Stability of equilibrium solution to inhomogeneous heat equation under a 3-point boundary condition

Bruce D. Calvert

To cite this article: Bruce D. Calvert (2010) Stability of equilibrium solution to inhomogeneous heat equation under a 3-point boundary condition, Applicable Analysis, 89:3, 409-414, DOI: 10.1080/00036810903569457

To link to this article: https://doi.org/10.1080/00036810903569457

Copyright Taylor and Francis Group, LLC

Published online: 05 Mar 2010.

Submit your article to this journal

Article views: 558

View related articles

Citing articles: 1 View citing articles

Stability of equilibrium solution to inhomogeneous heat equation under a 3-point boundary condition

Bruce D. Calvert*
Department of Mathematics, University of Auckland, Private Bag 92019, Auckland, New Zealand
Communicated by P. Broadbridge

(Received 1 July 2009; final version received 29 November 2009)

Abstract

We consider a one-dimensional heat equation with inhomogeneous term, satisfying three-point boundary conditions, such that the temperature at the end is controlled by a sensor at the point η. We show that the integral solution, in the space of continuous functions satisfying the boundary values, converges to the equilibrium solution. This answers a question posed for nonlinear Laplacians, but in the linear case only.

Keywords: three-point boundary value problems; heat equation; asymptotic stability

AMS Subject Classifications: 34B10; 47D06

1. Introduction

In [1], the author considers the Cauchy problem on $[0, \infty) \times[0,1]$,

$$
\begin{gather*}
u_{t}(t, x)=\left(g\left(u_{x}\right)\right)_{x}(t, x)-f(x), \tag{1}\\
u(t, 0)=0, \tag{2}\\
u(t, \eta)=\beta u(t, 1), \tag{3}\\
u(0, x)=u_{0}(x), \tag{4}
\end{gather*}
$$

where $\eta \in(0,1)$ and $\beta>1$ are given, along with f and g. It is supposed that $g:(a, b) \rightarrow \mathbb{R}$ is an increasing homeomorphism and $a<0<b$.

It is shown that we have an integral solution to the Cauchy problem $\mathrm{d} u / \mathrm{d} t=A u-f$ with initial value u_{0}, in the space of continuous functions, where A is the nonlinear Laplacian $\left(g\left(u_{x}\right)\right)_{x}$ subject to the boundary conditions. The question is asked; does the solution converge to the equilibrium solution, $A^{-1} f$? In this note we show that this holds if $g: \mathbb{R} \rightarrow \mathbb{R}$ is linear, i.e. for some $k \in \mathbb{R}, g(x)=k x$, so that (1)

[^0]becomes $u_{t}(t, x)=k u_{x x}(t, x)-f(x)$, or after an adjustment, replacing t by $\tau=k t$ and f by f / k, we assume that we have
$$
u_{t}(t, x)=u_{x x}(t, x)-f(x)
$$
together with Equations (2)-(4). Note that the equilibrium solution has been investigated for the linear case in [2], as well as [1]. Unfortunately, the Sobolev space setting of Guidotti and Merino [3] seems to be unavailable, and we rely on the space of continuous functions to describe our equations. The boundary conditions in [3] included $u^{\prime}(0)=0$. The paper [3] models the usage of a thermostat, and a nonlinear problem based on [3] was studied in the papers [4,5]. It should be interesting to get stability for the situation in which $f(x)$ is replaced by $f(u(x))$.

The convergence of the solution to the inhomogeneous heat equation

$$
u_{t}(t, x)=\left(g\left(u_{x}\right)\right)_{x}(t, x)-f(x)
$$

under other boundary conditions, such as Dirichlet, and Neumann, is well known, and the interested reader may consult and follow up [6, Ch 10.1] and [7, Ch 3.5] and the commentaries on these sections.

