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Applicable Analysis

Convergence of adaptive FEM for some elliptic obstacle problem

M. Page* and D. Praetorius
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Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria

Communicated by C. Bacuta
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In this work, we treat the convergence of adaptive lowest-order FEM for
some elliptic obstacle problem with affine obstacle. For error estimation,
we use a residual error estimator from [D. Braess, C. Carstensen, and
R. Hoppe, Convergence analysis of a conforming adaptive finite element
method for an obstacle problem, Numer. Math. 107 (2007), pp. 455–471].
We extend recent ideas from [J. Cascon, C. Kreuzer, R. Nochetto, and
K. Siebert, Quasi-optimal convergence rate for an adaptive finite element
method, SIAM J. Numer. Anal. 46 (2008), pp. 2524–2550] for the
unrestricted variational problem to overcome the lack of Galerkin
orthogonality. The main result states that an appropriately weighted
sum of energy error, edge residuals and data oscillations satisfies a
contraction property within each step of the adaptive feedback loop. This
result is superior to a prior result from Braess et al. (2007) in two ways:
first, it is unnecessary to control the decay of the data oscillations
explicitly; second, our analysis avoids the use of some discrete local
efficiency estimate so that the local mesh-refinement is fairly arbitrary.

Keywords: adaptive finite element methods; elliptic obstacle problems;
convergence analysis

AMS Subject Classifications: 65N12; 65N30; 65N50; 65K15

1. Introduction

1.1. Prior work on convergence of adaptive FEM

Adaptive finite element methods for partial differential equations based on various
types of a posteriori error estimators have been intensively studied and are now a
standard tool in science and engineering (see, e.g. the monographs [1,2] and the
references therein). As far as a posteriori error analysis for elliptic obstacle problems
is concerned, we refer to [3–11].

In the case of elliptic boundary value problems, convergence of adaptive mesh-
refining algorithms has first been proven in [12], followed by [13]. The latter works
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considered the residual error estimator for a P1-finite element discretization of the

Poisson problem. In [13], the convergence analysis is based on reliability and the
so-called discrete local efficiency of the residual error estimator, which relies on an

interior node property for the local mesh-refinement. The main idea of the
convergence proof then is to show that the error is contractive up to the data

oscillations. This concept attracted quite some attention in the literature for various

applications, e.g. the p-Laplacian [14], edge elements [15], mixed methods [16],
nonconforming elements [17], and obstacle problems [18,19].

For the Poisson problem, optimality of the adaptive algorithm from [13] was first

shown in [20]. Recently, Cascon et al. [21] presented a new convergence proof under
weaker conditions. They showed that a weighted sum of error and error estimator

satisfies a contraction property without requiring (discrete local) efficiency of the
estimator. In particular, their proof avoided the interior node property of the local

mesh-refinement, and they even proved optimality.

1.2. Contributions of current work

We consider the framework in [18], i.e. adaptive P1-finite elements for some elliptic
obstacle problem with affine obstacle. The obstacle problem is a classic introductory

example to study variational inequalities which represent a whole class of problems
that often arise in physical and economical context. One major application is the

oscillation of a membrane that must stay above a certain obstacle. Other examples

are filtration in porous media or the Stefan problem (i.e. melting solids) (see, e.g. [22]
and the references therein).

In order to explain the differences to [18], we first recall their main result: Let

"‘¼J (U‘)�J (u)� 0 denote the energy error, where u is the exact solution of the
obstacle problem and U‘ is the finite element approximation in the ‘-th step of the

adaptive algorithm. Based on a residual error estimator %‘ consisting only of edge
jumps and inspired by Morin et al. [13], Braess et al. [18, Theorem 3] states that the

%‘-steered adaptive mesh-refinement leads to

"‘þ1 � � "‘ þ C osc2‘ for all ‘2N, ð1Þ

with osc‘ being the data oscillations (essentially across edges, cf (13)–(14) below) and

with 05 �5 1 and C4 0 being ‘-independent constants. It is thus a consequence of
elementary calculus that osc‘! 0 implies convergence "‘! 0 as ‘!1. In [13,18],

however, the convergence osc‘! 0 of the data oscillations has to be guaranteed by

the implementation. This is usually done by performing additional local refinements
until osc2‘þ1 � # osc

2
‘ for some fixed constant 05#5 1. We stress, however, that [18]

provides no mathematical foundation on this step since the edge oscillations osc‘ are
non-local. It is a technical byproduct of this work that edge oscillations satisfy a

contraction property (Lemma 3.3), and thus the aforementioned algorithm from [18]
is well-defined (cf Section 3.3).

Moreover, the main ingredients of the proof of (1) in [18] are the reliability of the

error estimator, its discrete local efficiency and the marking strategy introduced by

Dörfler [12] ensuring an appropriate selection of edges and elements for refinement.
The discrete local efficiency, however, strongly relies on the interior node property of
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the local mesh-refinement, and thus the validity of the convergence analysis is
constrained by the refinement strategy.

We follow a different convergence approach, inspired by [21]: our main result
(Theorem 3.4, Corollary 3.5) states that the adaptive algorithm steered by �2‘ ¼
%2‘ þ osc2‘, i.e. steered by edge jumps plus data oscillations, leads to

D‘þ1 � �D‘ for all ‘2N, ð2Þ

with a weighted sum D‘ ¼ "‘ þ � �2‘ and with 05 �, �5 1 being ‘-independent
constants. Note that the choice of our combined estimator has another advantage
compared to [18]: from the linear case (cf [21, Section 6.2]), one knows that separate
marking and refinement might lead to suboptimal convergence rates, whereas the
combined marking strategy does not. Moreover, our result is fairly independent of
the chosen mesh-refinement and does not need the interior node property as does the
analysis in [18].

The first step for our proof of (2) is to show that the sequence of the estimators �‘
is contractive in the sense that

�2‘þ1 � q �2‘ þ C U‘þ1 �U‘

�� ���� ���� ��2 for all ‘2N, ð3Þ

where C4 0 and q2 (0, 1) are certain ‘-independent constants and jjj�jjj denotes the
energy norm (Proposition 3.1). To show this, we exploit the definition of the error
estimator �‘, the marking strategy used, and basic properties of the local mesh-
refinement. In addition and contrary to [21], our elementary analysis avoids to
dominate the data oscillations osc‘ by the element residuals kh‘ f kL2ð�Þ and is thus
much more accurate if f is smooth but quantitatively large.

