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Fundamental solutions and Green’s functions of the operator ∂2t + (1 +
2α)t−1∂t + �n, α ∈ C, are calculated in the half-space t > 0.

ARTICLE HISTORY
Received 9 August 2017
Accepted 9 September 2018

COMMUNICATED BY
Yongzhi Xu

KEYWORDS
Fundamental solutions;
generalized axially
symmetric potential theory;
Dirichlet problem; Neumann
problem; Green’s function

AMS SUBJECT
CLASSIFICATIONS:
35A08; 35J70; 35A22; 46F12

1. Introduction and notation

The goal of this paper consists in deriving, in the framework of Schwartz’ distribution theory [1], fun-
damental solutions and Green’s functions of the operator of ‘generalized axially symmetric potential
theory’ (GASPT), i.e. of

Pα(∂) = ∂2t + (1 + 2α)t−1∂t + �n, ∂ = (∂t , ∂1, . . . , ∂n), �n = ∂21 + · · · + ∂2n , α ∈ C. (1)

Fundamental solutions of Pα(∂) were presented first by Weinstein (see [2,3]). His method of deriva-
tion was based on classical analysis and did not involve distribution theory, which at that time was
not yet state of the art. Weinstein’s method ran along the following five steps:

(a) assume first that 1 + 2α is a natural number;
(b) use the known fundamental solution of the Laplacean operator in 2 + 2α + n variables;
(c) introduce polar coordinates with respect to the first 2 + 2α variables;
(d) integrate with respect to the sphere S

1+2α ;
(e) replace 1 + 2α ∈ N by 1 + 2α ∈ C.

Finally , Weinstein checked the ‘nature of singularity’ of the function found by the procedure in
(a) to (e). The resulting fundamental solutions are expressed by definite integrals, and as customary
until 1951, they are defined only up to multiplicative constants.

However ingenious Weinstein’s approach may be, it does not seem satisfactory from the view-
point of modern analysis. In the literature, there are two further treatments of the GASPT operator
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we know of. In [4, Ch. VIII: Degenerate elliptic operators], a formulation of existence and uniqueness
results for a class of operators including the one in GASPT is given. However, the approach is based
on Sobolev spaces and Green’s functions are not expressed by special functions but only as definite
integrals.

Adifferent attempt at constructing fundamental solutions ofPα(∂) in a distributionally correctway
is contained in the studies [5,6]. Therein, fundamental solutions are set up as infinite series motivated
by the derivation of the fundamental solution of the EPD-operator in [7] (see also [8]). However, no
effort is made of deriving uniqueness results or Green’s functions; furthermore, the result in the case
n= 1 [6, Theorem 3.4, Equation (3.27), p.507] seems to be incorrect.

For the reasons explained above, we have taken up anew the study of fundamental solutions and
Green’s functions of the operator in (1). In Definition 2.1, we define the notions of temperate funda-
mental solutions and Green’s functions of the Dirichlet problem and the Neumann problem in the
half-space

H = {(t, x) ∈ R
n+1; t > 0, x ∈ R

n}
for the singular operator Pα(∂) in (1). The uniqueness of Green’s functions is investigated in Propo-
sition 2.2, and we represent Green’s functions and temperate fundamental solutions of Pα(∂) by
hypergeometric functions in Theorem 2.3. In the case of even n, we represent these fundamental
solutions by elementary transcendental functions in Corollary 2.4. Of course, some of our formulas
can be found already in [2–6] (see the remarks following Theorem 2.3).

We derive our results by employing the partial Fourier transform with respect to the x-variables
and by using suitable identities for the hypergeometric function. We also make use of the theory of
distribution-valued analytic functions as expounded in [9].

Let us introduce some notation. Besides the spacesD′(U), U ⊂ R
n open, and §′(Rn) of distribu-

tions and temperate distributions, respectively, we also use the space

S ′(H) = {T ∈ D′(H); ∃T1 ∈ S ′(Rn+1) : T = T1|H}

of temperate distributions on the half-spaceH defined above. Note that the partial Fourier transform

Fx : S ′(Rn+1) −→ S ′(Rn+1),

which is extended by continuity from

(Fxφ)(t, ξ) =
∫

Rn
φ(t, x)e−ixξ dx, φ ∈ S(Rn+1),

yields also an isomorphism on S ′(H). The Heaviside function is denoted by Y, and we write δ(t −
τ) ∈ S ′(R1

t ), τ > 0, for the delta distribution with support in τ , i.e. for the derivative of Y(t − τ).

