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In this paper, we develop a computational heart phantom model based on magnetic resonance imaging
(MRI) of a dynamic multi-modality heart phantom. The phantom is made of a hydrogel material which
mimics the elasticity of human soft tissue, and is composed of anatomically correct left and right ventricle
structures. The numerical analysis is carried out using the neo-Hookean constitutive model, and the C++
based object-oriented finite element library libMesh is used to solve the fully nonlinear governing equations.
We derive the partial differential equations into a set of Lagrangian mesh, and use the weighted residual
Galerkin method and Newton iteration solver in the numerical scheme. To validate the numerical model,
the displacements and strains of some representative points are compared with experimental measurements
and MRI-based strain estimations. Good agreement is obtained, and limitations of the model are discussed.
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1. Introduction

The relationships between heart disease and pump function and dysfunction remain incompletely
understood. Since heart disease is a major global cause of morbidity and mortality, new and
improved diagnostic and treatment approaches remain a priority for healthcare providers world-
wide. Although echocardiography is widely used for heart imaging, cardiac magnetic resonance
imaging (MRI) is especially useful for the identification of high-risk pathological characteristics.
For example, in patients with a history of myocardial infarction, cardiac MRI can reveal infarct
scar, haemorrhage and oedema, all of which can be linked with function. It has been shown [5,26–
28] that MRI is highly informative for assessing heart function, volumes and injury (area-at-risk,
scar burden, salvaged myocardium, microvascular obstruction, haemorrhage and thrombus). In
fact, infarct pathologies tend to aggregate in the highest risk patients in whom MRI is most infor-
mative. Overall, cardiac MRI is the gold standard diagnostic method for imaging the heart for
clinical and research purposes.

However, cardiac MRI has some limitations and from a technical perspective, continues to
evolve. A clinical MRI scan involves multiple different images of the beating heart which are
separately acquired over time. A standard cardiac MRI scan usually lasts around 45 min. In order
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to provide a report, the clinician must review each of the image sets separately, one after the
other. While MR vendor software is typically excellent, there are fundamental inefficiencies in
the diagnostic review process since images must be viewed separately and sequentially. Therefore,
pathology and function are dissociated meaning information with a scan that can be neither fully
understood nor predictive of health outcomes. Therefore, computational heart modelling has the
potential to help to overcome some of these problems by integrating discrete MRI data sets to
enhance the diagnostic value of the study.

Mechanical models based on simplified left ventricular (LV) geometries can provide basic
insights into the finite deformation and transmural stress distributions. Assuming the LV to have
thick-walled cylindrical geometry, Humphrey and Yin [14,15] investigated the transmural distri-
bution of stress in the equatorial region of a passive LV based on a constitutive model derived
from biaxial experimental data. Since there is a lack of sufficient experimental data, particularly
regarding the mechanical properties of myocardium, their computational modelling results must
be interpreted cautiously with regard to their physiological implications. Guccione et al. [12]
modelled the equatorial region of the canine LV as a thick-walled cylinder. The advantage of
these simplified models is that it could provide a reasonable approximation of the equatorial
region and allows to account for many of nonlinear features of the myocardium without using
sophisticated computational techniques such as finite element (FE) analysis. However, measure-
ments of realistic ventricular geometry rather than estimations from simpler models are required
if we need to obtain accurate stress and strain distributions [15,25].

