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Stability of equilibrium solution to inhomogeneous heat equation

under a 3-point boundary condition
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We consider a one-dimensional heat equation with inhomogeneous term,
satisfying three-point boundary conditions, such that the temperature at
the end is controlled by a sensor at the point �. We show that the integral
solution, in the space of continuous functions satisfying the boundary
values, converges to the equilibrium solution. This answers a question
posed for nonlinear Laplacians, but in the linear case only.

Keywords: three-point boundary value problems; heat equation;
asymptotic stability

AMS Subject Classifications: 34B10; 47D06

1. Introduction

In [1], the author considers the Cauchy problem on [0,1)� [0, 1],

utðt, xÞ ¼ ð gðuxÞÞxðt, xÞ � f ðxÞ, ð1Þ

uðt, 0Þ ¼ 0, ð2Þ

uðt, �Þ ¼ �uðt, 1Þ, ð3Þ

uð0, xÞ ¼ u0ðxÞ, ð4Þ

where �2 (0, 1) and �41 are given, along with f and g. It is supposed that
g : (a, b)!R is an increasing homeomorphism and a505b.

It is shown that we have an integral solution to the Cauchy problem
du/dt¼Au� f with initial value u0, in the space of continuous functions, where A
is the nonlinear Laplacian (g(ux))x subject to the boundary conditions. The question
is asked; does the solution converge to the equilibrium solution, A�1 f ? In this note
we show that this holds if g :R!R is linear, i.e. for some k2R, g(x)¼ kx, so that (1)
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becomes ut(t, x)¼ kuxx(t, x)� f(x), or after an adjustment, replacing t by �¼ kt and f

by f/k, we assume that we have

utðt, xÞ ¼ uxxðt,xÞ � f ðxÞ,

together with Equations (2)–(4). Note that the equilibrium solution has been

investigated for the linear case in [2], as well as [1]. Unfortunately, the Sobolev space

setting of Guidotti and Merino [3] seems to be unavailable, and we rely on the space

of continuous functions to describe our equations. The boundary conditions in [3]

included u0(0)¼ 0. The paper [3] models the usage of a thermostat, and a nonlinear

problem based on [3] was studied in the papers [4,5]. It should be interesting to get

stability for the situation in which f(x) is replaced by f(u(x)).
The convergence of the solution to the inhomogeneous heat equation

utðt, xÞ ¼ ð gðuxÞÞxðt, xÞ � f ðxÞ

under other boundary conditions, such as Dirichlet, and Neumann, is well known,

and the interested reader may consult and follow up [6, Ch 10.1] and [7, Ch 3.5] and

the commentaries on these sections.

2. Preliminaries

Suppose �41 and �2 (0, 1) are given. Let X denote the Banach space of continuous

functions u : [0, 1]!C, satisfying u(0)¼ 0 and u(�)¼ �u(1), under the sup norm.

We define a linear operator in X. Let D(L) consist of u2X which have first and

second continuous derivatives on [0, 1], i.e. one-sided derivatives at the endpoints.

For u2D(L) let Lu¼ uxx.

LEMMA 1 Given �41 and �2 (0, 1), the equation

sinð�zÞ ¼ � sinðzÞ ð5Þ

in the complex variable z has only real solutions.

Proof (a) Suppose z¼ iy is a purely imaginary solution to (5). The identity

sinðxþ iyÞ ¼ sinðxÞ coshð yÞ þ i cosðxÞ sinhð yÞ ð6Þ

gives i sinh(�y)¼ �i sinh(y) and y¼ 0.
(b) Now we suppose z¼ aþ ib, a and b are real and ab 6¼ 0. Define

z(t)¼ sin(t(aþ ib)) for t2 [0, 1]. We claim that if ab40 then arg(z(t)) is strictly

decreasing on (0, 1), while if ab50 then it is strictly increasing. Suppose ab40. Write

z(t)¼ x(t)þ iy(t), x and y real; we claim that

d

dt
argðzðtÞÞ ¼

x _y� y _x

x2 þ y2
5 0: ð7Þ

We want the numerator to be negative, i.e.

sinðtaÞ cosðtbÞ½cosðtaÞb coshðtbÞ � a sinðtaÞ sinhðtbÞ�

� cosðtaÞ sinhðtbÞ½sinðtaÞb sinhðtbÞ þ a cosðtaÞ coshðtbÞ�5 0: ð8Þ
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Simplify this to give

sinð2taÞ

2ta
5

sinhð2tbÞ

2tb
, ð9Þ

which holds because the LHS is less than 1 and the RHS is greater than 1. This
proves the claim for ab40. Suppose instead that ab50. Then (9) holds, so that (8)
holds with the inequality reversed, and hence arg(z(t)) is strictly increasing.

