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ABSTRACT
Scientific research of all kinds should be guided by statistical thinking: in the design and conduct of the
study, in the disciplined exploration and enlightened display of the data, and to avoid statistical pitfalls
in the interpretation of the results. However, formal, probability-based statistical inference should play no
role in most scientific research, which is inherently exploratory, requiring flexible methods of analysis that
inherently risk overfitting. The nature of exploratory work is that data are used to help guide model choice,
and under these circumstances, uncertainty cannot be precisely quantified, because of the inevitable model
selection bias that results. To be valid, statistical inference should be restricted to situations where the
study design and analysis plan are specified prior to data collection. Exploratory data analysis provides
the flexibility needed for most other situations, including statistical methods that are regularized, robust,
or nonparametric. Of course, no individual statistical analysis should be considered sufficient to establish
scientific validity: research requires many sets of data along many lines of evidence, with a watchfulness
for systematic error. Replicating and predicting findings in new data and new settings is a stronger way of
validating claims than blessing results from an isolated study with statistical inferences.
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1. Introduction

Statistical inferences are claims made using probability models
of data generating processes, intended to characterize unknown
features of the population(s) or process(es) from which data are
thought to be sampled. Examples include estimates of parame-
ters such as the population mean (often attended by confidence
intervals), hypothesis test results (such as p-values), and poste-
rior probabilities. Such methods are often intended to quantify
(and thus to tame) uncertainty, and to evaluate the plausibility
of chance as an explanation of a data pattern. The widespread
use of statistical inference methods in scientific research has
recently been scrutinized and questioned, for reasons outlined
in the “ASA Statement on Statistical Significance and P-values”
(Wasserstein and Lazar 2016). The ASA Symposium on Statistical
Inference (Bethesda, Maryland, USA; October 11–13, 2017) was
expected to “lead to a major rethinking of statistical inference,
aiming to initiate a process that ultimately moves statistical
science—and science itself—into a new age,” according to the
call for articles for this special issue of The American Statistician.
This article is intended to offer one such rethinking. The core of
our perspective is indeed the essential link between statistical
science and science itself.

Much of the recent discussion of statistical inference focuses
on null hypothesis testing, p-values, and even the very notion of
statistical significance. Unease with these commonly used pro-
cedures and concepts has a lengthy history, eloquently discussed
by others. We do not add to this dimension of the conversation;
it suffices to cite the ASA Statement itself (Wasserstein and
Lazar 2016) and two recent commentaries (Argamon 2017;
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McShane et al. 2017). Among these criticisms, McShane and
Gelman (2017) succinctly stated that null hypothesis testing
“was supposed to protect researchers from over-interpreting
noisy data. Now it has the opposite effect.” The ASA Symposium
on Statistical Inference was intended to move the conversation to
what should be done instead.

However, as a prelude to a discussion of remedies, we will
argue here, as Andrew Gelman (2016) did, that nearly all forms
of statistical inference share serious deficiencies, except in cases
when the study protocol and statistical model are fully prespec-
ified. We shall argue that these issues stem largely from the
Optimism Principle (Picard and Cook 1984) that is an inevitable
byproduct of the necessarily flexible data analysis and modeling
work that attends most scientific research. Moreover, we con-
tend that the well-established distinction between exploratory
and confirmatory objectives provides a framework for under-
standing the proper roles of flexible versus prespecified statisti-
cal analyses. Unfortunately, we think that in much of the current
use of inferential methods in science, except in specialized fields
such as human clinical trials, this distinction is absent. This
absence has enabled the widespread dissemination of biased
statistical inferences and encouraged a Cult of the Isolated Study
(Nelder 1986) that short-circuits the iterative nature of research.
Statistical inference should not be used to avoid wearing “shoe
leather” (Freedman 1991), a metaphor for the hard work of
gathering more and better data, discovering and dealing with
systematic sources of error, and building a scientific argument
along many lines of evidence. The statistical contribution to
science must focus on data production, data description and
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exploration, and statistical thinking, rather than statistical infer-
ence. None of the concepts we discuss are new, but collectively
this perspective argues for abandoning much of conventional
statistical practice and teaching. The perspective outlined here
has little in common with many of the proposals discussed
at the ASA Symposium, although a few have specific points of
commonality.

2. Statistical Inference and the Optimism Principle

A stereotypical framework for statistical inference in a simple
univariate setting is as follows (Fisher 1922). We are presented
with a dataset, and we have reason to believe (or are prepared
to assume) that the data were generated as an independent,
identically distributed (IID) sample from an underlying popu-
lation. This population may be characterized by a probability
model, and our goal is to make inferences about parameters
characterizing this unknown model. Such inferences will be
attended by uncertainty, since we do not have access to the
population, but only IID samples drawn from it. Examples of
statistical inferences include estimates of parameters or other
properties of the population, confidence intervals (confidence
sets, credible sets) for such estimates, and hypothesis tests about
such parameters or properties. More generally, the probability
model may include both fixed and random components, and the
latter may have variance-covariance structures more complex
than the IID assumption. There are several contending schools
of thought about how such inferences should be made, of which
the frequentist and Bayesian are the most widely known (see
Appendix A.1). What all these ideologies have in common is
that they express uncertainty through a probability claim, such as
a confidence level, Type 1 error, p-value, posterior probability,
likelihood function, and so on. Our focus on statistical inference
in this article will mainly be on these probabilistic expressions
of uncertainty. This is distinct from both the common language
and general scientific uses of the term “inference.”

On the first page of the first chapter of their recent book,
Computer-Age Statistical Inference: Algorithms, Evidence, and
Data Science, Efron and Hastie (2016, p. 3) presented the sample
mean and its standard error. They then stated that

It is a surprising, and crucial, aspect of statistical theory that
the same data that supplies an estimate can also assess its
accuracy.

This principle is indeed typical of statistical teaching and
practice. However, when it comes to prediction, Efron and
Hastie (2016, p. 227) instead advocated a procedure common
in machine learning, namely, data-splitting. The available data
are randomly split into a training set and a test set. The test set
is hidden in a vault, and the training set is used to train/fit the
predictive algorithm or model. Once that algorithm/model is
developed, the test set is unveiled and run through the algorithm
to obtain an “honest” assessment of its performance on data it
has never seen. (We return to data splitting and more sophis-
ticated approaches in Section 5.) All model building activities,
such as variable selection, must be confined to the training set
(e.g., Ambroise and McLachlan 2002; Reunanen 2003). The use
of data-splitting helps to diagnose overfitting, the tendency of a

predictive algorithm to optimize its performance on the training
data, at the expense of its ability to perform well on data outside
the training set. Generalizability, to data from the future or to
subjects not sampled, for instance, is usually of greater ultimate
interest to the user than training data performance.

Statistical inferences also can suffer from this overfitting
problem when “the same data that supplies an estimate” are
used “to assess its accuracy.” In fact, Efron and Hastie (2016)
alluded to this in chap. 20 of their book, titled “Inference after
model selection.” There they wrote that in the past, such infer-
ences were “typically done ignoring the model selection process”
but that “Electronic computation has opened the door to a
more honest analysis of estimation accuracy, one that takes
account of the variability induced by data-based model selec-
tion” (ibid, p. 394). They conceded that while “Currently, there is
no overarching theory for inference after model-selection” they
instead provide “promising analyses of individual situations”
(ibid, pp. 395).

Let us unpack these ideas further. Harrell (2015, p. ix)
observed that

Using the data to guide the data analysis is almost as danger-
ous as not doing so.

This seems like an oxymoron, but there is wisdom here. Sta-
tistical model building is usually a multi-step, interactive pro-
cess because the model is not completely prespecified prior to
data collection. Consequently, the model building/model crit-
icism/model selection process may include the following steps
that depend on the data at hand, are often partly subjective,
and are ideally informed by knowledge of earlier studies and/or
existing scientific theory.

• Screening the data for unusual, extreme, incomplete,
or inconsistent data records, for possible adjustment or
removal;

• Consideration of rescaling or transforming some variables
(e.g., logarithm? standardize?) or even a change of coordi-
nates (e.g., principle components analysis);

• Variable selection;
• Decisions to keep or remove interaction terms, or higher-

order polynomials;
• Graphs and tables of data to identify patterns, expected or

otherwise, for possible inferential reporting;
• Graphical examination of residuals from fitted models, to

assess goodness of fit, and applying remedial measures if
needed; and

• Methodology selection for fitting the model (e.g., should a
robust regression be used instead of least squares?).

