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ABSTRACT 

In many equipment-intensive organizations in the manufacturing, service and particularly 

the defense sectors, service parts inventories constitute a significant source of tactical and 

operational costs and consume a significant portion of capital investment. For instance, the 

Defense Logistics Agency manages about 4 million consumable service parts and provides about 

93% of all consumable service parts used by the military services. These items required about 

US$1.9 billion over the fiscal years 1999-2002. During the same time, the US General 

Accountability Office discovered that, in the United States Navy, there were about 3.7 billion 

ship and submarine parts that were not needed. The Federal Aviation Administration says that 26 

million aircraft parts are changed each year. In 2002, the holding cost of service parts for the 

aviation industry was estimated to be US$50 billion. The US Army Institute of Land Warfare 

reports that, at the beginning of the 2003 fiscal year, prior to Operation Iraqi Freedom the 

aviation service parts alone was in excess of US$1 billion. This situation makes the management 

of these items a very critical tactical and strategic issue that is worthy of further study. The key 

challenge is to maintain high equipment availability with low service cost (e.g., holding, 

warehousing, transportation, technicians, overhead, etc.). For instance, despite reporting 

US$10.5 billion in appropriations spent on purchasing service parts in 2000, the United States 

Air Force (USAF) continues to report shortages of service parts. The USAF estimates that, if the 

investment on service parts decreases to about US$5.3 billion, weapons systems availability 

would range from 73 to 100 percent. Thus, better management of service parts inventories should 

create opportunities for cost savings caused by the efficient management of these inventories. 

Unfortunately, service parts belong to a class of inventory that continually makes them difficult 
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to manage. Moreover, it can be said that the general function of service parts inventories is to 

support maintenance actions; therefore, service parts inventory policies are highly related to the 

resident maintenance policies. However, the interrelationship between service parts inventory 

management and maintenance policies is often overlooked, both in practice and in the academic 

literature, when it comes to optimizing maintenance and service parts inventory policies. Hence, 

there exists a great divide between maintenance and service parts inventory theory and practice. 

This research investigation specifically considers the aspect of joint maintenance and 

service part inventory optimization. We decompose the joint maintenance and service part 

inventory optimization problem into the supplier’s problem and the customer’s problem. Long-

run expected cost functions for each problem that include the most common maintenance cost 

parameters and service parts inventory cost parameters are presented. Computational 

experiments are conducted for a single-supplier two-echelon service parts supply chain 

configuration varying the number of customers in the network. Lateral transshipments (LTs) of 

service parts between customers are not allowed. For this configuration, we optimize the cost 

functions using a traditional, or decoupled, approach, where each supply chain entity optimizes 

its cost individually, and a joint approach, where the cost objectives of both the supplier and 

customers are optimized simultaneously. We show that the multiple objective optimization 

approach outperforms the traditional decoupled optimization approach by generating lower 

system-wide supply chain network costs. The model formulations are extended by relaxing the 

assumption of no LTs between customers in the supply chain network. Similar to those for the no 

LTs configuration, the results for the LTs configuration show that the multiobjective 

optimization outperforms the decoupled optimization in terms of system-wide cost. Hence, it is 

economically beneficial to jointly consider all parties within the supply network. Further, we 
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compare the model configurations – LTs versus no LTs, and we show that using LTs improves 

the overall savings of the system. It is observed that the improvement is mostly derived from 

reduced shortage costs since the equipment downtime is reduced due to the proximity of the 

supply. 

The models and results of this research have significant practical implications as they can 

be used to assist decision-makers to determine when and where to pre-position parts inventories 

to maximize equipment availability. Furthermore, these models can assist in the preparation of 

the terms of long-term service agreements and maintenance contracts between original 

equipment manufacturers and their customers (i.e., equipment owners and/or operators), 

including determining the equitable allocation of all system-wide cost savings under the 

agreement. 
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CHAPTER 1: 
INTRODUCTION 

1.1. The State of Service Parts Inventory Management 

Equipment-intensive organizations including service, military and manufacturing 

companies are constantly challenged by their environment. These organizations must operate 

their business with high system availability, e.g., utility companies and commercial airlines. To 

ensure continuity of operations, an ample supply of service parts (sometimes referred to as spare 

parts) should be maintained. The failure of a component can cause the system to fail potentially 

causing severe downtime consequences. In contrast, maintaining a high inventory of service 

parts ties up capital and often results in exorbitant inventory costs. 

For many organizations, service parts inventories consume a significant portion of their 

capital investment. For instance, the Defense Logistics Agency (DLA) manages about 4 million 

consumable service parts and provides about 93% of all consumable service parts used by the 

military services. These items required about US$1.9 billion investment over the fiscal years 

1999-2002. On the other hand, the US General Accountability Office (GAO) discovers that, in 

the United States Navy, there were about 3.7 billion ship and submarine parts that were not 

needed. The Federal Aviation Administration (FAA) says that 26 million aircraft parts are 

changed each year. In 2002, the holding cost of service parts for the aviation industry is 

estimated to be US$50 billion (Kilpi et al., 2004). 

This situation makes the management of these items a very critical issue that is worthy of 

careful study. As indicated by Diaz and Fu (2005), in many organizations in the manufacturing, 

services and defense sectors, there are opportunities for cost savings by engaging in more 

efficient management of service parts inventories, and the trend is that it is likely to become even 



 

2 

more critical. The key challenge is to maintain high availability with low service cost (e.g., 

holding, warehousing, transportation, technicians, overhead, etc.). For instance, despite reporting 

US$10.5 billion in appropriations spent on purchasing service parts in 2000, the United States 

Air Force (USAF) continues to report shortages of service parts. The USAF estimates that, if the 

investment on service parts decreases to about US$5.3 billion, weapons systems availability 

would range from 73 to 100 percent (GAO, 2003). 

Many organizations are expending enormous efforts to improve the management of 

service parts, especially in the defense sector, where equipment readiness is a critical aspect of 

military readiness. For instance, the USAF has identified more than 80 initiatives to address 

more than 300 deficiencies involving important aspects such as the processes that affect service 

parts shortages, depot maintenance, and supply of service parts (GAO, 2003). In industry, IBM, 

for example, has created different tools to manage their more than 50 million service parts 

(Cohen, 1990). 

By their very nature, service parts belong to class of inventory that makes them 

inherently difficult to manage. The general function of service parts inventories is to assist a 

maintenance staff in keeping equipment in operating condition. Consequently, the policies that 

govern service parts inventories are different from those that govern other type of inventories 

such as raw material inventory, work-in-process inventory and finished goods inventory. Service 

parts are characterized by low demand with stochastic and frequent irregular patterns. Hence, 

service parts inventory management is one important area that should not be underestimated. 

 

1.2. Multi-Echelon Service Parts Inventory Systems and Inventory Pooling 

Common in industry, different levels (echelons) frequently make up a service parts 

supply chain, where the multi-echelon inventory system involves the existence of a hierarchy of 
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parts stocking locations.  For instance, Siemens AG Power Generation (2004) implements a 

three-tier service parts logistics strategy to reduce its stockpiling of service parts for its 

Instrumentation and Controls Services business unit that supports the other business units. The 

first tier requires that service parts critical to production are stored onsite at the customer. The 

second tier is the use of a centralized stocking location that is managed by Siemens.  The third 

tier employs a logistic service that delivers what are considered non-critical parts when requested 

by customers.  Siemens reports that the onsite service parts inventory can be reduced by up to 

80%. The use of multi-echelon inventory models for the management of service parts inventory 

is primarily driven by a need to control and reduce the inventory holding costs as well as the 

improvement of the response time in the supply of items.  However, it is the dependencies and 

interactions between the different echelons that complicate the service parts inventory control 

problem. 

Further, many organizations have extended the multi-echelon configurations to share and 

collaborate among partnering organizations (through inventory pooling) with the goal of 

benefiting not only the individual partnering organizations but also the entire supply chain.  

Inventory pooling, which is typically an agreement between partners belonging to the same 

echelon to share their service parts inventories, has been shown to be an effective strategy to 

improve logistical performance and reduce overall inventories in multi-echelon supply chain 

systems. The idea of pooling inventories relies on timely lateral transshipments between pooling 

partners. This cooperation can also be used to improve the service levels and equipment 

availability while reducing the total supply chain system cost. The cost of a shipment from a 

pooling partner is generally much lower than the combined costs of equipment downtime and 

emergency part shipments from a higher echelon.  In general, these situations are usually 
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economically more attractive than the costs incurred in a regular emergency shipment from the 

parts supplier.  Past research suggests that lateral transshipments can reduce overall equipment 

downtime cost and inventory cost. However, this is not an easy problem to address, as indicated 

by Köchel and Nieländer (2002). One of the main problems is how to define optimal order and 

transshipment policies in multi-echelon inventory models. 

In recent years, several companies came to understand the benefits of service parts 

inventory pooling and have entered into such partnerships, particularly in the airline industry. 

For instance, the Boeing Company has a worldwide agreement called Spares Exchange Program. 

This agreement currently includes KLM Royal Dutch Airlines, Transavia Airlines of the 

Netherlands, Braathens of Norway, Polynesian Airlines, Oman Air, and Yemen Airways. Also 

KSSU, a maintenance consortium in Europe, includes KLM, SAS, Swissair and UTA. Atlas has 

grouped Air France, Alitalia, Iberia and Lufthansa. Another industry where companies realize 

the importance and benefits of pooling service parts inventory is the power generation industry. 

General Electric Energy has pooling agreements with its transformer customers.  The ABB 

Group establishes these agreements with its customers for power generation, water and 

wastewater plants. Power Engineering International (2003) reports that several public power 

generation companies in Florida have formed a common organization to manage the collective 

service parts for their combustion turbines in an effort to reduce their individual stockpiles. 

 

1.3. Long-Term Service Agreements 

The immediate availability of critical service parts is a must in order to improve 

efficiency, productivity and safety, extend equipment life cycles and minimize equipment 

downtime, and in some cases, as in the power generation sector, comply with regulatory and 

environmental regulations. The probability of success in achieving these objectives increases 
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significantly when the equipment is covered by a long-term service agreement (LTSA) managed 

by the original equipment manufacturer (OEM). In principle, an LTSA is an agreement between 

the owner (or operator) of the equipment (i.e., the customer) and the OEM (i.e., the parts 

supplier).  These agreements, sometimes referred to as maintenance service agreements, service 

contracts, or maintenance contracts, are essentially risk management tools that are used quite 

commonly in the power generation market.  For instance, General Electric Power Systems and 

the Power Generation Group of Siemens AG offer and maintain these for their customers.  

Levallois-Perret, France-headquartered Alstom, currently offers operation and maintenance 

contracts to its power customers. 

The spectrum of LTSAs has expanded over the years, and these agreements can range 

from simple purchase orders to service agreements that ensure the timely delivery of critical 

service parts to agreements that allow partial or perhaps full facility operation and maintenance 

by the OEM.  These agreements ensure a desired level of responsibility of the OEM to a 

customer, from the provisioning of a single service or product to the responsibility for operating 

and maintaining the entire power plant (if requested), including power availability guarantees.  

The benefit to the customer is that, with the increased involvement and responsibility of the 

OEM, the risk of the owner or operator of the power plant is decreased. Lehmann (2006) of 

Siemens Power Generation lists some of the major benefits of LTSAs to the customer as: 

• discounted OEM parts and services; 

• extended warranties, which means more than the normal service or product guarantee; 

and 

• remote performance monitoring and diagnostic services. 
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In short, LTSAs can significantly reduce equipment repair time consequently reducing planned 

and unplanned production outages. 

The provisioning of critical service parts is often a major component of LTSAs, and the 

availability and access of parts are among the major factors leading to a reduction of downtime 

when a breakdown occurs.  If the required parts are not available in stock at the customer, the 

equipment cannot be repaired until the part is ordered and shipped from the supplier. Firms have 

realized the importance of appropriate storage and timely delivery of service parts for their 

customers. Another important aspect of the LTSAs is the pooling of inventories.  So the supplier, 

in certain situations, can make use of lateral transshipments between customers to cover 

emergency orders. 

A major challenge of LTSAs is negotiating the most appropriate terms under which the 

customer and the part supplier will partner as well as the responsibilities of each party. The terms 

of the LTSA are negotiated so that the operational and strategic objectives of all parties are 

achieved.  The two primary parties involved in LTSAs that have a major interest in them are the 

customers and the parts supplier, and the successful, effective agreement should be crafted from 

the viewpoint of both parties. The challenge though is to strike a balance between multiple and 

conflicting operational objectives of the parties, i.e., maintain high system availability with low 

cost (e.g., inventory holding, transportation/delivery, production downtime, labor, overhead, etc.). 

 

1.4. Multiobjective Optimization of Service Parts Inventory Supply Systems 

Several authors have addressed the problem of determining the optimal levels of service 

parts (e.g., Rudi et al., 2001; Marseguerra et al., 2004; Wong et al., 2006). However, some of the 

existing modeling approaches and solution methods in the literature use simplified models whose 

applicability to real-world multi-echelon inventory systems may be questionable. Some other 
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authors (e.g., Köchel et al., 2002; Axsäter, 2003; Zamperini et al., 2005) use simulation to the 

posterior optimization of the results for scenarios with one customer or one independent system. 

However, to date, no work has been done regarding the simultaneous optimization of the 

inventory and maintenance policies of the members (i.e., customers and suppliers) of an 

inventory supply chain of service parts. 

In this research, we propose an approach for the joint optimization of different 

independent systems that are members of a service parts supply chain. Each party in this multi-

echelon supply chain system has its own objectives (and constraints) regarding optimizing 

service parts inventories and maintenance policies, and these objectives may contrast or be 

similar to those for the other entities in the supply chain system. This type of system clearly 

represents a multiobjective optimization situation. Consider a general multiobjective 

optimization problem (MOOP) with vector x of p policy decision variables (i.e., xi where i = 1, 

…, p) and n objectives, where n > 1.  The problem can be generally expressed as follows: 

min (max) zi = fi(x), i =  1, …, n, (1.1)

where a solution x is a p-dimensional vector of decision variables in the decision space that are 

continuous or discrete, or both.  Eq. 1.1 is subject to m inequality constraints 

gj(x) ≤ 0, j = 1, …, m, 

and k equality constraints 

hl(x) = 0, l = 1, …, k. 

Solutions that dominate the others but do not dominate themselves are called 

nondominated solutions. A solution x is said to dominate a solution y if and only if 

fi(x) ≤ fi(y) for all i ∈ {1, 2, … , n}, and 

fi(x) < fi(y) for at least one i ∈ {1, 2, … , n}. 
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In other words, there is at least one solution x that is better than a solution y while the remaining 

solutions are either equal to or worse than the others.  The solution x is said to be Pareto optimal 

if no other solution can be found to dominate x using this definition of solution dominance.  We 

note here that this definition can be applied to a maximization or minimization problem with no 

loss of generality. 

Past attempts to solve multiobjective joint inventory-maintenance optimization problems 

have typically led researchers and practitioners to convert the MOOP into a single objective 

optimization problem. This approach ultimately transforms the original multiple objective 

formulation into a single objective optimization problem with a single, unique solution (decision).  

Some researchers and practitioners choose to model one objective, say as a cost (or profit) 

objective, and then represent other objectives as constraints.  Others choose to represent the 

multiplicity of objectives as a single composite weighted objective function using a vector of 

user-defined weights in order to produce a tractable problem.  Several drawbacks of using such 

traditional methods include: 

1) the need for appropriate selection of the weight vector; 

2) missing some of the optimal solutions in the nonconvex objective space; and 

3) the inability to easily homogenize different quantities, such as cost, quality and time, to a 

common unit of measure. 

These and other known drawbacks to traditional multiobjective optimization approaches have 

motivated researchers and practitioners to seek alternative techniques to find a set of Pareto 

optimal solutions rather than just a single solution. In general, in multiobjective optimization 

problems, the solutions are not uniquely determined.  In fact, in these problems, especially where 

two or more objectives conflict, there usually exist many solutions that satisfy all relevant 
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objectives, where the most desirable solution, or at least the best-compromised solution, is 

selected from among them.  In practice, the availability of a set of Pareto optima provides the 

stakeholder(s) with the opportunity to consider several possible decision alternatives, which is 

generally preferred by decision-makers.  In this case, the decision-maker can select a solution in 

accordance to his or her preferences or constraints.  Therefore, the development of 

multiobjective optimization solution procedures using nondomination-based methods is preferred. 

 

1.5. Motivation of This Research 

Important aspects regarding the optimization of service parts inventory and maintenance 

policies in a multi-echelon supply chain system have been discussed. Two aspects motivate this 

research. First, the simultaneous optimization of inventories and maintenance has not been 

largely addressed.  Second, it is clear that there is an important relationship between service parts 

management activities and maintenance activities since one supports the other one. However, 

these two areas have mainly been considered separately.  For instance, the maintenance literature 

often assumes an infinite supply of service parts and inventory personnel do not consider 

maintenance needs. For this reason, developing effective strategies considering both as a joint 

activity is needed. 

In addition to the joint optimization of service parts inventory and maintenance, the 

simultaneous optimization of service parts inventory and maintenance from both the customer 

and supplier perspectives has not traditionally been the focus in research or in practice. A 

multiobjective inventory supply chain system must consider each member as a separate entity. In 

this case, since each member has its own goals, the system should find a balance between those 

and determine what is better for all parties involved.  In other words, the decision-maker should 
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be able to determine a range of solutions that optimizes the system and then find the most 

satisfying solution for all supply system members. 

 

1.6. Objectives of This Research 

Several models have been developed and many solution methods have been proposed by 

the research community, but none of them fully include the two main aspects of this research. In 

addition, the advertised success of these models in practice has not yet been fully realized 

(Kranenburg and van Houtum, 2004). A reason might be that many assumptions underlie these 

models, resulting in some essential and realistic properties not captured in the current models. 

However, if these assumptions are relaxed, it is not easy or even possible to get an optimal or 

even near-optimal solution. Since the general problem is quite difficult, we start by analyzing a 

somewhat simple version of the problem in order to obtain insights into a more complicated 

version of the problem.  Then, a primary constraint of the simpler version of the problem is 

relaxed to more resemble a real-world situation. 

 

Objective 1: Maintenance and Service Parts Inventory Policy Optimization for a Two-Echelon n-

Customer and Single-Supplier Supply Chain System 

The first research objective investigates a service part supply system that consists of a 

single supplier and multiple (n) customers in a two-echelon supply chain. A single part supply 

chain where the parts are non-repairable (i.e., replacement) is considered.  This is similar to 

repairable items whose repair facilities are off-site and there is a supply of repaired parts ready to 

be shipped. In this supply chain scenario, the service parts supplier has one objective: to 

minimize that includes inventory and production costs. The supplier must decide when to 

produce a part for each customer.  Each customer desires to minimize their total inventory and 
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maintenance costs by deciding when to order a replacement part and when to replace a failed or 

non-failed part.  In this scenario, no lateral transshipments occur between the customers. 

 

Objective 2: Maintenance and Service Parts Inventory Policy Optimization for a Two-Echelon n-

Customer and Single-Supplier Supply Chain System with Lateral Transshipments 

Under this research objective, lateral transshipments between customer locations are 

allowed. This supply system configuration is similar to that in Objective 1; however, service 

parts can move between customers.  In this problem, the supplier makes the same decisions as in 

the previous configuration.  On the other hand, each customer must also decide when to request a 

part from a partnering customer in the supply chain and to which customer they submit the part 

request. 

