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When studying water waves travelling over an inviscid fluid at the Earth’s
surface there are additional Coriolis and centrifugal forces which influence
the motion of the fluid particles. In particular, for waves propagating
near the Equator the geophysical wave problem can be modelled by the
so-called f-plane approximation. In this paper, we provide an explicit exact
solution to the edge wave problem for stratified geophysical flows in the
equatorial f-plane approximation.
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1. Introduction

Water stratification occurs when water masses with different properties (e.g. salinity,
oxygenation, density and temperature) form layers that act as barriers to water
mixing. These layers are arranged according to density, with the least dense water
masses sitting above the more dense layers. Because of the many effects that may
occur even when the density variation is moderate, the stratified flows are of great
interest in the field of geophysical fluid dynamics. A rigorous study of stratified
water waves has been initiated in [1], where existence of gravity stratified water waves
with density increasing with depth is established, and continued in [2,3] for stratified
flows driven by surface tension. Exact solutions of the water wave problem, with the
stagnation points, have been constructed in [4] for flows which are linearly stratified.

In water of constant density, there exists an explicit solution for gravity waves in
deep water which was found first by Gerstner [5] and later on by Rankine [6]. Its
features have been analyzed in [7,8]. Gerstner’s solution describes the evolution of
each individual fluid particle in the flow: particles move on a circles, the radius of the
circles decreasing with depth. Moreover, the corresponding flow is rotational and the
vorticity decays very fast with depth.

Constantin [9,10], Mollo-Christensen [11] and Yih [12] showed that Gerstner’s
solution can be modified to describe exact solutions of the edge wave problem, that is
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three dimensional waves which travel along the beach shore and vanish in the
direction perpendicular to the shoreline. The edge-waves play an important role in
sediment transport in the nearshore, and, while moving, they trace nice sinusoidal
run-up patterns in the longshore. The first reference to edge waves dates back to the
nineteen century, when Stokes [13], on the basis of linear water theory, gave a simple
solution of a system describing a wave which was bounded in amplitude at the
shoreline, and which decayed away from the shore. Greenspan [14] found an edge
wave solution in the case of stratified fluid with an exponentially varying density
over a sloping beach. Other methods for the generation of edge wave are given by
Evans [15], who constructed edge waves over a sloping beach on which a mixed
boundary condition is satisfied. A one-dimensional model describing edge waves in
the presence of strong longshore currents has been analysed in [16], where the
authors find criteria for the existence of edge waves over variable seabed profiles. By
means of asymptotic analysis, Johnson [17] derived a two-dimensional model
equation for the edge wave problem. This mixed type elliptic-hyperbolic equation has
been studied in [18], in the context of periodic edge waves, and later on in [19] for
solitary waves. An overview of the methods and the results that apply to the edge
wave problem can be found in [20].

Beyond the context of constant density, it is shown in [12,21] that Gerstner
solution and the related edge wave propagating along a sloping beach, can be
adapted to provide explicit free surface flows in incompressible fluids with arbitrary
density stratification.

When studying water waves travelling over an inviscid fluid at the Earth’s surface,
due to the rotation of the Earth around its axis, there are additional Coriolis and
centrifugal forces which appear and influence the motion of the fluid particles, cf
[22,23]. Particularly, for waves propagating near the Equator, the geophysical wave
problem can be modelled by the so-called f-plane approximation, the Coriolis
parameter being constant and centrifugal forces neglected. The physical relevance of
the f-plane approximation for geophysical edge waves near the Equator has been
recently discussed in [24]. We mention that the f-plane approximation for the deep-
water wave problem possesses an explicit solution: Gerstner’s solution to the deep
water wave problem [7,8] can be generalized, cf [25], to describe deep water waves in
the geophysical context. We emphasize that any solution of the f-plane approximation
which has the property that the pressure is constant along the streamlines has to be a
vertical translation of the solution described in [25], cf [26]. Moreover, the solution
found in [25] may be adapted to describe geophysical waves travelling over uniform
currents, cf [27], where the motion of the fluid particles in dependence of the current’s
strength and the direction of propagation of the wave is also analysed. It was recently
shown in [28] that there exists also an explicit solution for the geophysical edge wave
problem in the f-plane approximation if the shoreline is parallel to the Equator.

Concerning geophysical stratified flows, Constantin [29] found an exact solution
for geophysical equatorial water waves in the �-plane approximation. This solution
describes equatorial trapped waves propagating eastward in a stratified inviscid
fluid. The aim of this paper is to show that the solutions found in [25] and [28] for the
geophysical deep water and edge wave problem, respectively, may be used to describe
also waves propagating over a stratified fluid. In the context of deep water waves, cf
Section 3, and in Section 4, for the edge wave problem, we prove that the solution
found for homogeneous flows describes waves propagating over a stratified fluid if
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and only if the density is constant on the isobaric surfaces, that is on the surfaces of
constant pressure.

