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ABSTRACT 

In recent years, natural, man-made and technological disasters have been increasing in 

magnitude and frequency of occurrence. Terrorist attacks have increased after the September 11, 

2001. Some authorities suggest that global warming is partly the blame for the increase in 

frequency of natural disasters, such as the series of hurricanes in the early-2000’s. Furthermore, 

there has been noticeable growth in population within many metropolitan areas not only in the 

US but also worldwide. These and other facts motivate the need for better emergency evacuation 

route planning (EERP) approaches in order to minimize the loss of human lives and property. 

This research considers aspects of evacuation routing never before considered in research 

and, more importantly, in practice. Previous EERP models only either consider unidirectional 

evacuee flow from the source of a hazard to destinations of safety or unidirectional emergency 

first responder flow to the hazard source. However, in real-life emergency situations, these 

heterogeneous, incompatible flows occur simultaneously over a bi-directional capacitated lane-

based travel network, especially in unanticipated emergencies. By incompatible, it is meant that 

the two different flows cannot occupy a given lane and merge or crossing point in the travel 

network at the same time. In addition, in large-scale evacuations, travel lane normal flow 

directions can be reversed dynamically to their contraflow directions depending upon the degree 

of the emergency. These characteristics provide the basis for this investigation.  This research 

considers the multiple flow EERP problem where the network travel lanes can be reconfigured 

using contraflow lane reversals. The first flow is vehicular flow of evacuees from the source of a 

hazard to destinations of safety, and the second flow is the emergency first responders to the 

hazard source. 
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After presenting a review of the work related to the multiple flow EERP problem, 

mathematical formulations are proposed for three variations of the EERP problem where the 

objective for each problem is to identify an evacuation plan (i.e., a flow schedule and network 

contraflow lane configuration) that minimizes network clearance time. Before the proposed 

formulations, the evacuation problem that considers only the flow of evacuees out of the 

network, which is viewed as a maximum flow problem, is formulated as an integer linear 

program. Then, the first proposed model formulation, which addresses the problem that 

considers the flow of evacuees under contraflow conditions, is presented. Next, the proposed 

formulation is expanded to consider the flow of evacuees and responders through the network 

but under normal flow conditions. Lastly, the two-flow problem of evacuees and responders 

under contraflow conditions is formulated. Using real-world population and travel network data, 

the EERP problems are each solved to optimality; however, the time required to solve the 

problems increases exponentially as the problem grows in size and complexity. Due to the 

intractable nature of the problems as the size of the network increases, a genetic-based heuristic 

solution procedure that generates evacuation network configurations of reasonable quality is 

proposed. The proposed heuristic solution approach generates evacuation plans in the order of 

minutes, which is desirable in emergency situations and needed to allow for immediate 

evacuation routing plan dissemination and implementation in the targeted areas. 
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CHAPTER 1: INTRODUCTION 

1.1 Overview 

Over the last 15 years, there has been an ever-increasing need for effective tools for 

prevention of, preparedness for and response to disasters. These disasters, which can be 

classified into three primary categories, are shown in Figure 1.1. The figure shows the main 

categories of disaster (or hazard) events and lists several examples of these events for each 

category. Effective disaster management presents a number of challenges to the responsible 

agencies on the local, regional and federal levels. Most recently, the United States Department of 

Homeland Security (USDHS) developed the National Response Plan (NRP). The NRP is a 

document that defines disaster/hazard management activities at the highest level in order to help 

disambiguate roles and responsibilities on the lower levels during the time of an emergency 

(USDHS, 2004).  

 
Figure 1.1. Taxonomy of disasters/hazards (FEMA, 2006). 

 

In recent years, natural, man-made and technological disasters have increased in 

frequency and in magnitude of occurrence. Specifically, technological and man-made disaster 

Disaster/Hazard 
Event

Natural 
• Earthquakes 
• Hurricanes 
• Tornadoes 
• Tsunamis/Tidal Waves 
• Floods 
• Land/Mudslides 
• Brush/Wildfires 

Technological 
• Nuclear/Radiological 

Accidents 
• Industrial Accidents 
• Transportation 

Accidents 
- Aircraft 
- Railway 

Man-Made 
• Terrorism 

- Biological 
- Chemical 
- Radiological 
- Nuclear 

• Bombings/Bomb 
Threats 

• Shootings/Hostage 
Situations 
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risk has increased due in large part to the evolving and growing threat of terrorist attacks against 

the US (Muller, 2005). Natural disaster risk has increased due to progressively changing weather 

patterns caused partly by global warming (FEMA, 2006). The Federal Emergency Management 

Agency (FEMA) reports that since 1953, 1,536 disasters have occurred in the US (USDHS, 

2004). Table 1.1 shows a sampling of the lives lost and property damage caused by several 

different types of disasters just over the last five years (BBC, 2001; Bernardino, 2003; CNN, 

2003; CTV, 2006; Peiris, 2005; TenBruggencate and Daysog, 2006; UN, 2005). 

 

Table 1.1. Disaster/Hazard events over the last five years. 

Name of Event Location Lives Lost 
Property 
Damage Date 

Tsunami South and Southeast Asia 230,000 + $10 billion + 12/26/04 
Floods Phetchabun, Thailand 170 $5 million + 08/01 
09/11/2001 (Terrorist Attack) NY, PA, Wash DC, USA 2,986 $112.5 billion 09/11/01 
Cedar Wildfires La Verne, CA, USA 14 $1 billion + 10/03 

Mudslides 
San Bernardino Mountains, 

CA, USA 7 $1 million + 12/03 
Shadikor (Dam) Pasni, Quetta, Pakistan 1000+ $15 million + 02/05 

Hurricane Katrina 
Louisiana, Mississippi, 

Alabama, USA 1,604 $75 billion 08/29/05 
Hurricane Rita Texas, Louisiana, USA 119 $10 billion 09/24/05 
Borger Wildfires Texas, USA 11 $10 million + 03/06 
Kaloko Reservoir (Dam) Kauai. HI, USA 1-7 $14.5 million 03/15/06 

 

Towards the end of 2004, Asia faced the most powerful earthquake in 40 years, which 

erupted under the Indian Ocean near Sumatra. It caused giant, deadly waves that crashed ashore 

in nearly a dozen countries, resulting in over 230,000 persons dead and approximately 128,329 

persons missing. Also, in 2005, the US Gulf Coast states suffered greatly from the intensity of 

Hurricane Katrina. The storm surge from Katrina caused catastrophic damage along the 

coastlines of Louisiana, Mississippi and Alabama. Eighty percent of the city of New Orleans was 

devastated by Katrina. Wind damage was reported well inland, impeding relief efforts. Katrina is 
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estimated to be responsible for $75 billion in damage, making it the costliest hurricane in US 

history.  The storm killed 1,604 people, becoming the deadliest US hurricane since the 1982 

Okeechobee Hurricane (NPR, 2005). 

Moreover, the population surge into the coastal areas in the US has been tremendous in 

the recent decades. Due to this population increase, the importance of a well-planned and well-

organized evacuation is much greater than before. The population along the Gulf Coast counties 

has increased to approximately 45 million in recent years (Hobbs, 2002; Urbina and Wolshon, 

2003). In addition, during weekends and holidays, the population of the coastal regions increases 

from 10 to 100 percent. Due to diverse population pockets along the coast and infrastructure 

needs that have not kept pace with the rapid local growth, emergency evacuation complications 

and delays could lead to catastrophic results. This is especially true in the larger cities such as 

Houston, TX, New Orleans, LA, Miami, FL and Tampa, FL. Figure 1.2 and Figure 1.3 show the 

population density in 1900 and 2000, respectively. One can conclude that several Gulf Coast 

states in the US have experienced significant increases in population, such as Texas and Florida.  

 

Figure 1.2. Population density of US in 1990 (obtained from Hobbs (2002)). 
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Figure 1.3. Population density of US in 2000 (obtained from Hobbs (2002)). 

 

1.2 Disaster Management 

In general, there are five phases of disaster management. These include prevention, 

preparedness, response, recovery and mitigation (Jain and McLean, 2006). The decision-making 

tools differ based on the disaster management phase for which they are designed. Disaster 

prevention involves analyzing vulnerabilities, monitoring and detecting conditions of disaster 

events. The preparedness phase primarily involves planning, which includes determining the 

impact (or magnitude) of a disaster event. This phase also includes training of appropriate 

response personnel for handling the emergency events and the testing of emergency response 

systems. Response includes evaluating the impact of a disaster event using real-time updates and 

using the available information to project the current and future impact of the disaster. It also 

includes tools for executing and evaluating response actions and strategies based on the current 

and projected impact of the disaster event. The recovery phase evaluates the long-term impact of 

a disaster and response actions. During this phase, tools can be used for evaluating alternative 

recovery actions and strategies based on the current and projected impact.  Finally, mitigation 
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focuses on post-disaster activities. Applications for mitigation may overlap in function and scope 

with other phases since mitigation measures may be implemented prior to, during, or even after 

an incident (USDHS, 2004). In this research investigation, the focus is primarily on the response 

phase of disaster management.  

 

1.3 The Expectation of Emergency Disasters and Events 

The categories of disaster and hazard events given by FEMA and shown in Figure 1.1 can 

be further categorized by their expectation – expected or unexpected (see Figure 1.4).  

Emergency response during unexpected events is slightly different than that during events that 

are expected, or anticipated.  Events that are expected, such as hurricanes, wildfires and even 

civil and international wars, allow more time to prepare for the protection of property and the 

evacuations of citizens in the impacted areas.  In addition, emergency management officials have 

some a priori knowledge about the type of event, the trajectory of the event and the degree of 

impact to the areas. Unexpected (or unanticipated) emergency events are those that emergency 

responders need to react immediately without time to prevent or prepare for the impact of the 

event. Examples of these types of events are tornadoes, earthquakes and even human-caused 

events such terrorist attacks.  In this research investigation, the scope is limited to unexpected 

emergency situations, but we are confident that the work is also applicable for anticipated 

emergencies with certain minor modifications. 
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Figure 1.4. Categories of disaster and hazards events by expectation (FEMA, 2006). 

 

1.4 Emergency Evacuation Time 

During an emergency evacuation, the time required to evacuate is of utmost importance, 

and it is one the main factors one should consider when developing a plan for evacuation. In this 

research evacuation time includes the time required to configure all traffic control elements on 

the evacuation routes, initiate the evacuation, and clear the routes of vehicles once all evacuating 

vehicles reach a destination of safety. Here, evacuation time does not include the time needed for 

local officials to assemble and make a decision to evacuate. Evacuation time during expected and 

unexpected emergency events is different. In general, evacuation time in both expected and 

unexpected are actually composed of three time subcomponents – mobilization time, travel time 

and queuing delay time (see Figure 1.5). As shown in Figure 1.5, for expected emergencies, 

mobilization time is larger and the queuing delay time is shorter due to the larger time window 

for planning and completing the evacuation. On the other hand, the unexpected emergencies 

have a shorter time window for evacuation. As a result, the time to mobilize evacuees and 

responders is shorter and the queuing delays at merge and cross points are longer. The amount of 

Example: 
- Flood 
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- Mud Slide 
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- Earthquake 
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- Bomb Treat 
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- Plane Crash 
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Example: 
- Nuclear/ 
- Missile Weapon 
- Intentional 
Accidents 

Example: 
- Bomb Treat 
- War 
- Shooting/ 
Hostage 
Situation 

Man-made Technological 

Expected 

Man-made Natural 

Unexpected 

Disaster/ Hazard 
Events
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time required for clearance can be significantly lengthened by route congestion and the setup 

time required for more complex control elements such as those required for contraflow lane 

reversals. 

 
Figure 1.5. Components of evacuation time (adapted from Florida Disaster (2000)). 

 

1.5 Current Practices and Challenges of Evacuation Planning 

Historically, evacuation planning and execution has been the responsibility of emergency 

management and law enforcement agencies. While some state transportation agencies have 

contributed to the evacuation planning and management process, their activities are usually 

characterized as peripheral support (Tufekci, 1995). FEMA requires all states to have a 

comprehensive emergency operations plan. These plans guide emergency operations for all types 

of hazards, from natural to technological to man-made. While the evacuation issues faced by 

coastal states are similar, the specifics of their plans differ since their geographic and 

transportation system characteristics vary widely (Wolshon et al., 2001). However, contraflow 

lane reversing is a common practice among the states. 

Components of Evacuation Time 

Mobilization 
Time 

Travel Time 

Evacuation Time for EXPECTED Hazards

Queuing Delay Time 

t0 T 

Mobilization 
Time 

Travel Time Queuing Delay Time 

Evacuation Time for UNEXPECTED Hazards
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1.5.1 Contraflow Lane Reversals 

Contraflow lane reversals alter the normal flow of traffic, typically on a controlled-access 

highway to aid in an emergency evacuation. Travel lanes that are normally only configured for 

travel in one direction are reconfigured so that the normal flow direction is reversed. This 

increases the effective lane capacity for evacuation traffic flow. Capacity of a lane is defined as 

the number of vehicles per hour.  All incoming flow on the reversed lanes is blocked until the 

end of the contraflow program execution. 

Implementation of contraflow lane reversals is generally resource-intensive as it requires 

a significant number of law enforcement officers and other officials to manually direct traffic 

during a lane reversal, especially at intersections and interchanges. When contraflow lane 

reversals are performed, each entrance ramp of the opposite direction of the traffic is blocked by 

uniformed officers and each exit ramp is temporarily converted to an entrance ramp. Also, pilot 

vehicles drive each section of the evacuation route to make sure that no vehicles are 

inadvertently trapped in a section of the roadway. If this is not done, vehicles could be met by 

outbound evacuation traffic (Wolshon et al., 2001). Contraflow lane reversal programs also lack 

proper signage, signals and other traffic control devices needed to conduct traffic in the opposite 

direction. 

There are several different contraflow lane reversal configurations. For instance, assume 

a four-lane roadway where there are two inbound lanes and two outbound lanes (as shown in 

Figure 1.6). Figure 1.6(a) illustrates the roadway under normal operation. Figure 1.6(b) shows all 

inbound lanes reversed to outbound lanes resulting in four outbound lanes for evacuees to utilize. 

Figure 1.6(c) shows one inbound lane reversed to an outbound lane. Therefore, there are three 
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outbound lanes that can be utilized by evacuees, and the inbound lane will be maintained for 

inbound traffic. Typically, under voluntary evacuation, emergency service vehicles and people 

who want to move against the evacuating traffic use the single inbound lane. This type of 

reverse-laning increases the potential of accidents. However, under mandatory evacuation, the 

single inbound lane is used only by emergency service vehicles. Figure 1.6(d) shows one 

inbound lane reversed with the shoulder used as additional outbound lane capacity for evacuees. 

The most common lane reversal configuration is when all inbound lanes are reversed to the 

outbound direction, since it is the most one increases the capacity (i.e., vehicles per hour per 

lane) the most with the least confusion (Pal et al., 2005; Wolshon et al., 2001). We consider only 

this contraflow lane reversal strategy in this research. 