 

1.7. Contributions of This Research Investigation 

This research investigation has significant benefit and broad impacts.  First, a 

contribution of this investigation is to strengthen the foundation for the optimization of multiple 

objectives, in particular, regarding inventory and maintenance systems. Currently, researchers 

have focused on single objective optimization, ignoring the advantages of simultaneous 

optimization, especially for decision support. Second, practitioners will benefit from integration 

of two areas that are usually investigated separately but are highly-related – maintenance cost 

modeling and service parts inventory cost modeling. In maintenance, reliability engineers usually 

work on the minimization of the maintenance cost ignoring the inventories and assuming that 

they are always available.  In service parts inventories, logisticians work on minimizing costs, 

sometimes sacrificing equipment reliability. 
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Another contribution is that, from the general models created here, organizations that are 

entering LTSAs will have a strong basis to create their own maintenance and inventory solutions. 

These solutions should give those companies a competitive advantage since less capital and 

resources will be needed. Furthermore, recall that a major challenge of LTSAs is negotiating the 

most appropriate terms under which the customers and the part supplier will partner as well as 

the responsibilities of each party. The models and results of this research can be used to assist 

decision-makers in preparing the terms of LTSAs, including determining the equitable allocation 

of all cost savings (sacrifice) under the agreement. 

 

1.8. Outline of This Dissertation  

The remainder of this dissertation is organized as follows. In Chapter 2, we summarize 

the most important work reported in the literature for the areas related to this investigation such 

as service parts inventory modeling, maintenance modeling, joint service parts inventory 

optimization, and evolutionary algorithms for optimization.  In Chapter 3, we develop the long-

run expected cost models for a two-echelon, single supplier, n-customer configuration for joint 

maintenance and service parts inventory system. In this configuration, lateral transshipments of 

service parts between customers are not considered. We use decoupled and joint optimization 

and show the differences between these two approaches. In Chapter 4, the work in Chapter 3 is 

extended by relaxing the constraint of lateral transshipments, and new long-run expected cost 

models are developed and solved. The results of the two configurations (i.e., with lateral 

transshipments and with no lateral transshipments) are compared, and the benefits of the 

extended model are illustrated. Finally, in Chapter 5, we present a summary of the research 

followed by a discussion of directions of future work. 
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CHAPTER 2: 
LITERATURE REVIEW 

2.1. Introduction 

Service parts inventory modeling and optimization, and maintenance modeling and 

optimization are two vast bodies of research. The open literature contains a substantial amount of 

work in these two areas.  Therefore, we review past work in these areas of research that consider 

multi-echelon service part inventory systems. Our review of the literature is divided into three 

parts. First, we begin with the previous work in service (or spare) parts inventory modeling. Next, 

we discuss previous work that involves maintenance modeling that supports service parts 

modeling. Finally, previous work in the area of multiobjective optimization, in terms of 

maintenance and service parts inventories, is briefly discussed. 

 

2.2. Multi-Echelon Service Parts Inventory Modeling 

In general, multi-echelon service parts inventory models have been widely researched 

from several different perspectives (Kennedy et al., 2002). Several assumptions have been made 

regarding the demand arrival process, the different channels through which parts move, the 

number of parts in the system, etc. with the goal of finding optimal or near-optimal inventory 

policies that minimize total system cost.  The majority of these models do not include the impact 

of the maintenance policy in their analyses. 

Multi-echelon inventory models can be classified as cyclic and acyclic models. In acyclic 

models, demand for parts or goods flows in only one direction. For example, in the computer 

industry, the supplier sends the service parts to the customer. After the replacement part is 

installed, the failed part is no longer useful and is discarded. Cyclic models are those in which 
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part inventory flows through the system as demanded by the different locations, so inventory is 

neither lost nor produced, though it may undergo some transformation. This is the case of 

repairable items.  Once damaged, failed parts are sent to a repair facility. As soon as the parts are 

repaired, they are made available for future replacements (Diaz and Fu, 2004). The focus of this 

research is multi-echelon cyclic service parts inventory models.  It is important to note here that 

non-repairable service parts models can be treated as cyclic models since the supplier can be 

considered as the repairing warehouse and the part repair time is the lead time to receive the 

replacement part. 

One of the earliest works and most well-known in the area of multi-echelon service parts 

inventory systems is that of Sherbrooke (1968). In his seminal work, Sherbrooke (1968) 

develops the METRIC model, which is a model of a two-echelon service parts inventory supply 

system for the US Air Force to manage their repairable items. In this supply system, there are n 

bases that are supported (supplied) by a central depot.  Repair is performed at the base-level and 

at the depot-level, depending on the required level of repair. All the facilities in the system have 

ample repair capacity and operate according to a continuous review (S, S-1) policy, or base stock 

policy. Sherbrooke (1968) considers the minimization of the total expected backorders at the 

bases subject to a system investment constraint. There have been several extensions to 

Sherbrooke’s work (e.g., Muckstadt, 1973; Muckstadt and Thomas, 1980; Sherbrooke, 1986; 

Diaz 2003). Muckstadt (1973) develops the MOD-METRIC model, which allows for multiple 

levels of indenture, i.e., service parts requirements for an end assembly item and its components. 

Muckstadt and Thomas (1980) develop another extension of the METRIC model by allowing 

emergency replenishments in case of stockout situations at the central or local warehouses. More 
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recently, Diaz (2003) addresses the simultaneous optimization of the service parts inventory 

using the METRIC model and the resources needed for maintenance. 

Some studies focus on analyzing multi-echelon inventory systems with a single part. This 

includes the work of Moinzadeh and Lee (1986) that considers a single-part model and develops 

a search routine for the stocking levels. They also derive a decision rule to select an (S, S-1) 

versus an (Q, r) policy. Axsäter (1990a) considers a single-part, two-echelon, one-for-one 

replenishment (base stock) model. He develops a recursive procedure to determine average 

holding and shortage costs and discusses the characteristics of optimal inventory base stock 

levels. He concludes that the model requires more computational resources than the METRIC 

and the Graves approximations when only a single policy is evaluated, but requires less 

computational effort when the whole system is to be optimized. 

Cohen (1990) develops a multi-echelon model called Optimizer to determine optimal 

service and service parts inventory policies of IBM. They use fill rate as the service measure and 

solve the problem by decomposing the model into three stages. The decomposition starts with 

the lowest echelon where demand occurs and passes up to the following level, and so on. They 

use a heuristic solution procedure in solving the service allocation problem. Each iteration of the 

algorithm increments to part stocking levels are selected on the basis of their marginal 

contributions to improving the objective function and to meeting the service constraints. 

Wang et al. (2000) consider a two-echelon, multi-item, stochastic demand service parts 

system with stocking-center-dependent replenishment lead times. They characterize the system 

performance of the stocking policies, and they show that the random delays at the depot 

experienced by center replenishment orders are different from center to center. They also show 

that this difference can be substantial when both the planned depot stocking level and the 
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demand rates are low.  Lau et al. (2006) analyze a three-echelon repairable inventory system 

with passivation. Passivation means that, when the system is down and under repair due to a part 

failure, the failure rate of the other supporting parts is equal to zero. They calculate the expected 

backorder and the operational availability at each epoch over a given time horizon, taking into 

consideration non-stationary demands and the effects of passivation to capture the time-varying 

behavior of the objective function. In their experiments, they compare the operational availability 

versus the METRIC model and the time-varying demands against Monte Carlo simulation.  They 

conclude that their model performs better than the METRIC model in the context of fast-

changing business, where the assumption of constant demand-rate for inventory planning and 

optimization is no longer realistic. 

 

2.2.1. Multi-Echelon Inventory Models with Lateral Transshipments 

There have been other works that not only consider multi-echelon service part inventory 

supply systems, but also multi-echelon systems with lateral transshipments (e.g., Lee, 1987; 

Axsäter, 1990b; Sherbrooke, 1992; Archibald et al., 1997; Alfredsson and Verrijdt, 1999; 

Grahovac and Chakravarty, 2001; Axsäter, 2003; Caglar et al., 2003; Wong, 2005b; Wong, 

2006). Lee (1987) considers lateral transshipments in a two-echelon inventory system for 

repairable parts that employs a continuous review inventory policy. He analyzes a system that 

consists of one supplier (depot) and several identical locations (bases), and derives 

approximations of the expected values of performance measures such as the backorder level and 

the number of emergency shipments from the depot to bases. These approximations are used to 

determine the optimal stocking level in the system. He concludes that the use of emergency 

lateral transshipments can result in significant savings since less stock is needed at the individual 
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bases. However, the use of emergency lateral transshipments greatly depends on the magnitudes 

of the cost and lead time of the lateral shipments relative to the cost and lead time of receiving 

the part from the depot. 

Axsäter (1990b) improves Lee’s model by relaxing the assumption that bases are 

identical. Alfredsson and Verrijdt (1999) extend the model of Axsäter (1990b) by allowing 

emergency shipments from not only the pooling partner, but also the central warehouses and the 

manufacturing plants. Sherbrooke (1992) conducts a simulation study to investigate the 

importance of lateral transshipments in a two-echelon depot-base system for repairable items. It 

is important to note that his model uses a simulation model rather than an analytical model. 

Archibald et al. (1997) consider a two-location, multi-item, multi-period, periodic review 

inventory system with a limited storage space for all items. They allow an emergency order for 

customers in which equipment downtime is very costly. They conclude that the holding cost for 

which individual optimal reorder policies exactly fill both depots are not unique. They also state 

that performing lateral transshipments early in the planning period is favored when the 

emergency cost plus the holding cost is large compared to the shipment cost plus the unit cost. 

Alfredsson and Verrijdt (1999) and Grahovac and Chakravarty (2001) both consider non-

zero lateral transshipment time with the assumptions of ample repair capacity and Poisson failure 

process with constant failure rate. First, they use a zero lateral transshipment time model. Then, 

they calculate the additional downtime by directly multiplying the average number of lateral 

transshipments with the average lateral transshipment time. 

Wong et al. (2005b) propose a heuristic for a multi-item two-echelon inventory system 

for repairable parts with lateral transshipments and continuous review policy. They use a 

Lagrangian relaxation approach to obtain lower and upper bounds on the total cost. Wong et al. 
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(2005c) develop an analytical model for service parts stocking levels in a single-item, multi-hub, 

multi-company, repairable inventory system in which complete pooling of stock is permitted. In 

this configuration, the machines move from one location (hub) to another location.  So, the 

failure can occur randomly at any location. They minimize the total system cost, which is the 

sum of the holding cost, downtime cost and transshipment cost. They develop an approximation 

method based on the METRIC model and propose a two-stage solution procedure. In the first 

stage, the optimal number of service parts is determined by finding the quantity that minimizes 

the total cost function. In the second stage, they use a heuristic to calculate the allocation of 

service parts that minimizes transshipment cost. With their approach, they conclude that there is 

economic benefit with the practice of pooling inventories and state that their methodology can be 

easily used to analyze a variety of problems that involve numerous hubs. 

Wong et al. (2006) analyze a continuous review, multi-item model that considers all the 

repairable items in a multi-location inventory system. Lateral and emergency shipments occur in 

response to stockouts subject to waiting time constraints. They formulate three different 

initialization algorithms and then apply the steepest-descent local search method to improve the 

solution. They also use a Lagrangian relaxation-based approach to obtain the lower bounds on 

the total costs. They show that lateral transshipments provide cost savings to the system and 

conclude that: 

• the relative cost savings of applying lateral transshipments are higher than the relative 

cost savings of applying the multi-item approach; 

• the relative cost savings of applying lateral transshipments increase with the number of 

pooling members; 
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• the relative cost savings of applying lateral transshipments are higher when all pooling 

members set identical maximum waiting times; and 

• the relative cost savings of applying the multi-item approach increase when the 

variability of inventory holding costs across items increases since it contributes to a 

significant portion of the total cost. 

 

Caglar et al. (2003) study a two-echelon service parts inventory problem with multi-item 

and multi-location features. They assume that parts fail according to a Poisson process. They 

develop a model to minimize the system-wide inventory costs subject to response time 

constraints. Axsäter (2003) models a single-echelon inventory with unidirectional lateral 

transshipments, where he evaluates the resulting fill rates, the average stock on hand, and the 

backorder levels. He derives mathematical models and compares the results of the models with 

computer simulation. He concludes that the performance of the models reduces drastically when 

the transshipment cost increases and becomes comparable with the backorder cost. 

 

2.2.2. Multi-Echelon Service Parts Inventory Models as Queuing Models 

Although not directly related to this research investigation, but worth mentioning for the 

sake of completeness, there exists limited work where researchers view the multi-echelon supply 

system for repairable items as a network of queues, where the part pipelines are the queues at 

each repair facility (e.g., Yanagi and Sasaki, 1992; Diaz and Fu, 1997; Avsar and Zijm, 2000; 

Sleptchenko et al., 2005). Yanagi and Sasaki (1992) formulate a model based on the machine-

repair queuing model. They consider non-zero, exponentially-distributed lateral transshipment 

times in their model and use a two-stage decomposition approach to solve the problem. They 
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consider one repair capacity, and model the problem as a multi-dimensional Markovian problem. 

They state the machine-repair queuing models are less preferable than the METRIC-based 

models, because they are more difficult to solve due to the huge multi-dimensional state space 

involved. Diaz and Fu (1997) consider a model where the repair shop is modeled as a G/G/k 

multi-class queuing system. The part flow of one item type is modeled as one class in the 

queuing system. Although they discuss formulations for multi-server queues, their numerical 

results refer to single server queues only. In addition, they discuss an alternative method that 

uses throughput times in the M/G/∞ model so that waiting times are included. Avsar and Zijm 

(2000) propose an approximation for a two-echelon inventory model, where repair shops can be 

modeled as open Jackson queuing networks. However, their model considers only item-

dedicated repair shops and is difficult to extend to multi-echelon model or models with different 

types of repair shops, as we consider. Sleptchenko et al. (2005) examine a repair system in which 

every item is a multi-indenture structure, which mean that each end assembly item may consist 

of other lower-level parts. They model repair shops using multi-class and multi-server priority 

queues. This adds more degrees of freedom to previous models such as capacity of the repair 

facilities and repair priorities. They conclude that a proper priority setting may lead to a 

significant reduction in the inventory investment required to attain certain target system 

availability (usually 10-20%). The saving opportunities are particularly high if the utilization of 

the repair shops is high and if the part types sharing the same repair shop have distinctly different 

characteristics such as price, repair time, etc. 
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2.2.3. Service Parts Inventory Models with Non-Poisson Demand 

One of the fundamental assumptions of not only the METRIC model but also more recent 

inventory models proposed in the literature pertains to the part failure process. Typically, the 

failure rate is assumed to follow a fixed Poisson process. Some work has been done where this 

assumption is relaxed. Graves (1985) proposes the use of a negative binomial distribution that 

fits a two-parameter distribution to the distribution of outstanding orders for the single-base n-

depot problem. Sokhan-Sanj et al. (1999) propose the use of a Hyperexponential distribution to 

simulate highly-variable part movements in a semiconductor manufacturing setting. By 

accurately capturing the actual system variability, they are able to eliminate an undesirable safety 

factor that has been commonly used in previous simulation studies. Zamperini (2005) proposes a 

multi-item model where the part failure arrival process follows a negative binomial distribution. 

He also assumes infinite repair capacity and deterministic repair times. He concludes that since 

the negative binomial distribution has two parameters, one can fit both the mean and variance of 

a unimodal data set, although the variance to mean ratio must be greater than one. In these and 

other models where a non-Poisson part arrival is assumed, the rate still remains stationary. 

There are other multi-echelon models that have been proposed from different aspects than 

those previously mentioned. For instance, Kranenburg and van Houtum (2004) develop a multi-

level spares inventory model based on customer differentiation. They develop a heuristic 

procedure using linear programming and product-form solutions for closed queuing networks 

that are known to produce exact solutions for single-item problems. This procedure generates a 

heuristic solution and a lower bound for the optimal cost. Koçağa and Sen (2007) develop a base 

stock model for service parts inventory management with demand lead times and customer 

rationing. This one-for-one replenishment model assumes multiple demand classes with different 
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priorities that imply different service levels. Similar to other models, they assume that the failure 

rate follows a Poisson process. They conclude that customer rationing creates more savings when 

the arrival rate in the non-critical demand class is higher than the arrival rate in the critical 

demand class. Wong et al. (2005a) develop an analytical model to estimate the performance 

measures in a single-item repairable multi-echelon system composed of a supplier and several 

customers.  They assume that pooling and lateral transshipments are permitted. They formulate 

the model as a multi-dimensional Markov chain problem and conclude that, by allowing lateral 

transshipments, the expected number of backorders in the system is considerably reduced if the 

cost and time of those is substantially low.  Otherwise, the model can lead to suboptimal 

decisions. 

In this section, we discuss existing work regarding service parts modeling and 

optimization. This area has been widely studied and modeled from different perspectives, such as 

via the METRIC model and its extensions and via queuing models. Many assumptions have been 

made in these models, so they hardly represent the real-word scenario that motivated the study. 

One of the most important assumptions that has been made is that of the occurrence of lateral 

transshipments.  This is one of the most relevant aspects of this research because of its 

importance in service parts inventory pooling. 

 

2.3. Maintenance Modeling 

Several models have been proposed for the optimization of maintenance activities and 

policies (e.g., Triantaphyllou et al., 1997; Usher et al., 1998; Murthy and Asghariza, 1999; Das 

and Sarkar, 1999; Cassady et al., 2001; Li and Xu, 2003; Carnero, 2004). Triantaphyllou et al. 

(1997) develop a model for classifying different criteria relating to industrial maintenance, 

including availability, reliability, etc. They conclude that sensitivity analysis is a necessary tool 
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when dealing with complex maintenance multi-criteria decision-making problems. Usher et al. 

(1998) present a model for determining an optimal maintenance and replacement schedule for a 

system subject to deterioration. In their model, they include the value of money over time, as 

well as the implications of imperfect maintenance. They use three different solution approaches – 

random search, branch and bound, and a genetic algorithm – to find a near-optimal solution. 

They conclude that the genetic algorithm provides better and faster results. The most important 

difference is in the number of iterations needed to find a solution. Using genetic algorithms, the 

number of iterations to find a good answer is up to 95% lower than the other methods. In the 

work by Murthy and Asghariza (1999), a model for optimal decision-making in a maintenance 

service operation is suggested. Using Markov chains, they determine the optimal strategy 

regarding pricing, customers to serve, and service channels. 

Das and Sarkar (1999) consider a single-part inventory system with a Poisson failure rate 

and analyze the behavior of the time between failures when using preventive maintenance. They 

develop a mathematical probabilistic model from which several performance measures of the 

system are reported. The measures are: (1) average cost-benefit due to maintenance, (2) service 

level of product, (3) average level of inventory in the system, and (4) system productivity. They 

suggest that, by analyzing the costs, an optimal level of preventive maintenance can be 

determined. Cassady et al. (2001) propose a system they called selective maintenance through 

which the decision-maker can choose between multiple maintenance options, such as minimal 

repair of faulty components, replacement of faulty components and preventive maintenance. 

They develop an extension of previous mathematical programming models incorporating the 

Weibull distribution and compare different maintenance alternatives using Monte Carlo 

simulation. They conclude that their model is applicable to any support equipment that performs 
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a sequence of jobs with time constraints for maintenance between jobs. They state that this 

model can be extended to situations in which maintenance opportunities may be limited by 

resources other than time or where multiple systems compete for the same maintenance 

resources. 

Li and Xu (2003) introduce a multivariate repair model with a maintenance policy that 

performs imperfect repairs to failed components and coordinates random group replacements 

according to a predetermined timetable. They conclude that the maintenance process should be 

only performed on items that are more reliable when new, and that it is better to have a 

simultaneous replacement of components rather than independent replacements. In other words, 

when replacing items, it is better to also replace those items that might have been affected by the 

failure or malfunctioning of the repaired item.  

