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Stability of equilibrium solution to inhomogeneous heat equation
under a 3-point boundary condition
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We consider a one-dimensional heat equation with inhomogeneous term,
satisfying three-point boundary conditions, such that the temperature at
the end is controlled by a sensor at the point . We show that the integral
solution, in the space of continuous functions satisfying the boundary
values, converges to the equilibrium solution. This answers a question
posed for nonlinear Laplacians, but in the linear case only.

Keywords: three-point boundary value problems; heat equation;
asymptotic stability

AMS Subject Classifications: 34B10; 47D06

1. Introduction
In [1], the author considers the Cauchy problem on [0, c0) x [0, 1],

u(t, x) = (g(ux)(t, x) — f (), (1
u(t,0) =0, 2

u(t,n) = put, 1), 3)

u(0, x) = up(x), ©)

where n€(0,1) and B>1 are given, along with f and g. It is supposed that
g:(a,b)— R is an increasing homeomorphism and a<0<b.

It is shown that we have an integral solution to the Cauchy problem
du/dt = Au — f with initial value ug, in the space of continuous functions, where 4
is the nonlinear Laplacian (g(u,)), subject to the boundary conditions. The question
is asked; does the solution converge to the equilibrium solution, 4~! £? In this note
we show that this holds if g: R — R is linear, i.c. for some k € R, g(x) =kx, so that (1)
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becomes u/t, x) = ku,.(t, x) — f(x), or after an adjustment, replacing ¢t by T =kt and f
by f/k, we assume that we have

ut(t’ X) = uxx(l’ X) _f(x)a

together with Equations (2)—(4). Note that the equilibrium solution has been
investigated for the linear case in [2], as well as [1]. Unfortunately, the Sobolev space
setting of Guidotti and Merino [3] seems to be unavailable, and we rely on the space
of continuous functions to describe our equations. The boundary conditions in [3]
included #'(0) =0. The paper [3] models the usage of a thermostat, and a nonlinear
problem based on [3] was studied in the papers [4,5]. It should be interesting to get
stability for the situation in which f(x) is replaced by f(u(x)).
The convergence of the solution to the inhomogeneous heat equation

u(t, x) = (g(ux)) (1, x) — f(x)

under other boundary conditions, such as Dirichlet, and Neumann, is well known,
and the interested reader may consult and follow up [6, Ch 10.1] and [7, Ch 3.5] and
the commentaries on these sections.

2. Preliminaries

Suppose f>1 and n € (0, 1) are given. Let X denote the Banach space of continuous
functions u:[0, 1]— C, satisfying u(0)=0 and u(n)=Bu(1), under the sup norm.
We define a linear operator in X. Let D(L) consist of u€ X which have first and
second continuous derivatives on [0, 1], i.e. one-sided derivatives at the endpoints.
Forue D(L) let Lu=u,,.

LemmA 1 Given B>1 and n€(0,1), the equation
sin(nz) = Bsin(z) (%)
in the complex variable z has only real solutions.
Proof (a) Suppose z=iy is a purely imaginary solution to (5). The identity
sin(x + iy) = sin(x) cosh( y) 4 icos(x) sinh( y) (6)

gives i sinh(ny) = i sinh(y) and y=0.

(b) Now we suppose z=a-+ib, a and b are real and ab#0. Define
z(t) =sin(t(a + ib)) for te[0,1]. We claim that if ab>0 then arg(z(z)) is strictly
decreasing on (0, 1), while if ab <0 then it is strictly increasing. Suppose ab>0. Write
z(t) = x(¢) + iy(¢), x and y real; we claim that

Xy — yx

— < 0. 7
x2 42 = M

d
g, 28z (n) =

We want the numerator to be negative, i.e.