The recent development of computational models of the heart has enhanced our understanding
of the relationships between heart disease and function [1]. For example, Guccione et al. found
that myocardial contractility in the infarct border zone is significantly reduced yet associated
with elevated myofibre stress, which predisposes to heart failure in the longer term [13,35–37].
Veress et al. [32] simulated normal and abnormal motions of the LV using a physiologically
based, FE mechanical model, with the aim to enhance the 4-D NURBS-based NCAT phantom. In
their mechanical model, the LV myocardium was represented as a transversely isotropic elastic
material with fibre. A gated high-resolution CT image set was selected and used for the geometry
of the FE method. Including electro-physiology in the heart models enabled us to study effects
of cardiac resynchronization therapy on heart function [31], such as pacing sites on failing and
non-failing hearts [18,22,24]. Coupled modelling of LV flow and coronary flow also enhanced our
understanding of heart function as a pump [23]. The computational advances have also resulted
in complex tools for generating personalized biomechanical models; see, e.g. [33,34], which
automatically fits an FE model to segmented data of the LV. In addition, the strain-based kine-
matic cardiac growth models, such as [11,19], which are now able to capture and hypothesize
on explanations for physiological responses such as eccentric and concentric growth. Modelling
also enables hypotheses for the optimization of the heart structure to be easily investigated. For
example, the assumption that the minimization of the cross-fibre to fibre shear strain governs
cardiac fibre orientations [20] provides novel insights linking cardiac physiology to mechanistic
effects such as stroke work density. These computational models, thereby, play an integral part in
the understanding of the patho-physiology and are essential for obtaining improved methods of
treatments for a variety of cardiac diseases.

In order to develop a sophisticated computational approach that can integrate with MRI data
sets, which have the potential to provide a better understanding of healthy and diseased hearts,
we first need to validate the computational framework in simpler scenarios. In this paper, we
apply our computational approach to an MRI-derived heart phantom, for which the precise control
parameters (i.e. the exact anatomy, the passive material properties of the phantom and the boundary
conditions) are known. We use Shelley’s dynamic multi-modality anthropomorphic heart phantom
(Shelley Medical Imaging Technologies, Ontario), which has been purposely developed as a tool
for the analysis and validation of cardiac motion techniques related to medical imaging.
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The remainder of the paper is organized as follows. We begin with the process for creating
the FE mesh from the MRI images in Section 2, and then we describe the experimental set-up
and method for extracting displacement data (Section 3). Details of numerical simulations of the
heart phantom model are given in Section 4. Finally, we compare the computational results with
experimental measurements and MRI-based strain estimation.

2. MRI-derived phantom geometry

The anthropomorphic heart phantom is shown in Figure 1. The phantom is MRI compatible with
computer-controlled left ventricle (LV) and right ventricle (RV) heart motion. The heart phantom
is intended for the validation of imaging processing, reconstruction algorithms and interventional
guidance/tracking applications.

The phantom is made of a polyvinyl alcohol (PVA) hydrogel material which mimics the elas-
ticity of human soft tissue with anatomically correct LV and RV structures incorporated, see
heart phantom reference [8]. MR images were obtained using a 3 Tesla Siemens Verio scanner
(Siemens, Erlangen, Germany) with a 6-channel phased-array body coil. An artificial heart rate of
60 bpm was generated by the control system of the heart phantom to enable the MRI protocol to
run gated to a simulated ECG recording, and short axis stacks of cine images (see Figure 1(a,b))
covering the entire phantom were acquired using a FLASH sequence with the following param-
eters: repetition time = 54.2 ms, echo time = 2.9 ms, field of view = 162 mm × 200 mm, slice
thickness = 2 mm without gap and resolution = 1.3 mm × 1 mm × 2 mm.

A total of 37 short axis slices were chosen for phantom geometry reconstruction. First, a
recursive Gaussian filter was applied to reduce the noise (σ = 1.4 mm). Second, the MR images
were segmented by a threshold operator in the Simpleware ScanIP package (Simpleware Ltd,
Exeter, UK). Third, morphological operations were used to fill cavities, remove artefacts and

Figure 1. Experimental set-up of the heart phantom. (a) The heart phantom sitting in the water tank. (b) One short axis
MRI slice. (c) A close view of the heart phantom with the apex plane (left) moving in a prescribed motion. The apex
plane is defined by the circular disk attached to the apex area of the heart phantom. The marked points 1–4 are used for
comparison with numerical simulations, the marker 5 is used for extracting the apex motion.
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isolated objects. Manual editing was performed to correct minor errors if necessary. Finally, the
reconstructed heart phantom model was exported into the Cubit Geometry and Mesh Generation
Tool Suite (http://cubit.sandia.gov), where the tetrahedral mesh was generated.