Carnero (2004) develops a methodology where some indicators facilitate the detection of 

anomalies in the preventive maintenance programs. She develops a cost function to evaluate the 

cost of the resources needed in a predictive maintenance program. This function implies the use 

of several resources and activities. For that reason, she uses a genetic algorithm to find a near 

optimal solution for the cost function. 

In summary, maintenance modeling has been studied by many researchers from different 

points of view, but very little has been done with the inclusion of inventory levels and more 

importantly inventory costs. The joint optimization of these two areas is critical since those 

activities depend on one another. 

 

2.4. Joint Service Parts Inventory and Maintenance Optimization 

One approach taken by many inventory researchers is to decompose the multi-echelon 

service parts inventory supply system by treating each location independently and then applying 
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techniques for single location inventory models. Usually, such local optimization leads to 

suboptimal solutions for the multi-location supply system. Alternatively, there is limited research 

addressing a more accurate approach, at the cost of complexity. This alternate approach involves 

considering the interactions between echelons (see the references and comments in Diaz and Fu 

(2004)).  Additionally, this approach considers the joint optimization of maintenance and service 

parts inventory policies. The joint optimization of both maintenance and inventory models of 

both the supplier and the customers has received little to no attention in the recent literature.  

This is the focus of this research investigation. 

The traditional approach of maintenance optimization assumes that spares are always 

available when needed for the selection of a replacement policy that minimizes the expected 

maintenance costs for replacement and breakage. This approach also includes making some 

assumptions about the distribution of part demand, and then the selection of an ordering policy 

that minimizes the expected inventory costs of holding and shortage. Very little research has 

been done about considering the two aspects simultaneously.  A notable exception is the work of 

Armstrong and Arkins (1996). They consider the joint optimization of service part replacement 

and ordering policies for a system with one component subject to random failure and room for 

only one spare in stock. They consider four costs – part replacement cost, part breakage cost, part 

holding cost and part shortage cost.  In other words, they cover both the two major costs 

generally considered in the maintenance literature as well as the two major costs widely 

considered in the inventory literature. They derive a single cost function of both inventory-

related and replacement-related costs based on the same scenario for a single company, but with 

no inclusion of the supplier. They, as well as other researchers, show how maintenance and 

inventory policies affect each other and affect the overall inventory system optimality and 
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conclude that, although sequential optimization can give good results, joint optimization adds 

value to the results. 

Vaughan (2005) also addresses inventory policy for service parts when demand for the 

service parts arises due to scheduled and unscheduled maintenance. A stochastic dynamic 

programming model is used to characterize an ordering policy that addresses both sources of part 

demand. In their model, the author assumes a system with n identical parts and single-unit 

demand between preventive maintenance periods.  The conclusion is that the cost savings tend to 

be greatest when there is a small holding cost and a high ordering cost. Furthermore, the optimal 

policy suggests ordering preventive maintenance units some number of periods prior to the 

preventive maintenance period. 

De Smidt-Destombes et al. (2005) develop a model using Markov chains for a system 

where parts that wear out are managed in two different stages, i.e., degrade and total failure. 

They assume that the time between the two stages and the repair time are exponentially-

distributed. They test their accuracy using discrete-event simulation and find that one of the 

complications is the strong correlation between the parameters, which makes it difficult to 

compute the expressions to determine the availability of parts. However, they develop a heuristic 

to optimize the costs and the availability. 

According to Arnold and Köchel (1996), optimal decisions regarding service parts 

inventories can be found coupling simulation with a search algorithm (e.g., tabu search, 

simulated annealing, genetic algorithm). Although there is some work done in the inventory 

optimization area using genetic algorithms (e.g., Köchel and Nieländer, 2002; Pal et al., 2005), 

limited work exists in joint service parts inventory and maintenance optimization. Carnero 

(2004) use a genetic algorithm to find near optimal solutions in the development of a 
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methodology for the detection of anomalies in preventive maintenance programs. Marseguerra et 

al. (2004) explore the possibility of using genetic algorithms and Monte Carlo simulation to 

determine the optimal number of service parts required in storage in a multi-component system. 

They define two objectives: maximization of revenue in the system and minimization of total 

spares volume. They conclude that using multiobjective optimization rather than a single 

objective, where the other objectives are taking in consideration as constraints, yields a more 

realistic set of results. They also state that the combination of computer simulation and genetic 

algorithms overcomes the intrinsic limitations of the analytical methods. 

We summarize the most closely-related work to the joint optimization of maintenance 

and service parts inventories, where several models have been developed. However, few of them 

consider the joint optimization of service part inventories and maintenance. 

 

2.5. Evolutionary Algorithms for Multiobjective Optimization 

Many heuristic search algorithms have been developed to solve multiobjective 

optimization problems including simulated annealing, tabu search, scatter search, ant colony, 

particle swarm optimization, and evolutionary algorithms (EAs). However, MOEAs have been 

shown to intelligently balance exploration and exploitation of the solution search space (Deb, 

2001). Other advantages of using MOEAs to solve multiobjective problems include: 

• EA-based approaches are capable of exploring the search space more thoroughly within a 

smaller number of solution evaluations than other point-to-point local search procedures 

(April et al., 2003); and 

• EA-based approaches are less dependent on the selection of the starting solutions, and they 

do not require definition of a neighborhood (April et al., 2003). 
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Generally, when solving MOOPs, there are three primary goals: (1) fast convergence to the true 

Pareto frontier solution set in the objective space, (2) close proximity to the true Pareto frontier 

solution set, and 3) diversity and even dispersion of the nondominated solutions obtained along 

the true Pareto optimal front. Fast convergence to the set of the true Pareto front and diversity 

and even dispersion of the set of obtained nondominated solutions for computationally-expensive 

MOOPs are critical. This is especially the case in real-world problems where finding the optimal 

or even near-optimal solutions is often computationally-prohibitive. 

In recent years, several variations of MOEAs have been developed to handle MOOPs 

(e.g., Coello et al., 2002; Deb, 2001), including an improved version of the nondominated 

sorting genetic algorithm (NSGA-II) (Deb et al., 2002).  Of these, NSGA-II stands out for its fast 

nondominated sorting approach, elitism approach, and its overall capability to maintain a better 

solution spread. Further, it has been reported that NSGA-II outperforms most other MOEAs in 

terms of convergence to the true Pareto optimal front while maintaining solution diversity. Some 

studies report that there is no statistically-significant difference between the performance of 

NSGA-II and other existing MOEAs (Deb et al., 2002; Zitzler et al., 2001).  We, therefore, are 

motivated to use NSGA-II of Deb et al. (2002) (with problem-specific modifications) for 

multiobjective optimization of joint inventory and maintenance policies.  In this study, we use 

NSGA-II but the cost formulations presented here can be used with any existing MOEA that can 

optimize two or more objectives, including a newer version of strength Pareto EA (SPEA2) 

(Zitzler et al., 2001), Pareto-archived evolution strategy (PAES) (Knowles and Corne, 1999), 

rank-density-based multiobjective genetic algorithm (RDGA) (Lu and Yen, 2003), ParEGO 

(Knowles, 2006), and FastPGA (Eskandari and Geiger, 2006). 
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2.6. Summary 

The problem on which this research focuses spans three research areas in the literature:  

• Service parts inventory policy modeling and optimization, 

• maintenance policy modeling and optimization, and 

• multiobjective optimization. 

As discussed here, there is a vast amount of research in these areas. This investigation has 

found that these areas can be integrated to better represent real-world scenarios. In other words, 

developing a joint optimization of service parts inventories and maintenance in a supply system 

is something that needs to be addressed, because these two activities complement each other and 

have not been examined from that perspective. Moreover, optimizing a multi-member system in 

which all the members have individual and potentially conflicting objectives is something that 

has not been largely investigated. Thus, it has been found that there is no research regarding 

maintenance and service parts inventory simultaneous optimization in a configuration with 

lateral transshipments, where all the members of the system have separate objectives to be 

fulfilled. 
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CHAPTER 3: 
JOINT MAINTENANCE AND SERVICE PARTS INVENTORY POLICY 

MULTIOBJECTIVE OPTIMIZATION FOR A TWO-ECHELON SINGLE-
SUPPLIER, n-CUSTOMER SUPPLY CHAIN SYSTEM 

3.1. Introduction 

In this chapter, a joint service parts and maintenance multiobjective optimization model 

for a simple multi-echelon inventory system is developed. This system configuration allows for 

tractable analysis while serving as a good starting point for studying larger, more complex real-

world service parts inventory systems along with helping us to understand the relationship 

between service parts inventories and maintenance policies. First, we describe the general 

configuration and state all the parameters and decision variables included in the model. Next, the 

long-run expected cost functions for the customers and the supplier are developed. The results of 

these derivations are used in a single objective and a multiobjective optimization solution 

approach that are explained later. Finally, this chapter is concluded with experiments and results 

for a single-customer configuration and a two-customer configuration. 

 

3.2. Description of the Generalized Multi-Echelon Service Part Supply Chain System 

Consider a single service part inventory system consisting of one parts supplier that 

services n customers, as shown in 1Figure 3.1. The customers are autonomous systems with their 

own objectives to satisfy, characterized by the typical parameters of reliability models such as 

failure distributions, part purchase costs, part ordering costs, part replacement costs, equipment 

downtime costs, service part inventory holding costs, etc. The customers want to minimize their 

long-run expected total maintenance and service parts inventory costs, while the supplier seeks to 

minimize its long-run expected total part production and inventory cost. The customers must 
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decide the time ot  to order a replacement part and the time rt  to replace a part (before or after it 

fails) in order to minimize their total maintenance and service parts inventory costs. The supplier 

must decide the time pt  to start production (manufacture or procurement) of service parts to 

meet the customers demand for them in order to minimize its total part production and inventory 

cost.  It is important to mention that, if the customer orders a part and the supplier does not have 

one on-hand for immediate shipment, then the supplier must begin production of the part (or 

complete production of the part if one is already in process originally intended for stocking) and 

then arrange an emergency shipment of the part to expedite its delivery to the requesting 

customer.  In most practical cases, it is reasonable to assume that the emergency shipping cost, 

which is incurred by the supplier, is quite large relative to the inventory holding cost per unit at 

the supplier. 

Now, given this supply system, the long-run expected total cost functions for each 

independent system in the supply network can be developed. First, the relevant notation, 

parameters, variables and simplifying assumptions are presented. 

 

 
Figure 3.1. The two-echelon, single-supplier, n-customer service part inventory system. 
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Relevant Notation, Parameters and Variables: 

f(t) : Probability density function of the service part failure distribution as a function of t; 

f(t) can be any probability density such as Weibull, Gamma, Exponential, Lognormal, 

etc. 

 

Customer-Specific Parameters: 

Each customer i in the supply network has these parameters, but each has its own values of these 

parameters. 

L : Lead time for a customer to receive an ordered service part from the supplier; (unit of 

time, e.g., minutes, hours, days, etc.) 

cr : Part replacement cost at a customer; represents all costs incurred when a part is 

replaced including the cost of the part and the labor cost; (cost per replacement) 

cf : Part failure cost at a customer; represents the costs associated with a failure including 

repairing any damage that may have occurred at the time of failure and any 

subsequent damage to the system until the failed part is replaced; (cost per failure) 

cs : Part shortage cost at a customer; (cost per unit time) 

c
hc  : Part holding cost at a customer; (cost per unit time) 

co : Part ordering cost at a customer; represents all costs associated with placing an order 

and when that order is received, including any clerical/labor costs of processing 

orders, inspection and return of poor quality units and material handling costs; (cost 

per order) 
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Supplier-Specific Parameters: 

g(n) : Probability mass function of the supplier having a service part in stock as a function 

of n, the number of customers serviced by the supplier 

s
hc  : Part holding cost at the supplier; (cost per unit time) 

cp : Part production cost at the supplier; represents all costs associated with producing a 

part at the supplier including any production setup cost, or product; (cost per part) 

p : Unit production time at the supplier; represents the production lead time if the 

supplier produces the part in-house or the delivery lead time of the part to the service 

part supplier from the supplier’s supplier if production of the part is outsourced; (unit 

of time, e.g., minutes, hours, days, etc.) 

ce : Emergency shipping cost incurred by the supplier; (cost per unit time) 

 

Decision Variables: 

to : Scheduled time to order a replacement service part (at the customer) 

tr : Scheduled time to replace a service part (at the customer) 

tp : Scheduled time to produce a replacement service part (at the supplier) 

 

Modeling and Analysis Assumptions: 

• Only one service part type is considered within the inventory supply system; 

• The probability the supplier will have a part available when requested is a monotonically 

decreasing function of the number of customers; 

• The parts are non-repairable (i.e., replacement); 
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• Only one part is ordered at a time and a maximum of one service part is held in inventory by 

a customer, i.e., base stock model; 

• If a customer has service part inventory on-hand, then a new order cannot be placed by that 

customer; 

• The time between successive part replacements at a customer is considered a cycle for the 

customer; 

• The time between successive part production runs at the supplier is considered a cycle for the 

supplier; 

• Lead time L to receive a replacement part from the supplier after an order is placed is 

positive and fixed; 

• Actual part replacement once the part is received after L is assumed to be instantaneous and 

perfect; 

• If a part is needed from the supplier, the time at which a part is replaced cannot occur before 

the part arrives from the supplier, i.e., o rt L p t+ + ≤ ; 

• No lateral transshipments of service parts occur between customers; 

• All activities required to expedite a customer order are assumed by the supplier; and 

• All the costs are positive. 

 
3.3. Modeling and Solving the Customer’s Problem 

The analysis begins by constructing the long-run expected total cost function for a 

customer in the service part supply network. Assuming a cycle at each customer is the length of 

time between successive part replacements, we use renewal theory and the renewal-reward 

process with arbitrary inter-renewal times to compute the long-run expected cost per unit time. In 

other words, suppose we have a sequence of independent and identically distributed random 
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cycle lengths {Xn: n ≥ 1}. If random variable Yn is the expected total cost incurred during interval 

n and {Yn: n ≥ 1}, then the long-run expected cost per unit time at the customer is expressed as 

[ ] [ ] [ ]1limc tt
E TC Y E X E Y

t→∞
= = . Hence, E[TCc] is equal to the expected costs divided by the 

expected length of the cycle, and the aim is to minimize E[TCc]. For details of renewal theory 

and the renewal-reward process, the reader is referred to Medhi (1982) and Feldman and Valdez-

Flores (1995). 

The long-run expected total cost associated with each customer includes expected costs 

due to ordering, maintenance, inventory holding, and inventory shortages as well as the expected 

cycle length, that is, 

[ ]

Ordering Cost [Maintenance Cost] 
 [Inventory Holding Cost]  [Inventory Shortage Cost]

[Cycle Length]

+
+ +

=c

E
E EE TC

E
. (3.1)

The ordering cost co is incurred in every cycle since only one part is ordered at a time and 

a maximum of one service part is held in inventory by a customer. The expected maintenance 

cost is simply the sum of the unit replacement cost cr and the expected cost due to a failure 

before the part is replaced. Thus, 

[ ] ( )
0

Maintenance Cost   
rt

r fE c c f t dt= + ∫ . (3.2)

If a replacement part is ordered and arrives before the existing part fails, then inventory 

holding costs are incurred from the time the replacement part arrives until it is used for 

preventive or corrective maintenance. In addition, the holding cost includes the probability of the 

part not failing. So, if the part is received, it is held in inventory. The holding cost also reflects 

whether the supplier has or does not have the part in stock ready for immediate shipment. This is 

given by g(n) if the part is in stock and 1-g(n) if the part is not in stock. If the supplier does not 
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have a part in stock, then the customer has to account for p additional units of time for the 

supplier to produce the part. The expected holding cost is 

[ ]
( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

( )

Holding Cost

1 ( )

r

o r

r

o r

t

o r o
t L tc

h t
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g n t t L f t dt t t L f t dt
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∞
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∞

+ +

⎡ ⎤⎛ ⎞
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∫ ∫

∫ ∫
.

(3.3)

On the other hand, if a replacement part is ordered after an existing part fails, then 

shortage costs are incurred during the lead time associated with processing the customer’s order 

(i.e., the time from part failure to the time the customer receives the replacement part). Shortage 

costs can also be incurred if an existing part fails after the order for a replacement part has been 

received by the supplier, but before it arrives at the customer’s location from the supplier. Finally, 

shortage costs can continue to accrue for the additional time associated with production (or 

procurement) if the supplier does not have a service part on hand to ship to a requesting customer 

after that customer’s order is received. Under these conditions, the customer’s expected shortage 

cost can be expressed as 

[ ]
( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

0

0
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⎛ ⎞⎢ ⎥
− + + + + −⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∫ ∫

∫ ∫
. (3.4)

The expected cycle length for the customer is expressed as 
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 (3.5)

In this study, we assume that g(n) is a nondecreasing function of the number of customers 

n that the supplier currently services.  In other words, as the number of customers increases, the 

probability of the supplier not having a part available when requested by a customer in the 

supply network increases. Substituting Eqs. 3.2–3.5 into Eq. 3.1, the customer’s long-run 

expected total cost per unit time is 
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(3.6)

 

Derivation of the Customer’s Inventory and Maintenance Policies 
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The exponential distribution is perhaps the simplest life distribution model. In reliability 

science, this distribution forms the basis for many comparisons and is widely used in reliability 

specifications.  The density for the exponential probability distribution is 

( ) , 0
0, otherwise,

λλ −⎧ ≥
= ⎨
⎩

te t
f t  (3.7)

and the cumulative distribution is 

( )
0

1 .
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= −

∫
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t
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F t e dt

e

 

(3.8)

Using Eq. 3.6 and Eq. 3.7, the reliability function R(t) can be expressed as 

( ) ( )
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1 1 1
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t

f t eR t
F t e

R t

λ
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λ

λ

−

−
= =

− ⎡ ⎤− −⎣ ⎦
=

 
(3.9)

The parameter λ is the constant failure rate measured in the number of failures per unit 

time and is equal to μ-1, i.e., λ = 1/μ, where μ is the mean time between part failures. Due to its 

constant failure rate property, the exponential distribution is a reasonable model for the long flat 

“intrinsic failure” portion of the well-known reliability bathtub curve. Since most components 

and systems spend most of their lifetimes in this portion of the bathtub curve, this perhaps 

explains the frequent use of the exponential distribution (when an early failure during infant 

mortality or wear out is not a concern). In the case of service parts, it is reasonable to assume 

exponential failures when the parts are replaced and not repaired, which is the case in this 

research. When parts are replaced, the original failure rate of the part can be assumed to remain 

the same. In real case scenarios, data would have to be collected to determine the actual failure 

distribution of the part. 
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Assuming that the random part failures follow a stationary exponential distribution, we 

now find the time at which to order a service part (to) and the time at which to replace a part (tr) 

for the customer. Substituting Eq. 3.7 into Eq. 3.6 and simplifying, the long-run expected total 

cost per unit time for the customer assuming an exponential part failure distribution is 
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(3.10)

The optimal values of to and tr are found by setting the partial derivatives 

[ ]c oE TC t∂ ∂ and [ ]c rE TC t∂ ∂  equal to zero and solving the resulting equations simultaneously. 

It follows that the optimal values are 
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In order to determine the convexity of the cost functions over the two variables to and tr, 

we compute the second derivatives, which corresponds to the determinant of the Hessian matrix 

[ ]( )
[ ] [ ]

[ ] [ ]

2 2

2

2 2

2

c c

o o r
c

c c

r o r

E TC E TC
t t t

H E TC
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t t t
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=
∂ ∂
∂ ∂ ∂

. 