2. Preliminaries

Suppose $\beta>1$ and $\eta \in(0,1)$ are given. Let X denote the Banach space of continuous functions $u:[0,1] \rightarrow \mathbb{C}$, satisfying $u(0)=0$ and $u(\eta)=\beta u(1)$, under the sup norm. We define a linear operator in X. Let $D(L)$ consist of $u \in X$ which have first and second continuous derivatives on $[0,1]$, i.e. one-sided derivatives at the endpoints. For $u \in D(L)$ let $L u=u_{x x}$.
Lemma 1 Given $\beta>1$ and $\eta \in(0,1)$, the equation

$$
\begin{equation*}
\sin (\eta z)=\beta \sin (z) \tag{5}
\end{equation*}
$$

in the complex variable z has only real solutions.
Proof (a) Suppose $z=i y$ is a purely imaginary solution to (5). The identity

$$
\begin{equation*}
\sin (x+i y)=\sin (x) \cosh (y)+i \cos (x) \sinh (y) \tag{6}
\end{equation*}
$$

gives $i \sinh (\eta y)=\beta i \sinh (y)$ and $y=0$.
(b) Now we suppose $z=a+i b, a$ and b are real and $a b \neq 0$. Define $z(t)=\sin (t(a+i b))$ for $t \in[0,1]$. We claim that if $a b>0$ then $\arg (z(t))$ is strictly decreasing on $(0,1)$, while if $a b<0$ then it is strictly increasing. Suppose $a b>0$. Write $z(t)=x(t)+i y(t), x$ and y real; we claim that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \arg (z(t))=\frac{x \dot{y}-y \dot{x}}{x^{2}+y^{2}}<0 . \tag{7}
\end{equation*}
$$

We want the numerator to be negative, i.e.

$$
\begin{align*}
& \sin (t a) \cos (t b)[\cos (t a) b \cosh (t b)-a \sin (t a) \sinh (t b)] \\
& \quad-\cos (t a) \sinh (t b)[\sin (t a) b \sinh (t b)+a \cos (t a) \cosh (t b)]<0 . \tag{8}
\end{align*}
$$

Simplify this to give

$$
\begin{equation*}
\frac{\sin (2 t a)}{2 t a}<\frac{\sinh (2 t b)}{2 t b} \tag{9}
\end{equation*}
$$

which holds because the LHS is less than 1 and the RHS is greater than 1 . This proves the claim for $a b>0$. Suppose instead that $a b<0$. Then (9) holds, so that (8) holds with the inequality reversed, and hence $\arg (z(t))$ is strictly increasing.

Suppose $a \neq 0, b \neq 0, a$ and b are real and

$$
\begin{equation*}
z(t)=\sin (t(a+i b)) \tag{10}
\end{equation*}
$$

for $t \in(0,1)$. We claim that $z(t) \neq \beta z(1)$ for all $t \in(0,1)$. The curve $t \mapsto z(t)$ gives the solution to the initial value problem

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} z(t)=(a+i b) \sqrt{1-z(t)^{2}}, \quad z(0)=0 \tag{11}
\end{equation*}
$$

where we choose $\sqrt{1}=1$, as we see by substituting (10) into (11). We have the RHS single valued on the cut plane given by a cut between -1 and 1 , and we check that the solution does not cross the real axis between -1 and 1 for $t>0$. Suppose $y(t)=0$, then $\cos (t a)=0$, so $\sin (t a)= \pm 1$ and $\cosh (t b)>1$, giving $|z(t)|>1$. Thus we have the uniqueness of solutions of (11), and, in particular, the forward orbit does not intersect itself. Assume that $a b>0$. Then we have a forward orbit spiralling clockwise out from the origin, so that if $\arg (z(t)$ decreases by 2π, then $\bmod (z(t))$ increases, so we cannot have $z\left(t_{0}\right)=\beta z\left(t_{0}\right)$ for $\beta \geq 1$ and $t_{0}<1$.

