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ABSTRACT 

With the heightened complexity of component design that may be achieved through 

additive manufacturing (AM) comes an equally complex set of distinct material characteristics 

characteristic of the manufacturing method. To properly characterize new materials for use with 

AM technologies like selective laser melting (SLM), extensive material testing and analysis is 

necessary. Traditional testing techniques, however, can be prohibitive due to the time and cost 

incurred. Miniaturized testing then becomes an attractive option for assessing the material 

properties of SLM materials. The small punch test (SPT) has been developed for such purposes, 

where material is scarce or costly. Although lacking standardization, SPT has been successfully 

employed with various materials to assess material properties such as the yield and ultimate 

strengths and verified by traditional testing results. With the accompaniment of numerical 

simulations for use in the inverse method and determining correlation factors, several methods 

exist for equating SPT results with traditional stress-strain results. There are, however, some 

areas of weakness with SPT which still require development, such as fracture and fatigue, 

although inferences garnered through tensile testing can draw out reasonably accurate first 

approximations for either of these modes of mechanical damage, and the solution of the inverse 

method can be demanding of time and resources. Additionally, the combination of SPT and SLM 

is relatively unexplored in literature, though studies have shown that SPT is sensitive to the types 

of structures and unique material characteristics present in SLM components. The present 

research therefore focuses on developing a framework for characterizing SLM materials via the 

small punch test. Several types of SLM materials in various orientations and processing states 

are small punch tested to test the sensitivity of SPT to track the effects of these as they cause the 
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materials to evolve. A novel cyclic test method is proposed to fill the gap in SPT fatigue testing 

with an adaptable design for fully-reversed loading and evaluated using several different 

materials and testing conditions. Results from these tests are evaluated via numerical modelling 

using the inverse method solved with a least squares regression optimization to determine 

material properties. New correlation factors were proposed as determined by comparing pertinent 

SPT inflection points and the respective equivalent material properties as determined via 

conventional tensile testing. The validity of these solutions was determined via comparison to 

conventional testing results. Samples were also evaluated using digital microscopy to connect 

fracture morphology to processing parameter variations. A framework is thus presented with 

which SPT may be utilized to more economically and expeditiously characterize SLM materials. 
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CHAPTER 1: INTRODUCTION 

Additive manufacturing (AM) methods have gained rapid traction within various 

industries as not just technologies useful for rapid prototyping, but as advanced methods for 

designing and manufacturing production-quality components. The nature of additive 

manufacturing techniques allows for the inclusion of added complexity and features in 

components that are not practical with conventional manufacturing techniques. With the 

continued maturation of these techniques, various industries are turning to AM as a means to 

advance component design while simplifying production. As such, AM methods now require a 

level of characterization that is pursuant with the inherent complexities of the macro- and 

microstructures of materials produced with AM technologies. It is necessary to characterize the 

processing-structure-property trends of such materials used with these methods, as they will in 

turn determine the viability of not just the components produced with them, but of the methods 

being refined and becoming the new standard in industrial manufacturing.  

1.1 Background and Motivation 

Various industries have been integrating advanced additive manufacturing techniques 

into their production lines, producing not just one-off components or prototypes, but marketable, 

highly functional components with previously unachievable levels of complexity in design. In 

many industries, such as in automotive and energy production, AM processes have been utilized 

to produce higher performance tooling, integrating high efficiency cooling channels in cast 

molds into the design which are not possible with traditional tooling [1, 2]. The energy industry 

has taken a similar approach, integrating the design of high efficiency cooling holes into vanes 
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and blades for turbines into the production design rather than being limited by conventional 

tooling and manufacturing methods [3, 4]. Medical applications include the use of various AM 

technologies and materials for tissue engineering, prosthetics, and implants for bone scaffolding 

and dental fixtures [5]. The aerospace industry has also begun to invest heavily in technologies 

like selective laser melting (SLM), with companies such as General Electric (GE) developing 

advanced components for turbofan engines. GE manufactured numerous components as a single 

unit using Direct Metal Laser Melting (DMLM) for each of the 19 fuel nozzles in each GE 

LEAP jet engine, shown in Figure 1.1, rather than welding each of the individually produced 

components together as had been traditionally done, strengthening the parts and shedding 

significant weight in the process [1, 6, 7]. These production pieces represent a vast advancement 

in both technology and manufacturing, as they lay the groundwork for the acceptance of these 

methods into mainstream manufacturing and drive the development of AM technologies 

onwards. In fact, as of 2014, end-use functional components now make up the major portion of 

applications for AM-produced products at 29% [1]. 

 

 
Figure 1.1 - Fuel nozzle for the GE LEAP jet engine manufactured via SLM [7]. 
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Access to SLM and other AM technologies is limited, however, as production-quality 

machines are very expensive, as is the source material used to manufacture components. As 

such, traditional material characterization techniques encounter the difficulty of not just dealing 

with new technologies with various interacting variables that affect component properties, but 

also the high cost associated with conducting the necessary experiments. Implementation of full 

factorial test arrays utilizing full-sized conventional test specimens to thoroughly characterize 

material behavior then become prohibitive, especially given the directionally-dependent 

properties which often characterize AM materials. This presents a barrier to the accessibility and 

acceptance of the technology, as components must be shown to meet or exceed the performance 

of conventionally produced counterparts in order to gain widespread acceptance and use. This is 

exacerbated by the added costs associated with producing AM products. Including the repeated 

builds necessary for producing the numerous samples with varying process parameters, long 

build times, errors and failures, and other factors can quickly add to the costs of characterizing 

AM-produced components which are not typically present when testing conventional materials. 

A report by the Air Force Research Lab (AFRL) cited the cost of evaluating a new alloy for use 

with an additive manufacturing technique to be around $2M, including material production and 

consumption, sample manufacturing, and the execution and analysis of a comprehensive testing 

array [8]. It becomes necessary then to establish a methodology for characterizing not just the 

materials used to produce components, but also the technologies themselves, in the most efficient 

way possible.  

The small punch test (SPT), in which a spherical punch is driven through a small, thin 

plate, has been developed for such purposes, where material is scarce or costly. Although lacking 
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widespread formal standardization, SPT has been successfully employed with various materials 

to assess several material properties which have been verified by traditional testing results. With 

the accompaniment of numerical simulations for use in the inverse method and determining 

correlation factors, several methods exist for equating SPT results with traditional stress-strain 

results. Small punch test samples are thus designed to be sourced from existing structures with 

minimal impact to the integrity of the mechanism and with much less material than traditional 

testing procedures allow, giving a clear picture as to the remaining lifetime of components [9, 

10]. As such, the SPT is useful where source material is expensive and large quantities are hard 

to acquire as in the testing of precious metals, such as gold alloys [11]. Relationships exist for 

equating SPT results with conventional stress-strain results, such as the yield strength, ultimate 

tensile strength, Young’s modulus, and elongation [12, 13]. Additional research exists in the 

areas of fracture and creep equivalent testing, with some small contributions in the area of 

fatigue testing [14-19]. The combination of SPT and SLM, however, is relatively unexplored in 

literature, though studies have shown that SPT is sensitive to the types of structures present in 

SLM components.  

Literature on the topic is sparse when the subject matter is combined with additive 

manufacturing techniques such as SLM, due to the recent emergence of both topics. Most 

recently, direct laser deposited (DLD) C263 Ni-superalloy with varying heat treatments was 

tested at room and high temperature in SPT, and compared to cast material and tensile tests [20]. 

While the DLD material showed anisotropy and dependencies on heat treat and testing 

temperature, the significance of such was not as pronounced as in tensile tests, skewing 

correlations when compared to literature. In one study, SPT was utilized with stainless steel 
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components manufactured via SLM, though to a very limited extent, exploring only the effects of 

layout and gas flow on the parts, and using SPT as a way to evaluate bond strength between 

particles [21]. Even then, however, the estimated mechanical properties calculated by the 

investigators show good correlation to values published elsewhere. Hurst et al. conducted a 

series of small punch tests on samples made from layer additive manufactured IN718 typically 

employed in aerospace structure repair and on electron beam deposition of Ti6Al4V [22, 23]. 

These experiments showed the SPT was responsive to the anisotropy typically present in AM 

layered materials, and results showed sensitivity to grain size, distribution, and orientation, and 

also differences between AM and conventional materials in terms of both material properties and 

fracture behavior. Similarly, a 12% Cr oxide dispersion strengthened steel, which displays highly 

directional properties due to the elongated grain structure, showed delamination fracture 

behavior similar to layered materials such as those produced via AM techniques when tested in 

SPT, and confirmed directional dependencies of material properties [24]. Additionally, IN718 

samples taken from a direct laser deposition manufactured airfoil at several different heights of 

the build and tested with SPT showed responses varied based on location, highlighting changes 

in microstructure which caused differences in strength and ductility; this study, however, did not 

quantify material properties, but tracked changes in strength relative to each other and to a 

sample of equivalent wrought material [23]. Small punch testing has also been used to explore 

the variation in shear strength along laser and electron beam welds, processes which are arguably 

similar in theory to SLM, and in other studies to find the evolution of yield strength ultimate 

strength, elongation, fracture energy, and toughness along the different regions of the heat 

affected zone of a weld [25-28]. Given the process of adding layers to welds to create them, and 
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that the SPT method was used successfully to track variations in the materials was validated in 

[27] by giving correlating hardness tests with matching trends, it stands to reason that a layered 

process with anisotropic properties such as SLM would benefit from the sensitivity of SPT. 

Small punch tests have also been used with pressed powder materials, which present 

complexities in their behavior similar to those of layer-wise construction methods, and achieved 

acceptable correlation with traditionally determined material property values such as yield and 

ultimate strength [29, 30]. Beyond those examples, the combined use of SPT and SLM or other 

additively manufactured materials is extremely limited or nonexistent. The current study will 

serve to summarize and distill the various techniques used in literature in order to determine 

mechanical properties from small punch test results, with the aim of assembling a reliable set of 

procedures for full material characterization via SPT, as this method has yet to be standardized, 

so as to apply them to samples manufactured via SLM. 

In the present study, the suitability of using small punch testing to evaluate selective laser 

melted materials is evaluated. It is envisioned that the research presented here establishes a novel 

methodology for characterizing and subsequently optimizing new materials to be used with 

additive manufacturing methods, along with the characterization of the behaviors of a particular 

class of materials used with one of these technologies, selective laser melting. The resultant data 

and framework will show that additive manufactured parts can be made with material properties 

which meet or exceed those of more conventional manufacturing methods, but with the added 

advantage of complexity which was previously unattainable, and that new materials can be 

adapted to these methods in a structured way so as to prevent excess cost. The results of this 
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study will be used to make a case as to how well SPT can track the changes in SLM materials 

when manufactured with varying processing parameters or post-processing routines. 

1.2 Objectives 

Expanding on the existing body of knowledge of the small punch test, a novel SPT 

mechanism will be utilized to evaluate several different materials. The variety of materials will 

serve to validate the function and methods of SPT using the design discussed herein, creating 

continuity between established methodologies and those proposed here by using well-established 

materials to verify the functionality of the novel design. The primary focus, however, will be on 

extending the use of SPT to evaluating and optimizing SLM materials, comparing SPT results of 

SLM materials produced with varied processing conditions to conventional testing results 

utilizing the same materials as a benchmark for evaluation. In order to design a framework by 

which future evaluation of AM materials may be conducted more quickly and economically via 

utilization of the small punch test, the following research objectives serve to direct the research 

in a manner that is conducive to achieving said goals:  

• Develop a framework for evaluating transversely isotropic materials with SPT. 

Traditional testing techniques require a significant amount of time and material in order 

to fully characterize a material, especially a transversely isotropic material with 

directionally dependent properties. With samples which consume significantly less 

material than those utilized for conventional tests, the small punch test poses a viable 

alternative to determining the material properties of a material with previously unknown 

characteristics. As such, small punch tests are to be compared to results determined from 
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traditional testing techniques, including tensile, creep, and fatigue. The SPT matrix will 

therefore need to be adapted to meet the conditions of the test matrix which uses full-size 

samples. Comparison of these two test matrices will gage the sensitivity and accuracy of 

SPT results in detecting microstructurally-driven material property changes due to 

variations in processing parameters, post-processing routines, and testing conditions. 

• Develop a mixed mechanical characterization framework needed to design the 

models necessary for SLM material life prediction. Due to the unique microstructures 

produced by SLM, and the limited research done on material evaluations, the 

combination of SLM and SPT is relatively unproven. This requires the design of a 

methodology for evaluating SLM material with SPT using both experiments and 

simulations so as to design the framework for future material evaluation. The inverse 

method will be utilized to optimize curve fitting simulations to derive mechanical 

properties from test results. The test results from the SP tests equivalent to tensile tests 

will then be used to further help determine material constants. It is of high interest to 

determine if test results from one type of SP test can be used to interpret the results of 

another. That is, for example, determining if the material properties from a monotonic 

small punch test, such as the Young’s modulus and yield strength, can be used for 

accurately interpreting results from creep and fatigue tests. If so, then it could be said that 

SPT can be used as the sole method for evaluating the properties of new materials 

produced with SLM. 

• Design and verification of a novel SPT device capable of reversible fatigue loading. 

Due to the limited space in the design of an SPT setup, fatigue tests cannot currently be 
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conducted in a fully-reversed mode. Thus, it is of interest to determine if the capabilities 

of an SPT setup can meet those of a traditional test, thus expanding the current 

capabilities of SPT. Due to the aforementioned space limitations, a novel design for 

conducting cyclic SP tests will be developed and tested for validity, so as to enhance and 

verify the fatigue capabilities of SPT beyond the limited data found in literature. Fatigue 

results from conventional tests will be compared to cyclic SPT results using both single, 

zero-to-load, and dual, reversed-loading, punch configurations, to determine the validity 

of the approach. 

• Develop a direct framework for directly translating force-displacement results into 

tensile properties, in lieu of use of the inverse method. It is necessary to determine if 

small punch tests can be used to directly determine material constants of SLM materials. 

Though research utilizing both SLM and SPT is very limited, SPT has been shown to be 

capable of assessing mechanical properties utilizing concurrent FEM simulations to 

establish correlation factors or calculated via the inverse method. These correlations 

factors, while having been shown valid for a number of materials, have not been 

determined to be universal or suitable for materials with inherent anisotropy. This study 

presents the opportunity to verify correlation factors presented in literature as being 

applicable to a wide variety of materials with a different class of materials with a unique 

microstructure inherent from the manufacturing process. Alternatively, new correlation 

factors may be proposed if necessary which apply to a broad range of conventional and 

AM-produced materials. This will further efforts of expanding SPT utilization, 

acceptance, and standardization, especially as a method for evaluating AM materials. 
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The chapters following the motivation, introduction, and objectives detailed here will 

give necessary background information on the topics of interest, outline a detailed experimental 

plan, and give and discuss results from such. Chapter 2 consists of a literature review giving 

necessary background and details for both SPT and SLM. The experimental plan, design of the 

SPT mechanism, and analysis techniques will be outlined in Chapter 3. The numerical approach 

used to convert SPT results into stress-strain data is given in Chapter 4, including a detailed 

description of the model design, validation, sensitivity study, and a description of the approach 

utilized for obtaining a solution via the inverse method. Chapters 5 and 6 of the document will 

detail results from the experiments, drawing comparisons to traditional data to comment on 

accuracy, and noting validity of correlation values. Finally, conclusions of the study will be 

made in Chapter 7 and used to give recommendations in Chapter 8 for directing future studies 

and for the overall suitability of utilizing SPT to evaluate SLM materials. 
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CHAPTER 2: LITERATURE REVIEW 

This chapter will impart the necessary background knowledge for achieving the 

objectives outlined in Chapter 1, outlining relevant research in the areas of interest. Information 

is provided on nickel superalloys, its alloy constituents, and post-processing as it pertains to the 

primary material of study. Then, this information will be tied into a discussion on selective laser 

melting, the effects of varying process parameters, and implementation of various post-

processing techniques on the microstructure and resultant material properties. Finally, the 

history, development, and implementation of the small punch test and the relationships with 

conventional testing techniques are discussed, with particular attention paid to highlighting 

studies which strengthen the case for utilizing SPT to characterize SLM materials. Although 

comparisons are made with conventional testing techniques such as tension, fracture, creep, and 

fatigue, these will not be reviewed here, as they are generally well understood and standardized. 

Instead, this review focuses on information pertinent to the advancement of SLM and SPT, 

ending with a summary review of the areas of need for developing small punch testing 

capabilities and utilizing it as a t to optimize the SLM manufacturing process. 

2.1 Nickel Superalloys 

Nickel-based superalloys were developed in response to a need for alloys for use in high-

temperature applications exceeding 540°C, the limiting temperature for most stainless steel 

alloys [31]. These alloys are useful in applications for much higher temperature applications, 

with operating limits dependent on the alloy composition and resultant microstructure. 

Applications for these include selective hot-side components for automotive applications such as 



12 
 

turbochargers and exhaust valves, in the medical field for dentistry and prosthetics, and most 

especially in the production of components for energy and aerospace components, including 

blades, vanes, combustors, and more [32]. The proliferation of superalloy use can be exemplified 

by the increase of use of superalloys in aircraft gas turbine engines from 10% to 50% from 1950 

to 1985 [32]. This is due to the ability of superalloys to withstand high levels of mechanical and 

thermal stress from long durations of operation at high temperature with little change 

microstructurally [33]. Growth of use for superalloys can be mainly attributed to the increasing 

demand for energy production with concurrent demands for increases in capability, efficiency, 

and component life, thus driving the development of alloys which can operate at higher 

temperatures for longer periods of time [34]. Nomenclature for superalloys is typically 

dependent and indicative of the developers, with some of the earliest and still highly utilized 

alloys, the Inconel (IN) series, having been developed by the International Nickel Company in 

the 1940’s and 1950’s, with further development in the field being generated by various 

entrepreneurs and large producers such as GE (René alloys) and subsequent efforts by these and 

other companies such as Pratt and Whitney (PWA alloys) and Cannon-Muskegon (CMSX series) 

focused on processing to create directionally solidified and single crystal materials for engine 

component use to promote creep properties [35]. 

At room temperature superalloys have relatively high strengths, often featuring yield 

strengths of 900-1300 MPa and tensile strengths of 1200-1600MPa, which are typically 

preserved up to high temperarutes [36]. Nickel-based superalloys consist of at least 50% nickel, 

which makes up the strength matrix of the alloys, and is combined with other elements to impart 

certain characteristics, the major of these typically being Cr, Co, Ti, and Al, along with other 
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elements in small quantities. In alloys with high content of other solid solution formers, such as 

Co, Cr, and Fe, nickel makes up the largest component of the alloy, so as to still form the base 

matrix of the microstructure. The high temperature performance and weldability depends on the 

quantity and control of content trace elements, and especially impurities for optimization alloys 

[37]. The same blend of elements which lends the material its strength and corrosion resistance, 

however, makes these alloys difficult to machine due to factors such as work hardening of the 

austenitic matrix, formation of hardening precipitate phases, and presence of abrasive carbides 

forming within the microstructure. Additionally, the friction of the tool on the abrasive and hard 

phases causes high tool wear and heat generation, which can lead to welding of the tool and alloy 

[38].  

Nickel-based superalloys consist of a face-centered cubic (fcc) structured matrix 

hardened by solutes and precipitates, depending on the alloy the primary of these taking the form 

of Ni3(Al, Ti,Ta, Nb) γ’ precipitates or γ’’ precipitates for alloys with high Fe and Nb content, 

and feature other elements in different quantities for different alloys which serve other purposes 

[39]. Precipitate γ’ and γ’’ phases for strengthening and hardening take the form of ordered L12 

(fcc) and D022 body-centered tetragonal (bct) crystal structures, respectively [40, 41]. 

Strengthening via γ’ precipitates is caused by their similar, but slightly mismatched crystal 

structure in terms of shape and size allowing for a highly coherent structure, as the small 

mismatch prevents slippage, especially at higher temperatures [40]. The γ’’ bct phase can be 

otherwise interpreted as two L12 fcc crystals stacked upon one another in terms of lattice 

parameters and atomic arrangement, thus facilitating a low mismatch despite the overall different 

structure and strengthening the matrix, but alloys strengthened in this manner are also 
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particularly vulnerable to quick formation of orthorhombic β and δ phases which can degrade 

material properties due to incoherency with the γ matrix [41, 42].The balance of elements within 

this group is of particular importance, as γ’ precipitates are essential to strengthening, but even 

small additions of Nb can quickly increase formation of Laves phase, which is often seen as 

detrimental to ductility, tensile strength, and impact and fracture toughness due to its brittle 

nature, though additions of Ti can cause increases in both γ’ and γ’’ while decreasing Laves 

phase and carbides, thus presenting a need for balance [43, 44]. Solid solution hardening can be 

achieved by additions of solutes such as iron, chromium, and cobalt, the latter being especially 

relevant for strength at higher temperatures [39, 45]. Large quantities of Fe can form a Ni-Fe 

matrix in certain alloys, the most common of which is IN718, and high quantities of which 

promote Laves phase formation, with high concentration presenting detrimental effects [36, 46]. 

The addition of Cr in large quantities provides oxidation and corrosion behavior at high 

temperature, but an excess of the body centered cubic (bcc) crystal structure elements within the 

fcc nickel matrix can cause destabilization of the microstructure, and as such Cr content is 

typically limited to around 20% [36, 39]. The presence of excess Cr and other metals can also 

form carbides as they bond with carbon, and while the presence of carbides can increase 

hardness and creep resistance, they can also serve as sites for crack initiation during fatigue [36]. 

In certain applications, such as in IN740 for use in coal-fired energy equipment, the high content 

of Cr (~25%) also provides protection against carburization and sulphuring, while the high nickel 

and low iron content provide resistance of halides at high temperatures [47]. 

Control of alloying elements is highly important, as excess quantities of constituents and 

impurities from residual gasses, trace metallic, and non-metallics from manufacturing can be 
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detrimental to alloy properties. Even minor increases of 0.5% or less of C, Nb, Al, and Ti to 

IN718 were shown to alter the peaks in the differential thermal analysis, which indicates a 

change in enthalpy and possible changes in crystallization and phase formation behavior [43]. 

The presence of O and N can cause formation of oxides and micropores, respectively, which can 

become fatigue crack initiation sites, and the non-metallics S and P have been shown to reduce 

ductility through embrittlement of grain boundaries, as well as causing a reduction in oxidation 

resistance and the ability of protective coatings to adhere to the surface of components [37]. 

Susceptibility to sulfur and sulfide formation at grain boundaries can cause an increase in hot 

corrosion leading to a loss in tensile, fatigue, and impact strength loss [48]. However, alloying 

elements can be added as trace elements for deliberate beneficial consequences; Ca and Mg can 

combine with and reduce the presence of detrimental elements in the molten bath while the 

excess of these is typically vaporized in the melt, and rare earth elements such as Ce, La, and Y 

combine with the non-metallics to improve alloy properties and oxidation resistance, and as rare 

earth oxides are reactive to sulfur, they also improve hot corrosion [37, 39]. Specifically, 

addition of Mg is often utilized as a deoxidizing agent, along with air purging manufacturing 

practices such as the use of a vacuum melting environment [37, 47]. The elements C, B, Zr, and 

Hf are added in very low levels for property improvement through grain boundary strengthening 

and ductility, but can have negative effects at high levels, such as the formation of carbides to act 

as fatigue initiation sites with even small increases of carbon content, boron causing incipient 

melting, and zirconium causing grain boundary cracking [37, 39, 43]. The roles of many of the 

alloying elements found in nickel-based superalloys are summarized in Table 2.1. Depending on 
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the quantity and overall alloying contents, each element can serve various purposes and its 

overall effect on the final microstructure will vary.  

 

Table 2.1 - Common alloying elements of nickel-based superalloys and their effects. 

Purpose Element 
Solid solution strengthening Cr, Co, Mo, W, Nb, Re, Fe  
Precipitate strengthening Al, Ti, Ta, Nb 
Primary MC carbide formers C, Hf, Zr, Ta, Ti, Nb, W, Mo, V, Cr 
Oxidation/Corrosion Cr, Y, La, Co, Al, Cs, Ce, Th 
Grain boundary strengthening B, C, Hf, Zr 
Control of S and other impurities Mg, Cr, Ca 
 

Processing factors and heat treatment routines can also have a profound effect on 

superalloy properties. Grain boundary engineering to alter the size, shape, and composition of 

grain boundaries has also been shown to reduce susceptibility to oxidation and increase creep, 

fatigue, and weldability by 50% or more [48]. Differences in cooling rates during solution heat 

treats showed that slow cooling rates induced a slight overaging of IN718, which reduced 

monotonic material properties such a tensile and creep strength, but also caused a slight increase 

in ductility [49]. Additionally, cast versions of both IN740 and IN600 have been shown to 

possess lower strength than their wrought counterparts, though the difference decreases with 

increasing temperatures [47]. Properly structured post-processing routines have also been shown 

to be highly effective in manipulating resultant microstructures and subsequent material 

properties. The combination of homogenization heat treatment with a hot isostatic press (HIP) 

cycle has been shown to be effective for eliminating Laves in IN718 [44].  

The most dominantly produced nickel-based superalloy is Inconel 718, as it has excellent 

weldability due to relatively low levels of Al and Ti when compared with other similar γ’ 
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hardening alloys, though several different alloys exist by the variation of constituents or 

quantities thereof [38, 50]. The improved weldability from the low Al and Ti content makes it 

easier to repair, a factor which can limit the use of other alloys, as blades are susceptible to 

premature failure due to hot corrosion and fatigue cracking causing airfoil tip loss [51]. Although 

718 is the most popular alloy, it is limited in use for applications which will experience 

temperatures over 650°C, as it can cause coarsening of γ’’ precipitates which affects the 

structural stability at those temperatures, causing a transformation to δ phase equilibrium, which 

is detrimental to yield strength and creep performance [50, 52-54]. As such, higher temperature 

applications require alternate alloys. The alloy 939 was developed with these objectives in mind, 

and features superior strength, fatigue performance, and corrosion and oxidation resistance at 

operating temperatures of up to 850°C due to its high content of Cr and Co relative to other 

alloys, the nominal composition of IN939 is given in Table 2.2 [33]. Despite being formulated to 

promote high temperature performance and stability, however, degradation still occurs in IN939 

as the microstructure evolves when exposed to service conditions for long durations. 

Degradation has been shown to occur due to coarsening and morphological changes of γ’ 

particles due to extended times at high temperature due to increased lattice mismatch, 

embrittlement of the material due to formation of carbides continuously along grain boundaries, 

and formation of oxidation at and below the material surface, including an external scale and a 

depletion of γ’, along with other microstructural changes, when exposed to high temperature 

oxy-combustion environments for long durations [55-59]. 
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Table 2.2 - Chemical composition of IN939 [55, 56]. 

Chemical Composition (Wt%) 

C 0.15 Nb 1 
Cr 22.4 Ta 1.4 
Ni Bal Ti 3.7 
Co 19 Al 1.9 
W 1.6 B 0.01 
Zr 0.1   

Material Properties at Room Temperature 

Density 8.17 g/cm3 Tensile strength 954.3-1236.3 MPa 
Melting range 1235-1338°C Elongation 4.7-9.3% 
Yield strength 805.3-830.2 MPa Reduction in Area 7.2-10.4% 

 

Although IN939 is primarily and increasingly featured for use in the fabrication of gas 

turbine components, as high purity IN939 features an acceptable balance of strength and 

weldability, it is not as readily weldable for repair from service or casting damage as some other 

alloys, such as IN718 [50]. This is due to the fact that IN939 is primarily heat treat hardenable 

through the precipitation of γ’ particles of the Ni3(Al, Ti) into the solid solution γ matrix, which 

help preserve strength at higher temperatures than γ’’ hardenable alloys, but which also makes 

the alloy susceptible to microfissuring and cracking during welding repairs, especially within the 

heat-affected zone (HAZ) [57, 60]. In addition to this, these alloys have been shown to be very 

sensitive to the welding process employed and the processing parameters used therein [61]. The 

plot in Figure 2.1 shows the weldability of several superalloys, and how the content of Al and Ti 

within the alloy directly affects it. Increasing content of either Al or Ti makes an alloy more 

difficult to weld, with a total quantity exceeding about 4% being grounds for designating an alloy 

as very difficult to weld [31, 62]. 
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Figure 2.1 - Weldablity of high-strength, high-temperature alloys as relating to content of 

strengthening γ’ precipitate-forming constituents, Al and Ti [31, 62]. 

 

The difference in melting temperatures, among other factors such as grain size and grain 

boundary segregation of precipitates, causes the formation of unstable phases and stresses which 

cause cracking upon both liquidation of said phases and solidification of the HAZ [61, 62]. 

Cracking is primarily caused along grain boundaries due to the high concentration of precipitates 

being liquidated, initiating cracks and is propagated by the morphology of said grain boundaries 

[60]. Microfissuring in the HAZ is further promoted by the re-precipitation of dissolved 

precipitates during the cooling stage, and it is suggested that an increase of these could reduce 

the minimum heating rate necessary for liquating them, causing further detriment to the HAZ 
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and during subsequent post-weld heat treatments [63]. As such, improvements in the weldability 

of high γ’ hardenable alloys, especially 939, are of high interest, and can be accomplished 

through methods targeting the content and morphology of these phases. One such method is 

through the control and alteration of alloying constituent quantities, as was done by Canon-

Muskegon to create CM 939 Weldable alloy, which has significantly reduced levels of Al, Ti, 

Ta, and Cb to reduce the occurrence of weld-restricting γ’ phases, along with optimization of 

minor alloying additives for enhanced control of harmful impurities [64]. Additionally, heat 

treatment processes have been shown capable of altering the microstructure to improve 

weldability, through the dissolution and redistribution of strengthening phases [60]. The heat 

treated microstructure can minimize or eliminate the misfit between the γ matrix and γ’ 

precipitates, leading to a more uniform microstructure which is better able to accommodate the 

stresses generated during welding [51]. Overaging of the original material structure, while 

typically harmful to mechanical properties, can dissolve and redistribute γ’ precipitates in order 

to soften the base material, making it more receptive to welding while also increasing ductility, 

though a concurrent loss of yield strength will occur [50, 65]. 

The dendritic microstructure resulting from casting will vary based on the size and shape 

of the cast, due to differences in cooling, and as such microstructure throughout a component 

will vary, reinforcing the need for heat treatment [33, 55]. Additionally, addition of a HIP cycle 

has been shown effective in healing a majority of the production defects, such as pores and 

cracks which can result from casting, while conserving microstructure, and so HIP is sometimes 

employed before heat treatment to result in more favorable final microstructure [66]. Left 

uncorrected, pores formed during casting have been shown to be highly influential in limiting the 



21 
 

high cycle fatigue life of IN939 at high temperatures [67]. Design of heat treatments for 

superalloys presents various difficulties, including variation of phase transformation 

temperatures due to changes in alloying quantities and heating or cooling rates, along with the 

possibility of localized melting occurring before complete dissolution of precipitates [68]. 

Traditional heat treatment for IN939 consists of a four-stage process, and though temperatures 

and times can vary, the general aim is to dissolve precipitate phases such as γ’ and η into the 

matrix, and later precipitate the desired phases homogeneously [42]. The original, standardized 

heat treatment was then established as producing the best balance of properties with the four 

stages defined as 4h/1600°C + 6h/1000°C + 24h/900°C + 16h/700°C, though omission of certain 

aging stages and variations in cooling rates have shown differences in material properties while 

still being suitable for certain applications [65]. As discussed, strengthening of IN939 is mainly 

achieved through uniform precipitation of the γ’ phase, which is achieved through a secondary 

precipitation heat treatment, and the third stage causes growth and coarsening. The first stage of 

heat treatment, however, is typically the solution anneal aimed at dispersing this and other phases 

into the matrix, and the selection of temperature can affect properties related to creep and fatigue 

resistance due to the segregation of alloying elements or causing partial melting of the alloy, both 

of which can cause inhomogeneity within the final microstructure and material properties 

throughout [33]. A two-step annealing process combining a high temperature anneal to dissolve 

γ’ precripitates with a low temperature anneal of higher duration allows for the dissolution of the 

η phases which persists during normal heat treatments while avoiding localized melting, thus 

improving the resultant microstructure and the hot workability of the material, which is greatly 

impacted by the presence of η phases [33]. However, adequate properties and an increase in 
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fatigue performance have also been achieved by implementing a much shorter duration solution 

and age heat treat [50]. Slow cooling rates during the aging cycle have been shown to be 

beneficial in producing serrated grain boundaries, which reduce oxidation and creep crack 

growth in γ’ and γ’’ hardened superalloys, and should benefit subsequent material weldability by 

the same mechanism of interrupting propagation of cracks produced during such an operation 

[50, 55]. Evolution of precipitates during long-term exposure to service conditions (or extended 

aging at high temperatures) has been shown to be dependent on the initial heat treatment routine 

employed, though the manufacturing process, when casting or hot forming were employed, had 

an insignificant effect [56]. 

The material of interest in this study can be considered a derivative of IN939. It is a 

proprietary nickel superalloy developed for use in high temperature turbine component casting. 

To protect its proprietary nature, this alloy shall heretofore be referred to as IN939V. Similar to 

the aforementioned CM939, IN939V has been optimized for improved weldability over 

traditional IN939 while conserving its high temperature performance. Its primary use is in cast 

turbine vane applications, though it is also of high interest for the production of high-complexity 

turbine components via SLM. As such, since the properties and microstructures present within 

IN939V produced via SLM have been seen to differ greatly from those of cast applications, the 

post-processing routines need to be optimized and the material properties need to be evaluated 

and shown to be equal or better than those of cast applications. 
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2.2 Selective Laser Melting 

 Due to their high-strength properties in elevated temperature conditions, nickel 

superalloys are of high interest for use with additive manufacturing techniques. Technologies 

such as these offer the ability to design and manufacture components with unmatched 

complexity. Pursuant to that is an equally complex microstructure with unique material 

properties, which is affected by processing conditions during and after component manufacture.  

2.2.1 Background and History of SLM 

The additive manufacturing landscape is becoming increasingly complex and advanced, 

as are the capabilities now available due to layer-wise AM technologies. The first of the AM 

systems was introduced by 3D Systems in 1987, using a UV light cured polymer, and each 

subsequent year more materials and technologies have been introduced. The 1990s saw the 

proliferation of various systems using different technologies, including plastic extrusion based 

technologies such as fused deposition modeling (FDM), laminated object bonding which bonds 

layers of a structure into a solid from sheets cut with a laser, and powder bed techniques such as 

selective laser sintering (SLS) which uses a laser to sinter together powder particulates [1, 69]. In 

the mid-90s Dieter Schwarze and Matthias Fockele with the Fraunhofer Institute for Laser 

Technology developed and introduced selective laser melting (SLM), a layer-wise laser based 

manufacturing technology which has, like other AM systems, progressed beyond the use of 

prototyping to full-scale manufacturing of production-quality components to be used in various 

applications with the ability to integrate complex geometries within the structure that are not 

achievable with traditional manufacturing techniques [1, 70]. Numerous other systems and 
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variations of such have come to be developed since then, utilizing a variety of materials and 

binding mechanisms, as AM systems become more commonplace for research, education, 

hobbies, and industry [71].  

As additive manufacturing systems become more complex, accessible, and reliable, the 

presence of AM parts in industrial applications becomes increasingly commonplace. Rapid 

prototyping and AM systems have been of interest for the design of custom tooling since their 

inception, such as the design and production of investment casts and molds, and with the quick 

turnaround several prototype iterations of a mold can be produced and tested before the final 

design production while still economizing cost and time from traditional machining [2, 72, 73]. 