We need to find a set of points where H(E[TCc]) is positive, which indicates that the 

multivariate function is convex over that area and a global minimum can be found as a function 

of both to and tr. We could not show that there is such a region, which means that the function is 

not strictly convex over the two decision variables. Given the complexity of the determinant, the 

calculations are not shown in this document. However, following the analysis performed by 

Armstrong and Arkins (1996) who use similar models, we can say that the long-run expected 

total cost per unit time function is pseudoconvex in tr. This means, for a given to, the optimal tr 

can be either (to + L + p), ∞ , or *
rt . In the case that *

rt  does not exist, the partial derivative 

[ ]c rE TC t∂ ∂  determines when to replace the part. If it is negative, then the part should be 

replaced at failure. If it is positive, then the part should be replaced at the instant the part is 

received from the supplier at (to + L + p). Similarly, the long-run expected total cost per unit time 

function is pseudoconvex in to. So, for a given tr, the optimal to can be either 0, (tr – L – p), or *
ot . 

If *
ot  does not exist, then the time to order is determined by the sign of the partial derivative 

[ ]c oE TC t∂ ∂ . If it is positive, the customer should place an order at time (tr – L – p). If it is 

negative, then the customer should place an order at t = 0.  
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3.4. Modeling and Solving The Supplier’s Problem 

The supplier’s long-run expected cost per unit time structure consists of production, 

inventory holding, and emergency production/shipping costs divided by the expected cycle 

length. In other words, 

[ ] Production Cost + [Inventory Holding Cost]  [Emergency Shipping Cost]
[Cycle Length]s

E EE TC
E

+
= . (3.13)

 

Production cost is incurred in every cycle when a part is produced. Holding cost at the 

supplier is incurred any time a part is produced but an order from the customer has not, yet, been 

placed. Emergency shipping cost is incurred anytime a shipment is required when a part is not 

on-hand and ready to be shipped when ordered by a customer.  This cost is essentially considered 

a shortage cost for the supplier. Holding and emergency costs are a function of g(n) and 1-g(n), 

respectively. The supplier’s combined production, holding and emergency costs E[PHE Cost] is 

expressed as 
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In this problem, the supplier seeks to minimize the total long-run expected cost per unit 

time. Therefore, the total long-run expected cost rate is equal to the total cost divided by the 

expected cycle length. The cycle length for the supplier is 
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Substituting Eqs.3.14 and 3.15 into Eq. 3.13 the supplier’s long-run expected total cost per unit 

time is 

( ) ( ) ( ) ( )

( )( ) ( )

( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( ) ( )

0

0

( )

1

[ ]

1  

o

p o

o

o

o

o

p o

p o

t
s

p h o o p
t p t

t p

e
t

s t

o
t

t t

p o
t t

c c g n t t f t dt t p t f t dt

c g n pf t dt

E TC

g n tf t dt t f t dt

g n t p f t dt t p f t dt t p f t dt

∞

+

+

∞

∞

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟+ − + − − +

⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥
⎛ ⎞⎢ ⎥

− ⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦=
⎡ ⎤⎛ ⎞

+ +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠
⎢ ⎥

⎛ ⎞⎢ ⎥
⎜ ⎟− + + + + +⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∫ ∫

∫

∫ ∫

∫ ∫ ∫

. (3.16)

 

Derivation of the Supplier Inventory and Production Policies 

The expected total cost per unit time for the supplier (Eq 3.16) assuming an exponential 

part failure distribution is 
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Similar to the customer’s problem, the optimal values of to and tp can be found by setting 

the partial derivatives [ ]s oE TC t∂ ∂  and [ ]s pE TC t∂ ∂  equal to zero and solving the resulting 

equations simultaneously, yielding 
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respectively. 

(3.19)

Similar to the customer’s problem, no conclusion is made about the convexity of the 

function in terms of to and tp based on the second derivative test. The long-run expected total cost 

per unit time function for the supplier is pseudoconvex in to. Therefore, for a given tp, the optimal 

to can be either (p + tp), ∞  or *
ot .  In the case that *

ot  does not exist, the partial derivative 

[ ]s oE TC t∂ ∂  determines the best time at which to receive an order for a replacement service part 

from a customer. If this derivative is negative, then the best time at which the supplier should 

receive a customer’s order is at time zero. If it is positive, the best time to receive a customer’s 

order is at tp + p. The long-run expected total cost function is pseudoconvex in tp. So, for a given 

to, which is mostly the case, the optimal tp can be either 0, (to – p) or *
pt . Once more, if *

pt  does 

not exist, then the time to produce a part is determined by the sign of the partial 

derivative [ ]s pE TC t∂ ∂ . If it is positive, the supplier should produce a part at (to – p). On the 
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other hand, if it is negative, the supplier has to produce a part at t = 0. The supplier could 

potentially have multiple *
pt ’s, one for each of the n customers the supplier services. Then, the 

problem for the supplier effectively becomes a production scheduling problem for the different 

customer orders. Integrating this scheduling problem is worthy of and left for further study. 

In this section, the joint inventory-maintenance optimization problem within the two-

echelon supply network is decoupled into the customer-level problem and the supplier-level 

problem.  Each problem is solved separately and independently from the other. A decoupled 

optimization is performed using an optimization algorithm with the derived individual total cost 

functions. Next, a computational study is conducted to determine the system-wide cost of the 

supply chain. First, each cost function is optimized separately. Then, using a multiobjective 

optimization approach, the cost functions are optimized simultaneously. The results of both 

approaches are compared. Before presenting the computational study, in Section 3.5, an 

overview of the optimization algorithms that are used is given. 

 

3.5. Decoupled and Multiobjective Optimization Solution Approaches 

3.5.1. Real-Coded Genetic Algorithm for Single Objective Optimization 

E[TCs] and E[TCc] are the objective functions that are utilized by the chosen optimization 

algorithms for decoupled and simultaneous multiobjective optimization. In this research, for the 

decoupled optimization, we use a real-coded genetic algorithm (RCGA) to generate the 

inventory ordering and maintenance policies (i.e., to, tr and tp).  As GAs are popular optimization 

procedures and common in many different applications, we forgo describing this popular 

optimization algorithm and refer the reader to the works of Goldberg (1989) and Pal et al. (2005) 

for details of the RCGA. 
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3.5.2. Real-Coded NSGA-II for Multiobjective Optimization 

For multiobjective optimization, we employ the real-coded NSGA-II (Deb et al., 2002) to 

generate the joint policies. However, the expected total cost per unit time formulations are quite 

suitable for using other EA and MOEA nondomination-based optimization approaches. NSGA-II 

is an improved, elitism version of NSGA by Srinivas and Deb (1994), where the fitness of a 

solution is obtained by a Pareto ranking procedure.  NSGA-II starts with an initial, random 

population of solutions P0 of size N.  This initial population is then sorted based on 

nondomination, which means that none of the solutions is better than the others with respect to 

all objectives. At this point, each solution is assigned a fitness value equal to its domination level, 

where 1 corresponds to the nondomination level, 2 is the next best (dominated) level, and so on.  

The first level contains solutions that dominate solutions of all other levels.  The nondominating 

sorting algorithm uses this fitness value to rank the solutions and assign them to the different 

fronts. Each solution belongs to different fronts based on its domination level – Front F1 = Level 

1, Front F2 = Level 2, etc. Then, using the evolutionary algorithm operators of binary tournament 

selection, simulated binary crossover operator, and polynomial mutation, an offspring population 

Q0 of size N is created. 

Beginning with the first generation i = 1 of the algorithm, the procedure for the ith 

population is different than that for the initial population. First, the offspring population Qi is 

combined with the parent population to create a combined population Ri = Pi ∪ Qi of size 2N. 

Then, this new population Ri is sorted according to nondomination. This allows the parent 

solutions to be compared with the child population, thereby ensuring elitism. This sorting 

classifies the population into several fronts F1, F2, F3, and so on.  All solutions belonging to the 
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best nondominating frontier set (F1) are emphasized more than any other solution in the 

combined population.  If the size of F1 is smaller than N, then all members of F1 are chosen for 

the new population Pi+1.  The remaining members of the population are chosen from the 

subsequent nondominated fronts in the order of their ranking. In other words, solutions from 

front F2 are chosen next, followed by solutions from front F3, and so on. This process is repeated 

until no more fronts can be accommodated and the size of population Pi+1 reaches N. 

In general, the count of solutions in all fronts from F2 to Fl would be larger than the 

population size. To choose exactly N population members, the population of the last front is 

sorted with the crowding-distance operator. This operator facilitates the selection of the best 

solutions to fill the population slots by using the average distance of two solutions along each of 

the objectives.  The binary tournament selection uses the crowded-distance to choose one of the 

two solutions. Between two solutions on different fronts in a tournament, solutions with lower 

rank are preferred.  Otherwise, if both the solutions belong to the same front then the solution 

that is located in a region with fewer number of other solutions (i.e., with a larger crowded 

distance) is preferred.  As a result, solutions from less dense regions in the search space are given 

importance in deciding which solutions to choose from Ri to construct population Pi+1. This 

operator helps to fill population Pi+1 up to size N.  Since the overall population size of Rt is 2N, 

not all fronts may be accommodated in N slots available in the new population.  All members of 

fronts that are not selected for the next population using the crowded-distance operator are 

simply deleted.  Complete details of NSGA-II can be found in Deb (2001) and Deb et al. (2002). 

 

3.6. Computational Study 

This section shows the performance of the decoupled optimization and multiobjective 

optimization approaches for joint inventory and maintenance policy optimization.  Under the 
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decoupled approach, each member of the service parts supply chain seeks to minimize its own 

long-run expected total cost per unit time without consideration or collaboration with the other 

members of the supply network. Customers in the network seek to minimize their long-run 

expected total maintenance and inventory costs, and the supplier seeks to minimize its long-run 

expected total production and inventory cost per unit time.  Based on their individual costs, the 

system-wide cost per unit time for the supply chain network can be determined.  Under the 

multiobjective modeling approach, the optimal values of to, tr and tp that minimize the total 

system-wide cost per unit time are identified. Two supply chain configurations are examined. 

The first configuration considers only a single parts supplier and a single customer (n = 1). The 

second case considers a single parts supplier and two customers (n = 2). 

 

3.6.1. Single-Supplier, Single-Customer, Multi-Echelon Service Parts Inventory System 

1Table 3.1 summarizes the experimental design of the problem instances for the single-

supplier, single-customer supply chain configuration.  The values and ranges of the parameters 

are chosen somewhat arbitrarily. For the single service part, a failure distribution of exponential 

form with a rate parameter λ = 0.01, or a mean time between part failures μ = 100, is used. 
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Table 3.1. Ranges of the problem instance parameters for a two-echelon, one-supplier, one-
customer service parts inventory supply chain system. 

  Supplier Customer 
Unit Ordering Cost, co - 10 
Unit Holding Cost, 

h

sc ,
h

cc  [300, 600] [300, 600] 
Unit Replacement Cost, cr - 30 
Unit Failure Cost, cf - 28 
Unit Shortage Cost, cs - [300, 600] 
Mean Time Between Failure, μ - 100 
Unit Emergency Shipping Cost, ce [300, 600] - 
Unit Production Cost, cp 50 - 
Unit Production Time, p 4 - 
Order Delivery Lead Time, L 2 - 

 

3.6.1.1. Decoupled Optimization Approach 

The search control parameters for RCGA are summarized in Table 3.2, which lists the 

values of the parameters.  Via a small pilot parametric study, a population size of 200 is chosen 

because it shows reasonable convergence behavior. The number of generations, G, is set to 

10,000.  The crossover rate pc and mutation rate pm for this study are set to 1.00 and 0.01, 

respectively. With these values and the values described in Table 3.1, we generate the part 

replacement and part ordering policies for the customers at the different parameter levels 

(resulting in 17 problem instances) and the optimal part production schedule at the supplier 

( 1Table 3.3). Using the RCGA, we determine the lowest possible cost that the algorithm can find 

given the parameters established for each of the 17 problem instances.  In Table 3.4, the total 

cost per unit time values and corresponding to, tr and tp values are reported. 

 

Table 3.2. Search control parameters for the RCGA. 
Parameter Value 
Population Size, P 200 
Number of Generations, G 10,000 
Crossover Rate, pc 1.000 
Mutation Rate, pm 0.01 
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Table 3.3. Specific problem instance cost parameters for a two-echelon, one-supplier two-
customer service parts inventory supply chain system. 

Prob Supplier Customer 

Inst pc  s
hc  ec  rc  fc  oc  c

hc  sc  
1 50 300 300 30 28 10 300 300 
2 50 600 300 30 28 10 300 300 
3 50 300 600 30 28 10 300 300 
4 50 600 600 30 28 10 300 300 
5 50 300 300 30 28 10 600 300 
6 50 600 300 30 28 10 600 300 
7 50 300 600 30 28 10 600 300 
8 50 600 600 30 28 10 600 300 
9 50 300 300 30 28 10 300 600 

10 50 600 300 30 28 10 300 600 
11 50 300 600 30 28 10 300 600 
12 50 600 600 30 28 10 300 600 
13 50 300 300 30 28 10 600 600 
14 50 600 300 30 28 10 600 600 
15 50 300 600 30 28 10 600 600 
16 50 600 600 30 28 10 600 600 
17 50 450 450 30 28 10 450 450 

 

Table 3.4. Service part ordering, part replacement and part production times when each supply 
chain member’s cost objective is optimized separately under the decoupled approach. 

    Supplier Customer Long-Run 
Prob    Cost/ Cost/ Total Cost/ 
Inst to tr tp Time Time Time 
1 4240.17 4530.69 4405.28 214.07 174.34 388.40 
2 4240.17 4530.69 4405.28 215.44 174.34 389.77 
3 4240.17 4530.69 4405.28 215.44 174.34 389.77 
4 4240.17 4530.69 4405.28 215.44 174.34 389.77 
5 4240.17 4530.69 4548.60 215.44 174.34 389.77 
6 4240.17 4530.69 4548.60 215.44 174.34 389.77 
7 4240.17 4530.69 4548.60 215.44 174.34 389.77 
8 4240.17 4530.69 4548.60 215.44 174.34 389.77 
9 4240.17 4530.69 4405.28 410.89 174.34 585.23 

10 4240.17 4530.69 4405.28 410.89 174.34 585.23 
11 4240.17 4530.69 4405.28 410.89 174.34 585.23 
12 4240.17 4530.69 4405.28 410.89 174.34 585.23 
13 4240.17 4530.69 4548.60 410.89 174.34 585.23 
14 4240.17 4530.69 4548.60 410.89 174.34 585.23 
15 4240.17 4530.69 4548.60 410.89 174.34 585.23 
16 4240.17 4530.69 4548.60 410.89 174.34 585.23 
17 4240.17 4530.69 4548.60 313.16 174.34 487.50 
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3.6.1.2. Joint Optimization Approach 

The search control parameters for the real-coded NSGA-II, also chosen via on a small 

pilot study, are summarized in Table 3.5.  In the pilot study, the population size is set to 25, 50, 

100, 200, 500 and 1000, and it is observed that using a population size of 200 yields good results 

without suffering the problems of getting trapped at local optima or compromising the spread of 

the set of Pareto optima. The number of generations, G, is set to 10,000.  Crossover probability, 

pc, is varied 0.50-1.00 keeping all the other parameters constant. Low probability leads to poorly 

converged solutions, and the diversity of the solutions is poor. However, beyond pc = 0.85, 

solutions are stable with changes in pc.  Mutation probability pm is varied between 0.00 and 0.30.  

Low values and high values of the mutation probability cause loss of solution set diversity. It is 

found that when pm ranges from 0.15 to 0.25 diversity is preserved as well as convergence.  The 

crossover rate pc and mutation rate pm in this study are set to 1.00 and 0.167, respectively. 

 
Table 3.5. Search control parameters for NSGA-II. 

Parameter Value 
Population Size, P 200 
Number of Generations, G 10,000 
Crossover Rate, pc 1.000 
Mutation Rate, pm 0.167 
Distribution Index for Crossover ηc 10 
Distribution Index for Mutation ηm 25 

 

The settings of the crossover distribution index ηc and the mutation distribution index ηm 

are also varied. The crossover distribution index ηc is a positive real number in the range of [5.0, 

100.0], in general, and controls the spread of offspring solutions (Deb et al. 2002).  It has been 

observed that larger values of ηc give a higher probability for creating solutions “close” to the 

parents, and smaller values of ηc allow distant solutions to be selected as offspring.  It has been 

observed that in case of highly nonlinear responses, smaller values of ηc yield better results 
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(avoid suboptimal distribution of nondominated points).  The mutation distribution index ηm 

controls the spread of mutated solutions and is generally kept in the range [5.0, 100.0]. For 

highly nonlinear responses, smaller values of ηm should be used to increase the spread of 

solutions. 

 

General Behavior of the Set of Pareto Optima 

The behavior of the set of Pareto optima follows what would be expected. 1Figure 3.3 and 

1Figure 3.4 show the efficient frontier for Customer total cost per unit time vs. the Supplier total 

cost per unit time for two instances of the problem (Prob Inst 10 and Prob Inst 16).  There is a 

reasonable level of diversity in the solutions since there is somewhat uniform spacing of the 

solutions along the Pareto front with some gaps. 

 

 
Figure 3.2. Customer long-run expected total cost per unit time versus Supplier long-run 
expected total cost per unit time for Prob Inst 10. 
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Figure 3.3. Customer long-run expected total cost per unit time versus Supplier long-run 
expected total cost per unit time for Prob Inst 16. 
 

Using NSGA-II, we determine a set of nondominated solutions for each of the 17 

problem instances.  Of the set of Pareto optimal solutions for a problem instance, one solution 

has the lowest total system-wide cost per unit time.  The to, tr and tp values that generated the 

lowest total cost per unit time for each problem instance are also reported. In order to assess the 

reasonableness of these results, we use the same problem parameters used for the decoupled 

optimization (1Table 3.1). The results for the joint optimization approach are summarized in 

Table 3.6. The average improvement over the decoupled optimization over the 17 problem 

instances is 43.52% with a standard deviation of 20.33%, ranging from 8.79% (Prob Inst 16) to 

70.48% (Prob Inst 9). It is clear from Table 3.6 that there is economic benefit to simultaneously 

optimizing objectives of the individual members of the supply chain network. Pareto 

optimization permits not only the identification of the set of nondominated solutions where 

improvement in each solution does not cause any degradation in the quality of the other solutions, 

but it also permits the identification of the best-compromised solution in terms of the lowest 

system-wide cost per unit time. 
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Table 3.6. Service part ordering, part replacement and part production times when each supply 
chain member’s cost per unit time objective is optimized simultaneously under the joint 
approach. 

