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ABSTRACT
Transmission is a main route for bacterial contamination, involving bacterial detachment from a 
donor and adhesion to receiver surfaces. This work aimed to compare transmission of an extracellular 
polymeric substance (EPS) producing and a non-EPS producing Staphylococcus epidermidis strain 
from biofilms on stainless steel. After transmission, donor surfaces remained fully covered with 
biofilm, indicating transmission through cohesive failure in the biofilm. Counter to the numbers of 
biofilm bacteria, the donor and receiver biofilm thicknesses did not add up to the pre-transmission 
donor biofilm thickness, suggesting more compact biofilms after transmission, especially for non-
EPS producing staphylococci. Accordingly, staphylococcal density per unit biofilm volume had 
increased from 0.20 to 0.52 μm–3 for transmission of the non-EPS producing strain under high contact 
pressure. The EPS producing strain had similar densities before and after transmission (0.17 μm–3). 
This suggests three phases in biofilm transmission: (1) compression, (2) separation and (3) relaxation 
of biofilm structure to its pre-transmission density in EPS-rich biofilms.

Introduction

Biofilms consist of bacteria adhering to the surface of a 
substratum, embedded in a matrix of extracellular poly-
meric substances (EPS) (Flemming and Wingender 2010; 
Hall-Stoodley et al. 2012). The structure of a biofilm can 
differ depending on the substratum surface and not only 
impacts the penetrability of the biofilm by nutrients (Nadell 
et al. 2009; Sjollema et al. 2011), but also by antimicrobi-
als (Stewart and Costerton 2001; Donlan and Costerton 
2002). Moreover, the viscoelasticity conveyed by the EPS 
matrix hampers detachment of biofilms by mechanical 
means (Stoodley et al. 2002; Flemming and Wingender 
2010; Peterson et al. 2015). As a consequence, biofilms 
cause major problems in many different and widely var-
ying environments, such as on biomaterial implants and 
devices (Hall-Stoodley and Stoodley 2005; Campoccia et 
al. 2013; Lebeaux et al. 2013), ships’ hulls (Flemming 2002; 
Tribou and Swain 2015), water transport pipes (Juhna et 
al. 2007; Rhoads et al. 2016) and food packaging materi-
als (Li et al. 2009; Nerín et al. 2016). Biofilm formation 
can be described by four distinct phases (Rendueles and 

Ghigo 2012): (1) transport from an aqueous suspension or 
air towards a substratum surface (Donlan and Costerton 
2002; Nadell et al. 2009; Sjollema et al. 2011); (2) reversible 
adhesion to the substratum surface; (3) transition of an 
adhering organism from a planktonic to a sessile pheno-
type, producing EPS to cause irreversible adhesion; and 
(4) growth.

Although it is mostly assumed that transport occurs 
through convective-diffusion in an aqueous suspension 
or air, in many practical situations bacteria are transmit-
ted from one surface to another under an applied contact 
pressure (Zapka et al. 2011). Transmission is an essentially 
different process from transport by convection or diffu-
sion because it involves detachment of adhering bacteria 
from a donor surface followed by subsequent adhesion 
to a receiver surface (Van der Mei et al. 2010; Qu et al. 
2011). Transmission is one of the main routes of bacte-
rial contamination occurring in biomedical, domestic, 
environmental and industrial applications, either under 
compressive or shear loading of a biofilm-covered donor 
and an initially clean receiver surface. Bacterial trans-
fer from urethral epithelial cells to urinary catheters for 

KEYWORDS
Staphylococcus epidermidis; 
biofilm viscoelasticity; optical 
coherence tomography; 
ClSM; biofilm compaction; 
biofilm relaxation

ARTICLE HISTORY
Received 21 June 2017 
Accepted 25 July 2017

© 2017 The Author(s). Published by informa uK limited, trading as Taylor & francis group.
This is an open Access article distributed under the terms of the Creative Commons Attribution-nonCommercial-noDerivatives license (http://creativecommons.org/licenses/by-nc-
nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built 
upon in any way.