2. Temperate fundamental solutions and Green’s functions in GASPT

Asmentioned already in the introduction, the operator Pα(∂) = ∂2t + ((1 + 2α)/t) ∂t + �n arises in
the so-called GASPT (see [2] for historical remarks and connections to physics). Let us first introduce
the notions of temperate fundamental solution and Green’s functions for Pα(∂).

Definition 2.1: Set H = (0,∞) × R
n and fix τ > 0 and α ∈ C.

(a) E ∈ S ′(H) is called temperate fundamental solution of Pα(∂) if and only if Pα(∂)E = δ(t − τ) ⊗
δ(x) holds in H.

(b) E ∈ §′(H) is calledGreen’s function of theDirichlet problem forPα(∂) if and only ifE is a temperate
fundamental solution of Pα(∂) that satisfies limt→∞ E(t, x) = limt↘0 E(t, x) = 0 in S ′(Rn

x).
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(c) E ∈ §′(H) is called Green’s function of the Neumann problem for Pα(∂) if and only if E is a tem-
perate fundamental solution of Pα(∂) that satisfies limt→∞ E(t, x) = limt↘0(∂tE)(t, x) = 0 in
S ′(Rn

x).

Remark 2.1: Note that a fundamental solution E of Pα(∂) is C∞ in H \ {(τ , 0)} due to [10,
Theorem 13.4.1, p.191]. Hence we can fix t in E(t, x) for t 
= τ . For example, the hypothesis
limt→∞ E(t, x) = 0 in S ′(Rn) in Definition 2.1 then means that E(t, x) belongs, for fixed large t, to
S ′(Rn

x) and converges therein to 0 if t → ∞.

The next proposition will show that the Green functions of the Dirichlet problem and the
Neumann problem, respectively, for Pα(∂) are uniquely determined in those cases where they exist.

Proposition 2.2: Fix α ∈ C and let T ∈ S ′(H) fulfill Pα(∂)T = 0 in H and limt→∞ T(t, x) = 0 in
S ′(Rn). If, additionally, either limt↘0 T(t, x) = 0 or limt↘0(∂tT)(t, x) = 0 hold in S ′(Rn), then T
vanishes identically.

Proof: The partial Fourier transform U = FxT of T satisfies the ‘ordinary’ differential equation(
∂2t + 1 + 2α

t
∂t − |x|2

)
U = 0 inH. (2)

For x 
= 0, let V(t, x) = U(t/|x|, x). Then V ∈ D′(H0) where H0 = {(t, x) ∈ H; x 
= 0}. Since V
fulfills (∂2t + ((1 + 2α)/t) ∂t − 1)V = 0 in H0, we conclude that

V = t−αIα(t) ⊗ V1(x) + t−αKα(t) ⊗ V2(x), V1,V2 ∈ D′(Rn \ {0}).
Therefore, U = t−αIα(t|x|)W1(x) + t−αKα(t|x|)W2(x) holds in H0 for Wj(x) = |x|−αVj(x) ∈
D′(Rn \ {0}), j = 1, 2.

Let us use now the boundary conditions for T. The assumption limt→∞ T(t, x) = 0 in S ′(Rn)
implies limt→∞ U(t, x) = 0 in S ′(Rn), and thereforeW1 vanishes andU = t−αKα(t|x|)W2(x) holds
in H0. On the other hand, either of the limits limt↘0 U(t, x) = 0 or limt↘0(∂tU)(t, x) = 0 implies
W2 = 0. Hence U|H0 vanishes and suppU ⊂ (0,∞) × {0} ⊂ H, i.e.

U =
∑

|β|≤m

fβ(t) ⊗ ∂βδ(x), m ∈ N0, fβ ∈ D′((0,∞)), β ∈ N
n
0 .

(Note that U is a distribution of finite order due to U ∈ S ′(H).)
Let us assume that β ∈ N

n
0 is such that |β| = m and that fβ does not vanish identically.