Each of these activities offers a chance to improve the fit of the
model by repeated comparison with the data—and therefore a
chance to overfit the data. Simmons, Nelson, and Simonsohn
(2011) called these opportunities researcher degrees of freedom,
and when abused to fish for publishable p-values, p-hacking.
Wicherts et al. (2016) cataloged 34 kinds of researcher degrees
of freedom spanning design, conduct, analysis, and reporting
of psychological studies; they state that their list is “in no way
exhaustive.”

The resulting inferences from the final model tend to be
biased, with uncertainties underestimated, and statistical sig-
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nificance overestimated, a phenomenon dubbed the Optimism
Principle by Picard and Cook (1984). They quoted Mosteller and
Tukey (1977, p. 37):

Testing the procedure on the data that gave it birth is almost
certain to overestimate performance, for the optimizing pro-
cess that chose it from among many possible procedures will
have made the greatest use possible of any and all idiosyn-
crasies of those particular data . …As a result, the procedure
will likely work better for these data than for almost any other
data that will arise in practice.

Nearly seven decades ago Koopmans (1949), who was later a
1975 Nobel laureate in economics, alluded to this problem,
and it has been studied extensively by statisticians and econo-
metricians since the early 1980s. A classic result was given by
Freedman (1983), who showed that a commonly taught and
practiced procedure of screening available predictor variables
for inclusion in a regression model, using a statistical test, can
result in the inclusion of bogus variables with high statistical
significance. He showed this in the extreme case where all the
candidate predictor variables consist of Gaussian noise, unre-
lated to the response variable (which is also Gaussian noise).
In other words, it is possible to obtain a seemingly informative
linear model, with decent R2 and several statistically significant
predictor variables, from data that is utter nonsense. This find-
ing was later dubbed “Freedman’s paradox” (Raftery, Madigan,
and Hoeting 1993).

Chatfield (1995) used the term model selection bias to
describe the distorted inferences that result when using the same
data that determines the form of the final model to also produce
inferences from that model. Parameter estimates themselves
may be biased (e.g., Hjorth 1989; Berk, Brown, and Zhao 2010);
their uncertainties (standard errors and confidence intervals)
underestimated; and prediction intervals will be too narrow.
Thus, the highly precise claims of statistical inference tend to be
misleading if taken at face value; indeed, Gelman (2016) used
the term “uncertainty laundering” to describe this behavior.

Closely related is the term model uncertainty, which reflects
the fact that a statistical model can rarely be prespecified (as
known) without alteration in light of the data, with the impor-
tant exception of statistical models used in Phase III clinical tri-
als (discussed further in Section 3). “It is indeed strange that we
often admit uncertainty by searching for a best model but then
ignore this uncertainty by making inferences and predictions
as if certain that the best fitting model is actually true” Chat-
field (1995) says. Moreover, this source of uncertainty, which is
invisible to conventional statistical inference, can be the largest
component of uncertainty. We refer readers who wish to pursue
the sizable literature on model uncertainty and the Optimism
Principle to two influential review/discussion articles, Draper
(1995) and Chatfield (1995), and the more recent discussions
by Berk, Brown, and Zhao (2010), Gelman and Loken (2014),
and Holmes (2018).

While these problems are often attributed to misuses of
statistical methodology, Gelman and Loken (2014) noted that
even without a conscious effort to abuse statistical inference
(e.g., testing multiple hypotheses but only reporting the signif-
icant ones), it is still possible for a null effect to appear highly
significant:

Given a particular data set, it can seem entirely appropriate
to look at the data and construct reasonable rules for data
exclusion, coding, and analysis that can lead to statistical
significance. In such a case, researchers need to perform only
one test, but that test is conditional on the data …with the
same effect as if they had deliberately fished for those results.

The choice of what test to carry out, even if only one such test
is made, is data-dependent. Had a different dataset obtained,
a different choice could have been made. “This error carries
particular risks in the context of small effect sizes, small sample
sizes, large measurement error, and high variation,” they wrote.
However, such issues also exist in “big data” problems, such as
functional imaging in neuroscience, where damaging reuse of
the data is known as “double dipping” (Kriegeskorte et al. 2009).
Gelman and Loken (2014) used the term “the garden of forking
paths” to describe the many potential data-dependent choices a
researcher can make during data analysis, resulting in “a sort of
invisible multiplicity: data-dependent analysis choices that did
not appear to be degrees of freedom because the researchers
analyze only one data set at a time.”

Gelman and Loken (2014) did not decry the researcher’s
ability to refine hypotheses in light of the data, for on the con-
trary, such activity is actually “good scientific practice,” they said.
The only trouble is that the use of statistical inference to guard
against being fooled by randomness just does not work when a
necessarily flexible data analysis procedure is pursued. Gelman
and Loken (2014) “did not want demands of statistical purity to
strait-jacket our science,” and we completely agree. Making the
distinction between exploratory and confirmatory objectives
helps us understand where either flexibility or statistical purity
are called for in study design and analysis.

3. Exploratory and Confirmatory Objectives in
Scientific Research

The obvious way to avoid the difficulties of overfitting and
produce valid statistical inferences is to completely prespecify
the study design and statistical analysis plan prior to the start of
data collection. This can only be done once a great deal is known
about the scientific problem at hand. Hence, most scientific
research occurs long before it is possible to entertain such rigid
prespecification.

Tukey (e.g., 1969, 1977) made a distinction between
exploratory and confirmatory analyses. We contend that most
scientific research is exploratory in nature: the design, conduct,
and analysis of a study are necessarily flexible, and must be
open to the discovery of unexpected patterns that prompt new
questions and hypotheses. In this context, statistical modeling
can be exceedingly useful for elucidating patterns in the data,
and researcher degrees of freedom can be helpful and even
essential, though they still carry the risk of overfitting. The
price of allowing this flexibility is that the validity of any
resulting statistical inferences is undermined. In particular,
inferences from such models provide no ability to evaluate
“statistical significance”—the implausibility of chance as an
explanation of the data. Formal statistical inferences are only
valid and appropriate for confirmatory analyses, where rigid
prespecification of design and analysis methods can be made,
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and which constitute only the latter stages of the iterative
learning process that characterizes most scientific research (Box
1976, 1999). As medical researchers Mogil and Macleod (2017)
put it, “most preclinical research articles describe a long chain
of experiments, all incrementally building support for the same
hypothesis.”

In George Box’s discussion of Draper (1995), he made an
observation that provides the motivating philosophy of this
article:

Statistics has no reason for existence except as a catalyst for
scientific enquiry in which only the last stage, when all the
creative work has already been done, is concerned with a final
fixed model and a rigorous test of conclusions. The main part
of such an investigation involves an inductive-deductive iter-
ation with input coming from the subject-matter specialist at
every stage. This requires a continuously developing model
in which the identity of the measured responses, the factors
considered, the structure of the mathematical model, the
number and nature of its parameters and even the objective
of the study change. With its present access to enormous
computer power and provocative and thought-provoking
graphical display, modern statistics could make enormous
contributions to this—the main body of scientific endeavour.
But most of the time it does not.

There is, of course, one arena of science where the
exploratory/confirmatory distinction is clearly made, and
attitudes toward statistical inferences are sound: the phased
experimentation of medical clinical trials. The epistemolog-
ical framework of exploratory and confirmatory objectives
articulated in the ICH guidelines, E8 and E9 (International
Conference on Harmonisation 1997, 1998), seems to be
unique in scientific research. This framework helps to separate
therapeutic exploratory (typically Phase II) with therapeutic
confirmatory (typically Phase III) objectives (see Appendix A.2).
The latter are intended to inform licensing decisions, and imply
comprehensive prespecification of (and adherence to) the study
protocol, standard operating procedures, and statistical analysis
plan, including writing the analysis software code, prior to
collecting any data. Exploratory objectives may be pursued in
earlier phase trials, where data-driven choices may influence
trial conduct and analysis in a flexible way. However ICH E9
states, “Such trials cannot be the basis of the formal proof of
efficacy, though they may contribute to the total body of relevant
evidence.” Although statistical inferences are reported in these
earlier phase trials, their cognitive status is very different: they
are considered much less definitive than inferences from later
phase trials, and licensing decisions are not typically made solely
on their basis. Moreover, even for Phase III trials, usually at least
two are required for a New Drug Application. As Piantadosi
(2017) noted, “Medicine is a conservative science and behavior
usually does not change on the basis of one study.”

Nonetheless, the ICH guidance acknowledges that a clinical
trial can have both exploratory and confirmatory objectives. In a
confirmatory trial, once the prespecified analysis of the primary
endpoint is complete, a large, rich, and expensive dataset typi-
cally remains at hand. It seems responsible to use that dataset for
further exploratory work—to generate hypotheses for further
testing in later experiments. A subgroup analysis, for example,

may seek to identify a subpopulation (perhaps defined by the
presence of a particular biomarker at elevated levels) for which
efficacy is particularly pronounced (or suppressed). Statisti-
cal inferences are often reported, but like Phase II inferences,
they only serve as fodder for proposing and designing future
confirmatory trials, rather than for defining the current label
indication. A succinct perspective on such inferences is given by
Sir Richard Peto, often quoted (e.g., Freedman 1998) as saying
“you should always do subgroup analysis and never believe the
results.”