3. Experimental set-up

Two servomotors and an actuator were connected to the hydrogel heart phantom allowing for
control of compression, stretching and torsion motion of tissue deformation. The motion of the
heart phantom was driven by the piston and the piston rod system: the apex part of the heart
phantom rotated around the centre of the piston rod and at the same time moved forward or
backward in the long axis direction, see Figure 1(c). We remarked that in this system, there was
no flow flux being pushed by the piston into the phantom – unlike in the real heart; therefore, the
phantom motion was entirely driven by the time-dependent displacement and twist provided to
the apex.

We considered two scenarios with different driven pressures, 20 psi (137.9 kPa) and 40 psi
(275.8 kPa), respectively, referred to as cases A and B. Again, the pressure was used to control
the motion of the apex of the heart phantom, it is not the hydrostatic pressure applied inside the
LV and RV. Since the heart phantom was set to beat 60 times per minute in experiments, the
simulation time of both cases was set to 1 s, which was equal to the period of one phantom cycle.

To extract the displacements from the phantom heart, two digital cameras were used to follow
five markers embedded in the heart phantom as shown in Figure 1(c), since the markers were not
MRI-compatible; therefore, the markers’ motion could not be traced using the MRI scanner. Each
camera was able to record two-dimensional motions. Our tests showed that the measured motion
error was less than 2%.

The marker in ‘position 5’ provided the completed information of the apex plane. Figure 2
illustrates the process of extracting θ from camera recorded videos. Marker 5 was initially located
at positionA in un-deformed configuration and moved to position B at time step 1, then the relation
of rotational angle θ of marker 5 and the displacement components u, v at time step 1 could be
calculated by

|BC| = u = r sin θ , |AC| = v = r(cos θ − 1), (1)

where r is the radius of the apex plane. In addition, videos of the beating heart phantom were
taken for recording the motion of the apex plane in the long axis direction. Then using similar
image processing, we obtained the displacement component w of marker 5, and these results are
shown in Figures 3 and 4. These data points were then fitted using a smoothing spline algorithm
in Matlab R2010a (The MathWorks Inc, Natick, USA). The clockwise direction (from the apex
view) was considered as the positive direction of the rotation θ .

4. The numerical model

4.1 Nonlinear equations

In the reference configurations we describe points of the phantom in terms of the position vector
X, while in the deformed configuration of the phantom, the position vector of the material point
is denoted by x. We describe the deformation in the form

x = X + u, (2)

where u = u(X) is the displacement vector.

http://cubit.sandia.gov
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Figure 2. Illustration of extracted displacements from apex plane.

Figure 3. The motion of the apex plane for case A. The symbol (+) indicates the raw data obtained from camera
recordings, fitted with splines. (a) Displacements (mm) in the long axis direction versus time (s), and (b) rotational angle
θ (radian) versus time (s).

Figure 4. The motion of the apex plane for case B. The symbol (+) indicates the raw data obtained from camera
recordings, fitted with splines. (a) Displacements (mm) in the long axis direction versus time (s), and (b) rotational angle
θ (radian) versus time (s).
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With respect to the chosen bases, the deformation gradient tensor F may be written as

F = Grad x = ∂xi

∂Xj
ei ⊗ Ej, (3)

where ei (i = 1, 3) are the Cartesian unit basis vectors in the current configuration and Ej (j = 1, 3)

are the basis vectors in the reference configuration. Note summation over indices i and j from 1
to 3 is implied. The phantom material is incompressible, hence

det F = 1. (4)

For an incompressible hyperelastic material with strain-energy function W = W(F) per unit
volume, the nominal stress tensor S is given by

S = ∂W

∂F
− pF−1, (5)

where p is a Lagrange multiplier associated with constraint (4). In the absence of body forces, the
equilibrium equation is expressed in terms of the nominal stress as

Div S = 0, (6)

where Div is the divergence operator with respect to X. The Cauchy stress tensor σ for an
incompressible material is related to S by σ = FS, and Equation (6) may be written equivalently
as div σ = 0.

Since the material of the phantom is PVA hydrogel, it can be described using rubber elasticity
[3], as for most polymeric materials. We use the neo-Hookean strain-energy function W for the
hydrogel,

W = 1
2μ(I1 − 3), (7)

where the constant μ is the shear modulus of the material and I1 = tr (FTF). To estimate the
shear modulus, the phantom material is tested in a simple uni-axial stretching test. Three material
samples have been tested, the mean value of Young’s modulus is E is 110.25 ± 0.49 kPa. The
corresponding shear modulus μ = E/3 = 36.75 kPa.

