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ABSTRACT
Vitamin B12 deficiency has been associated with an increased risk of
cognitive decline. This literature review explores the current methods
available for measuring vitamin B12 in human blood, serum, and urine,
and the need for a globally accepted reference range for vitamin B12.
We present optical spectroscopy, including chemiluminescence
measurements, absorption and fluorescence spectroscopy, surface
plasmon resonance, and Raman spectroscopy, as a promising
technique for detection and tracking of vitamin B12. Considerations for
future research are highlighted, including enhancing the sensitivity of
optical spectroscopy and prospective pathways to improve the
reproducibility, selectivity, and speed of vitamin B12 detection.
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Introduction

Vitamin B12 (cobalamin and its derivatives, as shown in Figure 1) (1) deficiency has been
associated with an increased risk of poor cognitive health (2, 3). Increased levels of vitamin
B12 have been shown to reduce the likelihood of older adults transitioning from mild cogni-
tive impairment to dementia (4) and in at least one case may help reverse the symptoms of
frontotemporal dementia, as previously shown in a B12 recovery treatment program (5).
The overall effects of vitamin B12 deficiency have been previously discussed in the literature
(6, 7). It has been found that vitamin B12 plays an important role in 2 metabolic cycles that
can affect the health of the nervous system (8). First, vitamin B12 is crucial in transferring a
methyl group from 5-methyltetrahydrofolate to homocysteine (Hcy), thereby generating tet-
rahydrofolate (THF) – important in DNA synthesis – particularly the DNA synthesis of red
blood cells and intestinal wall cells. When this process is impaired, tetrahydrofolate levels
are reduced and Hcy levels are increased; increased Hcy levels can be detrimental to
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cognitive health (9). Secondly, vitamin B12 partakes in a reaction that converts methylma-
lonyl-coenzyme A (coenzyme-A linked to methylmalonic acid - MMA) to succinyl-coen-
zyme A (coenzyme-A linked to succinic acid), an important step in the extraction of energy
from proteins and fats required for the synthesis of myelin, a material surrounding the axons
of neurons that is essential for a functioning nervous system. Increased MMA levels are an
indication of impaired myelin synthesis that affects the function of neurons, thereby contrib-
uting to impaired cognition (10).

The growing number of studies indicating the significance of the relationship between vita-
min B12 and cognitive health cannot be ignored (11). In order to establish the mechanism that
underlies this relationship, it is essential to accurately and reliably measure vitamin B12 (12, 13).

Reference ranges are essential in order to guide the interpretation of data (14), but there is
no globally accepted standardized reference range or measurement technique (15). Physio-
logical ranges of vitamin B12 in human blood serum are 200–900 pg/mL in the United States
(16), where it is also noted the levels of <500 pg/mL may result in symptoms of vitamin B12
deficiency in older adults. In Australia, the reference range is 200–900 pg/mL with the limit
for subclinical deficiency noted as 300 pg/mL (17). The reference range for vitamin B12 in
blood serum, however, is dependent on the measurement method (18).

Figure 1. Chemical structure of the basic form of vitamin B12 (cobalamin). Some of its most common
derivatives consist of R D –CN (cyanocobalamin), R D –OH (hydroxycobalamin) and R D –CH3
(methylcobalamin).
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Governments and health organizations therefore usually focus on dietary intake guidelines
for vitamin B12 (19, 20) instead of blood ranges. However, these guidelines do not account
for conditions like pernicious anaemia (also known as Biermer’s disease), a macrocytic anae-
mia that can prevent the absorption of vitamin B12 (21) and therefore result in anaemia-like
symptoms, such as weakness and asthenia, even though the dietary intake of vitamin B12 is
within the recommended range. Increasing age also decreases the absorption of the protein-
bound form of vitamin B12 (22, 23); in Australian aged care facilities, approximately 14% of
residents are reported to have undetected vitamin B12 deficiency (24). An additional tool for
establishing vitamin B12 deficiency has been to measure associated biomarkers such as meth-
ylmalonic acid (MMA) and homocysteine (Hcy) for diagnostic purposes (25); but the levels
of these biomarkers may not reliably indicate cobalamin deficiency when interpreted in isola-
tion, making measurements of vitamin B12 essential for diagnosis (26).