The decision-maker who specifies when and what type of reverse-laning program to 

execute varies from state to state. For example, in Louisiana, the Governor is responsible for 

starting and ending the contraflow lane reversal operation. In Florida, the Governor starts the 

reverse-laning operation, but the Florida Highway Patrol ends the operation. 

 

 
(a) Normal lane directions – two 
outbound lanes and two inbound lanes

 

 
(b) All inbound lanes reversed to 
outbound lanes. 
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(c) One lane inbound reversed to an 
outbound lane. 

 

 
(d) One lane reversed to an outbound 
lane and use of the roadway shoulder. 

Figure 1.6. Types of contraflow lane reversal roadway configurations (adapted from Wolshon et 
al. (2001)). 

 

1.5.2 Interaction between Evacuee Flow and Responder Flow 

Current contraflow lane reversal programs traditionally focus on evacuee flow. However, 

several factors directly affecting evacuee flow behavior should also be considered. In particular, 

emergency responder flow moving towards the hazardous area should also be considered in 

emergency evacuation route planning. This is especially the case in unexpected emergency 

events. 

Citizens who remain in the hazardous areas prepare for the hazard event by purchasing 

and pre-positioning different supplies, especially in mandatory emergency evacuations. 

Governmental and law enforcement officials occupy roadways for the purposes of securing areas 

where an emergency evacuation order has been issued. As a result, evacuee flow and emergency 

responder flow occupy roads on the evacuation network configuration simultaneously. 

In an emergency situation, two simultaneous, heterogeneous opposing flows can exist. 

The first flow is vehicular flow of evacuees from the source of a hazard to destinations of safety.  

The second flow is the flow of emergency officials (i.e., first responders) to the hazard source. 
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These two flows traverse a bi-directional capacitated travel network where the travel lanes and 

the merge and cross points are fixed. It would be more efficient to develop routing plans that 

consider both flows simultaneously, since each flow will impact the other. 

 

1.6 Objectives of This Research Investigation 

The objectives of this research are to: 

(1) Formulate the multiple flow EERP problem in the presence of an unexpected emergency 

event that requires a large-scale evacuation; In addition to the introduction, formulation 

and discussion of the multiple flow EERP problem, the contribution of this research is an 

approach that serves as the initial effort to solve this practical problem; and 

(2) Develop a solution approach that is capable of rapidly generating evacuee routes and 

emergency first responder routes during times of mandatory evacuations. 

Two key components of evacuation behavior that are considered are: 

• There exist two heterogeneous flows (evacuees and emergency first responders); these two 

flows are assumed to be incompatible, and by incompatible, it is meant that the two different 

flows cannot occupy a given travel lane or a merge or cross point at the same time; and 

• Contraflow lane reversals are allowed. 

 

1.7 Expected Contributions of This Research Investigation 

Due to increase of natural, man-made and technological disasters, more specifically 

unexpected emergencies requiring large-scale evacuations, there is a serious need for an efficient 

emergency evacuation route planning methods. Existing EERP models only consider a 

unidirectional flow, either evacuees moving from a hazard area to areas of safety or emergency 
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responders moving towards hazardous areas. There is no previous work done on the EERP 

problem where both evacuee and responder flows are considered simultaneously. Furthermore, 

this research considers contraflow lane reversals, which is a practice most states in the US apply 

during large-scale emergency evacuations. 

The primary contribution of this research is that it serves as the initial efforts to formulate 

and solve the emergency evacuation route planning problem considering two heterogeneous 

flows that occur simultaneously during evacuation. Also, in this research, the network roadway 

configuration where contraflow lane reversals are allowed is identified, including the time 

schedule the lane reversals occur. The consideration of these characteristics simultaneously for 

EERP has not received noticeable attention to date. Therefore, this research potentially 

contributes quite significantly to the body of knowledge in the area of emergency management 

and disaster planning. 

 

1.8 Overview of This Dissertation 

The remainder of this dissertation is organized as follows. CHAPTER 2 summarizes the 

current research literature that addresses the emergency evacuation route planning problem. This 

problem has been addressed using analytical mathematical programming models, queuing 

models and simulation models. In CHAPTER 3, four incremental integer linear programming 

model formulations for the EERP problem are presented. Three of these models have not been 

formulated before in the current literature. These three model formulations lay the foundation for 

research in an area that has been gaining increasing attention in recent years. Specifically, the 

models, which consider simultaneous, heterogeneous network flows and contraflow lane 

reversals, are a primary contribution of this research. Computational results are presented after 
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applying the models to a real-world dataset. CHAPTER 4 presents a proposed genetic-based 

heuristic approach for the EERP. Lastly, CHAPTER 5 summarizes the research, followed by a 

discussion of the plans for future research that extends the research described in this dissertation. 
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CHAPTER 2: 
LITERATURE REVIEW 

2.1 Introduction  

Chapter 1 highlights the need for the further study and development of emergency 

evacuation route planning (EERP) models and highlights some real-world characteristics that 

should be investigated. This chapter focuses on previous work on EERP. The literature on 

emergency evacuation models can be divided into two main categories: analytical models and 

simulation models (see Figure 2.1). The literature covers both the modeling of evacuees and the 

emergency responders. Both static and dynamic models have been developed, where static 

models are those that only model a snapshot of the travel network and dynamic models include 

those models that consider the changing nonlinear conditions within the network over time. 

 

 
Figure 2.1. Categories of existing emergency evacuation route planning models. 

 

2.2 General Network Optimization Models Related to Route Planning 

Major research in the area of traffic flow optimization has its beginnings in the 1960’s. 

During this time, researchers started investigating different methodologies for network 

optimization when determining the shortest path between an origin and a destination. A network 
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is generally defined as a graph G(N,A), where N is a set of nodes, and A is a set of arcs where 

each arc connects a pair of nodes i and j in N. An arc (i,j) can be either bi-directional or 

unidirectional and associated with each arc (i,j) is a cost cij, typically a non-negative number. 

One problem that relates directly to the EERP is the shortest path problem.  The objective 

function in shortest path problem is to find the shortest route from the origin to the sink in a 

directed connected network. Some early work on the shortest path problem includes that of 

Elmaghraby (1970), Yen (1971) and Petersen (1975). In more recent work, Avella et al., (2002) 

propose a heuristic solution for the resource-constrained shortest path problem. It is used to 

design the paths of the planned missions of centrally-controlled low emission vehicles. Rego 

(1998) presents the subpath ejection chain method for the vehicle routing problem under route 

length and capacity restrictions. They do not consider dynamic flow based on time. Azaron and 

Kianfar (2003) use stochastic dynamic programming to find the dynamic shortest path from the 

source to sink. The model assumes that arc lengths of the stochastic dynamic network are 

independent random variables with exponential distributions, and each node except the sink node 

is an environmental variable that evolves with a continuous time Markov process. 

There are other network routing problems that are closely related to the EERP. The 

minimum spanning tree (MST) problem is similar to the shortest path problem, as both consider 

a directed connected network. The objective of MST is to minimize the total length of the 

inserted links in the network. The maximum flow problem considers directed connected network, 

in order to maximize the flow through the network. The minimum cost flow problem considers 

directed connected network with at least one supply node and one demand node. Its objective is 

to minimize the total cost of sending the available supply through the network to satisfy the 

given demand. 
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Other significant bodies of related work are the vehicle routing problem (VRP) and the 

traveling salesperson problem (TSP). The VRP is a problem that designs routes for the vehicles 

in order to meet the given constraints and minimize a given objective function (e.g., total travel 

distance, number of vehicles, or total travel time). The VRP features a set of depots (number, 

location), a set of vehicles (capacity, costs, time to leave, driver rest period, type and number of 

vehicles, max time), a set of customers (demands, hard or soft time windows, pickup and 

delivery, accessibility restriction, split demand, priority), and route information (maximum route 

time or distance, cost on the links). 

The TSP finds the route of visiting all cities in a given collection of cities that minimizes 

the total cost of travel between the cities. VRP is a generalization of the TSP where the TSP is a 

VRP with one vehicle with no capacity limits, no depot, and customers with no demand. Table 

2.1 summarizes the problems related to the EERP problem. 

 
Table 2.1. Network problems related to the EERP problem (Hiller and Lieberman, 2001). 

Problem Type Objective 
Maximum Flow Maximize the total amount of the flow through the network 
Minimum Cost Flow  Minimize the cost of sending the available supply through the 

network satisfying the demand  
Shortest Path  Find the nth nearest node to the origin  
Minimum Spanning Tree Minimize the total length of the links inserted into the network  
Traveling Salesperson Minimize length route with the minimum cost  

 

2.3 Emergency Evacuation Route Planning Modeling 

The body of previous research related to emergency evacuation route planning is now 

reviewed. This research can be segmented into two primary areas.  The first is emergency 

evacuation modeling where evacuees are traveling from a hazard source to safe destinations.  

The majority of research in this area is from this perspective.  The second major area of EERP 
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research is routing emergency first responders from other originations to the hazard source 

(Azaron and Kianfar, 2003). 

 

2.3.1 Analytical Models for Emergency Evacuation Route Planning 

Church and Cova (2000) propose a new specialized network partition model called the 

critical cluster model (CCM). It identifies small areas that have high ratios of population to exit 

capacity and maximizes bulk lane demand or an estimate of network clearing time. They 

formulate the problem as a nonlinear optimization problem. Cova and Johnson (2003) develop a 

network flow model for identifying optimal lane-based evacuation routing plan in a complex 

network that consists of intersection conflicts by using a minimum cost flow approach. They 

derive an optimal routing plan for a sample network after formulating the problem as a mixed 

integer programming problem. The objective of their model is to maximize the flow of evacuees 

from a source to a destination through a lane-based network, and minimizing total evacuees, 

travel distance. They focus on eliminating the cross conflict points, and minimizing the merging 

points at the intersections. Reducing the number of crossing points and merging points in an 

evacuation will decrease the total travel time of the evacuees, which is another objective that has 

to be considered. 

More recently, Yi and Ozdamar (2006) develop a mixed integer multi-commodity 

network flow model. It coordinates logistics support (dispatching commodities) and evacuation 

operations in disaster response activities. Although their model is an essential one for disaster 

management, they do not consider the outflow traffic that is dependent on the inflow (emergency 

first responder) traffic. Shekhar and Kim (2006) develop a linear programming model to find the 

configuration of the travel network for evacuee outbound flow. The objective is to minimize the 
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travel time of evacuees. They successfully develop two heuristics that minimize evacuee 

evacuation time. 

A large part of the previous work on evacuation routing modeling uses queuing models, 

more specifically, M/M/1 and M/M/C models. For instance, Smith (1991) considers the dynamic 

conditions in real-world emergency evacuation situations by presenting state-dependent queuing 

models that capture the nonlinear effects of increased occupant traffic flow along emergency 

evacuation routes. The state-dependent queuing modeling approach considers M/M/1/K, 

M/M/C/K and M/G/C/C models. Bakuli and Smith (1991) extend the work of Smith (1991) in 

state-dependent queuing models and study resource allocation in state-dependent emergency 

evacuation networks. 

Baykal-Gursoy et al. (2004) develop a model of traffic flow on a two-lane roadway link 

that is subject to traffic incidents. They model it as a steady-state M/M/C queuing system where 

they consider C servers that are subject to random interruptions that are exponentially-

distributed. The authors assume that service times are independent and exponentially-distributed 

with mean µ, and clearance times are independently and exponentially-distributed with mean r. 

Interruption arrivals, vehicle arrivals, and the service and clearance times are all assumed to be 

mutually independent. They develop a mathematical model after they define the stochastic 

process that describes the state of the link at time t and use Little’s Theorem to compute average 

travel time. Figure 2.2 shows the relation between the expected numbers of evacuee vehicles 

versus the service rate. The authors suggest that the stationary number of vehicles on the link 

when no accidents occur (the bottom-most curve) constitutes the lower bound. They also state 

that if the service rate does not change, higher traffic incident frequency or a slower clearance 

rate would lead to more vehicles on the link. 
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Figure 2.2. The relation between the expected number of vehicles versus the service rate 
(obtained from Baykal-Gursoy et al. (2004)). 
 

2.3.2 Simulation Models for Emergency Evacuee Route Planning 

The other and seemingly preferred approach in emergency evacuation route planning is 

simulation modeling. Simulation is more of a passive approach to route planning in that it is 

primarily used to evaluate candidate routing plans.  Pidd et al. (1996) and Schreckenberg et al. 

(2001) discuss different spatial scales used to simulate traffic flow. Table 2.2 summarizes 

different types of simulation models that they discuss. 
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Table 2.2. Types of simulation models that have been used for emergency evacuee route 
planning (summarized from Pidd et al. (1996) and Schreckenberg et al. (2001)). 

Simulation Model Description 

Macrosimulation 

• Does not track the detailed behavior of individual entities; uses 
dynamic state equations that are analogous to those for fluid flows 
in networks. 

• Main advantage is that it is less computationally-demanding than 
are microsimulators 

Microsimulation 

• Simulates single vehicles. 
• Since the simulation of single entities requires a higher 

computational effort, an efficient modeling of traffic flow must be 
achieved by a minimum set of parameters and large time steps. 

• Entities move from the evacuation zones and proceed to safe 
destinations, either by their own route finding or under police or 
martial control. 

Mesosimulation 

• Compromise between the macrosimulation models and 
microsimulation models 

• Usually involve a discrete event simulation, which tracks the 
movements of groups of vehicles 

 

SheffI et al. (1982) model the flow pattern during the evacuation of areas surrounding a 

nuclear power plant. The authors consider the time required to transport and manage flow on the 

travel network. The model is sensitive to the network topology, intersection design and control, 

and a wide array of evacuation management strategies. 

Tufekci and Kisko (1991) develop a regional emergency evacuation simulation modeling 

system (REMS) that integrates optimization models with simulation models. More specifically, 

the modeling system uses simulation as well as several network optimization models in 

estimating the evacuation time and the traffic flow on a given transportation road network. 

Tufekci (1995) extends this work and integrates the REMS with a decision support system 

applying the integrated approach to hurricane emergency management with positive results. 

Rathi and Solanki (1993) also develop a computer simulation modeling system called Oak Ridge 
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Evacuation Modeling System (OREMS) of traffic flow that estimates the time it takes vehicles to 

evacuate a region. OREMS consists of a set of three computer programs: ESIM, a network traffic 

flow simulation model; IEVAC, an interactive graphical input data manager for ESIM; and 

SIMOD, interactive graphical output display software for ESIM. 

Sinuany-Stern and Stern (1993) construct a behavioral-based simulation model to 

examine the sensitivity of network clearance time to several traffic factors. They investigate the 

interaction with pedestrians, intersection traversing time, and car ownership and route choice 

mechanisms. They use microscopic simulation to model the series of events during a radiological 

emergency situation. 

Franzese and Joshi (2002) consider the effect of real-time information of network 

congestion on evacuation routes occupied by vehicles that supply goods from distribution centers 

to stores. They consider the congestion in the network that may arise during peak demand. A 

traffic simulation model is developed in order to mimic the actual traffic conditions as a function 

of times of the day. They focus on recurrent congestion which is congestion caused by the 

relationship between traffic demand and capacity. 