Then (2) implies that (∂2t + (1 + 2α)t−1∂t)fβ = 0 and hence fβ = C1 + C2t−2α for α ∈ C \ {0} or
fβ = C1 + C2 log t if α = 0. In both cases, the conditions limt→∞ U(t, x) = limt↘0 U(t, x) = 0 or
limt→∞ U(t, x) = limt↘0(∂tU)(t, x) = 0 then imply that fβ vanishes and that leads to a contradic-
tion. Therefore U = 0 and thus also T= 0 and the proof is complete. �

Theorem 2.3: As before, set H = (0,∞) × R
n. Let α ∈ C \ (−(n/2) − N0), τ > 0 and (t, x) ∈ H \

{(τ , 0)} and set

z = τ 2 + t2 + |x|2
2τ t

, r =
√

(t − τ)2 + |x|2. (3)

The functions

ENα,τ (t, x) = −(2π)−(n+1)/2 e−i(n−1)π/2 τ−n/2+1+α

tn/2+α
(z2 − 1)−(n−1)/4 Q(n−1)/2

−1/2+α(z)

= − 1
2πn/2

�
(n
2 + α

)
�(1 + α)

τ 1+2α

rn+2α 2F1
(
n
2

+ α,
1
2

+ α; 1 + 2α;−4τ t
r2

)
(4)
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are C∞ in H \ {(τ , 0)} and locally integrable in H. For even n, the mapping α �→ ENα,τ extends to an
entire function

C −→ S ′(H) : α �−→ ENα,τ ;

for odd n, this mapping is meromorphic on C with simple poles in the set −n/2 − N0. Furthermore,
we set EDα,τ (t, x) = (τ/t)2αEN−α,τ (t, x) for α ∈ C if n is even and for α ∈ C \ ((n/2) + N0) if n is odd,
respectively.

For those α ∈ C for which ENα,τ ,EDα,τ , respectively, are defined, they are temperate fundamental
solutions of

Pα(∂) = ∂2t + 1+2α
t ∂t + �n.

Furthermore, ENα,τ is the uniquely determined Green function of the Neumann problem for Pα(∂) if
Reα > −n/2, and EDα,τ is the uniquely determinedGreen function of the Dirichlet problem for Pα(∂)

if Reα < 0.
(In (4) Qμ

ν denotes an associated Legendre function and 2F1 denotes Gauß’ hypergeometric func-
tion. If α is a negative entire number not belonging to −n/2 − N0, then �(α + 1)−1

2F1(. . . ) in (4)
has to be interpreted as a limit.)

Proof: (a) Let us first assume Reα > −n/2 and represent ENα,τ by a partial Fourier transform with
respect to x. From(

∂2t + 1 + 2α
t

∂t + �n

)
ENα,τ = δ(t − τ) ⊗ δ(x) and Sα,τ = Fx(ENα,τ ),

we obtain (
∂2t + 1 + 2α

t
∂t − |x|2

)
Sα,τ = δ(t − τ).

From Sα,τ ∈ S ′(H) and limt↘0(∂tSα,τ )(t, x) = 0 by the Neumann boundary condition, we infer, for
x 
= 0 fixed, that

Sα,τ (t, x) =
{

C1(x)t−αKα(t|x|) : t ≥ τ ,
C2(x)t−αIα(t|x|) : 0 < t ≤ τ

with the jump conditions

C1(x)τ−αKα(τ |x|) − C2(x)τ−αIα(τ |x|) = 0,

C1(x)∂τ

(
τ−αKα(τ |x|)) − C2(x)∂τ

(
τ−αIα(τ |x|)) = 1.

The ‘Wronskian’ determinant

W(τ , x) = det
(

τ−αKα(τ |x|) τ−αIα(τ |x|)
∂τ (τ

−αKα(τ |x|)) ∂τ (τ
−αIα(τ |x|))

)

of this linear system of equations fulfillsW(τ , x) = D(x)τ−1−2α (see [11, A, 17.1, p.72]), and employ-
ing the series expansions ofKα and Iα yieldsD = 1. ThusC1 = −τ 1+αIα(τ |x|),C2 = −τ 1+αKα(τ |x|)
and

Sα,τ (t, x) = −τ 1+αt−α
[
Y(t − τ)Iα(τ |x|)Kα(t|x|) + Y(τ − t)Y(t)Kα(τ |x|)Iα(t|x|)].