Current methods of detecting and measuring vitamins are mostly based on microbiological
and chemical techniques (27, 28) and we briefly cover those in this literature review. In recent
years, there has been great progress in developing optical detection techniques that can pro-
vide rapid and precise answers across a wide range of chemical and biological target species.
These detection methods include fluorescence spectroscopy (29), Raman spectroscopy (30)
and surface plasmon resonance (SPR) effects (31). It is in view of these developments that we
review the current status of detection techniques for vitamin B12 as they promise rapid, cost-
effective and efficient detection at the physiologically-relevant range of concentrations.

Established methods

Microbiological detection

Historically, the first technique for detecting vitamin B12 has been based on microbial cultures,
in which the growth of certain microorganism is monitored when exposed to different samples
and compared against a calibrated growth curve for specific compounds (32). Lactobacillus leich-
mannii, microorganisms that require corrinoids as a growth factor, have been used for vitamin
B12 measurements as their growth depends on externally supplied vitamin B12 (32–34). In the
work by Skeggs et al. (35), which formed the basis of microbiological determination of vitamin
B12 levels for decades, a culture of Lactobacillus leichmannii was grown for 24 h inside a liquid
skim-milk-based medium with a carefully regulated pH before being added to a refined serum
assay and autoclaved for 15 min at 120�C. The results, showing the growth rate of the microbes
in the sample, could be read after 24-h incubation at 37�C and were compared against the
growth rate curve of these microorganisms exposed to known amounts of cobalamin.

Microbiological techniques have since evolved for better precision and lower limits of
detection (LOD) down to 20 pg/mL (36), although certain drawbacks for serum vitamin B12
measurements remain as additional factors like the presence of antibiotics in the blood
serum affect the growth rate of the of the microorganisms and therefore the resulting esti-
mates of vitamin B12 concentration (37).

Immunoassays

Immunoassays are biological detection techniques for the presence of specific molecules in a
sample that use a specific antibody to bind the target molecule onto a substrate for further
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detection (38). The first example of an immunoassay targeting vitamin B12 in human serum
appeared in 1982 (39), while further studies exist that use competitive immunoassays to
measure and analyze vitamin B12 (40, 41). Direct competitive enzyme-linked immunosor-
bent assays (ELISAs) for vitamin B12 have been developed, where immobilized rabbit anti-
bodies that capture cobalamin were immobilized on a cover slip and incubated for 20 h at
4�C before a biotinylated detection antibody is introduced that reacts with horseradish per-
oxidase-avidin and produces a color reaction that increases with increasing concentration of
vitamin B12 (42), as shown in Figure 2, for example, for a standard response curve of this
measurement (43). This method has a LOD of 2.2 pg/mL, although it requires lengthy prepa-
ration of the antibody plates and numerous processing steps.

Combining immunoassays with radioactive forms of vitamin B12 has also been shown
to be a sensitive tool for measuring vitamin B12 by competitive radioassays (44), where
vitamin B12 in a sample competes for binding onto specific antigens against a known
amount of the radioactive (57Co) vitamin B12 (45). While this method has been shown to
be reliable (46, 47) and the LOD of 288 pg/mL is within the physiological range (48), the
requirement for highly trained operators and the cost of radioisotopes and measuring
equipment has limited its adoption (49).

High-performance liquid chromatography (HPLC)

HPLC is a chemical technique that separates different compounds contained within a liquid
sample by passing a mixture of the sample substance along with one or more liquid solvents
through a microporous column (50). Different chemical species show different retention
times in passing through the HPLC column under pressure, resulting in different flow rates
through the column that can be used to identify them. Vitamin B12 was first isolated using
HPLC in 1997 (51) and since then there have been various studies focusing on simulta-
neously identifying multiple members of the B-vitamin family through HPLC (52–54). It
must be noted that, due to the LOD for this technique being in the order of 80 ng/mL (52),
HPLC work has primarily been used for identifying vitamin B12 in pre-made samples such
as food supplements and dietary supplements (22).

Figure 2. Standard ELISA curve for derivatized vitamin B12 versus vitamin B12. Each point represents the
mean of 20 determinations. Vertical bars indicate error bars with 5% value (taken from (43)).
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Capillary electrophoresis (CE)

This is a technique in which a capillary is filled with a liquid electrolyte into which the sam-
ple under investigation has been mixed before an electric field is applied across it that sepa-
rates the ions in the sample (55, 56). In the work by Lambert et al. (57), for example, high
voltage (15 kV) is applied across the length of a glass capillary filled with a mixture of cobala-
min derivatives capillary and electro-osmosis causes the ions in the solution to travel along
the length of the capillary. The different cobalamin derivatives separate as they travel along
the capillary and are detected near its end ultraviolet light (266 nm) absorption through the
sample, a process that takes 25 min and results in the signatures of the compounds in the
sample, as shown in Figure 3 (taken from (57)).