4.2 FE algorithm

4.2.1 FE equations

The governing PDEs (6) and the constraint equation (4) are approximated by using the weighted
residual Galerkin method, with the elastic domain divided into a set of sub-domains. In terms of
quadratic shape functions Nk and linear shape functions Lk , the displacement components (u, v, w)

and the Lagrange multiplier p are written as

u =
n1∑

k=1

Nk(ξ , η)uk , v =
n1∑

k=1

Nk(ξ , η)vk , w =
n1∑

k=1

Nk(ξ , η)wk , p =
n2∑

k=1

Lk(ξ , η)pk ,

where n1 and n2 are the element node numbers, which are dependent on the element type chosen,
ξ and η are natural coordinate variables, corresponding to isoparametric FEs, uk , vk , wk are the
components of the displacement at node k and pk is the Lagrange multiplier at node k.



International Journal of Computer Mathematics 1541

Using Equations (4)–(6), the discretized FE equations to be solved are

� ≡ K(U)U − F(U) = 0, (8)

where U is the global vector of unknowns, K(U) is the global stiffness matrix, F(U) denotes
the force vector, which is also dependent on U, and � is the global residual vector. To avoid
distorted elements in the deformation of the phantom geometry, tetrahedral elements are used in
the simulations. The nonlinear partial differential equations are solved with the help of the open-
source FE library [20], which can be used as an interface to the high-quality software PETSc
(http://www.mcs.anl.gov/petsc), a linear systems solver on both serial and parallel platforms.

4.2.2 Mixed displacement/pressure formulation

For incompressible or nearly incompressible materials, a pure displacement-based procedure is
in general not effective and produce results showing stiffness far greater than would be expected,
rendering the results useless. This particular problem is called locking. To overcome this problem,
we used a mixed displacement/pressure formulation to solve the fully nonlinear equilibrium equa-
tions. Since the magnitude of displacement w increases sharply in a relatively short time interval,
relatively small incremental of displacements have to be used. We now summarize the details of
the discretization and the numerical techniques used. The matrix equation (8) is assembled from
the FE matrix equations, which are

n1∑
j=1

∫
�e

μ(Ni,1Nj,1 + Ni,2Nj,2 + Ni,3Nj,3) d�euj

+
n1∑

j=1

∫
�e

p{Ni,1[−(1 + w,3)Nj,2 + w,2Nj,3] + Ni,2[−w,1Nj,3 + (1 + w,3)Nj,1]

+ Ni,3(−w,2Nj,1 + w,1Nj,2)} d�evj +
n1∑

j=1

∫
�e

p(−Ni,1Nj,3 + Ni,3Nj,1) d�ewj

−
n2∑

j=1

∫
�e

Ni,1Lj d�epj +
∫

�e

μNi,1 d�e = 0, (9)

n1∑
j=1

∫
�e

p{Ni,1[−w,2Nj,3 + (1 + w,3)Nj,2] + Ni,2[−(1 + w,3)Nj,1 + w,1Nj,3]

+ Ni,3(−w,1Nj,2 + w,2Nj,1)} d�euj +
n1∑

j=1

∫
�e

μ(Ni,1Nj,1 + Ni,2Nj,2 + Ni,3Nj,3) d�evj

+
n1∑

j=1

∫
�e

p(−Ni,2Nj,3 + Ni,3Nj,2) d�ewj −
n2∑

j=1

∫
�e

Ni,2Lj d�epj +
∫

�e

μNi,2 d�e = 0, (10)

n1∑
j=1

∫
�e

p[Ni,1(1 + v,2)Nj,3 − Ni,2v,1Nj,3 − Ni,3(1 + v,2)Nj,1] d�euj

+
n1∑

j=1

∫
�e

p[−Ni,1u,2Nj,3 + Ni,2(1 + u,1)Nj,3 + Ni,3(−Nj,2 + u,2Nj,1)] d�evj

http://www.mcs.anl.gov/petsc
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+
n1∑