This shift in attitude about the cognitive status of statistical
inferences in exploratory versus confirmatory analyses is wholly
absent from much of the rest of scientific endeavor. Typically,
flexible data analysis methods are used to generate biased statis-
tical inferences that are taken at face value, and used to justify
publication decisions. However, in an interview (Shell 2016), the
then-Editor of Science, and now President of the U.S. National
Academy of Science, Marcia McNutt, stated:

At Science, the paradigm is changing. We’re talking about
asking authors, ‘Is this hypothesis testing or exploratory?’
An exploratory study explores new questions rather than
tests an existing hypothesis. But scientists have felt that they
had to disguise an exploratory study as hypothesis testing
and that is totally dishonest. I have no problem with true
exploratory science. That is what I did most of my career. But
it is important that scientists call it as such and not try to pass
it off as something else. If the result is important and exciting,
we want to publish exploratory studies, but at the same time
make clear that they are generally statistically underpowered,
and need to be reproduced.

This call for reproduction is reminiscent of the phased clinical
trials framework, where multiple studies are carried out, in
series and sometimes in parallel, to build an evidence base for
a licensing decision of a medical product. Piantadosi (2017)
reminded us that “Readers of clinical trials tend to protect
themselves by reserving final judgment until findings have been
verified independently or assimilated with other knowledge.” A
single set of data can rarely give definitive results.

4. From the Cult of the Isolated Study to Triangulation

The treatment of statistical inferences from exploratory research
as if they were confirmatory enables what Nelder (1986) called
The Cult of the Isolated Study, so that

The effects claimed may never be checked by painstaking
reproduction of the study elsewhere, and when this absence
of checking is combined with the possibility that the original
results would not have been reported unless the effects could
be presented as significant, the result is a procedure which
hardly deserves the attribute ‘scientific.’

The use of iterative experimentation and analysis, described by
Box above, is obviously more labor intensive, time-consuming,
and expensive than worshipping at the Cult of the Isolated Study,
but it is more likely to converge to reproducible results. However,
we must depart from Tukey’s (1977) view that “exploratory
and confirmatory can—and should—proceed side by side,” and



250 C. TONG

Gelman’s (2003) comment that they “can both be applied at
various stages of the analysis.” Instead, we agree with Andrew
Ehrenberg’s (1990) hope for the future of statistics: Many Sets
of Data (MSOD), which “seems the only way in which we can
produce results that are generalizable, lawlike, and predictable—
which in fact hold for many different sets of data.” Chatfield
(1995) added that “The (over?) emphasis on analyzing single
sets of data permeates the statistical literature and is a serious
disease of statistical teaching.” As Freedman (1991) also noted:

Generally, replication and prediction of new results provide
a harsher and more useful validating regime than statistical
testing of many models on one data set. Fewer assumptions
are needed, there is less chance of artifact, more kinds of
variation can be explored, and alternative explanations can
be ruled out.

That said, simple replication is usually not sufficient. Many
scientific theories have implications that can be tested in multi-
ple ways, as illustrated by John Snow’s work on the 1854 cholera
outbreak in London, a major step in developing the germ theory
of disease. Freedman (1991) wrote of this episode that “The
force of the argument results from the clarity of the prior rea-
soning, the bringing together of many different lines of evidence,
and the amount of shoe leather Snow was willing to use to get
the data.” Moreover “He made steady progress from shrewd
observation through case studies to analysis of ecological data.
In the end, he found and analyzed a natural experiment.” There
were many sets of data of different kinds, but no statistical
inferences were involved. A second example is the discovery
of the link between smoking and lung cancer, built on many
epidemiological studies of varying designs, again discussed by
Freedman (1999). He wrote that because of the doubtfulness of
the usual statistical model assumption that patients in a case–
control study constitute a random sample,

Scientifically, the strength of the case against smoking rests
not so much on the P-values, but more on the size of the
effect, on its coherence and on extensive replication both with
the original research design and with many other designs.
Replication guards against chance capitalization and, at least
to some extent, against confounding—if there is some varia-
tion in study design.

In addition he wrote, “Great care was taken to exclude alter-
native explanations for the findings. Even so, the argument
depends on a complex interplay among many lines of evidence.”
A third example is the invention of powered flight by the Wright
Brothers, discussed by Box (1999). The Wright Brothers con-
ducted a lengthy series of experiments, using wind tunnels,
kites, gliders, and finally powered aircraft. No formal statistical
modeling or inference was used. Such examples support the
assertions made by William Feller (1969):

The aim of basic research is not to produce statistically
valid results but to study new phenomena. An evaluation
of experimental findings depends on many factors, such as
compatibility with other results, predictions to which it leads
and so on—such evidence can rarely be evaluated statistically.

Munafo and Davey Smith (2018) define triangulation as “the
strategic use of multiple approaches to address one question.

Each approach has its own unrelated assumptions, strengths and
weaknesses. Results that agree across different methodologies
are less likely to be artifacts.”

A particular weakness of the Isolated Study is that systematic
errors may contaminate an entire study but remain hidden if no
further research is done. An example is the notorious report by
the OPERA collaboration of a detection of faster-than-light neu-
trinos, with a claimed statistical significance of six sigmas. The
team even reproduced this finding using their own apparatus.
However, the collaboration later discovered an error due to an
improperly connected fiber optic cable. Correcting for this error
eliminated the superluminal claim (the OPERA collaboration
2012). Several other examples from physics and astronomy,
results with unambiguous statistical significance that “crumbled
to dust” due to systematic errors, are given by Seife (2000).

Lithgow, Driscoll, and Phillips (2017) began an instructive
tale with initially nonreproducible results on worm lifetimes
among different labs, an example of systematic lab-to-lab dif-
ferences swamping any claims of statistical significance. Three
different labs, to achieve reproducible results among themselves,
examined and standardized a host of experimental sources of
variation, such as

• Lighting and temperature in the labs.
• Amount of heat emitted by microscopes in different labs.
• Stirring versus rocking in the cell isolation procedure.
• Procedure for picking up worms to place them in a new agar

dish. (Gentler technicians added a day to worm lifetime!)
• Positioning of flasks in autoclave runs.
• Defining the worm lifetime: starting from the laying of an

egg, or from the hatching of an egg?

Lithgow, Driscoll, and Phillips (2017) concluded that such fac-
tors had to be addressed more vigorously at the study design
stage to improve reproducibility. More commonly the influence
of such technical artifacts is discovered post hoc, for instance,
through comparison of datasets from different labs, if they are
discovered at all. (See also the related discussion of batch effects
in Section 7.4.)

Regrettably, statisticians have continued attempts to salvage
the validity of statistical inference from the Isolated Study and
the “final model.” This makes such systematic errors an inherent
risk of the Isolated Study paradigm (see Youden 1972; Bailey
2018). Before we discuss positive ideas on how to proceed,
we first examine (and dispense with) a few examples of such
salvaging attempts.

5. Technical Solutions and Their Deficiencies

Many have tried to address the concerns with the Optimism
Principle using a set of methods that we call “technical,” which
here means attempts to use mathematics and computation to
salvage valid statistical inference in the Isolated Study. A general
framework for all of them is that the data represent, at least
approximately, a representative sample of the population of
interest, an assumption that itself calls for validation in many
scientific contexts—validation that can only be sought with
MSOD.
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The most widely known class of such methods is based on
adjusting for multiple inferences. These range from the simple
Bonferroni inequality to the modern methods of false discovery
rate and false coverage rate (e.g., Dickhaus 2014). However, in
a case study of human microbiome data discussed by Holmes
(2018), “if one counts the number of possible analyses on the
same data—allowing for the choice of up to nine outliers, differ-
ent transformations of the data, choice from 40 different possible
distances, and five different ordination methods—the result
is more than 200 million possibilities. No multiple hypothe-
sis correction can protect the user.” Moreover, these methods
do not account for other researcher degrees of freedom, data-
dependent choices that influence model selection, which Gel-
man and Loken (2014) called “invisible multiplicity.”

