichmüller space of the

torus, which yields an evolution of the conformal metric σT2 similar to the case of hyperbolic

surfaces [17]. This changes the continuity argument for the proof of global existence. In

particular, terms containing the time derivative of the conformal metric are non-vanishing

and several constants and norms now depend on time due to the evolution of the conformal

metric. In the continuity argument we assume a uniform bound on the point in Teichmüller

space to overcome this complication analogous to [15]. We give a brief presentation of the

Einstein-�ow on the 2-torus and outline the proof of global existence. Details which follow

identical arguments as in the case of the sphere are omitted to avoid redundancies in the

presentation.

5.1. Gauge �xing

The Einstein equations on the 2-torus have been addressed in di�erent works including [14],

[27]. We employ their essential techniques.

Every Riemannian metric g on T
2 is conformally equivalent to a �at metric σ via σ =

e−2λg, where λ is the conformal factor determined by the Hamiltonian constraint. We denote

the space of �at metrics onT2 byM0(T
2). The group of di�eomorphisms ofT2 homotopic to

the identity,D0, acts onM0(T
2). Onemay �x a gauge by passing to a slice of this group action

in which the �at metrics are represented by spatially constant metrics on T
2 of �xed volume.

For an extensive discussion of Teichmüller spaces cf. [27] or the previous applications in [15,

17]. We set volσ
T2

(T2) = 1. In the following σT2 denotes a spatially constant Riemannian

metric onT2 of unit volume and scalar curvatureR(σT2) = 0.We refer to σT2 as the conformal

metric. We denote the volume form of σT2 by µσ . The remaining gauge freedom is �xed by

the CMC condition t = −τ−1.

5.2. Evolution of the conformalmetric

The space of conformally inequivalent metrics, in which the equivalence class of σT2 evolves

is two-dimensional. The evolution can be determined by the solvability condition of the shi�

equation as done in [15] for hyperbolic surfaces. The shi� equation reads

Lσn = 2Ne−2λh + ∂tσ − 1

2
σ trσ (∂tσ), (140)
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with [Lσn]ab ≡ Danb + Dbna − σabDcn
c. The shi� equation is solvable i� the right-hand

side of the equation is orthogonal to the kernel of Lσ . The kernel is the space of TT-tensors

on (T2, σT2). This space is 2-dimensional with a basis {X1(σT2),X2(σT2)}. The orthogonality
condition reads

∂tσabX
ab
I = −2volσ

T2
(T2)−1

∫

T2
Ne2λhabX

ab
I µσ , I ∈ {1, 2}, (141)

where we used the constancy of σ and XI in space. The metric σ(t) may be parametrized

by two parameters (q1(t),q2(t)) = q(t) as σ is spatially constant and of �xed volume. The

condition (141) can be modi�ed into the form

q̇I(t) = −2volσ (T2)−1A
J
I(q) ·

∫

T2
Ne−2λhabX

ab
J µσ , (142)

where q̇ = (q̇1, q̇2) and A is a matrix depending on q such that for q being uniformly

bounded, the components of A are uniformly bounded. The symbol · denotes the matrix

product. Equation (142) controls the evolution of σ . The time derivative of σ in terms of q̇ is

given by an equation of the form

∂tσ = B(q) · q̇, (143)

where B is of the same type as A. These considerations are su�cient to control the evolution

of σ in terms of the evolution of perturbations.

5.3. Einstein equations on the torus

With the non-vanishing time derivative of the conformal metric the full set of equations

determining the Einstein �ow on the 2-torus reads

Dbh
b
a = −e2λja (144)

21σλ = φ2/2 − e2λρ − φ−2τ 2|h|2σ (145)

1σN = N
[
φ−2τ 2|h|2σ + φ2/2 + e2λη

]
− φ2 (146)

[Lσn]ab = 2Nφ−2τ 2hab + ∂tσab − 1

2
σabσ

cd∂tσcd (147)

∂thab = (N − 1)/nφ2σab − ∇a∇bN − N(Tab − gabT) (148)

+ LXhab + N(Ricab − 2haih
i
b) (149)

∂tλ = −1

2

[
Nτ + 1

2
trσ (∂tσ) − divgX

]
(150)

q̇I(t) = −2volσ (T2)−1A
J
I(q) · τ 2

∫

T2
Nφ−2habX

ab
J µσ (151)