Tuydes and Ziliaskopoulos (2004) develop a mesoscopic network evacuation model 

based on a dynamic traffic assignment method. Their proposed model optimizes the system 

travel time, and computes the optimal capacity reversibility in the network. Although they 

optimize their problem mathematically, they use small-scale experiments (i.e., networks with 

less than 50 nodes). Although their model identifies optimal reversibility designs for large-scale 

networks that reduce total system travel time, it considers only outflow traffic. 
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2.4 Emergency First Responder Flow Modeling 

2.4.1 Analytical Models of Emergency First Responder Routing 

Larson (1974; 1975) studies the behavior of emergency responders as a multi-server 

hypercube queuing system with distinguishable servers. He uses the M/M/C queuing model in 

which the server is selected randomly, and C is the number of servers.  He develops this model to 

solve problems of locating ambulance vehicles, configuring the response district in emergency 

services areas, and balancing the workload. His model assumes also that all units have the same 

amount of exponentially-distributed service demand, and they cover the same areas. However, 

such an assumption is not valid under emergency evacuation conditions. Larson and Franck 

(1978) modify the hypercube queuing model of Larson (1974) by adding a Markov process 

model. They develop a computer-implemented analytical model that serves as an evaluation tool 

for automatic vehicle location systems.  In their implementation, the model focuses on 

computation and storage in order to minimize the procedure for generating the state-to-state 

Markov transition rates. Their model has the same fixed demand assumption as that in Larson 

(1974; 1975). 

Chiu and Larson (1985) develop a model to locate a facility to service a region. There are 

n mobile servers in one facility that will respond to emergencies. The model assumes that servers 

are available all the time, and that the service time is exponentially-distributed. The objective 

function is to locate a single garage facility for n servers in order minimize the expected 

weighted cost of travel time and cost of lost customers. 

Daskin and Stern (1981) formulate a hierarchical objective set covering problem for 

locating minimum number of emergency medical service vehicles needed in a maximum zone 

possible. They assign at least one vehicle for each zone disregarding the workload. Therefore, 
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their model is not flexible since each zone is assigned one vehicle without considering the 

workload of that zone. 

 

2.5 Integration of Analytical Models and Simulation Models for Emergency Evacuation Route 
Planning 

Several approaches to evacuee route planning that integrate both analytical models and 

simulation models have been proposed (e.g., Swoveland et al., 1973; Tufekci and Kisko, 1991; 

Yi and Ozdamar, 2006). Swoveland et al. (1973) construct an ambulance planning model using a 

branch and bound technique with simulation to generate an optimal plan to locate an ambulance 

with minimum response time. Input to the simulation model is a travel-time matrix (time needed 

from node to node), routing matrix (shortest route from node to node), region definitions, 

ambulance locations, dispatch rule and a call stream. 

Takeda et al. (2005) study the hypercube queuing model of the urban Emergency 

Medical Service of Campinas in Brazil. In its original configuration, all ambulances are located 

in a central location. They analyze the effects of decentralizing ambulances and adding new 

ambulances to the system, comparing the results to those of the original situation. 

Although beyond the scope of this research investigation, building evacuations during 

emergency situations are modeled similar to emergency evacuations on roadways. There are two 

kinds of models used in developing emergency evacuation routing plans for buildings – 

analytical models (e.g., Chalmet et al., 1982; Jarvis and Ratlife, 1982; Choi et al., 1988; Lovas, 

1995) and simulation models (e.g., Jain and McLean, 2003; Hanisch et al., 2003). 
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2.6 Metaheuristic Approaches for Emergency Evacuation Modeling 

Several researchers have successfully integrated heuristic optimization procedures with 

analytical and simulation models to improve solutions. For instance, Davies and Lingras (2003) 

propose the Genetic Algorithm for Rerouting Shortest Path (GARSP) method. They consider a 

dynamic network where the network is adaptable to any new time-based information and can 

generate new routes based on the information. 

More recently, Ceylan and Bell (2005) propose a GA-based approach, called Genetic 

Algorithm TRANSYT and Path Flow Estimator (GATRANSPFE), to solve a slightly different 

traffic flow problem.  They consider the upper-level problem for a signalized road network under 

congestion. Stochastic user equilibrium traffic assignment is applied at the lower-level. At the 

upper-level, the GA provides a feasible set of signal timings within specified lower and upper 

bounds on signal timing variables and feeds into the lower-level problem. The problem occurs 

when the demand exceeds the capacity, which causes an increase in green light timings at a 

signalized junction. 

GATRANSPFE in all levels of demands is compared with a mutually consistent (MC) 

solution. The MC solution is from a MC model that is a formulation of combined traffic 

assignment and area traffic control. Under different levels of demand, the results show that 

GATRANSPFE systematically performs 100% better than the MC model. Also, GATRANSPFE 

shows less sensitivity to the increasing traffic load and demand as compared to the MC solution. 

 

2.7 Summary and Conclusions 

In summary, the existing literature is rich with work on the emergency evacuation routing 

problem. Closer examination of the previous work shows that the majority of the literature can 



25 

be divided into two parts: analytical modeling and simulation modeling.  Several analytical and 

simulation models of emergency evacuation routing work have been proposed. However, there 

are issues that have not been considered and still remain to be investigated. 

The existing analytical models and simulation models do not consider simultaneous, 

opposing heterogeneous flows with contraflow lane reversals. In an emergency situation, there 

are two flows – an inbound flow of emergency responders and an outbound flow of evacuees 

(vehicles and pedestrians). In a mandatory emergency evacuation, all evacuee traffic flow moves 

away from the hazard source. However, there is an opposing flow that moves toward the hazard 

source. Therefore, an emergency evacuation routing plan should consider the two flows, since 

one would impact the other. Previous work does not consider emergency responder (ambulance, 

medical services, facility allocation, etc.) and emergency evacuee route planning simultaneously, 

for any kind of hazard (i.e., natural, man-made and technological) occurrence. 
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CHAPTER 3: 
MODELING THE  

EMERGENCY EVACUATION ROUTE PLANNING PROBLEM 

3.1 Introduction 

In this chapter, a number of formulations of the emergency evacuation route planning 

(EERP) problem are proposed. A review of the EERP literature reveals that researchers either 

focus on evacuee flow or focus on emergency responder flow. However, in an emergency 

situation, at least two simultaneous, heterogeneous, opposing flows can occur. The first is the 

flow of evacuees from the impacted areas to destinations of safety.  The second flow is the flow 

of emergency officials (first responders) to the impacted areas. These two flows traverse a bi-

directional capacitated transportation network where the roadway segments (arcs) and merge and 

cross points (nodes) are fixed. In this research, we consider a special case of the EERP problem 

where we examine a transportation network in the presence of these two flows and assume these 

two flows are incompatible. By incompatible, we mean that the two different flows cannot 

occupy a given link or node at the same time.  Furthermore, we model contraflow lane reversals 

as they are often utilized in practice to reduce congestion and increase outbound capacity during 

evacuations in disaster situations (e.g., hurricanes).  Evacuation planners and decision-makers 

have no recognized guidelines for the operation and design of the contraflow roadway segments 

(Wolshon et al., 2001). To the best of our knowledge, this is the first treatment of the EERP 

problem that considers both evacuee and responder flows simultaneously. Previous EERP work 

typically models only unidirectional evacuee flow only from the source of a disaster to 

destinations of safety or only unidirectional emergency official flow to the disaster source. 
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3.2 The Multiple Flow Emergency Evacuation Routing Planning Problem 

In this section, we address four EERP problems and propose mathematical formulations 

for each.  The first EERP problem is the general single-flow evacuee problem. This problem is 

one that has been addressed by past researchers and considers only the flow of evacuees.  The 

second problem we consider is the single-flow evacuee problem where roadway direction 

reversals (i.e., contraflow lane reversals) are allowed.  The third EERP problem we address is the 

two-flow evacuation problem in which no contraflow lane reversals are allowed. The last 

problem addressed is the two-flow emergency evacuation route planning problem under 

contraflow conditions. In this research, the EERP problem is formulated as a maximum flow 

problem, which is reasonable for this type of problem. Then, the four EERP problems are 

formulated as integer linear programming (ILP) models. Before presenting the models and the 

proposed formulations, the general EERP problem is described. 

 

3.2.1 General Formulation of the EERP Problem 

Evacuation route planning is the common process of moving citizens (evacuees) in a 

hazardous area to areas of safety in emergencies. We formulate the general EERP problem as 

follows. Let a directed graph G(N,A) represent the network representation of the geographic 

region of interest that consists of state highways, state and county roads, along with intersections 

and relevant sites in the region under consideration. A is the set of arcs that represents lane-based 

interstate and arterial roadways. The set of nodes N is divided into three subsets – source (or 

evacuee origination) nodes NS, transfer (or intermediate) nodes NT and sink (or safe destination) 

nodes ND, i.e., N = NS∪NT∪ND. The intermediate nodes represent where evacuee flow merges 

or crosses. Each arc in A is expressed as arc (i,j), which is the arc that connects nodes i and j. We 
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call this a static network since each arc in the network represents a stationary link from one node 

in the network to another. XE ⊂ N is the set of nodes representing the locations occupied by 

evacuees. 

Associated with each arc and node is a number of parameters. Each node k represents a 

location in the network with an initial population pk and a capacity vk. For each arc (i,j), we 

associate a capacity cij, where arc (i,j) ∈ A. The capacity of an arc is the maximum flow per unit 

of time, assuming no congestion. In the case of a lane-based roadway network, capacity is the 

number of vehicles per hour per lane. For each arc, a travel time τij, where arc (i,j) ∈ A. Here, it 

is often assumed that τij is constant and is the mean speed to traverse arc (i,j) when the arc is free 

of evacuees. This parameter is often referred to as the free flow speed or lead time for arc (i,j). 

The term xijt is the number of evacuees that move from node i at the beginning of period t to node 

j at the end of period t. The objective is to maximize the flow of people away from the source 

node to the sink node as rapidly as possible. 

 

Claim 3.1: (Lower Bound) The lower bound on network clearing time is the sum of the arc lead 

times starting from the nodes closest to the hazard source to the destination node farthest from 

hazard source. If Node 1 is the source node connecting all nodes closest to the hazard source, and 

None N is the farthest destination node, the lower bound can be calculated as 

( )
1,

,
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i j

F i j i jτ
∈
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Typically, arc capacities, which represent the number of evacuees that can traverse a 

given arc per unit time, are often assumed to be constant. However, realistically, the capacities of 

arcs are not constant.  In fact, the capacity on a given arc is a function of the number of entities 

present on that arc at a given time. Incorporating the flow-dependent capacities converts the 
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corresponding network flow problems into network flow problems with side constraints, which 

is not the focus of this current research. However, this problem is worthy of further study. 

 

3.3 The Single-Flow EERP Problem 

In this section, we address two single-flow EERP problems for unexpected emergency 

events. First, we formulate an ILP for what we call the base problem, which is the single-flow 

EERP problem with normal flow.  Normal flow is the flow of evacuees in the normal flow 

direction of the arcs. Then, the single-flow problem where contraflow lane reversals are allowed 

is addressed.  The objective for this problem is to not only maximize the flow of entities through 

the network to the destination nodes but also to reconfigure the travel network using contraflow 

lane reversals where appropriate. Before presenting the EERP problem formulations, a number 

of modeling assumptions are presented. 

 

Modeling Assumptions: 

• There is one super source node and one super sink node for evacuees; 

• There is one super source node and one super sink node for emergency responders; 

• A single network arc cannot be occupied by both evacuee flow and responder flow during the 

same period of time t; 

• A single network node cannot be occupied by both evacuee flow and responder flow during 

the same period of time t; 

• The lead time on a given arc τij is deterministic and known with certainty; 

• The lead time on a given arc is not a function of the number of entities present on that arc; 
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• There is no limit on the number of arcs in the travel network to which contraflow lane 

reversals can applied; and 

• There is no restriction on the number of times the flow direction on a single arc can be 

changed during the active period of the evacuation. 

 

3.3.1 Single-Flow EERP Problem with No Contraflow Lane Reversals 

In a travel network under emergency conditions, there are multiple starting locations 

from which populations of evacuees flee. In addition, there are multiple destinations of safety to 

which the evacuating citizens flee. Therefore, in the EERP problem, multiple source nodes and 

multiple sinks must be considered. To address such a network structure in order to model the 

problem as a maximum flow problem, the travel network is modified accordingly. In other 

words, a dummy node is created to serve as a super source node that feeds the multiple source 

nodes. In addition, a dummy node is created to serve as a super sink node that receives all flow 

from the set of sink nodes. The expanded network has the required single source and single sink 

and is suitable for the maximum flow problem. The capacity of both the super source and super 

sink nodes is set greater than or equal to the total number of entities to move to the nodes. 

Furthermore, the capacity of the set of arcs emanating from the super source node and set of arcs 

terminating at the super sink node is set to the maximum flow, and the lead time on these arcs is 

equal to zero. For illustration, a simple unidirectional evacuation network is shown in Figure 3.1. 

The red Node 1 is the single super source node, and the green Node 6 is the single super sink 

node. 
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Figure 3.1. Example of a single-flow evacuation network under normal flow conditions. 

 

The problem parameters, decision variables, objective function and constraints of the 

general single-flow EERP problem with no contraflow are as follows: 

 

Problem Parameters: 

T : Total number of periods to clear the transportation network 

N : Total number of nodes in the transportation network, i.e., N = |N| 

pk0 : Population of evacuees at node k (k = 1, …, N) in the network before evacuation begins 

vk : Capacity of node k (k = 1, …, N) in the network 

cij : Capacity of arc (i,j) (i = 1, …, N; j = 1, …, N where i ≠ j) in the network 

τij : Free flow time on arc (i,j) (i = 1, …, N; j = 1, …, N where i ≠ j) in the network 
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Primary Decision Variable: 

xijt : Evacuee flow from node i at beginning of period t (end of period t-1) to node j at end of 

period t (beginning of t+1); where i = 1, …, N; j = 1, …, N and i ≠ j, t =1, …,T  

 

Secondary Decision Variables: 

pkt : Population of evacuees at node k (k = 1, …, N) in the network at the end of period t 

Ot : Number of evacuees who clear the network at end of period t 

 

max 
1

 = ( 1 )
=

+ −∑
T

t
t

Z T t O  (3.2)

s.t. 
1

1

−

=

= ∑
N

t iNt
i

O x  ∀t = 1, …, T (3.3)

 1 0 1
1=

= −∑
N

k k kj
j

p p x  ∀k = 1, …, N-1 (3.4)

 ( ) ( )1
1 1

τ− −
= =

= − +∑ ∑ ik

N N

kt kjtk t ik t
j i

p p x x  ∀k = 1, …, N; t > 1 (3.5)

 pkt ≤ vk ∀k = 1, …, N; ∀t = 1, …, T (3.6)

 xijt ≤ cij ∀i, j = 1, …, N; i ≠ j; ∀t = 1, …, T (3.7)

 xijt ≥ 0, integer ∀i, j = 1, …, N; i ≠ j; ∀t = 1, …, T (3.8)

 

The objective function Eq. (3.2) maximizes the number of evacuees exiting the network, 

which is multiplied (weighted) by t (t = 1, …, T), by routing the evacuees to destinations of 



33 

safety (represented by the final node N) early in the time interval 1 to T.  Eq. (3.3) sums for each 

period t the total number of evacuees that reach the final node N from each node i connected to 

node N. Eqs. (3.4) and (3.5) ensure the conservation of flow at each node for the first period and 

for the subsequent periods, respectively. Eqs (3.6) and (3.7) enforce the capacity constraints for 

the nodes and arcs, respectively. Eq. (3.8) is the non-negativity and integrality constraints. 