A second class of methods incorporates resistance to over-
fitting into the statistical modeling process, often through an
optimization procedure that penalizes model complexity, an
approach sometimes called regularization. A signature example
is the lasso (Tibshirani 1996). While such methods can certainly
mitigate overfitting, it remains unclear how badly mis-calibrated
the resulting statistical inferences remain. Similar arguments
could be made for robust statistical methods (designed to be
less sensitive to some model assumptions) and nonparamet-
ric methods (designed to minimize model assumptions). Such
methods must still fail to guarantee reliable statistical infer-
ence, because they cannot eliminate model uncertainty and
systematic error, though they are safer to use than conventional
statistical methodology in exploratory data analysis, which we
discuss in Section 7.4.

Among other proposed remedies are data splitting, to which
we alluded earlier in the context of prediction, and various
versions of cross-validation (see also Stone 1974; Picard and
Cook 1984; Faraway 2016). These methods are also widely used
in machine learning (e.g., Hastie, Tibshirani, and Friedman
2009). Data splitting can also be considered for more traditional
statistical inferences like hypothesis testing (e.g., Cox 1975; Dahl
et al. 2008). (Cross-validation is discussed in Appendix A.3.
Another approach, using bootstrap methodology, is discussed
briefly in Appendix A.4.) Unfortunately, such procedures (or
their variants) are still vulnerable to the Optimism Principle,
because random splitting implies that “left-out” samples are
similar to the “left-in” samples (Gunter and Tong 2017). Put
another way, if “a dataset from model A happens to have
features which suggest model B, then the resampled data are
also likely to indicate model B rather than the true model
A” (Chatfield 1995). Obtaining “more than one set of data,
whenever possible, is a potentially more convincing way
of overcoming model uncertainty and is needed anyway to
determine the range of conditions under which a model is valid”
(Chatfield 1995).

Another widely advocated category of technical solutions is
model averaging, which comes in both Bayesian (Hoeting et
al. 1999; Fragoso, Bertoli, and Louzada 2018) and frequentist
(Hjort and Claeskens 2003) flavors. This approach acknowl-
edges the futility of assuming a single “true” model; instead
many models are fit to one (isolated) dataset, and their outputs
are averaged in some fashion. All entertained models must be
known and specified; the Bayesian version also requires their
priors. This approach doubles down on the notion of reusing a

single set of data, and inherits all the hazards of the Cult of the
Isolated Study.

As “post model selection inference” is currently an active area
of statistical research, there are still other different approaches,
some of which are reviewed by Holmes (2018). A common
theme of such methods is that an initial full model needs to
be prespecified. Once this is done, inferences from a selected
final model can be made that account for variable selection,
if that model is a submodel of the initially specified one. The
work of Berk et al. (2013), Lee et al. (2016), and the Bayesian
methods discussed by Efron and Hastie (2016), seem to share
this common feature. Such proposals do not capture the full
range of “invisible multiplicity” and model uncertainty that we
discussed earlier, which cannot be boiled down to just variable
selection. Taylor and Tibshirani (2015) conceded as much: “The
challenge of correcting for the effects of selection is a complex
one, because the selective decisions can occur at many different
stages in the analysis process.” Like the others cited here, they
focus on “more limited problems.” Another theme is conditional
inference, conditioning on either the selection itself (Lee et al.
2016) or on the training data (Leeb 2009). Such conditioning
severely limits the interpretation and generalizability of statis-
tical inferences in the setting of exploratory research and many
sets of data.

Only through the iterative learning process, using multiple
lines of evidence and many sets of data, can systematic error be
discovered, and model refinement be continually guided by new
data. Moreover, a retreat into mathematical and computational
“remedies” can distract us from interactively confronting the
natural phenomena under investigation by acquiring more and
better data, under an increasingly wider range of conditions,
and with constantly improving experimental methodology. For
example, Galileo’s late 16th century “Leaning Tower of Pisa”
experiment, showing that bodies of different mass and com-
position fall at the same rate, has been tested under various
scenarios for over four centuries, including by Apollo 15 astro-
naut David Scott (Allen 1972) and, most recently, on board the
MICROSCOPE satellite (Touboul et al. 2017; see further refer-
ences therein for other historical experiments). Incidentally, this
example also suggests that our use of the term “confirmatory” is
a verbal shorthand, not meant to imply definitive confirmation.
All scientific findings are tentative. A “confirmatory” study and
analysis are simply those designed so that previously established
models may be fit and prespecified effects may be estimated with
greater rigor than in a flexible setting. (Experience with late-
stage clinical trials shows that even the knowledge they generate
must still be considered tentative, e.g., Gauch 2009.)

6. More Thoughtful Solutions

A second set of solutions considers the larger framework for
scientific research, not just statistical inference methodology.

One strategy requires preregistering both the research
hypotheses to be tested and the statistical analysis plan prior
to data collection, much as in a late-stage clinical trial (e.g.,
Nosek et al. 2018). If the temptation to adjust the analysis
in light of the data can be resisted, this approach inherently
avoids the flexible, data-dependent analysis choices that can
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lead to overfitting, regardless of the style of inference being
practiced (e.g., frequentist or Bayesian). Indeed, Nosek et
al. (2018) argued that such preregistration helps clarify the
distinction between hypothesis-generating and hypothesis-
testing activities. Hypothesis-generating activities are not ruled
out, but are intended for future confirmatory hypothesis-testing,
as in the clinical trials framework.

While such an approach is commendable, the simple fact
is that much—indeed most—scientific research cannot fit this
paradigm (e.g., Scott 2013; Goldin-Meadow 2016). As we have
emphasized, most scientific research is (and should be) highly
exploratory: this means that not enough can be known a priori
to prespecify a fully formed statistical analysis plan. Moreover,
as Gelman and Loken (2014) said, we “do not want demands of
statistical purity to strait-jacket our science” by limiting the abil-
ity to explore modeling alternatives. If science is to be evidence-
driven, research must be open to what the data tell us, rather
than rigidly committed to a prespecified analysis plan based on
prior expectations. As Feller (1969) wrote, “No statistics should
stand in the way of an experimenter keeping his eyes open, his
mind flexible, and on the lookout for surprises.”

A variation on this theme is preregistered replication, where
a replication study, rather than the original study, is subject to
strict preregistration (e.g., Gelman 2015). A broader vision of
this idea (Mogil and Macleod 2017) is to carry out a whole series
of exploratory experiments without any formal statistical infer-
ence, and summarize the results by descriptive statistics (includ-
ing graphics) or even just disclosure of the raw data. When
results from this series of experiments converges to a single
working hypothesis, it can then be subjected to a preregistered,
randomized, and blinded, appropriately powered confirmatory
experiment, carried out by another laboratory, in which valid
statistical inference may be made. (Unlike with preregistered
replication, the confirmatory study here need not be a literal
replication of one of the earlier exploratory studies.) The key is
that publication of the exploratory experiments would require
that they be accompanied by the confirmatory study in the
same manuscript. Mogil and Macleod (2017) explained how this
publication model may change the incentives for research for
the better. The proposal is appealing, but there are still many
challenges and situations (such as observational data studies)
that might not fit it well (Gunter and Tong 2017). For example,
when a confirmatory study fails to go according to plan, trou-
bleshooting should be prioritized over statistical validity. When
this happens, the study simply reverts to becoming another in
the series of exploratory studies, rather than confirmatory, as
originally intended.

In summary, then, we have argued that the paradigms and
assumptions of statistical inference do not fit the inherently
exploratory nature of science, and therefore should rarely be
applied. We next examine the many positive contributions of
statistical methodology.

7. Enabling Good Science

7.1. A Taxonomy of Statistical Activity

We adapt a taxonomy of statistical activity that has previously
been used, in different forms, by Cox (1957) and Moore (1992):

• Data production. The planning and execution of a study
(either observational or experimental).

• Descriptive and exploratory analysis. Study the data at hand.
• Generalization. Make claims about the world beyond the data

at hand.

Data production includes the experimental design, sampling
plan, measurement and data collection procedures, and the
operational conduct of the study. Descriptive and exploratory
analysis includes summary statistics, statistical graphics and
tables, and disciplined data exploration. Generalization includes
both prediction and statistical inferences. Much of current sta-
tistical teaching disproportionately focuses on statistical infer-
ence, just one piece of this taxonomy, one that we have argued is
the least appropriate for most scientific research. As Freedman
(1995) lamented:

I wish we could learn to look at the data more directly, with-
out the fictional models and priors. On the same wish list:
We should stop pretending to fix bad designs and inadequate
measurements by modeling.

However, statistical modeling can still contribute to all
three sectors of the taxonomy. For example, statistical models
help us understand the advantage of factorial designs over
one-factor-at-a-time designs; succinctly characterize potential
patterns observed in the dataset, such as linear or curved
relationships among variables; and produce statistical inferences
and predictions for confirmatory analyses. Also contributing to
all three sectors is the amorphous notion of statistical thinking,
which we try to partially characterize in Section 7.5.