The inequalities

|Kα(u)| ≤ Cmin{1, u}−|Reα|(1 + log2 u)e−u, |Iα(u)| ≤ Cmin{1, u}Reαeu, u > 0,

imply that Sα,τ ∈ S ′(H) and Sα,τ (t, x) ∈ L1(Rn
x) for fixed positive t 
= τ due to the hypoth-

esis Reα > −n/2. These inequalities also imply that the limits limt↘0(∂tSα,τ )(t, x) = 0 and
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limt→∞ Sα,τ (t, x) = 0 hold in L1(Rn
x) ⊂ S ′(Rn

x) by Lebesgue’s theorem on dominated convergence.
Hence ENα,τ = F−1

x (Sα,τ ) is indeed the Green function of the Neumann problem for Pα(∂) and
limt↘0(∂tENα,τ )(t, x) = 0 and limt→∞ ENα,τ (t, x) = 0 hold even uniformly in x.

(b) In order to calculate ENα,τ for Reα > −n/2, we apply the classical Poisson–Bochner formula
(see [[1, (VII, 7; 22), p.259],[12, Satz 56, p.186],[8, (1.1)]]). For 0 < t < τ , Equation 6.578.11 in [13]
then implies

ENα,τ (t, x) = −(2π)−n/2 τ 1+α

tα
|x|−n/2+1

∫ ∞

0
ρn/2Kα(τρ)Iα(tρ)Jn/2−1(|x|ρ) dρ

= −(2π)−(n+1)/2 e−i(n−1)π/2 τ−n/2+1+α

tn/2+α
(z2 − 1)−(n−1)/4Q(n−1)/2

−1/2+α(z) (5)

with z as in (3). Equation (5) also holds for t > τ , either by the real analyticity of ENα,τ inH \ {(τ , 0)},
or by using Equation 6.578.11 in [13] again with t and τ interchanged. Eventually, we employ formula
[14, 7.3.1.72] for Q(n−1)/2

−1/2+α in order to derive the representation in (4) of ENα,τ by the hypergeometric
function. (Note that Sα,τ and hence also ENα,τ are continuous functions of t with values in S ′(Rn

x), and
hence ENα,τ is already determined by its restriction to t 
= τ .)

(c) Let us next investigate the analytic continuation of ENα,τ with respect to α. If α ∈ C \ (−n/2 −
N0), then formula (4) yields

lim
t↘0

ENα,τ (t, x) = − 1
2πn/2

�
(n
2 + α

)
�(1 + α)

τ 1+2α(τ 2 + |x|2)−n/2−α .

Similarly, for (t, x) → ∞, we have t
r2 → 0 and hence ENα,τ converges to 0 if Reα > −n/2 and else

grows like a multiple r−n−2α .
In order to analyze the behavior of ENα,τ (t, x) near (τ , 0), we employ Equation 9.131.1 in [13]. This

furnishes

ENα,τ = − 1
2πn/2

�
(n
2 + α

)
�(1 + α)

τ 1+2α

rn−1[(t + τ)2 + |x|2]1/2+α

× 2F1
(1
2

+ α, 1 − n
2

+ α; 1 + 2α;
4τ t

(t + τ)2 + |x|2
)
. (6)

Formula (6) clearly implies, for each α ∈ C \ (−n/2 − N0), that ENα,τ is well defined and depends
C∞ on (t, x) ∈ H \ {(τ , 0)}. Furthermore, if (t, x) → (τ , 0), then 4τ t/((t + τ)2 + |x|2) converges to
1 from below and Equation 9.122.1 in [13] yields that

lim
u↗1

�
(n
2 + α

)
�(1 + α)

2F1
(1
2

+ α, 1 − n
2

+ α; 1 + 2α; u
)

= 22α�
(n−1

2
)

√
π

if n > 1. Hence formula (6) shows that ENα,τ (t, x) is bounded by a constant multiple of [(t − τ)2 +
|x|2](1−n)/2 near (τ , 0) for n > 1. If n = 1, we use [14, 7.3.1.30] and obtain that ENα,τ grows like
(4π)−1 log[(t − τ)2 + |x|2] near (τ , 0). In particular, we see that ENα,τ is locally integrable, depending
holomorphically in S ′(H) on α ∈ C \ (−n/2 − N0), and by analytic continuation, we conclude that
ENα,τ is a temperate fundamental solution of Pα(∂) for such α.