1.3. Outline of current work

In Section 2, we formulate the continuous and discrete obstacle problem, stated as
energy minimization problems. Moreover, we recall the error estimator �‘ from [18]
which is later on used to steer our adaptive algorithm, and state its reliability
(Proposition 2.2). In Section 3.1, we recall the marking strategy and the local mesh-
refinement used. As a consequence, we prove that the estimator �‘ satisfies an
estimator reduction property (Proposition 3.1) (cf (3)). One major part of our proof
is to show that the edge data oscillations are, in fact, contractive (Lemma 3.3).
Finally, Section 3.2 states our version of the �‘-steered adaptive mesh-refining
algorithm (Algorithm 1) and proves the contraction result (2). In particular, the
generated sequence of discrete solutions U‘ converges, in fact, to the continuous
solution u (Theorem 3.4). A short Section 3.3 considers the algorithm of [18] and
comments on improvements which are byproducts of our analysis (Theorem 3.8).
A numerical experiment in Section 4 concludes this work.

2. Model problem

2.1. Continuous formulation of model problem

Let � be a bounded domain in R
2 with polygonal boundary � :¼ @�. We define

an obstacle on � by the affine function � with �� 0 on @�. By A � H1
0ð�Þ,
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we denote the set of admissible functions

A ¼
�
v2H1

0ð�Þ : v � � a.e. in �
�
, ð4Þ

which is convex, closed and non-empty. For given f2L2(�), we consider the energy
functional

J ðvÞ ¼
1

2
hhv, vii � h f, vi, ð5Þ

where the energy scalar product reads

hhu, vii ¼

Z
�

ru � rv dx for all u, v2H1
0ð�Þ ð6Þ

and where

h f, vi ¼

Z
�

fv dx ð7Þ

denotes the L2-scalar product. By jjj�jjj, we denote the energy norm on H1
0ð�Þ induced

by hh�, �ii. The minimization problem then reads as follows: find u2A such that

J ðuÞ ¼ min
v2A
J ðvÞ: ð8Þ

The following well-known abstract lemma, found e.g. in [23, Theorem II.2.1], states
unique solvability of this problem and equivalence to some variational inequality.

LEMMA 2.1 Let H be a Hilbert space over R with scalar product hh�, �ii and induced
norm jjj�jjj. For any closed, convex and non-empty subset A of H and any linear
functional f2H*, there is a unique minimizer u2A of (8). This minimizer is
equivalently characterized in terms of the following variational inequality: find u2A
such that

hhu, u� vii � f ðu� vÞ ð9Þ

for all v2A.

2.2. Conforming discretization

For the numerical solution of (8), we consider conforming and shape regular
triangulations T‘ of � and denote the standard P1-finite element space of globally
continuous and piecewise affine functions by S1(T ‘). The finite-dimensional
minimization problem then reads as follows: find U‘2A‘ :¼A\S

1(T‘) such that

J ðU‘ Þ ¼ min
V‘ 2A
J ðV‘ Þ: ð10Þ

Note that A‘ is a non-empty, convex and closed subset of S1(T‘). With the same
arguments as for the continuous problem, (10) admits a unique solution U‘2A‘.

Throughout all sections, the set of all interior edges E¼Tþ\T� for certain
elements Tþ, T�2T ‘ is denoted by E‘. The set of all edges of T ‘ is denoted by E?‘.
In particular, E‘,� :¼ E?‘nE‘ contains all boundary edges and provides some partition
of �.

4 M. Page and D. Praetorius598



2.3. Reliable error estimator

Now, let u2A denote the continuous solution of (8) and U‘2A‘ be the discrete

solution of (10) for some fixed triangulation T‘. To steer the adaptive mesh-

refinement, we use some residual-based error estimator

�2‘ :¼ %2‘ þ osc2‘ with %2‘ ¼
X
E2E‘

%‘ ðE Þ
2 and osc2‘ ¼

X
E2E?‘

osc‘ðE Þ
2

ð11Þ

from [18]: first, %‘(E )2 denotes the weighted L2-norms of the normal jump

%‘ ðE Þ
2 :¼ hE k½@nU‘ �k

2
L2ðE Þ for E2E‘ ð12Þ

with hE¼ diam(E ) the length of E and [�] the jump over an interior edge

E¼Tþ\T�2E‘. Second, osc‘(E )2 denotes the data oscillations of f over E

osc‘ðE Þ
2 :¼ j�‘,Ej k f� f�‘,E

k2L2ð�‘,EÞ
for E2E‘ ð13Þ

with �‘,E¼Tþ[T� the patch associated with E and f�‘,E
¼ ð1=j�‘,EjÞ

R
�‘,E

fdx the

corresponding integral mean of f. Finally, for edges E on the boundary, �‘ involves
the weighted element residuals

osc‘ðE Þ
2 :¼ jTjk f k2L2ðT Þ for E2E‘,�, ð14Þ

where T2T‘ is the unique element with E¼ @T\�. The following proposition has

essentially been shown in [18], where osc‘(E ) for boundary edges E2E‘,� is, however,

weighted by diam(T )2� jTj. We will discuss this, up to shape regularity, equivalent

definition later on (cf Corollary 3.5 in Section 3.2).

PROPOSITION 2.2 The estimator �‘ from (11) is reliable in the sense that there holds

1

2
u�U‘j jj jj j2 � J ðU‘ Þ � J ðuÞ � C1 �

2
‘: ð15Þ

The constant C14 0 depends only on � and the shape of the elements in T‘.

Proof The upper bound is stated in [18, Theorem 1] and hinges on the fact that the

obstacle is affine. To see the lower bound, we use the variational inequality (9). For

v¼U‘, this gives

u�U‘j jj jj j2 ¼ hhu, u�U‘ii þ U‘j jj jj j2 � hhU‘, uii

�
1

2
U‘j jj jj j2 � h f,U‘i

� �
�

1

2
uj jj jj j2 � h f, ui

� �
þ

1

2
U‘j jj jj j2 � hhU‘, uii þ

1

2
uj jj jj j2

� �
¼ J ðU‘ Þ � J ðuÞ þ

1

2
u�U‘j jj jj j2

and concludes the proof. g

Remark 1 Before proceeding we want to comment quickly on other error

estimators for obstacle problems in the literature. In some works (see, e.g. [7,10],

estimators that only contribute within the non-contact set are used. This has some
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advantages since, for example, obstacles with kinks can be treated. The analysis in
this case, however, becomes much more involved. In particular, it is unclear how to
show an estimator reduction, or a contraction property in the sense of
Proposition 3.1 or Theorem 3.4, respectively. As a consequence, for those kinds of
estimators, only a weaker convergence result [10] can be shown, but not a
contraction which is a crucial ingredient for a possible optimality analysis.