CONTACT Henny C. van der Mei   h.c.van.de.mei@umcg.nl

 OPEN ACCESS

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto: h.c.van.de.mei@umcg.nl
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/08927014.2017.1360870&domain=pdf


BIOFOULING   713

Preparation of stainless steel surfaces and biofilm 
formation

Biofilm transmission was carried out between stainless 
steel 304 (SS) donor and receiver surfaces. SS plates with 
a surface area of 2.25 cm2 (15 mm × 15 mm; 1 mm thick-
ness) were cleaned by rinsing with 2% Extran® (Merck) 
followed by sonication for 5 min in 2% of RBS™35 (Sigma-
Aldrich, St Louis, MO, USA) and rinsing with tap water, 
70% ethanol and finally sterile, demineralised water. This 
yielded a water contact angle of 27 ± 4o.

In order to improve staphylococcal adhesion, the SS 
surfaces were first coated with serum proteins by immer-
sion in 10% foetal bovine serum (FBS) (F7524, Sigma-
Aldrich) in phosphate buffered saline (PBS) for 2 h under 
static conditions. After pipetting out the FBS solution, the 
FBS-coated stainless steel donor plates were placed on the 
bottom of Petri dishes filled with 15 ml of a staphylococcal 
suspension and left to allow bacterial adhesion for 1 h at 
37°C. Next, the suspension was carefully removed after 
which the plates were placed into a Petri dish with 15 ml 
of fresh supplemented TSB medium. Subsequently, staph-
ylococci were grown for 48 h at 37°ͦC to form a biofilm. 
The medium was refreshed after 24 h.

For transmission and biofilm analysis, medium was 
pipetted carefully out of the Petri dishes and biofilm cov-
ered plates were placed into a new Petri dish with 10 ml 
of reduced transport fluid, pH 6.8 (RTF; NaCl 12 g  l−1, 
(NH4)2SO4 12 g l−1, KH2PO4 6 g l−1, Mg.SO4.H2O 2.5 g l−1, 
K2HPO4 6  g  l−1, Na2EDTA.2H2O 41.2  g  l−1, L-cysteine.
HCl.H2O 11.1  g  l−1) to enable transport of the biofilm 
covered plates to either of the instruments for biofilm 
characterisation.

Biofilm transmission assay

First, for ease of handling, cork cylinders were glued to the 
backsides of the receiver plates. For transmission, RTF was 
pipetted out of the Petri dish and a SS receiver was pressed 
on top of the biofilm covered donor surface under a pres-
sure of 0.7 or 7.0 kPa for 1 min. The pressures chosen are 
in the same range as the pressure of holding a cup of coffee 
or using a door handle, being around 2 kPa (Arinder et 
al. 2016). Next, donor and receiver surfaces were rapidly 
(<1 s) and perpendicularly separated from each other by 
keeping the donor plate in place with a pair of forceps 
and simultaneously lifting the receiver plate. Subsequently, 
both receiver and donor plates were immersed in RTF for 
further experiments. All experiments were carried out in 
triplicate with different staphylococcal cultures and sam-
ples. The numbers of staphylococci in the biofilm before 
and after transmission were determined by dispersal of 
the biofilms over the entire substratum area of 2.25 cm2, 
using sterilised, 5 mm interdental brushes (Albert Heijn, 

instance, occurs mainly under shear (Warren 2001; Siddiq 
and Darouiche 2012), while transmission between gloves 
from healthcare workers, the skin of a patient and hospi-
tal equipment occurs predominantly under compressive 
loading (Morgan et al. 2012). The epidemiological con-
sequences of bacterial transmission between surfaces in 
hospital environments are amply studied and it is known 
that bacterially contaminated surfaces in hospital envi-
ronments increase patients’ risk of infection (Vickery 
et al. 2012; Cheng et al. 2015). Mechanisms of bacterial 
transmission, on the other hand, are seldom studied. 
Importantly, due to the involvement of a load during 
transmission, transmission may affect the structure and 
therewith the nutrient and antimicrobial penetrability of 
biofilms left-behind (Donlan and Costerton 2002; Nadell 
et al. 2009; Sjollema et al. 2011) on donor surfaces which 
are transmitted to receiver surfaces.