One such application of this has been shown in the production of structural components for fuel 

cells, the production of which can quickly drive up fuel cell stack costs, severely limiting their 

return on investment. Bipolar plates act as both structural and functional components in fuel cell 

stacks, and research into their production using AM methods has been done with both direct 

manufacture using direct metal laser sintering or production of a cast through binder jetting for 

use with thermal spray deposition [74, 75]. Additionally, fuel inlet manifolds for use in 

microtubular solid oxide fuel cell stack assemblies have been produced using fused deposition 

modeling of ABS plastic with promising results [76]. Selective laser melting has been shown to 

be useful in the production of porous media and small structural components such as 

microtrusses [77]. As the titanium alloy Ti-6Al-4V is a common material for SLM processing 

and concurrently highly biocompatible, biomedical applications are of high interest using AM 

systems and reliable, and cost effective production of implants and porous support structures has 

been shown with both electron beam melting and SLM [78]. Similarly, both titanium and cobalt-
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chromium alloys have been investigated for use with SLM in conjunction with digital imaging to 

produce patient-specific dental implants [79]. The energy and aerospace industries have also 

taken advantage of the advanced design complexity available through additive manufacturing, 

producing fuel nozzles and hot-side engine components with integrated cooling technology [3, 4, 

6].  

2.2.2 Overview of Methods 

Components manufactured in SLM begin as 3D CAD models which are sliced into layers 

parallel to the build plate, which are then translated into building instructions for the machine 

with the input of specified processing parameters such as layer height, laser scan speed, and laser 

power. The build plate lowers a depth corresponding to the desired layer height and a layer of 

powder, typically metallic alloys in the case of SLM, is deposited and leveled on the build plate 

in a sealed environment filled with an inert gas such as Argon or Nitrogen. The laser scans the 

shape of each layer, moving according to programmed instructions, the build plate is lowered the 

depth of another build layer, and the process is repeated in a successive, layer-wise manner to 

produce the solid, as is diagramed in Figure 2.2 [80]. Once the build is finished, the build plate is 

removed from the machine, shedding the excess powder back into the system, and the 

component is removed from the build plate by cutting, often with the use of wire-EDM.  
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Figure 2.2 - Typical schematic of selective laser melting and selective laser sintering systems 

[80]. 

 

The process of layer-wise manufacturing via laser scanning introduces a characteristic 

microstructure to SLM components. On the macroscale, the appearance of as-built components 

feature small ridges the thickness of the specified powder layer height in the SLM machine. 

These layers are characterized by long, thin scan tracks following the laser scanning direction, or 

scan path, as seen in Figure 2.3 [81]. The top view shows a cross-section of the sectioned layer, 

in which the scanning direction follows the x-axis.  The front and side views show the build 

direction follows the z-axis, as is evident from the multiple layers. The appearance of some long 

tracks in these views shows that the scan strategy employed here is one where the direction 

alternates between being parallel to the x and y axes. The arched lines which are the cross 

sections of the scan tracks indicate the shape and size of the melt pool, with the overlap of scan 
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tracks showing the order of scans, and the depth of some of these crossing several layers 

enhancing the bond between layers as the melt pool penetrates and re-melts previous layers. 

 

 
Figure 2.3 - Cross-sectioned SLM sample displaying typical macrostructural features [81]. 

 

The rapid, repetitive heating and cooling causes a high thermal gradient from the surface 

of the component towards the build plate. The stresses induced by the thermal gradients are 

formed by the rapid heating of the newest layer and slow conduction of heat into the already 

cooled and solidified previous layer, which restricts the expansion of the new layer to the point 

of causing plastic compressive deformation within it, and a resultant tensile stress on the layer 

below [82]. Once the top layer cools and shrinkage sets in, the plastically deformed compressive 

zone shrinks less than the rest, causing the layer to be in tension and compression in the previous 
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layer. The repetition causes the resultant stress profile of the part to be that of tensile stress at the 

top and bottom of the component, while the center features high compressive stresses, as shown 

in Figure 2.4 [83]. The resultant residual stress levels are affected by the geometry and stiffness 

of both the build plate and the component; the higher the yield strength of the material and the 

larger the number of layers, the higher the residual stress will be [83, 84]. Residual stresses, if 

not thermally removed, are relaxed through the shrinkage and bending deformation of the part 

upon removal from the build plate [81].  

 

 
Figure 2.4 - Residual stress distribution per SLM build height [83]. 

 

The repetitive rapid heating and cooling of the material and resultant heat gradient causes 

the microstructure to feature a fine, needle-like dendritic structure which is highly anisotropic, 

along with the microsegregation of constituents, such as Nb and Mo, which form Laves phase in 
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Inconel alloys [85]. The columnar microstructure has been shown to be present in components 

produced by several different layer-based AM technologies, such as SLM and electron beam 

melting, and with a variety of different materials [86]. The scale of the columnar grains can vary 

in single components depending on the scanning strategy employed, in IN718 thins ranges from 

less than 100microns to larger than 500microns depending on whether regions are exposed on 

one or more passes [82]. The strength of the texture is affected by the scanning strategy and laser 

power which determines the mode of solidification which is dependent on the thermal gradient 

and the growth rate, with the strongest texture being produced by scanning in the same direction 

for every layer  [87]. Figure 2.5 shows an electron backscatter diffraction of SLM AlSi10Mg 

from the front and top views displaying the columnar nature of the microstructure, where the 

dendrite growth is oriented towards the center of the melt pool, each of which is denoted by the 

dashed lines, and the top view shows different passes and the variation in grain size, with the 

finer grain regions denoting the overlapping sections of the two adjacent scan tracks [87]. For 

nickel-based superalloys such as the Inconel family, the as-manufactured microstructure of layer-

based AM produced components such as SLM and EBM consists of monoliths generally parallel 

to the build direction mainly composed of a γ phase Ni-Cr matrix with an fcc structure, with 

coincident thin γ’’ Ni3Nb bct precipitates, along with a minority of γ’ phase precipitate and 

carbides, though the majority of these precipitates dissolve in the matrix and do not have a 

chance to form strengthening precipitates due to the high cooling rate [86, 88]. Additionally, 

element segregation within the dendrites of phases rich in Nb, Mo, and Ti causes formation of 

Laves phase to be rather prominent due to their high melting points [88, 89]. Increasing the laser 

power (or the energy input in general) reveals the presence of delta phase and causes a 
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concurrent increase in the size and presence of Laves phase which is taken to be detrimental to 

ductility and fatigue performance, though proper post-processing techniques can dissolve Laves 

phase back into the matrix and form strengthening precipitate phases for an overall more 

uniformly distributed microstructure [89, 90]. The small grains from which the microstructure is 

composed of lend SLM components very high strengths, typically exceeding those of 

traditionally manufactured components, following the Hall-Petch relationship, which inversely 

relates yield strength to average grain size, or the volumetric average grain size [81, 91-93].  

 

 
Figure 2.5 - Columnar microstructure characteristic to SLM components caused by the heat 

gradients present during construction extending from the build surface to the build plate [90]. 
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2.2.3 Variations Due to Process Parameters 

With the complexity of modern additive manufacturing (AM) machines comes a range of 

options and processing parameters that can be controlled by the user depending on the alloy and 

application in question. The importance of processing parameters in selective laser melting 

(SLM) machines as linked to material properties has been very well documented. Among these, 

some of the more popularly manipulated parameters include the layer thickness, scan speed, laser 

focus diameter, and laser power. Other factors to consider are part orientation during builds and 

the various effects they can have on the finished product, the effects of the flow characteristics of 

the inert gas environment within the build space, and the laser scanning pattern.  

Part orientation in additive manufacturing systems has been thoroughly documented to 

alter strength in finished components. In [94-96], the material properties of components made of 

polylactic acid (PLA) via fused deposition modeling (FDM), the popular filament extrusion 3D 

printing method, were tested in tension, torsion, and fracture. Various processing parameters 

were tested for their effects on material properties, with orientation having a high effect on 

component strength in all three test types. Similarly, Starr et al. [97] showed the effects of 

various processing parameters and their interactions on material properties of laser-sintered 

nylon, finding that orientation can disproportionately affect properties such as yield strength and 

ductility, especially when considering the interaction with laser power. Orientation has also been 

tested for metal AM systems, including laser cladding and SLM [98-100]. An increase in tensile 

properties has been seen for coupons manufactured in the xy direction, while those manufactured 

in the z direction were characterized by slightly higher hardness values [98, 101]. The 

inequalities in strength due to orientation were confirmed by Rickenbacker et al. [99], while also 
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noting that those components with increased strength properties (xy direction) suffered from 

reduced creep and expected fatigue performance as compared to those manufactured in the z 

direction. Additionally, notably higher scatter has been seen in both the yield and tensile 

strengths of both Ti-6Al-4V and 15-5PH stainless steel tension samples manufactured vertically 

[101]. Samples manufactured from a material equivalent to Hastealloy X in SLM and loaded in 

the z direction were found to have a low cycle fatigue performance analogous to hot rolled 

materials, with LCF performance decreasing as the build angle decreased [102]. Samples built 

from IN 939 were shown to have finer grains when built in the z direction than in the xy 

direction, about half the size on average, which was attributed to higher residual thermal stresses 

in as-built samples manufactured in the z direction [103]. In addition, samples built in the z 

direction were characterized by nearly double the elongation of those built it the xy direction. An 

aging cycle reduced the elongation of both directions to a significantly lower level. Anisotropy 

between build directions is further pronounced when testing at elevated temperatures, as 

elongation suffers with increasing temperature, more so for parts not built in the z direction, 

which still meet or exceed those of forged or cast equivalents [104]. In contrast, Vilaro et al. 

determined that for parts containing defects, the xy samples displayed higher ductility due to the 

loading causing the defects to close, in contrast to the z samples in which defects stretched and 

became more pronounced, quickly causing failure [105]. The effect of orientation is also material 

and production parameter dependent, however, as SLM samples produced at varying angles 

between xy and z sample directions out of Al-12Si showed a negligible effect of resultant 

microstructural texture on yield strengths, with a range of difference of only 5-10MPa [106]. 
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Layer thickness can severely affect material properties in SLM parts, along with part 

quality and overall build time, as thinner layers means more total powder recoater passes and 

laser scans, quickly increasing time. In general, thinner layers means higher material bonding 

due to increased melt and re-melt, as the melt pool created by the laser can penetrate deeper. As 

layer thickness increases, the porosity and number of internal microcracks also increases, which 

inherently decreases component density and strength [107, 108]. Additionally, it could be said 

that the thicker layers of powder act as a cooling agent, as was seen in laser cladding 

experiments, so that with thicker layers not only does the melt pool not reach as deeply into the 

previously built structure, but that structure is cooled somewhat by the freshly laid powder, 

causing there to be less residual heat for bonding of the subsequent layer [109]. As such, with 

thinner layers an increase in the yield strength, ultimate tensile strength, elongation and hardness 

were witnessed in [110], regardless of scan speed.  

Scan speed is, however, also of high influence to material properties for SLM materials. 

Beyond a certain scan speed, sintering of powder is incomplete or does not occur, resulting in 

increased porosity [107, 111]. Surface roughness has also been found to increase with increasing 

scan speeds, likely due to the onset of balling and partial melt of surrounding powder particles 

attaching to the surface and the higher prominence of the layered structure, a finishing quality 

parameter which can be of concern when components are to be used in fluid flow and heat 

transfer sensitive application where surface roughness can affect flow characteristics [112-114]. 

Surface roughness features may also act as fracture initiation sites due to the inherent ability to 

act as stress concentrations, and roughness has been shown to strongly influence fatigue strength 

limits, though lifetimes were largely unaffected [101, 115, 116]. While finishing processes for 
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improving surface quality have been studied, often the results can be somewhat unpredictable or 

inconsistent based on factors such part geometry and material type, with final component 

geometry differing from that which was intended if too much material is removed, thus 

introducing geometric error [112, 117]. A literature review and study of SLM 17-4PH by 

Stoffregen et al. is illustrative of the influence of surface roughness and finish, as the fatigue 

strength of as-fabricated samples was found to be significantly lower than that of much smoother 

machined samples [118]. The influence of surface finish on performance can be a detriment to 

the advantages presented by SLM manufacturing, as small scale structures become adversely 

affected by the variations in the component microstructures, cross-sections, and surfaces due to 

differences in cooling and the partial melt of particles to the surface of the part, with internal 

surfaces that cannot be modified by post-process surfacing techniques becoming fracture 

initiation sites [77]. 

The effects of scan speed become more pronounced as layer thickness increases. The 

dependence of material density on scan speed with various fixed layer thicknesses is illustrated 

in Figure 2.6 [119]. Intuitively, then, a lower scan speed should work best at ensuring adequate 

melt between powder particles. As such, it has been shown that at lower scanning speeds, the 

increased laser exposure time increases melting and diffusion, resulting in lower porosity and 

subsequently higher strength values [110]. It has, however, also been shown that too slow of a 

scan speed can be detrimental to resultant material density, due to an instability in the melt pool 

from irregularities in the scan tracks, suggesting a limitation to both the lower and upper scan 

speeds which can be utilized on a certain material [120-122]. 
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Figure 2.6 - Detrimental effects of increasing scan speed and layer thickness, emphasize by the 

combination of such [119]. 

 

In fact, the limited melting which can occur at higher scan speeds can leave powder 

particles within the component to act as inclusions or voids, which can lead to premature rupture 

by acting as crack initiation sites, inherently lowering component strength, life, and increasing 

scatter in material properties. As scan speed increases, the size of the melt pool will decrease, 

which in turn decreases the adhesion of powder particles to those around them [109]. Figure 2.7 

shows the fracture surface of a sample exemplifying the effects of such umelted powder particles 

acting as inclusions or pores [114]. Excessive scan speeds have been shown to correlate with 

increases in porosity due to a lack of scan track overlap and partially non-melted powder 

particles, which inevitably lead to lower tensile and fatigue strengths and corresponding decrease 

in microhardness [113, 123]. In one study by Brenne et al., components were manufactured using 

both a high-power 1kW laser and a 400W laser and heat treated and aged at varying 
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temperatures, whereas most other studies reviewed here utilized a laser of 200-500W, leading to 

deviations in resultant microstructures [90]. Microstructures of parts processed with the higher 

power laser presented a much higher aspect ratio than those processed with the lower power, 

producing longer columnar structures in the <001> direction due to the increased power 

producing higher heat flux from the build surface to the build plate. Consequently, this strong 

texture lowered the Young’s Modulus to almost half of that achieved with the 400W laser, and 

the high-power laser also exaggerated the effects of laser path and velocity [90, 124]. 

 

 
Figure 2.7 - SLM component fracture surface showing the effects of process parameter variations 

causing inclusions of unmelted particles and pore defects [114]. 

 

These effects are due to the fact that several parameters can be linked together in their 

importance to affecting material properties, as the accumulation of these parameters affects how 

much energy is absorbed by the powder. As noted previously, it has generally been seen that 

slower scan speeds, thinner layers, and higher power result in higher strength components due to 

increased energy absorption by any given amount of powder volume [124, 125]. This can be 
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referred to as the energy density. This is a measure of how much energy is absorbed per unit 

powder, and takes into account the scan speed, layer thickness, and power. The relationship 

between these must be balanced to achieve optimal results, as Figure 2.8 shows the impacts of 

speed and power directly affecting adhesion and surface quality [126]. A balance must exist 

between the two, as an excess or deficit in either will cause detrimental effects such as balling or 

lack of binding.  It can also be said that beam diameter and scan or track spacing can affect this, 

as these parameters also affect the size of the melt pool and the amount of overlap between 

subsequent laser passes, thus affecting the re-melt of previous tracks and their bond to new ones. 

In fact, a study using analysis of variance by Singh and Prakash shows the high importance of 

both power and scan spacing on the density of layer-wise laser formed components using the 

similar technology of SLS [127]. 

 

 
Figure 2.8 - The interaction of power and scan speed can have high a high impact on the surface 

finish and adhesion of layers with an iron-based SLM powder [126]. 
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Gu and Shen defined this phenomenon via a parameter labeled as the “linear energy 

density (LED)” in multiple works, which is presented simply as the ratio of laser power to scan 

speed, and as such featured units of kJ/m [128, 129]. They characterized the resultant melted 

surface under four categories; 1) slight but incomplete melting, 2) continuous melting, where the 

outcome was ideal, 3) melting with balling, where excess laser power and high speed caused 

formation of metallic spheres due to surface tension, and 4) melting with breakage, where the 

combination of high power and low scan speeds significantly increased the local energy density 

so that excess heat input can cause partial gasification of the powder and excessive shrinkage 

during cooling which causes cracking in the material [108, 113, 128, 130]. Figure 2.9 shows the 

evolution of the surface morphology of IN718 with increasing energy density showing partial 

melting, balling phenomena, and an ideal, fully sintered surface [131]. The different surfaces are 

generated by varying the linear laser energy density by way of manipulation of laser power and 

scan speed. The levels of linear energy density tested corresponded to distinct levels of porosity: 

25% for 180J/m, around 15% for 275J/m, less than 10% at 300J/m, and only 1 or 2% at 330J/m. 

Thus, the level of porosity and surface quality have been shown to be intrinsically linked by the 

linear energy density, which affects both. 
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Figure 2.9 - Surface morphology of SLM IN718 with varying energy densities increasing from 

(a) 180 J/m, (b) 275 J/m, (c) 300 J/m, to (d) 330 J/m [131]. 

 

Ultimately, production of samples outside of the second category defined by Gu and Shen 

produced parts characterized by pores and microcracks, due to either insufficient or excess 

localized heat input, as has been corroborated by other studies [126]. Contrastingly, by defining 

the combinations for which each type of melt occurs, the same parameters can be optimized to 

deliberately produce porous metallic structures as well [129]. A similar parameter, denoted as the 

“nominal laser power density”, has been defined as the ratio of laser power over the combination 

of the scan speed and scan spacing and is intrinsically tied to the laser spot size, with units of 

J/mm2  [111, 114, 132]. A threshold value of energy density exists at which voids are eliminated, 

and further manipulation of the resulting texture and quality of the microstructure can be 

achieved by altering the parameters of interest to mitigate the detrimental effects of each, such as 

residual stress and cracking, while maintaining the necessary threshold energy density value 
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[132, 133]. One particular study using iron powder in SLM, found that at a constant laser power 

of 100W, above the threshold energy density, increasing scan speed produced higher strength 

parts and concurrently decreasing grain size [134]. Similar values for the threshold energy 

density can be observed for similar materials to eliminate voids, such as Ni superalloys including 

IN625, IN718, CMSX486, CM247LC, and Hastelloy X [114, 133]. Finding the lower threshold 

of power density for Hastealloy X, for example, led to parts with density better than 99.5%, 

though higher values of power density only yielded slightly higher density and fewer cracks, full 

density was never reached [114].  

Taking into account the layer thickness and hatch (scan/track) spacing combined with the 

scan speed and laser power a “volumetric energy density (VED)”, ε, was defined by Gu and Shen 

[128], which is the ratio of the power, P, to the combination of the scan speed, v, hatch/scan 

spacing, h, and layer thickness, t, as shown in Equation 1 (J/mm3) . 

 𝜀 = 𝑃𝑣ℎ𝑡 (1) 

The optimization of this parameter leads to part production with the highest densities, 

regardless of the material [128, 135]. Increased homogeneity of the microstructures due to the 

application of a higher energy density and uniform melting was also found to improve oxidation 

behavior, hardness, and wear resistance [120, 131, 136]. As stated previously, energy density can 

easily be adjusted via manipulation of the power or scan speed. The width and quality of tracks 

can also be connected to the laser power and scan speed, along with hatch spacing and layer 

thickness, and Averyanova et al. proposed a unitless parameter to describe the shape of a fused 

track, which is inevitably connected to surface quality [137]. The resultant microstructure of 
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laser deposited Ti-6Al-4V has also been shown to be responsive toward increasing power levels, 

with higher power levels partially causing a shift from the typical columnar structures seen in 

layer by layer AM systems to a more equiaxed structure, due to a decrease in the thermal 

gradients from an increase in solidification rates, an effect which is amplified by a change in 

component size scale [138]. As stated previously, however, there are both upper and lower limits 

for the energy density in which the material is favorable, and maximizing this factor is not 

necessarily beneficial, as Figure 2.10 shows even higher porosity at the higher energy density 

tested by Kasperovich et al. than at the lowest value [139]. This is especially evident when (a) 

scan speed, v, is the variable used for adjusting energy density, and although less evident, the 

same tendency toward a gradual increase in porosity with the rising energy density (after 

reaching a minimum) can be seen when (b) hatch spacing or (c) power are manipulated [139]. 

This suggests not only dependencies of the energy density on each variable, but also interactions 

between them which may merit further study. Of note, pore shapes were also found to differ at 

high and low energy densities in this study. 
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Figure 2.10 - The effects of the (a) scan speed, (b) hatch spacing, (c) laser power, and (d) focus 

distance on the resultant energy density and the effect of its variance on porosity [139]. 

 

Several other parameters which have been investigated and found to be of consequence in 

literature could be said to be intrinsically tied to the energy density, though not directly through 

the final calculation for volumetric energy density. As noted earlier, the evolution of the energy 

density has gone through several phases, one which had units of J/mm2, which is the ratio of 

power to the combination of scan speed and hatch spacing. This relationship can be rewritten as 

the Andrew number, which combines the overlap to a parameter known as the fluence [111]. The 
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overlap can be calculated as the ratio of the laser radius, ω, and the hatch spacing, HS, as shown 

in Equation 2, which was originally described by [140]. 

 𝑂 = 𝜔𝐻𝑆 (2) 

The fluence, developed by [141], is defined as the ratio of the laser power, P, to the combination 

of the laser radius, ω, and the scan speed, v.  

 𝑓 = 𝑃𝜔𝑣 (3) 

As noted previously, combining these two parameters yields the Andrew number, 

 𝐴𝑛 = 𝑓 ∙ 𝑂 =  𝑃𝜔𝑣 ∙ 𝜔𝐻𝑆 = 𝑃𝐻𝑆 ∙ 𝑣 (4) 

Which is the expression given earlier for “nominal laser power density.” As such, this measure, 

and the subsequent volumetric energy density measure, can be said to be influenced by both the 

laser spot size and the overlap. It has been shown that laser energy density increases with a 

decrease in spot size, when other factors are kept constant [109]. It was also shown, however, 

that an increase in spot size can increase material density and strength when held independent of 

energy density, that is to say, when the value of laser energy density is held constant by the 

variation of other factors [111]. In this case, the enlarged radius of the laser effectively gives a 

larger overlap of the current scan track with the previous scans, increasing bonding between 

them. Excessive overlap due to very small hatch spacing can also have slightly detrimental 
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effects on material density, however [108]. Additionally, the amount of cooling between each 

layer can have a similar effect. A slower cooling rate between layers, which can be achieved by 

reducing the delay between layers, results in an effective increase in the energy density and an 

aging effect, leading to higher strength and material density; the same effect of a reduced cooling 

rate has also been shown by manipulation of the scanning strategy employed [111, 142]. 

The laser scanning pattern, which is characterized by the angle or direction that the laser 

follows for subsequent layers, has also been shown to produce significant differences in part 

strength. Variations in scanning strategy during laser cladding have caused variations in material 

properties, including anisotropy and high deviations in strength and ductility [143]. This could be 

linked to the relationship between scanning pattern and energy density, as repeated passes lead to 

increased energy absorbed by the powder and increased interlayer bonding, with decreased 

chances of voids and cracks caused by unmelted powder particles. An optimized scanning 

pattern can reduce the delay between reheats of previously melted layers, increasing the strength 

of the bond between layers as well as the surface quality, including the effect of material balling 

[126]. The variation of direction and angle of the scanning pattern and its effect on the material 

density can be seen in Figure 2.11, which shows that although high density (>99%) can be 

achieved regardless of scanning pattern, the optimization of it causes density to further approach 

100%, regardless of some of the other process parameters and in spite of the energy density [119, 

120]. Others have argued that an island scanning approach is beneficial to reducing texture, 

where small (2x2mm to 7x7mm) square sections are scanned at a time with adjacent islands are 

rotated 90° and subsequent layers are shifted 1mm. The in-layer rotation can aid in reducing the 

occurrence of elongated grains from continuous scan tracks but can be affected by the occurrence 
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of cracks [87, 107, 144]. Fractal scan strategies which further shorten the scan vector length have 

also been found to be beneficial in increasing density, and thus reducing the occurrence of 

defects, especially as pertaining to difficult-to-weld high γ’ superalloys [145]. While various 

scanning strategies have been employed, however, a simple 90° alternating back-and-forth, or bi-

directional, scan strategy has often been found to provide minimization of defects while 

maximizing homogeneity within the microstructure [87, 132, 146]. The increased strength and 

ductility of the bi-directional pattern shown in Figure 2.11 can be attributed to an increase in the 

homogeneity of melting conditions and resultant grain size, orientation, and distribution; that is, 

the columnar structure typical of SLM parts can be decreased by using a multi-directional 

pattern, which causes an increasingly homogenous distribution of small grains [119, 137, 147]. 

Additionally, integrating laser re-melting into the scanning routine via scan path or by using a 

larger laser radius resulted in significant decrease of surface roughness, increasing the quality of 

the surface, and reducing residual stresses [83, 119]. 
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Figure 2.11 - Increased variation in (b) scanning strategies has shown a positive correlation with 

(a) higher relative density [119]. 

 

Some studies have also explored the topic of the environment in the build chamber, as it 

is responsible for the regulation of heat, cooling layers as they are created. Irregularities or 

inconsistencies in the gas flow over the build surface can then cause irregularities or distortion 

within samples, due to differences in heating gradients and cooling rates. Although it has been 

shown that, with other factors optimized, the type of gas environment with which the build space 

is purged when considering the typical purging gases of Argon and Nitrogen does not 

significantly affect component strength, gas flow and distribution does [98, 113, 122]. The 

velocity of the gas and the laser scanning direction in relation to the gas flow have been found to 

have a high effect on powder spatter from the melt pool, which in turn affects material properties 

and surface finish as spattered powder can form pores and defects, with increasing speeds 
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resulting in increasing strength, to a point, as did scanning against the direction of gas flow 

[148]. The use of Helium or Hydrogen as a protective gas and the attempt to use Hydrogen as a 

deoxidizer to provide additional protection both deteriorate finishing quality, as relative density 

was greatly reduced via the introduction of significant porosity, as seen in Figure 2.12; mixing 

the deoxidizer with any of the other protective gases had little or no effect [149]. The presence of 

oxygen, however, above acceptable limits can cause increases in oxidation, surface finish, and 

porosity, and is inclusive of oxygen which can be released from the powders during melting to 

directly affect the melt pool [123]. The homogeneity of the temperature distribution and cooling 

rate caused by the gas flow and part layout was found to highly influence deformations in parts, 

which in turn will affect part strength and variance in material properties [21]. It has also been 

shown that given homogenous gas distribution in the build chamber, part placement on the build 

plate had little effect on strength [148]. 

 

 

 
Figure 2.12 - The substitution or mixing of the typical Argon or Nitrogen environments with 

other protective gas environments has been shown to have detrimental consequences on 
component density [149]. 



48 
 

The build plate can also be considered an environmental factor. All other parameters kept 

constant, preheating of the build volume, inclusive of the build plate, has been shown to be 

influential in producing fully densified parts. In said scenarios increasing the temperature of the 

build plate has been shown effective in reducing the formation of defects of 316L stainless steel 

SLM samples, increasing density to higher than 99.5% before post-processing, simultaneously 

reducing residual stresses and part deformation while promoting higher tensile strength and 

Young’s modulus [149]. This is, in-part, due to the reduction of the temperature gradients which 

exist in SLM components, though the effect does have some interactions with component 

geometry [83]. In fact, a reduction of as much as 40% of the residual stresses of SLM 304 

stainless steel can be achieved though preheating of the build plate [150]. The use of a heated 

build plate to relieve stresses has been shown to be effective in preventing warping of 

components upon removal [151].  

2.2.4 Post-processing Effects 

The layer-by-layer manufacturing of SLM produces microstructures unique to additively 

manufactured components, and although the specifics of the microstructure and the behavior of 

its constituents depends on the alloy and the specific process used, some traits are universally 

present. Manufacture via SLM produces very small crystals in the microstructure, along with 

columnar structures which are dependent on the direction of melting. The resultant components 

are typically more brittle than counterparts produced utilizing more traditional methods such as 

casting or machining from wrought materials. The columnar structures and very small crystals 

present in the microstructure dictate the strength and behavior of the material. While the very 
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small crystals promote high strengths often above those seen in traditionally manufactured 

materials, the columnar microstructure and layer-wise construction impose a directional 

dependency on said strengths. As such, material properties can show directional dependency and 

scatter based on manufacturing conditions. Processing parameters utilized during SLM can have 

a high effect on the resultant microstructure, particularly grain size and distribution, which in 

turn directly affect the mechanical properties [152]. Additional to those effects, processing 

parameter selection and optimization determine features such as the presence of microcracks, 

pores, and surface roughness, which all have a direct effect on material properties. While very 

high density can be achieved by optimization of said processing parameters, often it is very 

difficult to achieve full density or even near-full density due to the presence of said porosity and 

microcracking. It has been shown that post-processing can help to alleviate the effects of the 

structures that are intrinsic to layer-wise manufacturing, improving material properties and 

anisotropic behavior [88, 153, 154]. Processes such as hot isostatic pressing and heat treatment 

ranging from stress relief to extensive recrystallization have been studied on AM components 

and are reviewed here, specifically those related to SLM and their effects on microstructures and 

material properties. 

Regardless of the optimization of processing parameters to minimize manufacturing 

defects, the presence of microcracks and voids in SLM and similar AM processed components is 

well documented. Failure can often be linked to surface defects and internal features which may 

create weaknesses, and fracture surfaces can be linked to crack paths following features such as 

voids or microcracks. Many of these defects and their successive effects can be eliminated via 

the application of a Hot Isostatic Press (HIP) cycle, during which the component is uniformly 
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subjected to high heat and pressure levels which induces closure of cracks and porosity, along 

with some level of recrystallization [155, 156]. While HIP has been shown to eradicate many of 

these problematic pores, some can also remain untreated due to the presence of features such as 

trapped gas [157]. Fracture surfaces of IN718 components created using direct laser deposition 

displayed significant areas of un-melted powder and porosity, with failure being directly linked 

to these [142]. Application of a HIP cycle has been shown to produce parts with a theoretical full 

density and reduced pores to below detection limits in SLM Ti-Al6-V4 and to below 0.5% 

porosity in IN738L [99, 152]. Microstructural changes resulting from the HIP treatments have 

been observed, where some grain growth and coarsening has been linked to an increase in 

ductility and hardness, but with a slight reduction in material properties as compared to as-

manufactured SLM materials [98, 142, 158]. The recrystallization and increased bonding which 

occurred in HIP materials, rather than the closing of porosity, are typically credited for any 

enhancements in ductility, monotonic material properties, and the reduction in the anisotropy 

seen in those [142, 158]. However, fatigue and fracture properties have been shown to be highly 

responsive to reduced porosity in SLM materials, as HIP materials have displayed significantly 

higher fatigue strengths and lives than as-manufactured materials, as well as improvements in 

fracture strength and crack growth similar to those reported in literature for conventional 

materials [152, 158, 159]. These improvements were accompanied by a significant reduction in 

the anisotropy of both fracture toughness and fatigue strength. The four point bending fatigue life 

of Hastelloy X was improved by application of high-temperature HIP treatment, along with an 

improvement in the fatigue limit, and a reduction in scatter [115]. In Ti-6Al-4V SLM samples, a 

trend of increasing cycles to failure during high cycle fatigue testing at room temperature 
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corresponds with an increase in the heat treatment temperature, with the high temperature HIP 

treated samples displaying the highest cycle count [160]. An almost 20% increase in the fatigue 

limit was seen in high-temperature HIP treated 316L stainless steel over the as-manufactured 

condition, with a higher temperature being chosen specifically for causing recrystallization and is 

within the solution annealing temperature range. The effects of the solution heat treat HIP can be 

seen in Figure 2.13, where (a) depicts the as-manufactured microstructure, (b) shows some 

reorientation due to stress relief, and porosity is clearly evident, and in (c) that porosity is nearly 

eliminated, and grain shape and distribution is restructured [161]. The color distribution shows 

that implementation of a proper HIP cycle can close detrimental porosity and contribute to grain 

restructuring and distribution. 

 

 
Figure 2.13 - The effects of post-processing are evident as the (a) as-manufactured 

microstructure responds to (b) stress-relief heat treatment with some reorientation and (b) 
solution heat treatment hot isostatic pressing with grain growth and pore elimination [161]. 
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The implementation of the recrystallization-HIP cycle also improved crack growth and 

nearly eliminated anisotropy between build directions. Figure 2.14 shows that with both as-built 

and stress-relieved conditions (a) and (b), fracture behavior is dictated by the orientation of the 

elongated grains along the build direction. After the implementation of a high temperature HIP 

cycle (c), crack growth is found to be independent of build direction [161]. This is due to the 

normalization of grain shape and distribution regardless of build direction, as shown previously. 

 

 
Figure 2.14 - Fracture behavior of as-built specimens is dependent on the build direction, but is 

independent of it once a suitable HIP cycle is employed [161]. 

 

Several other stages of heat treatment can be utilized provide varying microstructural 

effects to SLM materials. Microstructural changes vary based on both temperature and duration, 

and differences in cooling have been shown to affect phase volume fractions [105]. A low 

temperature stress relief cycle, which is typically short in duration, is employed primarily for 

eliminating residual stresses inherent to SLM components due to the temperature gradients in the 

SLM build, so as to prevent warping in parts upon removal from the build plate, and has also 
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been shown to improve crack growth [151]. While implementation of a low temperature stress-

relief heat treatment has been shown to significantly reduce measurable strain in parts after 

removal from the build plate, there is no discernable pattern which corresponds with rising 

temperature when kept within a certain range [160]. A similar stress-alleviating effect could be 

achieved by heating the build plate, though the effects of this are limited as temperatures are not 

as high and the build height to which this is effective is limited, so for taller parts the reduction 

of residual stresses is incomplete as a heat gradient is still present [83, 150]. Additionally, this 

cycle has been shown to cause precipitation of carbides at grain boundaries of SLM alloys in 

multiple studies, including an alloy similar to the proprietary alloy Hastelloy X and EOS 

stainless steel 17-4, which made more prominent the columnar structure, though it did not 

restructure it and therefore did not alter material properties [102, 162]. However, a study of SLM 

Commercially Pure Grade 2 Titanium by Lipinski et al. observed higher values for fatigue limits 

of limited life tests with stress relieved samples when compared to as-manufactured samples, but 

for cases of 107 cycles or more, stress relieved samples suffered a decrease in fatigue strength of 

about 11% when compared to as-manufactured samples [163]. This is in direct contrast to the 

findings shown previously of the effects of HIP on fatigue and is likely due to the lack of 

recrystallization occurring in purely stress-relieved samples.  

The existence of residual stresses within the microstructure, however, have been cited as 

being the catalyst for recrystallization during heat treatment [134]. Recrystallization occurs once 

sufficient thermal activation energy is recovered through heat treatment to eliminate residual 

stresses [81]. Literature shows profound and varying effects depending on the method, 

temperature, and time of heat treatment employed, and evidence strongly suggests the need for 
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specially developed post-processing regiments for SLM materials independent of those 

employed for their traditionally produced counterparts. Heat treatments for traditionally 

manufactured components have been shown to be unreliable and unpredictable in their effects on 

SLM components made of the same materials, due to the fact that the starting microstructure 

varies greatly from that for which the procedures were established for [105, 164]. For example, 

the onset of recrystallization for SLM IN718 samples was shown to begin at 1100°C, while that 

of wrought IN718 occurs at 1020°C. In SLM materials, a fine, denditric crystal structure is 

formed caused by the rapid cooling in manufacturing, along with microsegragation of Nb and 

Mo constituents to form Laves phase [85, 165]. The characteristic dendritic structure is 

recrystallized during heat treatments and coarse, curved grain boundaries are formed [159]. The 

Laves phase, which is detrimental to ductility, can also be dissolved through careful selection of 

heat treatment parameters to achieve homogenization, and depending on the material these 

parameters will likely differ from those used for traditionally produced materials [85, 166]. A 

popular material employed for SLM applications is Inconel 718 (IN718), and several studies 

have explored its use and optimization through both processing parameters and post-processing. 

As traditionally produced versions of this alloy have shown, variations of post-processing 

conditions can have important consequences on microstructural composition and resultant 

material properties, including creep and fatigue performance [54, 167]. In a solution treatment at 

980°C the γ’ and γ’’ dissolved into the matrix and the δ phase was precipitated at the grain 

boundaries, while double aging further dispersed the gamma phases into the alloy, strengthening 

it [159]. Popovich et al. showed the evolution of microstructure and phase composition of SLM 
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IN718 through several stages of production, beginning with the powder, as seen in Table 2.3 

[168]. 