3. A convergent adaptive algorithm

3.1. Estimator reduction

As usual, we employ the local contributions of �‘ from (12)–(14) to steer the adaptive
algorithm. For marking, we use the marking strategy introduced by Dörfler [12].
Contrary to [12,13,18], we mark simultaneously for %‘(E ) and data oscillations
osc‘(E ): given some parameter �2 (0, 1), we seek a setM‘ 	 E

?
‘ of usually minimal

cardinality such that

� � 2
‘�

X
E2M‘

�‘ ðE Þ
2 where �‘ ðE Þ

2
¼

%‘ ðE Þ
2
þ osc‘ðE Þ

2 for E2E‘

osc‘ðE Þ
2 for E2E‘,�:

(
ð16Þ

For the mesh-refinement, we use newest-vertex bisection, where we mark all edges
E2M‘ for refinement. The refinement rules are shown in Figure 1, and the reader is
also referred to [1, Chapter 4]. Besides uniform shape regularity of T‘þ1, there is a
certain decay of the mesh-widths:

. Marked edges E2M‘ are split into two edges E0,E 00 2 E?‘þ1 of half length.

. If at least one edge E of an element T2T ‘ is marked, T is refined into up to
four son elements T 0 2 T‘þ1 with jTj/4� jT

0j � jTj/2 (cf Figure 1).

These observations are essential to prove the following result.

PROPOSITION 3.1 Suppose that the setM‘ 	 E
?
‘ satisfies (16) and marked edges are

refined as stated before. Then, there holds

�2‘þ1 � q �2‘ þ C2 U‘þ1 �U‘

�� ���� ���� ��2 ð17Þ

with some contraction constant q2 (0, 1) which depends only on � 2 (0, 1). The constant
C24 0 additionally depends on the shape of the elements in T 0.

Figure 1. For each triangle T2T , there is one fixed reference edge, indicated by the double
line (left, top). Refinement of T is done by bisecting the reference edge, where its midpoint
becomes a new node. The reference edges of the son triangles are opposite to this newest vertex
(left, bottom). To avoid hanging nodes, one proceeds as follows: we assume that certain edges
of T, but at least the reference edge, are marked for refinement (top). Using iterated newest
vertex bisection, the element is then split into 2, 3 or 4 son triangles (bottom).

6 M. Page and D. Praetorius600



For the convenience of the reader, the proof of Proposition 3.1 is split into two

lemmas which estimate the decay of the different contributions of �‘ if the mesh T‘ is

locally refined.

LEMMA 3.2 According to the refinement of marked edges E2E‘\M‘, there holdsX
E0 2 E‘þ1

hE0 k½@nU‘�k
2
L2ðE0Þ �

X
E2E‘

%‘ ðE Þ
2
�
1

2

X
E2E‘\M‘

%‘ ðE Þ
2: ð18Þ

Proof We define the setME, ‘ :¼
�
E0 2 E‘þ1 : 9E2E‘ \M‘ E0 	 Eg containing all

edges obtained by refinement of marked edges. Then, one observesX
E0 2 E‘þ1

hE0 k½@nU‘�k
2
L2ðE0Þ ¼

X
E0 2 E‘þ1nME, ‘

hE0 k½@nU‘�k
2
L2ðE0Þ þ

X
E0 2ME, ‘

hE0 k½@nU‘�k
2
L2ðE0Þ

�
X

E2E‘nM‘

hE k½@nU‘�k
2
L2ðE Þ þ

1

2

X
E2E‘\M‘

hE k½@nU‘�k
2
L2ðE Þ

¼
X

E2E‘nM‘

%‘ ðE Þ
2
þ
1

2

X
E2E‘\M‘

%‘ ðE Þ
2,

where we have used that the jump [@n U‘] is zero on all edges E0 2 E‘þ1 which lie inside

an element T2T‘. g

LEMMA 3.3 Suppose that T‘þ1 is obtained by newest vertex bisection of T‘. Then,

independent of the set of marked edges, it holds that

osc2‘þ1 � osc2‘ �
1

4

X
E2E?‘nE

?
‘þ1

osc‘ðE Þ
2
� osc2‘: ð19Þ

Proof The proof of (19) is considerably longer than for the prior contributions

in (18). The reason is that local mesh-refinement leads to additional edges inside the

refined elements T2T‘. This provides additional contributions to osc‘þ1, which

have to be controlled. For each edge E2E?‘þ1 and each element T2T‘ with

jT\�‘þ1,Ej4 0, we define the quantity

osc‘þ1ðEjT Þ
2
¼ j�‘þ1,Ejk f� f�‘þ1,Ek

2
L2ð�‘þ1,E\T Þ

:

For a boundary edge E2E‘þ1,� ¼ E
?
‘þ1nE‘þ1, this definition is understood with

�‘þ1,E :¼T 0 and f�‘þ1,E
:¼ 0, where T 0 2 T‘þ1 is the unique element with E¼ @T 0 \�.

Throughout the proof, f!¼ (1/j!j)
R
! f dx denotes the integral mean of f over the

measurable set !. Note that the L2-best approximation property of f! yields

k f� f!kL2ð!Þ � k f� �kL2ð!Þ for all �2R,

whence

k f� f!kL2ð!Þ � k f� fb!kL2ðb!Þ for all measurable sets b! 
 !:
For each element A2T‘, only four cases occur: A is either not refined, i.e.

A2T‘\T ‘þ1, or refined by either one, two or three bisections (cf Figure 2).
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First, assume that an element A2T ‘\T‘þ1 is not refined. Let b, c, d2E‘\E‘þ1
denote its three edges. We then define

o‘ ðbjAÞ
2
¼ osc‘þ1ðbjAÞ

2, o‘ ðcjAÞ
2
¼ osc‘þ1ðcjAÞ

2, and o‘ ðd jAÞ
2
¼ osc‘þ1ðd jAÞ

2:

By definition, we obtain X
E2E?

‘þ1
jA\�‘þ1,E j4 0

osc‘þ1ðEjAÞ
2
�
X
E2E?

‘
E�@A

o‘ ðEjAÞ
2

ð20Þ

even with equality.
Second, assume that an element A2T ‘ with edges b, c, d2E?‘ is refined by one

bisection (cf Figure 2), where the edge c is split into c1, c2 2E
?
‘þ1 and one additional

edge a2E?‘þ1 is created. Moreover, A is split into elements A1,A22T ‘þ1 with area

jA1j ¼ jA2j ¼ jAj/2. Let B,C,D2T ‘ be the neighbours of A along the edges

b, c, d2E?‘, where for instance B¼; if b2E?‘nE‘ is a boundary edge. Then,X
E2E?