Prob    Supplier Customer Long-Run Total  % Improve Over  
Inst to tr tp Cost/Time Cost/Time Cost/Time Decoupled 

1 4.09 10.10 0.09 17.94 152.08 170.02 56.23% 
2 4513.38 4896.31 3893.24 260.32 7.18 267.50 31.37% 
3 4.00 10.00 0.00 13.72 154.69 168.41 56.79% 
4 4409.15 4830.20 4182.81 260.32 7.18 267.50 31.37% 
5 5.37 12.86 1.11 136.60 179.86 316.46 18.81% 
6 4.12 10.23 0.10 26.38 294.98 321.36 17.55% 
7 5.24 11.67 1.18 127.78 145.98 273.76 29.76% 
8 4.11 10.17 0.09 26.24 291.39 317.63 18.51% 
9 4.01 10.01 0.00 13.00 159.78 172.78 70.48% 

10 4069.32 4176.39 3967.36 260.32 13.70 274.01 53.18% 
11 4.01 10.01 0.01 14.09 159.82 173.91 70.28% 
12 4178.29 4592.54 4100.77 260.32 13.70 274.01 53.18% 
13 4.28 10.34 0.27 44.22 156.03 200.25 65.78% 
14 4.47 10.47 0.38 63.09 280.52 343.60 41.29% 
15 4.28 10.34 0.27 44.22 156.03 200.25 65.78% 
16 387.68 393.71 382.40 519.66 14.12 533.78 8.79% 
17 4.01 10.04 0.01 14.09 226.39 240.47 50.67% 

 

3.6.2. Single-Supplier, n-Customer, Multi-Echelon Service Parts Inventory System 

The performance of the decoupled optimization approach and the performance 

multiobjective modeling approach for the single-supplier, n-customer multi-echelon service parts 

inventory system where n = 2 are examined. Table 3.7 summarizes the full factorial experimental 

design of the problem instances. Similar to the n = 1 case, the part failure distribution is assumed 

exponential, with a rate parameter λ = 0.01, or a mean time between part failures μ = 100 for the 

two customers in the supply network. 
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Table 3.7. Ranges of the problem instance parameters for a two-echelon, single-supplier two-
customer service parts inventory supply chain system. 

  Supplier Customer 1 Customer 2 
Unit Ordering Cost, co - 10 15 
Unit Holding Cost, ch [300, 600] [300, 600] [300, 600] 
Unit Replacement Cost, cr - 30 25 
Unit Failure Cost, cf - 28 20 
Unit Shortage Cost, cs - [300, 600] [300, 600] 
Mean Time Between Failure, μ - 100 100 
Unit Emergency Shipping Cost, ce [300, 600] - - 
Unit Production Cost, cp 50 - - 
Unit Production Time, p 4 - - 
Order Delivery Lead Time, L  2 3 

 

3.6.2.1. Decoupled Optimization Approach 

In this section, we generate the joint inventory-maintenance policy under decoupled 

optimization.  We use the parameter values and ranges listed in 1Table 3.7.  Table 3.8 shows the 

specific parameter values used in this study.  “S” in the table heading indicates supplier-related 

parameters and results and “C1” and “C2” indicate Customer 1-related parameters and results 

and Customer 2-related parameters and results, respectively. Table 3.9 summarizes the part 

replacement and part ordering policies for the customers at the different parameter levels, and the 

optimal part production schedule at the supplier for each customer. 
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Table 3.8. Specific problem instance cost parameters for a two-echelon, one supplier, two-
customer service parts inventory supply chain system. 

Prob cp h

sc  ce cr cr cf cf co co h

cc  
h

cc  cs cs 
Inst S S S C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 
1 50 300 300 30 25 28 20 10 15 300 300 300 300 
2 50 600 300 30 25 28 20 10 15 300 300 300 300 
3 50 300 300 30 25 28 20 10 15 600 300 300 300 
4 50 600 300 30 25 28 20 10 15 600 300 300 300 
5 50 300 300 30 25 28 20 10 15 300 600 300 300 
6 50 600 300 30 25 28 20 10 15 300 600 300 300 
7 50 300 300 30 25 28 20 10 15 600 600 300 300 
8 50 600 300 30 25 28 20 10 15 600 600 300 300 
9 50 300 300 30 25 28 20 10 15 300 300 600 300 

10 50 600 300 30 25 28 20 10 15 300 300 600 300 
11 50 300 300 30 25 28 20 10 15 600 300 600 300 
12 50 600 300 30 25 28 20 10 15 600 300 600 300 
13 50 300 300 30 25 28 20 10 15 300 600 600 300 
14 50 600 300 30 25 28 20 10 15 300 600 600 300 
15 50 300 300 30 25 28 20 10 15 600 600 600 300 
16 50 600 300 30 25 28 20 10 15 600 600 600 300 
17 50 300 300 30 25 28 20 10 15 300 300 300 600 
18 50 600 300 30 25 28 20 10 15 300 300 300 600 
19 50 300 300 30 25 28 20 10 15 600 300 300 600 
20 50 600 300 30 25 28 20 10 15 600 300 300 600 
21 50 300 300 30 25 28 20 10 15 300 600 300 600 
22 50 600 300 30 25 28 20 10 15 300 600 300 600 
23 50 300 300 30 25 28 20 10 15 600 600 300 600 
24 50 600 300 30 25 28 20 10 15 600 600 300 600 
25 50 300 300 30 25 28 20 10 15 300 300 600 600 
26 50 600 300 30 25 28 20 10 15 300 300 600 600 
27 50 300 300 30 25 28 20 10 15 600 300 600 600 
28 50 600 300 30 25 28 20 10 15 600 300 600 600 
29 50 300 300 30 25 28 20 10 15 300 600 600 600 
30 50 600 300 30 25 28 20 10 15 300 600 600 600 
31 50 300 300 30 25 28 20 10 15 600 600 600 600 
32 50 600 300 30 25 28 20 10 15 600 600 600 600 
33 50 300 600 30 25 28 20 10 15 300 300 300 300 
34 50 600 600 30 25 28 20 10 15 300 300 300 300 
35 50 300 600 30 25 28 20 10 15 600 300 300 300 
36 50 600 600 30 25 28 20 10 15 600 300 300 300 
37 50 300 600 30 25 28 20 10 15 300 600 300 300 
38 50 600 600 30 25 28 20 10 15 300 600 300 300 
39 50 300 600 30 25 28 20 10 15 600 600 300 300 
40 50 600 600 30 25 28 20 10 15 600 600 300 300 
41 50 300 600 30 25 28 20 10 15 300 300 600 300 
42 50 600 600 30 25 28 20 10 15 300 300 600 300 
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Table 3.8. (cont’d) Specific problem instance cost parameters for a two-echelon, one supplier, 
two-customer service parts inventory supply chain system. 

Prob cp h

sc  ce cr cr cf cf co co h

cc  
h

cc  cs cs 
Inst S S S C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 
43 50 300 600 30 25 28 20 10 15 600 300 600 300 
44 50 600 600 30 25 28 20 10 15 600 300 600 300 
45 50 300 600 30 25 28 20 10 15 300 600 600 300 
46 50 600 600 30 25 28 20 10 15 300 600 600 300 
47 50 300 600 30 25 28 20 10 15 600 600 600 300 
48 50 600 600 30 25 28 20 10 15 600 600 600 300 
49 50 300 600 30 25 28 20 10 15 300 300 300 600 
50 50 600 600 30 25 28 20 10 15 300 300 300 600 
51 50 300 600 30 25 28 20 10 15 600 300 300 600 
52 50 600 600 30 25 28 20 10 15 600 300 300 600 
53 50 300 600 30 25 28 20 10 15 300 600 300 600 
54 50 600 600 30 25 28 20 10 15 300 600 300 600 
55 50 300 600 30 25 28 20 10 15 600 600 300 600 
56 50 600 600 30 25 28 20 10 15 600 600 300 600 
57 50 300 600 30 25 28 20 10 15 300 300 600 600 
58 50 600 600 30 25 28 20 10 15 300 300 600 600 
59 50 300 600 30 25 28 20 10 15 600 300 600 600 
60 50 600 600 30 25 28 20 10 15 600 300 600 600 
61 50 300 600 30 25 28 20 10 15 300 600 600 600 
62 50 600 600 30 25 28 20 10 15 300 600 600 600 
63 50 300 600 30 25 28 20 10 15 600 600 600 600 
64 50 600 600 30 25 28 20 10 15 600 600 600 600 
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Table 3.9. Service part ordering, part replacement, and part production times when each supply 
chain member’s cost objective is optimized separately. 

       Cost/ Cost/ Cost/ Long-Run 
Prob to tr tp to tr tp Time Time Time Total Cost/ 
Inst C1 C1 C1 C2 C2 C2 S C1 C2 Time 
1 4240.17 4530.69 1548.8 4240.17 4530.69 1527.2 25.29 7.14 9.71 42.14 
2 4240.17 4530.69 1548.8 4240.17 4530.69 1527.2 25.29 7.14 9.71 42.14 
3 4240.17 4530.69 264.8 4240.17 4530.69 1527.2 27.30 13.65 18.88 59.83 
4 4240.17 4530.69 264.8 4240.17 4530.69 1527.2 27.30 13.65 18.88 59.83 
5 4240.17 4530.69 1548.8 4240.17 4530.69 254.4 25.29 7.14 9.71 42.14 
6 4240.17 4530.69 1548.8 4240.17 4530.69 254.4 25.29 7.14 9.71 42.14 
7 4240.17 4530.69 264.8 4240.17 4530.69 254.4 25.29 7.14 9.71 42.14 
8 4240.17 4530.69 264.8 4240.17 4530.69 254.4 25.29 7.14 9.71 42.14 
9 4240.17 4530.69 4102.4 4240.17 4530.69 1527.2 25.29 13.65 9.71 48.65 

10 4240.17 4530.69 4102.4 4240.17 4530.69 1527.2 25.29 13.65 9.71 48.65 
11 4240.17 4530.69 1511.2 4240.17 4530.69 1527.2 25.29 13.65 9.71 48.65 
12 4240.17 4530.69 1511.2 4240.17 4530.69 1527.2 25.29 13.65 9.71 48.65 
13 4240.17 4530.69 4102.4 4240.17 4530.69 254.4 25.29 13.65 9.71 48.65 
14 4240.17 4530.69 4102.4 4240.17 4530.69 254.4 25.29 13.65 9.71 48.65 
15 4240.17 4530.69 1511.2 4240.17 4530.69 254.4 25.29 13.65 9.71 48.65 
16 4240.17 4530.69 1511.2 4240.17 4530.69 254.4 25.29 13.65 9.71 48.65 
17 4240.17 4530.69 1548.8 4240.17 4530.69 4080.8 25.29 7.14 18.88 51.31 
18 4240.17 4530.69 1548.8 4240.17 4530.69 4080.8 25.29 7.14 18.88 51.31 
19 4240.17 4530.69 264.8 4240.17 4530.69 4080.8 25.29 7.14 18.88 51.31 
20 4240.17 4530.69 264.8 4240.17 4530.69 4080.8 25.29 7.14 18.88 51.31 
21 4240.17 4530.69 1548.8 4240.17 4530.69 1500.8 25.29 7.14 18.88 51.31 
22 4240.17 4530.69 1548.8 4240.17 4530.69 1500.8 25.29 7.14 18.88 51.31 
23 4240.17 4530.69 264.8 4240.17 4530.69 1500.8 25.29 7.14 18.88 51.31 
24 4240.17 4530.69 264.8 4240.17 4530.69 1500.8 25.29 7.14 18.88 51.31 
25 4240.17 4530.69 4102.4 4240.17 4530.69 4080.8 25.29 13.65 18.88 57.82 
26 4240.17 4530.69 4102.4 4240.17 4530.69 4080.8 25.29 13.65 18.88 57.82 
27 4240.17 4530.69 1511.2 4240.17 4530.69 4080.8 25.29 13.65 18.88 57.82 
28 4240.17 4530.69 1511.2 4240.17 4530.69 4080.8 25.29 13.65 18.88 57.82 
29 4240.17 4530.69 4102.4 4240.17 4530.69 1500.8 25.29 13.65 18.88 57.82 
30 4240.17 4530.69 4102.4 4240.17 4530.69 1500.8 25.29 13.65 18.88 57.82 
31 4240.17 4530.69 1511.2 4240.17 4530.69 1500.8 25.29 13.65 18.88 57.82 
32 4240.17 4530.69 1511.2 4240.17 4530.69 1500.8 25.29 13.65 18.88 57.82 
33 4240.17 4530.69 1548.8 4240.17 4530.69 1527.2 27.30 7.14 9.71 44.14 
34 4240.17 4530.69 1548.8 4240.17 4530.69 1527.2 27.29 7.14 9.71 44.14 
35 4240.17 4530.69 264.8 4240.17 4530.69 1527.2 27.30 7.14 9.71 44.14 
36 4240.17 4530.69 264.8 4240.17 4530.69 1527.2 27.29 7.14 9.71 44.14 
37 4240.17 4530.69 1548.8 4240.17 4530.69 254.4 27.30 7.14 9.71 44.14 
38 4240.17 4530.69 1548.8 4240.17 4530.69 254.4 27.29 7.14 9.71 44.14 
39 4240.17 4530.69 264.8 4240.17 4530.69 254.4 27.30 7.14 9.71 44.14 
40 4240.17 4530.69 264.8 4240.17 4530.69 254.4 27.29 7.14 9.71 44.14 
41 4240.17 4530.69 4102.4 4240.17 4530.69 1527.2 27.30 13.65 9.71 50.66 
42 4240.17 4530.69 4102.4 4240.17 4530.69 1527.2 27.29 13.65 9.71 50.66 
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Table 3.9 (cont’d) Service part ordering, part replacement, and part production times when each 
supply chain member’s cost objective is optimized separately under the decoupled approach. 

       Cost/ Cost/ Cost/ Long-Run 
Prob to tr tp to tr tp Time Time Time Total Cost/ 
Inst C1 C1 C1 C2 C2 C2 S C1 C2 Time 
43 4240.17 4530.69 1511.2 4240.17 4530.69 1527.2 27.30 13.65 9.71 50.66 
44 4240.17 4530.69 1511.2 4240.17 4530.69 1527.2 27.29 13.65 9.71 50.66 
45 4240.17 4530.69 4102.4 4240.17 4530.69 254.4 27.30 13.65 9.71 50.66 
46 4240.17 4530.69 4102.4 4240.17 4530.69 254.4 27.29 13.65 9.71 50.66 
47 4240.17 4530.69 1511.2 4240.17 4530.69 254.4 27.30 13.65 9.71 50.66 
48 4240.17 4530.69 1511.2 4240.17 4530.69 254.4 27.29 13.65 9.71 50.66 
49 4240.17 4530.69 1548.8 4240.17 4530.69 4080.8 27.30 7.14 18.88 53.31 
50 4240.17 4530.69 1548.8 4240.17 4530.69 4080.8 27.29 7.14 18.88 53.31 
51 4240.17 4530.69 264.8 4240.17 4530.69 4080.8 27.30 7.14 18.88 53.31 
52 4240.17 4530.69 264.8 4240.17 4530.69 4080.8 27.29 7.14 18.88 53.31 
53 4240.17 4530.69 1548.8 4240.17 4530.69 1500.8 27.30 7.14 18.88 53.31 
54 4240.17 4530.69 1548.8 4240.17 4530.69 1500.8 27.29 7.14 18.88 53.31 
55 4240.17 4530.69 264.8 4240.17 4530.69 1500.8 27.30 7.14 18.88 53.31 
56 4240.17 4530.69 264.8 4240.17 4530.69 1500.8 27.29 7.14 18.88 53.31 
57 4240.17 4530.69 4102.4 4240.17 4530.69 4080.8 27.30 13.65 18.88 59.83 
58 4240.17 4530.69 4102.4 4240.17 4530.69 4080.8 27.29 13.65 18.88 59.82 
59 4240.17 4530.69 1511.2 4240.17 4530.69 4080.8 27.30 13.65 18.88 59.83 
60 4240.17 4530.69 1511.2 4240.17 4530.69 4080.8 27.29 13.65 18.88 59.82 
61 4240.17 4530.69 4102.4 4240.17 4530.69 1500.8 27.30 13.65 18.88 59.83 
62 4240.17 4530.69 4102.4 4240.17 4530.69 1500.8 27.29 13.65 18.88 59.82 
63 4240.17 4530.69 1511.2 4240.17 4530.69 1500.8 27.30 13.65 18.88 59.83 
64 4240.17 4530.69 1511.2 4240.17 4530.69 1500.8 27.29 13.65 18.88 59.82 

 

3.6.2.2. Joint Optimization Approach 

The search control parameters for the real-coded NSGA-II used in the single customer 

configuration are used in this section. These parameters are summarized in Table 3.5. Two 

representative problem instances are examined for convergence behavior. 1Figure 3.5 and 1Figure 

3.6 show the Pareto efficient frontier for Customer 1 vs. Customer 2 for Prob Inst 30, and 

Customer 1 vs. Customer 2 for Prob Inst 38, respectively. 1Figure 3.7 shows the Customer 1 vs. 

Customer 2 vs. the Supplier for Prob Insts 30 and 38. We see that the Pareto front in the tri-

objective space along the curve is convex.  In addition, there is also a reasonable level of 

diversity among the solutions along the Pareto front. 
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Figure 3.4. Customer 1 long-run expected total cost per unit time vs. Customer 2 long-run 
expected total cost per unit time for Prob Inst 30. 
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Figure 3.5. Customer 1 long-run expected total cost per unit time vs. Customer 2 long-run 
expected total cost per unit time for Prob Inst 38. 
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Figure 3.6. Customer 1 long-run expected total cost per unit time vs. Customer 2 long-run 
expected total cost per unit time vs. Supplier long-run expected total cost per unit time for Prob 
Insts 30 and 38. 
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NSGA-II generates a set of nondominated solutions for each of the 64 problem instances.  

Of the set of Pareto optimal solutions for a problem instance, at least one solution has the lowest 

long-run expected total cost per unit time. The to, tr and tp values that generated the lowest cost 

rate for each problem instance are also reported. 

In order to make a reasonable comparison of these results, the same set of problem 

parameter values are used for the decoupled optimization, as shown in Table 3.8. The results 

under joint optimization are summarized in Table 3.10. The average improvement over 

decoupled optimization over the 64 problem instances in 48.98% with a standard deviation of 

7.68% ranging from 18.85% (Prob Insts 3 and 4) to 59.63% (Prob Insts 33 to 40). These results 

show that there is economic benefit to simultaneously optimizing objectives of the individual 

members of the supply chain network. Furthermore, it is important to note that the strength of the 

multiobjective optimization approach is that it can handle creating a set of alternatives in (n+1) 

dimensional decision space. 
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Table 3.10. Service part ordering, part replacement and part production times when each supply 
chain member’s cost objective is optimized simultaneously under the joint approach. 