2. The governing equations for geophysical water waves

When considering a rotating frame with the origin at a point O on Earth’s surface,
the governing equation in the f-plane approximation for a fluid layer localized near
the Equator is Euler’s equation

du

dt
þ 2ð:� uÞ ¼ �

rP

�
þ g: ð2:1Þ

Here, t represents time, u¼ (u, v,w) is the fluid’s velocity and : the rotation vector of
Earth round the polar axis towards east.1 We denoted with � the density of the water,
g the gravity vector, P the pressure and d/dt is the material time derivative

dh

dt
¼ ht þ hxuþ hyvþ hzw,

which express the rate of change of the quantity h associated with the same fluid
particle as it moves about.

Here, we analyse the stratified fluids, therewith we have additionally an equation
expressing the fact that the density � may vary:

d�

dt
þ r � ð�uÞ ¼ 0:

Assuming that the flow is volume preserving

ux þ vy þ wz ¼ 0, ð2:2Þ

and � is always non-vanishing and positive, we get that

�t þ u�x þ v�y þ w�z ¼ 0: ð2:3Þ

Equations (2.1)–(2.3) are the equation of motion within the fluid layer. They are
supplemented by suitable boundary conditions at the wave surface, cf [30]:

(i) at the free surface, which decouples the motion of the water from that of the
air, we set P¼P0, where P0 is the (constant) atmospheric pressure;

(ii) the kinematic boundary condition expresses the fact that the free surface
consists at all times of the same fluid particles.

3. Geophysical two-dimensional deep water waves in a stratified fluid

In this section, we choose the rotating reference frame, with origin in a point O close
to the Equator, to have the x-axis chosen horizontally due east, the y-axis horizon-
tally due north and the z-axis upward. Herein, we consider only two-dimensional
flows, independent upon the y-coordinate and with the velocity component v� 0
throughout the flow. The rotation and the gravity vector have within this frame the
following representation

: ¼ ð2!, 0,�2!Þ and g ¼ ð0, 0,�gÞ,
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with !¼ 73 � 10�6 rad s�1 denoting the rotational speed of the Earth and g¼ 9,

8m s�2 the gravitational constant. Letting z¼ �(t, x) be the surface of the ocean, the
kinematic boundary condition in this case is given by

w ¼ �t þ u�x on z ¼ �ðt, xÞ: ð3:1Þ

Equations (2.1)–(2.3) and the boundary conditions (i) and (ii) are supplemented by

the far field boundary condition

ðu,wÞ ! ð0, 0Þ as z!�1 uniformly for x2R, t � 0, ð3:2Þ

expressing the fact that at great depths there is practically no motion. Summarizing,

the governing equations for two-dimensional geophysical stratified deep-water waves

in the f-plane approximation are encompassed by the nonlinear evolution problem

ut þ uux þ wuz þ 2!w ¼ �Px=� for z5 �ðt, xÞ,

wt þ uwx þ wwz � 2!u ¼ �Pz=�� g for z5 �ðt, xÞ,

ux þ wz ¼ 0 for z5 �ðt, xÞ,

P ¼ P0 on z ¼ �ðt,xÞ,

w ¼ �t þ u�x on z ¼ �ðt,xÞ,

�t þ u�x þ w�z ¼ 0 on z ¼ �ðt,xÞ,

ðu,wÞ ! ð0, 0Þ as z!�1:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð3:3Þ

In the case when the density is constant, it is proved in [25] that the problem (3.3) has

an explicit Gerstner-like solution. Letting �0 :¼R� (�1, b0) for some b0� 0, the

mapping

xðt, a, bÞ ¼ a�
ekb

k
sinðka� kctÞ,

zðt, a, bÞ ¼ bþ
ekb

k
cosðka� kctÞ,

8>><
>>: ða, bÞ 2�0, ð3:4Þ

where k4 0 is fixed and c 6¼ 0 defines for each t� 0 a diffeomorphism from �0 into

an infinite strip �(t), which is bounded from above by a periodic graph and

unbounded from below. Each point (a, b)2�0 identifies a fluid particle in the fluid

layer �(t) and (3.4) are the equations describing the path of this particle. The wave

surface is the curve obtained by setting b¼ b0 in (3.4). It is shown in [25] that the

Equations (3.4) define a solution of the deep water wave problem, if and only if the

wave speed c takes one of the values

c :¼
�!�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 þ kg

p
k

: ð3:5Þ

When c is positive, then the wave moves eastwards, and when c is negative then it

moves from east to west with velocity |c|. The pressure Pho, in the case when the fluid

is homogeneous with density �¼ �ho2R, is given by the following expression:

Pho ¼ P0 þ
g�ho

2k
e2kb � e2kb0
� �

� g�hoðb� b0Þ: ð3:6Þ
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When considering that the fluid is heterogeneous, that is �¼ �(t, a, b), the system
(3.4) defines an exact solution of (3.3) if and only if there exists a function Phe, the
pressure in the heterogeneous layer, solving the system of equations