The signal detected was then compared against results for individual derivatives using the
same measurement to calibrate the process. The LOD for detecting vitamin B12 by CE were
20 mg/mL, as described by Lambert et al. CE is often used in a complimentary fashion to
HPLC to cover different concentration and complex size regimes (57).

Radioisotope and mass spectrometry

A significant body of work exists in the literature whereby a radioactive isotope of vitamin
B12 is used to enable detection based on radioactivity measurements. Initial studies consist
of subjects being given a radioactive isotope of vitamin B12, usually in the form of (57Co)
vitamin B12 (58, 59). The radioactivity of blood plasma (60, 61) or even of the whole body
(62–65) is then measured and correlated to the amount of vitamin B12, with the ultimate
aim of using this technique as a diagnostic tool (66, 67). More recently, a form of vitamin
B12 containing 14C has been used in conjunction with mass spectrometry (MS) to measure

Figure 3. A signature of two different cobalamin compounds in a liquid sample as analyzed by capillary
electrophoresis (taken from (57)).
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human absorption of vitamin B12 (68). MS relies on ionizing a sample to create charged
fragments of a chemical species that are then separated by accelerating them through an
electric or magnetic field. The field deflects them based on their charge-to-mass ratio, result-
ing in different components arriving at different points of the detection mechanism (69).
The actual chemical species are then identified by correlating the mass of detected fragments
to known mass profiles of known molecules, with very low detection limits for biological
samples that have been modified to include the (14C) isotope (70). This technique has been
used for vitamin B12 identification down to a LOD of 100 fg/mL (68), although this limit
refers to detecting the modified version of cobalamin that requires a complicated and costly
synthesis and a complex experimental setup, rather than the naturally-occurring form of
vitamin B12.

Overall the established detection techniques have their basis in microbiology and chemis-
try, and some of them have indeed shown very low detection limits and selectivity. They do
not, however, answer all challenges in measuring vitamin B12 that ideally requires rapid
identification of vitamin B12 at a reasonable cost. It is due to these limitations that we turn
our attention to a different set of detection techniques based on optical spectroscopy.

Optical detection techniques

Optical detection techniques for chemical species have established themselves as a reliable
and sensitive technology for biological molecules (71) such as DNA and proteins (72) and
various vitamins (73, 74). Optical detection of chemical species revolves around seeing
how light interacts either directly with the target molecules or with intermediate com-
pounds that change their behavior in the presence of the target molecules, and using this
change in light properties such as the color of light they emit to identify and quantify the
target species (71, 75–77). Some common optical detection techniques for vitamin detec-
tion are fluorescence detection (78, 79) and Raman scattering (80–82), where light incident
on a sample changes color depending on the chemical bonds present in the sample mole-
cules, but other optical sensing techniques have also shown great promise (83).

Chemiluminescence (CL)

Most vitamin complexes do not spontaneously emit light, with the notable exception of vita-
min A (84). The same applies for vitamin B12 that is not known to emit light under optical
excitation. Fluorescence detection can be deployed, however, through the interactions of
vitamins with light-emitting molecules in the process of chemiluminescence. Cobalt has
been shown to enhance the CL reaction between luminol and dissolved oxygen (85), or
between luminol and hydrogen peroxide with a LOD of 890 pg/mL (86), as shown in
Figure 4. Similar detection limits were achieved when the CL technique based on luminol
was deployed on a lab-on-a-chip system, whereby flow channels are inscribed on a single
substrate to enable chemical and biological measurements (87).

This CL lab-on-a-chip method promises faster readout times and a more compact geome-
try than conventional techniques (88). A similar technique was employed by Kamruzzaman
et al. (89), who developed a microfluidic chip detector based on the reaction of luminol and
silver nitrate in the presence of gold nanoparticles. This method demonstrated a LOD of
40 pg/mL.
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Another method based on luminol was demonstrated using the cobalt (II) ion liberated
from B12 as the catalyst for a luminol-percarbonate CL reaction, in this case resulting in an
increase in the chemiluminescence signal with increasing B12 concentration under UV illu-
mination (90). This technique, however, showed LOD of 9.3 ng/mL, which was improved on
in subsequent work to 420 pg/mL (91).