 

3.3.2 Single-Flow EERP Problem with Contraflow Lane Reversals 

For the single-flow EERP problem with contraflow, we modify the model for the base 

problem so that it finds a reconfigured network and identifies the best direction for each arc to 

maximize the flow of evacuees out of the network. The proposed model reverses the travel arcs 

and reallocates the available arc capacity in the network.  Figure 3.2 shows the normal flow 

directions (the solid arcs) and the contraflow directions (the dashed arcs) for a transportation 

network. 

 
Figure 3.2. Example of single-flow evacuation network with normal flow and contraflow 
directions. 
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Problem Parameters: 

T : Total number of periods to clear the transportation network 

N : Total number of nodes in the transportation network, i.e., N = |N| 

pk0 : Population of evacuees at node k (k = 1, …, N-1) in the network before evacuation begins 

vk : Capacity of node k (k = 1, …, N) in the network 

cij : Capacity of arc (i,j) (i = 1, …, N; j = 1, …, N, where i ≠ j) in the network 

τij : Free flow time on arc (i,j) (i = 1, …, N; j = 1, …, N, where i ≠ j) in the network 

 

Primary Decision Variables: 

xijt : Evacuee flow from node i at beginning of period t (end of period t-1) to node j at end of 

period t (beginning of t+1) 

yijt : Evacuee contraflow from node i at beginning of period t (end of period t-1) to node j at end 

of period t (beginning of t+1) 

1, if evacuee normal flow on arc( , ) during interval ( , ]

0, otherwise 
ij

ijt

i j t t
e

τ+⎧⎪= ⎨
⎪⎩

 

 

Secondary Decision Variables: 

pkt : Population of evacuees at node k (k = 1, …, N-1) in the network at the end of period t 

Ot : Number of evacuees who clear the network at end of period t 

 

max 
1

 = ( 1 )
=

+ −∑
T

t
t

Z T t O  
(3.9)
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s.t. 
1 1

1 1

− −

= =

= +∑ ∑
N N

t iNt iNt
i i

O x y  ∀t = 1, …, T 
(3.10)

 1 0 1 1
1 1= =

= − +∑ ∑
N N

k k kj jk
j j

p p x y  ∀k = 1, …, N-1 
(3.11)

 ( ) ( ) ( )1
1 1 1 1

τ τ− − −
= = = =

= − + + −∑ ∑ ∑ ∑ik ki

N N N N

kt kjt kjtk t ik t ik t
j i j i

p p x x y y  ∀k = 1, …, N-1; t > 1 
(3.12)

 pkt ≤ vk ∀k = 1, …, N; ∀t = 1, …, T (3.13)

 
1 1= =

≤∑ ∑
N N

ijt ij ijt
i j

x c e  ∀t = 1, …, T; i ≠ j 
(3.14)

 ( )
1 1

1
= =

≤ −∑∑
N N

jit ij ijt
i j

y c e  ∀t = 1, …, T; i ≠ j 
(3.15)

xijt ≥ 0, integer ∀i, j = 1, …, N; i ≠ j; ∀t = 1, …, T (3.16)

 

The objective function Eq. (3.9) maximizes the number of evacuees exiting the network 

at each time period t (t = 1, …, T) by routing the evacuees to destinations of safety (represented 

by the final node N) early in the time interval 1 to T.  Eq. (3.10) sums for each period t the 

evacuees that reach the final node n from each node i connected to node N using both normal 

flow and contraflow.  Eq. (3.11) and Eq. (3.12) ensure the conservation of evacuee flow 

constraints for the first and subsequent periods by including the contraflow to the normal flow 

that are exiting and entering each node. Eq. (3.13) is the node capacity constraint. Arc capacity 

constraints ensure that only one type of flow (normal flow or contraflow) can occupy an arc at 

time t as shown in Eqs. (3.14) and (3.15). 
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3.4 The Two-Flow EERP Problem 

The EERP problem becomes even more challenging when there is more than one type of 

flow occupy the network simultaneously for unexpected emergency events.  In this section, we 

consider a more realistic case when there are two types of flows that are incompatible (i.e., 

heterogeneous) and they occur simultaneously. Again, by incompatible, it is meant that the two 

different types of flow may not occupy a given transportation link or intersection point at the 

same time.  This is quite relevant if safety of evacuees and emergency first responders is a strong 

concern, which in most cases it is.  The first flow is evacuees moving from the hazard area to a 

safe destination. The second flow is the emergency first responders moving toward the hazard 

area. Each flow generally traverses the transportation link in the direction opposite of the other. 

In the two-flow problem, XR ⊂ N is the set of nodes representing the locations occupied by the 

first responders. Figure 3.3 shows the bi-directional evacuation network.  It is important to note 

here that we consider the case where there are two roadways between two successive nodes that 

are opposing in normal flow direction. 

 
Figure 3.3. Example of two-flow bi-directional evacuation network under normal flow 
conditions. 
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3.4.1 Two-Flow EERP Problem with No Contraflow Lane Reversals 

This section presents the two-flow EERP model, where there are two opposed, 

incompatible flows and contraflow lane reversals are not permitted. The evacuee flow moves 

towards areas of safety and the responder flow moves toward the hazard area. 

 

Problem Parameters: 

T : Total number of periods to clear the transportation network 

N : Total number of nodes in the transportation network, i.e., N = |N| 

pk0 : Population of evacuees at node k (k = 1, …, N-1) in the network before evacuation begins 

wk0 : Population of responders at node k (k = 1, …, N) in the network before evacuation begins 

vk : Capacity of node k (k = 1, …, N) in the network 

cij : Capacity of arc (i,j) (i = 1, …, N; j = 1, …, N where i ≠ j) in the network 

τij : Free flow time on arc (i,j) (i = 1, …, N; j = 1, …, N where i ≠ j) in the network 

 

Primary Decision Variables: 

1, if evacuee normal flow on arc( , ) during interval ( , ]

0, otherwise 

τ+⎧
= ⎨
⎩

ij
ijt

i j t t
e  

1, if node  is occupied by evacuees during interval ( , ]
0, otherwise 

τ+⎧
= ⎨
⎩

ik
kt

k t t
a  

xijt : Evacuee flow from node i at beginning of period t (end of period t-1) to node j at end of 

period t (beginning of t+1) 

gjit : Responder normal flow from node j at beginning of period t (end of period t-1) to node i at 

end of period t (beginning of t+1) 
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Secondary Decision Variables: 

pkt : Population of evacuees at node k (k = 1, …, N-1) in the network at the end of period t 

wkt : Population of responders at node k (k = 1, …, N) in the network at the end of period t 

e
tO  : Number of evacuees who clear the network at end of period t 

r
tO  : Number of responders who clear the network at end of period t 

 

max 
1 1

 = ( 1 ) ( 1 )
= =

+ − + + −∑ ∑
T T

e r
t t

t t
Z T t O T t O  (3.17)

s.t. 
1

1

−

=

= ∑
N

e
t iNt

i
O x  ∀t = 1, …, T (3.18)

 
2

1
=

= ∑r
t i t

i N
O g  ∀t = 1, …, T (3.18)

 1 0 1
1=

= −∑
N

k k kj
j

p p x  ∀k = 1, …, N-1 (3.19)

 ( ) ( )1
1 1

ik

N N

kt kjtk t ik t
j i

p p x x τ− −
= =

= − +∑ ∑  ∀k = 1, …, N; t > 1 (3.20)

 1 0 1
1=

= −∑
N

k k jk
j

w w g  ∀k = 1, …, N-1 (3.21)

 ( ) ( )1
1 1

τ− −
= =

= − +∑ ∑ ik

N N

kt kjtk t ik t
j i

w w g g  ∀k = 1, …, N; t > 1 (3.22)

 
1 1

N N

jit ji jit
i j

x c e
= =

≤∑∑  ∀t = 1, …, T; i ≠ j (3.23)
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 ( )
1 1

1
N N

ijt ij jit
i j

g c e
= =

≤ −∑∑  ∀t = 1, …, T; i ≠ j (3.24)

 pkt ≤ vkakt ∀t = 1, …, T; ∀k = 1, …, N (3.25)

 wkt ≤ vk(1 – akt)  ∀t = 1, …, T; ∀k = 1, …, N (3.26)

 

The objective function Eq. (3.17) maximizes the number of evacuees and responders 

exiting the network at each time period t (t = 1, …, T) by simultaneously routing the evacuees to 

their destinations of safety (represented by node N) and responders to their destination 

(represented by node N = 1) early in the time interval 1 to T.  The weights are assigned such that 

it makes it more desirable to route the evacuees to node N and route responders to Node 1 early 

during evacuation than it is to move them later during the same time interval. Eq. (3.18) sums for 

each period t the evacuees that reach the destination node N from each node i connected to the 

destination node using normal flow. In addition, Eq. (3.18) sums for each period t the responders 

that reach the source node N = 1 from each node i connected to the source node using normal 

flow. Eqs. (3.19) and (3.20) ensure the conservation of evacuee flow for the first and subsequent 

periods. Eqs. (3.21) and (3.22) are conservation of flow constraints of responder flow for the first 

and subsequent periods, respectively. Eqs. (3.23) and (3.24) enforce the heterogeneous constraint 

on the arcs. In other words, an arc (i,j) is used by either responders or evacuees at time t. Eqs. 

(3.25) and (3.26) are node capacity constraints. These two constraints assure that each node is 

occupied by either evacuees or responders at each period time. 
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3.4.2 Two-Flow EERP Problem with Contraflow Lane Reversals 

Finally, we consider the EERP problem where contraflow lane reversals are permitted to 

facilitate both evacuee and responder rapid flow. The two-flow EERP problem with contraflow 

finds an optimal reconfigured network that maximizes both evacuee and responder flow through 

the network. 

 

Problem Parameters: 

T : Total number of periods to clear the transportation network 

N : Total number of nodes in the transportation network, i.e., N = |N| 

pk0 : Population of evacuees at node k (k = 1, …, N-1) in the network before evacuation begins  

wk0 : Population of responders at node k (k = 1, …, N) in the network before evacuation begins 

vk : Capacity of node k (k = 1, …, N) in the network 

cij : Capacity of arc (i,j) (i = 1, …, N; j = 1, …, N where i ≠ j) in the network 

τij : Free flow time on arc (i,j) (i = 1, …, N; j = 1, …, N where i ≠ j) in the network 

 

Primary Decision Variables: 

1, if evacuee normal flow on arc( , ) during interval ( , ]

0, otherwise 

τ+⎧
= ⎨
⎩

ij
ijt

i j t t
e  

1, if responder normal flow on arc( , ) during interval ( , ]

0, otherwise 

τ+⎧
= ⎨
⎩

ji
jit

j i t t
r  

1, if node  is occupied by evacuees during interval ( , ]
0, otherwise 

τ+⎧
= ⎨
⎩

ik
kt

k t t
a  
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xijt : Evacuee flow from node i at beginning of period t (end of period t-1) to node j at end of 

period t (beginning of t+1) 

yijt : Evacuee contraflow from node i at beginning of period t (end of period t-1) to node j at end 

of period t (beginning of t+1), and 

gjit : Responder normal flow from node j at beginning of period t (end of period t-1) to node i at 

end of period t (beginning of t+1) 

hijt : Responder contraflow from node i at beginning of period t (end of period t-1) to node j at 

end of period t (beginning of t+1) 

 

Secondary Decision Variables: 

pkt : Population of evacuees at node k (k = 1, …, N-1) in the network at the end of period t 

wkt : Population of responders at node k (k = 1, …, N) in the network at the end of period t 

e
tO  : Number of evacuees who clear the network at end of period t 

r
tO  : Number of responders who clear the network at end of period t 

 

max 
1 1

 = ( 1 ) ( 1 )
T T

e r
t t

t t

Z T t O T t O
= =

+ − + + −∑ ∑  (3.27)

s.t. 
1 1

1 1

N N
e
t iNt iNt

i i

O x y
− −

= =

⎛ ⎞= +⎜ ⎟
⎝ ⎠
∑ ∑  ∀t = 1, …, T (3.28)

 
2 2

1 1
r
t i t j t

i N i N

O g h
= =

⎛ ⎞= +⎜ ⎟
⎝ ⎠
∑ ∑  ∀t = 1, …, T (3.29)
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 1 0 1 1
1 1= =

= − +∑ ∑
N N

k k kj jk
j j

p p x y  ∀k = 1, …, N-1 (3.30)

 ( ) ( ) ( )1
1 1 1 1

τ τ− − −
= = = =

= − + + −∑ ∑ ∑ ∑ik ki

N N N N

kt kjt kjtk t ik t ik t
j i j i

p p x x y y  ∀k = 1, …, N;  t > 1 (3.31)

 ( )1 0 1 1
1

N

k k kj jk
j

w w g h
=

= − +∑  ∀k = 1, …, N-1 (3.32)

 ( ) ( ) ( )1
1 1 1 1

τ τ− − −
= = = =

= − + + −∑ ∑ ∑ ∑ik ki

N N N N

kt kjt jktk t ik t ki t
j i j i

w w g g h h  ∀k = 1, …, N-1; t > 1 (3.33)

 
1 1

N N

jit ji jit
i j

x c e
= =

≤∑∑  ∀t = 1, …, T; i ≠ j (3.34)

 ( )
1 1

1
N N

ijt ij jit
i j

y c e
= =

≤ −∑∑  ∀t = 1, …, T; i ≠ j (3.35)

 
1 1

N N

jit ji jit
i j

g c r
= =

≤∑∑  ∀t = 1, …, T; i ≠ j (3.36)

 ( )
1 1

1
N N

ijt ij jit
i j

h c r
= =

≤ −∑∑  ∀t = 1, …, T; i ≠ j (3.37)

 eijt + rijt = 1 ∀t = 1, …, T; i = 1, …, N;  j = 1, …, N; i ≠ j (3.38)

 pkt ≤vkakt ∀t = 1, …, T; ∀k = 1, …, N (3.39)

 wkt ≤vk(1 – akt)  ∀t = 1, …, T; ∀k = 1, …, N (3.40)

 

Eq. (3.28) sums for each period t the evacuees that reach the destination node N from 

each node i connected to the destination node using both normal flow and contraflow. Eq. (3.29) 

sums for each period t the responders that reach their source node N = 1 from each node i 

connected to the source node using both normal flow and contraflow.  Eqs. (3.30)-(3.33) are the 
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conservation of flow constraints for evacuees and responders during the first and subsequent 

periods, respectively. wkt is the number of responders occupying node k at time t. Eqs. (3.34)-

(3.37) ensure that only one type of flow (normal flow or contraflow) occupies an arc at time t. 