 

Table 2.3 - Phase composition of SLM IN718 during different states of processing [168]. 

SLM IN718 Sample State Phases Present Percent Composition (%) 

Powder 

γ- Ni 90.0 
γ’-Ni3Al 3.5-3.9 

γ’’-Ni3Nb 4.3-4.5 
δ-Ni3Nb 1.8-2.0 

SLM As-manufactured, no 
heat treat 

γ- Ni 86.8 
γ’-Ni3Al 1.9 

γ’’-Ni3Nb 8.0 
δ-Ni3Nb 3.3 

SLM after homogenization 
heat treat 

γ- Ni 90.1 
γ’-Ni3 (Al, Ti) 1.9 

γ’’-Ni3Nb 8.0 

SLM after homogenization 
and aging heat treats 

γ- Ni 67.3 
γ’-Ni3 (Al, Ti), Ni3Al 25.2 

γ’’-Ni3Nb 4 
δ-Ni3Nb 3.5 

 

As-manufactured SLM samples are nearly identical to bulk powders in terms of 

composition, with the biggest change being seen in the percentage of detrimental δ and γ’’ 

phases nearly doubling from around 1.8% to 3.3% and 4.4% to 8%, respectively. After solution 

heat treatment at 1065°C, or homogenization as referred to here, the most notable change is that 

the δ phase is eliminated, and the gamma precipitates are dispersed, the implication here when 

comparing to the previously cited work is that this process is very sensitive to temperature 

changes. Adding aging to the solution heat treatment restores the δ phase to pre-heat treatment 

levels, reduces the γ’’ back to 4% and dramatically increases the γ’ strengthening phases to a 

total of 25.2%. The increase and homogenous distribution of these secondary γ phases is credited 
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for the large increase in strength and ductility in comparison to as-manufactured samples, which 

are comparable to those of hot-rolled IN718 and exceed those of the cast material in strength 

[168]. Homogenization has also been shown to reduce scatter significantly between identically 

manufactured components, even when the initial microstructure is preserved [85, 89]. However, 

while the stress relief and aging temperature regimes increase hardness, higher temperatures in 

the solution range have been shown to quickly lower it, though higher temperature heat treats 

have also been shown to increase precipitation and recrystallization, with slightly higher ductility 

to correlate with the reduction in hardness [81, 169]. The increased ductility associated with 

higher temperature heat treats correlates with a reduction in delta phase precipitates and a 

subsequent improvement in dislocation mobility [81]. Similarly, heat treatment of Ti-6Al-4V and 

iron SLM components has shown concurrent increases in material properties. The ductility of the 

Ti-6Al-4V and the yield strength of the iron components increased up to 10% and 38%, 

respectively, from an as manufactured state, though with a decrease in Young’s modulus seen in 

the iron components [134, 160]. These improvements are attributed to a release of residual stress 

resulting in grain refinement and recrystallization eliminating the columnar structure and 

increasing grain mobility. The increase in hardness and ductility of Ti-6Al-4V can also be 

achieved by increasing the duration of heat treatment, as it correlates with an increasing 

decomposition of the α’ phase, but which results in a loss of strength [164]. As such, optimized 

heat treatments in studies such as the aforementioned are typically chosen as those which result 

in a balance between strength and ductility, with neither time or temperature being maximized. A 

study of SLM Al-12Si shows the drastic changes which can occur in a material from the as 

manufactured state, as heat treatment raises the ductility from around 4% in the as-manufactured 
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state to 25% when heat treated, but lowers strength from just over 350MPa to around 175MPa 

[170]. The graph in Figure 2.15 illustrates this concurrent dependency of both ductility and 

strength on annealing temperature of Al-12Si due to a coarsening of the as-manufactured 

microstructure. This often leads to choosing a compromise between the two as being optimal, 

which, as can be seen, will still exceed the properties of the cast counterpart in both strength and 

ductility [106]. 

 

 
Figure 2.15 - Tensile properties after heat treat depend on the temperature used for the anneal 

[106]. 

 

Similar results have been seen elsewhere in literature, where after aging the yield and 

ultimate strengths of SLM IN718 both rose to above those of wrought material, and when 

combined with a solution treatment, those values rose further due to increased recrystallization 

and redistribution of precipitates [98, 142]. The material properties of SLM and laser-deposited 

IN718 in various states of processing can be seen in Table 2.4, which clearly displays the effects 
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of several processes. Solution and aging increase strength from as-manufactured condition, and 

while scatter is decreased, as is ductility, HIP is shown to increase ductility to a limited extent.  

 

Table 2.4 - Mechanical properties of AM IN718 through several stages of post-processing. 

Material Condition σys (MPa) σuts (MPa) 

Elongation/ 

Reduction in 

area (%) 

SLM IN718 [168] 
As-SLM’d 569-646 851-1002 9.8-31.7 

Solution + Age 1160 1350 17.6 

SLM IN718 [159] 
As-SLM’d 889-907 1137-1148 19.2-25.9 

Solution + Age 1102-1161 1280-1358 10-22 

SLM IN718 [98] 
As-SLM’d 830 1120 25 

Anneal + HIP 890-930 1200 27 

Laser deposited 
IN718 [142] 

As-deposited 650 1000 38 

Aged 1204 1393 13 

Solution + Age 1257 1436 13 

HIP + Solution + Age 1155 1380 20 

 

Comparable results have been seen in other materials in the Inconel family, such as 

IN738LC and IN939, where solution heat treat and aging caused a dispersion of γ’ in the material 

while eliminating the columnar structure, and combination with HIP encouraged further 

precipitation [99, 103]. In the case of the IN738LC, the solution and aged material resulted in 

several material properties averaging around 20% higher than cast material. Taking into account 

grain growth induced by conventional heat treatment routines, grains in SLM materials, (a) and 

(b), are still considerably smaller than (c) as-cast materials, as shown in Figure 2.16 [103]. 

Although some reduction is seen, anisotropy between the two primary orientations, (a) 0° and (b) 

90°, is still present, which enforces the notion that post-processing techniques must be 
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specifically developed for SLM materials to aid in uniform grain growth and distribution. This is 

especially true considering that aging, and especially over-aging, can result in high losses of 

ductility due to the formation of the precipitates which are responsible for large increases in 

strength after heat treatment, and dissolution of Laves phase back into material matrix can be 

achieved with proper selection of temperature and time during heat treatments, thus increasing 

boundary and location mobility which increases ductility [21, 99].  

 

 
Figure 2.16 - Aging of SLM IN939 shows grain growth between (a) 0° and (b) 90° manufactured 
samples, though anisotropy between the two persists, and grain are still significantly smaller than 

(c) as-cast material [103]. 

 

Aging of as-manufactured materials has been shown to increase hardness dramatically, 

more so when combined with even a short solution heat treat, though the increases are less 

pronounced [85, 171]. An especially significant change was seen in SLM manufactured 

maraging steel 300, where a short aging cycle lead to dramatic increases in ultimate strength and 

hardness of 70% and 45% over the as-manufactured condition, respectively, but ductility was 
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reduced by 88%, as elongation at rupture changed from 13.3% in as-manufactured condition to 

1.6% after aging [107]. There was also evidence that overaging could then lead to the decline of 

said material properties. A reduction in fatigue life has also been linked with precipitate growth 

during aging [103]. Optimized heat treatments, however, have shown the capability to practically 

eliminate typical SLM textures and homogenize the microstructure, including differences from 

orientation and subsequent directional features [172]. Moreover, the combination of optimized 

post-processing with optimized process parameters tested in this study showed an increase in 

fatigue resistance and neutralization of directional differences in fatigue life. 

Despite the obvious drawbacks of the high anisotropy present within SLM structures and 

the benefits of the ability to reduce or eliminate said microstructural anisotropy while improving 

material properties, some studies have shown the ability to increase properties through gradual 

decomposition of precipitates while deliberately preserving the SLM microstructure [90, 105]. 

Such a case is seen as advantageous for creep tests, while the equiaxed structure is favored for 

tensile and fatigue tests. This effect is due to an interaction between the heat treatments 

employed on an SLM part and the processing parameters used to produce it. When IN718 parts 

were produced with a significantly higher powered laser (1kW in comparison to the typical 200-

500W laser), heat treatment produces a different effect [90]. Short (1h) annealing treatments 

ranging from 550-1050°C failed to alter the as-built microstructure, though hardness and yield 

strength still showed a dependency on the treatment temperature, peaking at 700°C and then 

dropping again, though addition of an aging cycle prevents the drop and instead shows a steady 

increase with annealing temperature. As in other instances, the increase in strength leads to a 

corresponding drop in ductility, though again the combination of an aging cycle helps to improve 
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the ductility with increasing temperature. Creep rates were improved by an order of magnitude 

when comparing as-processed and aged to annealed and aged components, which is attributed to 

the ability of being able to preserve the microstructure even through the heat treatment. This is 

achieved through the use of a high power laser in combination with high temperature anneal and 

aging to increase strengthening phases and partially dissolve the Laves phase, the presence of 

which is increased by the use of a high power laser [90]. Post-heat treatment recrystallization of 

IN718 also shows an interaction with the scan strategy employed, as samples produced with an 

alternating scan path exhibited more uniform grain size and distribution than those produced 

with a single scanning direction, directly correlating to the distribution of residual stresses. The 

improved ductility of the sample produced with an alternating scan path is attributed to said 

increase in the homogeneity of the grain size and distribution [147]. Additionally, grain growth 

during post-processing heat treatments has been shown to be affected by processing parameters 

such as scan size and spacing, which ultimately determine the amount of overlap during each 

laser pass. In a study of SLM Al-12Si Prashanth et al. showed microstructures of as-

manufactured components to be composed of large regions of circular morphology banded by 

thin regions of much finer, columnar grains [106]. This is due to the overlap between scans in the 

larger regions causing a partial direct heat treatment which evolves the microstructure, while the 

thinner, smaller grained bands remain in an as-manufactured state. When subjected to post-

processing heat treatment, though both regions showed growth, the regions where overlap 

occurred were consistently characterized by larger grains than the thin boundary regions, which 

had no scan track overlap. Additionally, the increase of segregation and agglomeration of Si, 

which occurs with increasing temperature, is exaggerated in the scan overlap regions so that the 
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difference in morphology and resultant anisotropy is preserved to an extent. This is in contrast to 

studies such as that by Vilaro et al., where samples of Ti-6Al-4V were produced with a 50% 

overlap setting, so that each scan track overlaps exactly half of the track preceding it, and each 

track is scanned twice for a direct heat treatment effect [105]. The resultant morphologies found 

in the as-manufactured samples in [105] are much more uniform throughout the sample than 

those seen in [106] due to the difference in overlaps, and the general difference between the 

respective microstructures persists even after heat treatment.  

As SLM technology continues to mature, it is being employed with a growing number of 

materials and applications. The layer-wise manufacturing method, like other AM methods, 

produces a distinct, columnar grain structure which can be detrimental to material properties due 

to intrinsic anisotropy. Proper selection of processing parameters and post-processing heat 

treatments can help to optimize the distribution of alloy constituents and grain sizes. This allows 

for production of consumer-quality components with added complexity that meet or exceed the 

material properties of conventionally-produced counterparts. 

2.3 Small Punch Testing  

Small punch testing (SPT) is a testing methodology which has been experiencing wider 

application in recent years due to the ability to use very small, thin samples to assess the 

mechanical properties of a material. The method was originally developed in the 1980s by 

Manahan and colleagues [173, 174]. The advantages of such a test make it an attractive option 

for material evaluation for numerous alloys in various industries, one such being the energy 

industry and its many different facets, from steam to nuclear. These methods are especially 
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significant in nuclear power settings where many plants are reaching their end-of-life predicted 

ages and the long-term effects of neutron radiation are unknown [173, 175-181]. 

2.3.1 Introduction to Small Punch Testing 

As the small punch test employs very small samples, it is not only a good alternative 

where source material is scarce, but it is also useful in evaluating and tracking the evolution of 

material properties of a component that has been in service. As such, used components can be 

tested to gauge the effects of their working environments on the material properties, including 

the effects of radiation in nuclear power plants or the cyclic high-heat conditions to which a thin-

walled turbine vane may be subjected. Small punch test samples are thus designed to be incised 

from existing structures with minimal impact to the integrity of the mechanism and with much 

less material than traditional testing procedures allow, giving a clear picture as to the remaining 

lifetime of components [9, 10].  

The small punch test is designed to subject a small test coupon to combined bending and 

stretching. The test configuration consists of an upper and lower die to hold a small, thin sample 

and a punch with a spherical head or ball to contact and deform the specimen, as shown in Figure 

2.17. The use of a ball in place of a machined punch allows for replacement of the ball after each 

test to prevent accumulation of damage to the punch affecting subsequent tests. The setup is 

adapted to a load frame which controls the punch displacement and measures the load, P, via a 

load cell, and a displacement gage is attached to accurately measure sample deformation due to 

displacement, δ. 
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Figure 2.17 - Schematic of typical SPT setup. 

 

The response of a small punch test takes the form of the force-displacement (P-δ) curve. 

As shown in Figure 2.18, it is typically divided into four sections of distinct behavior of I) elastic 

bending, II) plastic bending, III) membrane stretching, and IV) plastic instability, these are 

typically differentiated by inflection points between the regions such as PII-III [182, 183]. A fifth 

region is defined at the tail end of the fourth zone denoting the failure of the sample. As the exact 

point of failure can often be difficult to distinguish, its definition can vary from being taken as 

the entire region of the curve after the max load, as the region only after a certain amount of load 

drop, or it can occur as a sudden rupture [15, 184]. Transitions between zones of the P-δ curve 

are typically denoted by inflection points which are used in formulations for equating SPT results 

with traditional stress-strain results to acquire material properties, as will be detailed later in this 
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review. These include the slope of the elastic portion of the curve, k, the yield load, Py, the 

maximum load, Pmax, the deflection at maximum load, δm, and the deflection at fracture, δ*. The 

response shown in Figure 2.18, however, is an idealized force-deflection curve and the divisions 

at which the regime changes and points of importance, such as Py, the yield load, are not always 

as distinct as shown here. 

 

 

 
Figure 2.18 - Typical SPT load-displacement curve with important inflection and correlation 

points denoted. 

 

Small punch tests are practical where source material is expensive and large quantities 

are hard to acquire. One such example is in the testing of precious metals, such as in testing gold 

alloys [11]. Cicero and co-authors utilized SPT to evaluate the tensile and fracture properties of 
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24 and 18 karat gold, with good agreement to results found through traditional tensile testing 

techniques. Small punch testing is also of interest, then, where producing samples solely for the 

purpose of destructive testing is costly not just in terms of material but also in manufacturing, as 

can be the case with samples produced via selective laser melting (SLM). Due to the high costs 

associated with AM material evaluation [8], utilizing miniaturized testing techniques such as 

SPT can cut down on costs in all aspects involved in new material evaluation, if evaluation 

methods equivalent to traditional testing techniques can be proven.  

Traditional tensile test samples, as described by ASTM E8 [185], feature a gage section 

that is 50mm long and 12.5mm in diameter, for a volume of 6136mm3, without including 

material outside of the gage, including the radius from the gage to the support and the support 

sections, which can double the total length. This also means a significant amount of material is 

lost in the manufacturing process while grinding down the gage section of the sample. In 

contrast, however, SPT samples can be fabricated as square plates or thin discs, the former of 

which being the larger of the two with sides of 10mm and thickness of 0.5mm for a volume of 

50mm3. As such, SPT samples require less than 1% of the volume of the gage section alone. 

Small punch tests have successfully been used to define material properties at varying 

temperatures, including yield and tensile strength, fracture toughness, and ductile to brittle 

transition temperature (DBTT), which is normally determined using extensive impact testing and 

consumes significant amounts of material, as well as the effects of degrading environments and 

varied conditions on these [186-188]. Although testing and specimen design are simplified with 

SPT, property acquisition is complicated by the complex states as compared to established 

conventional test practices, and furthermore by the differences arising from experimental design 
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variations [189-191]. The primary objective of current SPT research, then, is to simplify the 

process of acquiring material properties from small punch tests.  

Given that widespread standardization does not exist for SPT, however, these methods of 

acquiring material properties are not as well as understood or utilized as traditional testing 

techniques. The only active ASTM standard for small punch testing is ASTM F2977, used for 

small punch testing polymeric biomaterials used in surgical implants, as a similar standard 

specific to ultra-high molecular weight polyethylene, F2183, was withdrawn in 2017 without 

replacement [192]. International standards include emergent standards or similar documents for 

working practices from Europe, the CWA 15627, the Chinese standard GB/T 29459, and some 

similar work in Japan, though no single standard is universally accepted, all three have strong 

similarities, and additional work has been proposed for all three to make official standards, as 

well as an ASTM work item for the same, WK47431 [193]. 

2.3.2 Basics of Small Punch Testing 

Although standardization of SPT is an ongoing effort, in 2004 the European Committee 

for Standardisation (CEN) released a workshop agreement in order to develop a set of guidelines 

so as to direct the growing interest of the use of SPT in a uniform manner [194]. The resulting 

workshop agreement, CWA 15627, which was later updated in 2007, established guidelines for 

testing and translation of data into tensile, creep, and fracture properties, and is more widely 

utilized than the other standards. The CEN code of practice recommends round specimens of 

8mm in diameter with 0.5mm thickness, using a lower die opening of 4mm and a punch diameter 

of 2.4mm [194, 195]. These parameters are typically used in literature with some modifications 
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sometimes being present, such as the variation of specimen width, with 10mm round or square 

specimens also being common [25, 196-198]. Along with working parameters for the setup and 

testing of samples, the CWA 15627 also describes several relationships for relating SPT data to 

traditional test data. The following sections will be dedicated to exploring these relationships, 

among others found to be relevant by consequent research efforts.  

Recent studies have shown that displacement is most accurately measured directly from 

the sample by placing an LVDT opposite the indenter, rather than using crossbar displacement, 

in order to minimize compliance effects [199, 200]. Much like traditional tensile tests, most SP 

tests are displacement-controlled with a constant displacement rate, which is typically 

recommended to be in the range of 0.2-2mm/min, though those equivalent to traditional creep 

tests are typically load controlled with a constant force [19, 195]. Measurement of displacement 

at a location other than directly below the sample, such as from the cross bar, can cause 

compliance errors in the resulting load-displacement curves, as shown in Figure 2.19. Although 

the general shape of the curve is preserved, both the load at the transition point from elastic to 

plastic and the total displacement are overestimated. This is due to small shifts in the load frame 

cross bar as it displaces, which in turn cause a shift in the resultant curve, due to the tight 

tolerances required for experimentation and relatively low load and displacement levels, as 

compared to conventional tests. Compliance effects have also been shown to be present when 

considering the stiffness of the loading system, frame, and geometry of the dies [195, 201]. 

These issues often dictate the necessity for compliance correction in the results, as will be 

presented in the following sections, if such is not accomplished through hardware modifications.  
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Figure 2.19 - Compliance effects in load-displacement curve from measurement of displacement 

via crosshead as compared to direct contact deflection transducer. 

 

Test responses can differ strongly depending on the type of material used, how it has 

been treated, testing conditions, and how it behaves according to these, whether brittle or ductile 

in nature. As shown in Figure 2.20, load-displacement curves for brittle and ductile materials 

differ greatly in size and definition [202], with the sections outlined previously being somewhat 

more difficult to distinguish than in an idealized case, as are the relevant inflection points 

necessary for material property calculation to be discussed in the following sections. In these 

cases, as is indicated in the plot, fracture initiation occurs at very different times, whereas for the 

ductile case the fracture initiation is part of the stable plastic deformation regime and does not 

interrupt its progress, in the brittle case crack initiation also dictates peak load and failure.  
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Figure 2.20 - Load-displacement response of a brittle vs. a ductile material [202] 

 

2.3.3 Direct Correlation with Tensile Properties 

Determination of tensile properties from small punch tests is an issue which has been of 

debate since the miniaturized test method was first introduced. As such, several differing 

approaches and formulations have been suggested and tested over the years for evaluating 

various material types [203, 204]. Some guidelines for testing and translation of data into tensile, 

creep, and fracture properties have been established [194]. The CEN CWA 15627 workshop 

agreement suggests several relationships for converting the load-displacement data directly into 

material properties typically established using stress-strain curves acquired from conventional 

testing. The correlations for determining material properties from small punch test data show 

dependencies on variables such as sample thickness, and use several inflection points of the 

curves, such as Py and Pmax, for determining material properties. These points coincide with 



71 
 

changes between the P-δ regimes as outlined in Figure 2.18. It has been shown [194], for 

example, that normalization of yielding load, Py, by the square of the original specimen 

thickness, t, is a reliable method for estimating the 0.2% offset tensile yield strength via the use 

of a correlation constant, α, e.g. 

 𝜎𝑦𝑠 = 𝛼 (𝑃𝑦𝑡2) (5) 

The determination of where Py actually occurs is of some debate, with several definitions 

having been proposed. The various methodologies of determining the yield load are shown in 

Figure 2.21. These range from the use of tangents to offset displacements of 1% or 10% of the 

original thickness, t, with the original slope of the curve, and each method has support and 

contention in literature [12, 203, 205].  

 



72 
 

 
Figure 2.21 - Various methods for determining the yield load, Py, of the load-displacement curve 

of SPT, created using AW6016 T4 P-δ data from [206]. 

 

Mao and Takahashi [16] originally defined the location of this value, Py(Mao), by drawing 

a tangent of the initial stiffness and a tangent of the steady-state plastic stretching, previously 

defined as zone 3 in Figure 2.18, and finding the point of intersection. This method has been 

shown to be sensitive to material and testing conditions [207-209]; [207] presented variations of 

the Mao and Takahasi expression for samples which had undergone plastic deformation prior to 

testing which depended on whether the material had experienced tensile or compressive stresses. 

It is also worth noting that because of the variability in the determination of Py, however, Isselin 

and Shoji proposed a method of evaluating the small punch yield using the energy up to the 

beginning of plasticity, known as the elastic deformation energy [208]. Determination of the 
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yield load has also been shown to be sensitive to experimental testing conditions, such as 

specimen thickness and support mechanisms [209]. Later, a new method was adapted in [194] by 

projecting the intersection point found by the method suggested by Mao and Takahashi vertically 

downwards onto the coinciding point, Py(CEN), of the load-displacement curve. Taken at a literal 

sense, Lacalle and co-authors suggested the use of the first inflection point, Py(inf), of the curve 

where zone I changes to zone II as the location where the initial stiffness changes to define the 

yield point [11, 210]. Finally, the offset method has been suggested akin to that which is used to 

find the 0.2% offset yield strength, σys, on stress-strain curves, by using a straight line parallel to 

the initial stiffness to find the point of intersection. Different offset amounts have been suggested 

for use with this method, including the use of 1/100th  (Py(t/100)) of the original thickness or using 

a larger offset of 1/10th (Py(t/10)) of the original thickness [25, 211]. Each of these is shown in 

Figure 2.21. Although the two-tangent method and the modified version of it are highly-cited in 

literature [26, 207, 212], [12, 213] show that the Py(t/10) approach displays the strongest 

correlation with yield strength of those in Figure 2.21 when using a correlation value equal to 

0.346, i.e.  

 𝜎𝑦𝑠 = 𝛼 (𝑃𝑦(𝑡/10)𝑡2 ) (6) 

The constant in this relationship, like other correlation coefficients to be presented 

throughout this paper, are typically determined through a linear regression fit of the 

conventionally established mechanical properties of various materials plotted against the values 

of the equivalent SPT formulations, such as the yield strength plotted against Py/t
2. Similarly, 

Pmax, the maximum punch load in a P-δ curve, has been shown to have a linear correlation with 
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the ultimate tensile strength, σuts. Garcia et al. also showed that although the expression for 

ultimate tensile strength of 

 𝜎𝑢𝑡𝑠 = 𝛽1 (𝑃𝑚𝑎𝑥𝑡2 ) + 𝛽2 (7) 

and variations of it have been successfully used [11, 25, 200], a more recent expression of 

 𝜎𝑢𝑡𝑠 = 𝛽1 (𝑃𝑚𝑎𝑥𝛿𝑚𝑡 ) + 𝛽2 (8) 

where δm is the punch displacement at maximum load, provided more accurate results when 

compared to conventional test [10, 12, 195, 203]. The coefficient β1 was found to have a value of 

0.277, with β2 being negligible, for effective calculations with a variety of metals, including 

several grades of high strength, stainless, and structural steels, aluminum alloys, and magnesium 

alloys, and is less dependent on the material tested than the previous formulation [12, 214]. The 

preceding equations for determining yield strength and ultimate tensile strength can then be used 

with the Ramberg-Osgood hardening law in order to determine the hardening exponent, n, and 

generate true stress-strain data [215]. 

As achieving consistent, uniform thickness for numerous samples can be difficult on such 

a small scale, and due to the high effect of thickness variations on resultant SPT curves and 

material property calculations, Lacalle and co-authors proposed a normalization process to 

reduce the effect of varying thickness on results from otherwise identical samples [19, 198]. 

While the expression describing the earlier part of the curve stems from plate plasticity theory 

[216], it was determined that the normalization equation needs to be split into two regions, as 
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SPT curves generally deviate from plate theory behavior at the inflection point, PII-III, where 

deformation transitions from plastic deformation, zone II, to membrane stretching, zone III. The 

expressions were proposed which can normalize test loads, Ptest, to loads from a theoretical 

sample with a thickness of 0.5mm, P0.5, regardless of actual sample thickness, t, for more direct 

comparison between curves, and with increased accuracy in the latter part of the curve [198, 207, 

217], e.g., 

 𝑃0.5 = 0.52 𝑃𝑡𝑒𝑠𝑡𝑡2       𝑃𝑡𝑒𝑠𝑡 < 𝑃𝐼𝐼−𝐼𝐼𝐼 (9) 

 𝑃0.5 = 0.5 𝑃𝑡𝑒𝑠𝑡𝑡 + 0.5𝑃𝐼𝑁𝐹(0.5 − 𝑡)𝑡2      𝑃𝑡𝑒𝑠𝑡 > 𝑃𝐼𝐼−𝐼𝐼𝐼 (10) 

Presumably, all further calculations conducted with these normalized curves would 

assume a sample thickness of 0.5mm and have an ingrained adjustment on the determination of 

the σuts from Pmax due to the expression for the latter part of the curve. Comparison through 

normalization of the curves in [198] also facilitated the deduction of the influence of sample or 

material orientation, which is especially relevant to anisotropic materials, and which was shown 

to be highly influential.  

The theory of plates [218] has also been used to describe correlations very similar to 

those previously presented, along with a method of finding Young’s modulus, E, which involves 

a summation of the different stiffness values of the various components of the SPT rig and the 

sample itself [11]. This is in line with an expression presented by Giddings and co-authors, who 

used a straight-forward methodology involving an FEA model to determine the correlation 
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between the initial stiffness of the load-deflection curve and the Young’s modulus [13]. The 

small punch test technique was combined with various previously validated finite element 

models to evaluate the evolution of the Young’s modulus of polymethylmethacrylate (PMMA), a 

commonly utilized bone cement, under varying conditions and temperatures. The equation 

directly relates k, the initial stiffness in the P-δ curve, to E, the Young’s modulus, via, λ, a 

proportionality constant related to Poison’s ratio and the frictional characteristics of the material 

in question. This relation was later normalized by dividing the initial stiffness, k, by t, the 

original specimen thickness, to mitigate differences to the resultant Young’s modulus stemming 

from variations in sample thickness and produce more accurate correlations [15, 213, 219], e.g.,  

 𝐸 = 𝜆 (𝑘𝑡) (11) 

Although the proportionality constant, λ, has shown some material dependence, a 

proportionality constant suitable for a variety to of metals may be found by using a similar fitting 

methodology with the SPT responses and Young’s moduli of several materials together, as was 

done to determine constants in relationships described earlier. The tensile elongation of ductile 

materials has shown direct correlation with the displacement at maximum load, but has also 

shown high material dependence, and a universal correlation factor with a good fit was not found 

[12, 25, 30, 220]. To circumvent this issue, Chica et al. suggested introduction of an 

unloading/loading cycle to the SPT, and using the slope of this factor to determine the Young’s 

modulus, as the initial portion of the curve, k, can be affected by the plasticity properties of a 

material [221]. 
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Case studies on a unique material processing method, powder metallurgy, which uses 

powdered metal product pressed into component shapes followed by a sintering process, have 

been conducted by utilizing some of the aforementioned relationships [29, 222]. The nature of 

this manufacturing process leads to variability in the mechanical properties within components 

due to the variation in porosity and cooling rates of the different regions of the component [223, 

224]. The inherent porosity usually leads powdered metal products to be considered as brittle, in 

comparison to conventionally produced materials, as reflected in the SPT response shown in 

Figure 2.22, with comparison to a common structural steel [30]. The fracture patterns in these 

two samples are very distinct, with the powdered metal fracture occurring and growing radially 

from the center of the sample as it was continually displaced, and the structural sample tearing 

around the center of the sample, growing as this area continuously stretches and thins with 

displacement.  

 
Figure 2.22 - Comparison of SPT response and fracture of powdered metal as compared to 

structural steel [30]. 
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The analyses carried out in the canon of literature of SPT show that regressions 

comparing tensile and SPT results using the linear correlations presented earlier had an 80-90% 

R2 correlation fit for the yield strength, ultimate strength, and elongation. A slight adjustment to 

the constants provided an even more accurate fit, inclusive of the data presented in that work and 

the present study. It is also worth noting that SPT samples extracted from several different 

positions of the powdered metal bars produced for the acquisition of both SPT and tensile test 

samples for the present study correlate to the variability in porosity of these mentioned earlier. 

As such, even in a porous material, an SPT sample serves as a valid representation of a 

component, or even a localized region, and the strength variations associated therein. This is of 

critical interest when considering functionally graded or directionally dependent materials such 

as those produced with additive manufacturing techniques [25, 26, 222]. Additional support for 

analyzing these types of materials was shown by testing IN713C cast samples with columnar 

grain structures which displayed directionally dependent material properties and fracture 

behaviors, akin to those in additive manufacturing materials [184]. 

2.3.4 Creep Testing 

A variety of studies have leveraged the SPT to procure creep deformation and rupture 

properties of materials [18, 225-228]. Creep, which is a monotonic test, features a constant load 

application at elevated temperatures for prolonged periods. Milicka and Dobes established the 

existence of a linear correlation between the force of small punch creep tests and the stress from 

conventional creep tests which resulted in an identical time to rupture [19, 226, 227]. Strong 

dependencies of the rupture time on testing conditions such as sample thickness, load level, ball 
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diameter and type, temperature, and atmosphere have been shown; in the case of sample 

thickness, for example, achieving a similar time to rupture as a 0.3mm thick samples with a 

0.6mm sample required over double the applied force [18, 19, 228-230]. As such, it was 

established that the stress in a conventional creep test and the force in an SPT creep test can be 

relate linearly with the use of a proportionality constant for a material at a certain temperature. A 

correlation has been developed between the small punch creep results and the conventional creep 

results as a ratio, Ψ, of the SPT force divided by conventional stress combined with the 

deflection at fracture, giving the relationship  

 𝛹 = 𝑃𝜎 = [𝐴𝐶𝐴𝑆 ]1 𝑛⁄
 (12) 

where P is the constant force applied during the small punch test, σ is the stress from the 

conventional test results, and where the constants Ac, As, and n are described by the following 

relations which are driven by the time to fracture, tF, and combine the power law and the 

Arrhenius exponential law [226], i.e.,   

 𝐴𝐶 = 𝑡𝐹𝑒𝑥𝑝 ( 𝑄𝑅𝑇) 𝜎𝑛 (13) 

 𝐴𝑠 = 𝑡𝐹𝑒𝑥𝑝 ( 𝑄𝑅𝑇) 𝑃𝑛 (14) 

In these equations, Q, the activation energy in kJ/mol, and the stress exponent, n, 

preserve their value across conventional creep tests and SPT. The variable tF represents the time 
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to fracture, which needs to be identical for both tests for the validity of the formulation, R is the 

universal gas constant, and T is the absolute temperature. A modification to Equation 12 was 

made substituting P with (P/δ*), where δ*
 is the deflection at fracture, reduced results dispersal of 

the ratio ψ as it accounts for variability in ductility of the material and thus it was suggested that 

the force in the SPT divided by the deflection at fracture is proportional to stress in a 

conventional creep test [226]. Additional modifications were suggested for compensating for 

differences in temperature, which produced high overlap of the time to fracture between 

conventional and SPT creep tests. 

The CEN workshop agreement [194] established guidelines for exploring creep 

properties using SPT based on the theories established by Chakrabarty on the stretching of 

materials over hemispherical punch heads [231, 232]. This equation, which correlates the force 

of the small punch test, P, to conventional creep stresses, σ, which was previously defined as the 

ratio, Ψ, is given as  

 𝑃𝜎 = 3.33𝑘𝑠𝑝𝑟𝑑𝑖𝑒−0.2𝑟𝑝𝑢𝑛𝑐ℎ1.2 𝑡 (15) 

where rdie is the radius of the opening of the lower die, rpunch is the radius of the punch, t is the 

thickness of the sample, and ksp is a creep correlation factor. The constants were established 

through a regression fitting of several tests conducted via round robin. The correlation constant 

ksp can be assumed to have the value of 1 initially, though to get a more accurate result a 

comparison with conventional uniaxial testing must be done [9, 194, 231]. It is worth noting that 

often the calculation of ksp yields values which do not deviate very much from unity, and as such 

use of the value of 1.0 can give reasonable estimates [233]. Utilization of this formulation aids in 
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selection of the load, F, when designing SP creep tests with an equivalent time to rupture as a 

conventional creep test conducted at stress level, σ [9]. This method has also been shown to be 

reliable via verification using the Larson-Miller and Orr-Sherby-Dorn parameters to establish the 

same relationship [197].  

The relationship established by CWA 15627 has been used in several subsequent studies. 

Zhao et al. used SP creep tests at 650°C with a constant load ranging from 225 to 350N on four 

different zones in a P92 chromium steel welded joint to explore deviations in the weld area [27]. 

Comparisons between SPC results and conventional results as well as FEM results showed good 

agreement. Small punch creep results have been shown to be representatively equivalent to 

conventional creep results, with bending being the principal mode of deformation in the primary 

creep region, while the secondary and tertiary stages are mostly characterized by membrane 

stretching [228, 234].  

The SPC test and the relationship between SP results and creep stress have been shown to 

be effective for unique materials as well. Adaptability and suitability of use with single crystal 

and anisotropic materials has been shown, though with some limitations; directionality and 

temperature have been shown to affect correlations [201, 233, 235]. A study by Bruchhausen et 

al. also utilized the ksp relationship, but with directionally different materials and noted 

differences based on the testing direction in reference to the extrusion direction [233]. Due to the 

material anisotropy the ksp value was left at 1.0, as there was difficulty in evaluating the 

longitudinal material direction, due to the biaxiality of the stress field in SPT. The anisotropy is 

evident in the SPT creep results, and neither data set matches directly with traditional tests. This 

study also showed that SPT results follow the Monkman-Grant relationship, while others have 
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shown that the Larson-Miller law and Dorn equation for calculating load exponent and activation 

also work well [19, 227, 228, 233, 236]. Additionally, the Wilshire rupture model and logistic 

creep strain prediction equation have been used in conjunction to a high degree of accuracy 

[237]. 