It was the aim of this study to compare biofilm transmis-
sion of Staphylococcus epidermidis ATCC 35984 (an EPS 
producing strain) and S. epidermidis 252 (a non-EPS pro-
ducing strain) between two stainless steel surfaces under 
compression by applying two different contact pressures. 
Donor biofilm thicknesses before and after transmission 
as well as biofilm thicknesses on the receiver surfaces after 
transmission were determined using optical coherence 
tomography (OCT). Subsequently, the numbers of bac-
teria in donor and receiver biofilms were enumerated in a 
Bürker–Türk counting chamber after biofilm dispersal. In 
addition, biofilms were imaged using confocal laser scan-
ning microscopy (CLSM) and two-photon-laser scanning 
microscopy (2P-LSM) (Neu et al. 2002). EPS production 
was inferred from the presence of calcofluor white stain-
able regions in fluorescent images of stained biofilms.

Materials and methods

Bacterial strains and growth condition

EPS producing S. epidermidis ATCC 35984 (Williams and 
Bloebaum 2010) and non-EPS producing S. epidermidis 
252 were originally isolated from a patient with a cathe-
ter-associated sepsis and stool (Van der Mei et al. 1997), 
respectively. Both strains were grown aerobically for 24 h 
at 37°C on blood agar plates from frozen stocks. One single 
colony was used to make a pre-culture in 10 ml of tryptone 
soya broth (TSB, Oxoid, Basingstoke, UK) supplemented 
with 0.25% D(+)glucose, anhydrous (C6H12O6, Merck, 
Darmstadt, Germany) and 0.5% NaCl (Merck), which was 
incubated for 24 h at 37°C. This 10 ml pre-culture was 
used to inoculate a second culture of 200 ml supplemented 
TSB, which was incubated for 16 h at 37°C and used for 
further experiments. The number of staphylococci in the 
culture suspension was 1 × 109 bacteria ml–1, as measured 
using a Bürker–Türk counting chamber.
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Zaandam, the Netherlands) in 5 ml of RTF while remain-
ing in their Petri dishes. After brushing, the brush, plate 
and the RTF were put in a sterile tube and sonicated for 
1 min to remove bacteria from the brush and plate and 
break bacterial aggregates. Subsequently, staphylococci 
were enumerated in a Bürker–Turk counting chamber. 
Staphylococcal transmission was expressed as a log-re-
duction of the number of bacteria on the donor plates 
according to:

in which D0 is the number of staphylococci on the donor 
plate before transmission and R the number of bacteria 
found on the receiver after transmission.

OCT analysis of biofilms

The biofilms were analysed before transmission on the 
donor plates and after transmission on both donor and 
receiver plates with an OCT Ganymede II (Thorlabs 
Ganymade, Newton, NJ, USA), while keeping the plates 
immersed in the RTF. The biofilms were analysed on basis 
of 10 line scans on each donor and receiver plate by image 
post-processing of each line scan using Image J (National 
Institutes of Health, Bethesda, MD, USA), covering the 
entire substratum area of 2.25 cm2. First, the bottom of 
the biofilm was determined as the best fitting line (sec-
ond order polynomial) that connects the white pixels 
resulting from light reflection on the substratum surface. 
Subsequently a grey-value threshold that separates the 
biofilm from the background was calculated on basis of 
the grey-value histogram of the entire image (Otsu 1979). 
Then the upper contour line of the biofilm was defined as 
those pixels in the image that have a grey value just higher 
than the grey-value threshold and are connected to the 
bottom of the biofilm by pixels with grey values all higher 
than the grey-value threshold. The mean biofilm thickness 
per line scan was calculated based on the number of pixels 
between the bottom of the biofilm and the upper contour 
line. The overall biofilm thickness was defined as the aver-
age biofilm thickness over 10 line scans.