(d) Let us consider now the behavior of ENα,τ if α converges to −n/2 − k, k ∈ N0. If n is even,
then �(α + n/2)/�(α + 1) is holomorphic, and hence ENα,τ is an entire function of α. In contrast,
if n is odd, then ENα,τ has simple poles at −n/2 − k, k ∈ N0. In fact, [13, Equation 9.134.1] yields the
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representation

ENα,τ = − 1
2πn/2

� ((n/2) + α)

�(1 + α)

τ 1+2α

(2τ tz)n/2+α 2F1
(
n
4

+ α

2
,
n
4

+ 1 + α

2
; 1 + α; z−2

)
.

Due to Resu=−k�(u) = (−1)k/k!, this implies

Res
α=−n/2−k

ENα,τ = (−1)(n+1)/2�
(n
2 + k

)
2πn/2+1τn+2k−1k!

(2τ tz)k 2F1
(

−k
2
,
1 − k
2

; 1 − k − n
2
; z−2

)
(7)

upon using the complement formula of the gamma function. Note that the residue R =
Resα=−n/2−kENα,τ is a polynomial in x since the hypergeometric series in (7) terminates, and that
P−n/2−k(∂)R = 0.

(e) Let us finally discuss EDα,τ = (τ/t)2αEN−α,τ . Clearly, EDα,τ ∈ S ′(H). From the equation
Pα(∂)t−2α = 0, we infer

Pα(∂)EDα,τ = 2 ∂t

(τ

t

)2α · ∂tEN−α,τ +
(τ

t

)2α · Pα(∂)EN−α,τ

= −4ατ 2αt−2α−1∂tEN−α,τ +
(τ

t

)2α ·
[
P−α(∂) + 4α

t
∂t

]
EN−α,τ

=
(τ

t

)2α
δ(t − τ) ⊗ δ(x) = δ(t − τ) ⊗ δ(x).

Hence EDα,τ is a temperate fundamental solution of Pα(∂) for each α ∈ C \ (n/2 + N0). Furthermore,
(4) shows that limt↘0 EDα,τ (t, x) = 0 and limt→∞ EDα,τ (t, x) = 0 hold uniformlywith respect to x ∈ R

n

if Reα < 0. Thus EDα,τ is the Green function of the Dirichlet problem for Pα(∂) if Reα < 0. This
completes the proof. �

Remark 2.2: (1) By analyzing the partial Fourier transformFxE similarly as in the proof of Proposi-
tion 2.2, one readily sees that Green’s functionsE of theNeumann problem and theDirichlet problem,
respectively, for Pα(∂) can exist only if Reα > −n/2 and Reα < 0, respectively.

(2) The Green function EDα,τ of the Dirichlet problem for Pα(∂) could, albeit more laboriously, also
be derived by the partial Fourier transform. Setting SNα,τ = Fx(ENα,τ ) and SDα,τ = Fx(EDα,τ ) yields, first
for −n/2 < Reα < 0, the equation

SDα,τ = SNα,τ − 2 sin(απ)

π
· τ 1+α

tα
· Kα(τ |x|)Kα(t|x|).

Since α �→ Kα(τ |x|)Kα(t|x|) ∈ S ′(H) is meromorphic with simple poles in ±(n/2 + k), k ∈ N0, we
can conclude from this that ENα,τ = EDα,τ if and only if α is entire and [n is odd or |α| < n/2].

(3) Let us point out that the finite parts Pfα=−n/2−kENα,τ and Pfα=n/2+kEDα,τ , n odd, k ∈ N0,
respectively, are not, in general, temperate fundamental solutions of P−n/2−k(∂) and of Pn/2+k(∂),
respectively. In fact, if, e.g. R = Resα=−n/2−kENα,τ , then

P−n/2−k(∂) Pf
α=−n/2−k

ENα,τ

= lim
α→−n/2−k

(
P−n/2−k(∂) − Pα(∂) + Pα(∂)

) (
ENα,τ − R

n
2 + k + α

)

= lim
α→−n/2−k

(
−n + 2k + 2α

t
∂tENα,τ + δ(t − τ) ⊗ δ(x)

)

= −2
t

∂tR + δ(t − τ) ⊗ δ(x).
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Hence Pfα=−n/2−kENα,τ is a temperate fundamental solution of P−n/2−k(∂) if and only if R is constant
with respect to t.