j=1

∫
�e

μ(Ni,1Nj,1 + Ni,2Nj,2 + Ni,3Nj,3) d�ewj

−
n2∑

j=1

∫
�e

Ni,3Lj d�epj +
∫

�e

μNi,3 d�e = 0, (11)

n1∑
j=1

∫
�e

Li[(1 + v,2 + w,3 + v,2w,3 − v,3w,2)Nj,1 + (v,3w,1 − v,1 − v,1w,3)Nj,2

+ (v,1w,2 − w,1 − v,2w,1)Nj,3] d�euj +
n1∑

j=1

∫
�e

Li(Nj,2 − w,2Nj,3 + w,3Nj,2) d�evj

+
n1∑

j=1

∫
�e

LiNj,3 d�ewj = 0, (12)

where �e is the domain of an element in the reference configuration, �e is its boundary, ,k signifies
differentiation with respect to the reference coordinate Xk .

4.2.3 Displacement boundary conditions

The Cartesian coordinate system was chosen with the origin located in the base plane of the
phantom; the x − y plane coincides with the base plane, and the z-axis is perpendicular to the base
plane (see Figure 1(c) and Figure 6(a)). We fixed the displacements of the base of the phantom, so
that u = v = w = 0. The motion of the apex plane was prescribed as the displacement boundary
conditions. We assumed that the nodes located in the apex plane have the same displacement
components w and rotate with the same angular velocity as the marker 5. Then the motion of
all the other nodes in the apex plane could be determined by using Equations (1), see Figures 3
and 4. Notice that r in Equation (1) should be replaced as the distance from centre position O to
the node considered.

4.2.4 Grid independence tests and solution convergence

Convergence analysis was performed first using grid independence tests on several grid resolu-
tions, as well as for two types of elements. The mesh-A included 325,945 4-node tetrahedral
elements with 54,291 nodes. The mesh-B included 85,515 10-node tetrahedral elements with
nodes 124,382. Comparison of these two meshes showed that the maximum displacements are
almost identical and the differences of maximum stresses in the axial direction are less than
3%. As mesh-B had higher order elements and was faster, it has been used in the following
simulations.

Equation (8) was solved in LibMesh by employing the SNES library of PETSc [4], which
provides a powerful set of numerical routines, including line search and trust region techniques.
Newton–Krylov methods constitute the core of the package. The non-symmetric Jacobian matrix
was analytically formulated following [38] and was updated at each Newton iteration. Conver-
gence was achieved when the relative residual tolerance ‖�(Ur)‖/‖�(U0)‖ (in the l2 norm) was
less than 10−8 or the absolute tolerance ‖�(Ur)‖ was less than 10−10, where �(U0) is the initial
residual. All computations were run on Linux servers, each with dual six-core Intel Xeon X5650
2.67 GHz CPUs (i.e. 24 cores per system) and 32 GB RAM at the School of Mathematics and
Statistics, the University of Glasgow.
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5. Results

5.1 Comparison of displacements

First, the numerical results for markers 1–4 are compared with measured values, which are sitting
on the phantom surface (see Figure 1(c)). Since the camera recorded motions are in 2D plane, thus
only the displacement components v and w can be extracted and compared with those from the FE
analysis for the camera sitting on the top of phantom. Figure 5 shows that there is a good agreement
between the experimental and numerical displacements for markers 1–4. The predictions of v at
markers 3 and 4 agree very well in the whole cycle, the maximum displacement w is slightly
under-estimated by the numerical model, which might be because that the phantom base plane is
fixed in the numerical model, but it moves slightly in the experimental settings due to the effects
of material deformation there.

Comparison of our results with the commercial FE package ABAQUS is shown in Figure 5,
using the same material model, mesh and boundary conditions. The results from these two
simulation models are almost identical.

Figure 6 illustrates the un-deformed and deformed heart phantom under extension and rotation.
The largest extensions for both cases are |w| = 22 mm. The largest rotations for the two cases
were θ = 22.6◦ and θ = 38.7◦ respectively. The parts of the two ventricles close to the apex were
subject to the largest deformations (including extension and torsion). For gross comparison, the
heart phantom in un-deformed and deformed configurations is shown in Figure 7.