∂tσ = B(q) · q̇, (152)
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where we rescaled using φ2 = τ 2e2λ. The kernel of the conformal Killing operator Lσ is the

space of conformalKilling �elds on (T2, σT2), which is non-trivial. As an additional restriction

we require X to be L2-orthogonal to this space yielding a unique solution. We consider in the

following a solution to the foregoing systemwith initial data (q0, h0, λ0,N0,X0, f0) su�ciently

regular and ε-close to the �xed background solutions. Local stability for this system holds

analogously to the case of the sphere. q is controlled with respect to the euclidian norm onR2

and the continuation criterion is generalized to include the case |q − q0| → ∞ as t → T+
(cf. notations in Lemma 2.15). The analogous continuation criterion for the case of hyperbolic

surfaces is formulated in [17] and contains the condition on q.

5.4. Homogeneous solutions

Analogously to the sphere we obtain the following proposition on the existence of future

complete homogeneous solutions. Prior, we de�ne

ρ(f ) ≡ e−2λρ(f ). (153)

Proposition 5.1 (Future complete homogeneous solutions on T
2). Let σT2 be a Riemannian

metric with constant coe�cients on T
2 of unit volume. Then, there exists homogeneous initial

data of the form

(σ , h, e2λ,N,X, f ) = (σ0, 0,
τ 2

4ρ(f0)
,

τ 2

τ 2/2 + η
, 0, f0(|p|g)) (154)

with smooth f0. This initial data has the future complete development on [T0,∞) × T
2 of the

form

ghom = −
(

2τ 2

τ 2 + 2η

)2

dt2 + τ 4

4ρ
· t2σT2 . (155)

Asymptotically,

lim
t→∞

2τ 2

τ 2 + 2η
= 2

lim
t→∞

τ 4

4ρ
= 4m∞

volσ (T2)
.

(156)

Remark 5.2. We refer to [19] for a detailed discussion of these background solutions.

5.5. Energy estimates

We establish in the following a number of estimates on the perturbation of the metric and

the distribution function on an interval where we impose a set of bootstrap assumptions.

The estimates are similar to those in the spherical case except for some adaptions, which

are discussed explicitly. All Sobolev norms used in the following, i.e., ‖.‖Hk , are de�ned with

respect to the evolving metric σT2(t). The same holds for the related Sobolev constants. For

de�nitionswhich are formally identical with the case of the spherewe keep the samenotations.



396 D. FAJMAN

5.5.1. Bootstrap assumptions

We de�ne in this section

δ(t) ≡ m∞(t)

volσ
T2

(T2)
. (157)

We impose the following assumptions for t ∈ [T0, T1].
‖h‖ ≤C1

E0(φ) ≤ 10 · m∞(T0)

‖φ2 − 2δ(t)‖∞ ≤ δ(t)

‖φ−2‖H4 ≤ 10 · vol2σ0
P∞(f )[t] ≤C1

‖e2λρ(f )‖H4 + ‖e2λ (f )‖H4 ≤CVl

‖e2λη(f )‖H4 ≤C1 · t−2

δ(t)>
1

2

|m∞(t) − m∞(T0)| ≤
m∞(T0)

10
‖Ṅ‖H4 ≤C1 · t−2

‖Ẋ‖H4 ≤C1 · t−2

|q − q0| ≤C1

(158)

Note that CVl is large with respect to the initial data of the distribution function. We choose

CVl ≥ 10 · ‖f0‖Vl,4. (159)

Remark 5.3. For simplicity we assume the lower bound on δ as above by 1
2 . Any positive

constant would work similarly. So this choice does not restrict the validity of the proof.

5.5.2. Estimates on the perturbation of the geometry

The purpose of this section is to collect the relevant energy estimates for the solution to (144)–

(152). Their proofs are mostly similar to those in the case of the sphere.