The first step of statistical thinking is to understand the objec-
tive of the study, its context, and its constraints, so that planning
for study design and analysis can be fit for purpose. In this
respect, the use of statistical inference as a universal mechanism
for scientific validity must be replaced by mainly noninferential
statistical methods that are discipline- and problem-specific
(Gigerenzer and Marewski 2015). Despite this, the thoughts
below may yet be of broad general interest to data analysts in
many disciplines. Only the first two items in the taxonomy are
discussed here, since as we argue above, generalization best
emerges from the iterative learning process described by Box
(Section 3). (Statistically literate readers may skip Section 7.2,
which is intended for nonspecialist readers.)

7.2. Data Production

Feller (1969) pronounced that “The purpose of statistics in lab-
oratories should be to save labor, time, and expense by efficient
experimental designs” rather than null hypothesis significance
testing. Some useful basic principles of study design include con-
current control, replication, randomization, blinding, and block-
ing. Each of these is not always mandatory (or possible), but
they should be carefully considered. In a comparative study, for
instance, a group of subjects exposed to an experimental inter-
vention is compared to a control group. Attributing causality
of outcomes to the intervention can then be made only if the
two groups were treated the same in other respects. Use of a
concurrent control group helps compensate for certain sources of
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systematic errors that may occur, for instance, if the two groups
are widely separated in time and/or space. Random allocation of
subjects to treatment groups helps “even out” other systematic
differences between groups that may not be known or mea-
sured. Blinding of subjects, and others involved in the study, to
their assigned treatment reduces the likelihood of unconscious
bias. Together, these mechanisms also account for the placebo
effect, when present. In many observational studies, random
sampling (a guarantee that each subject in the target popula-
tion has an equal chance of being selected) helps to reduce
sampling bias in the results. Finally, randomization of treatment
and measurement order helps to average out the corresponding
systematic effects, such as learning effects in a study involving
radiologists’ interpretation of medical images. Together, these
concepts are aimed at bias suppression, including bias due to
unknown or unobserved sources, that contribute to misleading
conclusions. The impact of such simple procedures can be sub-
stantial: Couzin-Frankel (2013) observed that only about 1/3 of
mouse studies of stroke therapeutics report randomization or
blinding, but studies reporting neither one “gave substantially
and significantly higher estimates of how good these drugs
were,” according to interviewee Malcolm Macleod. In one case
the same drug had twice the effectiveness in a study without
randomization as in one that did randomize.

Adequate replication allows us to get a handle on experimen-
tal variation, such as variation between and within subjects, and
variation due to the measurement process. The notion of an
experimental unit helps us understand the replication structure
of the experiment. The experimental unit is the smallest subset
of experimental materials or subjects that can be randomly
allocated to separate treatments. For instance, if experiments
are done with mice in a cage, and treatments are administered
through a common food tray in each cage, then the experimen-
tal unit is the cage, not the individual mice (which are usually
the units of observation or measurement). Treatments can only
be administered at the cage level, not the mouse level. Such
a design is often necessary since mice are social, and ideally
should live with their litter-mates, not in single-animal cages.
(Statistical models can accommodate such nuances during the
analysis.) In many such designs, several units of replication
may be identified, and the identification of one of these as the
experimental unit for analysis purposes is an important and
sometimes controversial issue impacting scientific interpretabil-
ity. As another example, a cluster-randomized trial of a new
pedagogical method could have schools as units of allocation,
classes (within schools) as units of intervention, and students
(within classes) as units of measurement (Murray 1998). In
biology, we often make the distinction between biological repli-
cates (samples from different people or animals) and technical
replicates (replicate measurements on the same sample); often
both terms must be enriched depending on the context.

The concept of blocking recognizes that experimental units
or runs are not all equally alike. There are subgroups of units or
runs whose data are more similar to each other than with those
of other subgroups of units or runs. Examples include plots of
land in close proximity, in an agronomy study involving multiple
fields; litter-mates in animal studies involving multiple litters of
animals; experimental runs made on the same day versus those
from other days; and clinical trial subjects enrolled close to each

other in time and at the same clinical site. These known sources
of variation can be accounted for in both the study design and
analysis, to improve the quality of information obtained from
the experiment. Randomization should still be applied within
these subgroups (“blocks”) when they have been identified. As
the classic text, Box et al. (2005), advised: “Block what you
can and randomize what you cannot.” (In observational studies,
stratified sampling plays an analogous role to blocking.)

Confounding occurs when the treatment groups differ sys-
tematically in some way besides the intervention. Randomiza-
tion, blinding, and blocking help to eliminate some sources
of confounding. When prognostic covariates are known for
enrolled subjects, methods for allocating subjects to treatments
that seek approximate balance on such covariates can further
reduce the risk of confounding (e.g., Lock Morgan and Rubin
2012; Kallus 2018).

More advanced notions of experimental design include
matched-pairs designs, factorial designs, split-plotting, cross-
over trials, and many other concepts that we have not the space
to discuss here, but may be appropriate in different situations.
Beyond these standard topics of study design, other aspects of
data production must be considered. Measurement processes
must be well-defined, standardized, and validated, with quality
assurance procedures in place. Data acquisition and storage
systems should have appropriate resolution and reliability.
(We once worked with an instrument that allowed the user to
retrieve stored time series data with a choice of time-resolution.
Upon investigation, we found that the system was artificially
interpolating data, and reporting values not actually measured,
if the user chose a high resolution.) Again, many issues will
be discipline- and problem-specific. In biological research for
instance, authentication of cell lines and validation of antibodies
can address major sources of systematic error (see Harris 2017).

Earlier we described “researcher degrees of freedom” that are
characteristic of flexible data analysis. Other researcher degrees
of freedom can affect study design and execution. An instructive
example for the latter is the decision to terminate data collection.
Except in clinical trials, where this decision is tightly regulated
and accounted for in the subsequent analysis (e.g., Chow and
Chang 2012), many researchers have no formal termination
rule, stopping when funding is exhausted, lab priorities shift,
apparent statistical significance is achieved (or becomes clearly
hopeless), or for some other arbitrary reason, often involving
unblinded interim looks at the data. Any formal or informal rule
for terminating data collection, whether an explicit calculation
of statistical inference is used or not, has inherent risks of chas-
ing a false positive for too long, or burying a false negative too
soon. In the exploratory setting, probability claims about such
risks (e.g., “power analysis”) are just as invalid as the statistical
inferences that obtain during and after data collection.

Principles of study design are a major positive contribu-
tion of statistical methodology dating from the time of Fisher
(1926), and we feel that much of the reproducibility crisis in
science (e.g., Harris 2017) can be addressed using this sector
of statistical activity, quite apart from the inference issues that
have dominated statisticians’ conversations about reproducible
research. Many general topics are covered in standard texts on
experimental design (e.g., Winer, Brown, and Michels 1991;
Kuehl 2000; Box et al. 2005; Montgomery 2017) and sampling
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(e.g., Cochran 1977; Thompson 2012) though again each dis-
cipline has its own specific issues of data production to deal
with. Coleman and Gunter (2014) provided a brief introduction
to some of the main ideas of experimental design, and empha-
sized how varying multiple variables simultaneously can be
used profitably, contrary to the conventional wisdom of varying
one variable at a time, while keeping all others fixed. Despite
the evident utility of all these ideas—and their relevance to
many of the problems of nonreproducibility—many scientists
seem largely unaware of or confused by them. We therefore
think this is fertile ground for improving statistical education
for scientists and should be an important component of such
efforts.

7.3. Data Description

Data description and exploration are related activities that focus
on the data at hand, without attempting to make inferences
to the world beyond. Consider first data description. Many
data analytical problems do not lend themselves to statistical
inference at all: when there is no sense in which the data are
even approximately a sample from a population; or when a
probability model (conveying some notion of randomness) is
irrelevant (Mallows and Walley 1980) or even misleading, as in
Taleb’s (2007) “ludic fallacy.” However almost all data analysis
requires at least some data reduction or description, which may
include statistical summaries, tables, and visualizations. Moses
(1992) warned us that

Good statistical description is demanding and challenging
work: it requires sound conceptualization, and demands
insightfully organizing the data, and effectively communicat-
ing the results; not one of those tasks is easy. To mistakenly
treat description as ‘routine’ is almost surely to botch the job.

One of the best developed branches of data description is
statistical graphics and data visualization, the subject of many
books (e.g., Cleveland 1993, 1994; Robbins 2013) and software
packages. Scientists could use help in this arena. Perhaps the
most egregious yet ubiquitous graphical method found in life
science articles is a set of barplots featuring one-sided error
bars (sometimes called “skyscraper” or “dynamite” plots), used
to represent univariate data from different comparison groups.
Such plots are poor representations of the data (Pikounis 2001;
Koyama 2011). Krzywinski and Altman (2014) advocated using
boxplots (Tukey 1977) as a less distorting alternative. Superim-
posing a representation of the actual data points on a boxplot
mitigates some of its deficiencies, such as its inability to indicate
bimodality.

