

Applicable Analysis

ISSN: 0003-6811 (Print) 1563-504X (Online) Journal homepage: https://www.tandfonline.com/loi/gapa20

Stability of equilibrium solution to inhomogeneous heat equation under a 3-point boundary condition

Bruce D. Calvert

To cite this article: Bruce D. Calvert (2010) Stability of equilibrium solution to inhomogeneous heat equation under a 3-point boundary condition, Applicable Analysis, 89:3, 409-414, DOI: 10.1080/00036810903569457

To link to this article: https://doi.org/10.1080/00036810903569457

6

Copyright Taylor and Francis Group, LLC

Published online: 05 Mar 2010.

r	
L.	D 1
~	

Submit your article to this journal 🗹

Article views: 558

View related articles 🗹

Citing articles: 1 View citing articles

Stability of equilibrium solution to inhomogeneous heat equation under a 3-point boundary condition

Bruce D. Calvert*

Department of Mathematics, University of Auckland, Private Bag 92019, Auckland, New Zealand

Communicated by P. Broadbridge

(Received 1 July 2009; final version received 29 November 2009)

We consider a one-dimensional heat equation with inhomogeneous term, satisfying three-point boundary conditions, such that the temperature at the end is controlled by a sensor at the point η . We show that the integral solution, in the space of continuous functions satisfying the boundary values, converges to the equilibrium solution. This answers a question posed for nonlinear Laplacians, but in the linear case only.

Keywords: three-point boundary value problems; heat equation; asymptotic stability

AMS Subject Classifications: 34B10; 47D06

1. Introduction

In [1], the author considers the Cauchy problem on $[0, \infty) \times [0, 1]$,

$$u_{t}(t, x) = (g(u_{x}))_{x}(t, x) - f(x),$$
(1)

$$u(t,0) = 0,$$
 (2)

$$u(t,\eta) = \beta u(t,1), \tag{3}$$

$$u(0, x) = u_0(x),$$
 (4)

where $\eta \in (0, 1)$ and $\beta > 1$ are given, along with f and g. It is supposed that $g:(a, b) \to \mathbb{R}$ is an increasing homeomorphism and a < 0 < b.

It is shown that we have an integral solution to the Cauchy problem du/dt = Au - f with initial value u_0 , in the space of continuous functions, where A is the nonlinear Laplacian $(g(u_x))_x$ subject to the boundary conditions. The question is asked; does the solution converge to the equilibrium solution, $A^{-1} f$? In this note we show that this holds if $g : \mathbb{R} \to \mathbb{R}$ is linear, i.e. for some $k \in \mathbb{R}$, g(x) = kx, so that (1)

ISSN 0003–6811 print/ISSN 1563–504X online © 2010 Taylor & Francis DOI: 10.1080/00036810903569457 http://www.informaworld.com

^{*}Email: calvert@math.auckland.ac.nz

becomes $u_t(t, x) = ku_{xx}(t, x) - f(x)$, or after an adjustment, replacing t by $\tau = kt$ and f by f/k, we assume that we have

$$u_t(t, x) = u_{xx}(t, x) - f(x),$$

together with Equations (2)–(4). Note that the equilibrium solution has been investigated for the linear case in [2], as well as [1]. Unfortunately, the Sobolev space setting of Guidotti and Merino [3] seems to be unavailable, and we rely on the space of continuous functions to describe our equations. The boundary conditions in [3] included u'(0) = 0. The paper [3] models the usage of a thermostat, and a nonlinear problem based on [3] was studied in the papers [4,5]. It should be interesting to get stability for the situation in which f(x) is replaced by f(u(x)).

The convergence of the solution to the inhomogeneous heat equation

$$u_t(t, x) = (g(u_x))_x(t, x) - f(x)$$

under other boundary conditions, such as Dirichlet, and Neumann, is well known, and the interested reader may consult and follow up [6, Ch 10.1] and [7, Ch 3.5] and the commentaries on these sections.

2. Preliminaries

Suppose $\beta > 1$ and $\eta \in (0, 1)$ are given. Let *X* denote the Banach space of continuous functions $u: [0, 1] \to \mathbb{C}$, satisfying u(0) = 0 and $u(\eta) = \beta u(1)$, under the sup norm. We define a linear operator in *X*. Let D(L) consist of $u \in X$ which have first and second continuous derivatives on [0, 1], i.e. one-sided derivatives at the endpoints. For $u \in D(L)$ let $Lu = u_{xx}$.

LEMMA 1 Given $\beta > 1$ and $\eta \in (0, 1)$, the equation

$$\sin(\eta z) = \beta \sin(z) \tag{5}$$

in the complex variable z has only real solutions.