Confocal laser scanning microscopy and two-
photon laser microscopy

LIVE stain (BacLight™, Molecular probes, Leiden, the 
Netherlands) containing SYTO9 (3.34 mM) was applied 
to the biofilms for 15 min in the dark at room tempera-
ture, followed by staining with fluorescent brightener 28 
(50 mM) (Calcofluor white M2R; Sigma, St Louis, MO, 
USA) for 15 min to visualise EPS. It should be noted that 
calcofluor white only stains polysaccharides within an 

10log
(

D0 − R
)

−

10 log
(

D0

)

EPS matrix, as a main matrix component next to eDNA, 
proteins and possible other molecules. After staining, the 
biofilm was immersed in PBS and imaged using a CLSM 
(Leica TCS-SP2, Leica Microsystems Heidelberg GmbH, 
Heidelberg, Germany) at 40× magnification with laser 
excitation at 488 and 351 nm for SYTO9 and Fluorescent 
Brightener 28, respectively. Images were stacked and 
analysed using Fiji (Schindelin et al. 2012). The surface 
topography of the biofilms before and after transmission 
were analysed using two photon laser scanning micros-
copy (2P-LSM) after SYTO9 and fluorescent brightener 
28 staining. Imaging was performed using a Zeiss LSM 
7MP microscope (Zeiss, Jena, Germany) with Chameleon 
Vision compact OPO two photon laser (Coherent, Santa 
Clara, CA, USA). Excitation wavelengths of 825 nm were 
used and an emission filter set at 470–515 nm for SYTO9 
or 435  nm for fluorescent brightener 28. Images were 
acquired and analysed using ZEN-lite imaging software 
(Carl Zeiss, Jena, Germany).

Statistical analysis

The differences in biofilm properties before and after 
transmission were compared using two-tailed Student’s 
t-test. Differences were considered significant if p < 0.05. 
Statistical analysis was performed using GraphPad Prism 
version 7.00 (GraphPad Software, La Jolla, CA, USA; 
www.graphpad.com).

Results

Staphylococcal biofilms on SS donor surfaces before 
transmission

Biofilms on SS surfaces fully covered the substratum 
surface and showed clear patches of calcofluor white 
stainable EPS in biofilms of S. epidermidis ATCC 
35984, that were absent in biofilms of S. epidermidis 252  
(Figure 1a). Topological imaging of the biofilms using 
2P-LSM revealed mushroom-like structures in biofilms 
of EPS producing S. epidermidis ATCC 35984, while 
biofilms of the non-EPS producing strain were relatively 
smooth without mushroom-like structures (Figure 1b). 
This topological difference was confirmed in low-reso-
lution, cross-sectional OCT images of biofilms (Figure 
1c), showing a smaller thickness of 48 ± 9 μm for the 
EPS producing than for the non-EPS producing strain 
(70  ±  14  μm). Dispersal and subsequent microscopic 
enumeration of bacterial numbers in a biofilm indicated 
that S. epidermidis ATCC 35984 biofilms contained 7.4 × 
108 bacteria adhering cm−2 of substratum surface, while 
this number was twofold higher in biofilms of S. epider-
midis 252 (14 × 108 bacteria cm−2). A combination of 

http://www.graphpad.com
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possessed a more granular structure, with small black 
regions indicative of water-filled regions (Wagner et al. 
2010; Blauert et al. 2015), opposite to more homogene-
ously grey-looking biofilms of non-EPS producing S. 
epidermidis 252.