2.3.5 Fracture Properties 

Several formulations have also been proposed to estimate the fracture properties of 

materials from SPT results. Primarily, the methodologies relevant to determination of fracture 

properties stem from the utilization of an equivalent fracture strain for membrane stretching of 

blanks over a rigid punch. The equivalent fracture strain, proposed by Chakrabarty [232] and 

confirmed by several researchers [16, 176, 180, 238, 239], is defined as  

 𝜀𝑞𝑓 = 𝑙𝑛 ( 𝑡𝑡𝑓) (16) 

where t is the initial sample thickness and tf is the final sample thickness in the area in which 

fracture occurred. As with others, a linear relationship was established with the fracture 

toughness by testing of specific materials such as different grades of CrMo alloys and carbon 

steels [239-243] or with several different materials such as in [12] using the equation for 

equivalent fracture strain which utilizes direct measurement of sample thickness at the fracture, 

given as 

 𝐽𝐼𝐶 = 𝐴𝜀𝑞𝑓 + 𝐵 (17) 
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The relationship, with constants A and B of 1695 and -1320, respectively, was considered 

valid for alloys with an SPT biaxial strain at fracture, εqf, of greater than 0.8, though it was not 

considered valid for brittle materials [12]. However, measuring sample thickness at fracture can 

be difficult to accomplish and lead to inaccurate results. As such, the equation for equivalent 

fracture strain was used by Mao et al. [16, 239, 244] to develop the expression 

 𝜀𝑞𝑓 = 𝑙𝑛 ( 𝑡𝑡𝑓) = 𝛽 (𝛿∗𝑡 )𝑝
 (18) 

where β and p are constants determined to be 0.09 and 2.0, respectively, for a disc with a 

diameter of 3mm and thickness of 0.25mm, and δ* is the deflection at fracture of the sample 

center, as shown in Figure 2.18, sometimes correlating to the maximum load, and thus δm. These 

expressions can then be used to solve for fracture toughness, JIc, as established by Mao, which 

takes the form of Equation 17 but with first and second constants valued at 345 and -113, 

respectively, and applying to a range of materials [16, 239]. However, Kumar et al. [245] 

established quadratic equations for determining the value of constants β and p dependent on the 

original sample thickness, t, to determine the equivalent fracture toughness, εqf, by testing various 

thickness samples using an FEA analysis and implementing an exponential fitment curve. 

Comparative fracture toughness results for 2.25Cr-1Mo between the original constants 

determined by Mao and those determined using the quadratics established by Kumar et al. 

showed a reduction in error of 8-20% over Mao’s constants using the quadratic constants when 

the fracture toughness obtained was compared to that found using CT specimens.  

Ha et al. [186] tested the methods of Joo et al. and Afzal Khan et al. [246, 247], the latter 

of which is an Elastic-Plastic Fracture Mechanics (EPFM) approach, involving the calculation of 
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the energies of the different stages of deformation seen depicted in an SPT curve. The EPFM 

approach, though rather complicated in its formulation, gave results consistent with those found 

using Charpy impact tests. The methods presented by Joo et al. were shown to work consistently 

for materials in cold conditions to estimate fracture toughness, specifically once the material has 

crossed below the ductile to brittle transition temperature, but not for ductile materials [186, 

246]. A sharp-notched central pre-crack of length a was introduced into the design of the SPT 

specimen while applying this methodology, as seen in Figure 2.23(c) and was successful in 

creating a stress concentration to replicate results congruent with those in other studies for the 

lower shelf energy region [248]. This method showed accuracy dependency on temperature and 

thickness, and has the disadvantage of having to know the point of crack initiation, which can 

prove to be of some difficulty with SPT. Similarly, Tanaka et al. utilized CrMoV cast steel SPT 

specimens with fatigue pre-cracked center notches to evaluate fracture toughness at high 

temperature [249]. In this study, electrical potential drop was used to indicate the beginning of 

unstable crack growth to determine the load at crack initiation, though locating the inflection 

point of the electrical potential curve proved difficult. Additionally, this method utilized FEA to 

obtain fracture toughness from the SP test using master curves of creep damaged materials. This 

requires previous knowledge of the material from tensile testing to program the behavior into the 

FEM analysis to produce said master curves. It was also noted that this method may be 

dependent on the toughness of the material, as high fracture toughness correlated with high error. 
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Figure 2.23 - Examples of specimen geometries utilized in SPT fracture studies including (a) 
standard round, (b) standard square, (c) central notched [248], (d) single edge notched [250], (e) 

circumferentially notched [251], and (f) lateral cracked [252]. 

 

Concurrently, Lacalle et al. developed a method based on traditional fracture testing 

standards using SPT samples with a simple lateral notch along one edge, similar to a single-edge 

notch tension test (SENT), of varying lengths in order to obtain the J-R curves [250, 253, 254]. 

This method was later verified by [196]. A sketch of the samples used, which are of the common 

configuration of 10x10x0.5mm, is shown in Figure 2.23(d). The initial notch length, a, is varied 

from 4-6mm in length, and the radius, ρ, was around 75-100 microns, and was cut using a laser 
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micro-cutting technique. Using this method the areas under the various curves corresponding to 

the different length of cracks are measured to obtain a set of J-integral values defined as  

 𝐽 =  𝐶𝑈𝑡𝑏  (19) 

where U is the strain energy under the curve of interest, t is the specimen thickness, b is the 

remaining width from the tip of the crack, and C is a coefficient of material flow stress and notch 

length with a built-in geometry dependent factor [11, 250], e.g., 

 𝐶 = 0.12 + 58(𝑎 − 3.0)𝜎𝑌  (20) 

Here σY is the flow stress, given in MPa, and the expression (a -3.0) is the effective notch 

length in mm calculated by subtracting the part of the specimen clamped by the dies from the 

total notch length. The flow stress is calculated as an average between the yield stress and 

ultimate tensile strength. Figure 2.24 shows a comparative response between two samples with 

varying initial notch lengths of a1 and a2, with strain energies of U1 and U2, respectively. Using 

the differential area between two subsequent curves, valued as strain energy, with different initial 

crack lengths gives the energy to extend the crack from one size to the next, taking the point of 

maximum loading to be the moment of fracture [196]. Calculating the strain energy to get from 

one notch to the next notch, that is, with two otherwise identical specimens with differing crack 

lengths to obtain the J-integral values, a composite fit curve can be fit to the plot of the J data 

points, which has been shown to correlated well with conventional results [196, 250]. This 

method has been used to find the fracture resistance of materials under plane stress to be verified, 
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or analyzed for the first time for materials which are more difficult to procure enough of in 

quantities sufficient for traditional methods, such as gold and its alloys [11]. A study utilizing 

nanocomposite films used the area under the load-displacement curve up to the break point to 

estimate the fracture toughness, with acceptable results, though the samples in this study did not 

utilize the multi-specimen approach, which is key to accurately modeling the J-R curve to 

estimate fracture toughness [219]. In a study [196] comparing the SENT method with two others, 

the SENT method proved the simplest and most reliable, minus the drawback of requiring 

multiple specimens with different crack sizes. The other two methods, though also providing 

reasonable results, had significantly greater drawbacks. The first, based on crack tip opening 

displacement formulations, required multiple interruptions of tests to find the exact instance of 

fracture initiation and SEM access to measure crack opening. The second is based on using 

complex numerical simulation methods employed for simulating traditional notched fracture 

samples to calculate the J-integral which requires large deformations and therefore extensive 

calculations. 
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Figure 2.24 - Energy difference method for calculation of J integral. 

 

Several other notched specimen types have also been proposed to characterize fracture 

strength using SPT [217, 251, 252]. In order to overcome the limitation presented by the SENT 

method of representing only situations of plane stress, Turba et al. [251] presented a new style of 

circumferentially notched SPT specimen, the details of which can be seen in Figure 2.23(e). This 

design is purported to approximate a plane strain condition for materials which exhibited fully 

brittle fracture, rather than ductile or mixed-mode fracture. Fracture energy in this case was 

measured up to a displacement corresponding to a 20% drop from the maximum load, which was 

where the specimen was considered as fractured. The main limitations of the circumferentially 

notched specimen are the presence of mixed-mode loading as opposed to pure Mode I loading 

and the difficulty presented in introducing a fatigue pre-crack to improve said limitation. Cuesta 
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and Alegre [252] conducted a study using a Charpy-like laterally pre-cracked specimen along 

with FE models to numerically simulate the pre-cracked specimen to obtain estimates of the 

fracture toughness, the geometry can be seen in Figure 2.23(f). Although complex, due to 

requiring varying depth cracks and extensive modeling, results were found which were within 

the valid variability range established by Charpy impact tests. A subsequent study from Cuesta et 

al. [217] using similar specimens showed the effects of crack shape and quality on the results. 

Although the methods did not have a direct effect, the overall shapes of the cracks and their 

uniformity affected the repeatability and quality of results, emphasizing the need for accurately 

machined pre-cracks with high stress concentrations to increase reliability. Further complications 

arise when considering the numerous notched samples proposed, as notch configuration, size, tip 

radius, and quality affect the fracture response, and furthermore the severity of the response is 

dependent on sample thickness [255]. A study by Martínez-Pañeda et al. studied the effects of 

notch configuration and quality, as imparted by the chosen machining method, while also 

introducing a cross-notched configuration derivate of that shown in Figure 2.23(f), where another 

crack is machined perpendicular and centered to the lateral crack shown [255]. The different 

configurations were also modeled to study the damage behavior for the use of determining 

Gurson-Tvergaard-Needleman model constants.   

A thorough literature review by Abendroth et al. also noted significant contributions by 

several other researchers to this area of SPT research [256-258]. Misawa et al. determined a 

linear relationship for fracture toughness similar to those noted earlier in this article, in which the 

single constant relating JIc to the equivalent fracture strain is both material and geometry 

dependent, and has units of kJ/m2 [256]. Other notable contributions include calculation of JIc 
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and ductile-to-brittle transition temperature via the use of the calculated small punch energy by 

Bulloch, similar to the work cited earlier by Alegre et al [258]. Abendroth et al. were then able to 

propose a parameter identification process with FEA and constitutive material models to describe 

both ductile and brittle behaviors, one of the few processes to claim as such [257]. Brittle 

materials were evaluated using a Weibull statistical failure analysis, which was shown to be 

effective with varying compositions of carbon bonded alumina ceramic.  

A study by Altstadt et al. [24] on oxide dispersed strengthened steels using SPT showed 

the effects of anisotropy on fracture results, which is especially relevant so SLM materials. The 

anisotropic nature of the crystal growth leads the material to act like a layered structure, with 

different directions behaving differently under SPT loading. This study showed that when 

loading direction was parallel to each layer the layers would delaminate, while samples loaded 

perpendicular to layers tended to arrest growth of the crack each time in encountered a new 

layer. This translates to the load peaking, dropping suddenly, and then continuing to rise, often 

repeating this behavior multiple times. Results from this investigation arising from this behavior 

led to the determination of transition and ductile-to-brittle transition temperatures to be 

inconsistent from traditional results with SP tests yielding much higher transition temperatures, 

with differences over 400°C present. The effects of these behaviors on determination of other 

material properties are unclear. 

Overall, SPT has been shown capable of characterizing the fracture behavior of various 

materials. Results show sensitivity to microstructural differences, and test results display 

response to differences in sample temperature and thickness. Samples with machined or 

fabricated fracture notches show some promising similarities to traditional notched sample 
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testing, but dependence on material type and condition as well as sample geometry and 

preparation makes these approaches less reliable. Though a large body of literature exists, direct 

inferences on fracture behavior have been shown to be highly dependent on several factors, and 

as such various approaches have been studied, though no single method has strong confirmation, 

making direct correlations with conventional results difficult. 

2.3.6 Shear Properties 

A variant of the SPT is utilized for determination of shear properties which utilizes a flat 

punch rather than the typical rounded punch, known as shear punch testing (ShPT), and was 

derived from blanking operations used for metal forming [259, 260]. This varies slightly from 

the small punch test, which is the primary focus of this paper, when considering formulations for 

determining material properties from ShPT test data, but has been shown analogous to uniaxial 

tension [260]. While the dimensions of most of the components are typically very similar, the 

rounded punch or ball is replaced with a flat punch of the same diameter with causes the primary 

deformation mode to be one of shearing in the sample along the edges of the punch. The shear 

stress, τ, can be calculated from the load-displacement data as 

 𝜏 = 𝑃2𝜋𝑟𝑎𝑣𝑔𝑡 (21) 

Where P is the applied load, t is the initial specimen thickness, and  

 𝑟𝑎𝑣𝑔 = (𝑟𝑝𝑢𝑛𝑐ℎ + 𝑟𝑑𝑖𝑒) 2⁄  (22) 
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where the variable rpunch denotes the radius of the circular, flat-tipped punch, while rdie represents 

the radius of the opening of the lower die. This method of calculating shear stress from shear 

punch data is widely utilized in literature as providing accurate results [175, 260, 261]. This is 

one of the more straightforward conversions of punch test data to traditional data that is reliably 

present in literature. Conversion of load-displacement data to shear data via the use of this 

equation allows for more direct calculation of material properties in shear. 

Linear relationships have been proposed for determination of tensile properties such as 

yield strength, ultimate strength, and strain hardening exponent from shear punch testing [262, 

263]. It has been agreed upon that a linear relationship exists between the primary yield point of 

the shear-displacement curve and that of the tensile yield strength. However, such as is the case 

with the small punch test, the determination of where the yield point occurs is a topic of 

considerable debate, with a few methodologies having strong experimental support behind them. 

The relationship for determining the tensile yield strength, σys, from the shear-displacement curve 

can be given as  

 𝜎𝑦𝑠 = 𝛼𝜏𝑦𝑠 (23) 

where τys is the shear yield determined from the shear-displacement curves developed from the 

force-displacement results using Equation 21. The primary method used for determining the 

point of shear yield was by using the point of first linear deviation from the shear-displacement 

graphs as the point where shear yield occurs [264, 265]. This method, however, is somewhat 

arbitrary and the point is not always well defined, making this method difficult to use. 

Consequently, after a redesign of typical SPT fixtures incorporating some compliance correction 
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by adjusting the location of displacement measurement, a 1% offset shear strain method was 

suggested for defining the shear yield stress, where the shear strain, γ, can be calculated as  

 𝛾 = 𝛿 𝑐⁄  (24) 

where δ is the punch displacement and c is the clearance, defined as the difference between the  

radii of the punch and die when using a flat-faced shear punch [263]. This method showed a 

marked improvement when compared to FEA simulation results relative to older methods [199, 

263].  

Guduru et. al tested various alloys and suggested a variation to the 1% offset shear strain 

method previously used [261]. In order to mitigate sample thickness effects associated with this 

method, they implemented a normalization factor when plotting the shear-displacement curves, 

normalizing the displacement by dividing it by the sample thickness and using a 1% offset to 

find the corresponding yield point. The correlation constant was then found by plotting the 

known 0.2% offset yield stress values of the various metals tested versus the shear yield values 

found with SPT. A correlation value of 1.77 was determined, so that the equation for correlating 

tensile yield stress and shear yield stress begins to approximate the von Mises yield criterion 

which utilizes a correlation factor with a value of 1.73 when the deformation mechanism is 

dominated by shear.  Later, FEA models were similarly utilized to support this correlation 

against experimental results by using the von Mises yield criterion as a basis for comparison. 

FEA results indicated that much smaller offsets were necessary, with the difference between the 

correlation factor found and that given by the von Mises yield criterion being attributed mainly 

to compliance effects from the SPT test rig [266, 267]. Originally, experimenters incorrectly 
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assumed the crosshead displacement correlated with the punch displacement. It was later shown 

that flex in the components of the load frame and of the small punch apparatus actually 

invalidate this assumption, and SPT force-displacement curves had to be offset in order to 

mitigate punch compliance effects [265]. As such, a measurement device was placed parallel to 

the punch in later studies, which helped to mitigate these effects which were especially apparent 

in high strength materials [261, 263].  

Additional support was given by SP testing electrodeposited copper samples, the 

properties of which were not included when determining the correlation factor or the subsequent 

FEA analysis, and comparing values determined using the correlation factor of 1.77 to 

miniaturized tensile testing results [266]. The correlation factors used for calculating tensile yield 

and ultimate strength produced values that were within 6% of the measured values from tensile 

tests [266]. It was later shown that compliance issues could be further eliminated by measuring 

the displacement of the sample itself, as it is represented in an FEA [264, 265]. As was the case 

for the small punch test, this was accomplished by locating a linear variable differential 

transformer (LVDT) directly below the sample, and was shown to be highly successful [199, 

200]. In fact, in the case of the shear punch test, the offset using this correction with additional 

information gleaned from elastic loading tests reduced the necessary offset to 0.2%, matching 

earlier FEA simulations and changing the linear relationship definition to one which matches the 

von Mises shear yield criterion [199, 266, 267], e.g.,   

 𝜎𝑦𝑠 = 1.73𝜏𝑦𝑠 (25) 
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Similarly, a linear relationship has also been determined for calculating the ultimate 

tensile strength. A relationship was proposed stemming from the manufacturing process of 

blanking to which the shear punch test is akin, where the maximum shear load was related to the 

ultimate tensile strength by way of a factor dependent on the strain hardening exponent [268, 

269]. However, this required previous knowledge of the strain hardening exponent in order to be 

utilized, typically requiring tensile tests to characterize, thus rendering the ShPT redundant. 

Subsequent studies eliminated the need for previously established constants and proposed a more 

direct relationship [199, 269, 270]. This relationship can be expressed as 

 𝜎𝑢𝑡𝑠 = 𝛽𝜏𝑢𝑡𝑠 (26) 

where τuts is the ultimate shear stress value, the maximum load determined from the shear-

displacement graph and β is the correlation factor. This equation is an adjustment from the 

original which included an additional offset parameter on the right side, to improve the overlap 

between shear punch and conventional uniaxial data and which varied with the class of alloy 

[264]. This offset parameter was subsequently eliminated by the aforementioned correction of 

compliance issues which made the data sets from SPT and conventional tests overlap more 

accurately [262, 263]. In [261], experimentation with a variety of materials led to a suggested 

universal correlation value of 1.8 for the constant β. Subsequent support showed that this 

correlation also works well for a material not included in their primary study, electrodeposited 

Cu [266]. Other studies, however, while confirming the form of the relationship, found differing 

correlation constants for the UTS relationship based on the material, and the use of a single 

constant for all materials provided unreliable results [179, 199]. Rabenberg et al., for example, 
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found correlation factors for the shear yield and ultimate shear strength of 1.5 and 1.4, 

respectively, in addition to utilizing a 2.2% offset to determine the shear yield point, all of which 

differ from several studies presented earlier, though it falls within a large range that they found 

present in literature [179]. Their correlation factors were established through a series of tests 

with samples of aluminum, stainless steel, and Inconel of varying treatment conditions, and 

validated with irradiated 304SS; however, the LVDT used in this study to measure displacement 

was attached to the crosshead, rather than below the sample, which lends credence to the higher 

need for compliance correction, as seen in works cited earlier.  

2.3.7 FEA of SPT 

Finite element models and simulations of small punch tests have been extensively utilized 

to validate SP tests in order to evaluate material properties. Many of the studies reviewed have 

utilized FE models to varying degrees in order to acquire results and material correlations. 

Though some investigations utilize 3D models, 2D axis-symmetric models have been shown to 

be sufficient for most studies [271]. Simulations are often employed to determine material 

properties via the inverse method. The FEA for the solution of the inverse problem involves 

using the results of SPT to inversely solve for the stress-strain curve. A simulated SPT curve is 

assembled in a piecewise manner using assumed values for material model constants, adjusting 

them iteratively until the curve up to a particular point matches that of the experimental output. 

This is repeated until the output of the simulation matches that of the experiment, after which the 

acquired curve can be used to characterize an equivalent stress-strain response and thus establish 

material properties. Efforts have been made to speed the curve-fitting optimization process using 
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a number of different algorithms to calculate the numerous iterations, including least squares, 

neural networks, and pattern searches, among others [272-275]. This approach is often useful 

when not much is known about the material. Husain et al. used this iterative approach on the 

elastic portion of SPT curves to determine the elastic moduli and corresponding stress-strain 

relationships of three different steels, with promising results versus traditional tensile tests [276]. 

A comprehensive study using the inverse method was conducted by Campitelli et al. in order to 

assess the true stress-strain relationship [277]. The model which was developed showed the 

necessity for splitting the strain hardening into two stages for increased accuracy. The 

importance of the effects of compliance, friction, specimen thickness, and constitutive modeling 

were all verified. A model constructed by Egan et al. showed the importance of basing material 

property variance based on deformation shape [272]. The elastic-plastic behavior was found via 

three plasticity coefficients which were optimized using a pattern search curve fitting algorithm, 

cutting down on manual computation efforts. Similarly, Linse et al. combined the computing 

power of neural networks with an optimization routine using an axis-symmetric model for the 

prediction of load-displacement curves by limited variation of material properties [273]. Results 

for identifying the hardening coefficients of reactor vessel steels with the optimization routine 

showed results correlated well. A study using PMMA bone cement by Giddings et al. 

corroborated the findings of previous studies to evaluate the relationship between the initial 

stiffness of the SPT test and the Young’s modulus by varying the value of the modulus and the 

corresponding set of initial stiffness values [13]. The proportionality constant was found by 

utilizing an FEA model with an assumption of the Poisson’s ratio value and variation of the 

elastic moduli to note the initial stiffness then applying a least-squares fit. In this way a 
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correlation factor between the two was determined for future predictions. This same method has 

been used with metals as well [278]. Kim et al. found correlation factors for determining the 

yield strength, Young’s modulus, and hardening coefficient [212]. A comprehensive study 

conducted by Garcia et al. on determination of correlation factors for SPT to mechanical 

property relationships utilized a FEA model to evaluate several points on the force-displacement 

curve to find the best fit for the correlations for calculation of yield and tensile strengths [12]. 

This study extended into determining a correlation coefficient for fracture toughness for ductile 

steels. Additionally, Guduru et al. and others have used correlation simulations to find 

correlation factors between the shear strength data produced using the shear punch test and 

tensile strength and yield strength [261, 266, 267, 269, 270]. 

Simulations have also been used for evaluating creep properties in SPT, with suitable 

correlation to traditional creep tests having been found. Simulations, like traditional tests, have 

primary, secondary, and tertiary stages, and showed failure in the expected areas [234, 279]. 

Using P92 steel welded joints, Zhao et al. simulated creep damage and determined correlations 

between the applied load and stress levels [27]. A strain model was then used to relate the creep 

strain of SPT to determine a relationship between strain rate and stress. Zhou et al. similarly 

found good correlation of FEA creep simulations and experimental results, along with the 

significant influence of specimen thickness, load level, ball size, temperature, and test 

atmosphere [18].  

Kim et al. calculated critical fracture stresses for low alloy steels at very low 

temperatures by comparing maximum loads from SP curves to FE results [212]. Tanaka et al. 

utilized a FEM analysis from a notched 3D model in order to obtain fracture toughness from SP 
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tests, in combination with the small punch energy value calculated from the force-displacement 

curve [249]. Master curves were created which relate the fracture toughness value JE and the SP 

energy ESP, which require the use of a traditional tensile test to obtain a stress-strain curve. 

Simulation of a small punch test is conducted to obtain relationships between ESP and the strain 

energy density WSP at the crack tip of the SP specimen. Similarly, a simulation of a traditional 

CT fracture test serves to provide the relationship between JE and the strain energy density at the 

crack tip of the CT specimen, WCT. The relationship of WSP = WCT is then used to relate JE to ESP, 

thus allowing the use of these master curves as references for future test curves to estimate 

fracture toughness. This process is similar to one utilized previously by Foulds et al. [280]. The 

results of this method were somewhat questionable, being dependent on certain limiting 

conditions. Similarly, Turba et al. used another novel fracture specimen previously described. In 

this case, FEA was used to optimize the notch size, calculate the stress intensity factor, and carry 

out an elastic-plastic analysis or said specimens. The stress intensity factor calculated using the 

FEA in combination with test results were then used to estimate a fracture toughness value [251]. 

Cuesta et al. utilized the Gurson-Tevergaard damage model to simulate SPT results up to fracture 

with good agreement [281]. In this manner, material properties were determined by matching 

simulation to experimental results. The model was separated into six stages and parameters were 

determined one at a time using the inverse method. Dutta et al. suggested a method to improve 

the numerical prediction of fracture initiation and overall fracture energy curve calculation using 

the Gurson-Tevergaard-Needleman material model with split parameters [282], which was 

shown to improve prediction and determination of J-integral vs crack growth data [215]. 



100 
 

Similarly, damage parameters for the Gurson-Tevergaard-Needleman model have been used to 

precisely simulate fracture of notched SPT specimens of varying configurations [255]. 

Several studies have correlated experimental force-displacement curves with those 

produced by FEA models in order to determine compliance effects on experimental results.  The 

FE simulation conducted by Egan et al. used experimental data to find the influences of 

maximum force depending on the material properties supplied and the sample geometry [272]. 

The effects of microdefects and microvoids were examined by Guan et al. [283]. Simulated 

curves with varied void sizes integrated in the models showed that although defects had little 

effect on the earlier parts of the curves, strength in the plastic region was affected and the defect 

produced large amounts of scatter. Hulka et al. analyzed the geometry presented in the CEN 

workshop agreement for sensitivity effects on results of inverse simulations which tested the 

influence of the mesh density, the modeling of the tools, the sample thickness, the material 

model used, and the effects of friction between the punch and sample and between the sample 

and the dies [284]. Similar studies have shown that sensitivity studies are useful for evaluating 

fracture properties as well, as [245, 285] showed model response and fracture location 

dependencies on sample thickness and friction, but an independence from mesh density. 

Sensitivity studies apply when modeling the shear punch test as well. Goyal et al., for example, 

explored the effects of several parameters on shear yield strength, such as effects of punch 

compliance, which was severe [286]. Less severe were offset effects and variations in lower die 

width and specimen thickness. 

Simulations thus play an integral part in determination of material properties when 

utilizing small punch test, especially as the most accurate method of acquiring conventional data 
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from SPT test data is by utilizing the inverse solution method. In an effort to reduce calculation 

time due to the numerous iterations necessary when curve fitting via the inverse method, 

correlation factors are often used to determine material properties. However, these have been 

shown, often through the use of FEA models, to have dependencies on material, geometry, and 

other test factors. As such, FEA is and will remain an integral part of material characterization 

with small punch testing. 

2.3.8 Fatigue 

The small punch test (SPT) has yet to be leveraged for thorough evaluation of the fatigue 

behavior of materials. This is due to the difficulty of applying reversed loading in an SPT setup, 

or even zero-to-load setups, as a return to the origin displacement of zero could cause punch 

alignment issues upon subsequent load cycles, as a gap forms between the punch and the sample 

surface due to plastic deformation of the sample. With the constricted space used in SPT, 

forming an SPT setup which can apply more than the typical downward load of a typical SPT 

setup presents a challenge. Several reviews which cover miniaturized testing summarily stated 

that small samples gave high correlation with full size sample S-N curves and as such sample 

size was found to have little effect on results, though otherwise lacked insight on the matter [231, 

287]. Hirose et al. used miniaturized cylindrical fatigue specimens to show that size did not have 

a significant effect on fatigue properties [288]. Li and Stubbins conducted fatigue crack growth 

tests using miniaturized three point bending samples well within the dimensions of SPT samples 

[289]. These samples, with the dimensions of 7.9mm in length, 2mm in width, and 0.8mm in 

thickness, were pre-cracked with a 0.1mm deep notch made by electro-discharge machining and 
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cycled with a load ratio, R, of 0.1. The crack growth data corresponded very well with standard 

sized test specimens.  

However, Prakash and Arunkumar presented a novel cyclic compression-compression 

small punch test routine which was inspired by monotonic and cyclic automated ball indentation 

for estimation of material properties, including fatigue life [15]. This method uses hysteresis 

energy of cyclic SPT as a parameter to quantify the fatigue life of materials. To quantify the 

fatigue damage, they defined a damage parameter as the difference between unity and the ratio of 

the plastic energy dissipated per cycle of damaged material to that of a virgin material. The 

determination of the damage parameter involves the summation of the plastic dissipation energy 

for damaged and virgin materials, in this case copper and stainless 304, by cycling materials at a 

frequency where the hysteresis is constant or stable. The load for cycling is a percentage of the 

maximum load determined by first conducting monotonic small punch tests. The typical cyclic 

loading regimen for small punch tests is thus as shown in Figure 2.25. Due to the design 

constraints, cyclic loading is applied to the top of the sample to a certain load level, with the 

deloading cycle going to approximately zero load, though maintaining contact is important due 

to alignment concerns.  
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Figure 2.25 - Typical cyclic small punch test loading profile found in literature. 

 

 A significant effect was also found with variation of the frequency of cyclic loading, as 

thermal effects from excessively high frequency tend to alter material behavior and resultant 

hysteresis, emphasis was also placed on optimization of clamping torque, which varies based on 

the material being cycled [15]. The approach shows sensitivity to material condition and testing 

parameters with loads varying as little as 2N showing differences in life. The damage parameters 

of copper at different fatigue life states calculated via cyclic loading were compared with damage 

estimated from monotonic SPT as well as tensile tests, and while the cyclic parameters were 

generally higher, they were within 7% difference of both monotonic SPT and tension tests. 
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A cyclic SPT study based on using the standards for testing ultra-high molecular weight 

polyethylene (UHMWPE) for surgical implants, ASTM F2183, showed that cyclic SPT gave 

repeatable and reliable results [290]. Test results showed the differences in life for varying loads 

and varying aging conditions, with distinctions showing for different aging times versus virgin 

material. Samples were cyclically loaded at 200N/s with a triangular waveform, with loading 

between 2N and a maximum of 60-94% of the maximum load of monotonic tests so as to result 

in failures below 10,000 cycles. A similar study by Jaekel et al. using polyetheretherketone 

(PEEK) polymeric biomaterials confirmed that cyclic testing with SPT was sensitive enough to 

detect differences in manufacturing conditions for the materials, even while restricting loading to 

the elastic range of the load-displacement curve [14]. These studies show the sensitivity of the 

SPT to material variations due to both testing and manufacturing conditions, which is important 

for additive manufacturing materials as processing parameter variations to the resultant 

microstructure and material properties. 

While these studies mainly show that SPT can detect differences in fatigue life due to 

differences in processing or treatments, it is unclear whether the results directly translate to 

traditional fatigue life prediction data. Additionally, the capabilities presented in literature for 

fatigue testing with SPT are limited to zero-to-tension loading. This type of loading, while 

useful, only gives a limited perspective on fatigue, as it provides no insight on reversed yielding 

or plasticity. A significant gap in SPT fatigue testing exists which needs a modified methodology 

capable of reversed loading in order to fill it, which present a large challenge given the confined 

dimensions of the test system. Regardless of it scarcity, however, the literature on this topic 
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shows the potential for fatigue testing with SPT, especially since sample size does not seem to 

have a significant effect. 

2.4 Summary 

Additive manufacturing methods such as selective laser melting are being increasingly 

utilized in both research and industry. The general effects of process parameters and post-

processing treatments with AM are well understood, as they have been thoroughly documented 

in literature, yet each material is unique in how it reacts to the processes and in the properties of 

the resultant microstructure. Nickel superalloys, specifically those of the Inconel family, display 

high strength which persist up to very high operating temperatures. As such, nickel superalloys 

are of high interest to SLM applications for energy applications, such as in the design and 

manufacture of steam turbine components with complex cooling geometries. These alloys are 

highly susceptible to processing and post-processing, due to the microstructural evolution of 

their constituents, and these effects are compounded by the manufacturing conditions present in 

SLM. Each alloy must therefore be thoroughly characterized before being employed for specific 

applications to ensure it suitability and to establish optimal SLM processing parameters and post-

processing techniques. This can be both time consuming and expensive, as experiments must be 

carried out to assess the effects of varying numerous build parameters and post-processing 

treatments.  

The small punch test, as a miniaturized sample test technique, is proposed as able to 

alleviate the time and cost of this process due to the simplified design of the sample and the 

experiment. As a consequence of this, however, the state of stress induced during 
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experimentation is more complex than that of a conventional test such as a tensile test. This 

necessitates the use of more complicated techniques in analyzing data to determine material 

properties. Several procedures are outlined to equate SPT data with conventional stress-strain 

data, and though lacking formal standardization, many of these methods are well established in 

literature. Correlation values for deriving material properties from SPT data have been shown 

material dependence in certain cases, but not others. Relationships exist with conventional 

testing techniques including tension, creep, fracture, and fatigue, as well as a variation of the 

small punch test known as the shear punch test for acquiring shear properties. 

2.4.1 Knowledge Gaps 

Although many of the methods outlined here have been explored widely in literature, 

variations between studies show sensitivity to experimental and material conditions. Correlation 

factors have shown material dependency, though some constants have been proposed to be 

widely applicable to a range of materials. It is unclear whether these constants will serve suitable 

to analyzing SLM materials, due to the intrinsic differences to conventionally produced 

materials, or if correlation factors need to be established based on material type, orientation, 

condition, etc. The most reliable method of deducing material properties from SPT data is 

through extraction of a stress-strain curve via the implementation of the FEA inverse solution 

method. The optimization is often done via least squares of error. It is unclear whether a model 

starting with conventional material properties will accurately match with the experimental force-

displacement curves given the fundamental microstructural differences, and especially when 
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factors such as orientation are considered. As the literature highlighting the used of SPT with 

AM materials is limited, its suitability for characterizing SLM materials is relatively unknown.  

Some areas of SPT as they correlate to conventional testing techniques have not been 

thoroughly established. Though strong equivalencies exist, there are numerous variations with 

establishing fracture properties, with no single approach being universally accepted, and 

dependencies on material type, condition, and orientation exist. Additionally, the use of the small 

punch creep test is prominent in literature and the relationship for determining the equivalent 

stress level necessary to achieve the same time to rupture at a certain force with SPT is well-

established. However, this relationship has been shown to be sensitive to material anisotropy, a 

trait which SLM materials are well known to exhibit. Most prominent of the deficiencies in SPT 

research are those relating to fatigue. Research on cyclic loading in SPT is scarce and limited to 

zero-to-tension or tension-to-tension loading, with no studies having explored reversed loading 

equivalent to conventional tension-to-compression testing which is necessary for estimating 

component life, especially as related to energy production applications. These deficiencies make 

it difficult to utilize the small punch test to thoroughly characterize SLM materials to the extent 

achievable with conventional experimental techniques.  

2.4.2 Applicability of SPT to SLM 

Despite these deficiencies, evidence in literature suggests that SPT can be a valuable tool 

for optimizing SLM materials. The small punch test has been utilized to characterize some AM 

materials, and a number of welded specimens with heat affected zones with microstructures 

arguably similar to those of SLM materials. These include materials manufactured via selective 
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laser melting, direct laser deposition, and electron beam deposition. The small punch test has 

been shown to be sensitive enough to detect the characteristics and variations present in SLM 

materials and is thus a good candidate for optimizing processing parameters during 

manufacturing as well as in post-processing. The ability to assess the material properties of SLM 

materials with SPT is therefore somewhat questionable, but promising, and as such will be 

explored here. This will involve utilizing methods both novel and established within literature, in 

the hopes of advancing additive manufacturing techniques through the use of miniaturized 

testing techniques such as the small punch test, while enhancing the capabilities of the small 

punch test itself. 
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CHAPTER 3: EXPERIMENTAL PROCEDURE 

The main objective of this study is to assess the suitability of the small punch test to 

evaluate new materials for use with SLM, so this chapter will detail the process by which that is 

accomplished. As the literature has shown, SPT is sensitive enough to show the effects of 

anisotropy and the evolution of the microstructure as directly related to it, and SLM components 

are prone to anisotropy which can be affected by post-processing. This means that small punch 

tests should be able to accurately describe the material properties of a new alloy being used for 

SLM part construction, including being sensitive to the intricacies of the build process, so as to 

optimize process parameters and post-processing routines. It is of interest, then, to study whether 

the capabilities currently available with typical SPT studies are sufficient to evaluate SLM 

materials to the extent typically done with traditional testing, or if a modified methodology is 

necessary and can be achieved. The SPT matrix will therefore be adapted to meet the conditions 

of a test matrix which uses full-size samples. More specifically, due to the limited space in the 

design of an SPT setup, fatigue tests cannot currently be conducted in a fully-reversed mode and 

are relegated to the zero-to-tension region which provides a limited perspective, so it is of 

interest to determine if the capabilities of an SPT setup can meet those of a traditional test, or if 

SPT capabilities can be expanded.   