Mallows (1983) provided an interesting perspective on a The-
ory of Description. He noted that “A good descriptive technique
should be appropriate for its purpose; effective as a mode of
communication, accurate, complete, and resistant.” By effective
as a mode of communication, he included the notions of “famil-
iarity, relative to the target audience, simplicity, and honesty.”
By accurate, he meant “a measure of the closeness to which
the description approximates the data,” and proposed a dis-
crepancy measure. By complete, he meant “the degree to which
there is an absence of structure in the residual or undescribed

variation in the data.” To elaborate, statistical models may be
deployed to examine patterns in the data. Deviations between
the observed data and the model’s fitted values are called resid-
uals, and can themselves be examined for patterns suggesting
systematic effects not fully captured in the fitted model. By
resistant, Mallows (1983) meant that methods should minimize
“sensitivity …to small changes in the data—either small per-
turbations in all the data, or arbitrarily large perturbations in
a small part of the data.” Resistance to distortion by extreme
values, potential outliers, is a common example. In this respect
the median is often used in place of the mean, and the median
absolute deviation in place of the standard deviation. For curve
fitting, least absolute error is more resistant than least squared
error. Mallows acknowledged that his criteria are sometimes in
competition with each other. Median absolute deviations are
not widely familiar outside of statistics, so using them priori-
tizes resistance over effectiveness in communication. Nonethe-
less, his criteria provide a useful guide when designing a data
description for a given audience.

Though we might not quantify uncertainty using probability
statements, we can attempt to convey the observed variabil-
ity of the data at hand, while acknowledging that it does not
fully capture uncertainty. For univariate data, quantities such
as Tukey’s (1977) five-number summary (the minimum, first
quartile, median, third quartile, and maximum) or other empir-
ical quantiles partially describe the distribution of the data, as
does a graph of the empirical distribution function. In addi-
tion, resistant measures of dispersion, such as the median abso-
lute deviation, Gini’s mean difference (David 1968), and others
(e.g., Rousseeuw and Croux 1993) are available to characterize
observed variability of the data at hand. However, the use of such
data summaries is not free of assumptions (e.g., unimodality, in
some cases symmetry), so they are descriptive only in relation to
these assumptions, not in an absolute sense. They cannot serve
as measures of uncertainty due to the selection bias inherent in
making such assumptions.

The relationship among many variables is less easily char-
acterized by such simple methods; in such cases, “a statistical
model is often the best descriptive tool, even when it’s not
used for inference” (Harrell 2018). For example, bivariate data
can be examined with scatterplots and simple curve fits, such
as the loess smoother, a type of nonparametric regression that
incorporates resistance to atypical values (Cleveland 1979). The
loess fit is determined by a user-selected parameter called the
span, and varying this parameter controls the tradeoff between
variability captured by the curve fit and variability left over to the
residuals. These residuals may be graphed, and when devoid of
clear patterns, univariate measures of dispersion such as those
just mentioned could be applied to quantify their dispersion
from the fitted curve. Of course, the user’s choice of the span
parameter illustrates that model selection bias remains a hazard.
Any quantification of observed variability only describes the
relationship between the model and the data at hand. (See
Appendix A.5 for a discussion of standard errors as descriptive
statistics.)

The use of variability as a benchmark for measuring effect
size is often emphasized by statisticians, but is rarely the only
benchmark of interest when assessing practical/clinical signifi-
cance. There are even cases where “variability is so small (or the
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data are so abundant) that variability is not the central issue”
(Mallows 1998). Two examples (depending on the context, as
always) include the power spectrum in time series (as noted by
Tukey 1962) and the mean kinetic temperature in applied ther-
modynamics (see Tong and Lock 2015); examples from mate-
rials science are given by Wenmackers and Vanpouke (2012).
The selection of appropriate benchmark(s) and the subsequent
design of meaningful descriptive statistics are highly problem-
dependent and require both a grasp of the subject matter and
creative thinking.

7.4. Disciplined Data Exploration

Effective data exploration goes beyond data description. Accord-
ing to Tukey (1973), exploratory analysis of the data is not
“just descriptive statistics,” but rather an “actively incisive rather
than passively descriptive” activity, “with a real emphasis on
the discovery of the unexpected.” Later, Tukey (1977) added,
“Exploratory data analysis is detective work—numerical detec-
tive work—or counting detective work—or graphical detective
work.” The founding text is Tukey (1977), which was followed
by a series known as the Statistician’s Guide to Exploratory Data
Analysis (Hoaglin, Mosteller, and Tukey 1983, 1985, 1991). Pear-
son (2011) provided a contemporary perspective on exploratory
data analysis.

An example of how exploratory analysis may be essential for
scientific inquiry is in the detection of and adjustment for batch
effects. Leek et al. (2010) defined batch effects as “sub-groups of
measurements that have qualitatively different behavior across
conditions and are unrelated to the biological or scientific
variables in a study.” Their examples include data obtained
under varying experimental processing conditions, perhaps
from multiple laboratories using different protocols. They
found that

For example, multiple laboratory comparisons of microarray
experiments have shown strong laboratory-specific effects. In
addition, in nearly every gene expression study, large varia-
tions are associated with the processing date, and in microar-
ray studies focusing on copy number variation, large effects
are associated with DNA preparation groups. The processing
group and date are therefore commonly used to account
for batch effects. However, in a typical experiment these are
probably only surrogates for other sources of variation, such
as ozone levels, laboratory temperatures and reagent quality.
Unfortunately, many possible sources of batch effects are not
recorded, and data analysts are left with just processing group
and date as surrogates.

Leek et al. (2010) also observed that “In gene expression studies,
the greatest source of differential expression is nearly always
across batches rather than across biological groups, which can
lead to confusing or incorrect biological conclusions owing to
the influence of technical artefacts.” While known batch effects
can be accounted for at the study design stage, unknown batch
effects may well remain. Statistical methods for the detection
of batch effects rely on (noninferential) exploratory analysis
using multivariate statistical methods, such as principal compo-
nents analysis and hierarchical clustering. Adjusting the data for

such effects often makes (noninferential) use of linear statistical
models. Of course, the comparison of many sets of data, from
different laboratories and varying experimental protocols, fur-
ther helps elucidate batch effects.

Diaconis (1985) warned that undisciplined exploratory anal-
ysis of a dataset lends itself to finding spurious patterns as well
as real ones, as we discussed earlier. If such patterns are accepted
as gospel without considering that they may have arisen by
chance, he considers it magical thinking, which he defines as “our
inclination to seek and interpret connections and events around
us, together with our disinclination to revise belief after further
observation.” (See also the related discussion of Grolemund
and Wickham 2014.) Statistical methods mentioned earlier that
resist overfitting (regularized methods, such as the lasso), are
less sensitive to some model assumptions (robust estimators,
e.g., Maronna, Martin, and Yohai 2006), or make few such
assumptions (nonparametric estimators, e.g., Wasserman 2006)
help guard against being fooled by randomness, though their
associated probabilistic claims about uncertainty remain unre-
liable. (A new class of statistical methods with the property of
differential privacy may also be worthy of further consideration;
see Dwork et al. 2016.)

7.5. Statistical Thinking

Mallows (1998) reviewed several definitions of statistical think-
ing, and provided his own:

Statistical thinking concerns the relation of quantitative data
to a real-world problem, often in the presence of variability
and uncertainty. It attempts to make precise and explicit what
the data has to say about the problem of interest.

Statistical thinking begins with a relentless focus on fitness
for purpose (paraphrasing Tukey 1962: seeking approximate
answers to the right questions, not exact answers to the wrong
ones), sound attitudes about data production and its pitfalls, and
good habits of data display and disciplined data exploration. An
incomplete list of other attributes of statistical thinking includes
the following.

• Evidence, often in the form of data, matters, “for without
data, everyone is an expert” (Snee 1986). As Frederick
Mosteller said, “It is easy to lie with statistics, but a whole
lot easier without them” (quoted in Holmes 2018).

• All observations are variable; all conclusions are uncertain.
(However, as discussed above, variability is not always the
aspect of the data that should most be emphasized.)