Eq. (3.38) ensures that only one type of flow (evacuee or responder) occupies an arc at time t and 

Eqs. (3.39) and (3.40) ensure that only one type of flow is at a node at time t. These enforce the 

incompatibility of flow constraint. 

 

3.5 Computational Experiments – A Case Study 

The models presented in Sections 3.3.1, 3.3.2, 3.4.1 and 3.4.2 are applied to an actual 

real-world dataset. The four proposed models are applied to the dataset used by Shekhar and Kim 

(2006), which consists of the population surrounding a nuclear power plant in Monticello, 

Minnesota. The details of the dataset are given in Appendix A. Figure A.1 in Appendix A shows 

the map of the nuclear power plant in Monticello, Minnesota. The blue path in the map shows 

the interstate I-94. 

The demographic data of the dataset are based on Census 2000 population data. The total 

number of citizens is 41,950, which is spread throughout the area. In the dataset, there are 47 

nodes and 148 travel arcs. Each arc and node has an associated capacity. The set of arcs contain 

high granularity arcs in that the set of arcs include a high number of interstate highways and 

arterials. Table A.1 and Table A.2 in Appendix A present roadway (arc) and node data of the 

Minnesota nuclear power plant. The highlighted cells in Table A.1 denote the arcs connected to 

the evacuee sink node (Node 47). For this research, the dataset is modified and expanded to 

include a population of emergency responders that moves toward the hazard area. The total 

number of responders used in this research is 230 (see Table A.2 in Appendix A). Also, since the 
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objective function is weighted by t (t = 1, …, T), where T is a user predefined desired time to 

complete the evacuation, T is arbitrarily set to 200 time periods. 

 

3.6 Discussion of Results 

Table 3.1 summarizes the characteristics of the ILP formulations of the single-flow with 

no contraflow, single-flow with contraflow, two-flow with no contraflow, and two-flow with 

contraflow EERP models. The table shows the total number of integer variables, total variables 

and constraints for the proposed formulations. Comparing the total number of variables in the 

single-flow and the two-flow with no contraflow scenarios, the number of variables increased 

about 56% in the two-flow. Also, by comparing the contraflow scenarios of the single-flow and 

two-flow, the total variables increased about 68%. LINGO 9.0 optimization software by LINDO 

Systems, Inc. is used to solve the four EERP ILP models to optimality. In other words, the global 

optimum is found for each EERP model. 

 

Table 3.1. Summary of number of variables, integers, constraints for the proposed EERP model 
formulations. 

EERP Model 

Model Characteristic 

Single-Flow 
with No 

Contraflow 

Single-Flow 
with 

Contraflow 

Two-Flow 
with No 

Contraflow 

Two-Flow 
with 

Contraflow
Number of Integer Variables 0 14,800 15,150 24,010 
Total Number of Variables (Real 
and Integers) 29,400 49,201 52,200 72,172 
Number of Constraints 36,452 39,103 96,302 116,905 
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3.6.1 Network Flow Clearance Performance 

Table 3.2 summarizes the evacuation performance results for the four EERP models. The 

output from the models with no contraflow is the schedule of the evacuee and emergency 

responder flows during each period of time until the network is cleared.  The output from the 

models with contraflow is not only the schedule of the evacuee and emergency responder flows 

during each period of time until the network is cleared, but the schedule of the contraflow lane 

reversal is generated. Evacuee network clearance time in the single-flow with contraflow and the 

two-flow with contraflow are reduced by 36.5%. In terms of solution time, when one additional 

flow is added to the single-flow network with no contraflow, the solution time increases nearly 

29000% (see Table 3.3).  When contraflow lane reversals are allowed in the presence of a single 

flow type (evacuee), the solution time increases 280000%.  Comparing the single-flow model 

with contraflow to the two-flow model with contraflow, the time to solve the two-flow version 

increases 86%. Thus, it can be seen that allowing contraflow lane reversals reduces the network 

clearance time in general. 

 

Table 3.2. Summary of the network clearance start time and network clearance end times. 
EERP Model 

Evacuation Performance Measure 

Single-Flow 
with No 

Contraflow 

Single-Flow 
with 

Contraflow 

Two-Flow 
with No 

Contraflow 

Two-Flow 
with 

Contraflow
Model Solution Time (hh:mm:ss) 00:00:14 11:03:34 1:07:46 20:35:06 
     
Evacuee Flow     

Clearance Start Time 24 24 24 24 
Clearance End Time 137 87 137 87 

Emergency Responder Flow     
Clearance Start Time – – 27 27 
Clearance End Time – – 67 67 
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Table 3.3. Comparison of solution times (in seconds) for the EERP models. 
Single-Flow with No Contraflow vs. Single-Flow with Contraflow % Increase 

14 secs  39814 secs 284285.71 
Single-Flow with No Contraflow vs. Two-Flow with No Contraflow % Increase 

14 secs  4066 secs 28942.86 
Two-Flow with No Contraflow vs. Two-Flow with Contraflow % Increase 

4066 secs  74106 secs 1722.58 
Single-Flow with Contraflow vs. Two-Flow with Contraflow % Increase 

39814 secs  74106 secs 86.13 
 

Evacuee flow behavior evaluation is conducted in the Hurricane Evacuation Study (HES) 

program managed by FEMA and the US Army Corps of Engineers. The HES program shows 

that evacuee network clearance behavior tends to follow an S-shaped curve primarily due to 

evacuee reaction time to an emergency event and not due to immediate mobilization of the 

evacuees (US Army Corps of Engineers, 2004). However, in many cases, the cumulative flow 

follows an S-shape. Figure 3.4 shows the general evacuation behavior of evacuees on the west 

coast of Florida during Hurricane Charley (US Army Corps of Engineers, 2004). In this research, 

we show the cumulative number of evacuees clearing the network, as well as the cumulative 

number of responders clearing the network in the two-flow ILP models (see Figure 3.5 through 

Figure 3.10). It can be seen that the behavior of both types of flow resembles an S-shape. It is 

important to note here that the cumulative number of evacuees increases very slowly as time 

progresses. It increases more rapidly at a linear rate and then levels off to increase at a linear rate. 

The slope of the straight-line portion of the curve equals to the capacity of the lowest capacity 

(i.e., bottleneck) arcs. If the arc lead times are stochastic and flow-dependent, then the linear 

portion of the S-curve would actually appear non-linear. 
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Figure 3.4. Evacuation behavior of Hurricane Charley (used with permission from Mitchell, 
(2006)). 
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Figure 3.5. Cumulative number of evacuees 
out for the single-flow EERP model with no 
contraflow lane reversals. 

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193

Time

N
um

be
r o

f e
va

cu
ee

s o
u

 
Figure 3.6. Cumulative number of evacuees 
out for the single-flow EERP model with 
contraflow lane reversals. 
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Figure 3.7. Cumulative number of evacuees 
out for the two-flow EERP model with no 
contraflow lane reversals. 
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Figure 3.8. Cumulative number of emergency 
responders in for the two-flow EERP model 
with no contraflow lane reversals. 
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Figure 3.9. Cumulative number of evacuees 
out for the two-flow EERP model with 
contraflow lane reversals. 
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Figure 3.10. Cumulative number of emergency 
responders in for the two-flow EERP model 
with contraflow lane reversals. 

 

3.6.2 Utilization of Contraflow Lane Reversals 

Another measure of network clearance performance considered in this research is arc 

usage for normal flow and for contraflow. The number of arcs used for normal flow and the 

number of arcs used for contraflow for each period t is computed. Arc usage is an important 

measure of performance for emergency officials, since managing flows during evacuation 

requires a significant number of emergency and law enforcement personnel (Wolshon et al., 
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2001), especially in the presence of two incompatible flows. Thus, roadways (arcs) should be 

utilized in a balanced way between the demand of evacuees and responders. Figure 3.11 through 

Figure 3.14 show the number of arcs used for normal flow and contraflow at each time t. 

Figure 3.11 shows the number of normal flow arcs used by evacuees for the single-flow 

model with no contraflow, and Figure 3.12 shows the number of normal flow arcs and 

contraflow arcs used by evacuees for the single-flow model with contraflow. Figure 3.11 shows 

that the peak usage of the normal flow arcs occurs midway during the evacuation. The arc 

utilization trend behavior shown in Figure 3.12 is noteworthy. It can be seen that, to maximize 

network flow, contraflow lane reversals are more prominent relative to the number of arcs used 

for normal flow. This speaks to the impact of contraflow on the objective to maximize flow. 

Comparing the number of arcs used for normal flow and contraflow in the single-flow EERP 

model with contraflow to its no contraflow counterpart, the utilization of contraflow arcs is 

nearly two times the number of normal flow arcs, particularly during the peak evacuation time 

(see Figure 3.12). This is due to the assumption in Section 3.3, specifically, the assumption 

where there is no restriction on the number of times contraflow is applied to a single arc. 
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Figure 3.11. Normal flow arc usage by evacuees for the single-flow with no contraflow EERP 
model. 
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Figure 3.12. Normal flow and contraflow arc usage by evacuees for the single-flow with 
contraflow EERP model. 
 

It can be seen that arc utilization increases in the scenario where emergency responder 

flow occurs simultaneously with evacuees (see Figure 3.13 and Figure 3.14). Comparing evacuee 

flow arc usage in both the single-flow with no contraflow and the two-flow with no contraflow 

scenario (Figure 3.11 and Figure 3.13, respectively), it is seen that the number of arcs used by 

normal evacuee flow increased from 35 in the single-flow with no contraflow model to 50 in the 

two-flow with no contraflow. This is an indication of the impact of the responder flow has on the 

network arc utilization as the flow occurs simultaneously with evacuee flow. Applying 

contraflow lane reversals to the two-flow scenario (Figure 3.14) decreases the number of arcs 

utilized by normal evacuee flow from 50 (seen in Figure 3.13) to 45. 
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Figure 3.13. Normal flow arc usage by evacuees and emergency responders for the two-flow 
EERP model with no contraflow. 
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Figure 3.14. Normal flow and contraflow arc usage by evacuees and emergency responders for 
the two-flow EERP model with contraflow. 
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3.7 Summary 

In this chapter, four integer linear programming models for the EERP problem are 

presented. Three of these models are new and have not been addressed before in the current 

literature. These three proposed model formulations lay the foundation for research in an area 

that has been gaining increasing attention in recent years. 

The four models are applied to the dataset used by Shekhar and Kim (2006), which 

consists of the population surrounding a nuclear power plant in Monticello, Minnesota. The 

dataset is modified to include an initial population of emergency responders. The individual 

models are solved optimally using LINGO optimization software.  The computational results 

show that when contraflow lane reversals are allowed, network clearance performance for both 

the evacuees and the emergency responders improves.  In other words, the outflow of evacuees 

and the inflow of responders are maximized. Thus, evacuation times of evacuees and responders 

are minimized. However, adding an additional flow and/or allowing contraflow lane reversals 

increasing the solution time substantially, which is quite undesirable in emergency situations 

especially in emergencies that are unexpected. Therefore, it is necessary to develop a solution 

approach that can rapidly generate an evacuation plan for the evacuees and responders and 

network roadway direction configuration. 
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CHAPTER 4: 
GENETIC-BASED HEURISTIC SOLUTION APPROACH FOR THE 

EMERGENCY EVACUATION ROUTE PLANNING PROBLEM 

4.1 Introduction 

The emergency evacuation route planning (EERP) problem with bi-directional flows and 

contraflow lane reversals is in the class NP due to its combinatorial nature. Finding an optimal 

solution becomes challenging as the network size (i.e., number of nodes and the number of arcs) 

increases. Therefore, a heuristic solution approach is needed, especially for EERP problems of 

realistic size. This chapter proposes a genetic-based heuristic approach for the EERP problem. 

First, an overview of the class of genetic-based heuristics is given.  The objective of the proposed 

genetic-based heuristic is slightly different than that presented in CHAPTER 3 in that it attempts 

to maximize the weighted flow for both the evacuees and emergency responders. A detailed 

description of the proposed genetic-based solution approach using the revised objective is given. 

Finally, computational results are presented and discussed. 

 

4.2 Overview of Genetic Algorithms 

Existing research shows that metaheuristics have been useful in solving combinatorial 

optimization problems.  They are iterative algorithms that start from a complete solution and 

iteratively modify some of its elements in order to achieve a better solution. There are a number 

available metaheuristic methods. The most commonly used are genetic algorithms, simulated 

annealing, tabu search and ant colony optimization. However, each can be modified and 

hybridized to emulate the others. In this research, a genetic algorithm-based approach is used to 
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solve the EERP problem. It is important to mention here that other metaheuristics can be applied 

to the EERP problem. However, the main reasons for using a genetic-based solution approach in 

this study is the wide popularity and acceptance of genetic algorithms and the strength of its 

parallel search of the solution space. 

Genetic algorithms (GAs) are the best known and most widely used representative of the 

family of evolutionary heuristic search algorithms that attempt to emulate the Darwinian process 

of natural selection and reproduction, in which the probability of selection for reproduction is 

directly proportional to their rate of survival in their environment.  Holland (1975) develops this 

class of evolutionary-based procedures in an attempt to formally model and explain adaptation 

occurring in nature. Goldberg (1989) further explores genetic algorithms and presents a more 

theoretical framework on which these search procedures are based.  Since its introduction, this 

class of search techniques has been described and analyzed extensively in the literature. 

Therefore, the conventional genetic algorithm is discussed here, and the reader is referred to the 

work of Holland (1975) and Goldberg (1989) for a more detailed discussion. 

Genetic algorithms, like all other evolutionary-based search algorithms, maintain a 

population of structures that represent a sample of search points in the space of potential 

solutions to a given problem.  Through its maintenance of multiple solutions, GAs implicitly 

process, in parallel, a large amount of useful information concerning unseen regions of the 

solution space. This results in the simultaneous allocation of search effort to many regions at 

once. 

GAs possesses the core algorithmic procedure associated with this family of algorithms: 

fitness evaluation, selection and reproduction, which involves crossover and mutation genetic-
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based operations. Figure 4.1 shows the pseudocode for the conventional GA. It is also important 

to mention that the representation of a solution to any optimization problem is a key issue. If 

chosen carelessly, the representation scheme can severely limit the manner by which the search 

views the solution space or the efficiency of the search. Furthermore, the representational 

scheme determines the feasibility and accuracy of the solution being found. 