Proof (a) Suppose z = iy is a purely imaginary solution to (5). The identity

$$\sin(x + iy) = \sin(x)\cosh(y) + i\cos(x)\sinh(y)$$
(6)

gives $i \sinh(\eta y) = \beta i \sinh(y)$ and y = 0.

(b) Now we suppose z=a+ib, *a* and *b* are real and $ab \neq 0$. Define $z(t) = \sin(t(a+ib))$ for $t \in [0, 1]$. We claim that if ab > 0 then $\arg(z(t))$ is strictly decreasing on (0, 1), while if ab < 0 then it is strictly increasing. Suppose ab > 0. Write z(t) = x(t) + iy(t), *x* and *y* real; we claim that

$$\frac{d}{dt}\arg(z(t)) = \frac{x\dot{y} - y\dot{x}}{x^2 + y^2} < 0.$$
(7)

We want the numerator to be negative, i.e.

$$\sin(ta)\cos(tb)[\cos(ta)b\cosh(tb) - a\sin(ta)\sinh(tb)] -\cos(ta)\sinh(tb)[\sin(ta)b\sinh(tb) + a\cos(ta)\cosh(tb)] < 0.$$
(8)

Simplify this to give

$$\frac{\sin(2ta)}{2ta} < \frac{\sinh(2tb)}{2tb},\tag{9}$$

which holds because the LHS is less than 1 and the RHS is greater than 1. This proves the claim for ab > 0. Suppose instead that ab < 0. Then (9) holds, so that (8) holds with the inequality reversed, and hence $\arg(z(t))$ is strictly increasing.

Suppose $a \neq 0$, $b \neq 0$, a and b are real and

$$z(t) = \sin(t(a+ib)) \tag{10}$$

for $t \in (0, 1)$. We claim that $z(t) \neq \beta z(1)$ for all $t \in (0, 1)$. The curve $t \mapsto z(t)$ gives the solution to the initial value problem

$$\frac{\mathrm{d}}{\mathrm{d}t}z(t) = (a+ib)\sqrt{1-z(t)^2}, \quad z(0) = 0, \tag{11}$$

where we choose $\sqrt{1} = 1$, as we see by substituting (10) into (11). We have the RHS single valued on the cut plane given by a cut between -1 and 1, and we check that the solution does not cross the real axis between -1 and 1 for t > 0. Suppose y(t) = 0, then $\cos(ta) = 0$, so $\sin(ta) = \pm 1$ and $\cosh(tb) > 1$, giving |z(t)| > 1. Thus we have the uniqueness of solutions of (11), and, in particular, the forward orbit does not intersect itself. Assume that ab > 0. Then we have a forward orbit spiralling clockwise out from the origin, so that if $\arg(z(t) \text{ decreases by } 2\pi$, then $\operatorname{mod}(z(t))$ increases, so we cannot have $z(t_0) = \beta z(t_0)$ for $\beta \ge 1$ and $t_0 < 1$.

LEMMA 2 Suppose $\beta > 1$. The eigenvalues of L consist of a sequence $\langle \lambda_n \rangle_{n=0}^{\infty}$ with $\lambda_n = -k_n^2$ and

$$k_n \in (\pi/2 + n\pi, \pi/2 + (n+1)\pi), \tag{12}$$

with eigenvectors $u_n = x \mapsto \sin(k_n x)$.

Proof (a) We claim that for each n = 0, 1, ... there is a unique $k_n \in (\pi/2 + n\pi, \pi/2 + (n+1)\pi)$ with

$$\sin(\eta k_n) = \beta \sin(k_n). \tag{13}$$

Now $k \mapsto \beta \sin(k)$ takes values β and $-\beta$ at the two endpoints of $(\pi/2 + n\pi, \pi/2 + (n+1)\pi)$, whereas $k \mapsto \sin(\eta k)$ has values in [0, 1], so there does exist k_n satisfying (13).

Suppose there are two or more solutions of (13), then the slope of $k \mapsto \sin(\eta k)$ at some point q with

$$\sin(\eta q) = \beta \sin(q) \tag{14}$$

is in absolute value at least as big as that of $k \mapsto \beta \sin(k)$, i.e.

$$|\beta\cos(q)| \le |\eta\cos(\eta q)|. \tag{15}$$

Thus

$$\cos^{2}(\eta q) \ge \eta^{2} \cos^{2}(\eta q) \ge \beta^{2} \cos^{2}(q) = \beta^{2} - \beta^{2} \sin^{2}(q) = \beta^{2} - \sin^{2}(\eta q)$$
(16)

by (14), giving $1 \ge \beta^2$, contradicting $\beta > 1$.