• A holistic view of the data. For instance, we study mea-
surement processes, not just measurement instruments,
which comprise only one component of the whole process
of measurement, which also involves personnel, reagents,
environmental conditions, etc. Another example is the
Intention to Treat (ITT) principle in clinical trials, whereby
a patient’s data are analyzed according to the random
assignment of the patient to treatment group, rather than
whether the patient actually complied with the protocol
(e.g., Piantadosi 2017). This reflects interest in treatment
policy, including the occurrence of realistic phenomena such
as errors and noncompliance.
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• Statistical significance is not a measure of practical, clinical,
or scientific significance.

Statisticians have a useful language and a mathematical appa-
ratus for decomposing sources of variation, both systematic and
random. These include the basic bias-variance decomposition,
the discussion of replication structure in Section 7.2, and so on,
up to complex hierarchical models with both nested and crossed
factors and nontrivial correlation structures among variables.
Unfortunately, in many cases such statistical models may be
difficult to fit, due to lack of data or unrealistic model assump-
tions. Any inferences from such models are subject to model
selection biases and the Optimism Principle. Nonetheless, the
paradigm represented by such models is a guide to precise
quantitative thinking characteristic of the statistical approach
to data analysis. Statisticians are also taught to be sensitive to
sources of bias and variability, as well as confounding, issues
nicely illustrated in the discussion of batch effects given by Leek
et al. (2010), an article in which statistical inference plays almost
no role.

Statistical thinking also involves a keen awareness of the
pitfalls of data analysis and its interpretation, including:

• The correlation versus causation fallacy.
• The distinction between interpolation and extrapolation.
• The distinction between experimental and observational

data.
• Regression to the mean.
• Simpson’s paradox, and the ecological fallacy.
• The curse of dimensionality.

We have only outlined some of the elements of statistical
thinking, and many readers may have more to add.

8. Discussion

To summarize the argument of this article:

• Most scientific research is exploratory, not confirmatory. The
research process is iterative, requiring many sets of data
and many lines of evidence (Freedman’s “shoe leather” and
triangulation). Avoid the Cult of the Isolated Study.

• Attention to statistical issues in the design and execution of
the study should be the primary concern. Remain on guard
for systematic error.

• Methods with alleged generality, such as the p-value or Bayes
factor, should be avoided in favor of discipline- and problem-
specific solutions that can be designed to be fit for purpose.

• Formal statistical inference may only be used in a confirma-
tory setting where the study design and statistical analysis
plan are specified prior to data collection, and adhered to
during and after it. That is the only setting where we may
rely on the Efron and Hastie (2016) principle of using the
same data that produces an estimate to assess its precision;
in any other setting, statistical inferences are undermined by
the Optimism Principle.

• Statistical analysis of exploratory research data should rely
only on descriptive methods (summary statistics, tables,
and graphics) and disciplined data exploration, which often

involves statistical modeling. The latter is often enabled
by statistical methods that are regularized, robust, and/or
nonparametric, which are safer to use than conventional
methodology, but still do not fully eliminate the Optimism
Principle. Bear in mind the Harrell (2015) maxim, “Using
the data to guide the data analysis is almost as dangerous as
not doing so” and Diaconis’ (1985) warning about magical
thinking.

• The framework outlined by Mogil and Macleod (2017) is
an example of an approach to research and publication that
seems consistent with the exploratory/confirmatory distinc-
tion outlined here.

• Exploratory analysis of data from a confirmatory study (sub-
sequent to the completion of the preplanned analysis) should
also be entertained, for the purpose of hypothesis generation
rather than hypothesis testing. Subgroup analysis for late-
stage clinical trials is a signature example.

• Statistical thinking provides a framework for critical thinking
that can benefit every stage of the research program.

A counterargument to our position is that inferential statis-
tics (p-values, confidence intervals, Bayes factors, and so on)
could still be used, but considered as just elaborate descriptive
statistics, without inferential implications (e.g., Berry 2016; Lew
2016). We do not find this a compelling way to salvage the
machinery of statistical inference. Divorced from the probability
claims attached to such quantities (confidence levels, nominal
Type I errors, and so on), there is no longer any reason to privi-
lege such quantities over descriptive statistics that more directly
characterize the data at hand. The danger is that both cultural
inertia and the seductive appearance of quantified uncertainty
may continue to incentivize the inappropriate reporting of sta-
tistical inferences.

A second counterargument is that, as George Box (1999)
reminded us, “All models are wrong, but some are useful.”
Statistical inferences may be biased per the Optimism Principle,
but they are reasonably approximate (it might be claimed),
and paraphrasing John Tukey (1962), we are concerned with
approximate answers to the right questions, not exact answers to
the wrong ones. This line of thinking also fails to be compelling,
because we cannot safely estimate how large such approximation
errors can be. In a single study, hypothesis test selection can
lead to underestimation of error by an order of magnitude (e.g.,
Huber 1985). Recall also Freedman’s Paradox, a “final model”
with bogus significant variables. Of course unknown systematic
error is completely unaccounted for. Many sets of data and tri-
angulation are more reliable ways to explore the approximation
error in our (tentative) conclusions.

One reviewer of this article characterized our view as “the
proposed solution for imperfect variance estimation is no vari-
ance estimation,” and then asked “Is no quantification of uncer-
tainty truly better than imperfect quantification?” We think
many readers will share this question. In Section 7.3, we made
a distinction between characterizing observed variability and
quantifying uncertainty. In the exploratory/learning phases of
research, it is way too early to pretend to be able to quantify
uncertainty. However, we can describe how variable the data
at hand are, relative to one or more models, using well-chosen
descriptive statistics and graphs, though this variability should
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not be conflated with uncertainty. Uncertainty also includes
model uncertainty, due to model selection bias (the Optimism
Principle) and the potential for systematic error, which both
require many sets of data to fully evaluate. There is no scien-
tifically sound way to quantify uncertainty from a single set
of data, in isolation from other sets of data comprising an
exploratory/learning process.

Tukey (1962) once suggested that “it might be well if statis-
ticians looked to see how data was actually analyzed by many
sorts of people.” In fact, some statisticians have shown just
such an interest, for example, Box (1999) and Freedman (1991,
1999), as discussed earlier. For the most part, however, statistics
teaching and practice ignores the fact that most of the great his-
torical discoveries in science, engineering, and medicine were
made without the crutch of statistical inference (Gigerenzer
and Marewski 2015). Kepler’s laws of planetary motion, the
periodic table of the elements, the germ theory of disease, plate
tectonics, the molecular structure of DNA, and the quantiza-
tion of energy are other examples where data and modeling,
without statistical inferences, were crucial for discovery. Finan-
cial accounting, a data profession much older and larger than
statistics, often depends on estimation in an uncertain setting,
but does not report any precise uncertainty quantification in the
balance sheet. This brings to mind an observation made about
certain research in materials science: “Even if the studies had
reported an error value, the trustworthiness of the result would
not depend on that value alone” (Wenmackers and Vanpouke
2012).

Nevertheless, we do think that the discipline of statistics has
much to offer science. By focusing on the methods that are
of broadest usefulness to science, engineering, and medicine—
rather than on an obsession with statistical inference and the
Cult of the Isolated Study—statistical thinking has much to
contribute to scientific work. By emphasizing principles of data
production, data description, enlightened data display, disci-
plined data exploration, and exposing statistical pitfalls in inter-
pretation, there is much that statisticians can do to ensure
that statistics is “a catalyst to iterative scientific learning” (Box
1999). Statistical inference enables bad science; statistical thinking
enables good science.

Appendix: Further Elaborations

A.1. Frequentist and Bayesian Schools of Inference

There are several schools of thought on how statistical inference should
be carried out (e.g., Barnett 1999). For instance, the survey by Geisser
(2006) focuses on the four most prominent: frequentist, Bayesian,
likelihoodist, and fiducial. The first two of these are by far the most
often used in practice, and we describe them briefly here. Bear in mind
that within each school of thought, there is further variation of both
perspective and methodology.

The frequentist approach is based on the interpretation of probabil-
ity as a fixed long-run frequency, imagined as resulting from replication
of the data generating process ad infinitum. This requires defining
a fixed probability space a priori, which in turn requires knowing
the intentions of the investigator (Berger and Berry 1988), a setting
wholly inconsistent with flexible data analysis (Gunter and Tong 2017).
Frequentist inference is only conceivable for prespecified confirmatory
analyses.