Initialize GA search parameters (P, G, pc, pm,) 
g := 0 
create initial random population of candidate solutions { }1 2 3 1, , , , ,g g g g g

g P Ps s s s s−=P …  
evaluate(Pg)                    // evaluate the fitness (quality) of the candidate solutions 
do while (stopping criterion is not met) 
{ 

g := g +1 
g′P  := select(Pg-1)      // select solutions for the mating pool 

Og := crossover( g′P ) // populate set of offspring 
Og := mutate(Og) 
Pg ← Og 
evaluate(Pg) 

}end do 
Figure 4.1. Pseudocode of the conventional genetic algorithm. 

 

4.2.1 Solution Fitness Evaluation 

Fitness evaluation is the driving force in simulated evolution in that it is the measurement 

used to control the selection and reproduction processes of GAs (Goldberg, 1989).  The most 

common approach to measuring solution fitness (quality) is to construct an explicit evaluative 

procedure, or fitness function F(si), where si is a solution structure.  This function is typically 

derived from the objective function of the optimization problem, and therefore, tends to be 

problem-specific.  Before the fitness of a solution is determined, it must be decoded so that it has 

meaning within the problem domain.  Each individual solution is then evaluated and assigned a 
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numerical fitness value (or vector of values) as a measure of how well it behaves in the problem 

domain.  The fitness function also provides input to the reproduction mechanism regarding 

which solutions should have a higher probability of being allowed to reproduce. 

 

4.2.2 Selection 

Reproduction begins with the GA selecting candidate solution structures for the mating 

pool.  The structures in the next population are derived from structures selected from the current 

population.  These structures are selected through a stochastic process that chooses a structure si 

according to its fitness f(si) relative to the rest of the population. This process influences the 

progress of the search through the solution space by preferring the more fit structures for 

reproduction. 

A number of different selection schemes have been developed for GAs including 

tournament selection and rank selection.  However, choosing structures according to their 

proportionality to fitness π(si), where ( ) ( ) ( )1

P
i i jj

s f s f sπ
=

= ∑  denotes the probability that 

solution structure si is selected for reproduction relative to the population of P structures, is the 

most commonly used.  This selection scheme is called fitness-proportionate selection, which uses 

a sampling procedure, such as roulette wheel sampling or stochastic universal sampling, to select 

the members of the mating pool (Holland, 1975). 

In order to avoid the search becoming trapped in a particular region of the solution space, 

structure variation is introduced through stochastic operators that exchange information between 

individual structures in order to create new structures or to modify existing ones. These are 
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applied to the individuals that are identified as candidates for mating by the selection 

mechanism.  The conventional GA introduces structure variation using crossover and mutation 

operators (Holland, 1975; Goldberg, 1989).  These operators, which mimic the reproduction 

processes, allow the algorithm to balance exploitation (intensification) and exploration 

(diversification) of regions in the solution search space (Reeves, 1993).  They can also be seen as 

search operators because they enable the discovery of new solutions in the solution space. 

 

4.2.3 Crossover 

Crossover begins by choosing two solutions from the mating pool as “parents” based on 

the selection mechanism. Once each parent has been identified, a crossover point (or set of 

crossover points) in each parent is selected at random. The subcomponents of the parent 

solutions are then exchanged, yielding two new solutions (“children”). These new solutions 

possess information of each parent and provide new points in the search for further testing.  In 

other words, crossover leads to further exploration within the sub-regions represented by the 

solutions in the current population (Reeves, 1993). The expectation is that if good 

subcomponents from two high performing solutions are combined, the children are likely to have 

equal or improved performance. There is a probability pc for this operation that determines 

whether a selected solution undergoes the crossover operation. 

 

4.2.4 Mutation 

Holland (1975) introduces mutation as a secondary search operator for the GA. Its 

purpose is to reintroduce diversity into the population that may have been lost during the search 
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so that it does not converge prematurely to a local optimum. The mutation operation creates 

random perturbations in the structures in the population. In the conventional GA based on binary 

vectors, after reproduction, a bit location in the offspring is randomly chosen. The value in that 

location is arbitrarily complemented, creating a new vector. Mutation is also a probabilistic 

operator, and the probability pm of a single mutation is typically very small (Goldberg, 1989). 

Therefore, each offspring has a relatively low probability of mutation. 

 

4.3 Revised EERP Problem Formulation 

Now described is the proposed genetic-based solution approach for the two-flow with 

contraflow EERP problem. Since this is the problem of greatest interest and the version that is 

the most complex and the most difficult to solve, the development of the GA-based approach is 

limited to this specific problem. 

First, the objective function used by the GA is discussed. The objective function of the 

ILP model formulation presented in CHAPTER 3 requires the user to predefine the desired 

evacuation clearance time T. Therefore, the objective function of the genetic-based heuristic is 

modified, so the predefined time is not necessary. The revised objective is to maximize the 

weighted flow of both the evacuees and emergency responders, where the weight (volume) on a 

particular arc is its capacity multiplied by its lead time. 

 

Modeling Assumptions: 

• There is one super source node and one super sink node for evacuees; 

• There is one super source node and one super sink node for emergency responders; 
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• A single network arc cannot be occupied by both evacuee flow and responder flow during the 

same period of time t; 

• A single network node cannot be occupied by both evacuee flow and responder flow during 

the same period of time t; 

• The lead time on a given arc τij is deterministic and known with certainty; 

• The lead time on a given arc is not a function of the number of entities present on that arc; 

• There is no limit on the number of arcs in the travel network to which contraflow lane 

reversals can be applied; and 

• The arc flow directions are set at the beginning of the active period of the evacuation and do 

not change during the period. 

 

4.3.1 Description of the Proposed Genetic-Based EERP Problem Solution Heuristic 

To illustrate the implementation of the proposed genetic-based heuristic solution 

procedure, a simple 10-node, 30-arc lane-based travel network is used. Figure 4.2 shows a 10-

node network with 30 arcs, where each arc (i,j) has a capacity and lead time. All node have a 

capacity, while some of the nodes have an initial population of evacuees and responders. The 

dashed red arcs indicate those arcs whose flow directions have been reversed to their contraflow 

directions. Table 4.1 and Table 4.2 summarize the node and arc data associated with the example 

network presented in Figure 4.2. Nodes 1 and 10 serve as the super source node and the super 

sink node, respectively, for the evacuees. Nodes 1 and 10 serve as the super sink node and the 

super source node, respectively, for the responders. 
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Figure 4.2. Lane-based network example with 10 nodes and 30 arcs. 

 

 

Table 4.1. Node data for the 10-node, 30-arc lane-based travel network example. 
Node ID Node Capacity Evacuee Initial Population Responder Initial Population 

1 41950 0 0 
2 250 20 0 
3 250 20 0 
4 250 20 0 
5 250 0 0 
6 250 0 0 
7 250 0 0 
8 250 0 0 
9 250 0 20 

10 41950 0 20 
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Table 4.2. Arc data for the 10-node, 30-arc lane-based travel network example. 

From-Node To-Node Arc Capacity Lead Time 
Weight 

(Arc Cap × Lead Time) 
Flow 

Direction 
1 2 41950 0 0 1 
2 1 41950 0 0 1 
1 3 41950 0 0 1 
3 1 41950 0 0 1 
2 4 150 9 1350 0 
4 2 150 9 1350 1 
3 5 250 6 1500 1 
5 3 250 6 1500 1 
4 5 150 5 750 1 
5 4 150 5 750 1 
2 7 100 17 1700 0 
7 2 150 10 1500 1 
5 7 150 10 1500 1 
7 5 100 15 1500 0 
4 6 100 15 1500 1 
6 4 250 11 2750 0 
5 6 250 11 2750 1 
6 5 200 9 1800 1 
6 8 200 9 1800 1 
8 6 150 8 1200 1 
7 8 150 8 1200 1 
8 7 100 7 700 1 
7 9 100 7 700 1 
9 7 100 7 700 1 
8 9 150 17 2550 1 
9 8 150 17 2550 1 

10 8 41950 0 0 1 
8 10 41950 0 0 1 
9 10 41950 0 0 1 

10 9 41950 0 0 1 
 

4.3.2 EERP Problem GA Solution Representation 

The proposed genetic-based heuristic uses a solution representational scheme in which a 

solution is a binary 0-1 string of fixed length, where the length is the total number of arcs in the 

network. Figure 4.3 is an example of an individual solution for the 10-node, 30-arc example. The 

last row is the actual solution representation. A value of 1 indicates the flow on arc (i,j) is in the 
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normal flow direction, and a value of 0 indicates the flow on arc (i,j) is in the contraflow 

direction. 

Figure 4.3. GA solution representational scheme for the EERP problem. 
 

4.3.3 Solution Selection 

In the proposed GA solution approach for the EERP problem, fitness-proportionate 

selection with roulette wheel sampling is used. The individual travel network configurations for 

the mating pool are selected based on a probability π(si) that is proportional to their fitness 

values, i.e., ( ) ( ) ( )1

P
i i jj

s f s f sπ
=

= ∑ . Although fitness-proportionate selection is used here, 

other selection methods can be used, including the more computationally-efficient tournament 

selection and rank selection. Fitness-proportionate selection is chosen for this research as it 

exhibits better convergence behavior than tournament selection and rank selection. 

 

             
Arc ID : 1 2 3 4 5 6 7 8 9 10 29 30 

From-Node : 1 2 1 3 2 4 3 5 4 5 9 10 
To-Node : 2 1 3 1 4 2 5 3 5 4 10 9 

Arc Capacity : 41950 41950 41950 41950 150 150 250 250 150 150 41950 41950 
Lead Time : 0 0 0 0 9 9 6 6 5 5 0 0 

Flow 
Direction : 1 1 1 1 0 1 1 1 1 1 

… 

1 1 
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4.3.4 Solution Reproduction Operations 

Offspring solutions are created using the crossover and mutation genetic operations. In 

the EERP problem, all produced offspring have the same network specification (i.e., number of 

nodes and arcs, capacity of the nodes and arcs, and lead time on the arcs). However, the flow 

directions of the arcs are changed. Implementation of the crossover and mutation operators for 

the EERP problem is now explained. 

 

4.3.4.1 Crossover 

Figure 4.4 illustrate the crossover operation between two individual candidate solution 

networks, namely Parent 1 and Parent 2, for the EERP problem. A single crossover point in both 

parents is randomly chosen to be at Arc 10. The new child networks have the same arc flow 

direction on the first 10 arcs in the data structure. However, the flow directions of the next 20 

arcs of the two parents are swapped. The crossover operation for a set of parents occurs at 

probability pc. 

 

4.3.4.2 Mutation 

In the EERP problem, a candidate solution is mutated by flipping the flow direction for a 

single arc to its complement with probability pm. An illustration of the mutation operation is 

applied to the 10-node, 30-arc example (Figure 4.5). The direction of Arc 7 in the travel network 

is flipped to its complement, i.e., to the contraflow direction. 
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Parent 1 

Arc ID 
Flow 

Direction 
1 1 
2 1 
3 1 
4 1 
5 1 
6 1 
7 0 
8 1 
9 1 

10 1 
11 1 
12 1 
13 1 
14 1 
15 1 
16 1 
17 1 
18 1 
19 1 
20 1 
21 1 
22 1 
23 1 
24 1 
25 1 
26 1 
27 1 
28 1 
29 1 
30 1  

Parent 2 

Arc ID 
Flow 

Direction 
1 1 
2 1 
3 1 
4 1 
5 0 
6 1 
7 1 
8 1 
9 1 

10 1 
11 1 
12 0 
13 1 
14 1 
15 1 
16 1 
17 1 
18 1 
19 0 
20 1 
21 1 
22 1 
23 0 
24 1 
25 1 
26 1 
27 1 
28 1 
29 0 
30 1  

Child 1 

Arc ID 
Flow 

Direction 
1 1 
2 1 
3 1 
4 1 
5 1 
6 1 
7 0 
8 1 
9 1 

10 1 
11 1 
12 0 
13 1 
14 1 
15 1 
16 1 
17 1 
18 1 
19 0 
20 1 
21 1 
22 1 
23 0 
24 1 
25 1 
26 1 
27 1 
28 1 
29 0 
30 1 

Child 2 

Arc ID 
Flow 

Direction 
1 1 
2 1 
3 1 
4 1 
5 0 
6 1 
7 1 
8 1 
9 1 

10 1 
11 1 
12 1 
13 1 
14 1 
15 1 
16 1 
17 1 
18 1 
19 1 
20 1 
21 1 
22 1 
23 1 
24 1 
25 1 
26 1 
27 1 
28 1 
29 1 
30 1 

Figure 4.4. Illustration of the crossover operation on two individuals for the 10-node, 30-arc 
network example. 
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Parent 

Arc ID 
Flow 

Direction 
1 1 
2 1 
3 1 
4 1 
5 0 
6 1 
7 1 
8 1 
9 1 

10 1 
11 1 
12 1 
13 1 
14 1 
15 1 
16 1 
17 1 
18 1 
19 0 
20 1 
21 1 
22 1 
23 0 
24 1 
25 1 
26 1 
27 1 
28 1 
29 0 
30 1  

Child 

Arc ID 
Flow 

Direction 
1 1 
2 1 
3 1 
4 1 
5 0 
6 1 
7 0 
8 1 
9 1 

10 1 
11 1 
12 1 
13 1 
14 1 
15 1 
16 1 
17 1 
18 1 
19 0 
20 1 
21 1 
22 1 
23 0 
24 1 
25 1 
26 1 
27 1 
28 1 
29 0 
30 1  

Figure 4.5. Illustration of the mutation operation on an individual for the 10-node, 30-arc 
network example. 
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4.3.5 Fitness Function 

Recall that fitness is the driving force in simulated evolution in the genetic algorithm. 

The breadth-first search (BFS) algorithm is used in the fitness function. BFS is widely used in 

applications with large-scale graphs (Chow et al., 2005). 

 

4.3.5.1 Breadth-First Search Algorithm 

The general BFS is a graph search algorithm that starts at a source node and explores all 

the neighboring nodes and labels them as explored nodes, so they will not be visited (Hiller and 

Lieberman, 2001). BFS iteratively searches for a shortest path between all source nodes and the 

destination of the flow until the best solution is found, at which time the search terminates. It is 

very similar to other graph search algorithms, like depth-first search and Dijkstra’s Algorithm. 

BFS is simpler than Dijkstra’s Algorithm, since it does not need any data structures, which 

reduces memory consumption. BFS is considered an efficient graph search, since it does not 

require memory space as other search algorithms do. 

The general BFS iterates through a set of stages S and a set of levels L until all nodes in 

the set of network nodes N are explored. BFS starts at a source node, which is at Level 0. 