Lemma 2 Suppose $\beta>1$. The eigenvalues of L consist of a sequence $\left\langle\lambda_{n}\right\rangle_{n=0}^{\infty}$ with $\lambda_{n}=-k_{n}^{2}$ and

$$
\begin{equation*}
k_{n} \in(\pi / 2+n \pi, \pi / 2+(n+1) \pi), \tag{12}
\end{equation*}
$$

with eigenvectors $u_{n}=x \mapsto \sin \left(k_{n} x\right)$.
Proof (a) We claim that for each $n=0,1, \ldots$ there is a unique $k_{n} \in(\pi / 2+n \pi$, $\pi / 2+(n+1) \pi)$ with

$$
\begin{equation*}
\sin \left(\eta k_{n}\right)=\beta \sin \left(k_{n}\right) . \tag{13}
\end{equation*}
$$

Now $k \mapsto \beta \sin (k)$ takes values β and $-\beta$ at the two endpoints of $(\pi / 2+n \pi$, $\pi / 2+(n+1) \pi)$, whereas $k \mapsto \sin (\eta k)$ has values in $[0,1]$, so there does exist k_{n} satisfying (13).

Suppose there are two or more solutions of (13), then the slope of $k \mapsto \sin (\eta k)$ at some point q with

$$
\begin{equation*}
\sin (\eta q)=\beta \sin (q) \tag{14}
\end{equation*}
$$

is in absolute value at least as big as that of $k \mapsto \beta \sin (k)$, i.e.

$$
\begin{equation*}
|\beta \cos (q)| \leq|\eta \cos (\eta q)| . \tag{15}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\cos ^{2}(\eta q) \geq \eta^{2} \cos ^{2}(\eta q) \geq \beta^{2} \cos ^{2}(q)=\beta^{2}-\beta^{2} \sin ^{2}(q)=\beta^{2}-\sin ^{2}(\eta q) \tag{16}
\end{equation*}
$$

by (14), giving $1 \geq \beta^{2}$, contradicting $\beta>1$.
(b) One checks that for each $n=0,1, \ldots$, with $\lambda_{n}=-k_{n}^{2}$, and $u_{n}(x)=\sin \left(k_{n} x\right)$, we have

$$
\begin{equation*}
L u_{n}=\lambda_{n} u_{n} . \tag{17}
\end{equation*}
$$

(c) Suppose $L u=\lambda u ; \lambda \in \mathbb{C}$, and $u \neq 0$. We show that $\lambda=-k_{n}^{2}$ for some n, and $u=u_{n}$. Now $\lambda \neq 0$, and we let $\lambda=-k^{2}$. Since $u_{x x}=-k^{2} u$, we have

$$
\begin{equation*}
u(x)=A \sin (k x)+B \cos (k x) \tag{18}
\end{equation*}
$$

for some A, B. Since $u(0)=0, B=0$, and then $u(\eta)=\beta u(1)$, which gives

$$
\begin{equation*}
\sin (\eta k)=\beta \sin (k) . \tag{19}
\end{equation*}
$$

By Lemma 1, $k \in \mathbb{R}$. Hence all eigenvectors of L are real, nonzero and (19) holds with eigenvector $x \mapsto \sin (k x)$. Hence by (a), $k=k_{n}$ for some $n=0,1 \ldots$, and $\lambda=-k_{n}^{2}$.
Lemma 3 Let $\sigma \in \mathbb{C}$ be not an eigenvalue of L. Then $L-\sigma I$ is surjective and has continuous inverse.

Proof Note that L is surjective, with continuous single-valued inverse which is compact. Since $L-\sigma I$ is one to one, if $f \in X$ is given, then $L u-\sigma u=f$ iff $u-\sigma L^{-1} u=L^{-1} f$, and $I-\sigma L^{-1}$ is one to one, so is open and surjective by the invariance of domain. Hence $L-\sigma I$ is surjective, and bounded by the closed graph theorem.
Theorem 1 [8] Let T be a positive C_{0} semigroup in a Banach lattice, with generator B. Then $s(B)=\omega_{1}(B)$.