Zhang et al. showed that vitamin B12 could also be detected using CL with dodecylben-
zene sulfonate (DBS)–layered double hydroxides (LDHs) used to measure liberated cobalt
(II) ions (92). This technique again showed an increasing CL signal with increasing B12 con-
centrations, with a LOD of 570 pg/mL. This work was of particular interest due to the
increased specificity of the DBS LDHs to B12, with significantly reduced cross-sensitivity to
other metal ions compared to other work on luminol-based CL detection.

Absorption and fluorescence

While vitamin B12 is a poor light emitter itself, and its intrinsic absorption at biologically
relevant concentrations is too small for direct detection, its presence can affect the efficiency
of other light-emitting species. Rhodamine 6G, for example, has been used to indirectly mea-
sure vitamin B12 in solution by studying the effect B12 has on the fluorescence resonance
energy transfer between aridine orange (AO) and Rhodamine 6G (93), illustrated by the col-
lected spectra shown in Figure 5 for different mixtures of AO, Rhodamine 6G and vitamin
B12. Work based on this technique was able to show a LOD of 2 mg/mL (94).

Work by Shang et al. demonstrated that a fluorescent probe 4-N,N-di(2-hydroxyethyl)
imino-7-nitrobenzo-2-oxa-1,3-diazole (HINBD) can be used for detection of B12, with the
fluorescence quenched by B12 allowing for measurements to be performed by examining

Figure 4. Concentration series for detection of vitamin B12 based on chemiluminescence in two different
sensing modes (with pre-acidification of vitamin B12 taking place within and outside the microfluidic sys-
tem, respectively) for a lab-on-a-chip device (taken from (88)).
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the intensity of the fluorophore’s signal (95). This technique demonstrated a LOD of 0.1 mg/
mL in water.

Vitamin B12 has also been shown to directly quench the fluorescence of CdTe quantum
dots, where energy absorbed by the quantum dots is resonantly transferred to the B12 mole-
cules (96). Carbon compounds also experience fluorescence quenching in the presence of
vitamin B12 molecules, for example, when using a graphene oxide layer (97) or thermally-
reduced carbon dots (98). Using these thermally reduced carbon dots Wang et al. was able
to demonstrate a LOD as low as 0.1 mg/mL in an aqueous solution.

Surface plasmon resonance (SPR)

Surface plasmon resonance (SPR) sensing consists of monitoring changes in the color scat-
tered off a metallic surface in the presence of a target molecule (99, 100). Surface plasmons
are electron oscillations along the interface of a metal and a dielectric surface. The frequency
of these oscillations is very sensitive to the refractive index of the environment, so in a sensor
configuration the resonance frequency of surface plasmons will change depending on the
refractive index of the sample medium (101). This technique usually requires an antibody
that selectively binds target species on the surface of the sensor, where the resonance is
strongest. SPR has been shown to be useful for determining vitamin B12 levels in various
dietary supplements (102). SPR has also been used to indirectly determine the presence of
vitamin B12 by monitoring the interactions between vitamin B12 and its binding proteins,
with a LOD of about 1 mg/mL (103).

Raman spectroscopy

Although the optical detection methods discussed above all allow for the detection of B12 in
solution, they present various issues for real-world samples or point-of-care applications.

Figure 5. Fluorescence spectra using 454 nm argon laser (10 mW) as the excitation source. (a) aridine
orange (AO); (b) Rhodamine 6G (R6G); (c) R6G–AO; (d) Mixture of R6G–AO and vitamin B12 (VB12) (con-
centrations of AO, R6G and VB12 are 1 £ 10¡5, 4 £ 10¡5 and 4 £ 10¡6 mol/L, respectively for (a–d))
(taken from (94)).
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Some techniques, luminol-based CL, for example, are susceptible to cross-sensitivity from
many of the common metal ions present in biological samples. In addition, these techniques
require extensive sample preparation and complex chemical reactions, greatly limiting the
scope for real-world deployment.