3.1 Overview 

In order to assess the viability of the small punch test as a method of characterizing the 

material properties of the proprietary nickel superalloy IN939V, two comparable sets of test 

matrices have been designed. For all tests to be conducted with IN939V, samples were produced 
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in an SLM Solutions SLM 280HL machine at Power Systems Manufacturing, LLC (PSM). This 

machine features a build volume of 280 x 280 x 365mm3 and the possibility of several 

configurations of single or multiple IPG fiber lasers at possible power levels of 400W, 700W, 

and 1000W in an inert Argon gas environment. The system is flexible in terms of powders and is 

capable of using various alloys for building components, including nickel superalloys and 

proprietary formulations such as IN939V. 

Optimized processing parameters established previously via design of experiments for 

this combination of machine and material were employed to produce the samples at orientations 

where loading occurs both parallel and perpendicular to the layer stacking direction, which were 

subsequently subjected to full post-processing including recrystallization, HIP, and heat treat. 

Optimized processing parameters were determined previously at PSM via the implementation 

and analysis of test matrices using design of experiments with the objective of minimizing 

defects such as microcracks and achieving uniform component porosity of 0.2% or less 

throughout. Figure 3.1 explains the terminology used herein for relating loading and layer 

stacking. Samples constructed with the long direction vertically (in reference to the build plate) 

will experience loading parallel to the layer stacking direction (perpendicular to the layer 

surface), and may be referred to as longitudinal, and those built with the long direction built 

horizontally will be loaded perpendicularly to the layer stacking direction (parallel with layer 

surface) and may be referred to as transverse. In terms of directions, it can be said that transverse 

samples are loaded in the [100] direction as relating to layer surfaces, while the longitudinal 

samples are loaded in the [001] direction in reference to the layer surfaces, which will 

correspond with the direction of the columnar grains typical in as-built SLM microstructures. 
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Figure 3.1 - Build orientation terminology diagram. 

 

Test coupon design was dependent on orientation and intended use. Bars with the length 

produced parallel to the build plate (transverse samples) were shaped hexagonally to improve 

surface finish, reduce warping, support construction and removal, and improve overall build 

quality due to intrinsic limitations inherent to the system. These limitations do not apply for 

samples built with the length perpendicular to the build plate (longitudinal), so the majority of 

these were round in shape to minimize material waste when machining test samples from the as-

built SLM bars, Figure 3.2 shows both types of samples, along with SLM blocks produced for 

machining of fracture testing samples. For conventional tests the SLM bars were machined and 

polished according to pertinent standards. For SPT samples, bars were machined to size and 

sliced using pertinent methods as detailed in section 3.3.  
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Figure 3.2 - Hexagonal transverse and round longitudinal bars produced for full-sized tension 

samples and blocks produced for fracture tests, all of which were utilized for SPT samples. 

 

3.2 Post-processing 

Test bars were stress relieved while still attached to the build plate to prevent warping 

and then removed from the SLM build plate through the use of wire electrical discharge 

machining (wire-EDM) to make precision cuts and reduce material waste. A high-temperature 

recrystallization cycle was implemented so as to encourage crystal growth and reduce the effects 

of anisotropy, as anisotropic properties can make component life prediction much more difficult. 

Following this, SLM samples were treated to a Hot Isostatic Press (HIP) cycle and several 

subsequent heat treatment cycles designed to redistribute alloy constituents and reduce 

anisotropy within the microstructure.   

3.2.1 Recrystallization Cycle 

The recrystallization temperature was chosen based on the results of a differential thermal 

analysis (DTA) conducted on the material to find its phase transition temperature, in this case the 

melting temperature, and use a temperature just below it, in which recrystallization occurs. A 
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preliminary study was conducted to gage the effects of differences in time and temperature of the 

recrystallization cycle on the resulting microstructure and anisotropy effects on material 

properties, including Young’s modulus, yield stress, and tensile strength. The immediate 

measure of the efficacy of the heat treatment would be the modulus in both directions, strength in 

both directions, variations in microhardness within and between samples, and, to a degree, the 

physical size of the grains. The recrystallization cycle effects study is defined in Table 3.1 with 

these purposes in mind. The table also denotes the level of post-processing that each sample was 

subjected to, and the averages hardness and the variance of each after application of the 

recrystallization cycle but prior to the heat treatment, to be discussed later in this section. After 

their designated recrystallization treatment, each of the tensile samples were subjected to hot 

isostatic pressing and a full heat treat regimen which included a solution and stabilization heat 

treat, a secondary heat treat, and a precipitation heat treat. These are the standard treatments 

which are utilized for cast components made from the same material. Due to the high cost and 

time required to produce, post-process, machine, and test each specimen, the minimum number 

of specimens possible was chosen to determine if the heat treat was successful, though this 

limited sample size could skew results and prevents confirmation of an optimal recrystallization 

having been found. The limited number of specimens available and the cost of fatigue and creep 

testing made it prudent to perform these tests before committing a large number of specimens to 

the recrystallization heat treatment for a full factorial test matrix. 
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Table 3.1 - Test matrix for recrystallization study 

Sample Geometry Orientation 
RX  

Temp 

RX 

Time 

Heat 

Treat 
Response 

1 Tensile Horizontal TRX Base 
RX, HIP, 

HT 
Modulus, 

Microstructure 

2 Tensile Vertical TRX Base 
RX, HIP, 

HT 
Modulus, 

Microstructure 

3 Tensile Horizontal TRX 
3X 

Base 
RX, HIP, 

HT 
Modulus, 

Microstructure 

4 Tensile Vertical TRX 
3X 

Base 
RX, HIP, 

HT 
Modulus, 

Microstructure 

5 Slice Vertical TRX-10°C Base RX Microstructure 

6 Slice Vertical TRX+10°C Base RX Microstructure 

7 Tensile Horizontal 
None, sent As-is to 

HIP and HT 
HIP, HT 

Modulus, 
Microstructure 

8 Tensile Vertical 
None, sent As-is to 

HIP and HT 
HIP, HT 

Modulus, 
Microstructure 

 
 
As stated, samples 1-4, 7, and 8 were tensile tested in ambient conditions after being heat 

treated, while samples 5 and 6 were small slices taken from bars utilized for other purposes, of 

which the originals could not be recovered. As such, these two samples served only as references 

for microstructure and hardness comparisons when the heating temperature fluctuates within the 

available controllable range of the furnace used for the recrystallization treatment. The tensile 

responses of full-sized samples are depicted in Figure 3.3, along with a more detailed view of the 

elastic portions of each. The first trait of note is that any level of recrystallization reduces 

strength as compared to a non-recrystallized sample of the same orientation. Additionally, all 

samples show a directionally dependent variance in strength and elastic moduli. Closer 
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inspection shows some effects of the recrystallization time difference. Applying a 

recrystallization cycle of any time reduces the difference in between the elastic moduli of the two 

directions. Continued heating time further decreases the anisotropy between the two build 

directions, reducing the difference in modulus between them. Though there is still a difference in 

strength between the two directions, and both times are below the non-treated strength, the 

increased time does not cause a further decrease in strength. Additionally, all trials were found to 

exceed the specified minimum value given for the elongation, tensile strength, and yield strength 

of the cast material. The stress-strain curves show the samples treated for the 3X base time 

converging in strength, as shown by the arrow, although they will not fully merge. It is doubtful 

that increased time in the recrystallization cycle would fully eliminate the anisotropy, and as 

highlighted in the literature, would likely induce embrittlement of the microstructure, reducing 

ductility of the material and therefore life. 
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Figure 3.3 - Recrystallization study tensile test results, with a detailed view of the elastic 

sections. 
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To preserve the proprietary status of the material, the mechanical properties determined 

from this preliminary study have been normalized using the response typical to a cast sample and 

show desirable trends. Results are portrayed graphically in Figure 3.4. The graphical 

representation of the tensile test results shows that both of the 3X Base samples exceed the given 

elastic modulus that is typical of cast to size specimens, while the vertical samples for the 

untreated and Base cases did not. However, all SLM samples, both treated and untreated, exceed 

ultimate tensile and yield strength specified minimum required (SMR) values as well as those for 

a typical response for cast IN939V. It can be seen that although increased time reduces strength, 

it also reduces anisotropy. Also of note, is that recrystallization also reduced elongation (or 

ductility), though all trials still exceed typical cast values. Increased time further reduced 

elongation, and though it cannot be said that it reduced anisotropy as well in the 3X Base 

samples as it did in the Base samples for elongation, the reduction in area is nearly equal. Results 

show that an extended recrystallization cycle leads to a greater reduction in anisotropy while still 

producing favorable material properties. However, this does not necessarily mean that a longer 

cycle time would work better, as there is no guarantee that the material would ever reach full 

isotropy or suffer otherwise. 
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Figure 3.4 - Comparison of material properties from tensile tests between different treatments. 

 

Microscopic inspection of the various samples did not indicate any abnormal growth 

from extended heating time. There is some difference in grain size resulting from using an 

increased (or decreased) temperature within the certified furnace limits, but distribution remains 

normal. Inspection of the slices of bars 6 and 7, which did not have enough material for tensile 
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testing, showed no abnormal grain growth with minor fluctuations in recrystallization heating 

temperature within the ±10°C of control available in the furnace utilized to carry out the 

recrystallization cycle. To facilitate a comparison between the full-size samples and those with 

limited material, hardness testing was conducted on cross-sections of each. Over 40 points were 

hardness tested for each sample in Table 3.1 on a Vickers hardness tester and converted to 

Rockwell C hardness values, and the average hardness values were calculated. Of note, these 

samples were restricted only to recrystallization treatments; none of the subsequent treatments 

that the samples went through before tensile testing were applied at this stage, which means 

samples 7 and 8 were tested in an as-received condition. In all cases the variance is below 4%, so 

variations within samples do not indicate any abnormalities within the grain structure. Although 

the hardness results indicate that recrystallization treatments decrease hardness by a few points, 

variations between treatments and directions are minimal, and on average the variance for the 

recrystallized samples is somewhat lower than those of the as-manufactured samples, suggesting 

that the recrystallization cycle reduces scatter in material properties within SLM components. 

That is, it cannot be said that variations in time, temperature, or orientation had any largely 

significant effects on hardness testing results related to microstructural changes. Given these 

results, the 3X Base time recrystallization cycle was chosen as achieving the best compromise in 

resulting material properties when combined with the other heat treatments employed due to the 

large decrease in anisotropy and small loss in strength, despite the loss in ductility. 
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3.2.2 Heat Treatment 

Following recrystallization, the SLM bars were subjected to the full heat treatment used 

for cast components manufactured from IN939V. This includes hot isostatic pressing (HIP) to 

close any remaining internal pores and cracks and reduce the scatter of material properties across 

samples that are otherwise identical. The HIP process, however, will not close any surface 

defects, as all of the surface, including defects, will be at the same pressure. As such, test bars for 

the full-size components which the SPT samples will be compared to are machined and polished 

to avoid the effects of surface defects on mechanical performance. Finally, the full standard heat 

treat routine to which conventionally cast IN939V components are subjected to was implemented 

in order to optimize the microstructural composition and constituent distribution of the alloy. The 

heat treatment routine is based on the standard heat treatment utilized for cast IN939V, which 

was primarily based off of that used for IN939 and conducted in four stages including various 

cycles of solution and aging heat treatments, as listed in the literature review portion of this 

document in Chapter 2. This includes a solution heat treat to bring carbides and intermetallics 

into a solid solution, a heat treatment to stabilize the solution, and secondary heat treatments 

cause precipitation of carbides for grain boundary strengthening and precipitation of the γ’ 

strengthening phase within the grain structure. Samples were also produced and tested with the 

material at varying stages of processing, from as-manufactured to partial or full implementation 

of post-processing steps. Tests conducted at intermediate stages are used to determine the effects 

of processing routines and optimize the conditions of such, while showing the capabilities of 

SPT to track material evolution.  
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3.3 SPT Sample Preparation 

To produce SPT samples, SLM test bars were machined to round bars of 10mm diameter 

or square bars 10mm x 10mm wherever appropriate. Originally, individual SPT samples were 

cut from the machined bars using a Buehler Isomet low speed cutting saw to a thickness of 

roughly 1.5mm, taking special attention to remove burrs and lips resulting from the cutting 

operation. Samples then needed to be ground and polished to a final thickness of 0.5mm, which 

was achieved using a Buehler single-force head auto-polisher. Temporary sample holders were 

utilized to aid in the polishing process, but shear forces caused the samples to slip from the 

sample holder. Samples were then mounted in an epoxy casting system, polishing one side 

completely. The samples were then removed from the epoxy molds, cleaned, flipped, and re-cast 

to repeat the process on the other face, so that both surfaces are polished to a mirror finish and 

free of defects that might otherwise affect strength and fracture behavior. Due to variations in 

cuts and a limited amount of movement built into the polisher to maintain contact with the 

polishing plate, samples would often end up with uneven thicknesses which could vary 

significantly. Due to the scale at which SPT is performed, variations at a tenth of a millimeter 

represent a 20% variation in sample thickness, which causes complications with testing as they 

affect stress distribution.  

Finally, to circumvent the issues arising from variations in sample thickness, samples 

were cut using wire-EDM (electrical discharge machining) to a thickness of just over 0.5mm, 

using cutting settings which minimize the severity of the re-cast layer. This precise cutting 

process produced samples of uniform thickness which required minimal grinding and polishing. 

Slices were then manually polished to a mirror finish using several grades of silicon carbide sand 
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paper and polishing cloths on a rotating plate with a variety of lubricants such as water and 

several grades of diamond polishing suspensions to a mirror finish. Factors such as plate rotation 

speed, lubricant grade, and pairing and order of lubricants and pads were determined via the use 

of polishing guidelines supplied by Buehler, adjusted accordingly for manual use rather than 

with the auto-polisher head. 

3.4 Planned Experimental Matrices 

As stated previously, two sets of test matrices were designed for the completion of this 

study. The first set of tests composed of full-sized specimens, which were subjected to 

conventional testing techniques under varying conditions for the characterization of the material 

for subsequent use in life prediction models following standards noted previously. In this study, 

this matrix primarily served as a model and standard of comparison for the second matrix, which 

is the focus of this study using the SPT. These tests included conventional tensile, creep, fatigue, 

and fracture tests at varying testing conditions. These will evaluate mechanical properties of 

IN939V to establish a basis by which the efficacy of the following SP tests may be evaluated. 

Material mechanical properties such as Young’s modulus, yield and ultimate tensile strength, 

creep rates, and more will be determined at varying temperatures on samples manufactured in 

both horizontal and vertical orientations.  

The second matrix, designed for small punch tests, has been subdivided by the equivalent 

conventional test types for each SP test, as outlined in the following tables, and will use similar 

conditions to those of the traditional test matrix, but adapted to the limitations of the small punch 

test. Desktop test controls were provided through the use of MTS software package Testworks 
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Elite, implementing controls for force or displacement as required by the test matrix. A 

displacement rate of 0.5mm/min was used, which is in the range of what is commonly seen in 

literature and dictated in the CWA 15627, 0.2-2.0mm/min. The matrices are divided by the tests 

to which they are equivalent; tension, creep, and fatigue, with a variation of conditions for each 

of these. Heading each of these matrices are trials listed as using conventionally produced 304 

stainless steel. Tests with this material serve as verification runs of the capabilities of the SPT rig 

with both the monotonic and cyclic functions. This is necessary especially given the novelty of 

the design for incorporating reversible loading, as significantly greater amounts of data are 

available for traditionally produced 304 stainless, facilitating comparison of test results. The 

feedstock material from which these samples are taken was certified for composition and 

material properties by the manufacturer. Selective tests which are representative of the traditional 

tests conducted were used for constructing the SPT matrix utilizing the SLM samples in order to 

show the suitability of SPT to evaluate SLM material evolution and SLM materials in general. In 

order to do so, some tests will be repeated with materials in various stages of post processing as 

well as different material types from both the machine at Power System Manufacturing (PSM) 

and from other sites. This includes several trials using samples taken from the grip sections of 

the tensile specimens produced by PSM and used for the recrystallization study presented earlier 

in this chapter, in which materials were tested at various stages and variations of heat treatment. 

Additional studies listed in the test matrices previously given include other popular SLM 

materials. These include GP1 stainless steel samples, for which the feedstock material is 

manufactured by EOS specially for their DMLS machines with the equivalent composition to 17-

4PH, manufactured at Central State University, and IN625 samples manufactured by Solid 
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Concepts. These add variability in terms of both materials and SLM machines used, to ensure 

those do not present additional factors that affect test results when gauging the suitability of SPT 

for evaluating SLM materials. Finally, samples produced from IN718 on an EOS 270 machine 

with the manufacturer optimized settings will provide further additional test pieces and 

variability. This will provide a factor of variability within the test for different materials, to show 

that SPT is viable for more than one type of SLM material. These additional samples were 

mainly tested with monotonic SPT, comparing results to traditional tensile test results available 

in literature, and source data from traditional testing conducted at PSM, where available and 

applicable, as well as with conventional tests completed for this purpose, with samples 

manufactured from the same stock as the SPT samples. Test conditions for additional tests 

replicated those already existing within the test matrices shown in Table 3.2 to provide 

comparisons between materials. 
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Table 3.2 - Tensile test equivalent SPT matrix. 

Test No. Temp. (°C) Orientation Material Condition 

T1  21 - SS 304 As-received 

T2 21 Long IN939V RX, HIP, HT 

T3 21 Trans IN939V RX, HIP, HT 

T4 21 Long IN939V RX 3X Base, HIP, HT 

T5 21 Trans IN939V RX 3X Base, HIP, HT 

T6 21 Long IN939V RX Base, HIP, HT 

T7 21 Trans IN939V RX Base, HIP, HT 

T8 21 Long IN939V No RX, HIP, HT 

T9 21 Trans IN939V No RX, HIP, HT 

T10 21 Long IN939V As-manufactured 

T11 21 Trans IN939V As-manufactured 

T12 300 - SS 304 As-received 

T13 427 Long IN939V RX, HIP, HT 

T14 427 Trans IN939V RX, HIP, HT 

T15 21 Long IN625 As-manufactured 

T16 21 Trans IN718 As-manufactured 

T17 21 Trans [100] EOS SS GP1 (17-4) As-manufactured 

T18 21 Trans [010] EOS SS GP1 (17-4) As-manufactured 
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Table 3.3 - Fatigue test equivalent SPT matrix. 

Test No. 
Temp 

(°C) 

Material and 

Condition 
Cycle/Min R ratio Hold (s) Range 

F1 RT 304SS 20 0 0 0.1-1kN 

F2 RT 304SS 20 0 0 0.15-1.5kN 

F3 RT 304SS 20 -1 0 ±0.5kN 

F4 RT 304SS 20 -1 0 ±0.5mm 

F5 200 304SS 20 0 0 0.1-1kN 

F6 200 304SS 20 -1 0 ±0.5kN 

F7 200 304SS 20 -1 0 ±0.5mm 

F8 427 
IN939V Long. 

Full HT 
20 0 0 0.04-0.4kN 

F9 427 
IN939V Trans. 

Full HT 
20 0 0 0.04-0.4kN 

F10 427 
IN939V Long. 

Full HT 
20 0 0 0.05-0.5kN 

F11 427 
IN939V Trans. 

Full HT 
20 0 0 0.05-0.5kN 

F12 427 
IN939V Long. 

As-man. 
20 0 0 0.05-0.5kN 

F13 427 
IN939V Trans. 

As-man. 
20 0 0 0.05-0.5kN 

F14 RT 
GP1 x-axis 

As-man. 
20 -1 0 ±1.9kN 

F15 RT 
GP1 y-axis  

As-man 
20 -1 0 ±1.9kN 

CF1 200 304SS  -1 15 ±0.5kN 

*Initial cycles of samples F14 and F15 were conducted as tensile equivalent trials T17 and T18. 
 
 
The variability of tests in terms of materials and manufacturing ensures that the test is 

robust and sensitive enough to detect any differences these variables may present, rather than 

gauging the suitability with a single material, IN939V, in the same state of processing. Samples 

were subjected to small punch testing and the accompanying analyses as detailed in the literature 
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review to determine how well the properties and constants determined correlate with those of the 

traditional test matrix for tensile, creep, and fatigue test. Previously published correlation values 

from the various literature reviewed were tested to expand the existing literature and support or 

oppose the use of the published correlation factors. Updated correlation factors will be proposed 

as necessary. Although, tensile tests were directly adapted from traditional tests using SPT with 

monotonic loading, fatigue tests were modified to accommodate the test limitations. This 

includes cyclic loading in only one direction as previously seen in literature, and a novel 

modified cyclic testing mechanism able to test reversed cyclic loading. The use of this novel 

mechanism design allows for reversed loading via application of twin punches on either side of 

the sample, producing the loading history seen in Figure 3.5. The tests in Table 3.3 with an R 

value of -1 utilize this configuration, and the range denotes whether control for each trial is 

imparted using peak load or deflection.  
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Figure 3.5 - Reversed cyclic loading as imparted by dual-punch SPT configuration. 

 

Additionally, the fatigue test matrix also includes cyclic loading with the inclusion of a 

hold time at loading, which is representative of creep-fatigue loading as defined by ASTM 

E2714, which, as of this writing, has not been studied with SPT. The creep-fatigue and 

reversible-loading fatigue tests were conducted using load-control, while the single-punch 

fatigue tests were conducted using displacement control to achieve testing at specified strain 

ranges. The test matrices designed for this study test the viability of SPT as a test method for 

evaluating the material properties of components produced via SLM with its inherent directional 

property dependence, as well as its suitability for evaluating Inconel alloys. These tests will 
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evaluate how well SPT can track changes in material properties due to operating temperature, 

build orientation, and post processing variations. As such, an additional assessment for the use of 

SPT as a method for optimizing processing parameters can be also indirectly conducted. If so, 

this determination alone could reduce process parameter and post-processing optimization time 

and costs considerably from current practices. 

3.5 Reliability and Error 

A series of load-unload (L-UL) tests were conducted using fully heat treated IN939V 

samples in both longitudinal and transverse orientations. These tests were conducted at room 

temperature with a loading rate of 0.5mm/min, as was used in the monotonic tests. The time 

period of each cycle was this adjusted accordingly to preserve the loading rate. Two samples 

manufactured in the longitudinal orientation and one sample manufactured in the transverse 

orientation were subjected to cyclic monotonic loading in increasing increments of 0.05mm, 

returning to 0mm displacement each time. The displacement range chosen for these tests extends 

into the third zone of the P-δ response, as dictated by the results of the monotonic tests with 

identical conditions and material manufacturing state. The results of one of these tests can be 

seen in Figure 3.6. The repeated loading and return to zero tests the reliability of the fixture by 

evaluating the distribution and development of the modulus (kUL/t) over time. The kUL values are 

taken as the steady slope of each loading step of each L-UL cycle, omitting the non-linearities at 

the top and bottom of each cycle and normalizing them against the corresponding sample 

thickness so as to evaluate them together. The non-linearities are more evident at the lower 

displacement cycles as there is added elasticity in this range. As the loading program continues 
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and the sample progresses into the third zone, the sample enters into a steady plastic stretching 

regime, and the unloading behavior represents a constant elasticity. The use of multiple samples 

and orientations expands this to conditions of sample mounting and loading between tests.  

 

 

Figure 3.6 - Load-unload cyclic history of IN939V sample. 

 

There is a general increase in stiffness as the L-UL cycles progress and displacement 

increases. However, the increase is minimal and the kUL values tend to remain within a normal 

range for the entirety of the tests. The combined results of the three L-UL tests are plotted 

against a normal PDF created using a statistical analysis of the test data, as shown in Figure 3.7. 

The mean stiffness of the unload cycles, kUL, is 22.41 with a standard deviation of 2.69. As seen 

in Figure 3.7, the data fits well within a normal distribution, with the majority of the data 

clustered within the center portion of the PDF. This indicates a high level of reliability for the 
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test system, as the loading step experienced by the cycles is shown to be highly consistent, 

though some deviation does occur due to differences in plasticity levels in the different P-δ 

zones. This is especially true for the higher displacement levels, where plastic stretching is in 

effect. Due to this development of stiffness, a lognormal distribution may be shown to provide a 

minor increase in fit. Overall, this instills high confidence in the reliability and consistency of the 

methodology and test setup used in this study.  

 

 

Figure 3.7 - Normal distribution and histogram of k/t values for collective results of L-UL cyclic 
tests.  

 

Uncertainty values given within the results section were calculated via the use of the 

propagation of error method, whereby the error of each function calculated is based on the sum 

of the individual errors of the instrumentation used. In general, this equation can be written as 
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 𝑈𝑓 =  √∑ ( 𝜕𝑓𝜕𝑥𝑖 𝑢𝑥𝑖)𝑁
𝑖=1  (27) 

Where f is the function in question, and u is the uncertainty associated with the variable x to 

which you take the derivate of f with respect to. The uncertainties, u, are mainly derived from the 

given uncertainty values of the load cell, LVDT, and micrometer. It is important to note that this 

does not include operator error or errors which are from irregularities in the materials, as AM 

materials are prone to having. As such, the tolerances given later in the results make results seem 

typically highly accurate, but this is really a reflection on the instrumentation errors only. This is 

done for the relationships relating SPT results with tensile material properties, including the 

relationships for E, σy, and σuts given previously throughout section 2.3. As these relationships 

involve variables which are themselves functions of other variables, the same was calculated for 

the initial stiffness, k, and for Py. The relationship for Py was initially established using the 

Ramberg-Osgood equation, which will be shown to accurately describe the behavior of materials 

in the SPT in Chapter 4. The variables of the Ramberg-Osgood relationship were replaced with 

the corresponding variables for SPT P-δ responses and rearranging to solve for Py to get 

 𝑃𝑦 =  𝑃{10𝑡  (𝛿 − 𝑃𝑘)}𝑛 (28) 

However, this relation is dependent on the hardening exponent, n, which is not typically known, 

and is of indeterminate error. This was rectified by establishing the formula of Py as  
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 𝑃𝑦 = 𝑘𝛿𝑦 − 𝑘𝑡10 (29) 

Where δy is the displacement at yield and is considered a known quantity. This is derived as 

determining the point of intercept of the offset line of t/10 with slope k used for finding Py, 

projecting downward to the displacement axis to find δy.  

 

3.6 SPT Assembly 

An MTS Criterion Model 42 tabletop electromechanical screw-driven load frame 

equipped with a 5kN load cell was used with the SPT setup, the ends of which were designed to 

fit this model, an example of which can be seen in Figure 3.8. The SPT test setup that was 

designed for this study is shown in Figure 3.8. A 90mm long load cell extension was designed 

and machined from 303 stainless steel to provide the clearance necessary to fit all of the 

components for the SPT device and the attached furnace due to the configuration of connectors 

between the MTS device’s loading arm and load cell. The clearance afforded by the load cell 

extension protects these sensitive electronics from the heat of the furnace utilized for high 

temperature tests. This extension arm also serves as an adapter between the load cell and the 

components of the SPT device. 
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Figure 3.8 -  Example of MTS Criterion Model 42 [291], to which the small punch test jig 

attached to load frame in single punch configuration used for monotonic style tests. 

 

The SPT device consists of upper and lower dies with openings of 4 mm, an opening 

radius of 0.5mm, and a punch ball with 2.5mm diameter. Though for the initial design of the 

upper die hole was designed as a nominal clearance hole of 2.5mm diameter to guide the punch, 

it was modified to mirror the specs necessary for the lower die opening that adhere with the 

CWA 15627 so that when reversible cyclic loading is implemented the bending against the upper 

die mirrors that of the lower. The upper die also has a shank extending from the upper surface 
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which gradually increases the diameter slightly from the bottom to the top of the shank, acting as 

a guide for the tapered punch, which is inversely angled. This ensures that the punch is centered 

and straight when it makes contact with the sample, which will be especially crucial for the 

application of cyclic loads, ensuring the point of contact is constantly maintained. The dies are 

constructed from hardenable 4140 steel which lends itself to machining but can easily be 

hardened and has a high temperature resistance. The lower die has a pocket machined into the 

face to securely hold the sample, with radial cuts at the corners which aid in machining and as 

access points for extracting the deformed sample after testing. The upper and lower dies are held 

together by four bolts which run through the dies, standoffs, and the die support and are held on 

by nuts tightened using a digital torque wrench to 5Nm, clamping the sample between them. The 

constant use of 5Nm toque to tighten the bolts ensures that sample clamping pressure is not a 

factor in the results across different tests.  

The punches are cut and threaded from 4.7625mm (3/16”) diameter stainless steel rods 

which can be threaded onto the mechanism, the upper punch threading directly into the load cell 

extension. Additional efforts were expended to study the adaptability of the SPT fixture shown 

here to fully-reversed loading in fatigue. As shown in the literature review, the body of research 

utilizing SPT for studying fatigue properties is severely limited, with reversed cycling having 

been previously unexplored. As such, the design shown includes adaptability for use as a single 

punch monotonic or cyclic test and as a cyclic test with reversed loading featuring a second 

punch below the sample attached via an adapter system. Adapter plates and threaded shafts are 

designed to fit around and on top of the core components necessary for the monotonic testing 

setup, rather than as substitutes, with just a change of the bolts used to join components. The 
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lower punch is of the same specs as the upper punch traditionally employed in SPT, though 

rather than threading directly into the adapter it threads through it and is held in place by a pair 

of nuts and locking washers on each side of the adapter plate, which is connected to the upper 

adapter plate via bored and threaded 101.6mm (4in) long by 6.35mm (0.25in) diameter shafts, 

which also add rigidity to the system. This punch design allows for a measure of adjustability 

when adapting the system to a dual punch setup and facilitates the mounting of such. Shafts used 

in the setup are all certified for straightness, including those used between the base and die 

support, those utilized for the dual punch adapters, and that which provided the stock for 

machining the punches, ensuring direct load application and precise load and displacement 

measurement, minimizing compliance error effects. Closer views of the dual punch configuration 

and dies can be seen in Figure 3.9. The punches are tapered gradually from the 3/16” diameter at 

the threaded end to the 2.5mm indentations ends of the punches, which are machined with a 

radial depression matching the diameter of the hardened steel punch balls so as to securely hold 

them in place when loading or unloading the samples, and distribute loading over a higher 

surface of the punch balls. This also allows the punch balls to be treated as an expendable 

commodity, to be replaced periodically to ensure the punch tip is not damaged and consistently 

delivers uniform loading throughout. Although shorter punches are often used to reduce the risk 

of bending or buckling, the punches used in this setup are longer so as to provide distance for 

sensitive components such as the load cell and displacement sensor from the heat source, and 

rigidity is ensured by using a larger initial diameter with a gradual taper.  
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Figure 3.9 - Detailed views of the dual punch configuration and sample dies with a 10x10mm 

sample in place. 

 

Standoffs between the dies and the support structure isolate the dies from the rest of the 

structure for the purposes of reducing heat conduction between them when the furnace is used. 

The furnace used for high temperature creep and fatigue tests is an Industrial Heater Corp. 

B74772 ceramic band resistance furnace. This furnace has an upper continuous operating 

temperature of 760°C, an inner diameter of 57.2mm (for which the dies were designed), and a 

height of 63.5mm and is powered and controlled using a Lightobject JLD-612 PID temperature 

controller which utilizes a K-type thermocouple to monitor the temperature of the sample and 
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provide feedback for the internal PID controls. The furnace is supported in place by a frame 

constructed of square 80/20 aluminum slotted tubing which allows for careful adjustment of the 

furnace in X, Y, and Z directions to optimize furnace placement and heating. Flexible ceramic 

insulation at the top and bottom of the heater and a heat shield constructed of sheet metal lined 

with insulation surrounding the circumference of the heater minimized heat loss from the dies 

and helped protect the rest of the components, specifically sensitive electronics such as the 

LVDT and load cell. Figure 3.10 shows the furnace mounted to the 80/20 frame and fitted to the 

SPT setup, as well as a complete operational setup showing the insulation and air cooling used to 

isolate heat to the dies and protect the rest of the setup. Additionally, cooling of assembly 

components not intended to be heated was achieved via cooling utilizing directed air streams 

from a laboratory air supply. A 30-minute soak time was implemented after reaching the 

objective temperature to ensure the entire sample was heated thoroughly and homogeneously 

before commencing testing. 



139 
 

 

Figure 3.10 - Industrial Heater Corp. B74772 furnace mounted to a custom 80/20 frame, shown 
(a) as designed to fit SPT rig, and (b) fitted with insulation, heat shield, and directed air cooling 

used during operation. 

 

An Omega LD621-5 linear variable displacement transducer (LVDT) with 5mm of high 

sensitivity travel is located directly below the sample to measure sample displacement and 

reduce the effects of compliance errors stemming from indirect displacement measurements. 

Bored and threaded shafts 305mm (12in.) long hold the die support apart from the base which 

adapts to the load frame fixture and a tight tolerance clamping block holds the LVDT sensor 

parallel to the support beams directly below the sample for accurate displacement measurements. 
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An alumina rod is adapted as an extension of the LVDT sensor between the sample and the 

sensor to protect it from the heat generated by the furnace, preventing heat conduction that would 

occur with direct contact of the sensor and heated samples. Displacement measurements from the 

LVDT help to eliminate compliance errors from flexure in the load frame or plastic deformation 

imparted to the sample, which would reduce the overall displacement of the sample. To establish 

the capabilities of the cyclic configurations and the effects of compliance errors, experimental 

trials were conducted using 1040 carbon steel samples, measuring displacement with both the 

crosshead and the LVDT, as shown in Figure 3.11. The outputs of the two measurements show 

significant differences, stemming from compliance errors. The most notable of these differences 

is that the crosshead displacement measures the full range of the programmed displacement of 

±1.0mm, with the cycles overlapping nearly perfectly for the entirety of the test, while the LVDT 

shows a very different response. The LVDT displacement extends to about 0.06mm in either 

direction, and continued cycling shows a gradual increase in force and a shift in the displacement 

to the left toward larger negative values and lower positive values for the peak of each cycle. 

Along with compliance effects, the difference between the two sets of measurements may also be 

due in part to the formation of a small gap between the sample surface and the punch. Once the 

initial indentation deforms the samples, a small gap forms between the surface of the sample the 

punch contacts and the face of the punch as it returns to the origin position of zero displacement. 

The changes in force and displacement indicate an evolution of the material, with the increased 

load demonstrating work hardening of the material as the punches create indentations on the 

surfaces of the sample. The crosshead does not detect the difference in the programmed 
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displacement versus that actually experienced by the sample, which would lead to errors in 

estimating material properties.  

 

 
Figure 3.11 - Reversed loading of 1040 steel with a displacement range of ±1.0mm measured 

with both the load frame crossbar and LVDT. 

 

The novel small punch test experimental setup presented here is capable of executing 

tests equivalent to conventional tension and creep tests as shown in literature and has been 

designed to expand on the current limitations of fatigue testing. The setup has been designed so 

that experiments mainly follow the guidelines established by the CWA 15627, with an LVDT for 

directly measuring sample displacement to reduce compliance errors and increase accuracy of 

material property estimates. A variety of materials produced via SLM and at various states of 
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processing will be evaluated with SPT to gage its ability to track the property differences 

between materials and processing states.  

3.7 Microscopy 

Inspection of deformation to samples was conducted with the use of several microscopes 

including a Dino-Lite AM7013MZTS digital microscope and a UNITRON metallurgical optical 

microscope. The Dino-Lite is equipped with a 5MP CMOS and an adjustable polarizing lens 

allowing for detailed photography of reflective metallic surfaces without a glare, and is capable 

of magnification up to 240x depending on the adjustable working distance and focus adjustment. 

This makes it ideal for inspection of SPT samples and fracture surfaces without the need for 

extensive sample preparation. Each sample was photographed on both faces along with profile 

shots to characterize the indentation and fracture surfaces. The UNITRON metallurgical 

microscope is equipped with magnification lenses of up to 100x, and a Leica EC3 3.1MP digital 

camera attached to the viewfinder to record the images. Both cameras can interface with a 

computer for live viewing and image capture. Cross-sections of tested samples were made by the 

same process and tools used to section said samples from feedstock, including sectioning with 

Buehler Iscocut slow-speed saw, mounting in epoxy, and polishing with a Buehler Ecomet 

polishing plate and center force polishing head, using successive grades of polishing media and 

lubricants to achieve a mirror finish on the sample surface. Etching of polished sample surfaces 

was achieved by immersion of samples into a Kalling’s 2 etchant solution for around 60 seconds 

immediately after completion of the final polishing step. Inspection of microstructures of etched 
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samples was achieved through the combined use of a Zeiss optical microscope and a Phenom G1 

SEM desktop microscope.  