The Bayesian approach views probability as a subjective degree of
belief. A Bayesian analysis begins by specifying prior probability distri-
butions for the parameters in a stochastic model, then updating these
probabilities in light of the data (using Bayes’ theorem, and a model-
dependent quantity known as the likelihood function). It represents
a computationally intensive set of procedures attempting to capture
the intuition that prior knowledge should be combined with current
data to make current knowledge. This sounds deceptively consistent
with the iterative learning process advocated in this article. However,
it is not. The placement of prior distributions on model parameters
is a highly artificial way of embedding prior knowledge; few scientists
formulate their beliefs in terms of real-valued (i.e., infinitely precise)
probability functions. The more natural (and more important) way that
prior knowledge is incorporated (for both frequentists and Bayesians) is
in the choice of study design (including what variables to measure, and
how to measure them) and the class of models the analyst is prepared to
entertain (Harrell 2018). Harrell (2018) noted that for the Bayesian “the
model choice does not ‘wear off ’ nearly as much as the prior does as the
sample size gets large,” so this choice is more impactful than the choice
of priors. However, this model choice remains subject to researcher
degrees of freedom and the Optimism Principle.

In the iterative learning process described by Box (Section 3), there
is no fixed model whose parameters can be repeatedly updated, because
the model itself changes as the research program evolves. In the most
extreme cases, such as alleged scientific revolutions (Kuhn 1970), the
incommensurate paradigms cannot transfer information to each other
through prior probabilities. Bayesian inference cannot guide an entire
research program, but like frequentist inference, may be of value within
the confines of a confirmatory analysis.

Harrell (2018) observed that even in confirmatory analyses, model
uncertainty remains, because we never know if the model is mis-
specified. He argued that Bayesian inference can accommodate some
degree of model uncertainty in this setting: “If the model contains
a parameter for everything we know we don’t know (e.g., a param-
eter for the ratio of variances in a two-sample t-test), the result-
ing posterior distribution for the parameter of interest will be flatter,
credible intervals wider, and confidence intervals wider. This makes
them more likely to lead to the correct interpretation, and makes the
result more likely to be reproducible.” This approach may be con-
sidered by those whose response to model uncertainty is to double
down on probability modeling. Others might instead back off, and
rely instead on our suggestions for exploratory analysis: regularization,
robustness, and nonparametricness. The differences in interpretation
among the various styles of statistical inference are another factor to
consider.

A.2. Phased Clinical Trials

The framework of phased clinical trials is an exemplar of scientific
epistemology. The ICH E8 states:

The cardinal logic behind serially conducted studies of a
medicinal product is that the results of prior studies should
influence the plan of later studies. Emerging data will fre-
quently prompt a modification of the development strategy.
[ …]
Drug development is ideally a logical, step-wise procedure in
which information from small early studies is used to support
and plan larger, more definitive studies. To develop new
drugs efficiently, it is essential to identify characteristics of the
investigational medicine in the early stages of development
and to plan an appropriate development based on this profile.
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Initial trials provide an early evaluation of short-term
safety and tolerability and can provide pharmacodynamic
and pharmacokinetic information needed to choose a
suitable dosage range and administration schedule for initial
exploratory therapeutic trials. Later confirmatory studies
are generally larger and longer and include a more diverse
patient population. …Throughout development, new data
may suggest the need for additional studies that are typically
part of an earlier phase.

To oversimplify, the typical stages of clinical trials are as follows:

• Phase I. This represents the first administration of the drug in
humans, usually to a small number of healthy volunteers. The
goal is to evaluate tolerability of the dose range, observe potential
side effects, and evaluate clinical pharmacokinetics, such as drug
absorption, distribution, metabolism, and excretion (ADME).

• Phase II. These studies are typically therapeutic exploratory studies.
Patients are enrolled under “relatively narrow criteria” to obtain data
on drug efficacy, safety, and dose response. Flexibility in design and
analysis may be entertained.

• Phase III. These studies are typically therapeutic confirmatory stud-
ies. A large number of patients, from a wider population than
Phase II, are enrolled to confirm drug efficacy and safety. Very tight
specification of study protocols, standard operating procedures, and
statistical analysis plans should be made prior to data collection,
and adhered to during and after it. There is rightful indignation
when the prespecified analysis is altered for publication purposes
(see http://compare-trials.org/).

For a more detailed exposition, consult the guidance documents ICH
E8 and E9 (International Conference on Harmonisation 1997, 1998)
and textbooks such as Piantadosi (2017). (See also Scheiner 1997, for
another perspective.)

The intellectual heritage of phased clinical trials is not statistical, but
statisticians have helped sharpen the reasoning this framework embod-
ies. Carpenter (2010, chap. 4) traced the origins of phased clinical trials
to pharmacologists at the U.S. Food and Drug Administration (FDA),
such as A.J. Lehman and O. Garth Fitzhugh, and clinical oncologists at
the National Cancer Institute (NCI), who made the distinction between
Phases I and II in the 1950s. The notion of Phase III was formulated
by FDA physicians, attorneys, and other officials, around the time that
Congress passed the 1962 Kefauver-Harris amendment to the 1938
Federal Food, Drug, and Cosmetic Act. Phases I, II, and III first appear
in formal regulatory guidance in the FDA’s draft Investigational New
Drug rules of January 1963. Carpenter writes of the latter, “The author-
ship of phased experimentation appears to have been collaborative,
with [Julius] Hauser and [Frances] Kelsey assuming crucial leadership
roles.” Of particular interest to statisticians, the drafting of the ICH E9
guidance in the 1990s is described briefly by Lewis (1999).

A.3. Cross-Validation

Hastie, Tibshirani, and Friedman (2009, p. 241) wrote that “Probably
the simplest and most widely used method for estimating prediction
error is cross-validation.” As an example, we consider five-fold cross-
validation (5CV), which proceeds as follows.

1. Randomly partition the dataset into five roughly equal sized subsets.
2. For each of the five subsets separately, perform model fit-

ting/criticism/selection on an aggregation of the other four subsets,
and then use the left-out fifth to evaluate performance of the model,
as in data splitting. The model fitting procedure should be coded to
run automatically (without human intervention) so that it can be

called in each iteration. (Of course, such an automated procedure
could not reflect the human judgment usually applied in actual
model building.)

3. After this has been done five times, each data record has one pre-
dicted value, from a model built on 4/5 of the dataset, that can
be compared with the actual value. Prediction performance can be
then be evaluated by comparing this whole set of predicted values
with the actual values. The resulting performance estimate does not
correspond to any particular one of the five models that was trained,
but to the automated modeling procedure that was coded.

A.4. Bootstrap Methodology

Bootstrap methodology is a signature achievement of statistical infer-
ence in the late 20th century, and it illustrates the maxim (disputed
here) that the same data used to provide an estimate can be used to
assess its precision (Efron 1982). However, our interest in the boot-
strap here is in its use to examine model selection bias in various
ways (e.g., Efron 1983; Gong 1986; Dijkstra 1988; Efron 2014). A
bootstrap resampling procedure for assessing prediction performance
could operate as follows. Generate multiple bootstrap samples, which
are samples with replacement from the original dataset. On each of
these, fit a statistical model, then assess the model’s performance on
the original dataset. (Like cross-validation, this requires coding an
automated model building procedure that can be called iteratively.)
An overall estimate of performance is obtained by averaging over the
results from all bootstrap samples. An enhanced approach is to use
the bootstrap to evaluate the expected bias due to overfitting. Harrell
(2015), sec. 5.3, provided a more thorough discussion than we can
give here. However, the criticisms we raised earlier about data splitting
and cross-validation mostly extend to such bootstrap methods as well.
As Harrell (2018) observed, all these methods attend to internal not
external validation, and it is external validation that matters most to the
user. However, Harrell (2018) argued that among the internal validation
methods, the bootstrap is least wasteful of the data.

A.5. Standard Errors as Descriptive Statistics

For univariate data, the standard error is often used as an error bar
for the mean. In regression modeling, regression coefficients are some-
times reported with standard errors to characterize their precision.

As Motulsky (2014) observed, the standard error is not a measure of
variability, since it shrinks with sample size regardless of how variable
the data are. Rather, the standard error is a measure of precision for a
point estimate under certain probability models. From this perspective,
the standard error is associated with inferential probability statements
derived from a statistical model, and such statements are often invalid
due to the Optimism Principle. For this reason, we advise avoiding the
standard error even as a descriptive statistic. Regardless, often the vari-
ability of the data themselves (think standard deviation, not standard
error) can be a practically or clinically meaningful benchmark. (For
the cognoscenti, Cohen’s D may be more meaningful than a t-statistic,
though neither properly characterizes uncertainty.)

A.6. Recommended Reading

Even in a manuscript of this length, we have not been able to rehearse
the compelling arguments made by earlier writers with full justice.
It would be pointless to do so when the original writers have been
so eloquent. Readers interested in specific topics are invited to track
down the literature cited in sections of this article that interest them.
More generally, if we had to recommend just three articles that capture

http://compare-trials.org/
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the spirit of the overall approach outlined here, they would be (in
chronological order) Freedman (1991), Gelman and Loken (2014), and
Mogil and Macleod (2017).
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