(b) One checks that for each n = 0, 1, ..., with $\lambda_n = -k_n^2$, and $u_n(x) = \sin(k_n x)$, we have

$$Lu_n = \lambda_n u_n. \tag{17}$$

(c) Suppose $Lu = \lambda u$; $\lambda \in \mathbb{C}$, and $u \neq 0$. We show that $\lambda = -k_n^2$ for some *n*, and $u = u_n$. Now $\lambda \neq 0$, and we let $\lambda = -k^2$. Since $u_{xx} = -k^2 u$, we have

$$u(x) = A\sin(kx) + B\cos(kx) \tag{18}$$

for some A, B. Since u(0) = 0, B = 0, and then $u(\eta) = \beta u(1)$, which gives

$$\sin(\eta k) = \beta \sin(k). \tag{19}$$

By Lemma 1, $k \in \mathbb{R}$. Hence all eigenvectors of *L* are real, nonzero and (19) holds with eigenvector $x \mapsto \sin(kx)$. Hence by (a), $k = k_n$ for some n = 0, 1..., and $\lambda = -k_n^2$.

LEMMA 3 Let $\sigma \in \mathbb{C}$ be not an eigenvalue of L. Then $L - \sigma I$ is surjective and has continuous inverse.

Proof Note that *L* is surjective, with continuous single-valued inverse which is compact. Since $L - \sigma I$ is one to one, if $f \in X$ is given, then $Lu - \sigma u = f$ iff $u - \sigma L^{-1}u = L^{-1}f$, and $I - \sigma L^{-1}$ is one to one, so is open and surjective by the invariance of domain. Hence $L - \sigma I$ is surjective, and bounded by the closed graph theorem.

THEOREM 1 [8] Let T be a positive C_0 semigroup in a Banach lattice, with generator B. Then $s(B) = \omega_1(B)$.

In this result the only condition on *B* is that it is the generator of a positive C_0 semigroup in a Banach lattice. We recall that *T* is called positive when for each $t \ge 0$, T(t) maps the positive cone of the Banach lattice to itself. We recall [8, page 8] that $s(B) := \sup \{ \operatorname{Re}(\lambda) : \lambda \in \sigma(B) \}$ in general, and hence $s(L) = -k_0^2 < 0$ in this article. Also,

$$\omega_1(T) = \inf\{\omega \in \mathbb{R} : \text{ there exists } M > 0, \|T(t)x\| \le M e^{\omega t} \|x\|_{D(B)}$$

for all x in $D(B), t \ge 0\}.$ (20)

Here $||x||_{D(B)} := ||x|| + ||Bx||$. Note that by [1, Theorem 12], *L* is an *m*-dissipative operator in *X*, and hence is the generator of a C_0 semigroup in a Banach lattice. We check that the semigroup is positive. The resolvent $J_n = (I - nL)^{-1}$, *n* a positive integer, is positive since if $u - n^{-1}Lu = v$, and $v \ge 0$, then $u \ge 0$, else *u* would be minimized at x_0 with $u(x_0) < 0$, and then $Lu(x_0) \ge 0$ because the three-point boundary condition implies that $x_0 < 1$, and then $v(x_0) < 0$, contradicting $v \ge 0$. Hence the semigroup is positive, being given, for $x \in X$ and $t \ge 0$, by

$$T(t)x = \lim_{n \to \infty} \exp(-nt) \exp(ntJ_n),$$

this exponential being defined via the power series and hence mapping the positive cone of X to itself.

COROLLARY 1 The semigroup T generated by the operator L in X has the property that for all $x \in X$, $T(t)x \to 0$ as $t \to \infty$.

Proof We check [1] that T is positive. By Theorem 1, there is M such that for all $x \in D(L)$,

$$\|T(t)x\| \le M e^{-k_0^2 t/2} \|x\|_{D(L)},\tag{21}$$

and $T(t)x \to 0$. Hence for all $x \in cl(D(L)) = X$, since T is nonexpansive, $T(t)x \to 0$ as $t \to \infty$.

We consider the Cauchy problem: given $u_0:[0,1] \to \mathbb{R}$, find u(t,x) for $x \in [0,1]$ and $t \ge 0$, satisfying

$$\frac{\mathrm{d}u}{\mathrm{d}t} = L(u) - f, \quad u(0) = u_0.$$
 (22)

By [1], *L* is *m*-dissipative in *X*. By [9] there is a unique integral solution of the Cauchy problem (22) if $u_0 \in X$.

THEOREM 2 Suppose β , η , X and L are as specified in Section 2. Let u_0 and f be in X. Then the integral solution to (22) converges to $L^{-1}f$ as $t \to \infty$.