 

 

Figure 3.12 - Optical and digital microscopy station for sample inspection. 

 

3.8 Data Post-processing 

Post-processing of data was necessary to organize and analyze results. As raw data is 

produced in the form of text files, the text files were imported into Microsoft Excel for 

processing, including plotting of the P-δ curve and calculation of relevant inflection points, these 

included the yield load, Py, the maximum load, Pmax, the initial stiffness, k, and other relevant 

values were then used in conjunction with the relationships discussed in the literature review to 
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assess the suitability of correlation constants established in literature. Data acquired from 

conventional tests were used as the measure of efficacy to which SPT data was compared. 

Additional evaluations of SPT data were conducting utilizing a numerical model. Where 

necessary, statistical analysis of the data was conducted using the SigmaZone QuantumXL 

software in conjunction with Microsoft Excel. 

Simulations were carried out in ANSYS as necessitated by the testing array to help 

determine mechanical properties via the inverse solution method and to determine correlation 

factors to establish the framework for evaluation of SLM materials. A curve fitting method was 

designed and employed in order to match simulation results to experimental force-displacement 

curves so as to determine material properties via the inverse method. A sensitivity study was also 

conducted to determine the effects of varying several material properties such as Young’s 

modulus, the strength coefficient, and the strain hardening exponent on the resulting force-

displacement curves produce by a simulated SPT. Details of the model, the curve fitting 

methodology, and the FEA sensitivity study will be detailed further in Chapter 4. 

3.9 Data Management 

Organization and retention of test data is of the utmost importance for successful analysis 

of data and continuation of this course of study. Copies of raw data and processed data files were 

kept in multiple instances on different computers to ensure redundancy and prevent loss of data. 

This includes raw data on the computer connected to the load frame, and copies of raw and 

processed data on a 4-terabyte hard drive with cloud connectivity, this keeps the data safe by 

minimizing the risk of damage to the drive while also keeping it accessible. Data files are 
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organized by test type and material, in single and combined files where necessary to make 

comparisons. Files and samples were named via an alphanumeric code where the first digit is the 

letter corresponding to the test type; T for tensile, C for creep, and F for fatigue, and the second 

and third digits correspond to the run number as designated in the test matrices. A simple naming 

scheme and organized storage structure ensures that data is easily accessible and 

comprehensible, in case the data is necessary for subsequent studies by other investigators. 
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CHAPTER 4: NUMERICAL APPROACH 

Finite element analysis of SPT models have been shown to be an integral part in 

conducting material studies, validating SP models and helping to determine material properties. 

The use of 2D axis-symmetric models has been shown to give reliable, replicable results in place 

of more complex, time-consuming 3D simulations, which offered no distinct advantages in most 

cases [271]. However, sensitivity studies have shown the reliance of models on several factors, 

such as force, the presence of voids, sample thickness, mesh parameters, friction factors, and 

compliance effects when compared to experimental results [272, 283, 284, 286]. Using the 

inverse solution method, the curve produced by an FEA model of a SPT is fitted in a piecewise 

manner to that produced by an experiment of the same parameters by altering the properties of 

the model one at a time. Once the model fits the experiment, material properties can be 

determined via the extraction of true stress-strain response. Studies have been done to calculate 

properties such as Young’s modulus and yield strength and material constants in the plastic 

region such as strain hardening coefficients [272, 273, 276, 277]. The repetitive calculations 

involved in iteratively determining the values can be very costly in terms of time and computing 

power. As such, several studies have made efforts to automate the process. Automation of the 

curve fitting process has previously been completed with curve fitting algorithms and neural 

networks which automatically vary material properties within a certain range [272, 273]. This 

chapter will therefore focus on the creation, verification, and implementation of the numerical 

model utilized for equating experimental small punch test results to conventional material 

property data. 
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4.1 FEA Model 

The model created for this study was primarily verified via comparison to a proven model 

established by Campitelli et al. using similar experimental parameters, with additional 

verification against other experimental and simulated studies [277, 292]. A 2D axis-symmetric 

model was utilized within ANSYS to carry out the simulation, using a static structural analysis, 

as shown in Figure 4.1. The upper and lower dies were modeled as rigid, fixed structures. The 

sample and punch were meshed with quadrilateral elements, with refinements on the edge of the 

punch and in the center of the sample where the majority of the deformation occurs. The 

elements at the center of the sample were later modified to be much denser from the center of the 

sample and extending this region to the majority of the free portion of the sample between then 

punch and the dies, so as to increase coverage in the area where the punch makes contact, with 

sides sized to approximately 0.035mm, and a gradual refinement increasing this size to the 

clamped edge of the punch. A friction factor of 0.1 was applied between the specimen and each 

die, to keep the sample in place during deformation, simulating the clamping contact present in 

the experiment. Contact and friction of 0.05 was used between the punch and specimen, for 

contact between the polished punch and polished sample, and represents the higher end of the 

friction range for lubricated materials [277]. A displacement rate of 1mm/min was employed, 

which is roughly equivalent to 0.02mm/sec, which is commonly employed in experimental 

setups following the CWA 15627 guidelines with a recommended rate of 0.2-2mm/min [195]. 

The model utilizes regular elasticity with a multilinear isotropic hardening model for plasticity. 

The model developed was compared to several literature sources to gauge reproducibility and 
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accuracy, as well as with a variety of materials to test its adaptability to various material types. 

Necessary adjustments were made for later analyses. 

 

 
Figure 4.1 - Axis-symmetric small punch test modeled in ANSYS. 

 

Simulations comparing the model shown in Figure 4.1 to that originally referenced by 

Campitelli et al. matched well in terms of the physical model deformation and strain distribution, 

which is shown in Figure 4.2. As the punch displaces the sample, strain begins to build up 

directly below the punch on the bottom of the sample, as the rest of the sample begins to bend at 

the radius of the bottom die. As the displacement increases the portion of the sample below the 

punch will begin to compress and stretch, while the portion of the sample between the punch and 

the lower die begins to stretch, as seen in Figure 4.2, which shows the plastic strain distribution 

in a 0.5mm sample of 316L at a displacement of 0.1mm.  
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Figure 4.2 - Strain distribution within the SPT sample at a displacement of 0.1mm, as compared 

to [277]. 

 

The strain distribution match between the simulation and that from which it was modeled, 

by Campitelli et al., shows a strong correlation. Stretching and necking typically occurs most in 

the free area between the punch and the lower die, concentrated at the area near the punch. 

Figure 4.3 shows the response of an element in this region at low strain levels showing a 

correlation with the stress-strain response of a tensile test conducted in [277] on the same 

material. This correlation occurs as this section undergoes nearly continuous stretching, similar 

to a tensile test. 
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Figure 4.3  - Stress-strain response from single element in free area of sample between punch 

and dies as compared to actual tensile results [292]. 

 

The area directly below the punch will continue to stretch and eventually fracture, the 

position of the fracture will depend on the material in question and its microstructure, which will 

be especially relevant for the layered structures present in SLM materials. A similar experimental 

response using SLM materials may be expected to that shown in Figure 4.4, which shows the 

effects of microstructural orientation on the fracture of SP specimens extracted from extruded 

steel with a directional microstructure [233]. Figure 4.4(a) shows a sample where the extrusion 

direction is perpendicular to the surface of the sample and Figure 4.4(b) shows the longitudinal 

sample, where the extrusion direction is parallel to the face of the sample, and is loaded 

perpendicular to it, thus fracturing is parallel lines along the elongated boundaries of the grains 

which grow in the direction of extrusion. The transverse specimen has much more symmetric 

fracture as the load is applied along the direction of grain growth, though the model will not 

reflect these grain orientation-driven differences, especially given that the level of fracture 
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shown in these images represents rupture at high deflections from high temperature creep testing, 

and is not typical of tensile-equivalent SPT samples. The fracture behavior will have an effect on 

the resultant SPT curves, which will in turn affect curve fitting efforts. Modeling this type of 

damage accumulation requires a much more advanced model, such as those in [255, 293], but 

will not be studied here as fracture development is not a primary concern of this study. 

 

 
Figure 4.4 - Fracture morphology based on directional grain growth orientation [233]. 

 

The model was then tested for flexibility with material choice against another set of 

published experimental SPT results by Cuesta et al. [206] which utilized Aluminum 6016-T4, as 

shown in Figure 4.5. The force-displacement results match very well for the majority of the 

length of the curves but begin to diverge at the peak load and continue to do so with further 

displacement. This is an indication that the plasticity and damage models utilized do not properly 

characterize the behavior in the regime and should be modified. Similar results were seen when 

comparing calculated results to those seen in [277], in which the plasticity models were varied in 

order to provide a better match between simulations and experiments. Although most of the 

relevant material properties would still be able to be approximated with the model output 
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depicted in Figure 4.5, some level of error would be experienced when determining peak load 

and total displacement, which subsequently affects estimation of ultimate tensile stress and 

ductility. 

 

 
Figure 4.5 - Simulation compared to published experimental results of AL 6061-T4 [206, 292]. 

 

Additional testing of the model shows adaptability to different types of materials. The 

plot in Figure 4.6 shows the varied response of the model to both a ductile material, aluminum 

6061-T6, and a comparatively tougher, more brittle material, AISI S7 tool steel. The material 

properties of the aluminum 6061-T6 and the AISI S7 tool steel were programmed into the 

ANSYS model using the published values and stress-strain response curves in [294, 295]. The 

load-displacement responses of simulated SP tests for these materials show drastically different 

responses, with the AISI S7 tool steel supporting a much higher load, but much lower 

displacement than the aluminum 6061-T6. The different sections of the SPT response curve are 

notable to varying degrees with each type of material, though the inflection points separating 
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each section which are important for calculating material properties can almost be inferred 

visually for both materials. The T6 curve shows significantly more stretching after the peak load, 

which occurs at a significantly lower load than that of the S7, but at a similar, slightly higher 

displacement. Although it can be difficult to distinguish from the plot, peak load responses occur 

at different levels of displacement; peak loading occurs at 1.4349mm and 1.4905mm for the 

AISI-S7 and 6061-T6, respectively. The failure region of the T6 curve extends significantly 

longer than that of the S7, indicating extensive stretching and thinning of material in the free 

region between the punch and the dies due to the higher ductility of the material. 

 

 
Figure 4.6 - SPT responses of comparatively tough and soft materials, AISI S7 and AL 6061-T6 

[292, 294, 295]. 

 

The comparative studies conducted show the capabilities of the initial FEA model. The 

model has been shown capable of matching, to an extent, with experimental results when using 

the same material. Additionally, variation of responses can be seen when testing different classes 

of materials, speaking to the flexibility of the model. In order to aid in efforts to employ the 
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model for its intended use, the inverse solution for matching FEA results to experimental results, 

the sensitivity of the model to material variations needed to be further explored, and a parametric 

study was implemented to do so. 

4.2 Cyclic Modeling 

As the experimental setup includes an adaptation for a dual-punch setup for conducting 

cyclic reversible-loading, a variation of the model was made to reflect this capability, as well as 

that of cyclic loading with a single punch. Concurrent to the experimental trials conducted using 

1040 carbon steel samples used to verify the capabilities of the setup, the model was modified to 

reflect the experimental conditions, as shown in Figure 4.7. The model shows twin dies and 

punches of diameters 4mm and 2.5mm, respectively. The punches move in unison to a range of 

±0.06mm displacement at a rate of 1mm/min, as was done in the experiment conducted for 

comparison between the experimental outputs and the simulation. On the initial displacement in 

each direction, the surface of the sample is plastically deformed. Beyond this initial deformation, 

however, there is little damage to the contact surfaces upon repeated loading during cycling, but 

the sample continuously bends at the edges of the dies. 
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Figure 4.7 - Dual punch configuration for reversed-loading cyclic testing. 

 

Notable differences can be seen in the responses between the experimental measurement 

with the LVDT and the simulation output. The load response in Figure 4.8 is significantly higher 

for the simulation than that of the experimental responses. This is likely due to the material 

profile used for the 1040 in the simulation not matching the actual properties of the sample used 

for the test. The other notable difference between the experimental and simulation responses is 

the level of hysteresis occurring in the experimental data but not in the simulation. This is due to 

the displacement and force measurements in the model being sensed at nodes on the tips of the 

punches, so that displacement is being registered even as the load is removed from them due to 

the loss of contact with the sample surface due to the sample thinning from the plastic 

deformation caused by the initial indentation.  
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Figure 4.8 - Cyclic test data acquired with an LVDT using 1040 carbon steel with reversed 

loading as compared to FEA simulation output. 

 

The results of the cyclic model show strong correlation with experimental results. The 

curves of both the experimental and cyclic trials show similarities, but also significant 

differences. Improvement of the model will aid in predicting fatigue behavior of SPT materials 

and correlating results with conventional testing results.  

4.3 Parametric Study 

A full-factorial experimental matrix was designed to establish the effects of the Young’s 

modulus, E, the strength coefficient, K, and the hardening exponent, n on the resulting force-

displacement curves of otherwise identical experiments [292]. This will aid future curve fitting 
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efforts for approximating simulation results with experimental results, minimizing error between 

them. The factors K and n come from the relationship for true stress and true strain. 

 𝜎 = 𝐾𝜀𝑛 (30) 

This relationship, Hollomon’s law, helps to describe what happens in the plastic region 

when a material deforms and undergoes strain or work hardening. The strain hardening 

exponent, n, is used to describe the plasticity of a material, ranging from 0 to 1, with 0 being 

described as perfectly plastic and 1 as perfectly elastic. Combined with Hooke’s law, which 

describes the elastic portion of a material’s behavior, the formulation of the Ramberg-Osgood 

relationship is established, which can describe the entirety of the stress-strain curve for a strain-

hardening material. 

 𝜀 = 𝜎𝐸 + 𝐾 (𝜎𝐸)𝑛
 (31) 

These factors are well suited for use in studying the model sensitivity as related to 

changes in material properties. Determining the influence of these factors will help to tune the 

influences of each so as to refine the results and improve the accuracy of simulations as 

compared with experimental results, in order to determine material properties of materials tested 

with SPT. 

The median values for these factors (Level 3 in Table 4.1) were chosen as the 

approximate mean mechanical properties of IN939 from various sources at room temperature, 

being the material basis for future studies [55, 56, 296, 297]. Each factor was then varied by ± 10 
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and 20% from the median value, a common practice when utilizing DoE and ANOVA, to 

establish a total of 5 levels for each factor, as shown in Table 4.1, for a complete test matrix of 

125 experiments. The factors and levels were input into the SigmaZone QuantumXL statistical 

software to design the full-factorial study, which provided the factor levels necessary for each 

run. As the tests conducted were simulations, multiple replicates were not necessary. 

 

Table 4.1 – Factor levels for full factorial parametric design study. 

 Level 

Factor 1 2 3 4 5 

E (MPa) 160000 180000 200000 220000 240000 

K 880 990 1100 1210 1320 

n 0.08 0.1 0.12 0.14 0.16 

 

The experiments were programmed into the ANSYS model for evaluation and the effects 

of each case were determined by analyzing the effects on several points throughout the load-

displacement curves, which correspond to either specific inflection points or were chosen as 

being representative of each region of the curve as denoted earlier in the experimental section, 

and are named after those regions as designated in [15, 273]. The design was then analyzed using 

ANOVA, and a regression was run to analyze the effects of each factor. The contributions of 

each of the independent factors are shown in the Pareto plot in Figure 4.9 in terms of percent 

contribution. It is important to note that since this graph only accounts for the main factors, and 

does not show the interactions of these factors, each set may not equal unity. The points are 
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ordered in terms of their appearance on a P-δ curve in terms of stages from left to right, showing 

the trends of factor influence as deformation increases. 

 

  
Figure 4.9 - Percent contribution of main factors to the various sections of the SPT force-

displacement curve. 

 

The normalized percentage values show that for the majority of the force-displacement 

curve the strength coefficient, K, is the dominant factor, and nearly always by a wide margin. 

The hardening coefficient, n, is always second most influential, though the effect varies 

depending on the section of the curve in question, while Young’s modulus, E, is largely 

ineffectual. The exception to this, of course, is in the primary, elastic portion of the curve, where 

although E affects the outcome the most, K and n each have an almost equal effect as E. These 

trends are to be expected, as the power law in which K and n are used to describe material 

behavior pertains solely to the region of plastic deformation, while the elastic region is primarily 
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described by Hooke’s law, in which only E is present. However, this contribution by K and n to 

the elastic portion of the P-δ curve indicates that this region is not wholly elastic, and so as was 

suggested in [221] a universal constant using the slope of this region to determine a correlation 

may not be viable. There is also a small notable effect from the Young’s modulus to the 

plastification region, and a nearly negligible contribution to the hardening region, which 

sequentially follow the elastic portion of the force-displacement curve. Logically, a trend can be 

seen in the diminishing influence of E as displacement progresses and damage transitions from 

elastic to fully plastic, with a combination of the two occurring somewhere in the plastification 

region. It is also worth mentioning that for all but the elastic and plastification zones, the 

interaction between K and n has a larger effect than E. As mentioned, this is not the case for the 

elastic zone since E is the dominating factor there and the interactions of E-K and E-n are much 

more relevant than K-n. However, for the plastification zone, even though it is the zone with the 

second highest effect from E, contribution from the interaction between K and n is nearly equal 

to that from E alone. Select responses of this study as detailed in Table 4.2 to aid in the 

visualization of the variations of the responses caused from altering the parameters and the 

different combination of such. The runs selected represent cases with varying combinations, 

from all high values to all low values, with varying combinations in between, to give a full 

spectrum of possible responses by which to gauge the effects of each variable.  
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Table 4.2 - Factor levels of select runs for comparison of effects. 

 
Run 

Factor 5 13 21 75 76 

E (MPa) 200000 200000 200000 240000 160000 

K 880 1100 1320 1320 880 

n 0.16 0.12 0.08 0.16 0.08 

 

The responses of these runs are visualized in Figure 4.6, which the complete curves and a 

detailed view of the initial linear portions of such. The responses vary widely from the linear 

portions to failure, regardless of the values of the factors used. Specifically, the variation in the 

initial liner response shows its dependence on all three factors, even though the Young’s 

modulus has been shown to be the dominant factor, as runs 5, 13, and 21 all share the same value 

for E but display highly varied responses based on the combinations with the designated values 

of K and n.  
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Figure 4.10 - Select curves from the parametric study, and the linear portions of such [292]. 

 

The curves in Figure 4.10 represent several varied cases within the study: run 13 

correlates with the Level 3 settings in Table 4.1, with all of the median values for IN939 at room 

temperature, run 75 correlates with the Level 5 settings with the high end values for all factors, 

and run 76 correlates with the Level 1 settings where all factors are set to the low values. 

Comparing these three sets the combined effects of altering the factors can easily be seen, 

beginning almost in the elastic range. The slope of the elastic region increases with increasing 

factor values, and a continuous divergence of the three curves occurs as displacement increases. 
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Runs 5 and 21 keep the Young’s modulus, E, at the median value combined with a low K and 

high n or high K and low n, respectively. These two cases represent the extremes in this plot in 

terms of response. The initial, elastic portions of the curves match very well with the cases 

correlating with the Level 1 and Level 5 settings. Run 76, in which all factors are set to low, and 

run 5, which has a low K and high n match in the elastic zone and quickly diverge, with the gap 

between them staying nearly equal. Note that the combination of low K and high n lowers the 

force levels of this response throughout, a logical response to a material with a lower strength 

coefficient and higher hardening constant. On the other end of the spectrum are Run 75, which 

has all of the factors set to the high values, and Run 21, which combines the median value of E 

with a high K and a low n. In this case the two elastic portions again match but for a slightly 

larger displacement level, with a more pronounced difference occurring throughout the lengths 

of the curves, with the difference escalating slightly with increasing displacement. This more 

pronounced difference, the highest of which occurs at the peak load, occurs due to the low 

hardening coefficient allowing for more of a divergence between the two. This small selection of 

curves shows how prominent the effect of changing these factors and their interactions are on 

material response. Interesting to note is that the most extreme responses here are elicited by the 

combinations of the opposing extreme values of K and n, rather than by those on the same end of 

the tested range. 

As the microstructures and material properties of AM materials, such as those from SLM, 

have been shown to be highly sensitive to both processing parameters and post-processing 

conditions, the advantages of utilizing the small punch test to evaluate them become immediately 

evident [128, 142]. As the changes in SLM material microstructures can range from minor to 
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major depending on the variations employed in processing or post-processing, tracking them 

with a very sensitive method is of high importance. As SPT has been shown to be sensitive to 

minor changes in small volumes, this then becomes a highly attractive option for optimizing 

processing parameter settings and post-processing routines. The Pareto plot and the resultant 

curves from the parametric curves show that the model implemented here is in fact sensitive 

enough to track these changes as well, which is necessary in implementing the model for its 

intended use. 

4.4 Intended Use: Inverse Solution Method 

 A case has been made for the use of the small punch test to evaluate selective laser 

melted materials. An FEA model was constructed in ANSYS and tested with varying material 

types, and a subsequent parametric study was designed to test the sensitivity of the model to 

varying material conditions. As such, the subtle changes that will arise in SP testing various 

SLM samples with minor processing variations can be evaluated by using the model presented 

here with the inverse solution method so as to extract stress-strain data and subsequently the 

relevant material properties. This allows for tracking the evolution of an SLM material through 

changes in processing parameters and through the various stages of post-processing.  Recent 

studies reviewed here and the adaptability and sensitivity of the model presented here show that 

the small punch test is a suitable method for optimizing SLM materials and processing.  

The model will primarily be employed for the implementation of the inverse solution 

method to determine material property values from experimental data of small punch tests 

conducted here, as outlined in the literature review. This will allow for a direct and more 
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accurate comparison against results established with conventional tests, as well against estimates 

made using correlation factors as outlined in the literature review. The inverse solution in this 

case is accomplished via the use of sum of squares of error, also known as the residual sum of 

squares, using minimization of this as a target within ANSYS workbench for optimization of the 

simulation response based on the factors E, K, and n. The residual sum of squares (RSS), can be 

described by the equation: 

 𝑅𝑆𝑆 = ∑(𝑦𝑖 − �̂�𝑖)2𝑛
𝑖=1  (32) 

where yi is the predicted ith value of the variable being estimated and ŷi is the corresponding ith 

value of the experimental results. That is, yi represents the force values of the simulation and ŷi 

represents the corresponding force values of the experimental results. Thus, the sum of squares 

of error targets the force response of the simulation and compares it to the experimental response 

input into the system, working at 10% intervals up to the force corresponding to the maximum 

displacement, adjusting E, K, and n to systematically adjust the curve to minimize the difference 

in the responses between the simulation and the experimental data. Once the optimization 

program within ANSYS determines the RSS value has been minimized as much as possible, the 

material model in the SPT simulation produces a force-displacement curve equivalent to that of 

the experimental result to which it was matched. That same material model can then be used to 

extract a true stress-true strain plot, which is used to analyze material properties such as yield 

strength, ultimate strength, and Young’s modulus, which are compared to conventional test 

results to gage accuracy. The iterative process by which this is done, matching the simulation to 

the experimental results in a piecewise manner, is explained graphically in Figure 4.11, showing 
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the similar process utilized by Husain et al., which proved successful for extracting accurate 

stress-strain curves from SPT results for a variety of steels [276]. As was noted in Figure 4.9, the 

effects of the factors considered for executing the curve fit depend on the point of the P-δ of 

interest. In Figure 4.11, these points are denoted by the corresponding occurrence of the load Px, 

with x being the order at which the load occurs, with an increase in x denoting an increase in total 

displacement. By using ANSYS to carry out these calculations, the time expended by 

investigators is economized, as factor adjustments and fit calculations are carried out 

automatically.  
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Figure 4.11 - Graphical representation of the piecewise manner in which the inverse solution 

method is used to match the simulated response to the experimental response [276]. 
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The creation and verification of the FEA model against experimental results will play a 

key role in determining the material properties of samples tested with SPT. Although general 

trends can be established by examining the P-δ results, the inverse solution provides the most 

accurate and dependable approach to determining the true stress-true strain behavior. This is 

necessary for determining material properties to the extent of being able to compare SPT results 

to those acquired via conventional testing.  
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CHAPTER 5: EXPERIMENTAL RESULTS 

The experimental results for the several test types explored in this study will be presented 

here. A detailed analysis of small punch test results and comparisons of these will be included, 

closely examining the effects of manufacturing and testing variations. Correlations between 

experimental results and simulations will help to establish material property values using the 

inverse solution method. Finally, observations from microscopy will be utilized help to explain 

differences between trials. 

5.1 Small Punch Test Results 

This section will explore the results of the small punch tests conducted as outline in 

section 3.4. Test results will be presented in a number of subsections based on the differences 

present between the trials being compared. In this manner, several subsections will follow 

exploring the effects of both testing variables and the sensitivity of test results to material 

processing variables such as orientation and heat treatment. By doing so, the effects of several 

variables can be established in order to determine the suitability of SPT for evaluating SLM 

materials, while simultaneously expanding the known capabilities of the small punch test. 

5.1.1 Effects of Post-Processing Routines 

Several of the trials listed in Table 3.2, T4 through T9, are designed to use samples 

sourced from the tensile tests conducted in the recrystallization study outlined in Table 3.1, and 

are meant to mimic those tests. These tests are designed specifically to evaluate the ability of the 

small punch test as a means to track gradual changes in microstructure due to variations in the 
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recrystallization implemented in the post-processing of IN939V to reduce the anisotropic 

characteristics of the as-manufactured material. The responses shown in Figure 5.1 show the P-δ 

curves of these samples, while the equivalent tensile responses can be seen in Figure 3.3. These 

curves show a variation in the response depending on the post-processing recrystallization cycle 

implemented on the samples, and are labeled by their respective recrystallization study 

designation, with RX7 and RX8 having forgone the recrystallization cycle and instead received 

only the hot isostatic pressing and successive heat treatments and serve as a basis for comparison 

of the effectiveness of the recrystallization cycle treatment. Samples for RX1 and RX2, trials T6 

and T7, respectively, were treated for a base recrystallization time at the recrystallization 

temperature, TRX, while samples for RX3 and RX4, trials T4 and T5, respectively, were treated 

for a time of 3X base in otherwise identical conditions.  
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Figure 5.1 - Small punch tech test response of samples sourced from tensile tests conducted 
during the recrystallization study outlined in section 3.2.1. 
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The most prominent feature of note when simultaneously comparing all six trials is an 

evidentiary reduction in strength, which corresponds to the occurrence of Pmax, with the 

implementation of a recrystallization cycle. This seems to continue as the recrystallization time 

increases, as Pmax generally occurs at lower values and also earlier on, at a lower value of δm. The 

samples which were not recrystallized, RX7 and RX8, diverge in the first and second regions, 

overlap for most of the third region, then diverge and switch position during the latter portion of 

the third region, of which RX8 has a longer duration, as the sample for RX7 has a longer plastic 

instability region, the fourth zone of the P-δ curve. Sample RX8, however, peaks earlier and at a 

higher level than RX7, and the two seem to converge again later in the failure region, suggesting 

similarities in the failure region and latter stages of ductility. To aid in inspection of the fractures 

of each specimen and ascertain their differences, however, samples were not tested until total 

failure, but stopped after a significant load drop indicating the appearance of a fracture and a 

limited amount of growth of the crack. Closer inspection of the elastic regions of these curves 

reveals a notable difference in their slopes, much larger than any of the other equivalently-treated 

pairs of differently-oriented samples. Given the collective differences in elasticity, strength, and 

ductility, a significant amount of anisotropy can be deduced to exist between the two directions. 

 Samples from RX1 and RX2, treated with a Base recrystallization cycle, conserve some 

of the behaviors of those displayed by the non-recrystallized samples. In the primary section of 

the responses of RX1 and RX2, the elastic portion, the gap is considerably reduced from that 

between RX7 and RX8, the non-recrystallized tests. The slopes of these portions of the curves 

appear almost parallel, which would make the elastic moduli equal, though they diverge 

somewhat in the latter portion of the elastic zone, prompting an assumption that they are not. The 
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two curves begin to merge at the end of the elastic zone, but then begin to diverge soon after, as 

they cross and diverge early in the third region, then cross again as RX1 resists instability and 

fracture for much longer than RX2, as δm for RX1 occurs at 0.64mm, as opposed to 0.49mm for 

RX2, accompanied by a higher strength at 1.30kN for RX1 versus 1.18kN for RX2, though the 

rate of increase in the third region, and thus the plastic behavior up to the instability zone just 

before fracture seems to be equal for both orientations. This is akin to the behavior displayed by 

samples from RX7 and RX8, as both RX1 and RX7, which were manufactured in the transverse 

direction, have a higher δm than their longitudinally-manufactured counterparts, suggesting 

higher ductility and resistance to loading. A comparison of these two sets of trails also indicates 

that the recrystallization heat treatment initially impacts the strength of the longitudinally-

manufactured samples more so than the transverse ones, as the elastic portion and the peak load 

of RX2 change more dramatically when compared to RX8 than RX1 does when compared to 

RX7. 

This is continued, logically, when inspecting the curves of RX3 and RX4, which were 

recrystallized at a 3X Base time, relative to RX7 and RX8, as they are now nearly overlapping 

and remain parallel in the elastic region, suggesting equal moduli. The elastic regions persist for 

a longer range of displacement than those of either RX1 and RX2 or RX7 and RX8, and the 

modulus also appears higher for the longer treatment, reinforcing the direct correlation between 

the increasing modulus with treatment time, and a reduction in the anisotropy of such, as the 

initial slope of the P-δ curve has been linked as a direct correlation with the Young's modulus. In 

a macroscopic view, the two curves match up very well, with only a small gap separating them 

for the majority of their length, with the peak loads being only 3.5% different, from 1.214kN for 
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RX3 to 1.171kN for RX4, and a difference of only 4.3% when normalized with respect to 

thickness and displacement. This indicates a significant reduction in anisotropy between the two 

directions, when compared to the un-recrystallized samples of RX7 and RX8, and even in 

comparison to the shorter Base treatment times undergone by the samples for RX1 and RX2. 

There is also, however, an overall considerable reduction in strength when compared to RX7 and 

RX8, and another smaller further reduction of the transversely-built samples between the Base 

and 3X Base trials (RX1 vs. RX3). The successive reductions in strength, however, are crucial to 

the reduction in anisotropy, as the recrystallization treatment affects the transversely-built 

samples more dramatically than the longitudinally-built samples, closing the gap between the 

two directions over time. This suggests the possibility of a limit to the effectiveness of the 

recrystallization cycle for reducing anisotropy, and it’s unclear whether a further extension of the 

cycle time would lead to any further homogenization of the two directions, or just continue to 

reduce strength while maintaining a difference between them.  

It must be considered, however, that the correlation of Pmax with the ultimate strength of a 

material has been shown to be dependent on the displacement, δm, at which Pmax occurs as well 

as the thickness, t, of the sample. In effect, this will work to reduce the differences in strengths 

when peak loads between two samples occur at very different values of δm. As such, Table 5.1 

more directly quantifies the differences between the samples as they occur in the P-δ curves 

shown in Figure 5.1. These values show similar trends to those ascertained by visual comparison 

of the curves but show significant differences dependent on sample thickness and the value of 

the displacement at maximum load.  
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Table 5.1 – Relevant inflection points and normalized values corresponding to material 
properties for small punch tests of recrystallization study test samples. 

 
RX1 RX2 RX3 RX4 RX7 RX8 

Pmax/δmt (MPa) 
4269.1 ± 

0.046  
5237.7 ± 

0.058 
5566.6 ± 

0.060 
5807.8 ± 

0.063 
4265.8 ± 

0.046 
4734.9 ± 

0.051 
% diff.   -22.70  -4.33  -11.0 
Pmax/t2 (MPa) 5778.8 5643.9 5449.1 5367.1 5754.2 5837.1 
% diff.   2.34  1.50  -1.44 

k/t (GPa) 
37.31 ± 
0.384 

33.48 ± 
0.304 

41.45 ± 
0.366 

46.63 ± 
0.351 

21.77 ± 
0.232 

12.58 ± 
0.152 

% diff.   10.26  -12.50  42.22 

Py(t/10)/t2 (MPa) 
2068.9 ± 

0.010 
2383.1 ± 

0.007 
1659.0 
±0.008 

1467.8 ± 
0.008 

1903.6 ± 
0.006 

2288.8 ± 
0.004 

% diff.   -15.18  11.53  -20.23 
 

Inspecting the values in Table 5.1 and the percent differences between the directions for 

each set of treatment reveals similarities and differences to the visual trends. A notable reduction 

of Pmax is seen as recrystallization time is implemented and with the increase in time. The 

implementation of the cycle also increases the anisotropy, but the extended duration reduces the 

difference between orientations. This trend continues when the values are normalized, though 

normalization with respect to thickness and displacement shows a much higher difference than 

those normalized with the square of the thickness, which are included here solely for the sake of 

showing this disparity. Considering the P/δmt values reveals some inconsistencies, as these 

values actually denote an increase in strength with increasing recrystallization time, as well as a 

dominance in strength favoring the vertical orientation. Normalization with respect to thickness 

only shows a general trend of decreasing strength with respect to increasing treatment time, 

indicating either errors in the displacement values or an incompatibility of AM materials tested 

in SPT with the normalization techniques which utilize this metric. Inspecting the normalized 
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values corresponding to the modulus and yield strength shows a general reduction in anisotropy 

with implementation and extension of a recrystallization cycle. Notable is that both of these traits 

seem to switch in terms of the dominant orientation when considering the extended 

recrystallization cycle as opposed to the base cycle or the non-recrystallized samples. This is 

denoted by a change in sign from negative, which indicates higher values for vertical samples, to 

positive, which indicates higher values for horizontal samples. 

The effects of post-processing can be better assessed by comparing samples produced 

from uniform donor geometries, such as those acquired from the large blocks. Using these, 

samples for each condition can be sourced from the same donor for both orientation, so that 

geometry and its effects on initial and post-processed microstructures are not a factor, as they are 

in the recrystallization study, where the transverse samples were produced with the long 

direction parallel to the build plate and the longitudinal samples were produced with the long 

side perpendicular to the build plate. As seen in section 5.2.2, donor geometry differences such 

as these induce differences in cooling rate between layers, which will inherently affect 

microstructure and resultant material properties. The responses of monotonic room temperature 

tests for samples sourced from large blocks in both the as-manufactured and fully post-processed 

states are shown in Figure 5.2. Like in the recrystallization study trials, there is a severe 

indication of anisotropy in the as-manufactured samples, which is significantly reduced after heat 

treatment. As established previously in the tensile RX study, samples labeled as fully heat treated 

herein will have been treated with the longer recrystallization cycle, in an effort to reduce 

anisotropy as much as possible. 
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Figure 5.2 - Monotonic SPT responses of SLM IN939V samples tested at room temperature in 
as-manufactured and heat-treated conditions for transverse and longitudinal orientations. 

 

Upon primary inspection of the curves, further notable traits include similar moduli for 

all trials, distinguished by varied responses in the plastic region and significantly higher strength 

for the as-manufactured samples. The as-manufactured samples, T10 and T11, show higher 

strength throughout the entirety of the curves, with the horizontal sample displaying increased 

resistance to the onset of plastic deformation up to peak loading, absorbing a larger amount of 

strain energy in the early stages of displacement than the vertical sample. After the horizontal 

sample peaks, however, the vertical sample continues to steadily increase in load and deflection, 

highlighting a large disparity in directional strengths. Considering normalization factors 



178 
 

emphasizes the anisotropy present in the as-manufactured samples, and the effectiveness of the 

post-processing routine for reducing it, as shown by the values in Table 5.2. There is a marked 

difference when considering normalized and percentage difference values for strength and 

moduli. Normalization shows an increase in ultimate strength for the transverse orientation, with 

a reduction for the longitudinal orientation, and a decrease for both in yield when normalized 

using the t/10 offset method, and moduli are increased for both orientations. Percent difference 

between orientations is reduced for all properties for the post-processed samples to the range of 

2.7-3.2%, as compared to the as-manufactured absolute difference ranging from 13-17%. This 

shows the effectiveness of the post-processing routine in homogenizing the microstructure and 

the minimization of scatter due to the reduction in anisotropy. Of note, as differences are 

calculated using an error formula with longitudinal values as the base, some are calculated as 

negative, indicating higher values in the horizontal orientation. For the sake of comparison, 

discussions are typically done in absolute values of these. It can also be deduced, whether or not 

considering absolutes, that percent difference between directions, and thus anisotropy, is greatly 

reduced when donor geometry is kept constant between orientations, as the percentages for the 

samples sourced from the large blocks, regardless of manufacturing condition, are consistently 

lower than those sourced from the bars produced for the recrystallization study. 
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Table 5.2 – SPT material property value results of SLM IN939V samples tested at room 
temperature in as-manufactured and heat-treated conditions for both orientations. 