In this result the only condition on B is that it is the generator of a positive C_{0} semigroup in a Banach lattice. We recall that T is called positive when for each $t \geq 0$, $T(t)$ maps the positive cone of the Banach lattice to itself. We recall [8, page 8] that $s(B):=\sup \{\operatorname{Re}(\lambda): \lambda \in \sigma(B)\}$ in general, and hence $s(L)=-k_{0}^{2}<0$ in this article. Also,

$$
\begin{align*}
& \omega_{1}(T)=\inf \left\{\omega \in \mathbb{R}: \text { there exists } M>0,\|T(t) x\| \leq M e^{\omega t}\|x\|_{D(B)}\right. \\
& \quad \text { for all } x \text { in } D(B), t \geq 0\} . \tag{20}
\end{align*}
$$

Here $\|x\|_{D(B)}:=\|x\|+\|B x\|$. Note that by [1, Theorem 12], L is an m-dissipative operator in X, and hence is the generator of a C_{0} semigroup in a Banach lattice. We check that the semigroup is positive. The resolvent $J_{n}=(I-n L)^{-1}, n$ a positive integer, is positive since if $u-n^{-1} L u=v$, and $v \geq 0$, then $u \geq 0$, else u would be minimized at x_{0} with $u\left(x_{0}\right)<0$, and then $L u\left(x_{0}\right) \geq 0$ because the three-point boundary condition implies that $x_{0}<1$, and then $v\left(x_{0}\right)<0$, contradicting $v \geq 0$. Hence the semigroup is positive, being given, for $x \in X$ and $t \geq 0$, by

$$
T(t) x=\lim _{n \rightarrow \infty} \exp (-n t) \exp \left(n t J_{n}\right),
$$

this exponential being defined via the power series and hence mapping the positive cone of X to itself.

Corollary 1 The semigroup T generated by the operator L in X has the property that for all $x \in X, T(t) x \rightarrow 0$ as $t \rightarrow \infty$.

Proof We check [1] that T is positive. By Theorem 1, there is M such that for all $x \in D(L)$,

$$
\begin{equation*}
\|T(t) x\| \leq M e^{-k_{0}^{2} t / 2}\|x\|_{D(L)} \tag{21}
\end{equation*}
$$

and $T(t) x \rightarrow 0$. Hence for all $x \in \operatorname{cl}(D(L))=X$, since T is nonexpansive, $T(t) x \rightarrow 0$ as $t \rightarrow \infty$.

We consider the Cauchy problem: given $u_{0}:[0,1] \rightarrow \mathbb{R}$, find $u(t, x)$ for $x \in[0,1]$ and $t \geq 0$, satisfying

$$
\begin{equation*}
\frac{\mathrm{d} u}{\mathrm{~d} t}=L(u)-f, \quad u(0)=u_{0} . \tag{22}
\end{equation*}
$$

By [1], L is m-dissipative in X. By [9] there is a unique integral solution of the Cauchy problem (22) if $u_{0} \in X$.

Theorem 2 Suppose β, η, X and L are as specified in Section 2. Let u_{0} and f be in X. Then the integral solution to (22) converges to $L^{-1} f$ as $t \rightarrow \infty$.
Proof Let $w_{0}=L^{-1} f$. We know that L generates a nonexpansive semigroup T since L is m-dissipative. Let $u(t)=T(t)\left(u_{0}-w_{0}\right)+w_{0}$ for $t \geq 0$. Suppose first that $u_{0} \in D(L)$. Then u is C^{1} and $u^{\prime}(t)=L u(t)-f$, since $u_{0}-w_{0} \in D(L)$; see [8, p. 3] on classical solutions. Then $u(t)$ is an integral solution by [9, Theorem 5.5]. Then for general u_{0} in X we have $u(t)$ the integral solution, by continuity. From the Corollary we have $u(t) \rightarrow w_{0}$.