       Cost/ Cost/ Cost/ Long-Run % Improve 
Prob to tr tp to tr tp Time Time Time Total Cost/ over 
Inst C1 C1 C1 C2 C2 C2 S C1 C2 Time Decoupled 
1 3968.52 4496.05 3963.33 4567.19 4951.72 4384.41 0.99 8.10 10.68 19.77 53.08% 
2 4091.84 4936.59 4083.99 4561.29 4977.24 4399.89 0.99 8.10 10.68 19.77 53.08% 
3 4383.19 4657.34 4315.14 4561.46 4895.38 4380.19 0.99 23.04 24.46 48.49 18.95% 
4 4208.27 4464.67 4195.30 4510.99 4581.55 4380.63 0.99 23.04 24.46 48.49 18.95% 
5 4627.74 4909.43 4428.27 4443.59 4913.58 4310.66 1.00 7.06 9.76 17.82 57.71% 
6 4314.16 4711.41 4293.77 4625.64 4834.97 4408.82 1.00 7.06 9.76 17.82 57.71% 
7 4607.75 4989.49 4491.91 4439.44 4974.40 4260.05 1.00 7.06 9.76 17.82 57.71% 
8 4315.12 4576.55 4281.44 3963.47 3981.58 3961.33 1.00 7.06 9.76 17.82 57.71% 
9 3947.03 3975.98 3945.53 4344.89 4816.02 4295.83 1.00 13.46 9.76 24.23 50.20% 

10 4334.11 4986.44 4281.43 4276.05 4988.62 4270.46 1.00 13.46 9.76 24.23 50.20% 
11 4323.56 4449.79 4265.13 4243.88 4811.26 4210.73 1.00 13.46 9.76 24.23 50.20% 
12 4453.22 4964.36 4394.69 4697.60 4844.12 4478.85 1.00 13.46 9.76 24.23 50.20% 
13 4680.69 4984.36 4518.91 4567.42 4684.61 4346.02 1.00 13.46 9.76 24.23 50.20% 
14 4098.65 4756.71 4092.77 4624.95 4961.47 4492.30 1.00 13.46 9.76 24.23 50.20% 
15 4539.19 4836.51 4522.65 4368.08 4984.67 4289.30 1.00 13.46 9.76 24.23 50.20% 
16 4281.71 4946.53 4233.30 4666.00 4944.44 4407.91 1.00 13.46 9.76 24.23 50.20% 
17 4455.90 4671.18 4409.73 4445.30 4936.92 4251.60 1.00 7.06 18.96 27.02 47.34% 
18 4146.25 4483.86 4142.14 4573.71 4978.09 4564.81 1.00 7.06 18.96 27.02 47.34% 
19 4404.52 4831.77 4328.28 4693.69 4758.35 4364.72 1.00 7.06 18.96 27.02 47.34% 
20 4312.26 4851.13 4249.34 4539.64 4688.57 4437.02 1.00 7.06 18.96 27.02 47.34% 
21 4621.97 4961.65 4612.54 4150.94 4430.03 4135.39 1.00 7.06 18.96 27.02 47.34% 
22 4205.63 4590.33 4187.98 4747.08 4999.49 4447.83 1.00 7.06 18.96 27.02 47.34% 
23 4695.76 4964.83 4368.22 4660.77 4840.08 4635.66 1.00 7.06 18.96 27.02 47.34% 
24 4354.23 4861.81 4258.30 4706.83 4981.78 4538.96 1.00 7.06 18.96 27.02 47.34% 
25 4634.28 4931.65 4546.93 3766.13 3785.84 3764.75 1.00 13.46 18.96 33.42 42.20% 
26 4354.93 4969.11 4322.63 4619.75 4920.80 4481.41 1.00 13.46 18.96 33.42 42.20% 
27 4669.36 4951.02 4408.01 4714.34 4956.10 4692.43 1.00 13.46 18.96 33.42 42.20% 
28 4642.56 4986.07 4412.92 4108.80 4806.33 4103.20 1.00 13.46 18.96 33.42 42.20% 
29 4011.39 4967.85 4002.50 4705.41 4878.99 4457.76 1.00 13.46 18.96 33.42 42.20% 
30 4414.95 4986.96 4383.56 4536.36 4977.07 4313.97 1.00 13.46 18.96 33.42 42.20% 
31 4687.57 4753.39 4564.76 4361.77 4952.16 4301.45 1.00 13.46 18.96 33.42 42.20% 
32 4720.60 4983.08 4644.43 3972.64 4965.16 3968.68 1.00 13.46 18.96 33.42 42.20% 
33 4591.34 4876.98 4497.14 4450.29 4871.80 4306.07 1.00 7.06 9.76 17.82 59.63% 
34 4475.75 4860.27 4370.83 4497.12 4933.08 4389.96 1.00 7.06 9.76 17.82 59.63% 
35 4531.64 4883.39 4340.32 4086.92 4926.31 4078.57 1.00 7.06 9.76 17.82 59.63% 
36 4631.63 4987.69 4442.76 4092.09 4795.26 4089.97 1.00 7.06 9.76 17.82 59.63% 
37 4660.13 4979.17 4560.09 4391.70 4906.07 4321.37 1.00 7.06 9.76 17.82 59.63% 
38 4459.03 4856.67 4411.31 4546.02 4795.26 4469.72 1.00 7.06 9.76 17.82 59.63% 
39 4635.80 4833.03 4491.39 4355.68 4514.62 4300.46 1.00 7.06 9.76 17.82 59.63% 
40 4413.77 4483.39 4281.29 4589.96 4862.22 4437.41 1.00 7.06 9.76 17.82 59.63% 
41 3789.02 3796.95 3787.03 4367.40 4991.20 4307.18 1.00 13.46 9.76 24.23 52.17% 
42 4131.51 4731.49 4129.74 4432.44 4657.06 4426.25 1.00 13.46 9.76 24.23 52.17% 
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Table 3.10 (cont’d) Service part ordering, part replacement and part production times when each 
supply chain member’s cost objective is optimized simultaneously. 

       Cost/ Cost/ Cost/ Long-Run % Improve 
Prob to tr tp to tr tp Time Time Time Total Cost/ over 
Inst C1 C1 C1 C2 C2 C2 S C1 C2 Time Decoupled 
43 4246.25 4395.27 4236.57 4302.89 4687.18 4274.25 1.00 13.46 9.76 24.23 52.17% 
44 4166.03 4292.23 4157.74 4661.85 4897.28 4427.99 1.00 13.46 9.76 24.23 52.17% 
45 4192.65 4902.69 4138.41 4179.04 4923.47 4165.41 1.00 13.46 9.76 24.23 52.17% 
46 4018.03 4584.17 4014.99 4149.42 4500.49 4137.39 1.00 13.46 9.76 24.23 52.17% 
47 4854.19 4986.25 4616.24 4285.68 4973.48 4265.96 1.00 13.46 9.76 24.23 52.17% 
48 4093.99 4931.86 4089.55 4262.78 4490.70 4228.30 1.00 13.46 9.76 24.23 52.17% 
49 3922.98 3947.00 3920.50 4460.95 4955.14 4250.26 1.00 7.06 18.96 27.02 49.32% 
50 4095.07 4638.69 4092.87 3910.74 4985.03 3909.13 1.00 7.06 18.96 27.02 49.31% 
51 4391.05 4875.53 4244.91 4555.21 4941.00 4335.50 1.00 7.06 18.96 27.02 49.32% 
52 4282.07 4880.14 4221.59 4524.00 4564.43 4401.11 1.00 7.06 18.96 27.02 49.31% 
53 4864.71 4975.87 4367.20 4423.23 4894.25 4219.37 1.00 7.06 18.96 27.02 49.32% 
54 4466.71 4747.99 4296.54 4472.85 4974.35 4440.75 1.00 7.06 18.96 27.02 49.31% 
55 4198.03 4309.78 4190.31 4485.54 4937.59 4372.17 1.00 7.06 18.96 27.02 49.32% 
56 4723.01 4978.41 4702.08 4226.60 4755.43 4220.89 1.00 7.06 18.96 27.02 49.31% 
57 3921.68 3965.58 3919.64 4007.07 4564.65 4004.60 1.00 13.46 18.96 33.42 44.14% 
58 4346.52 4857.56 4315.37 3903.72 4762.75 3902.05 1.00 13.46 18.96 33.42 44.14% 
59 4104.26 4773.09 4095.41 4005.19 4639.01 4001.31 1.00 13.46 18.96 33.42 44.14% 
60 4736.29 4951.11 4569.47 4058.80 4907.77 4056.28 1.00 13.46 18.96 33.42 44.14% 
61 4011.81 4287.94 4010.38 4430.69 4961.70 4322.83 1.00 13.46 18.96 33.42 44.14% 
62 4220.92 4342.94 4188.48 4116.17 4444.22 4111.51 1.00 13.46 18.96 33.42 44.14% 
63 4692.94 4906.78 4369.60 4491.29 4952.34 4421.27 1.00 13.46 18.96 33.42 44.14% 
64 4505.75 4966.29 4284.66 3999.20 4772.80 3996.32 1.00 13.46 18.96 33.42 44.14% 

 

3.6.3. Equitable Apportionment of the Economic Benefit of Simultaneous Optimization 

The ultimate goal of this multiobjective modeling approach for service parts inventory 

and maintenance is to benefit all members involved in the supply chain system (i.e., the parts 

supplier and the n customers). For that reason, it is important to determine the best way in which 

all the members are compensated appropriately for what they are gaining (or sacrificing) to 

generate the overall system-wide cost savings.  Usually, this is determined by a central decision-

maker who attempts to find a balance so that all members of the supply chain are fairly treated. 

As previously discussed, LTSAs are formal vehicles offered by OEMs to help their 

customers (equipment owners and/or operators) maximize the availability of their equipment. 

These agreements place the responsibility of planned maintenance scheduling and service parts 
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availability supporting a set (or pool) of equipment on the OEM rather than the equipment owner.  

A major challenge with LTSAs is negotiating the terms under which the customer and the part 

supplier will partner. These negotiations should include the equitable allocation of all cost 

savings achieved under the agreement. Table 3.11 shows an example allocation policy. Using 

Prob Inst 34 that yields the greatest percent improvement in system-wide costs, the computations 

are summarized in the table. Notice that Customer 2 must sacrifice in terms of cost savings but 

the Supplier and Customer 1 experience cost savings – 93.89% and 8.16%, respectively. Overall, 

the system-wide cost savings is 43.74%. 

 

Table 3.11. Comparison of costs per unit time for the supplier and two customers (using Prob 
Inst 34). 

       Cost/ Cost/ Cost/ Long-Run 
Optimization to tr tp to tr tp Time Time Time Total Cost/ 

Approach C1 C1 C1 C2 C2 C2 S C1 C2 Time 
Decoupled 4240.17 4530.69 1548.8 4240.17 4530.69 1527.2 27.29 7.14 9.71 44.14 

Joint 4475.75 4860.27 4370.83 4497.12 4933.08 4389.96 1.00 7.06 9.76 17.82 
Savings       26.29 0.08 -0.05 26.32 

% Improve       96.34% 1.12% -0.51% 59.63% 
 

In the case of multi-echelon service parts supply chain systems, customers often enter 

into service parts inventory pools and pay a fee that warranties their supplies.  For instance, the 

decision-maker can use the potential savings (or sacrifice) and the proportion of savings (or 

sacrifice) that a customer experiences in the partnership to determine the membership fee that 

should be charged for that customer or possible discounts in any of the services or the part itself. 

The main idea is that everybody in the system should benefit from this agreement. We illustrate 

two possible alternatives that can be used for this purpose. 

A first, and perhaps somewhat simple, alternative considers only the overall expected 

cost savings of the system. In this case, the individual savings are not used for the calculations. 



 

64 

All participants, independently of the amount of savings, will have the same saving percentage. 

Using Prob Inst 34, each entity in the system will have potential savings of 59.63% as shown in 

Table 3.11. Based on these long-run expected cost rates, the decision-maker can calculate a base 

membership fee for each customer or a discount as you can see in Table 3.12. Although it has 

been demonstrated that multiobjective optimization works better than individual optimization, it 

might be the case in which a customer does not benefit from the decoupled optimization. In that 

situation, it makes little economic sense for anyone to have that customer in the system, since the 

overall costs are going to be affected and the supplier would have to sacrifice or incur additional 

costs (e.g., decreasing the price of the service part) so that customer can enter the agreement. 

Table 3.12 Summary of apportioning alternatives. 
    Long-Run 

Optimization Cost/Time Cost/Time Cost/Time Total Cost/ 
Approach S C1 C2 Time 
Individual 27.29 7.14 9.71 44.14 

Joint 1.00 7.06 9.76 17.82 
Overall Cost Savings 26.32 

Overall % Improve Savings 59.63% 
Individual Costs 16.27 4.26 5.79  

Base Membership Fee/Discount  2.88 3.92  
 

A second alternative could be based on the opportunity cost (OC) of the supplier, in that, 

it is based on the profit the supplier expects to realize given the potential savings using joint 

optimization. To illustrate using the information in Table 3.11, we assume that the OC of the 

parts supplier is 35%. The supplier expected savings are $27.29 – (0.35)($27.29) = $9.55. In 

order to realize these savings, the supplier should give up $26.29 – $9.55 = $16.74 that should be 

proportionally distributed to the customers (n = 2, in this example). Although these examples are 

somewhat simple, we note here that it is, in fact, the onus of the negotiators to decide on how the 

potential savings should be distributed and how the fees are determined. 
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3.7. Summary and Conclusions 

In this chapter, we develop the cost models for a joint inventory and maintenance service 

parts inventory system for a two-echelon, one supplier, n-customer configuration. Next, we use 

individual and simultaneous optimization algorithms (RCGA and NSGA-II, respectively) to 

determine the best ordering and replacement policies that minimize the system-wide combined 

long-run expected total cost per unit time. We perform experiments varying the number of 

customers served by the supplier to show the difference between the two approaches.  

According to the results, we conclude that the simultaneous optimization approach 

outperforms the individual optimization approach. In the experiment with only one customer in 

the system, the system-wide cost per unit time is improves in most of the problem instances, and 

the average improvement is 43.52%. Similarly, in the experiment with two customers in the 

system, the benefits of using a multiobjective approach are also shown, where the average 

improvement is shown to be 59.63%. 

In the next chapter, the assumption of no lateral transshipments is relaxed. In other words, 

we extend the analysis to a model that allows lateral transshipments between the customers. 

Later, we compare the optimization of the both supply chain configurations, with and without 

lateral transshipments. 
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CHAPTER 4: 
JOINT MAINTENANCE AND SERVICE PARTS INVENTORY 

MULTIOBJECTIVE OPTIMIZATION FOR A TWO-ECHELON SINGLE 
SUPPLIER AND n-CUSTOMER SUPPLY CHAIN SYSTEM WITH 

LATERAL TRANSSHIPMENTS 

4.1. Introduction 

In this chapter, an extension of the joint maintenance and service parts inventory model 

for a two-echelon, single supplier, n-customer supply chain system is explored. The assumption 

of no lateral transshipments is relaxed as depicted in Figure 4.1. First, we explain the details of 

the model, its parameters and the relevant decision variables. After this, long-run expected cost 

functions are each derived for the customers and the supplier. Finally, experiments are performed 

to compare the impact of using lateral transshipments versus no lateral transshipments. 

 

 

Figure 4.1. The two-echelon, single-supplier, n-customer inventory system configuration with 
lateral transshipments. 
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4.2. Description of the Generalized Multi-Echelon Service Parts Supply Chain System with 
Lateral Transshipments 

Lateral transshipments (LTs) are used with the purpose of covering more expansive areas 

geographically compared to the area that a single supplier would be able to cover. Previous 

research has shown that LTs help to reduce response times and that they are economically 

beneficial, not only in terms of reduced downtimes, but due to lower shipping costs and higher 

availability of machines (Lee, 1987; Axsäter, 1990b; Archibald et al., 1997; Alfredsson and 

Verrijdt, 1999; Grahovac and Chakravarty, 2001; Wong et al., 2006). 

In a service parts pooling system that uses lateral transshipments, the primary goal is to 

reduce and balance system-wide costs. For that reason, there are tradeoffs that partnering 

customers must consider in order to benefit the entire supply system. For instance, it might be the 

case that, for a specific customer, utilizing more LTs is more economically beneficial than using 

regular shipments from the supplier due to high holding costs or penalties. This could negatively 

impact the overall savings of the system. However, when the decisions are made for the benefit 

of all members of the supply system, the total savings can outweigh the individual member 

benefits. 

Here, we consider a similar system as the one described in the previous chapter. This 

system consists of a single service part, one supplier, and n customers (see Figure 4.1). Like the 

previous configuration, the customers are individual systems with their own objectives to satisfy. 

Customers want to minimize their long-run expected total maintenance and service parts 

inventory costs, while the supplier wants to minimize its long-run expected total production and 

inventory costs. Customers must determine the best source for inventory replenishment (i.e., the 

supplier or another customer within the supply system). Furthermore, customers must decide the 

best time to order a part and the best time to replace a part in order to minimize their expected 
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total maintenance and service parts inventory costs. Alternatively, the supplier must decide the 

best time to produce service parts in order to satisfy the customers’ demand for them and 

minimize its production and inventory costs. Before presenting the formulations, we give the 

relevant notation, parameters, variables and modeling assumptions. 

 

Relevant Notation, Parameters and Variables: 

f(t) : Probability density function of the service part failure distribution as a function of t. 

 

Customer-Specific Parameters: 

L : Lead time for a customer to receive an ordered service part from the supplier; (unit of 

time, e.g., minutes, hours, days, etc.) 

Li : Lead time for a customer to receive an ordered service part from customer i; (unit of 

time, e.g., minutes, hours, days, etc.) 

cr : Part replacement cost at a customer; represents all costs incurred when a part is 

replaced including the cost of the part and the labor cost; (cost per replacement) 

cf : Part failure cost at a customer; represents the costs associated with a failure including 

repairing any damage that may have occurred at the time of failure and any 

subsequent damage to the system until the failed part is replaced; (cost per failure) 

cs : Part shortage cost at a customer; (cost per unit time) 

c
hc  : Part holding cost at a customer; (cost per unit time) 

co : Part ordering cost from the supplier; represents all costs associated with placing an 

order and when that order is received, including any clerical/labor costs of processing 
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orders, inspection and return of poor quality units and material handling costs; (cost 

per order) 

i
oc  : Part ordering cost from customer i; it includes the same aspects considered for co. 

 

Supplier-Specific Parameters: 

g(n) : Probability mass function of the supplier having a service part in stock as a function 

of n, the number of customers serviced by the supplier 

s
hc  : Part holding cost at the supplier; (cost per unit time) 

cp : Part production cost at the supplier; represents all costs associated with producing a 

part at the supplier including any production setup cost, or product; (cost per part) 

p : Unit production time at the supplier; represents the production lead time if the 

supplier produces the part in-house or the delivery lead time of the part to the service 

part supplier from the supplier’s supplier if production of the part is outsourced; (unit 

of time, e.g., minutes, hours, days, etc.) 

ce : Emergency shipping cost incurred by the supplier; (cost per unit time) 

 

Decision Variables: 

to : Scheduled time to order a replacement service part from the supplier (at the customer) 

i
ot  : Scheduled time to order a service part from partner customer i (at the customer) 

tr : Scheduled time to replace a service part (at the customer) 

tp : Scheduled time to produce a service part (at the supplier) 
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Modeling and Analysis Assumptions: 

• Lateral transshipments of service parts between customers are allowed; 

• Only one service part type is considered within the inventory supply system; 

• The probability the supplier will have a part available when requested is a monotonically 

decreasing function of the number of customers; 

• The parts are non-repairable (i.e., replacement); 

• Only one part is ordered at a time and a maximum of one service part is held in inventory, 

i.e., base stock model; 

• If the customer has service part inventory on-hand, then a new order cannot be placed by the 

customer; 

• The time between successive part replacements is considered a cycle for a customer; 

• The time between successive part production runs is considered a cycle for the supplier; 

• Lead time L to receive a replacement part from the supplier after an order is placed is 

positive and fixed; 

• Lead time Li to receive a replacement part from another customer after an order is placed is 

positive and fixed; 

• Actual part replacement once the part is received after L or Li is assumed to be instantaneous 

and perfect; 

• If a part is ordered from the supplier, the time at which a part is replaced cannot occur before 

the part arrives from the supplier, i.e., to + L + p ≤ tr; 

• If a part is ordered from another customer, the time at which a part is replaced cannot occur 

before the part arrives, i.e., i
ot  + Li ≤ tr; 
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• If a customer does not have a part in stock, orders from other customers cannot be received. 

• No failure occurs during LTs since the lead time is considerably smaller than the mean time 

between failures; 

• The different options that each customer has to replenish inventories are mutually exclusive; 

therefore, whatever source is best for the system will cancel out the variables associated with 

the other available sources; 

• All activities required to expedite a customer order are assumed by the supplier; and 

• All the costs are positive. 