 
T2 long. HT T3 trans. HT T10 long. as-man T11 trans. as-man 

Pmax (kN) 1.2089 1.2081 1.6353 1.3114 
P/δmt (MPa) 4832.3 ± 0.053 4701.3 ±0.048 5144.5 ± 0.055 4473.5 ± 0.046 
% diff. P/δmt 2.71 13.04 
k (kN/mm) 5.16 5.16 3.60 3.13 
k/t (GPa) 11.21 ± 0.123 10.86 ± 0.082 7.63 ± 0.107 6.32 ± 0.114 
% diff. k/t 3.16 17.07 
Py(t/10)/t2 (MPa) 2520 ± 0.003 2450 ± 0.003 2710 ± 0.003 3100 ± 0.004 
% diff. Py(t/10)/t2 2.86 -14.43 

 

5.1.2 Effects of Testing Temperature 

The effects of testing temperature were examined by comparing several otherwise 

identical test trials. This included both conventionally and additively manufactured materials. As 

is seen in conventional tests, testing temperature affects material properties such as strength and 

ductility, and the extent of which can be shown to interact with other sample variations. The 

variations in materials properties between room temperature (RT) and elevated temperature test 

trials due to SPT response will be shown here, and comparisons to equivalent tensile testing data 

will be drawn in Chapter 6, using percentage differences for context. 

Tensile equivalent monotonic tests which were conducted with stainless steel 304 at room 

and elevated temperature served as a basis for testing of the thermal capabilities of the SPT 

fixture developed for this study. Elevated temperature monotonic testing of 304 stainless was 

conducted at 300°C, with test parameters otherwise matching those of the room temperature test. 

The responses of these trials, T1 and T12, are shown in Figure 5.3. Additionally, the response of 

the initial loading cycle of test F5, which was cycled at 200°C with R=0 to 1kN, is given. This is 
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done to facilitate comparison of temperature effects on test response due to the irregularities in 

the response of the 300°C monotonic sample in the initial portions of the curve. Upon inspection 

of this curve, it is evident that there are irregularities present in the initial stages of deformation, 

as the response depicts a higher Young’s Modulus and yield strength than that of the room 

temperature samples, along with a very sudden transition to the plastic zone rather than the 

gradual transition usually seen, depicting an exceptionally stiff material. The response of the 

200°C curve, contrastingly, follows a logical trend when considering the typical behavior of 

metals at elevated temperatures. Though the elastic responses of the room temperature and 

200°C curve appear equivalent, the onset of plastic deformation and transitions into zones II and 

III of the SPT curve appear earlier, trending towards a lower maximum load (as this was a load-

controlled curve with a maximum of 1kN, max loading is not readily discernable from this 

curve). This confirms the irregularities in the 300°C response, though the cause of such is not 

clear. However, the latter portions of the 300°C curve appear to follow a logical trend, as the 

curve shows more gradual crack formation following a reduced maximum load level, which is 

expected as the elevated temperature allows for added plastic deformation in the form of 

stretching while the crack forms, whereas the RT sample fractures quickly after the load peaks.  
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Figure 5.3 - Monotonic SPT responses of 304SS samples tested at room temperature and 300°C, 
with initial loading of 200°C fatigue test shown for additional comparison. 

 

The variation in material properties due to test temperature can be quantified as 

percentage difference between room temperature and elevated temperature responses. The 

normalized values of inflection points Py, Pmax, and k, which have been shown to directly 

correspond to material properties σy, σult, and E, respectively, are given in  

Table 5.3 for T1, T12, and F5, where applicable. Once again, the disparity of values 

between the two monotonic tests is readily visible. Although the drop in maximum strength 

seems feasible, the difference calculations indicated an increase in yield strength of almost 6% 

and a staggering increase in Young’s modulus of almost 240%, the negative signs indicating the 
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increase over room temperature properties. Comparing the room temperature values to the values 

determined from the initial loading curve of the F5 fatigue test at 200°C contrasts directly with 

the results for T12, as this run shows a reasonable decrease in yield strength and Young’s 

modulus of 12% and 13%, respectively. This serves to highlight the error in the 300°C curve 

while showing the ability of the small punch test to track changes in material due to operating 

temperature. Additionally, this enforces the need for additional test trials, as results indicate that 

testing at such a reduced scale are highly susceptible to minor deviances and errors.  

 

Table 5.3 – Property values of 304 stainless steel samples tested at various temperatures. 

  T1 RT T12 300°C F5 200°C 

Pmax (kN) 1.9165 1.2915 - 
P/δmt (MPa) 3100.3 ± 0.034 2077.9 ± 0.022 - 
% diff. P/δmt - 32.98 - 

k (kN/mm) 3.06 10.47 2.71 
k/t (GPa) 6.58 ± 0.037 22.19 ± 0.395 5.70 ± 0.044 
% diff. k/t - -237.2 13.34 

Py(t/10)/t2 (MPa) 1050 ± 0.001 1110 ± 0.010 917 ± 0.001 
% diff. Py(t/10)/t2 - -5.63 12.42 

 

In general, SPT results show sensitivity in response to testing temperature, as material 

properties are reduced with increasing temperature. There is a significant degree of anisotropy 

present when considering directional response of the SLM produced IN939V samples at elevated 

temperatures, especially when placed in contrast to the room temperature samples of otherwise 

identical processing, as shown in Figure 5.4. In contrast to the room temperature responses, the 

curves for T13 and T14 for samples tested at 427°C deviate considerably with regard to 

orientation. Behavior is highly altered from that of the room temperature samples, as the change 
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between zones in the early stages of deformation generally occur earlier and plastic changes 

occur more abruptly. Additionally, the transverse sample shows signs of hardening, as the load 

peaks, starts to decrease, and then steadily rises until peaking again to a value above the first 

peak. It is difficult to say if this is the case for the longitudinal sample as well, due to premature 

test interruption. 

 

 

Figure 5.4 - Monotonic response of SLM IN939V varies by orientation when subjected to 
elevated temperature. 

 

Whereas the material property responses for the room temperature samples from T2 and 

T3 vary by around only 3%, the corresponding values for tests conducted at 427°C vary 
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significantly more. This is shown in Table 5.4, where once again, the difference values have 

been calculated with respect to the longitudinal direction. Of note, the strength calculations for 

T14 were conducted using the primary peak in the data, so as to be comparable to the T13 data, 

which was cut short; utilization of the secondary peak changes the directional percent differences 

for P/δmt and P/t2 to 88.2% and -9.1%, respectively. The high difference calculated between the 

two orientations at 427°C is partly due to the behavior of the longitudinal sample in the early 

stages of deformation, as the curve displays distinctly high stiffness, with a modulus exceeding 

that of those it is compared against by a wide margin. This not only causes erroneous calculation 

of the moduli for the heated samples, as they exceed those of the room temperature samples, but 

a high difference between the two directions. This translates into additional errors in calculating 

the offset yield load, for which the 427°C samples again give distinctly higher values than the 

room temperature samples, along with a high degree of anisotropy at a difference of 49%. The 

strength values also show a high degree of anisotropy for the heated tests when utilizing the 

P/δmt normalization technique, and some degree of error as well, as the normalized strength 

values for the heated test again exceed those of the room temperature values. This reveals an 

error in the displacement outputs, due either to measurement or setup techniques, as the high 

temperature values should not exceed those of the room temperature samples. While a higher 

degree of anisotropy is expected at elevated temperatures, it is also necessary to consider that the 

errors outlined previously are affecting these results. This is shown by comparing the directional 

difference values given using two different normalization techniques, P/δmt and P/t2. Whereas 

the room temperature samples, T2 and T3, show a modest increase from 2.7% to 6.3% when 

using P/δmt and P/t2, respectively, the heated samples T13 and T14 show a drop from 63.2% to 
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0.4%. This shows not only a high sensitivity to normalization techniques but also reinforces the 

theory of the presence of errors in the displacement data for the heated tests, necessitating the 

revision of testing procedures at elevated temperatures. 

 

Table 5.4 – Comparison of directional variation of monotonic responses of SLM IN939V at 
room temperature and 427°C. 

  T2 - long., RT T3 - trans., RT T13 - long., 427°C T14 - trans., 427°C 

Pmax (kN) 1.2089 1.2081 0.8956 0.8959 
P/δmt (MPa) 4832.3 ± 0.053 4701.3 ± 0.048 13818.2 ± 0.150 5087.1 ± 0.018 
% diff. P/δmt 2.71 63.2 
P/t2 (MPa) 5713.1 5354.5 4054.3 4038.1 
% diff. P/t2 6.28 0.401 
k (kN/mm) 5.16 5.16 11.04 8.71 
k/t (GPa) 11.21 ± 0.123 10.86 ± 0.082 23.49 ± 0.242 19.35 ± 0.194 
% diff. k/t 3.16 17.7 
Py(t/10)/t2 (MPa) 2520 ± 0.003 2450 ± 0.003 4020 ± 0.007 2050 ± 0.005 
% diff. Py(t/10)/t2 2.86 49.1 

 

5.1.3 Effects of SLM Sample Donor Geometry 

Sample geometry effects on material properties of SLM materials have been documented 

in literature, as the sample geometry can affect the heating gradients present in SLM parts as 

they are being manufactured. Different geometries which present different surface areas for laser 

scanning will undergo varying period of cooling between scans, altering the heat gradient in the 

component, which in turn affects the resultant microstructure. As donor components for SPT 

samples can vary from large components from which they may be extracted to small, purpose-

built samples made to test specifications, documenting the effects of microstructural variation 

stemming from geometrical differences of SLM donor components is of high importance. 
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The majority of the IN939V samples used in this study were sourced from large blocks 

originally intended to be machined into crack toughness (CT) samples . The tension samples 

used in the recrystallization study outlined in section 3.2.1, however, were manufactured as 

either hexagonal transverse or round longitudinal bars, depending on the orientation of interest, 

and machined to size. The SPT samples corresponding to the study in section 3.2.1 were then 

sourced from the grip sections of the tension samples utilized in this study. As such, a 

comparison of otherwise identically processed samples to gauge the effects of geometry on P-δ 

data is both possible and prudent. Results from small punch tests on samples manufactured in the 

longitudinal and transverse direction sourced from both the CT blocks and the recrystallization 

study (RX study) tension test bars are shown in Figure 5.5. Comparing the transverse samples 

and the longitudinal samples to each other shows a consistent gap between the samples sourced 

from the CT blocks and those from the RX study bars, regardless of orientation. The gap is 

smaller for the transverse samples, likely due to the cooling differences between the CT block 

and the vertical bar being more pronounced than those between the CT block and the 

horizontally manufactured bar. This is likely also responsible for the difference in peak loading 

present in the longitudinal samples which is not present in the transverse samples, which peak at 

similar load levels, as can be seen in Table 5.5. 
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Table 5.5 - Maximum load and displacement at maximum load for fully post-processed samples 
in longitudinal and transverse directions sourced from RX study tension bars and CT block. 

 
Trans., from RX Trans., from CT Long., from RX Long., from CT 

Pmax (kN) 1.2140 1.2081 1.1705 1.2089 

δm (mm) 0.46 0.54 0.43 0.54 

t (mm) 0.472 0.475 0.467 0.460 

P/δmt (MPa) 5566.6 ± 0.060 4701.3 ± 0.050 5807.8 ± 0.063 4832.3 ± 0.053 

 

 Although the samples tested here are not shown to full fracture in order to preserve the 

fracture pattern, the increased rate of load drop for the longitudinal sample from the RX study as 

compared to the longitudinal sample from the CT block also reinforces the differences brought 

about from the geometry of the donor component as an increase in ductility can be inferred. 

Additionally, differences in δm show higher ductility and loading resistance in the CT samples, 

both between and within each orientation. Finally, strength variations manifesting from 

differences in orientation are more pronounced in the RX study bars than in the CT samples, as 

in the CT samples the differences arising from orientation have been mostly eliminated by the 

implementation of the full post-processing routine, and both directions have been sourced from 

the same sample. Since the samples from each direction from both donors are very close in 

thickness to each other, the differences in load and displacement can easily be attributed to 

microstructural differences resulting from sample donor geometry, as the differences between the 

two transverse samples is 15.5% and the difference between the two longitudinal samples is 

16.8%. This suggests an interaction between donor geometry and orientation. Interestingly, the 

higher strength values in this case are both from the RX samples. This suggests that the smaller 

geometry achieves higher strength due to the decreased cooling time between layers due to its 
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smaller cross-section, recalling effects seen elsewhere in literature [111, 142]. Of note, the 

percent differences between the two directions for the two donors vary by little more than 1%, 

4.15% for the RX samples and 2.71% for the CT samples. This suggests that microstructural 

growth may be consistent between them despite donor geometry, though a lower initial level of 

anisotropy in the CT-sources samples is likely responsible for the difference that is present. 
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Figure 5.5 - Comparison plots of transverse and longitudinal manufactured samples sourced from 
both CT blocks and tension test bars. 

While the differences presented from sample donor geometry are not extreme, they are 

notable and detectable by the SPT. This shows the importance of consistent sample geometry 

when utilizing SPT to optimize SLM processing parameters, as some trends will persist 
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regardless of geometry, but others may not, and as such geometry should be kept constant to 

minimize interactions with other parameters.  

5.1.4 Effects of Manufacturing Orientation 

Manufacturing orientation has been cited as highly influential to the resultant properties 

of SLM materials, as shown in Chapter 2 and as exemplified in the preceding sections, and can 

have varied interactions with other factors. In section 5.1.3, for example, the severity of 

anisotropy arising from manufacturing orientation, or sample orientation as is the case for the 

samples sourced from the CT blocks, varies depending on the initial donor sample geometry, as 

given in Table 5.5. Despite identical manufacturing and post-processing treatments, the samples 

sourced from the CT blocks have a difference of 2.7% in strength between orientations, while 

otherwise identically treated samples sourced from the RX study samples have a difference of 

4.2%. When considering the results of section 5.1.1, a dependency on orientation can be seen in 

how the recrystallization cycles implemented affect the material properties. Though the severity 

of such varies depending on the cycle length or normalized material property considered, the 

recrystallization generally affects samples manufactured in the longitudinal direction more so 

than their transversely-manufactured counterparts. Finally, considering the differences present 

between identically manufactured samples at different temperatures as given in section 5.1.2 

shows a directional sensitivity to testing temperature. Comparing the room temperature and 

427°C values of the longitudinally-manufactured samples T2 and T13, respectively, shows a 

drop of 29% when using the P/t2 technique (as this is the only value which is not affected by 

erroneous displacement measurements for the heated samples). The transverse counterparts, T3 
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and T14, have a difference of 25%, indicating a somewhat lower sensitivity to testing 

temperature than the longitudinal samples. 

In addition to the aforementioned sensitivity to orientations due to the application of the 

load with respect to layer direction, variation in material response can also be seen due to in-

plane rotation. That is to say, the orientation of the long axis of a transverse sample with respect 

to the build plate can alter material response, as shown in Figure 5.6, which shows the response 

of two as-manufactured samples produced from GP1, a derivative of 17-4PH stainless steel 

produced by EOS for additive manufacturing. The response of the two curves for T17 and T18 

show sensitivity to in-plane rotation when otherwise identical samples are oriented along the x-

axis and y-axis, respectively. These curves, however, do not show the max load of the material, 

as the material strength exceeds the capabilities of the small frame to which the SPT apparatus 

was adapted. The portions of the curves which were acquired depict very similar behavior, with 

only slight variations at the early and late portions of the curves, while the majority of the curves 

overlap.  
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Figure 5.6 - Monotonic room temperature test responses of transverse GP1 samples built with the 
long axis rotated with respect to the build plate axes. 

 

The calculated differences between the two transverse samples of as-manufactured GP1 

from tests T17 and T18 show that in-plane variation can be significant once response values are 

normalized. Although response differences appear minimal when inspecting the curves, the 

variations between them are more significant when quantified, as shown in Table 5.6. Although 

the slopes of the elastic portions of the curves appear parallel, the curves diverge quickly after 

their respective inflection points, indicating the divergence between them. This difference 
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propagates into the transition zone, in which yield occurs. As such, the comparison between the 

sample produced along the y-axis produces higher values for the yield and elastic modulus by 

12% and 19%, respectively, than that manufactured along the x-axis. Although the curves 

converge for the majority of the late second and early third zones, divergence occurs again at the 

end of the available curves, indicating a likely variance in the max strength. This is corroborated 

by the difference in displacement at which the maximum load, 2kN, occurs, which causes a 2% 

difference in the values of P/δmt. These disparities indicate the existence of dependency on in-

plane rotation when producing transverse samples as the rotation of the part alters the scan path, 

which is akin to the differences seen in the literature for tensile samples tested with varying scan 

patterns, as reviewed in section 2.2.3 [119, 137, 147]. 

 

Table 5.6 – Property variation of transverse GP1 samples with dependency on in-plane rotation. 

 
T18 GP1 Y-axis T17 GP1 X-axis 

Py(t/10)/t2 (MPa) 1411.6 ± 0.011 1243.4 ± 0.007 
% diff Py(t/10)/t2 11.92 
P/δmt (MPa) 4427.7 ± 0.047 4347.5 ± 0.046 
% diff. P/δmt 1.81 

k/t (GPa) 23.384 ± 0.419 18.913 ± 0.285 
% diff. k/t 19.12 

5.1.5 Other AM Materials 

In addition to those tests highlighted above, the monotonic test matrix included other 

SLM (or DMLS) materials in order to add variety and substance to the efforts to establish 

correlation factors. These include IN625 manufactured by SolidConcepts (currently of Stratasys) 

and IN718 manufactured by EOS, using the respective materials and recommended processing 
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settings of each manufacturer. The IN625 was manufactured in a longitudinal orientation and the 

IN718 was manufactured in the transverse orientation. The SPT responses of these are provided 

in Figure 5.7 and Table 5.7. These will serve for comparison to published material properties as 

given by the respective manufacturers in Chapter 6 and will aid in determining correlation 

factors for AM materials, comparing these to those of conventionally-manufactured materials as 

reviewed in Chapter 2.  

 

 

 

Figure 5.7 - SPT responses of as-manufactured IN625 and IN718. 
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The curves show similar behavior for the two materials, for which the samples were of a 

similar thickness, though the values in Table 5.7 indicate a significant advantage in strength and 

modulus for IN625 over IN718 due δm value of IN718, a relationship which is not supported in 

literature, as IN718 is typically a much stronger material than IN625 due to a higher Al and Ti 

content [298]. Though some variation in material properties is to be expected when considering 

AM manufactured materials versus their conventional counterparts, the general trends when 

comparing the two materials should be upheld as these differences are primarily associated with 

material composition. A level of error in determining the modulus and yield may be associated 

with determination of the initial slope due to the shape of the curves, but the difference in 

maximum strengths cannot be attributed to this, and so error must also lie elsewhere, either in 

testing or sample manufacture. Additionally, it may be considered that the difference in 

manufacturing orientation for these materials may be significant enough to cause this 

discrepancy, as both were tested in an as-manufactured state, and thus vulnerable to directional 

dependencies as previously shown. 

 

Table 5.7 – SPT material properties of AM IN625 and IN718. 

  T15 IN625 long. T16 IN718 trans. 

P/δmt (MPa) 4881.1 ± 0.053 4301.2 ± 0.047 

Py(t/10)/t2 (MPa) 2028.1 ± 0.007 1773.2 ± 0.006 

k/t (GPa) 42.513 ± 0.315 36.247 ± 0.244 
 



196 
 

5.1.6 Effects of Clamping Pressure 

Finally, a note on the importance of sample manufacturing accuracy and uniformity in 

terms of size and fit within the test apparatus is shown here. Due to a deviation in the original 

machining of the lower die from the specified dimensions, the sample pocket depth was initially 

larger than specified, and thus at a greater depth than the thickness of the majority of the SPT 

samples. This deviation lead to the free bending of SPT samples, rather than the constrained 

bending concentrated only at the punch site as intended. This causes bending of the entire 

sample, as shown in Figure 5.8, which shows the edges of the sample bending upwards, away 

from the bulge created by the punch, as the sample is slowly stretched and pushed through the 

lower die hole. The red lines inserted in Figure 5.8 show the extent of the warping which 

occurred. The vertical line is drawn parallel to the edge of the sample in the direction of the 

thickness, or parallel to the punch movement, and the horizontal line is drawn perpendicular to 

this vertical reference to the opposite lower vertical edge corner, allowing for a contrasting view 

of the continuous curvature inflicted on the sample from the unconstrained bending. 
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Figure 5.8 - Warping of sample edges resulting from unconstrained bending of samples due to 
excessive lower die pocket depth. 

 

In terms of P-δ results, the unconstrained bending of samples can result in several 

deviations when compared to a properly constrained sample of similar thickness. The P-δ curves 

in Figure 5.9 show the numerous differences between an unconstrained sample and one which is 

properly clamped between the top and bottom die, with the four clamping bolts tightened to 5Nm 

using a torque wrench. The differences between these two test types are readily apparent, 

beginning with differences in the elastic regions offsetting the remained of the curve. Though 

much of the stretching behavior between the clamped sample and unclamped sample (1) appear 

similar as the curves are parallel in the beginning of the plastic zone, the two begin to diverge 

and continue to do so as the clamped sample reaches maximum loading and subsequent failure. 

The unclamped sample, however, did not reach maximum load but rather continued to stretch 

and instead reached the maximum capacity of the equipped load cell, showing no signs of 

fracture initiation and instead warping the rest of the sample as was shown in Figure 5.8. The 
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secondary unclamped sample tested to verify this phenomenon, designated as Unclamped 304SS 

(2) in Figure 5.9, shows the extent of the variation possible, as the elastic region for this sample 

is greatly exaggerated and differs significantly from the clamped sample. 

  

 

Figure 5.9 - The effects of clamping pressure on otherwise identically tested 304SS samples can 
be readily observed. 

 

The variation in response between clamped and unclamped samples and further variation 

between otherwise similar unclamped samples highlights the importance of constraining samples 

in SPT. Fully unconstrained bending of the samples leads to large variations in resultant P-δ data 
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which will affect inferences of material property variations due to manufacturing differences and 

the estimation of such. 

5.2 Cyclic Small Punch Test Results 

Due to the prevalence of failure due to cyclic loading for the applications the materials of 

interest are often utilized in, a major motivator for researching this topic is in assessing the 

performance of such, so a number of tests were conducted using varying cyclic loading 

conditions. These include tests with a single punch using an R=0 load cycle, in which parts are 

repeatedly loaded in zero to tension under a load which results in plastic deformation within the 

stable deformation range of the force-displacement curve, region 3. Additionally, several tests 

were conducted with a fully-reversed loading range of R=-1using the novel dual-punch design 

presented in Chapter 3, with control modes varying between load and displacement dependent. 

Load and displacement levels were chosen according to the monotonic response of the material, 

typically choosing a load or displacement which corresponds with the third region of the P-δ 

curve. The results of these and comparisons of such will be presented in this section. Subsections 

will examine the effects of several test variations on the sample response, examining capabilities 

of the SPT to evaluate materials for varied cyclic loading applications. Comparisons are 

facilitated by presenting cyclic responses in the form of load or displacement versus cycles to 

failure, depending on the control mode, and are taken as equating to stress-life and strain-life 

responses, respectively, given the relationships established in Chapter 2. Several of the tests 

conducted in this section also utilized the conventionally manufactured 304 stainless steel. Use 
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of a conventional material aided in establishing best practices and isolating the effects of specific 

test conditions, without the complications and interactions that AM materials may present. 

5.2.1 Differences from Load Level 

The first condition tested on the cyclic response of 304 stainless steel was in choosing the 

load level for R=0 tests. Adhering to practices for traditional fatigue tests, the loads chosen for 

the majority of the cyclic small punch tests herein typically lie within the range of stable plastic 

deformation, zone 3 of the P-δ curve, so that each cycle imparts an equal amount of deformation 

until the onset of failure. In the interest of adhering to traditional test practices, however, two 

load-controlled tests with R=0 were conducted at loads which correlate to proportional levels of 

displacement. As such, one test was conducted to 1kN (F1), which produced a displacement of 

slightly less than 0.8mm under monotonic loading, and another was conducted at 1.5kN (F2), 

which produced approximately double that displacement. The displacement per cycle plot 

comparing these is shown in Figure 5.10. The increased load level of the 1.5kN test reduces the 

cycles before the onset of failure to a third of the 1kN test, from 3000 to 1000 cycles. However, a 

comparison of the stabilized hysteretic loops shows that both samples have a displacement range 

of approximately 0.04mm, so that reduction in strength is not necessarily caused by an increase 

in the stabilized strain range, but by increasing levels of damage accumulated due to the higher 

load level causing an increase in the plastic strain, or displacement, range. It is also worth noting 

that the 1.5kN load level falls close to the plastic instability zone, region 4, of the monotonic test 

response of 304SS, which could be the driving reason behind the increased plastic strain range in 

this test, which is not present for the 1kN test.  
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Figure 5.10 - Variation in response of 304SS tests F1 and F2, cycled at R=0 with loads of 1kN 
and 1.5kN, respectively. 

 

5.2.2 Effects of Testing Temperature 

Typical conventional fatigue studies are conducted at elevated temperatures 

corresponding to operating conditions in the application of interest. Three different test types of 

small punch fatigue tests were studied, and each of these was studied at both room and elevated 

temperatures to provide a baseline for cyclic behavior in SPT and the effects of temperature. 

Conditions between corresponding tests are otherwise identical, and samples with similar 

thicknesses were chosen for each set of test type to facilitate comparisons. For test evaluation 

purposes, samples utilized in these trials were made from wrought 304 stainless steel, rather than 

using the AM materials, the characteristics of which would interact with the test parameter 

changes to affect the responses.  
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The first cyclic loading mode studies follow those previously shown in literature, where 

loading is applied in zero-to-tension, with R=0. The curves in Figure 5.11 depict the response of 

304 stainless steel cycled from 0.1kN to 1kN at room temperature (F1) and 200°C (F5). As can 

be expected, there is a higher mean displacement for the heated test due to increased malleability 

leading to a larger amount of deformation upon initial loading, but the two curves mostly show a 

similar trend of growth. Both the room temperature and 200°C responses remain at a steady level 

of displacement for over 2500 cycles, after which point the heated test undergoes a sudden 

increase in displacement, likely caused by the occurrence of a major crack. Following that, the 

displacement, and concurrent damage, increase slowly but steadily until a sharp rise indicating 

total failure. The room temperature sample, however, maintains a mostly constant displacement 

level for around 1000 more cycles, after which damage accumulation occurs much more quickly, 

showing exponential growth, until the indication of catastrophic failure via the large, sudden 

increase in displacement. Due to the lower level of malleability in the room temperature, crack 

growth and failure occurs in fewer cycles than in the 200°C trial. 
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Figure 5.11 - Cyclic response of 304SS tests F1 and F5, tested with R=0 to 1kN at room 
temperature and 200°C, respectively. 

 

The effects of testing temperature on load controlled cyclic tests are more pronounced 

when utilizing the fully-reversible dual punch configuration. The displacement-life results of 304 

stainless tested with the dual punch configuration for an R=-1 with load control cycling between 

-0.5kN and 0.5kN at room temperature and 200°C are shown in Figure 5.12. The room 

temperature sample remains steady at around 0.5mm displacement for around 50 cycles, at 

which point damage begins to accumulate and crack growth causes a steady increase in the 

displacement level to about double this value, after which point it levels off again. Leveling off is 

likely due to the presence of a large fracture (hole) in the center of the sample at this point, after 

which further cycling of the sample does very little damage as the punch tips are no longer fully 

in contact with the sample, rather the sides of the punch are further deforming the periphery of 
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the punch contact area on the sample. Corroboration of the presence of this fracture can be seen 

later in section 5.4. The elevated temperature sample, when inspected alone, levels off for around 

30 cycles after an initial increase to a nearly doubled value of displacement as compared to the 

room temperature sample. After this steady displacement region there is a sudden, exponential 

rise in displacement during which time damage accumulates rapidly and the sample fails 

catastrophically. This is followed by a similar period of steady displacement and a subsequent 

increase, where the failed sample is damaged further as portions of the deformed are displaced 

beyond damage that is typically seen. 

 

 

Figure 5.12 - Cyclic response of 304SS with R=-1 load controlled at -0.5kN to 0.5kN at room 
temperature and 200°C  
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Although the total loading range for the samples shown in Figure 5.12 is the same as for 

those shown in Figure 5.11, 1kN, the responses of these are vastly different. While for the single 

punch R=0 test life is shortened by roughly 33% before the onset of fracture for the heated test as 

compared to the room temperature test, for the R=-1 load-controlled tests life is shortened 

considerably more so, by 85% when comparing heated to room temperature. Additionally, the 

rate at which damage accumulates for the elevated temperature R=-1 test is significantly higher 

than that of the R=0 test, though proportionately they both occur at nearly double the cycle 

number of that which indicates the onset of failure. That is, for the R=0 sample the onset of 

fracture, which is visible in Figure 5.11 as a sudden, short increase in displacement, occurs at just 

over 2700 cycles, while failure occurs at around 5400 cycles. Similarly, for the R=-1 sample the 

onset of fracture in which the rate of increase of displacement increases greatly occurs just shy of 

50 cycles, and the sharp increase in displacement denoting failure occurs at around 100 cycles.  

The displacement-controlled R=-1 tests also feature a sharp contrast between the room 

temperature (F4) and 200°C (F7) trials, though the initial load levels for both trials appear to 

overlap for several cycles. The responses of these can be seen in Figure 5.13. Despite the initial 

similarity, however, the elevated temperature test accumulates damage and peaks very early, 

followed by a steady reduction in load supported and a divergence from the room temperature 

response, indicating a steady increase in fracturing and failure rate, as compared to the room 

temperature sample. The room temperature test features an early peak and drop of supported load 

that levels out after a period of steady decline, though with some deviation in the load level due 

to the control settings of the frame. Likely the steady decline occurred as the major damage to 

the sample accumulated, with the steady latter portion increasing the damage more slowly in the 
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area further away from the punch tips. Thus, as will be seen in fractography, the center of this 

sample features a hole where the punches repeatedly impacted and deformed the sample, while 

the areas surrounding it underwent repeated bending which lead to slower accumulation of 

plastic deformation and cracking. In comparison, the 200°C increase in temperature shows 

highly detrimental effects on the cyclic life of the samples, as the load drops much more rapidly 

for the heated sample, even though the two start at equivalent load levels (thickness was only 

marginally different for these samples, and of minimal effect). The increased malleability 

induced by the high temperature caused the damage to occur much more rapidly. It is difficult to 

say when catastrophic failure occurred with respect to cycles tracked, however, so it's difficult to 

know how much of the life of the room temperature sample that was tracked is actually fatigue 

of the area surrounding the circular hole caused by the punch tip. Despite the scatter present in 

the data, the maximum loads for the room temperature sample do not drop below the final value 

of the 200°C sample until at least 4x as many load cycles, indicting significant life reduction due 

to implementation of heat. 
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Figure 5.13 - Cyclic response of 304SS with R=-1 displacement controlled at -0.5mm to 0.5mm 
at room temperature and 200°C 

 

5.2.3 Differences from Loading Type 

In this study a novel method for evaluating fatigue behavior was proposed, in which a 

dual punch SPT setup could be utilized to achieve R=-1 reversible loading. The loading 

mechanism implemented in each test will affect the resultant behavior, and consequently the 

effects of other variables upon material response, as when comparing room temperature and 

200°C tests. Referring again to Figure 5.11 and Figure 5.12 facilitates a comparison of the 

effects of loading type directly, that is R=0 with a single punch to R=-1 with dual punches, both 

of which feature a total loading range of 1kN. Though both maintain a ratio of approximately 2:1 

for cycles at onset to cycles at failure, the scale at which this occurs is highly dependent on the 

loading mode, as the single punch configuration delivers significantly less damage over time to 
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the sample, and thus extends life. This is due to the fact that the R=-1 configuration fully 

reverses the load in order to achieve the full loading range, imparting damage on both sides of 

the sample as the punches plastically deforms the sample in both directions with each cycle, 

whereas the R=0 loading configuration simply builds on existing deformation to achieve the 

repeated loading, imparting minimal additional deformation to the sample with each cycle. 

Comparing the individual hysteresis loops of the two test types confirms this, as shown in Figure 

5.14. The loop for the R=0 to 1kN shown in Figure 5.14 (a) is characterized by a small 

displacement range, which is similar to the strain range of a traditional fatigue test, of less than 

0.04mm, and appears almost entirely plastic. Contrastingly, the loop shown in (b) for the R=-1 

test from -0.5kN to 0.5kN has a displacement range of approximately 20x that of (a), with a 

significant portion of plastic strain being present, and a corresponding increase in plastic strain 

energy.  

  

 

Figure 5.14 - Hysteretic responses of 304SS cycled at RT with (a) R=0 to 1kN and (b) R=-1with 
a range of ±0.5kN. 

(a) (b) 
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5.2.4 Differences from Reversible Control Modes 

Conventional R=-1 fatigue tests are typically strain controlled, yet the limited cyclic SPT 

studies documented in literature utilized a single punch R=0 configuration which is load 

controlled. As such, an objective in the evaluation of the novel dual punch cyclic design is to 

determine which control type is best suited for use with the reversible loading test to acquire the 

most informative results, load or displacement. Single hysteresis loops from each control type 

with an R=-1 ratio at room temperature are shown in Figure 5.15. Note that the output for the 

displacement-controlled test is recorded via LVDT, though input is established by the movement 

of the load frame cross head, which causes the resultant displacement level to not cycle at the 

input range of ±0.5mm. Despite this discrepancy, the resultant output works well for comparison 

to the load-controlled test, as levels of both load and displacement during stabilized cycling 

correlate significantly, with a similar strain range. There is, however, a difference in the values 

which correspond to the stress and plastic strain range. Additionally, the gap which exists in the 

middle of each loop, which corresponds to a gap in application of the opposing punch as one 

punch removes its load from the sample, is more pronounced in the displacement-controlled 

sample. When considering the entire span of life tested, the loops for the displacement-controlled 

test feature overlap better than those of the load controlled, which feature more pronounced 

ratcheting and build-up of plastic deformation. 
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Figure 5.15 - Comparison of results for displacement and load controlled tests of 304SS when 
tested with R=-1. 

 

The effects of control type also show an interaction with testing temperature. To facilitate 

comparison, both load controlled and strain-controlled tests of 304 stainless at room temperature 

and 200°C are plotted on the same x-axis in Figure 5.16. The load and displacement-controlled 

curves shown therein were cycled at ±0.5kN and ±0.5mm, choosing values within the steady-

state plasticity region which produce responses roughly equal to each other. The room 

temperature tests both have a period of rapid increase in their respective response value level, 

and level off around 200 cycles. Both values at which cycling levels are set to, 0.5kN and 

0.5mm, correspond to levels within the steady-state plastic deformation region of the monotonic 

response of 304 stainless at room temperature, indicating that similar trends can be seen for at 

least part of each test when adhering to this experimental design guideline regardless of control 

mode. Elevated temperature testing impacts load controlled samples more severely than 
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displacement-controlled samples, as the softer, heated material is able to support less load. 