‘þ1
jA\�‘þ1,E j40

osc‘þ1ðEjAÞ
2

¼ osc‘þ1ðc1jAÞ
2
þ osc‘þ1ðc2jAÞ

2
þ osc‘þ1ðbjAÞ

2
þ osc‘þ1ðd jAÞ

2
þ osc‘þ1ðajAÞ

2

¼ j�‘þ1,c1 \Cj þ jAj=2
� �

k f� f�‘þ1,c1
k2L2ðA1Þ

þ j�‘þ1,c2 \Cj þ jAj=2
� �

k f� f�‘þ1,c2
k2L2ðA2Þ

þ j�‘þ1,b \Bj þ jAj=2
� �

k f� f�‘þ1,b
k2L2ðA1Þ

þ j�‘þ1,d \Dj þ jAj=2
� �

k f� f�‘þ1,d
k2L2ðA2Þ

þ jAj k f� fAk
2
L2ðAÞ:

The last term belongs to the new edge a2E?‘þ1. We define

o‘ðbjAÞ
2
¼ j�‘þ1,b \ Bj þ jAj=2
� �

k f� f�‘þ1,b
k2L2ðA1Þ

þ ðjAj=2Þ k f� fAk
2
L2ðAÞ,

o‘ðcjAÞ
2
¼ j�‘þ1,c1 \ Cj þ jAj=2
� �

k f� f�‘þ1,c1
k2L2ðA1Þ

þ j�‘þ1,c2 \ Cj þ jAj=2
� �

k f� f�‘þ1,c2
k2L2ðA2Þ

,

o‘ðd jAÞ
2
¼ j�‘þ1,d \Dj þ jAj=2
� �

k f� f�‘þ1,d
k2L2ðA2Þ

þ ðjAj=2Þ k f� fAk
2
L2ðAÞ

and observe that, by definition, (20) holds with equality.
Third, assume that an element A2T‘ with edges b, c, d2E?‘ is refined by two

bisections (cf Figure 2), where the edges c, d are split into c1, c2, d1, d2 2E
?
‘þ1,

respectively, and two new edges a1, a2 2E
?
‘þ1 are created. Moreover, A is split into

a

b

c1 c2

d
A1 A2

a1 a2

b

c1 c2

d1

d2
A1

A2

A3

a1

a2a3

b1

b2

c1 c2

d1

d2
A1

A2

A3

A4

Figure 2. Refinement of an element A by one (a), two (b) or three (c) bisections and notation
used in the proof of Lemma 3.3.
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elements A1, A2, A32T ‘þ1 with area jA1j ¼ jAj/2 and jA2j ¼ jA3j ¼ jAj/4. Let b, c, d

and B, C, D be the same as in the previous case. Then,X
E2E?

‘þ1
jA\�‘þ1,E j40

osc‘þ1ðEjAÞ
2

¼ osc‘þ1ðc1jAÞ
2
þ osc‘þ1ðc2jAÞ

2
þ osc‘þ1ðd1jAÞ

2
þ osc‘þ1ðd2jAÞ

2
þ osc‘þ1ðbjAÞ

2

þ osc‘þ1ða1jAÞ
2
þosc‘þ1ða2jAÞ

2

¼ j�‘þ1,c1 \Cj þ jAj=2
� �

k f� f�‘þ1,c1
k2L2ðA1Þ

þ j�‘þ1,c2 \Cj þ jAj=4
� �

k f� f�‘þ1,c2
k2L2ðA3Þ

þ j�‘þ1,d1 \Dj þ jAj=4
� �

k f� f�‘þ1,d1
k2L2ðA2Þ

þ j�‘þ1,d2 \Dj þ jAj=4
� �

�k f� f�‘þ1,d2
k2L2ðA3Þ

þ j�‘þ1,b \Bj þ jAj=2
� �

k f� f�‘þ1,b
k2L2ðA1Þ

þ ð3jAj=4Þk f� fA1[A2
k2L2ðA1[A2Þ

þ ðjAj=2Þk f� fA2[A3
k2L2ðA2[A3Þ

:

The last two terms belong to the new edges a1, a2 2E
?
‘þ1 and are roughly estimated by

ð3jAj=4Þ k f� fA1[A2
k2L2ðA1[A2Þ

þ ðjAj=2Þ k f� fA2[A3
k2L2ðA2[A3Þ

� ð5jAj=4Þ k f� fAk
2
L2ðAÞ:

We define

o‘ðbjAÞ
2
¼ j�‘þ1,b \ Bj þ jAj=2
� �

k f� f�‘þ1,b
k2L2ðA1Þ

þ ðjAj=2Þ k f� fAk
2
L2ðAÞ,

o‘ðcjAÞ
2
¼ j�‘þ1,c1 \ Cj þ jAj=2
� �

k f� f�‘þ1,c1
k2L2ðA1Þ

þ j�‘þ1,c2 \ Cj þ jAj=4
� �

k f� f�‘þ1,c2
k2L2ðA3Þ

þ ðjAj=4Þ k f� fAk
2
L2ðAÞ,

o‘ðd jAÞ
2
¼ j�‘þ1,d1 \Dj þ jAj=4
� �

k f� f�‘þ1,d1
k2L2ðA2Þ

þ j�‘þ1,d2 \Dj þ jAj=4
� �

k f� f�‘þ1,d2
k2L2ðA3Þ

þ ðjAj=2Þ k f� fAk
2
L2ðAÞ:

By definition, we again obtain (20).
Fourth, assume that an element A2T‘ with edges b, c, d2E?‘ is refined by three

bisections (cf Figure 2), where the edges b, c, d are split into b1, b2, c1, c2, d1, d2 2E
?
‘þ1,

respectively, and three new edges a1, a2, a3 2E
?
‘þ1 are created. Moreover, A is split

into elements A1,A2,A3,A42T‘þ1 with area jAjj ¼ jAj/4. For b, c, d and B, C, D, we

use the notation from the previous cases. Then,X
E2E?

‘þ1
jA\�‘þ1,E j40

osc‘þ1ðEjAÞ
2

¼ osc‘þ1ðb1jAÞ
2
þosc‘þ1ðb2jAÞ

2
þosc‘þ1ðc1jAÞ

2
þosc‘þ1ðc2jAÞ

2

þosc‘þ1ðd1jAÞ
2
þosc‘þ1ðd2jAÞ

2
þosc‘þ1ða1jAÞ

2
þosc‘þ1ða2jAÞ

2
þosc‘þ1ða3jAÞ

2

� j�‘þ1,b1 \Bjþ jAj=4
� �

k f� f�‘þ1,b1
k2L2ðA4Þ

þ j�‘þ1,b2 \Bjþ jAj=4
� �

k f� f�‘þ1,b2
k2L2ðA1Þ

þ j�‘þ1,c1 \Cjþ jAj=4
� �

k f� f�‘þ1,c1
k2L2ðA1Þ

þ j�‘þ1,c2 \Cjþ jAj=4
� �

�k f� f�‘þ1,c2
k2L2ðA3Þ

þ j�‘þ1,d1 \Djþ jAj=4
� �

k f� f�‘þ1,d1
k2L2ðA2Þ

þ j�‘þ1,d2 \Djþ jAj=4
� �

k f� f�‘þ1,d2
k2L2ðA3Þ

þ ð3jAj=2Þk f� fAk
2
L2ðAÞ:
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Defining