Proof Let $w_0 = L^{-1}f$. We know that *L* generates a nonexpansive semigroup *T* since *L* is *m*-dissipative. Let $u(t) = T(t)(u_0 - w_0) + w_0$ for $t \ge 0$. Suppose first that $u_0 \in D(L)$. Then *u* is C^1 and u'(t) = Lu(t) - f, since $u_0 - w_0 \in D(L)$; see [8, p. 3] on classical solutions. Then u(t) is an integral solution by [9, Theorem 5.5]. Then for general u_0 in *X* we have u(t) the integral solution, by continuity. From the Corollary we have $u(t) \to w_0$.

Remark $(t, x) \mapsto (T(t)(u_0 - w_0))(x)$ is a distributional solution of the heat equation and by hypoellipticity [10] it is C^{∞} on $(0, \infty) \times (0, 1)$. Hence the solution $u(t) = T(t)(u_0 - w_0) + w_0$ is as smooth as $L^{-1}f$. From the boundary conditions, u(t)is smooth on the boundary x = 1 for t > 0.

Remark The question arises as to whether the condition $\beta > 1$ is necessary for this article, or whether $\beta > \eta$ suffices. In [11] it is shown that the condition $\beta > 1$ is necessary for their results. We note that a different case $\beta < \eta$ has been discussed in [12], and the integral operator is then negative. Lemmas 1 and 2 use $\beta > 1$, but Corollary 1 may go through without their detailed conclusions, because we merely used s(L) < 0 when applying Theorem 1. However, for $\eta < \beta < 1$, we do not apply the theory of integral solutions, because we can show that we do not have $L - \omega I$ dissipative for any ω , and integral solutions concern such operators.

PROPOSITION 1 Suppose $\beta \in (0, 1)$, $\eta \in (0, 1)$, $\omega > 0$, a < 0 < b and $g: (a, b) \to \mathbb{R}$ is an increasing homeomorphism, and is C^1 . Then $L - \omega I$ is not dissipative in C([0, 1]).

Proof Let

$$u(x) = \begin{cases} \epsilon \left(1 + \frac{(\beta^{-1} - 1)(x - \eta)^4}{(1 - \eta)^4} \right) & x \ge \eta \\ \epsilon \left(1 - \frac{(x - \eta)^4}{\eta^4} \right) & x \le \eta. \end{cases}$$
(23)

If $\epsilon > 0$ is small, then $u \in D(L)$, and we check that $u - \lambda(L - \omega I)u$ attains its maximum value at 1 for small $\lambda > 0$, but is less than *u* there.

Remark On the other hand, we can still ask about other notions of solution of the Cauchy problem for $\eta < \beta < 1$, in case g(x) = x, and we can ask if the corresponding

version of Theorem 2 will hold. But this study is not in the scope of this article. In fact, L is the generator of a positive C_0 semigroup.

Acknowledgements

Thanks to Jeff Webb, Chaitan Gupta and the referees for their advice.

References

- [1] B. Calvert, One dimensional nonlinear Laplacians under a 3-point boundary condition, Acta Math. Sin. (Engl. Ser.) (to appear).
- [2] C.P. Gupta and S.I. Trofimchuk, A sharper condition for the solvability of a three-point second order boundary value problem, J. Math. Anal. Appl. 205 (1997), pp. 586–597.
- [3] P. Guidotti and S. Merino, *Gradual loss of positivity and hidden invariant cones in a scalar heat equation*, Diff. Int. Eqns. 13 (2000), pp. 1551–1568.
- [4] G. Infante and J.R.L. Webb, Loss of positivity in a nonlinear scalar heat equation, NoDEA Nonlinear Diff. Eqns. Appl. 13(2) (2006), pp. 249–261.
- [5] G. Infante and J.R.L. Webb, Nonlinear non-local boundary-value problems and perturbed Hammerstein integral equations, Proc. Edinb. Math. Soc. (2) 49(3) (2006), pp. 637–656.
- [6] H. Brezis, Analyse Fonctionelle: Théorie et applications, Dunod, Paris, 1999.
- [7] H. Brezis, Operateurs Maximaux Monotones et Semi-groupes de Contractions Dans les Espaces de Hilbert, North Holland, Amsterdam, 1973.
- [8] J. van Neerven, The Asymptotic Behaviour of Semigroups of Linear Operators, Birkhäuser, Basel, 1996.
- [9] I. Miyadera, Nonlinear Semigroups, Translations of Mathematical Monographs 109, American Mathematical Society, Providence, 1992.
- [10] L. Hormander, Linear Partial Differential Operators, Springer, Berlin, 1963.
- [11] B.P. Rynne, Spectral properties and nodal solutions for second-order, m-point, boundary value problems, Nonlinear Anal. 67(12) (2007), pp. 3318–3327.
- [12] G. Infante and J.R.L. Webb, *Three-point boundary value problems with solutions that change sign*, J. Int. Equ. Appl. 15(1) (2006), pp. 37–57.