For example, if k = 0, then this is the case (see (7)) and therefore Pfα=−n/2ENα,τ and
(τ/t)nPfα=−n/2ENα,τ , respectively, are temperate fundamental solutions of P−n/2(∂) and of Pn/2(∂),
respectively. For example, if n = 1, we obtain from [14, 7.3.1.30] that

T1 = Pf
α=−1/2

ENα,τ = 1
4π

[
log(r2) + log

(
(t + τ)2 + x2

)] − 1
2π

log(4τ 2),

which of course fulfills the two-dimensional Laplace equation (∂2t + ∂2x )T1 = δ(t − τ) ⊗ δ(x) inH =
(0,∞) × R. Similarly, T2 = (τ/t)T1 fulfills (∂2t + 2t−1∂t + ∂2x )T2 = δ(t − τ) ⊗ δ(x) in H.

(4) Let us now refer to the literature. The relation E = (τ/t)2αF connecting two fundamental solu-
tions E of Pα(∂) and F of P−α(∂), respectively, can be found in [2, (2.11), p.106], where it is traced
back to G. Darboux. Furthermore, the Green function ENα,τ of the Neumann problem is given (up to
a multiplicative constant) in the form of Euler’s definite integral of the hypergeometric function in
[2, (3.4), p.108], and some hints regarding uniqueness are also given at the bottom of page 108. The
Green functionEDα,τ of theDirichlet problem appears in [2, (4.1), p.109] and is referred toM.Olevskii.
Green’s functions for Pα(∂) also appear in [4, (8.4), p.217, and Theorem 8.2, p.219].

As discussed in the introduction, the paper [6] already contains some of the above results, albeit in
a less systematic way. First note that the notation in [6] slightly differs from ours: there, s, s0,α,Qα are
written for our t, τ ,α + 1

2 ,P1/2+α . In [6, Theorem 3.1, Equation (3.2), p.503], in the case of even n, a
fundamental solution ‘Fevα ’ ofQα is given by a hypergeometric function, which is verified by termwise
differentiation of the series expansion. In our notation, ‘Fevα ’ corresponds to the fundamental solution
1
2 (E

N
α,τ + EDα,τ ) and Equation (3.2) in [6] follows from formula (4) by using [13, 9.132.2]:

1
2
(ENα,τ + EDα,τ ) = − 1

4πn/2
�

(n
2 + α

)
�(1 + α)

τ 1+2α

rn+2α 2F1
(
n
2

+ α,
1
2

+ α; 1 + 2α;−4τ t
r2

)

− 1
4πn/2

�
(n
2 − α

)
�(1 − α)

τ

t2αrn−2α 2F1
(n
2

− α,
1
2

− α; 1 − 2α;−4τ t
r2

)

= − �(n−1
2 )

4π(n+1)/2

(τ

t

)1/2+α

r1−n
2F1

(
1
2

+ α,
1
2

− α;
3 − n
2

;− r2

4τ t

)
.

In [6, Theorems 3.2, 3.3], the case of odd n ≥ 3 is treated and the representation of ‘Fodα ’ in [6,
Theorem 3.3, Equation (3.21), p.506] corresponds to the one of ENα,τ in (4) above. (Note that the
values α ∈ {− 1

2 ,−1,− 3
2 , . . . } are excluded in [6, Theorem 3.3, p.506] although ENα,τ has poles only

forα ∈ {−(n/2),−(n/2) − 1, . . . } and is a fundamental solution ofPα(∂) for all other complex values
of α.)

Finally, in [6, Theorem 3.4], the case n= 1 is considered.We observe that the fundamental solution
‘F1α ’ in [6, Theorem 3.4, Equation (3.27), p.507] does not seem to be correct. For example, for P0(∂) =
∂2t + t−1∂t + ∂2x , Equation (4) in Theorem 2.3 yields

EN0,τ = ED0,τ = − τ

π
√

(τ + t)2 + x2
K

(
2
√

τ t
(τ + t)2 + x2

)
, (8)

whereas ‘F11/2’ in [6, Theorem 3.4, Equation (3.27), p.507] would furnish the function

f (t, x) = − τ

π
√

(τ + t)2 + x2
E

(
2
√

τ t
(τ + t)2 + x2

)
.

However, f cannot be a fundamental solution of P0(∂) since it is finite at (τ , 0) due to E(1) = 1. (The
letters K, E denote, as usually, complete elliptic integrals.)
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Note that the fundamental solution EN0,τ = ED0,τ for n= 1 in (8) coincides, up to a multiplicative
constant, with the expressions given in [15, Equation (5.35), p.149],[16, Equation (2.2.16), p.9],[17,
p.1655]. For n = 1, α = 1, see [18, Equation (17), p.146].