Proposition 5.4. Let T0 > 1. Then, under the assumptions (158) the following estimates hold

for t ∈ [T0, T1].
‖h‖H4 ≤ C2

H4(t) ≤ C2 · T−1
0 exp (C2/T0)

‖λ − λ‖H5 ≤ C2

2 − N ≤ C2 · t−2

‖DN‖H5 ≤ C2 · t−2
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‖X‖H5 ≤ C2 · t−2

E(φ(t)) ≤ E(φ(T0)) + C2 · T−1
0

‖φ2 − 2δ(t)‖∞ ≤ C2

[
E(φ(T0)) + T−1

0

]
+ C2t

−2

E0(φ) ≤ 2vol2σ δ(t)2 + E(φ(T0)) + C2T
−1
0 + C2

[
E(φ(T0)) + T−1

0

]2

‖Ẋ‖H4 ≤ C2 · t−3

‖Ṅ‖H4 ≤ C2 · t−3

|q − q0| ≤ C2T
−1
0 exp (C2/T0)

‖∂tσ‖H4 ≤ C2 · t−2

‖∂2t σ‖H4 ≤ C2 · t−3,

(160)

with C2 = C2(C1,CVl).

Proof. We discuss the individual estimates in the following. We note that due to the uniform

bound on the coordinates in Teichmüller space, all constants depending on σ are uniformly

bounded. We denote a bound on these constants by Cσ .

Second fundamental form.We decompose the trace-free part of the second fundamental form

into h = hTT + h⊥, where hTT is a TT-tensor and h⊥ is a conformal Lie derivative. For h⊥ we

obtain the following estimate analogous to section 3.2.1.

‖h⊥‖H4 ≤ Cσ‖e2λ‖H3. (161)

For the TT-part, since all Sobolev norms are equivalent on this �nite dimensional space

(cf. [15]), we have

‖hTT‖H4 ≤ Cσ‖hTT‖ ≤ Cσ

[
‖h‖ + ‖h⊥‖

]
. (162)

In total, this yields

‖h‖H4 ≤ Cσ

[
‖h‖ + ‖e2λ‖H3

]
. (163)

With the bootstrap assumptions, this implies the estimate for h.

Conformal metric. With the uniform bound on the point in Teichmüller space, Eq. (151)

implies an estimate of the form

|q̇| ≤ C2τ
2‖φ−2‖‖h‖, (164)

which in turn yields

| d
dt

|q − q0| ≤ C2(|q − q0| + q0)τ
2 (165)
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and by Grönwall’s lemma

|q − q0| ≤ C2 · T−1
0 exp (C2/T0). (166)

Equation (152) in combination with Eq. (151) immediately yields

‖∂tσ‖H4 ≤ C2 · t−2. (167)

Conformal factor. Analogously to Lemma 3.4 we have

‖λ − λ‖H5 ≤ Cσ

[
‖φ2/2 − e2λρ − τ 2φ−2|h|2σ ‖H3

]
+ CIσ /2‖φ−2Dφ2‖. (168)

In combination with the previous estimates and the bootstrap assumptions this implies the

estimate for the conformal factor.

Lapse. The estimates for the lapse function follow identically to those for the sphere discussed

in Section 3.3.1.

Shi�.The estimate for the shi� vector follows similarly to that one in Corollary 3.11. However,

there are additional terms arising from the time derivative of the conformalmetric, which can

be estimated using (167).

Time derivatives of lapse and shi�. The corresponding estimate for the lapse follows analo-

gously as for the sphere in Corollary 3.13. For the time derivative of the shi� there is an

important di�erence with respect to the case of the sphere. The time derivative of the shi�

equation takes the form

Lσ ṅ = ∂tFn, (169)

where Lσ ṅ = Daṅb + Dbṅa − σabDcṅ
c and Fn denotes the right-hand side of the shi�

equation. The term on the right-hand side can be computed using (151) and (152). As the

conformal Killing operator Lσ has a non-trivial kernel, which is the space of the conformal

Killing �elds with respect to σ . Equation (169) therefore only provides estimates for the part

of ∂tX orthogonal to this space. We split,

∂tX = ∂tX
⊥ + ∂tX

‖, (170)

where ∫

T2
〈∂tX⊥,Z(A)〉σµσ = 0. (171)