 

4.3. Modeling and Solving the Customer’s Problem 

The first portion of the model corresponds to the long-run expected cost function for a 

customer in the service part supply network.  The long-run expected total cost per  unit time for 

each customer includes the expected costs due to maintenance, the ordering of a service part, the 

inventory holding, and the inventory shortage, along with the expected cycle length. The most 

important addition to this model is the inclusion of lateral transshipments. This means that 

replenishments can be obtained from different sources (supplier or other customers), but only 

one source can be chosen. Since they are mutually exclusive, each option is represented as a 

single objective. For the optimization, the option that realizes the lower expected total cost per  

unit time is selected and the other options are discarded. Consequently, the customer can select 

between the options. The first option is requesting the part from the supplier. In this case, E[TCs] 

represents the expected total cost. The second option is requesting the part for a partner customer, 

and E[TCci] represents the expected total cost. At this point, it is important to mention that an 

order cannot be placed to a partner customer unless a part in available. Thus, the long-run 
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expected total cost is multiplied by the probability of the other customer having that part in stock. 

This is a function of that customer’s time to replace rt  and its part failure probability distribution, 

which is described by (1 – f(tr)). The objective functions are expressed as 

[ ]

Ordering Cost [Maintenance Cost]  [Inventory Holding Cost] 
 [Inventory Shortage Cost]

[Cycle Length]cs

E E
EE TC

E

+ +
+

=  and (4.1) 

[ ] ( )( )
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E

+ +⎛ ⎞
⎜ ⎟+⎜ ⎟= −
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⎜ ⎟
⎝ ⎠

. (4.2)

The expected maintenance cost is the sum of the unit replacement cost, cr, and the 

expected cost due to a part failure before the part is replaced. Thus, 

[ ] ( )
0

Maintenance Cost      
rt

r fE c c f t dt= + ∫  (4.3)

Holding cost is incurred if a replacement part is ordered and arrives before the existing 

part fails, from the time the replacement part arrives until it is used for preventive or corrective 

maintenance. As mentioned before, customers have two options to decide the source of 

replenishment. Consequently shortage costs functions for each case are developed. The resulting 

expected cost functions are 
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The shortage cost is incurred if a replacement part is ordered after an existing part fails 

until the part is received, either from the supplier or from another customer in the system. 

Shortage costs are also incurred if an existing part fails after the replacement part’s order has 

been placed to the supplier or another customer, but before it arrives at the customer location. 

Finally, shortages costs can continue to accrue for the additional time associated with production 

(and/or procurement) if the supplier does not have a service part on hand to ship to the customer 

after the customer’s order is received (E[Shortage Cost]) or different lead times if the order has 

been placed as a lateral transshipment (E[Shortage Costi]). Therefore, the customer’s shortage 

cost can be expressed as 

[ ]
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As in the case where LTs are not allowed, the objective is to minimize the long-run 

expected total cost per unit time. The system regenerates every time a replacement takes place, 

thus the long-run cost rate is obtained by analyzing a cycle in the system. Then, the long-run 

expected cost rate is equal to the sum of the expected costs divided by the expected cycle length. 

Therefore, the joint expected cycle time for maintenance and inventories with lateral 

transshipments also has two parts that are incurred depending upon the best replenishment option 

as follows, Eqs. 4.8 and 4.9. 
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Finally, we obtain the customer’s long-run expected total cost per unit time by substituting Eqs. 

4.3, 4.4, 4.6, and 4.8 into Eq. 4.1 and Eqs. 4.3, 4.5, 4.7, and 4.9 into Eq. 4.2. 
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Derivation of the Customer’s Inventory and Maintenance Policies 

We assume that the random part failure follows a stationary exponential distribution. 

Given this, substituting the exponential probability density function into Eqs. 4.10 and 4.11, the 

long-run expected total cost per unit time is 

[ ]

( ) ( ) ( ) ( ) ( ) ( )( )( )

( )
( ) ( ) ( ) ( )( )( )

( )

 2     2         2    2     

       

      

  -   1

   1

r

o r o r o o r

o

o r

t
r f f o

L p t t L p t t L p t L t t

c
h

L p t L p p

s

cs L pt t

c c c e c

e e g n e e g n
c

e e g n e g n
c L p g n p

E TC
e e e

L p g n p

λ

λ λ λ λ

λ λ λ

λλ λ

λ

λ

−

− + + + + + + + + + +

− + + +

− + +− −

+ + + +

⎛ ⎞− −
⎜ ⎟ +
⎜ ⎟
⎝ ⎠
⎛ ⎞+ − −
⎜ ⎟+ − −
⎜ ⎟
⎝ ⎠=

+ +
+ − −

( ) ( )( ) ( ) ( )( )1 1o ot L tg n e g nλ

λ

− +− − −
 

and 

(4.12)

[ ]
( ) ( ) ( ) ( )( )( )( )

( ) ( ) ( )( )
    

   1

i o i r oi ii ir r

i

r oo i r ii r

L t L t tL Lt tc c
h s s s i h f o r f

ci t tt L tt
i

e e c c c e c e L e c c e c c c
E TC

e e e e L

λ λλ λλ λ

λλ λλ

λ λ λ

λ

− + − +−

+− +

⎛ ⎞− − − + − + + − + +⎜ ⎟
⎝ ⎠=

+ − − +
. (4.13)

There are two different scenarios that might occur with this configuration. The first one 

would be if both customers order the part from the supplier, then the derivations are exactly the 

same as in the model with no LTs. Then, 
iot is not considered and *

ot and *
rt  are equal to Eqs. 3.11 
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and 3.12. The other case takes place when a customer orders a part from another customer. In 

this scenario, the time to order for the customer is represented by 
iot . To determine the optimal 

values of 
iot and tr, the partial derivatives [ ]

ici oE TC t∂ ∂ and [ ]ci rE TC t∂ ∂  are set equal to zero 

and the resulting equations are solved simultaneously. It follows that the optimal values are 
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It can be said that the total cost functions are pseudoconvex in tr. Thus, for a given 
iot  the 

optimal tr can be either (
iot + Li), ∞  or *

rt .  In the case that *
rt  does not exist, the partial derivative 

[ ]ci rE TC t∂ ∂  determines when to the part should be replaced. If it is negative, then the part 

should be replaced at failure. If it is positive, the part should be replaced just when the part is 

received from the other customer at (
iot + Li). 

Similar to the non-LTs model, it cannot be shown that the function is jointly convex on 

both variables using the determinant of the Hessian matrix. However, we can say that the total 

cost function is pseudoconvex in 
iot . So, for a given tr, the optimal 

iot  can either be 0, (tr – Li) or 

*
iot . If *

iot  does not exist, then the time to order is determined by the sign of the partial derivative 

[ ]
ici oE TC t∂ ∂ . If it is positive, then the customer should order at time (tr – Li), and if it is 

negative, then the customer should order at t = 0. 
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4.4. Modeling and Solving the Supplier’s Problem 

In the two-echelon, single-supplier, n-customer problem with lateral transshipments, the 

role of the supplier does not change appreciably compared to that with the problem with no LTs. 

The supplier’s long-run expected cost per unit time is computed based on the same expected 

number of parts that need to be produced for the entire system. In other words, the expected 

demand of the system is the same. The same situation applies to the expected number of 

emergency shipments for the system. The supplier’s long-run expected total cost function 

consists of production, inventory holding, and emergency production/shipping costs divided by 

the expected cycle length, i.e., 

[ ] Production Cost + [Inventory Holding Cost]  [Emergency Shipping Cost]
[Cycle Length]s

E EE TC
E

+
= . (4.16)

The supplier’s cost structure is similar in both cases, with and without LTs. Production 

cost is incurred in every cycle for each customer, holding cost is incurred any time a part for a 

customer has been produced until the order from the customer arrives, and the emergency 

shipment cost at the supplier is incurred anytime a shipment is required when a part is not on-

hand and ready to be shipped when it is ordered by a customer. 

However, for the optimization problem, the shipping might vary according to which 

source of replenishment is selected by the customers. Although the supplier will not ship parts to 

customers using LTs, it has to produce those parts to replenish the inventory of the supplying 

customer. Therefore, more than one cost function is needed to account for each customer in the 

system. In other words, the long-run expected total cost of the supplier is calculated based on two 

options: (1) based on the time that the customer orders directly to the supplier to and the supplier 

produces to that customer tp, and (2) based on the time that a customer orders an LT 
iot and the 

time to produce to the supplying customer tp. 
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The supplier’s expected cost is expressed as 
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Since the supplier wants to minimize the long-run expected total cost, then the cycle 

length for the supplier has the two forms, that is, 
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Now, combining Eqs. 4.17 and 4.19 and combining Eqs. 4.18 and 4.20, the supplier’s 

long-run expected total cost per unit time are 
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Derivation of the Supplier Inventory and Production Policies 

Only one of the supplier’s total cost functions will be used (Eq. 4.21) to show the results 

of the derivation since they have the same structure, the only difference is the time to order 

variable (to and 
iot ). Then, the long-run expected total cost per unit time at the supplier, assuming 

an exponential part failure distribution, is 
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Once more, the optimal values of ot ,
iot  and pt are found by setting the partial derivatives 

[ ]s oE TC t∂ ∂  and [ ]s pE TC t∂ ∂  equal to zero and solving the resulting equations simultaneously 

yielding 
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(4.25)

The same insights obtained in the customer’s problem apply to the supplier’s expected 

total cost function. The determinant of the Hessian matrix is complex, and joint convexity over 

the two variables cannot be shown. However, the expected total cost function for the supplier is 

pseudoconvex in to. Consequently, for a given tp, the optimal to can either be (tp + p), ∞  or *
ot .  In 

case *
ot  does not exist, the partial derivative [ ]s oE TC t∂ ∂  will determine the best time to receive 

an order. If this derivative is negative, then the best ordering time should be at time zero. If it is 

positive, the best time to receive an order is at (tp + p). The expected total cost function is also 

pseudoconvex in tp. So, for a given to, which is typically the case, the optimal tp can either be 0, 

(to – p) or *
pt . If *

pt  does not exist, then the time to produce a part is determined by the sign of the 

partial derivative [ ]s pE TC t∂ ∂ . If it is positive, the supplier should produce a part at (to – p). On 

the other hand, if it is negative, then the supplier should produce a part at t = 0. 
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We describe the joint inventory-maintenance optimization problem within the two-

echelon supply network and lateral transshipments, where the individual long-run expected total 

cost per unit time to the customer-level problem and the supplier-level problem are derived 

separately.  In the next section, the results of the simultaneous optimization is presented and 

compared with those from the supply network configuration with no LTs. 

 

4.5. Computational Study 

This section shows the performance of the multiobjective optimization approach for joint 

inventory and maintenance policy optimization with lateral transshipments. Under this approach 

the optimal values of *
ot , *

iot , *
rt  and *

pt  that minimize the total system-wide cost are identified to 

determine the best ordering policy for the overall system. We develop experiments for the case 

with a two-customer configuration (n = 2). E[TCs], 
isE TC⎡ ⎤⎣ ⎦ , E[TCc] and 

icE TC⎡ ⎤⎣ ⎦  are the 

objective functions used by the NSGA-II (Deb et al., 2002) for the simultaneous optimization. 

1Table 4.1 summarizes the full factorial experimental design of the problem instances. The 

values and ranges of the parameters are the same values used in the experiments for the model 

without LTs. For the single service part, a failure distribution of exponential form with a rate 

parameter λ = 0.01, or a mean time between part failures μ = 100, is used. 
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Table 4.1. Ranges of the problem instance parameters for a two-echelon single-supplier two-
customer service parts inventory supply chain system. 

  Supplier Customer 1 Customer 2 
Unit Ordering Cost, co - 10 15 
Unit Ordering Cost, 

ioc   5 5 
Unit Holding Cost, ch [300, 600] [300, 600] [300, 600] 
Unit Replacement Cost, cr - 30 25 
Unit Failure Cost, cf - 28 20 
Unit Shortage Cost, cs - [300, 600] [300, 600] 
Mean Time Between Failure, μ - 100 100 
Unit Emergency Shipping Cost, ce [300, 600] - - 
Unit Production Cost, cp 50 - - 
Unit Production Time, p 4 - - 
Order Delivery Lead Time, L - 2 3 
Order Delivery Lead Time, Li  1 1 

 

The search control parameters for the real-coded NSGA-II are summarized in 1Table 4.2. 

These parameters are the similar to those used in the computational study where no LTs are 

allowed, so that there is common basis for comparison of the supply chain configurations. The 

specific parameter values used in the LT model configuration are summarized in 11Table 4.3. The 

solution with the lowest expected total cost per unit time and the associated to or 
2ot , tr and tp 

values are reported.  Table 4.4 summarizes the replacement and ordering policies for the 

customers and the production schedule for the supplier. In the case that 
1ot  or 

2ot generates the 

lowest total cost, to is not taken into consideration, and vice versa. 

Table 4.2. Search control parameters for NSGA-II. 
Parameter Value 
Population Size, P 200 
Number of Generations, G 10,000 
Crossover Rate, pc 1.000 
Mutation Rate, pm = 1 / number of vars) 0.167 
Distribution Index for Crossover ηc 10 
Distribution Index for Mutation ηm 25 

 



 

83 

 
Table 4.3. Specific problem instance cost parameters for a two-echelon, one supplier two 
customer service parts inventory supply chain system with lateral transshipments. 

Prob pc  ch ec  rc  rc  fc  fc  oc  oc  
1oc

2oc ch ch sc  sc  
Inst S S S C1 C2 C1 C2 C1 C2 C2 C1 C1 C2 C1 C2 

1 50 300 300 30 25 28 20 10 15 5 5 300 300 300 300 
2 50 600 300 30 25 28 20 10 15 5 5 300 300 300 300 
3 50 300 300 30 25 28 20 10 15 5 5 600 300 300 300 
4 50 600 300 30 25 28 20 10 15 5 5 600 300 300 300 
5 50 300 300 30 25 28 20 10 15 5 5 300 600 300 300 
6 50 600 300 30 25 28 20 10 15 5 5 300 600 300 300 
7 50 300 300 30 25 28 20 10 15 5 5 600 600 300 300 
8 50 600 300 30 25 28 20 10 15 5 5 600 600 300 300 
9 50 300 300 30 25 28 20 10 15 5 5 300 300 600 300 

10 50 600 300 30 25 28 20 10 15 5 5 300 300 600 300 
11 50 300 300 30 25 28 20 10 15 5 5 600 300 600 300 
12 50 600 300 30 25 28 20 10 15 5 5 600 300 600 300 
13 50 300 300 30 25 28 20 10 15 5 5 300 600 600 300 
14 50 600 300 30 25 28 20 10 15 5 5 300 600 600 300 
15 50 300 300 30 25 28 20 10 15 5 5 600 600 600 300 
16 50 600 300 30 25 28 20 10 15 5 5 600 600 600 300 
17 50 300 300 30 25 28 20 10 15 5 5 300 300 300 600 
18 50 600 300 30 25 28 20 10 15 5 5 300 300 300 600 
19 50 300 300 30 25 28 20 10 15 5 5 600 300 300 600 
20 50 600 300 30 25 28 20 10 15 5 5 600 300 300 600 
21 50 300 300 30 25 28 20 10 15 5 5 300 600 300 600 
22 50 600 300 30 25 28 20 10 15 5 5 300 600 300 600 
23 50 300 300 30 25 28 20 10 15 5 5 600 600 300 600 
24 50 600 300 30 25 28 20 10 15 5 5 600 600 300 600 
25 50 300 300 30 25 28 20 10 15 5 5 300 300 600 600 
26 50 600 300 30 25 28 20 10 15 5 5 300 300 600 600 
27 50 300 300 30 25 28 20 10 15 5 5 600 300 600 600 
28 50 600 300 30 25 28 20 10 15 5 5 600 300 600 600 
29 50 300 300 30 25 28 20 10 15 5 5 300 600 600 600 
30 50 600 300 30 25 28 20 10 15 5 5 300 600 600 600 
31 50 300 300 30 25 28 20 10 15 5 5 600 600 600 600 
32 50 600 300 30 25 28 20 10 15 5 5 600 600 600 600 
33 50 300 600 30 25 28 20 10 15 5 5 300 300 300 300 
34 50 600 600 30 25 28 20 10 15 5 5 300 300 300 300 
35 50 300 600 30 25 28 20 10 15 5 5 600 300 300 300 
36 50 600 600 30 25 28 20 10 15 5 5 600 300 300 300 
37 50 300 600 30 25 28 20 10 15 5 5 300 600 300 300 
38 50 600 600 30 25 28 20 10 15 5 5 300 600 300 300 
39 50 300 600 30 25 28 20 10 15 5 5 600 600 300 300 
40 50 600 600 30 25 28 20 10 15 5 5 600 600 300 300 
41 50 300 600 30 25 28 20 10 15 5 5 300 300 600 300 
42 50 600 600 30 25 28 20 10 15 5 5 300 300 600 300 
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Table 4.3. (cont’d) Specific problem instance cost parameters for a two-echelon, one supplier 
two customer service parts inventory supply chain system with lateral transshipments. 

Prob pc  ch ec  rc  rc  fc  fc  oc  oc  
1oc

2oc ch ch sc  sc  
Inst S S S C1 C2 C1 C2 C1 C2 C2 C1 C1 C2 C1 C2 
43 50 300 600 30 25 28 20 10 15 5 5 600 300 600 300 
44 50 600 600 30 25 28 20 10 15 5 5 600 300 600 300 
45 50 300 600 30 25 28 20 10 15 5 5 300 600 600 300 
46 50 600 600 30 25 28 20 10 15 5 5 300 600 600 300 
47 50 300 600 30 25 28 20 10 15 5 5 600 600 600 300 
48 50 600 600 30 25 28 20 10 15 5 5 600 600 600 300 
49 50 300 600 30 25 28 20 10 15 5 5 300 300 300 600 
50 50 600 600 30 25 28 20 10 15 5 5 300 300 300 600 
51 50 300 600 30 25 28 20 10 15 5 5 600 300 300 600 
52 50 600 600 30 25 28 20 10 15 5 5 600 300 300 600 
53 50 300 600 30 25 28 20 10 15 5 5 300 600 300 600 
54 50 600 600 30 25 28 20 10 15 5 5 300 600 300 600 
55 50 300 600 30 25 28 20 10 15 5 5 600 600 300 600 
56 50 600 600 30 25 28 20 10 15 5 5 600 600 300 600 
57 50 300 600 30 25 28 20 10 15 5 5 300 300 600 600 
58 50 600 600 30 25 28 20 10 15 5 5 300 300 600 600 
59 50 300 600 30 25 28 20 10 15 5 5 600 300 600 600 
60 50 600 600 30 25 28 20 10 15 5 5 600 300 600 600 
61 50 300 600 30 25 28 20 10 15 5 5 300 600 600 600 
62 50 600 600 30 25 28 20 10 15 5 5 300 600 600 600 
63 50 300 600 30 25 28 20 10 15 5 5 600 600 600 600 
64 50 600 600 30 25 28 20 10 15 5 5 600 600 600 600 
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Table 4.4. Service part ordering, part replacement, part production times and total costs when the cost objectives are optimized 
simultaneously. 