Phe
a ¼ 0,

Phe
b ¼ �ðt, a, bÞP

ho
b =�

ho,

(
ð3:7Þ

with � satisfying (2.3). Requiring that @aP
he
b ¼ @bP

he
a and since Pho

b 6¼ 0, we conclude
that � depends only on b, � ¼ �ðbÞ, with �2C1ðð�1, b0	, ð0,1ÞÞ: Therewith, the
pressure is given by

Phe ¼ P0 þ g

Z b

b0

�ðsÞðe2ks � 1Þds:

4. Geophysical edge waves in a stratified fluid

In this section, we restrict our consideration to edge waves travelling over a sloping
beach, which forms an angle � with the still fluid surface. The axes of the reference
frame are chosen such that the xy-plane coincides with the sloping bed and the z-axis
is normal to it, pointing towards the fluid surface. Moreover, the x-axis is parallel to
the shoreline and it is tangent to the Equator, pointing in the east direction, while the
y-axis and the rotation vector : form an angle equal to �. In the coordinate system
Oxyz, the rotation and the gravity vector have the following representation:

: ¼ ð0,! cosð�Þ,�! sinð�ÞÞ and g ¼ ð0,�g sinð�Þ,�g cosð�ÞÞ:

Therewith, the equation of motion within the fluid layer may be recast in the Oxyz
coordinates as the following system

ut þ uux þ vuy þ wuz þ 2!ðw cosð�Þ þ v sinð�ÞÞ ¼ �Px=�,

vt þ uvx þ vvy þ wvz � 2!u sinð�Þ ¼ �Py=�� g sinð�Þ,

wt þ uwx þ vwy þ wwz � 2!u cosð�Þ ¼ �Pz=�� g cosð�Þ,

ux þ vy þ wz ¼ 0,

�t þ u�x þ v�y þ w�z ¼ 0:

8>>>>>>>><
>>>>>>>>:

ð4:1Þ

The edge wave problem is complete if we impose, additionally to (4.1) and (i)–(ii) one
more boundary condition:

(iii) the fluid bed is impermeable and the normal component of the velocity vector
is zero at the sloping bed.

Setting � :¼ {(a, b, c) : a2R, b� b0, 0� c� (b0� b)tan(�)}, whereby b0� 0, it is
shown in [28] that the map

xðt, a, b, cÞ :¼ a�
1

k
ekðb�cÞ sinðkðaþ stÞÞ,

yðt, a, b, cÞ :¼ b� cþ
1

k
ekðb�cÞ cosðkðaþ stÞÞ þ

2!s cotð�Þ

g
zðcÞ,

zðcÞ :¼
gð1þ tanð�ÞÞ

gþ 2!s
c�

g

gþ 2!s

tanð�Þ

2k
e2kb0 1� e�2kcð1þcotð�ÞÞ

� �
,

8>>>>>>><
>>>>>>>:

ð4:2Þ
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defines a diffeomorphism on � for every t� 0, the fluid layer t� 0 being the
diffeomorphic image of �. The three-dimensional wave surface is the image

of the boundary c¼ (b0� b) of �. Again, each point (a, b, c) defines a unique particle
in the fluid layer and (4.2) define the path of every fixed particle. Moreover, s
is the speed at which the wave travels parallel to the shoreline and takes one of the
values

s1=2 :¼
! sinð�Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 sin2ð�Þ þ gk sinð�Þ

q
k

: ð4:3Þ

If s¼ s1, then the wave travels eastwards, and if s¼ s2, it travels from east to west
with wave speed |s2|. Moreover, it was shown that the pressure Pho within a
homogeneous fluid with density �ho is given by

Pho ¼ P0 þ
g�ho sinð�Þ

2k
e2kðb�cÞ � g�hoðc cosð�Þ þ ðb� b0Þ sinð�ÞÞ

�
g�ho sinð�Þ

2k
e2kðb0�cð1þcotð�ÞÞÞ: ð4:4Þ

The system (4.2) describes an edge wave travelling over stratified water with
density �¼ �(t, a, b, c) if and only if there exists a function Phe, the pressure in the
heterogeneous fluid, solving the equations

Phe
a ¼ 0,

Phe
b ¼ �ðt, a, b, cÞP

ho
b =�

ho,

Phe
c ¼ �ðt, a, b, cÞP

ho
c =�

ho,

8><
>: ð4:5Þ

with � satisfying (2.3). Since, (4.5) is integrable exactly when curlðPhe
a ,P

he
b ,P

he
c Þ ¼ 0

and since Pho
b 6¼ 0, we conclude that the density � ¼ �ðPhoðb, cÞÞ, with

�2C1ð½P0,1Þ, ð0,1ÞÞ: Moreover, for this solution the surfaces of constant pressure

(the isobaric surfaces) coincide with those of constant density (the isopycnic
surfaces), as the pressure is given by the following relation:

Phe ¼ P0 þ
1

�ho

Z Phoðb, cÞ

P0

�ðsÞds:
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Note

1. Taken to be a perfect sphere of radius 6371 km.
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