Suppose a 6¼ 0, b 6¼ 0, a and b are real and

zðtÞ ¼ sinðtðaþ ibÞÞ ð10Þ

for t2 (0, 1). We claim that z(t) 6¼ �z(1) for all t2 (0, 1). The curve t � z(t) gives
the solution to the initial value problem

d

dt
zðtÞ ¼ ðaþ ibÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� zðtÞ2

q
, zð0Þ ¼ 0, ð11Þ

where we choose
ffiffiffi
1
p
¼ 1, as we see by substituting (10) into (11). We have the RHS

single valued on the cut plane given by a cut between �1 and 1, and we check that the
solution does not cross the real axis between �1 and 1 for t40. Suppose y(t)¼ 0,
then cos(ta)¼ 0, so sin(ta)¼�1 and cosh(tb)41, giving jz(t)j41. Thus we have the
uniqueness of solutions of (11), and, in particular, the forward orbit does not
intersect itself. Assume that ab40. Then we have a forward orbit spiralling clockwise
out from the origin, so that if arg(z(t) decreases by 2�, then mod(z(t)) increases, so
we cannot have z(t0)¼�z(t0) for �� 1 and t051. g

LEMMA 2 Suppose �41. The eigenvalues of L consist of a sequence h�ni
1
n¼0 with

�n ¼ �k
2
n and

kn 2 ð�=2þ n�,�=2þ ðnþ 1Þ�Þ, ð12Þ

with eigenvectors un¼ x � sin(knx).

Proof (a) We claim that for each n¼ 0, 1, . . . there is a unique kn2 (�/2þ n�,
�/2þ (nþ 1)�) with

sinð�knÞ ¼ � sinðknÞ: ð13Þ

Now k � � sin(k) takes values � and �� at the two endpoints of (�/2þ n�,
�/2þ (nþ 1)�), whereas k � sin(�k) has values in [0, 1], so there does exist kn
satisfying (13).

Suppose there are two or more solutions of (13), then the slope of k � sin(�k) at
some point q with

sinð�qÞ ¼ � sinðqÞ ð14Þ

is in absolute value at least as big as that of k � � sin(k), i.e.

j� cosðqÞj � j� cosð�qÞj: ð15Þ

Thus

cos2ð�qÞ � �2 cos2ð�qÞ � �2 cos2ðqÞ ¼ �2 � �2 sin2ðqÞ ¼ �2 � sin2ð�qÞ ð16Þ

by (14), giving 1��2, contradicting �41.
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(b) One checks that for each n¼ 0, 1, . . . , with �n ¼ �k
2
n, and un(x)¼ sin(knx),

we have

Lun ¼ �nun: ð17Þ

(c) Suppose Lu¼ �u; �2C, and u 6¼ 0. We show that � ¼ �k2n for some n, and
u¼ un. Now � 6¼ 0, and we let �¼�k2. Since uxx¼�k

2u, we have

uðxÞ ¼ A sinðkxÞ þ B cosðkxÞ ð18Þ

for some A,B. Since u(0)¼ 0, B¼ 0, and then u(�)¼ �u(1), which gives

sinð�kÞ ¼ � sinðkÞ: ð19Þ

By Lemma 1, k2R. Hence all eigenvectors of L are real, nonzero and (19) holds
with eigenvector x � sin(kx). Hence by (a), k¼ kn for some n¼ 0, 1 . . . ,
and � ¼ �k2n. g

LEMMA 3 Let � 2C be not an eigenvalue of L. Then L� �I is surjective and has
continuous inverse.

Proof Note that L is surjective, with continuous single-valued inverse which
is compact. Since L� �I is one to one, if f2X is given, then Lu� �u¼ f
iff u� �L�1u¼L�1f, and I� �L�1 is one to one, so is open and surjective by the
invariance of domain. Hence L� �I is surjective, and bounded by the closed graph
theorem. g

THEOREM 1 [8] Let T be a positive C0 semigroup in a Banach lattice, with generator B.
Then s(B)¼!1(B).