5.2 Comparison with strains estimated from tagged MRIs

In order to compare the predicted strain with experimental data, we use the estimated strains
from MRI by applying the B-spline deformable image registration method (BSDIR) to a series
of long-axis tagged MR images [2].

The basic idea of the BSDIR method [29] is to find the optimized free-form displacement
vector field which can relate each pixel in one image to its position in the other, which is able to
map the movement of a structure from one time step to the next time step. From the continuous
displacement vector field, strain data can be derived by using continuum mechanical theory. The
Cartesian components of Green strains are transformed to the cylindrical coordinate system. Since
the current BSDIR method can only be applied to 2D images; therefore, we only estimate strain
components Err and Ezz with long axis tagged MR images.

The average strain curves at the selected regions A and B are computed and compared with that
of BSDIR. For both strains Err and Ezz, there is a reasonable agreement, though slight discrep-
ancy exists. The reasons for the difference are partially due to (a) BSDIR applies regularization
and smoothness to the displacement field, which could over smooth the displacement field, and
underestimate strains for the regions with large and fast motion; (b) BSDIR is also affected by the
image quality; (c) the tracked position from one image to another by the BSDIR method may not
actually be the same physical point. Indeed, it is of the current research challenge to estimate 3D
strains from 2D MR images accurately. Having said this, the overall agreement of strain estimated
by the model and the BSDIR is encouraging.

5.3 Stress and strains

One of the advantages of the computational heart model is that it can provide additional infor-
mation that is not easily measurable in experiments, such as stress. For the phantom heart, the
representative stress distributions in Cartesian system for case A are plotted in Figures 10 for
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Figure 5. Comparison of the displacement components (mm) v, w at markers 1–4 for Case A. The FE results (black
solid lines) are almost identical with those of ABAQUS (dashed lines). Both of the FE results agree well with experimental
(circles) results.

w = −10.08 mm. It can be seen that the areas of stress concentration are located not only at the
base and the apex of the phantom but also at places where the ventricle wall is very thin and where
the curvature of the wall surface changes suddenly. We also noted that the magnitude of stress σ33

is larger than the other components of the Cauchy stress. All the Cauchy stress components vary
significantly between mid-ventricles and the apex.
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Figure 6. (a) Un-deformed heart phantom and (b) deformed heart phantom at w = −22 mm.

Figure 7. (a) Un-deformed heart phantom and (b) deformed heart phantom at w = −22 mm.

X

Z

Y

A
B

Figure 8. One long axis slice position is chosen for strain comparison between the BSDIR method and the FE model.

From Figure 10, we can see that the magnitudes of the Cauchy stresses are large near the lower
boundary of the LV and RV due to the twisting and axial forces exerted there. σ22 is negative near
the apex of the RV, meaning this part is compressed in the x, y plane. σ33 is negative at both the
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Figure 9. Strain comparisons between the BSDIR method (circle) and FE model (solid line) (a) Err in sector A, (b) Ezz
in sector A, (c) Err in sector B, (d) Ezz in sector B in a long axis slice, Sectors A and B are zones near the midventricle.
Overall, there is good agreement between the BSDIR method and numerical strains in sectors A and B.

apex of the LV and RV (see Figure 10(c)). Figure 10(c) also shows that σ33 is positive in most
areas of the section, except when close to the base of the phantom.

Figure 11 illustrates the cavity volumes of the LV and RV in the whole cycle of the motion for
cases A and B. The change of cavity volumes for both cases is relatively small, which is defined
by

Volume changes = Vi − V0

V0
× 100%, (13)

where Vi denotes the volume at the ith time step and V0 is the initial volume in the reference
configuration. For case A, both the cavity volumes are increased up to 4.13% for LV and 5.38%
for RV. For case B, both the cavity volumes decrease to −0.42% and −0.88% and then increase
up to 4.28% and 5.56%, respectively.

Figure 12 shows the displacement u plotted along three different paths (defined as Paths 1, 2
and 3), across the phantom wall, see Figures 12–14.