Table 1 summarises the qualitative and quantitative fea-
tures of both staphylococcal biofilms before transmission.

these bacterial numbers per unit area with the thick-
nesses measured in OCT provided bacterial densities 
per unit biofilm volume, which were slightly lower 
before transmission in biofilms of the EPS producing 
staphylococcus (0.15 μm−3) than of the non-EPS pro-
ducing staphylococcus (0.20  μm−3). In addition, the 
OCT images of S. epidermidis ATCC 35984 biofilms 

Figure 1. Structural features of EPS producing S. epidermidis ATCC 35984 and non-EPS producing S. epidermidis 252 biofilms on SS donor 
surfaces before transmission. (a) Projected top view ClSM overlayer images (green indicates bacteria, blue indicates the presence of EPS 
(ie calcofluor white stainable EPS components). (b) Surface topography from 2P-lSM (colours indicate the local height of the biofilm 
according to the pseudo-colour bars). (c) Cross-sectional oCT images (darker colours indicate water-rich regions).

Table 1. Summary of the structural features of biofilms on stainless steel donor surfaces before and after transmission.

Transmitted biofilms on receiver surfaces were generally too thin for a comprehensive analysis of their features. Bacterial densities are averaged over three sepa-
rately grown biofilms out of different cultures with ± indicating SDs Asterisks indicate significant differences between densities before and after transmission.

Method

EPS producing S. epidermidis ATCC 35984 Non-EPS producing S. epidermidis 252

Before transmission

After transmission

Before transmission

After transmission

0.7 kPa 7 kPa 0.7 kPa 7 kPa
ClSM full coverage with EPS 

patches
full coverage without 

EPS
2P-lSM Mushroom-like structures Elongated structures on top of biofilm 

surfaces
Smooth biofilm 

surfaces
Smooth biofilm surfaces

oCT Mushroom-like structures full coverage without mushroom 
structures 

Smooth, but diffuse 
biofilm surface

Smooth, but slightly less diffuse 
biofilm surface

Density (bacteria per μm3) 0.15 ± 0.07 0.20 ± 0.05 0.18 ± 0.13 0.20 ± 0.07* 0.18 ± 0.08 0.52 ± 0.16*
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ATCC 35984 were flattened during transmission, and 
mushroom-like structures, as observed on donor biofilms 
before transmission, had disappeared. OCT images for 
both staphylococcal strains looked more homogeneously 
grey and sharper confined than before transmission (com-
pare Figure 1c with Figure 2a and b). After transmission 
of EPS-producing S. epidermidis ATCC 35984, elongated 
structures could be seen in 2P-LSM micrographs on the 

Staphylococcal biofilms on SS donor surfaces after 
transmission

OCT images (Figure 2a and b) clearly show that the donor 
surfaces after transmission remained fully covered with 
biofilm, while the receiver surfaces show patchy cover-
age after transmission of S. epidermidis ATCC 35984 and 
only a very thin film after S. epidermidis 252 transmis-
sion. Donor biofilms of EPS producing S. epidermidis 

Figure 2. Examples of cross-sectional oCT images of staphylococcal biofilms of EPS producing S. epidermidis ATCC 35984 (a), and (b) non-
EPS producing S. epidermidis 252 on SS donor and receiver surfaces after transmission at an applied pressure of 0.7 kPa for 1 min. Scale 
bars = 100 μm. (c, d) Surface topography from 2P-lSM (colours indicate the local height of the biofilm as indicated by the pseudo-colour 
bars) of biofilms on the SS donor surfaces after transmission for EPS producing S. epidermidis ATCC 35984 (c) and (d) non-EPS producing 
S. epidermidis 252 (right panel) at a pressure of 0.7 kPa. Arrows indicate elongated structures.

Table 2. Sequential phases in biofilm transmission between two surfaces and associated structural changes in the presence and absence 
and of an EPS matrix, as concluded from observations on an EPS producing and a non-EPS producing S. epidermidis strain.