In this result the only condition on B is that it is the generator of a positive C0

semigroup in a Banach lattice. We recall that T is called positive when for each t� 0,
T(t) maps the positive cone of the Banach lattice to itself. We recall [8, page 8]
that s(B) :¼ sup{Re(�) : �2 �(B)} in general, and hence sðLÞ ¼ �k20 5 0 in this
article. Also,

!1ðT Þ ¼ inff!2R : there exists M4 0, kTðtÞxk �Me!tkxkDðBÞ

for all x in DðBÞ, t � 0g: ð20Þ

Here kxkD(B) :¼kxkþkBxk. Note that by [1, Theorem 12], L is an m-dissipative
operator in X, and hence is the generator of a C0 semigroup in a Banach lattice.
We check that the semigroup is positive. The resolvent Jn¼ (I� nL)�1, n a positive
integer, is positive since if u� n�1Lu¼ v, and v� 0, then u� 0, else u would be
minimized at x0 with u(x0)50, and then Lu(x0)� 0 because the three-point boundary
condition implies that x051, and then v(x0)50, contradicting v� 0. Hence the
semigroup is positive, being given, for x2X and t� 0, by

TðtÞx ¼ lim
n!1

expð�ntÞ expðntJnÞ,

this exponential being defined via the power series and hence mapping the positive
cone of X to itself.

COROLLARY 1 The semigroup T generated by the operator L in X has the property
that for all x2X, T(t)x! 0 as t!1.
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Proof We check [1] that T is positive. By Theorem 1, there is M such that for
all x2D(L),

kTðtÞxk �Me�k
2
0
t=2kxkDðLÞ, ð21Þ

and T(t)x! 0. Hence for all x2 cl(D(L))¼X, since T is nonexpansive, T(t)x! 0
as t!1. g

We consider the Cauchy problem: given u0 : [0, 1]!R, find u(t, x) for x2 [0, 1]
and t� 0, satisfying

du

dt
¼ LðuÞ � f, uð0Þ ¼ u0: ð22Þ

By [1], L is m-dissipative in X. By [9] there is a unique integral solution of the Cauchy
problem (22) if u02X.

THEOREM 2 Suppose �, �, X and L are as specified in Section 2. Let u0 and f be in X.
Then the integral solution to (22) converges to L�1f as t!1.

Proof Let w0¼L�1f. We know that L generates a nonexpansive semigroup T since
L is m-dissipative. Let u(t)¼T(t)(u0�w0)þw0 for t� 0. Suppose first that u02D(L).
Then u is C1 and u0(t)¼Lu(t)� f, since u0�w02D(L); see [8, p. 3] on classical
solutions. Then u(t) is an integral solution by [9, Theorem 5.5]. Then for general u0
in X we have u(t) the integral solution, by continuity. From the Corollary we
have u(t)!w0.

Remark (t, x) � (T(t)(u0�w0))(x) is a distributional solution of the heat equation
and by hypoellipticity [10] it is C1 on (0,1)� (0, 1). Hence the solution
u(t)¼T(t)(u0�w0)þw0 is as smooth as L�1f. From the boundary conditions, u(t)
is smooth on the boundary x¼ 1 for t40.

Remark The question arises as to whether the condition �41 is necessary for this
article, or whether �4� suffices. In [11] it is shown that the condition �41 is
necessary for their results. We note that a different case �5� has been discussed
in [12], and the integral operator is then negative. Lemmas 1 and 2 use �41, but
Corollary 1 may go through without their detailed conclusions, because we merely
used s(L)50 when applying Theorem 1. However, for �5�51, we do not apply the
theory of integral solutions, because we can show that we do not have L�!I
dissipative for any !, and integral solutions concern such operators.

PROPOSITION 1 Suppose �2 (0, 1), �2 (0, 1), !40, a505b and g : (a, b)!R is an
increasing homeomorphism, and is C1. Then L�!I is not dissipative in C([0, 1]).

Proof Let

uðxÞ ¼
�
�
1þ ð�

�1�1Þðx��Þ4

ð1��Þ4

�
x � �

�
�
1� ðx��Þ

4

�4

�
x � �:

8><
>:

ð23Þ

If �40 is small, then u2D(L), and we check that u� �(L�!I )u attains its maximum
value at 1 for small �40, but is less than u there. g

Remark On the other hand, we can still ask about other notions of solution of the
Cauchy problem for �5�51, in case g(x)¼ x, and we can ask if the corresponding
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version of Theorem 2 will hold. But this study is not in the scope of this article. In
fact, L is the generator of a positive C0 semigroup.
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