o‘ðbjAÞ
2
¼ j�‘þ1,b1 \ Bj þ jAj=4
� �

k f� f�‘þ1,b1
k2L2ðA4Þ

þ j�‘þ1,b2 \ Bj þ jAj=4
� �

k f� f�‘þ1,b2
k2L2ðA1Þ

þ ðjAj=2Þ k f� fAk
2
L2ðAÞ

o‘ðcjAÞ
2
¼ j�‘þ1,c1 \ Cj þ jAj=4
� �

k f� f�‘þ1,c1
k2L2ðA1Þ

þ j�‘þ1,c2 \ Cj þ jAj=4
� �

k f� f�‘þ1,c2
k2L2ðA3Þ

þ ðjAj=2Þ k f� fAk
2
L2ðAÞ

o‘ðd jAÞ
2
¼ j�‘þ1,d1 \Dj þ jAj=4
� �

k f� f�‘þ1,d1
k2L2ðA2Þ

þ j�‘þ1,d2 \Dj þ jAj=4
� �

k f� f�‘þ1,d2
k2L2ðA3Þ

þ ðjAj=2Þ k f� fAk
2
L2ðAÞ,

we again guarantee (20).
Now, it only remains to show that for non-refined edges holdsX

T2T ‘
T��‘,E

o‘ ðEjT Þ
2
� osc‘ðE Þ

2 for all E2E?‘ \ E
?
‘þ1,

ð21Þ

whereas for edges which are refined, there holdsX
T2T ‘
T��‘,E

o‘ ðEjT Þ
2
�

3

4
osc‘ðE Þ

2 for all E2E?‘nE
?
‘þ1: ð22Þ

Of course, there are quite some cases to be considered. Since all follow by direct

calculation, we only consider some particular examples shown in Figure 3, while we

refer to [24, Lemma 3.3.6] for the consideration of all possible cases.
We first consider b :¼A\B2E‘. According to our definitions, there holds

o‘ ðbjBÞ
2
¼ jAj=2þ jBjð Þ k f� fA1[Bk

2
L2ðBÞ,

o‘ ðbjAÞ
2
¼ jBj þ jAj=2ð Þ k f� fA1[Bk

2
L2ðA1Þ

þ ðjAj=2Þ k f� fAk
2
L2ðAÞ:

This implies

o‘ ðbjAÞ
2
þ o‘ ðbjBÞ

2
¼ jAj=2þ jBjð Þ k f� fA1[Bk

2
L2ðA1[BÞ

þ ðjAj=2Þ k f� fAk
2
L2ðAÞ

� jAj=2þ jBjð Þ k f� fA[Bk
2
L2ðA[BÞ þ ðjAj=2Þ k f� fA[Bk

2
L2ðA[BÞ

¼ osc‘ðbÞ
2:

A1

A2

A3

B

D1

D2

Figure 3. The element A2T ‘ is refined by two bisections. It has two neighbouring elements B,
D2T ‘, whereas the third edge is on the boundary.
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Next, we consider d :¼A\D2E‘. We have

o‘ ðd jDÞ
2
¼ jAj=4þ jDj=2ð Þ k f� fA2[D1

k2L2ðD1Þ
þ jAj=4þ jDj=2ð Þ k f� fA3[D2

k2L2ðD2Þ
,

o‘ ðd jAÞ
2
¼ jDj=2þ jAj=4ð Þ k f� fA2[D1

k2L2ðA2Þ
þ jDj=2þ jAj=4ð Þ k f� fA3[D2

k2L2ðA3Þ

þ ðjAj=2Þ k f� fAk
2
L2ðAÞ:

This implies

o‘ ðd jAÞ
2
þ o‘ ðd jDÞ

2
¼ jAj=4þjDj=2ð Þk f� fA2[D1

k2L2ðA2[D1Þ

þ jAj=4þjDj=2ð Þk f� fA3[D2
k2L2ðA3[D2Þ

þ ðjAj=2Þk f� fAk
2
L2ðAÞ

� jAj=4þjDj=2ð Þk f� fA[Dk
2
L2ðA[DÞ þ ðjAj=2Þk f� fA[Dk

2
L2ðAÞ

�
3

4
osc‘ðd Þ

2:

Finally, we consider the boundary edge c :¼ A \ �2E‘,�. In this case, there holds

o‘ ðcjAÞ
2
¼ ðjAj=2Þk f k2L2ðA1Þ

þ ðjAj=4Þk f k2L2ðA3Þ
þ ðjAj=4Þk f� fAk

2
L2ðAÞ �

3

4
osc‘ðcÞ

2,

and we also observe the contraction property.
Having obtained (21)–(22), we may proceed as follows: we note that (20) providesX

E2E?‘þ1

osc‘þ1ðE Þ
2
¼
X
T2T ‘

X
E2E?

‘þ1
jT\�‘þ1,E j4 0

osc‘þ1ðEjT Þ
2
�
X
T2T ‘

X
E2E?

‘
E�@T

o‘ ðEjT Þ
2

¼
X
E2E?‘

X
T2T ‘
T��‘,E

o‘ ðEjT Þ
2:

Therefore, (21)–(22) showX
E2E?‘þ1

osc‘þ1ðE Þ
2
�

X
E2E?‘\E

?
‘þ1

osc‘ðE Þ
2
þ
3

4

X
E2E?‘nE

?
‘þ1

osc‘ðE Þ
2

¼
X
E2E?‘

osc‘ðE Þ
2
�
1

4

X
E2E?‘nE

?
‘þ1

osc‘ðE Þ
2

and conclude the proof. g

Proof of Proposition 3.1 First, the triangle inequality in the sequence space ‘2
proves

�‘þ1 ¼ osc2‘þ1 þ
X

E0 2 E‘þ1

hE0 k½@nU‘þ1�k
2
L2ðE0Þ

 !1=2

� osc2‘þ1 þ
X

E0 2 E‘þ1

hE0 k½@nU‘�k
2
L2ðE0Þ

 !1=2

þ
X

E0 2 E‘þ1

hE0 k½@nðU‘þ1 �U‘Þ�k
2
L2ðE0Þ

 !1=2

:
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In particular, the Young inequality yields for arbitrary �4 0

�2‘þ1 � ð1þ �Þ osc2‘þ1 þ
X

E0 2 E‘þ1

hE0 k½@nU‘�k
2
L2ðE0Þ

 !
þ ð1þ ��1Þ

X
E0 2 E‘þ1

hE0 k½@nðU‘þ1 �U‘Þ�k
2
L2ðE0Þ: ð23Þ

Second, recall that E?‘nE
?
‘þ1 �M‘. Using the estimates (18) and (19), we thus see

osc2‘þ1 þ
X

E0 2 E‘þ1

hE0 k½@nU‘�k
2
L2ðE0Þ

� osc2‘ þ
X
E2E‘

hE k½@nU‘�k
2
L2ðE Þ �

1

4

X
E2E?‘nE

?
‘þ1

osc‘ðE Þ
2
�
1

2

X
E2E‘\M‘

hE k½@nU‘�k
2
L2ðE Þ

� �2‘ �
1

4

X
E2M‘

osc‘ðE Þ
2
þ

X
E2E‘\M‘

hE k½@nU‘�k
2
L2ðE Þ

 !
:

Third, the Dörfler marking (16) is used to obtain

osc2‘þ1 þ
X

E0 2 E‘þ1

hE0 k½@nU‘�k
2
L2ðE0Þ � �

2
‘ �

1

4

X
E2M‘

�‘ ðE Þ
2
� ð1� �=4Þ�2‘:

Fourth, according to uniform shape regularity of the generated family (T‘)‘2N, there

holds X
E0 2 E‘þ1

hE0 k½@nðU‘þ1 �U‘ Þ�k
2
L2ðE0Þ9 krðU‘þ1 �U‘ Þk

2
L2ð�Þ ¼ U‘þ1 �U‘

�� ���� ���� ��2:
Plugging the last two estimates into (23), we prove (17), where we finally choose

�4 0 sufficiently small to guarantee q :¼ (1þ �)(1� �/4)5 1. g

Remark 1 Clearly, Lemma 3.2 also holds if certain elements T2T‘ are refined by

five bisections, as is done in [18], or by the so-called red-refinement. We refer to

[1, Chap. 4] for details on different local mesh-refinements.
The same holds for Lemma 3.3 as well. In case of bisec5-refinement this is easily

seen as follows: we theoretically build an intermediate mesh T‘þ1/2, where elements

marked for bisec5 are only refined by three bisections. Then, Lemma 3.3 applies

for the refinement from T ‘ to T‘þ1/2. To finally obtain T‘þ1, certain elements

T 0 2 T ‘þ1/2 have to be refined by one bisection. Note that this guarantees E?‘nE
?
‘þ1=2 ¼

E
?
‘nE

?
‘þ1 since only certain interior edges E0 2 E‘þ1/2\E‘ are effected. Since (19) states,

in particular, monotone decay of the oscillations, we conclude

osc2‘þ1 � osc2‘þ1=2 �
X
E2E?‘

osc‘ðE Þ
2
�
1

4

X
E2E?‘nE

?
‘þ1

osc‘ðE Þ
2,

where osc‘þ1/2 denotes the oscillation term associated with the only theoretically

constructed mesh T‘þ1/2.
Finally, if certain elements of T ‘ are refined by red-refinement, the proof of (19) is

obtained by similar calculations as in the proof of Lemma 3.3. We refer to [24] for

details.
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3.2. Convergent adaptive algorithm

In this section, we formally state our version of the adaptive algorithm and prove

that it generates a sequence of discrete solutions U‘ which converge to the continuous

minimizer u.

Algorithm 1 Fix 05 �5 1 and let T ‘ with ‘¼ 0 be the initial triangulation. For

each ‘¼ 0, 1, 2, . . . , do:

(i) Compute discrete solution U‘2A‘ :¼A\S
1(T‘)

(ii) Compute indicators �‘(E ) for all E2E?‘.
(iii) Determine setM‘ 	 E

?
‘ which satisfies (16).

(iv) Mark all edges E2M‘ for refinement.
(v) Obtain new mesh T‘þ1 by newest vertex bisection and increase counter

‘ � ‘þ 1.

THEOREM 3.4 Algorithm 1 guarantees that the combined error quantity

D‘ :¼ J ðU‘ Þ � J ðuÞ þ � �
2
‘ ð24Þ

satisfies the contraction property

D‘þ1 � �D‘ for all ‘2N: ð25Þ

The constants 05 �, �5 1 depend only on the parameter � and the shape of the

elements in T 0. In particular, there holds lim‘!1 J ðU‘ Þ ¼ J ðuÞ as well as

lim
‘!1

u�U‘j jj jj j ¼ 0 ¼ lim
‘!1

�‘.

Proof According to Proposition 3.1, we have

�2‘þ1 � q �2‘ þ C2 U‘þ1 �U‘

�� ���� ���� ��2
with certain constants 05 q5 1 and C24 0. Therefore,

D‘þ1 ¼ J ðU‘ Þ � J ðuÞ þ � �
2
‘þ1 � J ðU‘ Þ � J ðU‘þ1Þð Þ

� J ðU‘ Þ � J ðuÞ þ �q �
2
‘ þ �C2 U‘þ1 �U‘

�� ���� ���� ��2 � J ðU‘ Þ � J ðU‘þ1Þð Þ:

Using the variational inequality (9) applied for U‘þ1, we proceed as in the proof of

Proposition 2.2 to see

1

2
U‘þ1 �U‘

�� ���� ���� ��2 � J ðU‘ Þ � J ðU‘þ1Þ:

Choosing � sufficiently small to guarantee �C2� 1/2� 0, we then obtain

D‘þ1 � J ðU‘ Þ � J ðuÞ þ �q �
2
‘ þ ð�C2 � 1=2Þ U‘þ1 �U‘

�� ���� ���� ��2 � J ðU‘ Þ � J ðuÞ þ �q �
2
‘:

According to Proposition 2.2, there holds

C�11 J ðU‘ Þ � J ðuÞð Þ � �2‘:

For "4 0, we thus observe

J ðU‘ Þ � J ðuÞ þ �q �
2
‘ � ð1� �"C

�1
1 Þ J ðU‘ Þ � J ðuÞð Þ þ �ðqþ "Þ�2‘ � �D‘ ð26Þ
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with � :¼ maxf1� �"C�12 , qþ "g. Since q5 1, we may choose "4 0 sufficiently small

to guarantee qþ "5 1. This choice leads to �5 1, and we finally end up with (25).

By induction, this implies

lim
‘!1

D‘ ¼ 0, whence lim
‘!1
J ðU‘ Þ ¼ J ðuÞ and lim

‘!1
�‘ ¼ 0:

With reliability jjju�U‘jjj9 �‘, we thus conclude the proof. g

In [18], the weighting h2T ¼ diamðT Þ2 instead of jTj is used in the definition (14) of

osc‘(E ), i.e.

e� 2
‘ :¼

X
E2E‘

%‘ ðE Þ
2
þ osc‘ðE Þ

2
� �

þ
X
E2E‘,�

fosc‘ðE Þ2, ð27Þ

where

fosc‘ðE Þ2 ¼ h2T k f k
2
L2ðT Þ for E2E‘,� ð28Þ

and T2T‘ is the unique element with E¼ @T\�. Note that this definition does not

necessarily yield a contraction hT 05 hT if an edge E2E‘,�\M‘ is refined and

T 0 2 T ‘þ1 is one of the resulting sons of T. Nevertheless, e�‘ leads to a convergent

adaptive FEM in the sense of Theorem 3.4.

COROLLARY 3.5 Suppose that e�‘ instead of �‘ is used in Algorithm 1 for marking.