Phase EPS producing S. epidermidis ATCC 35984 Non-EPS producing S. epidermidis 252
(1) Compression •  Bacteria are forced closer together yielding a compact biofilm

•  Water with soluble EPS components is squeezed out of the biofilm
•  Bacteria are forced closer together yielding a compact 

biofilm
•  Water is squeezed out of the biofilm

(2) Separation Donor Receiver Donor Receiver
•  Bacteria are forced apart from each 

other
•  Cohesive failure in the biofilm
•  formation of EPS threads during failure
•  Collapse of EPS threads on biofilm left 

on donor surface

•  Patch-wise, low coverage •  Bacteria are forced apart from 
each other

•  Cohesive failure in the biofilm

•  High coverage of biofilm 
with low biofilm density

(3) Relaxation •  Viscoelastic relaxation further restores 
water-filled regions and reduces bacterial 
density in the biofilm

•  Absence of viscoelastic relaxa-
tion leaves a biofilm with a high 
bacterial density
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biofilm thickness on the donor before transmission, sug-
gesting either loss of biofilm during the transmission pro-
cess or structural changes induced during transmission. 
Significant loss of bacteria from the biofilms during trans-
mission can be ruled out however, because the numbers of 
bacteria on donor and receiver surfaces after transmission 
did add up to the numbers of bacteria counted on donor 
surfaces before transmission (Figure 3c and d).

A combination of biofilm thicknesses and numbers of 
bacteria in biofilms per unit area on donor surfaces after 
transmission shows (see Table 1) that after transmission, 

surface of donor biofilms that were absent in donor bio-
films after transmission of the non-EPS producing strain 
(compare Figure 2c and d).

Biofilm thicknesses on receiver surfaces were signifi-
cantly thinner than of biofilms remaining on the donor 
surfaces (Figure 3), regardless of the contact pressure 
applied. Receiver biofilms of EPS producing S. epider-
midis ATCC 35984 (Figure 3a) were significantly thinner 
than of non-EPS producing S. epidermidis 252 (Figure 
3b). Interestingly, the total thickness after transmission 
on donor and receiver surfaces did not add up to the 

Figure 3. Staphylococcal biofilm thickness and numbers of bacteria in biofilms on SS donor and receiver surfaces after transmission at 
two different pressures applied after a contact time of 1 min. (a) thickness of EPS producing S. epidermidis ATCC 35984 biofilms; (b) the 
same as panel (a), for non-EPS producing S. epidermidis 252; (c) number of bacteria in S. epidermidis ATCC 35984 biofilms; (d) the same 
as panel (c), for S. epidermidis 252. Dotted lines with dashed regions represent the thickness of and numbers of staphylococci in biofilms 
on the donor surface before transmission with their SDs, while error bars indicate the SDs over three measurements with three separate 
bacterial cultures. Asterisks indicate significant differences between biofilm thicknesses on donor substrata and thicknesses on receiver 
surfaces. Double asterisks indicate significant differences between biofilm thicknesses on receiver surfaces of S. epidermidis ATCC 35984 
and of S. epidermidis 252.
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al. 2014). These findings confirm that a critical difference 
in biofilm response is realistic to expect between contact 
pressure of 0.7 and 7 kPa, as seen in this paper.

Separation

Separation subjects the compacted biofilms to a tensile 
pressure, ultimately leading to detachment. Detachment 
occurs relatively rapidly and can either result from failure 
at the donor–biofilm interface or cohesive failure within 
the biofilm. Since, after transmission, donor surfaces 
remain fully covered by biofilm regardless of the strain 
involved, this indicates that biofilm is transmitted through 
cohesive failure within the biofilm and subsequent attach-
ment of detached biofilm to the receiver surface. The sep-
aration phase is also difficult to visualise in between two 
plates. However, the presence of collapsed EPS threads on 
the surface of biofilms of the EPS producing staphylococ-
cal strain, and their absence on biofilms of the non-EPS 
producing strain, suggest their formation during separa-
tion. In contrast to solids under tensile strength, where 
fracture occurs after the yield point, viscoelastic materials 
show necking or thinning, which may be the origin of 
the collapsed threads observed after separation for the 
EPS-producing strain (Alpkvist et al. 2006). Dunsmore et 
al. (2002) described a very similar yet distinctly different 
process for biofilms grown under high and low flow, show-
ing formation of so-called ‘streamlined’ biofilm clusters 
under high flow.