sin(ta) cos(tb)[cos(ta)b cosh(tb) — asin(ta) sinh(zb)]
— cos(ta) sinh(tb)[sin(ta)b sinh(tb) 4+ a cos(ta) cosh(tb)] < 0. 8)
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Simplify this to give
sin(2ta)  sinh(2tb)
9
2a b ©)
which holds because the LHS is less than 1 and the RHS is greater than 1. This
proves the claim for ab>0. Suppose instead that ab<0. Then (9) holds, so that (8)

holds with the inequality reversed, and hence arg(z(¢)) is strictly increasing.
Suppose a#0, b#£0, a and b are real and

z(t) = sin(#(a + ib)) (10)

for 1€ (0,1). We claim that z(¢) # Bz(1) for all 1€ (0,1). The curve t — z(f) gives
the solution to the initial value problem

S =@rini -2 20 =0, (11)

where we choose +/1 = 1, as we see by substituting (10) into (11). We have the RHS
single valued on the cut plane given by a cut between —1 and 1, and we check that the
solution does not cross the real axis between —1 and 1 for 1>0. Suppose y(f) =0,
then cos(ta) =0, so sin(ta) = %1 and cosh(zb)>1, giving |z(¢)|> 1. Thus we have the
uniqueness of solutions of (11), and, in particular, the forward orbit does not
intersect itself. Assume that ab>0. Then we have a forward orbit spiralling clockwise
out from the origin, so that if arg(z(f) decreases by 27, then mod(z(¢)) increases, so
we cannot have z(¢) = Bz(ty) for > 1 and 1y< 1. |

LemMMA 2 Suppose B>1. The eigenvalues of L consist of a sequence (i,)ne, with
A = —k? and

kyp€ (/2 +nm, /2 + (n+ Dn), (12)
with eigenvectors u,=x — sin(k,,x).

Proof (a) We claim that for each n=0,1,... there is a unique k, € (/2 + nr,
/2 + (n+ 1)7) with

sin(nk,) = Bsin(k,). (13)

Now k — Bsin(k) takes values B and —pB at the two endpoints of (w/2+ nx,
/2 4+ (n+ 1)), whereas k — sin(nk) has values in [0, 1], so there does exist k,
satisfying (13).

Suppose there are two or more solutions of (13), then the slope of k — sin(nk) at
some point ¢ with

sin(ng) = Bsin(q) (14)
is in absolute value at least as big as that of k —  sin(k), i.e.
|Bcos(q)| < [ncos(ng)l. 15)
Thus
cos’(11g) = i1 cos’(1g) = f cos’(q) = f* — psin’(q) = p —sin’(ng)  (16)

by (14), giving 1 > 82, contradicting f> 1.
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(b) One checks that for each n=0,1,..., with A, = —k2

<, and u,(x) =sin(k,x),
we have
Ly, = Mty (17)

(c) Suppose Lu=Au; »€C, and u#0. We show that A = —k2 for some n, and
u=u,. Now A #0, and we let A =—k>. Since u,, = —k’u, we have

u(x) = Asin(kx) + Bcos(kx) (18)
for some A4, B. Since u(0)=0, B=0, and then u(n) = Bu(1), which gives
sin(nk) = Bsin(k). (19)

By Lemma 1, k€R. Hence all eigenvectors of L are real, nonzero and (19) holds
with eigenvector x +— sin(kx). Hence by (a), k=k, for some n=0,1...,
and A = —k2. [ |

LemMMmA 3 Let 0 €C be not an eigenvalue of L. Then L — ol is surjective and has
continuous inverse.

Proof Note that L is surjective, with continuous single-valued inverse which
is compact. Since L—ol is one to one, if feX is given, then Lu—ou=f
iff u—oL 'u=L""f, and I—oL™" is one to one, so is open and surjective by the
invariance of domain. Hence L — o[ is surjective, and bounded by the closed graph
theorem. |

THeoREM 1 [8] Let T be a positive Cy semigroup in a Banach lattice, with generator B.
Then s(B) = w(B).