Prob to 2ot  tr tp to 1ot  tr tp Cost/Time Cost/Time Cost/Time Long-Run 
Inst C1 C1 C1 C1 C2 C2 C2 C2 S C1 C2 Total Cost/Time 
1 4543 - 4987.9 4336.9 - 4586.8 4904.79 4381.2 0.99 8.10 3.47 12.56 
2 4547 - 4562.8 4486.3 - 4227.5 4959.69 4213.7 0.99 8.10 3.47 12.56 
3 4378 - 4910.7 4327 - 4013.5 4825.48 4007.7 0.99 33.04 13.37 47.40 
4 4414.3 - 4701.2 4406.8 - 3685.8 3694.77 3681.8 0.99 33.04 13.37 47.40 
5 4209 - 4970.8 4183.9 - 4474.4 4904.52 4336.2 1.00 7.06 3.47 11.52 
6 - 4157.2 4694 4152.7 4177.8 - 4231.5 4171.6 1.00 3.59 9.77 14.36 
7 4411.4 - 4910.2 4391.4 - 4589.3 4978.25 4566.1 1.00 7.06 3.47 11.52 
8 4443.8 - 4551.6 4414.6 - 4602.1 4898.97 4457.8 1.00 7.06 3.47 11.52 
9 - 4642 4845.2 4577.5 4116.4 - 4183.6 4107.3 1.00 6.56 9.77 17.33 

10 - 4083.8 4983.2 4079.4 683.77 - 688.03 679.05 1.02 6.56 9.77 17.35 
11 - 4710.2 4922.5 4539.7 1649.2 - 1653.93 1494 1.00 6.56 9.77 17.33 
12 - 4157 4950.6 4149.9 4649.8 - 4773.76 4528 1.00 6.56 9.77 17.33 
13 - 4509.6 4956.8 4378.8 4123.2 - 4170.64 4112.7 1.00 6.56 9.77 17.33 
14 1113.8 - 1117.9 1090.9 - 4373.6 4860.89 4335.7 1.00 13.46 3.47 17.93 
15 - 4151.8 4874.4 4132.4 4672.5 - 4778.18 4641.3 1.00 6.56 9.77 17.33 
16 - 4226.1 4974.5 4167.9 973.52 - 977.822 967.67 1.00 6.56 9.77 17.33 
17 4122.1 - 4507.7 4065.3 - 4411.9 4870.37 4360.2 1.00 7.06 6.44 14.49 
18 4368.5 - 4658.4 4345.6 - 4558.6 4798.88 4497.1 1.00 7.06 6.44 14.49 
19 4648.8 - 4915.4 4569.8 - 4303.3 4821.72 4285.3 1.00 7.06 6.44 14.49 
20 4330.1 - 4656.9 4266.8 - 4342.7 4866.35 4325.2 1.00 7.06 6.44 14.49 
21 4269.2 - 4620.2 4258.4 - 4399.6 4932.07 4362.5 1.00 7.06 6.44 14.49 
22 4214.3 - 4303.1 4201.4 - 4431.2 4977.6 4357.7 1.00 7.06 6.44 14.49 
23 4494.4 - 4785.5 4378 - 4254.8 4731.6 4221.8 1.00 7.06 6.44 14.49 
24 4615.3 - 4667.6 4363.9 - 4234.7 4897 4222.6 1.00 7.06 6.44 14.49 
25 896.42 - 899.8 883.87 - 4503 4916.77 4356.9 1.00 13.47 6.44 20.90 
26 4456.6 - 4490.3 4354.1 - 4641 4686.39 4471 1.00 13.46 6.44 20.90 
27 4100.9 - 4123.9 4093.2 - 4484.9 4955.02 4328.9 1.00 13.46 6.44 20.90 
28 4492.4 - 4655 4368.8 - 4121.6 4946.61 4115.7 1.00 13.46 6.44 20.90 
29 4784 - 4939.5 4510.3 - 4252.6 4849.44 4225.8 1.00 13.46 6.44 20.90 
30 4291.6 - 4473 4273.1 - 4200.5 4605.99 4193.1 1.00 13.46 6.44 20.90 
31 4388.2 - 4440.8 4380.7 - 4188.9 4966.96 4177.3 1.00 13.46 6.44 20.90 
32 2148.4 - 2159 2142.3 - 4510.1 4951.1 4468.7 1.00 13.46 6.44 20.90 
33 4802.4 - 4851.3 4436.6 - 4459.3 4755.63 4371 1.00 7.06 3.47 11.52 
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Table 4.4. (Cont’d) Service part ordering, part replacement, part production times and total costs when the cost objectives are 
optimized simultaneously. 

Prob to 2ot  tr tp to 1ot  tr tp Cost/Time Cost/Time Cost/Time Long-Run 
Inst C1 C1 C1 C1 C2 C2 C2 C2 S C1 C2 Total Cost/Time 
34 4115.2 - 4645.3 4107.6 - 4736.3 4989.85 4552.4 1.00 7.06 3.47 11.52 
35 4461.8 - 4693.8 4353.8 - 4614.5 4718.66 4452.1 1.00 7.06 3.47 11.52 
36 4232.9 - 4442.2 4210.8 - 4550.1 4951.83 4401.5 1.00 7.06 3.47 11.52 
37 4160.9 - 4900.5 4141.4 - 4395.2 4943.71 4339.8 1.00 7.06 3.47 11.52 
38 4301.6 - 4503.7 4271.7 - 4732.9 4882.22 4455.2 1.00 7.06 3.47 11.52 
39 4198.8 - 4231.2 4143.2 - 4412.4 4962.29 4321.6 1.00 7.06 3.47 11.52 
40 4617.3 - 4907.6 4611.8 - 4271.2 4760.45 4260.4 1.00 7.06 3.47 11.52 
41 - 4738.6 4788.1 4441.3 4578.9 - 4771.09 4490.2 1.00 6.56 9.77 17.33 
42 - 4147.7 4908 4140.5 4814.8 - 4908.09 4329.9 1.00 6.56 9.77 17.33 
43 - 4705.2 4821.2 4574.7 4441.1 - 4651.48 4341.3 1.00 6.56 9.77 17.33 
44 - 4175.5 4913.6 4156.6 4981.4 - 4991.66 4809.1 1.00 6.56 9.77 17.33 
45 - 4529.5 4800.3 4345.5 4584 - 4751.56 4518.2 1.00 6.56 9.77 17.33 
46 - 4082.9 4908 4078 4579.4 - 4980.56 4354.7 1.00 6.56 9.77 17.33 
47 - 4614.9 4848.1 4562.7 4482.8 - 4782.58 4397.6 1.00 6.56 9.77 17.33 
48 - 4159.6 4894.8 4153.2 4506 - 4913.8 4491 1.00 6.56 9.77 17.33 
49 4574.8 - 4777.3 4434.1 - 4546.2 4761.43 4386.3 1.00 7.06 6.44 14.49 
50 4404 - 4900.6 4293.3 - 4426.8 4931.31 4401.8 1.00 7.06 6.44 14.49 
51 1969 - 1972.3 1963 - 4689.6 4885.86 4342.1 1.00 7.06 6.44 14.49 
52 1614.7 - 1618 1610.4 - 4087.7 4536.2 4083.3 1.00 7.06 6.44 14.49 
53 4580.4 - 4667.4 4389.8 - 4493 4917.52 4342.5 1.00 7.06 6.44 14.49 
54 4129.5 - 4938.3 4105.7 - 4577.2 4739.22 4454.5 1.00 7.06 6.44 14.49 
55 2063.5 - 2067 2057.4 - 4150.9 4945.24 4140.1 1.00 7.06 6.44 14.49 
56 4345 - 4613.2 4258.9 - 4165.3 4845.53 4158.3 1.00 7.06 6.44 14.49 
57 4603.2 - 4881.1 4307.7 - 4185.4 4864.41 4175.2 1.00 13.46 6.44 20.90 
58 658 - 661.55 651.36 - 4620.4 4972.19 4465.1 1.04 13.47 6.44 20.94 
59 4682.9 - 4800.9 4513.7 - 4382.9 4814.12 4293.7 1.00 13.46 6.44 20.90 
60 4066.9 - 4072.8 4059.2 - 4577 4884.98 4464.6 1.00 13.46 6.44 20.90 
61 4462.4 - 4624.6 4357.4 - 4305 4706.95 4209.9 1.00 13.46 6.44 20.90 
62 4779.8 - 4849.6 4490.8 - 4578.8 4855.4 4492.6 1.00 13.46 6.44 20.90 
63 4852.2 - 4942.4 4500.6 - 4476.9 4869.33 4382.5 1.00 13.46 6.44 20.90 
64 4639.3 - 4720.2 4537.9 - 4529.3 4839.79 4490.5 1.00 13.46 6.44 20.90 
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General Behavior of the Set of Pareto Optima 

Figure 4.2 shows the Pareto efficient frontier for Customer 1 vs. Customer 2 for Prob Inst 

44. Figure 4.3 shows the Pareto efficient frontier for Customer 1 vs. Customer 2 for Prob Inst 52. 

Figure 4.4 shows the Customer 1 vs. Customer 2 vs. the Supplier. It can be seen that there is a 

reasonable level of diversity among the solutions. 

From Table 4.4, we can see that in all the cases using LTs is more economically 

beneficial than not using them. Table 4.5 compares the performance of the supply chain model 

when using and not using lateral transshipments. The average improvement over the non-LT 

model over the 64 problem instances is 36.79%, with a standard deviation of 6.81%, and ranging 

from 19.44% to 46.36%. 

 

 
Figure 4.2. Customer 1 long-run expected total cost per unit time vs. Customer 2 long-run 
expected total cost per unit time for Prob Inst 44. 
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Figure 4.3. Customer 1 long-run expected total cost per unit time vs. Customer 2 long-run 
expected total cost per unit time for Prob Inst 52. 
 

 
Figure 4.4. Customer 1 long-run expected total cost per unit time vs. Customer 2 long-run 
expected total cost per unit time vs. Supplier long long-run expected total cost per unit time for 
Prob Insts 44 and 52. 
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Table 4.5.Comparison of the models with and without lateral transshipments. 
Prob 
Inst 

Long-Run Total Cost per Unit 
Time with LTs allowed 

Long-Run Total Cost per Unit 
Time with No LTs allowed Difference % Improve 

1 12.56 19.78 7.21 36.47% 
2 12.56 19.78 7.21 36.47% 
3 47.40 78.49 31.09 39.61% 
4 47.40 78.49 31.09 39.61% 
5 11.52 17.82 6.30 35.35% 
6 14.36 17.82 3.46 19.44% 
7 11.52 17.82 6.30 35.35% 
8 11.52 17.82 6.30 35.35% 
9 17.33 24.23 6.90 28.48% 

10 17.35 24.23 6.88 28.39% 
11 17.33 24.23 6.90 28.48% 
12 17.33 24.23 6.90 28.48% 
13 17.33 24.23 6.90 28.48% 
14 17.93 24.23 6.30 25.99% 
15 17.33 24.23 6.90 28.48% 
16 17.33 24.23 6.90 28.47% 
17 14.492 27.02 12.52 46.36% 
18 14.492 27.02 12.52 46.36% 
19 14.492 27.02 12.52 46.36% 
20 14.492 27.02 12.52 46.36% 
21 14.492 27.02 12.52 46.36% 
22 14.492 27.02 12.52 46.36% 
23 14.492 27.02 12.52 46.36% 
24 14.492 27.02 12.52 46.36% 
25 20.90 33.42 12.52 37.46% 
26 20.90 33.42 12.52 37.47% 
27 20.90 33.42 12.52 37.47% 
28 20.90 33.42 12.52 37.47% 
29 20.90 33.42 12.52 37.47% 
30 20.90 33.42 12.52 37.47% 
31 20.90 33.42 12.52 37.47% 
32 20.90 33.42 12.52 37.47% 
33 11.52 17.82 6.30 35.35% 
34 11.52 17.82 6.30 35.35% 
35 11.52 17.82 6.30 35.35% 
36 11.52 17.82 6.30 35.35% 
37 11.52 17.82 6.30 35.35% 
38 11.52 17.82 6.30 35.35% 
39 11.52 17.82 6.30 35.35% 
40 11.52 17.82 6.30 35.35% 
41 17.33 24.23 6.90 28.48% 
42 17.33 24.23 6.90 28.48% 
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Table 4.5. (cont’d) Comparison of the models with and without lateral transshipments. 
Prob 
Inst 

Long-Run Total Cost per Unit 
Time with LTs allowed 

Long-Run Total Cost per Unit 
Time with No LTs allowed Difference % Improve 

43 17.33 24.23 6.90 28.48% 
44 17.33 24.23 6.90 28.48% 
45 17.33 24.23 6.90 28.48% 
46 17.33 24.23 6.90 28.48% 
47 17.33 24.23 6.90 28.48% 
48 17.33 24.23 6.90 28.48% 
49 14.49 27.02 12.52 46.36% 
50 14.49 27.02 12.52 46.36% 
51 14.49 27.02 12.52 46.36% 
52 14.49 27.02 12.52 46.36% 
53 14.49 27.02 12.52 46.36% 
54 14.49 27.02 12.52 46.36% 
55 14.49 27.02 12.52 46.36% 
56 14.49 27.02 12.52 46.36% 
57 20.90 33.42 12.52 37.47% 
58 20.94 33.42 12.48 37.34% 
59 20.90 33.42 12.52 37.47% 
60 20.90 33.42 12.52 37.47% 
61 20.90 33.42 12.52 37.47% 
62 20.90 33.42 12.52 37.47% 
63 20.90 33.42 12.52 37.47% 
64 20.90 33.42 12.52 37.47% 

 

4.6. Summary and Conclusions 

In this chapter, we develop cost models for a joint maintenance and service parts supply 

chain system in a two-echelon, single supplier, and n-customers configuration where the 

customers share their inventories and lateral transshipments are allowed. We use a multiobjective 

optimization approach to determine the ordering and replacement policies that minimize the 

system-wide long-run expected total cost per unit time. 

In a computational study, we use a full factorial experimental design and create 64 

different problem instances to evaluate the performance of supply chain system. We also 

compare the supply chain system that allows LTs with a supply chain system that does not allow 

lateral transshipments between customers. The results of the comparison reveal important 

differences that demonstrate the benefits of the use of lateral transshipments and the joint 

optimization among all members of the supply chain. 
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One of the most important conclusions about the joint optimization approach is that 

decision-makers are presented with a variety of alternatives that can be considered with 

reasonable benefit for the whole system. These solutions can be negotiated with the stakeholders 

so that all of them can be included in the process and better relationships can be established. 
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CHAPTER 5: 
SUMMARY OF RESEARCH AND FUTURE RESEARCH DIRECTIONS 

5.1. Summary of This Research Investigation 

Maintenance and service parts inventories are two of the three important areas of this 

investigation.  We develop mathematical cost models that represent the long-run expected total 

cost per unit time for the stakeholders involved in a multi-echelon service parts supply chain.  

These formulations are addressed from two different perspectives – the supplier’s and the 

customer’s. From the supplier’s point of view, the most important parameters relative to 

inventory management and production are included in the model formulation. From the 

customer’s point of view, the most important parameters for service parts inventory management 

and maintenance are considered. 

Traditionally, in a multi-echelon service parts supply chain, all the stakeholders act as 

separate entities seeking to minimize their individual costs without considering other customers 

or the supplier. This is considered the traditional, or decoupled, approach in this research.  In an 

effort to improve the performance of the service parts supply chain, we present a multiobjective 

modeling approach in which all the stakeholders’ costs are minimized simultaneously. For the 

decoupled and the proposed optimization approaches, we employ evolutionary algorithm 

procedures. In the case of the decoupled approach, a real-coded genetic algorithm is used. 

Alternatively, for the proposed multiobjective approach, NSGA-II is used. 

These two approaches are compared in different supply chain network configurations 

where the number of customers in the supply chain is varied. For the first experiment, the 

configuration involves only one customer and a parts supplier. We conclude that the 
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simultaneous optimization of the objectives yields results superior to that of the decoupled 

approach. The second experiment involves one supplier and two customers in the network. The 

results of this configuration are similar to those of the single-supplier, single-customer 

configuration. In other words, simultaneous optimization results in greater economic benefit to 

the service parts supply chain. 

We extend the previous model formulation by relaxing one of the more important 

assumptions. For this new situation, we present a new formulation that reflects the inclusion of 

lateral transshipments. Since it is demonstrated that simultaneous optimization is the approach to 

use in this type of optimization problem, we employ the same optimization procedures for this 

proposed model formulation. We use the results from the previous model with two customers in 

the system as a benchmark to evaluate the use of lateral transshipments in the supply chain. 

We show, like many other researchers, that allowing shipments between customers yields 

significant improvements to a service parts inventory supply chain. It is clear that those 

improvements primarily come from the reduced shortage costs because wider areas can be 

covered with inventory pooling. In other words, the response time, when an unexpected failure 

occurs, is reduced. In addition, there is also a significant reduction in the ordering cost and 

holding costs. This is due to the proximity of the source of replenishment and also the average of 

replenishments that have to be performed. 

 

5.2. Directions for Future Research 

There are several additional aspects that can be considered and investigated in order to 

improve these models and make them more applicable to different real-world situation. Thus, 

extensions to this research are now presented. 
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5.2.1. Additional and Improved Stochastic Parameters 

Some parameters in the model are assumed to be deterministic. Nonetheless, they can be 

associated with a probability distribution. In the service parts inventory world, there are several 

assumptions about these parameters that are valid for some cases, but in reality, they do not work 

that way. For instance, a deterministic lead time is often assumed. However, it is clear that in the 

real-world, a deterministic lead time almost never occurs. Another example is the unit production 

time that falls into the same category. Thus, a probability distribution that represents the behavior 

for these parameters should be taken into account, and included in the models described in Eqs. 

3.6, 3.16, 4.10, 4.11 and 4.22. For a real-world problem, real data need to be collected and a 

better representation of the parameters used for the determination of the long-run expected cost 

functions. 

 

5.2.2. Statistical Analysis of the Decision Variables 

An evolutionary algorithm random procedure is used for the multiobjective optimization 

in this research. Thus, the results of a single optimization run are not always going to be the same. 

For this reason, it is necessary to develop a statistical analysis methodology for the interpretation 

and use of the results given by this type of algorithms. A Pareto front is a set of non-dominated 

solutions that an evolutionary algorithm yields in one replication. To have a more valid set of 

solutions several replications need to be performed, so confidence intervals can be calculated for 

each of the solutions in the Pareto front. It is at this point where a methodology for the study of 

these results is needed, and better conclusions can be inferred. 
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5.2.3. Extend to Several Service Parts 

The models derived in this research are limited to a single part. This assumption is made 

because the application of the model is intended for very expensive service parts. For instance, in 

the power generation industry, turbines could cost millions of dollars. One possible extension of 

the model is to include situations where more than one part could be ordered and held in stock. 

This type of configuration could be very useful in the military or aviation industry where several 

expensive parts are managed. 

 

5.2.4. Improve the Performance for Large Number of Objectives 

In order to make this investigation more applicable to real-world problems, the accuracy 

of the results needs to be tested against the number of objectives in the system. The effect of an 

increasing number of objectives should be evaluated to guarantee that the inclusion of them does 

not affect the precision of the results. In other words, when having a large number of objectives, 

find a methodology to evaluate how the results are deviated from reality. For this, performance 

metrics need to be investigated that analyze the number of objectives that are optimized 

simultaneously. Therefore, a study of the multiobjective algorithms used for service parts 

inventory optimization needs to be performed. 

 
5.2.5. Develop a Decision Support Application 

The ultimate goal of this dissertation is to set the basis for the decision-making process in 

a multi-echelon service parts supply chain. A very interesting and useful task is to develop an 

application that integrates all the features developed in this dissertation. First of all, since the 

models derived in this research are unique, an application where the objective functions can be 

adapted to different configurations would be an important contribution for the industry. In 
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addition, the handling of the different parameters could be also an important feature. The 

parameters can be analyzed with integrated statistical tools to fit theoretical or empirical 

probability distributions that the model should be able to operate.  Finally, this application should 

include multiobjective optimization and have a very dynamic and easy to understand 

representation of the results where sensitivity analysis can be performed.  
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