One technique that can potentially address these shortcomings is Raman spectroscopy, an
optical detection technique that directly identifies the chemical bonds that make up individ-
ual molecules in a sample (104). Raman scattering, which lends its name to the spectroscopic
technique, is a phenomenon by which a small part of the light delivered onto a sample from
a laser source changes its wavelength (color) by a small fraction corresponding to the vibra-
tional energy of the chemical bonds in the sample (105). As molecules consist of multiple
chemical bonds, this process results in a “Raman fingerprint,” which is representative of all
the bonds in a given molecule (106). By using an optical spectrometer, a device that decom-
poses light into its wavelength components, an identifiable signature for that particular mol-
ecule is generated (107). Most biologically relevant molecules consist of similar elements
(carbon, oxygen, nitrogen etcetera); the similarity of these chemical bonds makes discrimi-
nating between them using Raman spectroscopy challenging (108). Vitamin B12 is unique
in that it contains a cobalt ion linked to an organic corrin ring – a structure not found across
other molecules in the human body that gives the most prominent peaks in the Raman spec-
trum of vitamin B12 (109, 110). This makes Raman spectroscopy a particularly attractive
technique for measuring vitamin B12 because its unique Raman signature can provide direct
molecule identification (111).

The first measurements of vitamin B12 using Raman spectroscopy appeared in 1973
(112, 113), where the Raman spectrum of vitamin B12 (shown in Figure 6) was identified
and the technique is used to identify vitamin B12 and its derivatives in aqueous solutions
(114–116). This is followed by a long hiatus until 1989, where more detailed Raman stud-
ies of vitamin B12 start emerging (117, 118) as laser sources and detectors improved.

Most studies of vitamin B12 using Raman spectroscopy have concentrated on under-
standing the molecular structure of the vitamin B12 molecule, for example, in identifying

Figure 6. Raman spectrum of vitamin B12 powder (taken from (125)).
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the different vibrational modes of cobalamin (118) and its coenzymes (119). This line of
research has given considerable insight into the fine details of the molecular structure of vita-
min B12, for example, in characterizing and modeling of the different vibrational modes in
the cobalamin molecule (111, 120, 121), and the chemical and conformational changes it
undergoes in the body, for example, during its binding process to the coenzymes it helps to
metabolize (122–124).

There is a notable lack of systematic studies of the LOD in Raman detection of vitamin
B12 which represents a promising pathway for future research. Raman spectroscopy inher-
ently has a low signal intensity in comparison to other optical processes such as fluorescence,
with reported LOD down to 250 ng/mL (114), but enhancement techniques like surface-
enhanced Raman spectroscopy (SERS) (126–128) may increase signal intensity due to inter-
actions between cobalamin molecules and metallic substrates (125). Raman measurements
of vitamin B12, therefore, have the potential to yield both useful and innovative results. A
strong case can be provided by other vitamins; SERS measurements of vitamin C show a
detection behavior that closely matches the performance of HPLC measurements by using a
structured silver substrate to enhance the Raman signal (129), and SERS has also been iden-
tified as a reliable technique to build up libraries of spectral signature for vitamin (130).
Recent approaches such as producing SERS-active biotags for the characterization of biologi-
cal samples have shown that the intensity of the SERS signal can be as high as that of fluores-
cence – but with the added advantage of unique identification of the compound (131) which
represents an exciting step towards detecting physiologically-relevant concentration of vita-
min B12.

Overall these emerging optical techniques offer potential selectivity, speed and low detec-
tion limits for measurements of vitamin B12. The current detection limits for these techni-
ques are summarized in Table 1, along with their key advantages and disadvantages.

Conclusions

Precise measurements of vitamin B12 concentration in humans to aid in diagnosis of vita-
min B12 deficiency are still a field of intense research and scrutiny. Established methods are
currently approaching their limits in terms of reproducibility, selectivity and speed; for these
reasons determining vitamin B12 deficiency remains a time consuming and costly process.
With recent advances in technology and our understanding of the interactions between light
and cobalamin, some of the new optical detection techniques may develop into field-deploy-
able devices for measuring vitamin B12 and aiding in the diagnosis of its deficiency. Rapid,
reliable and reproducible measurements of vitamin B12 levels could further our

Table 1. Limit of detection (LOD) and advantages and disadvantages of optical spectroscopy techniques
used for measurements of vitamin B12.

Technique LOD (pg/mL) Advantages Disadvantages

Chemiluminescence 40 (89) Fast, sensitive Poor specificity, extensive sample purification
Fluorescence quenching 110 (95) Fast, sensitive Poor specificity
Surface plasmon

resonance
103 (103) Kinetics information Poor specificity, extensive sample preparation,

low sensitivity
Raman spectroscopy 106 (114) Specificity, little sample

preparation
Low sensitivity
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understanding of the role of vitamin B12 in conditions like dementia and Alzheimer’s dis-
ease and ultimately contribute to early diagnosis and guide prophylactic actions for at-risk
populations.
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