Initially at Stage 0, all nodes in N are labeled as unexplored. At Stage 1, all nodes at Level 1 are 

visited. Then, at each stage s ∈ S, all nodes are visited at the Level l ∈ L, where l = s. BFS labels 

each node in N by the length of a shortest path (in terms of number of arcs) from the source 

node. Figure 4.6 is a pseudocode of the general BFS. 
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Procedure: BFS  
Input: G(N, A), which is the directed graph G with set 

of nodes N and set of arcs A 
Input: Node n, which is the source at which to start the 

search 

 

Initialize: Q = A  
Initialize: Q = A  
Initialize: Flag for arc (i,j) to 0, ∀arc (i,j) ∈ A // Flag for arc (i,j) = 0: unvisited 

// Flag for arc (i,j) = 1: visited 
// Flag for arc (i,j) = 2: explored 

do while (all arcs in Q are not explored)  
{  

for each node i in the unexplored arc (i,j) in Q ∀arc (i,j) ∈ A, ∀i ∈ N 
{  

if neighboring node j is unexplored ∀j ∈ N, i ≠ j 
{  

Update Flag for arc (i,j) = 1  
Insert arc(i,j) into Q  
Update Flag for arc (i,j) = 2 

}end if 
}end for 

}end do 

 

Figure 4.6. Pseudocode of general breadth-first search algorithm. 
 

The general BFS is modified for the fitness function for the proposed EERP problem GA-

based solution approach. Firstly, recall that the objective of the EERP problem is to maximize 

the weighted flow of the evacuees and the responders and that a travel network for the EERP 

problem can have multiple source nodes. The BFS is modified so it iterates over the number of 

source nodes in N that are initially occupied by evacuees and/or emergency responders. 

Secondly, the general BFS algorithm searches for the neighboring nodes to find the shortest path 

in terms of the number of visited nodes. For the EERP problem, the decision to explore a node is 

based on arc capacity and lead time of the arcs that terminate at that node. Similar to the ILP 
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formulations, the modified BFS does not violate the arc capacity constraints and the arc 

heterogeneity constraints when searching the neighboring nodes. The output of the modified BFS 

is a (weighted) route for both evacuees and emergency responders. Figure 4.7 is a pseudocode of 

the BFS-based fitness function (referred to as M-BFS) for the genetic-based EERP problem 

solution approach. 

 
Input:  G(N, A): directed graph G with set of nodes N and set 

of arcs A 
  

Each node i ∈ N has these properties: 
Initial occupancy  pi0 
Node capacity       vi 

   

Each arc (i,j) has these attributes: 
Arc capacity        c ij 
Arc weight          wij 

Arc lead time      τij  

arc (i,j) ∈ A  

These arc (i,j) variables are updated iteratively: 
Evacuee flow      xij 
Responder flow   yij 
Total flow time    tij 

arc (i,j) ∈ A  

do while (any evacuee or responder source node i is occupied)  
{ 

  

BFS(source node i)   
Find the Maximum wij for all adjacent nodes to node i   
Update flow time tij each time an arc (i,j) is explored   
Update Overall Maximum weight for xij   

}end do while   
Figure 4.7. Pseudocode of the BFS-based fitness function (or M-BFS). 

 

Using the network node and arc data in the 10-node, 30-arc example network, M-BFS is 

run, and the maximum weighted flow paths from Node 4 to Node 10 are shown in Figure 4.8 and 

Figure 4.9. Figure 4.8 shows the paths for the evacuees. Since evacuees initially occupy three 

nodes, M-BFS is executed three times, once from the different source Nodes 2, 3 and 4. The 

green routes indicate the maximum weighted flow paths of evacuees. Figure 4.9 shows the paths 
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for the responders, respectively. The red dashed arcs in each figure represent contraflow 

directions. 

 

 
(Maximum weighted path from Node 2 to Node 10) 

 
(Maximum weighted path from Node 3 to Node 10) 

 
(Maximum weighted flow path from evacuee source Node 4 to Node 10) 

Figure 4.8. Maximum weighted flow paths from all source nodes initially occupied by evacuees. 
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(Maximum weighted flow path from Node 7 to Node 1) 

 
(Maximum weighted flow path from Node 10 to Node 1) 

Figure 4.9. Maximum weighted flow paths from all source nodes initially occupied by 
responders. 
 

4.4 Computational Experiments and Analysis 

The genetic-based solution procedure for the EERP problem is implemented in the C 

programming language. It is coded specifically for the two-flow with contraflow EERP problem. 

Similar to the proposed ILP formulations, the GA-based solution approach is applied to the 

dataset of Shekhar and Kim (2006). 
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4.4.1 GA Parameter Tuning 

Before applying the proposed GA-based solution heuristic to the two-flow with 

contraflow EERP problem, it is important to set the GA search control parameters (population 

size P, number of generations G, probability of crossover pc, and probability of mutation pm) as 

the values of these are problem-dependent.  Therefore, an empirical study in which the parameter 

values are varied is conducted. Table 4.3 summarizes the range of values for each parameter. The 

size of population P is set to 100 and 200, and, for each population level, the number of 

generations G is set to 200, 500 and 1000. The probability of crossover is set to 85%, 90% and 

95%, and the probability of mutation is set to 1%, 3% and 5%. Note that the GA-based solution 

procedure is run for R = 30 replications, which is arbitrarily chosen. For each replication, the 

search is run from a different initial population of network configurations in the search space. 

This multi-start search approach is used to develop insight into the inherent variability of the 

solution procedure due to its randomized nature. 

Table 4.3. Range of GA search control parameter values used for parameter tuning. 
GA Search Control Parameter Range of Values 
Population Size, P [ 100, 200 ] 
Number of Generations, G [ 200, 500, 1000 ] 
Probability of Crossover, pc [ 85%, 90%, 95% ] 
Probability of Mutation, pm [ 1%, 3%, 5% ] 
Number of Random Replications, R 30 

 

Figure 4.10 shows the convergence behavior of the GA-based solution procedure for one 

representative replication (Rep 30) of the 30 replications for the parameter setting P = 200, G = 

500, pc = 90% and pm = 1%. The Avg Obj Val is the average objective function value (i.e., 

fitness) of the population at each generation.  The Max Obj Val is the single best (largest since 



72 

we are maximizing) objective function value that occurs in each population at each generation. 

The Best Obj Val is the overall best objective function value found since the start of the 

replication. This value is updated during a generation only when a better value is found. The 

final value is reported at the end of the replication. Figure 4.10 shows that improvement in 

average performance from generation to generation is steady, although not perfectly monotonic. 

After the first few generations (about Generation 15), there seems to be no great leaps in 

improvement, demonstrating that the GA exhibits behavior characteristic of this class of search 

heuristics. Notice that the search seems to converge well before Generation 500. Therefore, the 

solution time for a single replication can be reduced considerably if the search is stopped before 

Generation 500, which is reasonable.  However, to allow for adequate time for the search to 

converge when the crossover and mutation probabilities are varied, P = 200 and G = 500 are 

used and fixed for the different combinations of probabilities. Therefore, the total number of 

solution evaluations per random replication is 100,000. 
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Figure 4.10. Average, maximum and overall best fitness values with GA parameters P = 200, G 
= 500, pc = 90% and pm = 1% for Replication 30. 
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Table 4.4 summarizes the heuristic performance for each crossover and mutation 

probability combination at P = 200 and G = 500 for the two-flow with contraflow EERP 

problem.  Column 3 (Max Overall Best Obj Val) is the single maximum overall best objective 

function value over all 30 replications. Column 4 (Avg Overall Best Obj Val) is the average of 

the overall best objective function values over all 30 replications. Column 5 (Std Dev) is the 

standard deviation of the overall best objective function values over all 30 replications. Column 

6 (95% CI Half-Width) is the half width of the 95% confidence interval of the overall best 

objective function values over all 30 replications. Although there is no statistical difference in 

the means across the different settings, the half-width, which uses the corresponding value in 

Column 5, gives an indication of the consistency of the proposed algorithm in finding a good 

solution. Figure 4.11 through Figure 4.16 show the performance trends graphically as the 

crossover and mutation probabilities are varied. 

 

Table 4.4. Summary of the GA-based solution procedure for various GA search parameter value. 

pc pm 

Max Overall Best 
Obj Val (Over 30 

Reps) 

Avg Overall Best 
Obj Val (Over 30 

Reps) Std Dev 
95% CI 

Half-Width
85% 1% 97,450 85,685.00 6,210.31 2,222.29 
85% 3% 98,650 85,145.00 6,475.27 2,317.10 
85% 5% 96,650 82,148.00 11,688.28 4,182.52 
90% 1% 99,950 85,358.33 6,692.01 2,394.66 
90% 3% 95,600 81,168.33 9,736.20 3,483.99 
90% 5% 94,600 85,691.67 5,383.57 1,926.45 
95% 1% 97,450 84,368.33 5,690.93 2,036.43 
95% 3% 94,400 86,710.00 6,580.08 2,354.61 
95% 5% 97,150 84,575.00 8,535.81 3,054.45 
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Figure 4.11 shows that, in general, as the probability of mutation pm decreases and as 

probability of crossover pc increases, the more consistent the GA-based solution approach is in 

finding a high-quality overall best solution. In other words, the 95% confident interval half-width 

decreases as pc increases and pm decreases. Figure 4.12 and Figure 4.13 seem to suggest that 

when both pc and pm are set to medium to low values, the heuristic performance is generally good 

in terms of the maximum overall best objective and the average overall best objective. 

Based on this empirical study, the best values for the crossover and mutation probabilities 

are not clear due to the conflicting trends. Therefore, an average ranking position approach is 

used to select the “best” settings. Table 4.5 summarizes the rank positions of heuristic 

performance of the different pc and pm settings in terms of the Max Overall Best Obj Val, the 

Avg Overall Best Obj Val and the 95% CI Half-Width. The settings are sorted in ascending order 

of average rank position.  Based on the average rank position, pc = 85% and pm = 1% are selected 

for this EERP problem. An appropriate selection of parameter settings for any GA-based solution 

procedure could significantly improve the performance of the search. As the primary intent of 

this research is to propose an approach to solve the EERP problem, the attempt to determine 

more appropriate (and perhaps more robust) parameter settings is left for future study. The final 

set of parameter values that enable the GA-based solution heuristic to exhibit the desired 

convergence behavior is listed in Table 4.6. 
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Figure 4.11. Crossover probability vs. 95% confidence interval of the overall best objective 
function values. 
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Figure 4.12. Crossover probability vs. maximum of the overall best objective function values. 
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Figure 4.13. Crossover probability vs. average overall best objective function values. 
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Figure 4.14. Mutation probability vs. 95% confidence interval of the overall best objective 
function values. 
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Figure 4.15. Mutation probability vs. maximum of the overall best objective function value. 
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Figure 4.16. Mutation probability vs. average of the overall best objective function values. 
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Table 4.5. Rank positions of the crossover pc and mutation pm parameter settings according to the 
max overall objective value, avg overall objective value and the 95% confidence interval half-
width. 

   Rank   

pc pm 
Max Overall Best Obj 

Val 
Avg Overall Best Obj 

Val 
95% CI Half-

Width 
Average 

Rank 
85% 1% 3 3 3 3.000 
85% 3% 2 5 4 3.667 
90% 1% 1 4 6 3.667 
90% 5% 8 2 1 3.667 
95% 1% 4 7 2 4.333 
95% 3% 9 1 5 5.000 
95% 5% 5 6 7 6.000 
85% 5% 6 8 9 7.667 
90% 3% 7 9 8 8.000 

 

Table 4.6. Final genetic algorithm search control parameter settings. 
GA Search Control Parameter Value 
Population Size, P 200 
Number of Generations, G 500 
Probability of Crossover, pc 85% 
Probability of Mutation, pm 1% 
Number of Random Replications, R 30 

 

4.5 Discussion of Results 

A dual processor personal computer with 2.8 GHz CPU, and 1.0 GB RAM is used to run 

the proposed GA-based solution heuristic. The GA is run for 30 replications requiring an average 

of 21.6 hours CPU time to complete the 30 replications, which is 0.72 hours (or, 43.2 minutes) 

per replication. Across the 30 replications at the parameter settings in Table 4.6, Replication 13 

produced the maximum overall best objective function value. Table B.1 in the Appendix section 

shows the best network configuration generated by the GA-based heuristic approach, including 

the arcs that are used for normal flow and those that are used for contraflow. The network 

clearance time performance of the best obtained network configuration is observed. Evacuees 
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need 102 time periods, and the emergency responders need 84 time periods to clear the network 

to get to their destinations. Evacuee and responder clearing time of the best network 

configuration obtained from the GA heuristic approach degrade17.2% and 25.4%, respectively, 

from the ILP optimal solutions. 

 

4.6 Summary 

A genetic-based solution approach is used to find a high quality solution for the EERP 

problem. First, the problem formulation is revised, where the objective of the GA is to maximize 

the weighted flow for both evacuees and responders. The problem is revised so there is no need 

to provide a predefined desired network clearance time T, as in the objective of the proposed ILP 

model formulations in CHAPTER 3.  Although the objectives of both the ILP formulation and 

GA-based heuristic solution procedure are different, both provide emergency officials with a 

reasonable emergency evacuation routing plan for both evacuees and emergency first responders. 

A major advantage of using the proposed GA-based procedure is the solution time, which 

is reduced dramatically relative to the ILP formulation for the two-flow with contraflow problem 

proposed in CHAPTER 3. Although the total solution times are similar in this study, the run time 

for the GA-based heuristic approach is a function of the number of solution evaluations (i.e., the 

number of individuals evaluated during a single replication) and the number of random 

replications, which is arbitrarily set. If the number of generations is reduced and/or the number 

of replications is reduced, then a significant time savings would be realized. 
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CHAPTER 5: 
SUMMARY OF RESEARCH AND  

PLANS FOR FUTURE WORK 

5.1 Summary of the Research 

The continual growth of population and the frequency of natural, man-made and 

technological disasters stimulate a need for efficient and reliable emergency evacuation route 

planning (EERP) procedures to minimize human loss and property damage. This research 

addresses the EERP problem from a perspective never before considered formally in research 

and, more importantly, in practice. This perspective is to simultaneously consider two 

incompatible and traditionally opposed flows. The primary contribution of this research is that it 

serves as the initial efforts to formulate and solve this practical problem. 

CHAPTER 2 summarizes the current research literature that addresses the emergency 

evacuation routing problem. This problem has been addressed from using analytical 

mathematical programming models, queuing models and simulation models. The existing EERP 

models only either consider unidirectional evacuee flow from the source of a hazard to 

destinations of safety or unidirectional emergency first responder flow to the hazard source. 

However, in real-world emergencies, heterogeneous, incompatible flows often occur 

simultaneously, especially in unanticipated emergencies. By incompatible, it is meant that the 

two different flows cannot occupy a given lane and merge or crossing point at the same time. In 

addition, contraflow lane reversals have been considered only in the presence of one type of 

flow.  In essence, a review of the literature reveals that the existing analytical, queuing and 
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simulation models do not consider simultaneous, opposing heterogeneous network flows with 

contraflow lane reversals. 

In CHAPTER 3, four integer linear programming model formulations for the EERP 

problem are presented. Three of these models have not been formulated before in the current 

literature. These three model formulations lay the foundation for research in an area that has been 

gaining increasing attention in recent years. Specifically, the models, which consider 

simultaneous, opposing heterogeneous network flows and contraflow lane reversals, are a 

primary contribution of this research.  The three models are presented in a incremental fashion.  