Let us finally express ENα,τ by elementary transcendental functions if the dimension n is even. That
this is impossible in the case of odd dimensions is plainly shown by the example in (8).

Corollary 2.4: Let fn(α, τ , t, z), α ∈ C, τ > 0, t > 0, z > 1, n ∈ N0, be the function given by
Equation (5), which represents ENα,τ (t, x) according to Theorem 2.3 for (t, x) ∈ H = (0,∞) × R

n,
n ∈ N. Then the recursion formula

fn+2 = − 1
2πτ t

· ∂fn
∂z

, n ∈ N0, (9)

holds. Furthermore, for even n = 2m,m ∈ N0, α ∈ C \ {0}, we have

f2m(α, τ , t, z) = (−1)m−1τ 1−m+α

21+α(2π)mα tm+α

(
d
dz

)m
(
√
z + 1 − √

z − 1)2α . (10)

In particular, with the notation r =
√

(t − τ)2 + |x|2 and s =
√

(t + τ)2 + |x|2, we obtain (if α ∈ C

and (t, x) ∈ H \ {(τ , 0)})

for n = 2, ENα,τ (t, x) = − τ(s − r)2α

21+2απ t2αrs
,

and for n = 4, ENα,τ (t, x) = − τ(s − r)2α

22+2απ2t2α(rs)3
(r2 + 2αrs + s2). (11)

More generally, for even n = 2m,m ∈ N, α ∈ C and (t, x) ∈ H \ {(τ , 0)}), we have

ENα,τ (t, x) = − (m − 1)! τ(s − r)2α

2n−1+2απm t2α(rs)n−1

×
m−1∑
j=0

(
m − 1 − α

j

)(
m − 1 + α

m − 1 − j

)(
m − 1

j

)−1
(s − r)2j(s + r)2(m−1−j). (12)

Proof: (a) The integral representation in [13, Equation 8.712] for the associated Legendre function
Qμ

ν implies that

d
dz

[
(z2 − 1)−μ/2Qμ

ν (z)
] = (z2 − 1)−(μ+1)/2Qμ+1

ν (z), z > 1.

From this and the representation of fn in (5), we infer that

fn+2(α, τ , t, z) = −(2π)−(n+3)/2 e−i(n+1)π/2 τ−n/2+α

tn/2+1+α
(z2 − 1)−(n+1)/4Q(n+1)/2

−1/2+α(z)

=
(
− 1
2πτ t

· ∂

∂z

)
fn(α, τ , t, z)

holds for n ∈ N0, and this is the recursion relation (9).
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According to [13, Equation 8.777.2], we have

(z2 − 1)1/4Q−1/2
−1/2+α(z) = −i

√
π√

2α
(z +

√
z2 − 1)−α , z > 1,

and hence

f0 = − i√
2π

τ 1+α

tα
(z2 − 1)1/4Q−1/2

−1/2+α(z) = − τ 1+α

21+αα tα
(
√
z + 1 − √

z − 1)2α .

Together with (9), this implies formula (10) for f2m,m ∈ N0. The equations in (11) follow from (10)
taking into account that z + 1 = s2/(2τ t) and z − 1 = r2/(2τ t).

(b) Obviously, the general formula for n= 2m in (12) could be proven by induction over m by
employing the recursion formula (9). We prefer to give a direct proof based on one of Kummer’s
transformation formulas for the hypergeometric function.

Let us apply [13, Equation 9.134.3] to formula (6). If we set 4ζ/(1 + ζ )2 = 4τ t/s2 and assume
|ζ | ≤ 1, we obtain ζ = (s − r)/(s + r) and 1 + ζ = s(s − r)/(2τ t) and hence

ENα,τ (t, x) = − 1
23−n+2απn/2

�(n2 + α)

�(1 + α)

τn−1(s − r)2−n+2α

t2−n+2α(rs)n−1

× 2F1
(
1 − n

2
+ α, 1 − n

2
; 1 + α;

( s − r
s + r

)2)
. (13)

If n= 2m is even, then the hypergeometric series in (13) terminates, and it readily yields the finite
sum in Equation (12). This completes the proof. �
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