Remark $\quad(t, x) \mapsto\left(T(t)\left(u_{0}-w_{0}\right)\right)(x)$ is a distributional solution of the heat equation and by hypoellipticity [10] it is C^{∞} on $(0, \infty) \times(0,1)$. Hence the solution $u(t)=T(t)\left(u_{0}-w_{0}\right)+w_{0}$ is as smooth as $L^{-1} f$. From the boundary conditions, $u(t)$ is smooth on the boundary $x=1$ for $t>0$.
Remark The question arises as to whether the condition $\beta>1$ is necessary for this article, or whether $\beta>\eta$ suffices. In [11] it is shown that the condition $\beta>1$ is necessary for their results. We note that a different case $\beta<\eta$ has been discussed in [12], and the integral operator is then negative. Lemmas 1 and 2 use $\beta>1$, but Corollary 1 may go through without their detailed conclusions, because we merely used $s(L)<0$ when applying Theorem 1 . However, for $\eta<\beta<1$, we do not apply the theory of integral solutions, because we can show that we do not have $L-\omega I$ dissipative for any ω, and integral solutions concern such operators.

Proposition 1 Suppose $\beta \in(0,1), \eta \in(0,1), \omega>0, a<0<b$ and $g:(a, b) \rightarrow \mathbb{R}$ is an increasing homeomorphism, and is C^{1}. Then $L-\omega I$ is not dissipative in $C([0,1])$.

Proof Let

$$
u(x)= \begin{cases}\epsilon\left(1+\frac{\left(\beta^{-1}-1\right)(x-\eta)^{4}}{(1-\eta)^{4}}\right) & x \geq \eta \tag{23}\\ \epsilon\left(1-\frac{(x-\eta)^{4}}{\eta^{4}}\right) & x \leq \eta .\end{cases}
$$

If $\epsilon>0$ is small, then $u \in D(L)$, and we check that $u-\lambda(L-\omega I) u$ attains its maximum value at 1 for small $\lambda>0$, but is less than u there.

Remark On the other hand, we can still ask about other notions of solution of the Cauchy problem for $\eta<\beta<1$, in case $g(x)=x$, and we can ask if the corresponding
version of Theorem 2 will hold. But this study is not in the scope of this article. In fact, L is the generator of a positive C_{0} semigroup.

Acknowledgements

Thanks to Jeff Webb, Chaitan Gupta and the referees for their advice.

References

[1] B. Calvert, One dimensional nonlinear Laplacians under a 3-point boundary condition, Acta Math. Sin. (Engl. Ser.) (to appear).
[2] C.P. Gupta and S.I. Trofimchuk, A sharper condition for the solvability of a three-point second order boundary value problem, J. Math. Anal. Appl. 205 (1997), pp. 586-597.
[3] P. Guidotti and S. Merino, Gradual loss of positivity and hidden invariant cones in a scalar heat equation, Diff. Int. Eqns. 13 (2000), pp. 1551-1568.
[4] G. Infante and J.R.L. Webb, Loss of positivity in a nonlinear scalar heat equation, NoDEA Nonlinear Diff. Eqns. Appl. 13(2) (2006), pp. 249-261.
[5] G. Infante and J.R.L. Webb, Nonlinear non-local boundary-value problems and perturbed Hammerstein integral equations, Proc. Edinb. Math. Soc. (2) 49(3) (2006), pp. 637-656.
[6] H. Brezis, Analyse Fonctionelle: Théorie et applications, Dunod, Paris, 1999.
[7] H. Brezis, Operateurs Maximaux Monotones et Semi-groupes de Contractions Dans les Espaces de Hilbert, North Holland, Amsterdam, 1973.
[8] J. van Neerven, The Asymptotic Behaviour of Semigroups of Linear Operators, Birkhäuser, Basel, 1996.
[9] I. Miyadera, Nonlinear Semigroups, Translations of Mathematical Monographs 109, American Mathematical Society, Providence, 1992.
[10] L. Hormander, Linear Partial Differential Operators, Springer, Berlin, 1963.
[11] B.P. Rynne, Spectral properties and nodal solutions for second-order, m-point, boundary value problems, Nonlinear Anal. 67(12) (2007), pp. 3318-3327.
[12] G. Infante and J.R.L. Webb, Three-point boundary value problems with solutions that change sign, J. Int. Equ. Appl. 15(1) (2006), pp. 37-57.

[^0]: *Email: calvert@math.auckland.ac.nz