Relaxation

All biofilms, but especially EPS containing biofilms, relax 
after application of stress, regardless of whether compres-
sive or tensile (Stoodley et al. 1999; Guélon et al. 2011; 
Peterson et al. 2015), to restore biofilm structure as much 
as possible. Usually, different components of a biofilm 
relax with their own characteristic time constants. After 
transmission as studied here, full restoration of biofilm 
structure has not been observed depending on the strain 
considered. In biofilms with more viscous components, 
relaxation occurs more swiftly (Alpkvist et al. 2006) than 
in the case of more rigid biofilms (Peterson et al. 2013) 
and accordingly the more viscous, EPS producing staph-
ylococcal strain used in this study recovered its bacterial 
density to a higher degree than the more rigid biofilms of 
the non-EPS producing strain. The non-EPS producing 
strain demonstrated lasting structural changes that were 
most evident from the doubling of the bacterial density 
in S. epidermidis 252 donor biofilms after transmission 
under high contact pressure (7 kPa). The EPS matrix in 
S. epidermidis ATCC 35984 biofilms, on the other hand, 
facilitated recovery of the bacterial density to pre-trans-
mission values.

the biofilm densities per unit volume of S. epidermidis 
ATCC 35984 on the donor surfaces were similar (0.15–
0.20  μm−3) before and after transmission (biofilms on 
receiver surfaces were too thin and heterogeneously dis-
tributed for these kind of calculations). However, after 
transmission under the high pressure, bacterial densities 
in biofilms of the non-EPS producing S. epidermidis 252 
increased significantly from 0.20 to 0.52 μm−3.

Discussion

Transmission is a common pathway for bacterial con-
tamination of surfaces in diverse environments. In this 
paper, the structure of staphylococcal biofilms between 
a SS donor and a receiver surface before and after trans-
mission were compared. Regardless of EPS production, ie 
calcofluor white stainable matrix components, donor sur-
faces remained fully covered with biofilm after transmis-
sion, which indicates that transmission occurred through 
cohesive failure in the biofilm since donor biofilms left 
behind were thinner than before transmission. EPS played 
a crucial role in restoring the structure of biofilms after 
transmission, which is proposed to be regarded as a three-
phase process, involving: (1) compression of the biofilm 
under the applied contact pressure, (2) separation exerting 
a tensile stress on biofilm inhabitants and (3) relaxation 
(Table 2). Each of these three phases will be discussed in 
the next subsections.

Compression

The first step in bacterial transmission between surfaces 
is compression of the biofilm between the donor and 
receiver surfaces by an external contact pressure. Water 
along with dissolved EPS components will be squeezed out 
first, as it has the lowest viscosity (Peterson et al. 2013). 
Also, bacteria will redistribute themselves slowly to new, 
energetically favourable positions. As a net result, bacte-
ria will come closer together and the biofilm will become 
more compact. Evidence for compaction during the com-
pression phase is indirect, as biofilms cannot be imaged or 
analysed when compressed between two plates. However, 
the higher bacterial densities in biofilms of the non-EPS 
producing strain after transmission under a contact pres-
sure of 7 kPa can only have arisen during this compaction 
phase. Compression under a contact pressure 0.7 kPa for 
1 min may be too small to yield compaction. Stress–strain 
diagrams for oral streptococci have a linear elastic tra-
jectory for strains  <  0.4, corresponding roughly with a 
stress of 0.1 kPa, which is in the same range as 0.7 kPa 
(Paramonova et al. 2009). Partly irreversible compaction 
up to 50%, however, was observed in biofilms generated in 
a cross-flow filtration model system by applying a trans-
membrane pressure in the order of 40–100 kPa (Dreszer et 
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