Then, the modified algorithm still guarantees the contraction property (25).

In particular, there holds lim‘!1 J ðU‘ Þ ¼ J ðuÞ as well as lim‘!1 jjju�U‘ jjj ¼

0 ¼ lim‘!1e�‘.
Proof Note that there holds

osc‘ðE Þ � fosc‘ðE Þ � C3 osc‘ðE Þ for all E2E‘,� ð29Þ

with some constant C3� 1 which depends only on the shape regularity of the

mesh T ‘. Since newest vertex bisection leads to uniformly shape regular meshes,

C3 may be chosen independently of ‘. The Dörfler marking (16) for e�‘ thus

implies

� �‘ � �e�‘ � X
E2E‘\M‘

%‘ ðE Þ
2
þ osc‘ðE Þ

2
� �

þ
X

E2E‘,�\M‘

fosc‘ðE Þ2
� C3

X
E2E‘\M‘

%‘ ðE Þ
2
þ osc‘ðE Þ

2
� �

þ
X

E2E‘,�\M‘

osc‘ðE Þ
2

0@ 1A:
Put differently, the setM‘ satisfies the Dörfler marking (16) for ð�,e�‘ Þ as well as the
Dörfler marking (16) for ðe�, �‘ Þ, where e� ¼ �=C3 2 ð0, 1Þ. Therefore, Theorem 3.4

applies and (25) holds. In particular, lim‘!1 �‘ ¼ 0 and the equivalence (29) also

concludes lim‘!1e�‘ ¼ 0. g

Remark 2 The estimator reduction (17) already implies convergence lim‘ �‘¼ 0,

whence lim‘J (U‘)¼J (u) as well as lim‘jjju�U‘jjj ¼ 0 according to Proposition 2.2.

To see this, it remains to verify that the obstacle problem leads to a priori

convergence lim‘U‘¼ u1 with a certain limit u12H. For linear problems, such a
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result is found in [25–27], and we refer to [24, Lemma 3.3.8] for the proof of the

a priori convergence in our non-linear setting. Then, (17) takes the form

�2‘þ1 � q �2‘ þ �‘

with the zero sequence �‘¼C2 jjjU‘þ1�U‘jjj
2
� 0. Therefore, elementary calculus

concludes lim‘�‘¼ 0 (cf [25]). We stress that, contrary to [27], the estimator reduction

concept from [25] avoids any use of discrete efficiency. It is only based on the precise

definition of the error estimator, a uniform decay of the mesh-width locally on

marked elements, and the observation that any kind of mesh-refinement will lead to

a convergent sequence of discrete solutions. We stress, however, that the convergence

results in Theorem 3.4 and Corollary 3.5 are stronger since they include even a

contraction of some error quantity D‘� "‘¼J (U‘)�J (u).

3.3. Convergence analysis for the adaptive algorithm from [18]

In this section, we aim to comment briefly on the adaptive algorithm in [18] and

improve their convergence result in several aspects.

Algorithm 2 Fix 05 �, #5 1 and let T‘ with ‘¼ 0 be the initial triangulation. For

each ‘¼ 0, 1, 2, . . . , do:

(i) Compute discrete solution U‘2A‘ :¼A\S
1(T‘)

(ii) Compute indicators %‘(E )2 as well as oscillation terms osc‘(E ) for all E2E?‘.
(iii) Determine setM‘	E‘ which satisfies

�
X
E2E‘

%‘ ðE Þ
2
�
X
E2M‘

%‘ ðE Þ
2:

ð30Þ

(iv) Mark all edges E2M‘ for refinement and obtain intermediate mesh T‘þ1/2
by newest vertex bisection of T ‘.

(v) Refine additional elements of T ‘þ1/2 and update T‘þ1/2 until the corre-

sponding oscillations satisfy osc‘þ1/2�# osc‘.
(vi) Finally, set T ‘þ1 :¼T ‘þ1/2 and increase counter ‘ � ‘þ 1.

In Braess et al. [18], the authors do not give further information on step (v)

besides their choice �¼#. In particular, it is not obvious how many levels of

refinement have to be done until osc‘þ1�# osc‘ is satisfied. In the following, we

comment on a practical realization of (v) and derive a convergence result similar to

Theorem 3.4. Our recommendation reads as follows:

(v.a) If osc2‘þ1=2 � ð1� �=4Þosc
2
‘, define T‘þ1 :¼T‘þ1/2

(v.b) Otherwise determineM‘þ1=2 	 E
?
‘þ1=2 such that

� osc2‘þ1=2 �
X

E2M‘þ1=2

osc‘þ1=2ðE Þ
2,

ð31Þ

(v.c) mark all edges E2M‘þ1/2 for refinement,
(v.d) and obtain new mesh T‘þ1 by newest vertex bisection.

We first prove that this part guarantees contraction of the data oscillations.
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LEMMA 3.6 The proposed realization of step (v) in Algorithm 2 guarantees osc‘þ1�#
osc‘ with #¼ (1� �/4)1/2.

Proof We may assume that osc2‘þ1=2 4 ð1� �=4Þosc
2
‘ since otherwise osc‘þ1/2¼

osc‘þ1 by definition. Using Lemma 3.3 and arguing as in the proof of Proposition 3.1

(but only for the oscillation terms), we see that the marking criterion (31) guarantees

osc2‘þ1 � ð1� �=4Þ osc
2
‘þ1=2. Since T ‘þ1/2 is a refinement of T ‘, the monotonicity

osc‘þ1/2� osc‘ of the edge oscillations concludes the proof. g

Next, we prove an estimator reduction similar to Proposition 3.1.

PROPOSITION 3.7 The extended Algorithm 2 from [18] guarantees

�2‘þ1 � q �2‘ þ C4 U‘þ1=2 �U‘

�� ���� ���� ��2 þ U‘þ1 �U‘þ1=2

�� ���� ���� ��2	 

, for all ‘2N, ð32Þ

with constants q2 (0, 1) and C44 0 which depend only on � 2 (0, 1) and the shape of the

elements in T 0.

Proof Note that T‘þ1 is a refinement of T‘þ1/2, and T ‘þ1/2 is a refinement of T‘.