The first model is an extension of the single-flow model, where, considering only the single flow 

of evacuees moving from the hazard area to areas of safety, contraflow lane reversals are 

permitted. Second, the flow of emergency responders moving towards the hazard area is 

considered simultaneously with the opposed flow of evacuees with no contraflow lane reversals. 

The third is an ILP model that considers both the evacuee and responder flows and contraflow 

lane reversals are allowed. All four EERP model formulations are solved to optimality using 

real-world population and travel network data. The data are from the population and travel 

network surrounding the nuclear power plant in Monticello, Minnesota. The output from each 

model is the time schedule at which evacuee and responder flow will use contraflow to clear the 

network. From the computational results from solving all four EERP models using the Minnesota 

nuclear power plant dataset, evacuee and emergency responder flow are both maximized by 

utilizing contraflow lane reversals. Thus, evacuation times of evacuees and responders are 

minimized. 
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An observation when solving the three proposed problems is the time required to solve 

the problems. The time to solve the problems increases exponentially as the problem grows in 

size (i.e., in the number of nodes and in the number of arcs) and complexity. The time required to 

solve the two-flow problem with contraflow is over 20 hours, which is unreasonable, especially 

in an emergency situation.  This motivates the need to develop intelligent heuristic solution 

approaches that generate high-quality solutions quickly. 

CHAPTER 4 presents a proposed genetic-based heuristic approach for the EERP. The 

objective function is revised so the predefined evacuation time limit T (required by the proposed 

ILP model formulations) is not required. After a revised objective which is to maximize the 

weighted evacuee and responder flow, where the weighted flow for each is computed as the 

capacity of an arc multiplied by that arc’s lead time. 

An important component of any genetic-based procedure is the fitness function. The 

fitness function for the GA-based heuristic solution procedure for the EERP problem evaluates 

the objective of each route found from all occupied nodes in the network, so the routing with the 

maximum weighted flow is obtained. The fitness function uses a modified version of the breadth 

first search (BFS) algorithm. Similar to the ILP formulations, the genetic-based heuristic solution  

procedure is applied to the Minnesota nuclear power plant dataset. After tuning the GA search 

control parameters by conducting an intensive pilot study that varied the GA search parameters, 

the proposed EERP heuristic solution procedure identifies a network configuration that attempts 

to maximize the weighted flow of evacuees and responders. 

Applying the genetic-based heuristic solution procedure to the Minnesota nuclear power 

plant dataset and solving the two-flow problem with contraflow problem, the solution time is 



83 

reduced dramatically. The GA generates an evacuation network configuration with contraflow 

solution in 43.2 minutes per replication compared to the required solution time for the ILP 

formulation of the same problem, which is just under 21 hours. Although the total solution times 

are similar in this study, the run time for the GA-based heuristic approach is greatly influenced 

by the number of solution evaluations and the number of random replications. If the number of 

solution evaluations and/or the number of replications is reduced, then a significant amount of 

solution time would be saved. 

 

5.2 Future Work 

This research investigates the emergency evacuation route planning problem and 

proposes two modeling and solution approaches – ILP and genetic-based heuristics – to solve 

this problem. We are confident that the research presented in this dissertation and the 

conclusions drawn has laid a sufficient foundation for several areas of further study. 

One area that needs additional study is incorporating flow-dependent roadway travel 

times in the evacuation route planning decisions. In this research, it is assumed that roadway 

travel times are independent of the amount of flow on the roadway during a given time.  

However, from queueing theory, it is well-known that, as the number of entities increase within a 

network, the average time per entity spent in the network increases, often quickly and 

dramatically, due to the increased congestion. A worthwhile study would be to consider arc lead 

times a function of the number of evacuees and/or responders on the arc at a given time. 

Another area of further study is to consider different levels of awareness of the people 

during evacuation. People have different level of awareness about what is happening during an 
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emergency. A high percentage of people will not respond immediately to an emergency when a 

hazardous event takes place, and will not egress immediately (Lee et al., 2004). There are three 

time periods that should be considered: 

(1) The period between the time at which the emergency incident occurs and the time at 

which a person becomes aware of the incident; 

(2) The period between the time at which it is decided by a person to start egress motion and 

the time at which an egress path is chosen and taken; and 

(3) The period between the time at which a person chooses and takes an egress path and the 

time at which the person clears the network. 

In modeling EERP, these time periods could be incorporated as they take place in real-life 

emergency incidents. 

Another area that needs additional study is controlling traffic flow under contraflow lane 

reversals. Applying contraflow lane reversals is an intensive task on enforcement officials as 

they need to manually direct traffic during a lane reversal. Officials block each entrance ramp of 

the same direction of the traffic and each exit ramp is temporarily converted to an entrance ramp 

(Wolshon et al., 2001). Controlling traffic in such ways require time and numerous numbers of 

officials. Although, in the developed GA, contraflow is not applied more than once, the proposed 

ILP model formulations could still have an additional constraint that controls the maximum 

number of times an arc is reversed. 

Lastly, the application of the three proposed ILP model formulations and the GA-based 

heuristic approach for the EERP problem to different geographical datasets, such as coastal areas 
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and metropolitan areas, should be performed. This will allow the study of the influence of the 

characteristics of different geographical regions on the ILP and GA solution approaches. 
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APPENDIX A: 
MONTICELLO, MINNESOTA NUCLEAR POWER PLANT DATASET 

 
Figure A.1. Map of the highways and arterials around nuclear power plant in Monticello, 
Minnesota. 
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Table A.1. Arc data of the Monticello, Minnesota nuclear power plant. 
From Node To Node Arc Capacity Lead Time 

1 2 150 18 
2 1 150 18 
1 3 150 9 
3 1 150 9 
2 4 250 6 
4 2 250 6 
2 5 150 5 
5 2 150 5 
3 4 100 17 
4 3 100 17 
3 6 150 10 
6 3 150 10 
3 9 100 15 
9 3 100 15 
4 15 250 11 

15 4 250 11 
5 8 200 9 
8 5 200 9 
6 9 150 8 
9 6 150 8 
6 17 100 7 

17 6 100 7 
7 8 150 17 
8 7 150 17 
7 11 150 6 

11 7 150 6 
8 10 200 2 

10 8 200 2 
9 15 150 5 

15 9 150 5 
9 16 100 3 

16 9 100 3 
10 12 100 3 
12 10 100 3 
10 13 200 4 
13 10 200 4 
11 23 150 15 
23 11 150 15 
11 40 100 9 
40 11 100 9 
12 13 100 8 
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From Node To Node Arc Capacity Lead Time 
13 12 100 8 
12 18 100 6 
18 12 100 6 
12 40 100 8 
40 12 100 8 
13 19 200 5 
19 13 200 5 
14 15 150 1 
15 14 150 1 
14 19 150 4 
19 14 150 4 
14 20 100 9 
20 14 100 9 
15 16 100 5 
16 15 100 5 
15 21 250 9 
21 15 250 9 
16 17 100 8 
17 16 100 8 
16 21 100 12 
21 16 100 12 
17 22 100 11 
22 17 100 11 
18 19 100 11 
19 18 100 11 
18 24 100 12 
24 18 100 12 
19 25 200 12 
25 19 200 12 
20 21 100 5 
21 20 100 5 
20 26 100 8 
26 20 100 8 
21 22 100 3 
22 21 100 3 
21 46 250 9 
46 21 250 9 
22 46 150 5 
46 22 150 5 
23 24 200 11 
24 23 200 11 
24 25 200 13 
25 24 200 13 
25 26 150 1 
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From Node To Node Arc Capacity Lead Time 
26 25 150 1 
25 38 200 13 
38 25 200 13 
26 27 150 2 
27 26 150 2 
27 28 150 5 
28 27 150 5 
27 31 100 4 
31 27 100 4 
28 29 150 1 
29 28 150 1 
28 45 100 2 
45 28 100 2 
28 46 100 4 
46 28 100 4 
29 30 200 3 
30 29 200 3 
29 33 250 7 
33 29 250 7 
29 46 250 3 
46 29 250 3 
30 32 100 3 
32 30 100 3 
31 39 100 11 
39 31 100 11 
31 45 100 3 
45 31 100 3 
32 34 100 5 
34 32 100 5 
32 45 100 4 
45 32 100 4 
33 35 100 2 
35 33 100 2 
33 36 250 2 
36 33 250 2 
34 35 100 2 
35 34 100 2 
34 39 100 10 
39 34 100 10 
34 47 100 3 
47 34 100 3 
35 47 100 3 
47 35 100 3 
36 37 250 1 



90 

From Node To Node Arc Capacity Lead Time 
37 36 250 1 
36 43 100 5 
43 36 100 5 
37 44 250 3 
44 37 250 3 
38 39 200 1 
39 38 200 1 
39 41 200 6 
41 39 200 6 
47 41 100 2 
41 47 100 2 
47 42 100 3 
42 47 100 3 
41 42 200 2 
42 41 200 2 
42 43 200 1 
43 42 200 1 
43 44 200 1 
44 43 200 1 
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Table A.2. Node data of the Monticello, Minnesota nuclear power plant modified to include the 
emergency first responder population. 

Node Node Capacity Evacuee Initial Population Responder Initial Population 
1 9999999 0 0 
2 2400 2354 0 
3 3500 3408 0 
4 2300 2236 0 
5 800 707 0 
6 4700 4616 0 
7 250 0 0 
8 250 0 0 
9 6800 6749 0 

10 4000 3994 0 
11 250 0 20 
12 250 0 0 
13 250 0 0 
14 4700 4675 0 
15 250 0 0 
16 250 0 0 
17 250 0 20 
18 1800 1785 0 
19 9700 9645 0 
20 250 0 0 
21 1400 1390 0 
22 250 0 0 
23 250 0 0 
24 250 0 0 
25 250 0 30 
26 250 0 0 
27 250 0 0 
28 250 0 0 
29 250 0 0 
30 250 0 0 
31 250 0 0 
32 250 0 0 
33 250 0 20 
34 250 0 0 
35 250 0 0 
36 250 0 0 
37 250 0 0 
38 250 0 50 
39 250 0 0 
40 400 391 0 
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Node Node Capacity Evacuee Initial Population Responder Initial Population 
41 250 0 0 
42 250 0 20 
43 250 0 40 
44 250 0 20 
45 250 0 0 
46 250 0 0 
47 99999999 0 0 
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APPENDIX B: 
BEST NETWORK CONFIGURATION FROM THE PROPOSED 

GENETIC-BASED SOLUTION PROCEDURE 

Table B.1. Best network configuration found by the GA-based approach at parameter settings P 
= 200, G = 500, pc = 85% and pm = 1%. (Replication 13). 

From Node To Node Arc Capacity Lead Time 
Arc Direction 

(1 = Normal Flow Direction) 
1 2 41950 0 0 
2 1 41950 0 1 
2 3 150 18 1 
3 2 150 18 1 
2 4 150 9 0 
4 2 150 9 1 
3 5 250 6 0 
5 3 250 6 0 
3 6 150 5 0 
6 3 150 5 0 
4 5 100 17 0 
5 4 100 17 0 
4 7 150 10 0 
7 4 150 10 1 
4 10 100 15 1 

10 4 100 15 1 
5 16 250 11 1 

16 5 250 11 0 
6 9 200 9 0 
9 6 200 9 0 
7 10 150 8 1 

10 7 150 8 0 
7 18 100 7 0 

18 7 100 7 1 
8 9 150 17 0 
9 8 150 17 0 
8 12 150 6 1 

12 8 150 6 1 
9 11 200 2 0 

11 9 200 2 0 
10 16 150 5 1 
16 10 150 5 1 
10 17 100 3 0 
17 10 100 3 1 
11 13 100 3 0 
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From Node To Node Arc Capacity Lead Time 
Arc Direction 

(1 = Normal Flow Direction) 
13 11 100 3 0 
11 14 200 4 0 
14 11 200 4 1 
12 24 150 15 1 
24 12 150 15 1 
12 41 100 9 0 
41 12 100 9 0 
13 14 100 8 1 
14 13 100 8 0 
13 19 100 6 1 
19 13 100 6 1 
13 41 100 8 1 
41 13 100 8 0 
14 20 200 5 1 
20 14 200 5 0 
15 16 150 1 0 
16 15 150 1 1 
15 20 150 4 0 
20 15 150 4 1 
15 21 100 9 1 
21 15 100 9 0 
16 17 100 5 1 
17 16 100 5 0 
16 22 250 9 1 
22 16 250 9 0 
17 18 100 8 0 
18 17 100 8 0 
17 22 100 12 0 
22 17 100 12 1 
18 23 100 11 0 
23 18 100 11 1 
19 20 100 11 1 
20 19 100 11 0 
19 25 100 12 1 
25 19 100 12 1 
20 26 200 12 0 
26 20 200 12 0 
21 22 100 5 1 
22 21 100 5 0 
21 27 100 8 0 
27 21 100 8 1 
22 23 100 3 0 
23 22 100 3 0 
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From Node To Node Arc Capacity Lead Time 
Arc Direction 

(1 = Normal Flow Direction) 
22 47 250 9 0 
47 22 250 9 0 
23 47 150 5 0 
47 23 150 5 1 
24 25 200 11 1 
25 24 200 11 1 
25 26 200 13 0 
26 25 200 13 1 
26 27 150 1 0 
27 26 150 1 0 
26 39 200 13 1 
39 26 200 13 0 
27 28 150 2 1 
28 27 150 2 1 
28 29 150 5 0 
29 28 150 5 0 
28 32 100 4 0 
32 28 100 4 1 
29 30 150 1 1 
30 29 150 1 1 
29 46 100 2 1 
46 29 100 2 1 
29 47 100 4 0 
47 29 100 4 1 
30 31 200 3 1 
31 30 200 3 1 
30 34 250 7 1 
34 30 250 7 0 
30 47 250 3 0 
47 30 250 3 0 
31 33 100 3 0 
33 31 100 3 0 
32 40 100 11 1 
40 32 100 11 0 
32 46 100 3 0 
46 32 100 3 1 
33 35 100 5 1 
35 33 100 5 0 
33 46 100 4 1 
46 33 100 4 0 
34 36 100 2 0 
36 34 100 2 0 
34 37 250 2 1 
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From Node To Node Arc Capacity Lead Time 
Arc Direction 

(1 = Normal Flow Direction) 
37 34 250 2 1 
35 36 100 2 1 
36 35 100 2 0 
35 40 100 10 0 
40 35 100 10 0 
35 48 100 3 1 
48 35 100 3 0 
36 48 100 3 1 
48 36 100 3 1 
37 38 250 1 1 
38 37 250 1 1 
37 44 100 5 0 
44 37 100 5 1 
38 45 250 3 0 
45 38 250 3 0 
39 40 200 1 1 
40 39 200 1 0 
40 42 200 6 1 
42 40 200 6 0 
48 42 100 2 1 
42 48 100 2 1 
48 43 100 3 1 
43 48 100 3 1 
42 43 200 2 1 
43 42 200 2 0 
43 44 200 1 1 
44 43 200 1 0 
44 45 200 1 1 
45 44 200 1 1 
48 49 41950 0 1 
49 48 41950 0 1 
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