Figure 13 reveals that the components of the Green strain vary from endocardium to epicardium.
The magnitude of Green strain Ezz is much larger compared with other components. Along paths
1, 2 and 3, Ezz decreases from endocardium to epicardium while Err increases from endocardium
to epicardium. Along path 1, the curves for all strain components are almost straight lines. Err ,
Ezz and Erθ change dramatically from endocardium to epicardium, while Eθθ , Erz and Eθz do not
change much.
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Figure 10. Transmural Cauchy stress components distribution for case A (kPa).
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Figure 11. Plot of the left (solid lines) and right (dotted lines) ventricle volume versus time (s). Case A (left, black) and
case B (right, red online).

Figure 12. Position of the z-axis (for cylindrical strains and stresses) and transmural paths for LV with the distribution
of displacement component u superimposed.

Figure 13. Plots of transmural Green strain components in the cylindrical coordinate system, as defined in Figure 12,
along paths 1, 2, 3, when w = −22.0 mm, case A.
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Figure 14. Plots of transmural Green strain components (in cylindrical coordinate system) at position 1, 2, and 3. Case
B at w = 3.9 mm.

Figure 14 shows the transmural Green strain components at w = 3.9 mm for case B. The
magnitudes of the strains are small. The curves along the three paths have the similar trend with
case A, i.e. the transmural distributions vary monotonically. Compared with Figure 13, the values
of Err and Ezz have opposite signs and the absolute magnitude of Err and Ezz decreases almost
linearly from endocardium to epicardium.

6. Discussion and conclusions

We have developed an MRI-based computational heart model, and validated the model against
Shelley’s dynamic multi-dynamic phantom which is MRI compatible. The nonlinear partial dif-
ferential equations were solved numerically using a in-house code based on the open-sourced FE
library libMesh, as well as commercial package ABAQUS. The MRI-based computational model
that we have devised will be informative for research into cardiac biomechanics.

In this study, we have shown that our computational approach based on the MRI-derived
phantom geometry can successfully simulate the heart phantom motion. There is an excellent
agreement in the model and experiments in terms of displacements. We also performed the strain
comparison, where the strains are computed, respectively, by the numerical model and the BSDIR
method, on a long-axis slice. There was reasonable agreement in strains, both in the trends and the
magnitude. However, the BSDIR method is purely based on image analysis, which may contain
errors in the recovered strain since the motion is complex; and the image quality is low. Therefore,
we only compared two centre regions in the long-axis view. In the future, improvements are needed
with MRI method for strain estimation in order to enhance the validation of computational models.

The stress analysis using the phantom model shows that the areas of stress concentration are
located not only at the base and the apex of the phantom but also at places where the ventricle
wall is very thin and where the curvature of the wall surface changes suddenly. All the Cauchy
stress components vary significantly between mid-ventricles and the apex.



1550 Y. Zhu et al.

Having now evaluated the mechanical phantom used in this project, we conclude that it has
limited applicability to model physiological heart motion. This is because motion in the phantom
heart model mainly involves extension/compression and twist only, which is incompletely repre-
sentative of in vivo cardiac physiology. In other words, the displacement boundary condition is
applied on the apex plane as the driving force to control the motion of the phantom. The motion
of heart phantom is far from that of an actual heart. The in vivo cardiac cycle is coordinated
by a series of electrical impulses that are produced by specialized heart cells leading to cyclical
contraction and relaxation mediated by calcium-dependent excitation coupling. Other differences
between the heart phantom and real life include differences in blood flow, pressure (intra-cardiac
and extra-cardiac), chamber structure and material properties (i.e. the hydrogel material is very
different due to the myocardial tissue). Therefore, the stress analysis of the model is only for
demonstrative purposes; the stress pattern bears no analogy to that of the physiological heart,
which requires more sophisticated constitutive models that account for the muscle fibre direction,
myocyte sheet structure of the myocardium and its anisotropic properties. Many constitutive mod-
els of the myocardium are available in the literature, including isotropic models [7], transversely
isotropic models [13,14,16] and orthotropic models [6,17,30]. It is relatively easy to implement,
and indeed we have implemented, more advanced structure-based constitutive heart models in the
framework developed here [9,10,33,34].
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