Arguing as in the proof of Proposition 3.1 (but only for the edge jumps), we see that

the modified marking criterion (30) yieldsX
E 00 2 E‘þ1

%‘þ1ðE
00Þ

2
� ð1þ �Þ

X
E0 2 E‘þ1=2

%‘þ1=2ðE
0Þ
2
þ Cð1þ ��1Þ U‘þ1 �U‘þ1=2

�� ���� ���� ��2
� ð1þ �Þ2ð1� �=2Þ

X
E2E‘

%‘ ðE Þ
2
þ Cð1þ ��1Þ

� U‘þ1 �U‘þ1=2

�� ���� ���� ��2 þ U‘þ1=2 �U‘

�� ���� ���� ��2	 

,

for all �4 0. As above, the constant C4 0 stems from inverse-type estimates and

depends only on the uniform shape regularity of the meshes involved. In view of the

contraction from Lemma 3.6, we choose �4 0 sufficiently small such that

(1þ �)2(1� �/2)� (1� �/4). Adding the estimate of Lemma 3.6, we conclude the

proof with q¼ (1� �/4). g

Finally, we argue as in the proof of Theorem 3.4 to obtain the following

convergence result whose proof is omitted for brevity. We stress that our result is

superior to the convergence result from [18] for several reasons: First, we only need

one bisection instead of five per refined element. Second, our recommendation

of #¼ (1� �/4)1/2 satisfies #� � for practical choices of �, namely �5 0.88. Third,

our modification of their algorithm guarantees that at most one additional step of

newest vertex bisection has to be performed to guarantee contraction of the

oscillations.

THEOREM 3.8 The extended Algorithm 2 from [18] guarantees

D‘þ1 � �D‘ with D‘ :¼ J ðU‘ Þ � J ðuÞ þ � �
2
‘ for all ‘2N: ð33Þ

The constants 05 �, �5 1 depend only on the parameter � and the shape of the

elements in T 0. In particular, there holds lim‘!1 J ðU‘ Þ ¼ J ðuÞ as well as

lim
‘!1
jjju�U‘ jjj ¼ 0 ¼ lim

‘!1
�‘.
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4. Numerical experiment

In this section, we consider a numerical experiment from [18]. The conforming and

shape regular mesh is adaptively generated by Algorithm 1. For the solution of the

discrete obstacle problem at each level, the primal-dual active set strategy from [28]

has been used. For the initial mesh T 0, we choose ðU
ð0Þ
0 , 	ð0Þ0 Þ 
 ð0, 0Þ for the primal

dual pair as initial guesses for the iterative solver. For T‘, we choose the prolongated

discrete solutions associated with the previous mesh, i.e. U
ð0Þ
‘ :¼ U‘�1 as well as

	ð0Þ‘ :¼ 	‘�1. We stop the iterative solver if the difference of two consecutive solutions

satisfies

U
ð j Þ
‘ �U

ð j�1Þ
‘

��� ������ ������ ��� � 
N�1=2 ð34Þ

for some tolerance 
4 0, where N¼#T ‘ denotes the number of elements. We then

define our discrete solution at T‘ by U‘ :¼ U
ð j Þ
‘ and 	‘ :¼ 	ð j Þ‘ .

While the numerical results are quite similar to those in [18], we stress that our

approach theoretically includes the data oscillations into the estimator �‘.
We consider the obstacle problem with constant obstacle �
 0 on the L-shaped

domain � :¼ (�2, 2)2n [0, 2)� (�2, 0]. The right-hand side is given in polar

coordinates by

f ðr, ’Þ :¼� r2=3 sinð2’=3Þ
�
� 01ðrÞ=rþ �

00
1 ðrÞ

�
�
4

3
r�1=3� 01ðrÞ sinð2’=3Þ � �2ðrÞ, ð35Þ

where (�)0 denotes the radial derivative d/dr. Moreover, �r :¼ 2ðr� 1=4Þ and

�1ðrÞ ¼

1, �r5 0,

�6�r5 þ 15�r4 � 10�r3 þ 1, 0 � �r5 1,

0, �r � 1,

8><>:
�2ðrÞ ¼

0, r � 5=4,

1, else.

�
Then, the exact solution reads in polar coordinates

uðr, ’Þ ¼ r2=3�1ðrÞ sinð2’=3Þ ð36Þ

and exhibits a corner singularity at the origin. We compare uniform and adaptive

mesh-refinement, where we vary the adaptivity parameter �2 {0.2, 0.4, 0.6, 0.8} in

Algorithm 1. The quantities of interest are the energy error

"‘ ¼ J ðU‘ Þ � J ðuÞ, ð37Þ

as well as the error estimator �‘ from (11) which includes oscillations and edge jumps.

Since the oscillations are, however, expected to be of higher order, the values of osc‘
are explicitly given.

In Figure 4, we plot
ffiffiffiffi
"‘
p

, �‘ and osc‘ over the number N¼#T‘ of elements for

uniform and adaptive mesh-refinement with �¼ 0.6. Uniform mesh-refinement leads

to a suboptimal convergence behaviour
ffiffiffiffi
"‘
p
� OðN�5=12Þ with respect to the number

N¼#T‘ of elements. Contrary, adaptive mesh-refinement regains the optimal order

of convergence
ffiffiffiffi
"‘
p
¼ OðN�1=2Þ. We stress that the given data are smooth so that

uniform as well as adaptive mesh-refinement leads to osc‘¼O(N
�1), which
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corresponds to second-order convergence with respect to a uniform mesh-width. For
both mesh-refinements, we see that the curves of �‘ and

ffiffiffiffi
"‘
p

are parallel. This
experimentally confirms the reliability of �‘ from Proposition 2.2 and indicates that
�‘ is also efficient.

Figure 5 provides the experimental comparison for different values of
� 2 {0.2, 0.4, 0.6, 0.8}. We see that each choice of � leads to optimal order of
convergence and that the corresponding curves essentially coincide. Since achieve-
ment of a prescribed precision takes much longer with uniform refinement, the
benefits of adaptive refinement are clearly visible. Additionally, we stress that also
the convergence rate itself is improved.

101 102 103 104 105 106 107
10−4

10−3

10−2

10−1

100

101

q = 0.2
q = 0.4
q = 0.6
q = 0.8
Uniform

 (N−5/12)

 (N−1/2)

Figure 5. Numerical results for
ffiffiffiffi
"‘
p

for uniform and adaptive mesh-refinement with � 2 {0.2,
0.4, 0.6, 0.8}, plotted over the number N¼#T ‘ of elements.
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Figure 4. Numerical results for uniform and adaptive mesh-refinement with �¼ 0.6, where
"‘¼J (U‘)�J (u), �‘ and osc‘ are plotted over the number N¼#T ‘ of elements.
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Figure 6 displays the adaptively generated meshes T 5 and T 11, respectively for
�¼ 0.6. As expected, refinement is basically restricted to the inactive zone. Due to the
data oscillation terms in the estimator �‘, we also observe certain refinement within
the active zone. Note that the corresponding figures in [18] do not show any
refinement inside the active zone. We stress, however, that those figures are
somewhat misleading in the following sense: the right-hand side f is non-zero along
the boundary in this example. Therefore, the contraction of the overall oscillations
(as it is postulated by [18]) can only be achieved if (sooner or later) refinements take
place also within the active zone. The algorithm from [18] will thus eventually lead to
the very same refinement along the boundary that we observe here.

Finally, the numerical solutions after eight steps of refinement is shown in Figure 7.
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