In this result the only condition on B is that it is the generator of a positive C
semigroup in a Banach lattice. We recall that 7 is called positive when for each 7> 0,
T(¢) maps the positive cone of the Banach lattice to itself. We recall [8, page §]
that s(B):=sup{Re(A): 1 €0o(B)} in general, and hence s(L)=—k3 <0 in this
article. Also,

w(T) =infloeR: there exists M > 0, | T(1)x|| < Me”"||x]| ps
for all x in D(B), t > 0}. (20)

Here ||x|lpes) = x|l + | Bx||. Note that by [1, Theorem 12], L is an m-dissipative
operator in X, and hence is the generator of a Cy semigroup in a Banach lattice.
We check that the semigroup is positive. The resolvent J,=(I —nL)™', n a positive
integer, is positive since if u—n_lLu:v, and v>0, then u>0, else u would be
minimized at xy with u(x() <0, and then Lu(x,) > 0 because the three-point boundary
condition implies that xy<1, and then v(xy) <0, contradicting v>0. Hence the
semigroup is positive, being given, for x € X and >0, by

T(tH)x = lim exp(—nt)exp(ntJ,),
this exponential being defined via the power series and hence mapping the positive
cone of X to itself.

COROLLARY 1  The semigroup T generated by the operator L in X has the property
that for all x € X, T(t)x — 0 as t — oo.
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Proof We check [1] that T is positive. By Theorem 1, there is M such that for
all xe D(L),

IT(D)x]| < Me 52| x] py)s @1

and 7(¢)x — 0. Hence for all xecl(D(L)) =X, since T is nonexpansive, T(z)x — 0
as t— o0o. |

We consider the Cauchy problem: given u:[0, 1]— R, find u(z, x) for x€][0, 1]
and 7> 0, satisfying

L —f w0 =, (22)

By [1], L is m-dissipative in X. By [9] there is a unique integral solution of the Cauchy
problem (22) if ug € X.

THEOREM 2 Suppose B, n, X and L are as specified in Section 2. Let uy and f be in X.
Then the integral solution to (22) converges to L™'f as t — oo.

Proof Let wo=L"'f. We know that L generates a nonexpansive semigroup 7 since
L is m-dissipative. Let u(t) = T(t)(ug — wo) + wg for £ > 0. Suppose first that uy e D(L).
Then u is C' and /()= Lu(r) — f, since uo—woe D(L); see [8, p. 3] on classical
solutions. Then u(¢) is an integral solution by [9, Theorem 5.5]. Then for general ug
in X we have u(f) the integral solution, by continuity. From the Corollary we
have u(t) — wy.

Remark  (t,x) — (T(t)(uy — wp))(x) is a distributional solution of the heat equation
and by hypoellipticity [10] it is C> on (0,00)x (0,1). Hence the solution
u(t) = T(t)(ttg — wo) + W is as smooth as L~'f. From the boundary conditions, u(7)
is smooth on the boundary x=1 for >0.

Remark The question arises as to whether the condition 8> 1 is necessary for this
article, or whether B>n suffices. In [11] it is shown that the condition B>1 is
necessary for their results. We note that a different case B<n has been discussed
in [12], and the integral operator is then negative. Lemmas 1 and 2 use 8> 1, but
Corollary 1 may go through without their detailed conclusions, because we merely
used s(L) <0 when applying Theorem 1. However, for n< <1, we do not apply the
theory of integral solutions, because we can show that we do not have L —wl
dissipative for any w, and integral solutions concern such operators.

ProrosiTioN 1 Suppose B€(0,1), ne(0,1), >0, a<0<b and g:(a,b)— R is an
increasing homeomorphism, and is C'. Then L — wl is not dissipative in C([0, 1]).

Proof Let

B =Hix—n*
E(IJF -’ )xz'7

u(x) = - (23)

e(l - ,]—4”) x <.
If €>0 is small, then u € D(L), and we check that u — A(L — wl)u attains its maximum
value at 1 for small A >0, but is less than u there. [ |

Remark On the other hand, we can still ask about other notions of solution of the
Cauchy problem for n< <1, in case g(x)=x, and we can ask if the corresponding
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version of Theorem 2 will hold. But this study is not in the scope of this article. In
fact, L is the generator of a positive C, semigroup.
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