Then, a representation of the following form exists,

∂tX
‖ = rAZ

(A), (172)

where rA = rA(t) and {Z(A)} is a basis of the space of conformal Killing �elds. The vector of

coe�cients can be determined by the time derivative of the orthogonality condition for the

shi� vector, which reads

0 =
∫

T2
〈∂tX,Z(A)〉σµσ +

∫

T2
〈X, ∂tZ(A)〉σµσ

+
∫

T2
〈X,Z(A)〉∂tσµσ +

∫

T2
〈X,Z(A)〉σ ∂tµσ
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= rB

∫

T2
〈Z(B),Z(A)〉σµσ +

∫

T2
〈X, ∂tZ(A)〉σµσ

+
∫

T2
〈X,Z(A)〉∂tσµσ +

∫

T2
〈X,Z(A)〉σ ∂tµσ , (173)

where the orthogonality condition for X is used. Let Z be the invertible matrix with entries

ZAB =
∫
T2〈Z(B),Z(A)〉σµσ and Y the vector with components YA =

∫
T2〈X, ∂tZ(A)〉σµσ +∫

T2〈X,Z(A)〉∂tσµσ +
∫
T2〈X,Z(A)〉σ ∂tµσ . Then, the following equation holds,

r = Z−1 · Y (174)

and implies

|r| ≤ C|Z||Y|. (175)

By the bootstrap assumptions |Z| is uniformly bounded as it just depends on the conformal

metric. For the components of Y we evaluate

∂tZ
(A) = ∂Z(A)

∂qI

dqI
dt

. (176)

This implies, in combination with Eq. (164), (167) and the estimate on the L∞-norm of the

shi� vector,

|r| ≤ C2 · t−4. (177)

In combination with Lemma 2.1 applied to Eq. (169) for ∂tX
⊥, this yields

‖∂tX‖H4 ≤ ‖∂tX⊥‖H4 + ‖∂tX‖‖H4 ≤ C2 · t−3, (178)

which is the desired estimate for ∂tX.

Estimate for ∂2t σ . Taking the time derivative of the equation for ∂tσ in terms of q̇ we obtain

∂2t σ = ∂B(q)

∂qI
q̇I + B(q) · q̈. (179)

Using in turn (151) in combination with the evolution equation for h and the previous

estimate for Ṅ we can infer the estimate for ∂2t σ .

Energy estimate for h.

The energy estimate of the form derived in Lemma 3.22 holds similarly in the case of the

torus. In combination with the previously established estimates it implies

|∂tH4| ≤ C2t
−2

[
H4 +

√
H4

]
. (180)

An immediate consequence is

H4(t) ≤ C2 · T−1
0 exp

(
C2 · T−1

0

)
. (181)

Rescaled conformal factor.
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The evolution equation for the conformal factor (150) implies

∂tφ
2 =

[
(2 − N)τ − 1

2
trσ (∂tσ) +g∇cX

c

]
φ2. (182)

This di�ers from the analogous equation for the sphere by the term containing the time

derivative of the conformal metric. However, this term obeys the same bound as the shi�

vector term and therefore can be handled identically. Following similarly to (87) we obtain

E(φ(t)) ≤ E(φ(T0)) + C2 · T−1
0 . (183)

As in Corollary 3.18, noting the vanishing conformal curvature in theHamiltonian constraint

in the case of the torus, we obtain

‖φ2 − 2δ(t)‖∞ ≤ C2

[
E(φ(T0)) + T−1

0

]
+ C2t

−2. (184)

Finally, analogous to Corollary 3.19 we obtain

E0(φ) ≤ 2vol2σ δ(t)2 + E(φ(T0)) + C2T
−1
0 + C2

[
E(φ(T0)) + T−1

0

]2
, (185)

where here δ(t) = m∞(t)/volσ
T2

(T2). This completes the list of estimates and the proof.

5.5.3. Estimates for the perturbation of the distribution function

Proposition 5.5. Under the assumptions (158) estimates of the same form as in Proposition 3.36

hold.

Proof. The estimates follow analogous to the those in Proposition 3.36.

5.6. Proof of Theorem 1.3

Proof of Theorem 1.3. The proof is analogous to the one of Theorem 1.1 in the foregoing

section. The only di�erence concerns the non-trivial evolution in Teichmüller space for

the torus. The initial bootstrap assumption on boundedness of q is improved as shown in

Proposition 5.4. The other steps in the proof follow the foregoing one and are therefore not

repeated.
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