Displacement increases quickly in order to achieve the 0.5kN load level to which it is being 

cycled, whereas the displacement-controlled sample undergoes a steady, gradual loss of strength 

as it is displaced the same amount, so the reduction in strength occurs due to a more gradual 

accumulation of damage. As such, it can be said that displacement control is best suited for 

comparison to conventional test results, as a likeness can be drawn to strain controlled tests, and 

a steady rate of damage accumulation can be achieved. However, a lower displacement level for 

cycling should be utilized in order to extend overall test duration and sample life, choosing a 

displacement at the beginning of the steady deformation zone, zone III, or perhaps even in the 

plastic bending zone, zone II. 
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Figure 5.16 - Comparison of cyclic behavior of 304SS at RT and 200°C for samples tested with 
R=-1 utilizing both load and displacement controls. 

 

5.2.5 Effects of Hold Time 

A hold time was incorporated into one of the cyclic tests of 304SS with R=-1 at 200°C, to 

evaluate the effects of said hold time versus cyclic results without a hold, approximating creep-

fatigue testing conditions. The response is shown in Figure 5.17. The sample was cycled with a 

load range of ±0.5kN, with a 15s hold applied at the +0.5kN hold, and the load and unload 
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segments applied at a rate equivalent to those of the other cyclic tests conducted at 20 

cycles/min. The majority of the loops overlap with some small level of ratcheting as plastic 

deformation increases, though the latter stages of deformation show increasing level of plastic 

deformation during individual hold cycles until failure.  

 

 

Figure 5.17 - Load-displacement response of 304SS cycled at R=-1 with load control and a 15s 
hold time at 0.5kN. 

 

As such, the measured life output is in terms of displacement with respect to cycles, as 

due to the hold time a comparison with respect to time is not very informative. In comparison to 

F6, the cyclic data with the hold time, CF1, shows significant damage due to the hold time, as 

overall duration is around 1/3 the number of cycles as the run without the hold time. For the 

creep-fatigue sample displacement progresses steadily until fracture sets in, at which point the 
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displacement rapidly increases until failure, whereas the steady-state portion of the sample 

cycled without the hold time is much longer, with gradual increases in both the initial and latter 

portions of the response. The hold time thus facilitates increasing levels of damage accumulation 

with only slight increases in displacement, as the steady-state portion of the creep-fatigue sample 

occurs at a displacement level of about 1/3 of that of the sample without the hold time but fails 

much sooner in terms of cycles. In terms of time, however, the hold cycle appears to facilitate 

slower accumulation of damage and over double the duration of life, as the hold cycle skews the 

scale in favor of the creep-fatigue test.   

 

 

Figure 5.18 - Displacement vs cycle response of 304SS at 200°C cycled at R=-1 with ±0.5kN, 
with (CF1) and without (F6) a hold time. 
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5.2.6 SLM Materials and the Effects of Heat Treatment and Orientation 

Utilizing the knowledge gleaned in the previously discussed cyclic tests on the effects of 

testing conditions on cyclic response, additional cyclic tests were designed for evaluating SLM 

materials. These tests also incorporated the traits and conditions unique to the SLM materials 

studied, such as the effects of manufacturing orientation and heat treatment. As these effects are 

intrinsically tied to one another, this section presents an overall examination of these tests as a 

whole, rather than attempting to isolate the singular effects of each condition in different 

sections, showing the effects of different variables both individually and as interactions where 

appropriate. 

As with the monotonic tests, the response of IN939V to cycling at elevated temperatures 

varies depending on manufacturing orientation, processing, and testing conditions. The curves in 

Figure 5.19 show the cyclic responses of IN939V in various stages of manufacture and loading 

tested with R=0 at 427°C. Most notable of these responses is that of F8, the vertical heat-treated 

sample tested to 0.4kN, which clearly does not follow the same general trend that the other 

samples seem to follow. While the remainder of the samples show a cyclic increase in 

displacement after an initial period of steady displacement levels, a consequence of strain 

ratcheting caused by softening, the response of F8 features a small drop in displacement at 3000 

cycles, followed by a slow increase in displacement. This is likely due to a malfunction in the 

measurement equipment or other error in procedure, as the total final sample thickness from the 

tip of the bulge to the other side of the sample measures at 0.88mm, and the original sample 

thickness was 0.46mm. This means that the total sample deformation should be closer to 0.4mm, 

in the range of the horizontal sample. Due to this, it would seem that the 0.4kN-loaded samples 
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display more of a directional difference in response than the identically treated 0.5kN-loaded 

counterparts; however, this should be attributed mostly to the errors encountered in the vertical 

sample response. Chronologically, the 0.4kN samples were some of the earlier heated cyclic tests 

conducted, and the inconsistencies in the response of the vertical sample and shorter duration of 

the horizontal sample are attributed to the learning curve in working with the system.    

 

 

 

Figure 5.19 - Displacement-life responses for IN939V samples tested with various conditional 
variations at 427°C with R=0. 
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Despite the short duration of F9 (the 0.4kN transverse sample), several distinctions in 

behavior can still be surmised by using it for comparison to the other tests. There is a significant 

increase in displacement levels with respect to cycles present when considering a load increase 

of just 0.1kN between the horizontal samples tested at 0.4kN and 0.5kN, with a corresponding 

decrease in cycles before the initiation of fracture, as indicated by the presence of minor, sudden 

jumps in displacement. Additionally, the 0.4kN-loaded sample features a much longer initial 

period of near-constant displacement than the 0.5kN-loaded sample, as the onset of cyclic 

softening occurs much sooner for the 0.5kN-loaded samples. Cyclic softening is also initiated 

earlier when considering heat treated samples as compared to as-manufactured samples, as is the 

presence of shifts in displacement levels indicating the formation of cracks, due to the 

documented loss of ductility in SLM materials with the implementation of heat treatment [98, 

142]. The increased ductility of the as-manufactured samples is also evidenced by the higher 

initial displacement level of the horizontal as-manufactured sample when compared to heat 

treated samples. Of the two load levels, the as-manufactured sample is more closely resembled 

by the 0.4kN-loaded sample, as they show similar initial trends for around 1500 cycles before the 

heat-treated sample displacement begins to increase quickly, whereas the 0.5kN-loaded sample 

undergoes a rapid change in displacement rate at only 500 cycles despite a lower initial 

displacement level. Notable as well when considering initial displacement levels is the tendency 

of horizontal samples to be affected more adversely by varying material and testing conditions, 

as the horizontal samples vary significantly more than the vertical samples, which vary in a range 

of only 0.015mm. In general, when inspecting the pairs for each set of conditions, longitudinal 

samples resist increases in displacement level for longer than transverse samples as well. 



218 
 

Although post-processing heat treatment of the material reduces overall life and increases 

the rate of softening, the anisotropy is significantly decreased for the heat-treated samples as 

compared to the as-manufactured samples due to the reduction in directional differences in the 

crystal structure. Post-processing also makes cyclic behavior more consistent between the two 

manufacturing orientations, as the heat-treated sample curves remain parallel for the majority of 

their duration, while the as-manufactured samples cross, as the vertical sample takes damage at a 

much faster rate than the horizontal sample despite a lower initial displacement, accompanied by 

an earlier, more exaggerated appearance of cracks. Despite the differences present between the 

0.5kN-loaded heat-treated samples such as the earlier onset of damage and appearance of cracks, 

as well faster aggregation of such (jumps are closer together) of the horizontal sample, the 

damage rates appear to be identical. As such, it can be deduced that the implementation of post-

processing heat treatment significantly reduces anisotropy in cyclic behavior. 

Plotting single loops for each of F8-F13 also shows the level of anisotropy and its 

dependency on load and treatment condition. As seen in Figure 5.20, the responses of each 

sample vary, and although all of these are taken at 2000 cycles, the differences in initial 

displacement and rates of cyclic ratcheting cause the positioning of the various loops to vary 

greatly. Considering the effects of heat treatment when compared to as-manufactured, however, 

a reduction in anisotropy is notable as the loops for F10 and F11 for the heat-treated samples are 

positioned closer together than the loops for F12 and F13, the as-manufactured samples, as the 

deformation trends of the treated samples differ less between orientations, as shown in Figure 

5.19. Visual comparison of the loops, although of overall similar shape for all but the erroneous 

vertical 0.4kN sample, reveals a general increase in the area within the loop, the strain energy, 
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for the horizontal samples as compared to their vertical counterparts. This is due to a higher 

width, which indicates higher levels of plastic strain energy, due to minutely increased plastic 

deformation with each cycle. The transverse, or horizontal, samples also show an increased 

displacement range and level as compared to their longitudinal counterparts, regardless of the 

load level. 

 

 

Figure 5.20 - Single hysteresis loops for IN939V samples tested with R=0 and various 
conditional variations at 427°C. 

 

Additional effects on life due to manufacturing orientation variations can be deduced 

when inspecting the cyclic responses of an AM material manufactured transversely but with 

varying alignment of the longest dimension along different axes. The cyclic response of the GP1, 
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the EOS equivalent of 17-4PH stainless steel for use with their DMLS devices, shows a stronger 

dependency on orientation than the monotonic responses in Figure 5.6. Due to their strength 

exceeding the frame limit under monotonic testing, the samples tested in Figure 5.6 were cycled 

at ±1.9kN with R=-1 using the dual punch setup. The cyclic response of these tests is shown in 

Figure 5.21. Due to the high load level used, featuring a total load range of 3.8kN, these tests 

were very short in duration, which allows for a comparison of their entire life cycles. Overall, the 

two samples exhibit large similarities in the shapes of the hysteretic loops and how they evolve 

over time. It is evident, however, that the sample produced along the x-axis experiences a greater 

amount of plastic deformation that the one manufactured along the y-axis, as it is characterized 

by a larger total and plastic strain range. 

  

 

Figure 5.21 - Fully reversed, load controlled cycling of GP1 DMLS samples at room temperature 
after monotonic testing.  
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Due to this discrepancy in the cyclic strain behavior between the two transverse samples 

produced along different axes, a difference in life is manifested. A comparison of the maximum 

displacement with respect to cycles is shown in Figure 5.22. The x-axis sample maintains a 

marginally higher displacement level than the y-axis sample during steady cyclic behavior. Due 

to the increased displacement and plastic deformation experienced by the sample produced along 

the x-axis, the number of cycles before the onset of failure is half of that of the y-axis. The rate 

of failure, however, is identical between the two samples once the onset is achieved. This is 

corroborated by the distinct shape of the final loops shown in Figure 5.21 that the two samples 

share. 

 

 

Figure 5.22 - Maximum displacement with respect to cycles of GP1 samples produced 
transversely along the x and y axes. 

 

Overall, cyclic SPT responses of AM materials vary distinctly from those of 

conventionally tested 304. Many of the SPT conditions tested with the conventionally 
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manufactured 304 stainless steel feature responses which resemble those seen with conventional 

fatigue tests in overall response shape. This includes the responses of samples tested with R=0 

featuring load control which induces a steady displacement response for the majority of the 

sample life, as well as the R=-1 tests with displacement control to a lesser extent. The R=-1 tests 

with load control and especially the heated tests of those are more likely to feature a gradual 

increase in displacement leading to a sudden increase in change, with a staircase effect on the 

overall response. This is similar to the responses of the SLM samples, which in general feature 

an increase in displacement over time due to displacement, or strain, ratcheting. However, the 

SLM samples are less likely to develop a staircase effect on the overall response due to the 

appearance of sudden, small jumps in the displacement indicating the development of small 

fractures in preference to large deformation.   

5.2.7 Summary of Cyclic SPT Results and Conditions 

It should be noted that many of the cyclic test results studied in this section featured 

varying degrees of ratcheting, as displacement or load were increased slightly over time, though 

at a steady rate. In conventional fatigue tests, this typically indicates a high mean stress or strain 

during cycling, resulting in excessive deformation. In the case of cyclic SPT, mean stress seems 

to be unavoidable, leading to ratcheting regardless of the setup, though with different levels of 

effect. This can lead to cyclic softening/hardening, which causes the constant increase in load or 

displacement, depending on the test being analtzed. When loading at R=0, mean stress is 

unavoidable, though the effects vary depending on the material and testing conditions. With the 

conventionally produced 304SS, ratcheting is largely absent at room temperature tests, as seen in 
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Figure 5.10, though the higher load level does show a slight increase of such. An increase in 

temperature also increases the sensitivity of such, as seen in Figure 5.11. Samples made from 

SLM materials, however, are much more sensitive to ratcheting, as shown in Figure 5.19, though 

the effects of such vary depending on the load level and manufacturing conditions. These 

materials would likely benefit from testing with lower load levels, despite the fact that tests were 

designed using the same rules as those preceding them and load levels lie within the same range 

of their respective curves. The tests utilizing R=-1 with load control appear close to a zero-mean 

stress when inspecting curves, but overall have both a mean stress, or load, and mean strain, or 

displacement. The R=-1 tests using displacement control, while appearing to cycle around zero, 

feature large vertical gaps in the hysteresis loops, so that the load level does not truly return to or 

oscillate about zero, as demonstrated in Figure 5.15. Instead, it could be said that these tests 

feature dual mean stresses, thus inducing ratcheting effects. As such, in the case of dual-punch 

reversed cyclic loading a displacement control mode is recommended, and load control is 

recommended for the single punch setup. Appropriate load/displacement levels may be 

determined by iterative processes, or the use of equations such as those presented in Chapter 2 

for equivalent strain. 

The differences in behavior between SLM and conventional materials have also been 

shown and can be attributed to the sensitivity to manufacturing and testing conditions, including 

orientation, post-processing treatments, and load level. Given the deviation of results, such as 

those seen in the comparisons of the various IN939V tests at R=0, it is clear that some 

refinement of test procedures is necessary. The response of the vertically manufactured sample 

cycled to 0.4kN diverges from the apparent trend that the other samples follow, as the 
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displacement does not develop progressively, but rather drops for a time before increasing again 

slowly. This is likely due to errors in measurement or setup procedures, as the depth of the 

deformation does not coincide with the displacement outputs. As such, refinement of the testing 

procedure is necessary, with constant vigilance kept on load and displacement readings during 

the heating and thermal soaking of the setup, so as to eliminate unintentional deformation due to 

thermal expansion of the constrained sample expanding against the punch. Additional data 

supporting this conclusion includes high stiffness during monotonic testing of both conventional 

304SS at 300°C and additively manufactured IN939V tested at 427°C. 

5.3 FEA Correlations 

A major component in being able to utilize the small punch test to evaluate AM materials 

is in being able to extract material properties via the inverse method. A model of the SPT and a 

curve fitting methodology were designed for this purpose as part of this study. As such, this 

section will present an overview on the goodness fit of simulated results as compared to 

experimental SPT data.  

To deduce material properties from experimental data, a model of the setup was created 

within ANSYS, and simulations carried out for several cases studied here. The material 

properties of the sample were changed for each case with an approximation of a conventional 

counterpart found through literature, this aids to refine and shorten the simulation. As described 

in section 4.4, a sum of squared errors optimization was used to find the best fit approximation 

within ANSYS as a series of guesses were input at set intervals corresponding to points on the 

experimental curves with an objective to minimize error.  
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5.3.1 Simulations of 304 Stainless Steel 

Experiments utilizing conventionally-manufactured 304 were replicated using the 

ANSYS simulation. These simulations help to refine the simulation and assess its efficacy 

against data acquired using the experimental setup designed for this study. The tests studied were 

compared to experimental data from F5, conducted at 200°C, and T12, conducted at 300°C. The 

curve of F5 was generated by combining the initial loading cycle up to 1kN with the peak load 

points of the subsequent cycles for use with the optimization program. The results of the 

optimization studies for the responses of the aforementioned are shown in Figure 5.23 comparing 

ANSYS outputs with the respective SPT experimental results. Although results vary, the R2 

values for each of the optimizations are very high, indicating high goodness of fit. Visually, the 

curves overlap for significant portions, leading to the high R2 values, as determined by the error 

in optimizing the values of E, K, and n for use in the Ramberg-Osgood equation for describing 

material behavior. The estimates for these values which produce the best fit, or smallest error, are 

given with the respective curves, and will be compared to conventional values in Chapter 6. 

Simulations are designed to end at or near the max load point of the SPT response, as the damage 

model employed cannot sufficiently model failure. 
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Figure 5.23 - Optimized FEA inverse solutions as compared to experimental results. 
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The approximations made by ANSYS are able to mitigate the errors caused by faults in 

testing or otherwise which are seen in the experimental results, such as in the initial portions of 

the curves. Specifically, there are deviations in the 200°C curve which causes the initial elastic 

portion to be very irregular in shape, but which the simulation creates a good fit for. For the 

300°C curve, in which the initial portion displays unreasonable stiffness, as discussed in section 

5.1.2, the simulation approximates a logical behavior which quickly converges on the 

experimental curve. The middle and latter portions have significant overlap, indicating a 

satisfactory approximation, though the simulations tend to diverge on approaching the maximum 

loads, as the damage model utilized lacks sufficient definition to properly model these stages. 

The use of the aforementioned portions of the curve, however, can be utilized to acquire an 

estimate of the stress-strain curve for each of the materials, from which material properties can 

be determined and compared to conventional data.  

5.4 Observations from Microscopy 

As a number of factors have been shown to affect material response to SPT loading, 

microscopy was conducted on each of the samples to aid in explaining differences between 

samples due to variations in sample preparation and test variations. Variations in fracture 

morphology can be used to help identify and explain differences in material response. The 

following will compare the fracture surfaces of select test samples, linking fracture behavior to 

sample responses. Unless otherwise noted, all samples fractured with the bulge on the bottom 

face of the samples, though there are a few fatigue samples utilizing the dual punch setup which 

fractured upwards, due to circumstances of the test and the setup, in which initial loading is 
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applied upwards rather than downwards. For fatigue samples with displacement controlled fully-

reversed loading regimes the samples showed characteristically small bulges upon fracturing. 

These samples are identified with a mark on the top face of the sample, which may be visible on 

some of the photos, so as to facilitate analysis and comparison, but which does not otherwise 

affect the sample. 

Component orientation during manufacturing has been one of the most influential 

parameters to AM material response, in both this study and in the general body of literature. As 

such, it is of high interest to explore the corresponding fracture pattern variations of AM 

materials as they pertain to orientation. Additionally, the effects of the orientation on the 

resultant material properties have been shown to be dependent on material and test condition, 

such as the extent of post-processing or test type the sample was subjected to. The various 

material types produced via SLM show distinct fracture patterns which are characteristic to 

layer-wise manufactured materials.  

The SLM IN718 and IN625 samples tested in conjunction to the IN939V samples added 

variety to the study, but also helped to verify trends. These have exemplary fracture surfaces 

characteristic to SLM materials. These can be seen in Figure 5.24. The SLM IN718 sample, 

which was manufactured in a transverse orientation, shows a lot of distinct parallel striations on 

the surface of the bulge, as denoted by the arrows. These are unidirectional and parallel to the 

side of the large fracture, some of which have also developed into small cracks. The main 

fracture also appears to be very straight when viewed from the side. The orientation and shape of 

these features suggests that the sample is cracking along the boundaries of the layers, and the 

final fracture grew from one of these initial cracks.  
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Figure 5.24 - Fracture surface of samples produced from SLM IN718 (left) and SLM IN625 
(right) showing crack growth characteristic to layered AM materials. 

 

Close inspection of the IN625 sample shows distinct striations (denoted by arrows) along 

the inner face of the fracture, running parallel to the surface of the sample. These are indicative 

of some level of separation or delamination occurring between the layers as the component 

fractures. This is suggestive of systematic component failure via fracture of individual layers, 

similar to a composite layered structure in a 3-point bend test, which undergo progressive failure 

from a mixture of tension and compression, fiber failure, and delamination [299-301]. The lack 

of stepping or multiple peaks in the data, however, suggests that these occur through progressive 

layer separation and crack growth, rather than sudden delamination or failure of individual layers 

that would cause quick drops in sample strength. The distinction between layers, then, is likely 

made visible as the crack grows along gaps or build defects, such as sites with incomplete layer 

adhesion or inconsistencies in the build. 

Samples constructed from IN939V also show a dependency on orientation when tested in 

the as-manufactured condition. The monotonic loading samples shown in Figure 5.25 (a) and (b) 
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exhibit decidedly different fracture behavior. The horizontal sample, (b), can easily be identified 

by a long, straight central crack with several additional fractures stemming from this central 

crack and growing perpendicular to it. The vertical sample (a), however, is characterized by 

cracks which grow radially from a centralized point, rather than from a centralized crack. 

Though these features differ from those which characterize the IN625 and IN718 samples in 

Figure 5.24, they are distinct manifestations of orientation effects on fracture behavior. 

 

 

Figure 5.25 - Monotonic loading fracture behavior depends on orientation: (a) T10 is 
longitudinal and as-manufactured, (b) T11 is transverse and as-manufactured. 

 

Analysis of the microstructures of the IN939V samples reveals links to fracture behavior 

differences. As the data suggests, the as-manufactured material is highly anisotropic in both 

behavior and microstructure. As the columnar grains grow parallel to the direction of heat 

application, the interaction of the load and the microstructure will differ depending on sample 
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orientation; longitudinal samples have load applied parallel to the columnar grain length, while 

transverse samples are loaded perpendicular to columnar grain growth. As such, the punch 

makes contact with two largely differing microstructures, as shown in Figure 5.26. The 

longitudinal sample, shown on the left, supports the load along the tops of the columnar grains, 

presenting a nearly isotropic appearance, though some directionality is evident in the alignment 

of grains towards the bottom right of this sample. The contact surface of the transverse sample, 

however, is characterized by highly directional elongated grains, which will induce directional 

material properties and affect fracture behavior. The presence of micropores is evident in both 

samples. 

 

 

Figure 5.26 - Microstructures of as-manufactured IN939V sample loading surfaces for 
longitudinal (left) and transverse (right) samples. 

  

Crack growth through the sample will also be affected by the directionality, however, as 

the textures shown in Figure 5.26 are reversed when considering the cross-sections of the two 
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sample directions. That is, the thickness (or cross-section) of the longitudinal samples is 

characterized by elongated grains, while that of the transverse samples is characterized by the 

smaller, more isotropic structure in one direction and the columnar grains in the other direction, 

with the lengths parallel to the sample face. Cross-sections of fractured surfaces of as-

manufactured samples are shown in Figure 5.27, with the transverse samples having been 

sectioned perpendicular to the larger central fracture, cutting across its width. As has been shown 

by the FEA model, the highest stress and strain occurs on the sample face opposite the punch, as 

the sample is stretched, and this face is placed in tension, and thus the fracture originates in the 

site. Growth of fractures through and across the sample is then dictated by grain structure. The 

longitudinal sample shows crack growth through the sample thickness to follow the elongated 

grains. The transverse sample shows some small deflections, but crack growth is generally 

undisturbed, with limited deflections occurring due to the small, tight grain structure, similar to 

that seen on the face of the longitudinal sample in Figure 5.25, but on a reduced scale. As such, 

the propagation of fractures along the faces of the samples in Figure 5.25 can be related to the 

differences in the as-manufactured microstructure. The radial growth of the fracture of the 

longitudinal sample is then attributed to numerous deflections being cause by the small, tightly 

clustered grains which characterize the face of this sample. There is also evidence of secondary 

damage towards the center of the sample, to the left of the visible crack, suggesting formation of 

microcracks from the sample surface following along the direction of the columnar grains due to 

excessive deformation in this area. Moreover, considering the transverse sample in Figure 5.27 

was sectioned perpendicular to the large, horizontal fracture seen in Figure 5.25, and is 

characterized by the tight microstructure which characterizes the face of the longitudinal sample 
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shown in Figure 5.26, it can be determined that the large fracture grows parallel to the columnar 

grains, while the smaller, perpendicular fractures likely form along the edges of the individual 

layers, suggesting the occurrence of delamination.  

 

 

Figure 5.27 - Cross-sectioned fractures of longitudinal (left) and transverse (right) as-
manufactured IN939V samples.  

 

This same behavior is displayed by as-manufactured IN939V samples tested cyclically 

with the single punch configuration. The samples shown in Figure 5.28 (a) and (b) were tested 

with R=0 at 0.5kN at 427°C in the as-manufactured condition, and display the same fracture 

patterns as the room temperature monotonic counterparts shown in Figure 5.25, and the 

differences are arguably more distinct. The longitudinally-built sample, (a), shows significant 

fracturing which extends radially from a central point, with smaller cracks stemming from these. 

Long, straight cracks on this sample likely follow separations or grain boundaries formed 

between laser pass scan tracks. The transverse sample, (b), is characterized by features very 
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similar to those of the monotonically loaded sample in Figure 5.25 (b), though more distinct in 

appearance, likely due to their more gradual growth. The inside of the fracture has interestingly 

straight lines (even more distinct than the bottom/outside face), with cracks growing 

perpendicular to each other and the sides. This indicates rack growth through the sample 

thickness is relatively undisturbed by the microstructure.  

 

 

Figure 5.28 - Fracture surfaces of as-manufactured IN939V (a) vertical and (b) horizontal 
samples tested in cyclic conditions in the as-manufactured condition with R=0 at 427°C. 

 

Microstructural inspection of as-manufactured fatigue samples shows similar behavior to 

that of the monotonic samples, but with some key differences. As fracture propagation is much 

more gradual in these samples, the directionality of the microstructure thus has a higher 

influence on final fracture morphology. Cross-sections of the samples shown in Figure 5.28 are 

shown in Figure 5.29. These show similar behavior to the monotonic counterparts, though 

damage is exacerbated due to the gradual accumulation of damage and decreased strength due to 

heating. However, even considering the deflections of the cracks, overall the fractures present in 
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these samples are morphologically very similar to those in the monotonic samples, with growth 

being dictate by the directionality of the microstructure, and very few small deflections 

occurring, for overall very sharp fractures.  

 

 

Figure 5.29 - Cross-sectioned as-manufactured longitudinal (left) and transverse (right) IN939V 
samples tested under cyclic loading with R=0 to 0.5kN and 427°C. 

 

The effect of manufacturing orientation on fracture behavior, however, is mostly 

mitigated by the implementation of a heat treatment cycle. Examining the fracture patterns of 

fully heat treated IN939V samples, as seen in Figure 5.30, subjected to cyclic loading with R=0 

at 427°C to a load level of 0.4kN reveals only slight differences in the crack morphologies 

between (a) longitudinal and (b) transverse-oriented samples. Both of these samples, though of 

different orientations, feature a centralized fracture from which several other cracks radiate, and 
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they seem to differ only by a small difference in the total amount of cracking, these minute 

differences are likely attributable to differences in test duration. As such, it can be said that the 

implementation of a suitably designed post-processing routine can sufficiently alter the 

microstructure so as to eliminate the tendency of samples to fracture along defects created from 

manufacturing features.  

 

 

Figure 5.30 - Samples of fully heat treated IN939V tested with R=0 to 0.4kN at 427°C in (a) 
longitudinal and (b) transverse orientations. 
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The fully heat treated monotonic samples, however, do not fracture as uniformly as their 

cyclic counterparts seem to indicate they should. Figure 5.31 shows several fully post-processed 

examples of fracture resulting from monotonic loading. Both the longitudinal sample, (a), and 

the transverse sample, (b), were tested at room temperature to gauge the effects of the heat 

treatment on strength and anisotropy, as can be seen in earlier portions of the report. The fracture 

surfaces of these samples are very similar and devoid of the obvious signs of directionality, 

however, though when comparing the two orientations some differences can be seen. The 

longitudinal samples feature a circumferential crack around the bulge, while the transverse 

samples, on the other hand, feature a central crack with additional growth stemming radially 

from it. While the layer-oriented fracturing was eliminated via heat treatment, differences in 

fracture morphology between the two directions are still present. The fracture morphologies do 

not change, however, when samples are subjected to higher testing temperatures. Samples (c) 

and (d) in Figure 5.31 were tested at 427°C. Both the longitudinal samples, (a) and (c), and the 

transverse samples, (b) and (d), have strong resemblance to each other, regardless of test 

temperature. This indicates that up to the testing temperatures featured here, and perhaps beyond, 

there is little effect on fracture behavior. 
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Figure 5.31 - Fracture surfaces of fully heat treated monotonic tests at room temperature (a) 
longitudinal (T2) and (b) transverse (T3) orientations and at 427°C for (c) longitudinal (T13) and 

(d) transverse (T14) orientations.  

 

Microstructures of the fully heat-treated IN939V samples show substantial similarities in 

grain size and shape, and consequently on fracture morphology as well, indicating a reduction in 

anisotropy due to post-processing modifying the microstructure. Cross-sections of the 

monotonically loaded fully heat-treated IN939V samples can be seen in Figure 5.32. Both the 

longitudinal (left) sample and the transverse (right) sample show a significant decrease in 

directionality in terms of grain shape and distribution as well as in fracture morphology. 

Although some size difference is still evident between the two directions, the grains now appear 

very similar in shape and show no obvious signs of directionality.  Both fractures are 

characterized by a significantly higher amount of deflection in terms of direction of growth when 
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compared to their as-manufactured counterparts. The enlarged grains concurrently cause a 

decrease in strength for the longitudinal samples and an increase in strength for the transverse 

samples. 

 

 

Figure 5.32 - Cross-sectioned views of fracture morphologies of fully heat-treated IN939V 
samples in the longitudinal (left) and transverse (right) directions. 
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The behaviors shown in the monotonic samples are also shown in the fatigue samples, 

again to an exaggerated level. The samples shown in Figure 5.33 show very similar fracture 

behavior between the longitudinal (left) and transverse (right) samples, with numerous small 

deflections due to grain morphology. The transverse sample shows a greater amount of damage 

as compared to the longitudinal sample, though some of this is likely due to the location of the 

cross-section, some also appears to be due to the coalescence of micropores and their 

contribution to the overall fracture behavior.  As cyclic results favor the longitudinal direction in 

terms of life, it can then also be determined that the increased deflection in the transverse sample 

occurs due to sudden damage which ultimately lowers life. 

 

 

Figure 5.33 - Cross-sectioned fully heat-treated longitudinal (left) and transverse (right) IN939V 
samples tested under cyclic loading with R=0 to 0.4kN and 427°C. 
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The various recrystallization cycles implemented in trials T4-T9 do not show readily 

obvious signs of impacting the fracture behavior of the IN939V samples. Figure 5.34 shows the 

fracture surfaces of the six recrystallization study samples tested, each of which underwent a 

different recrystallization cycle, but all of which were subjected to hot isostatic pressing and heat 

treatment. Comparing (e) and (f), which did not undergo a recrystallization cycle, to (a) and (b), 

which were subjected to a short recrystallization cycle, respectively, shows very similar fracture 

patterns, neither of which shows the fracture patterns seen to be characteristic to the as-

manufactured samples seen in Figure 5.28. This suggests that the heat treatment implemented on 

the samples induces sufficient recrystallization to largely mitigate the effects of the layer-wise 

construction process and the resultant microstructure to which the fracture patterns shown in 

Figure 5.28 are attributed. Closer inspection, however, reveals changes that are representative of 

the change to material behavior and characteristics as seen in earlier sections, such as the 

continuous reduction of anisotropy with increasing recrystallization. 
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Figure 5.34 - Fracture surfaces of samples sourced from RX study samples for tests (a) T7 
(RX1), (b) T6 (RX2), (c) T5 (RX3), (d) T4 (RX4), (e) T9 (RX7), and (f) T8 (RX8). 

  

All of the longitudinal samples, (b), (d), and (f), have similarly shaped fractures, with a 

similarly sized and proportioned portion of the sample surface lifting away from the fracture. 

The transverse samples, on the other hand, show a minor evolution in the fracture surface. The 
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transverse samples in Figure 5.34 (a) and (e) have a separated portion that is thinner than the 

longitudinal counterparts, but very similar to each other. Comparing these to (c), however, 

reveals that the longer recrystallization cycle causes the fracture surface of the sample to 

resemble more closely that of the longitudinal samples, as the lifted portion is proportionately 

wider than those of the short duration (a) recrystallization and non-recrystallized (e) samples. 

Consequently, the samples shown in (c) and (d), which are the long duration recrystallization 

samples in transverses and longitudinal orientation, respectively, feature fracture patterns which 

bear close resemblance to one another. This denotes a reduction in anisotropy in the shape and 

distribution of the microstructure, causing the fracture behavior to evolve. This supports findings 

from monotonic SPT data on these samples, as the directional anisotropy between identically 

treated samples is reduced with increasing recrystallization cycle times.  

For more homogeneous materials, such as the 304 stainless steel, some variation in 

fracture locations is present at elevated temperatures, likely due to increased plastic deformation 

(stretching) facilitated by the elevated temperature. A comparison of the fracture surfaces of 

monotonically loaded 304SS at room temperature and 300°C is shown in Figure 5.35. The side 

view of the high temperature sample, (b2), shows increased plasticity in comparison to the room 

temperature sample, (a2), in the form of an elongated, conically-shaped bulge, in contrast to the 

shorter, more spherical bulge of the room temperature sample. Due to increased plasticity and 

thinning on the sides of the bulge, the high temperature sample, (b), features a crack located 

circumferentially on the bulge, rather than traversing through the bottom like the room 

temperature sample, (a). The high temperature sample also shows other signs of increased 

damage in the texture of the material, in the form of small tears or ripples. For cyclic tests, 
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however, although the cyclic data of the single punch R=0 tests for 304SS, trials F1 and F5, 

show variations in both cycle count and displacement level, morphologically the room 

temperature and 200°C samples appear to have deformed and fractured similarly.  

  

 

Figure 5.35 - Fracture surfaces of monotonically loaded 304SS at (a) RT and (b) 300°C. 

 

The effects of fatigue test parameter variations can also be seen elsewhere in the fracture 

morphology of several comparative test trials for both conventional and SLM materials. For 

example, some variation can be seen when comparing the different load levels implemented for 

otherwise identical samples of 304SS tested with R=0 at room temperature, as seen in Figure 
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5.36. Due to the extended duration of cycling sustained by the sample subjected to a lower load 

level of 1kN, there is increased deformation, which appears more uniform in appearance 

circumferentially that that of the 1.5kN sample, but also has increased levels of damage to the 

surface in the form of waves or ripples, due to increased thinning in the walls of the bulge. This 

is due to the delayed onset of fracture allowing for added plastic deformation of the 1kN sample.  

 

 

Figure 5.36 - Fracture morphology of 304SS tested at room temperature with cyclic loading of 
R=0 to (a) 1kN and (b) 1.5kN. 

 

Cyclic load level effects extend to the SLM materials as well. This can be observed by 

comparing the samples shown previously in Figure 5.30 to those  in Figure 5.37, which compares 

the samples of the two fatigue tests of IN939V fully heat treated samples loaded to 0.5kN, F10 

and F11, conducted with R=0 at 427°C. The transverse sample cycled at the lower load level of 

0.4kN, Figure 5.30 (b), shows a more distinct central crack than that subjected to the higher load 

of 0.5kN, Figure 5.37 (b), which is characterized by relatively straight cracks radiating from a 

central point relative to its lower-load counterpart. This is caused by an increase in intergranular 
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crack deflection facilitated by the lower load level. It is difficult to determine if this is the case 

for the vertical counterparts of these, as the higher load level sample in that pair, Figure 5.37 (a), 

was subjected to a longer duration test after crack initiation and underwent a significantly higher 

amount of damage, making it difficult to compare the two. Given the similarities of the samples 

shown in Figure 5.30, however, and the shape of the fracture surfaces on the remainder of the 

sample, it is expected that the two orientations would not differ much in this respect. All of these 

samples, regardless of the extent of damage, appear to have fractured radially.  

 

 

Figure 5.37 - Samples of fully heat treated IN939V tested with R=0 to 0.5kN at 427°C in (a) 
longitudinal (F10) and (b) transverse (F11) orientations. 

 

Additional cyclic parameter effects are present when considering the R ratio and control 

mode utilized, whether it was R=0 (load control) or R=-1 (load or displacement control). The 

type of loading implemented in a cyclic test affects the fracture behavior more dramatically than 

the load level. The fracture surfaces of F2, F3, and F4 are shown in Figure 5.38, in top (1), 

bottom (2), and side (3) views. This shows the difference between room temperature cyclically 
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loaded 304SS samples with (a) R=0 load control (F2), (b) R=-1 load control (F3), and (c) R=-1 

displacement control (F4). The R=0 sample, which was tested with the single punch setup, shows 

a smooth bulge and uniform circumferential fracture similar to its monotonic counterpart, but 

with an elongated bulge, as the cyclic application to a set load leads to gradual stretching and 

slower fracture when compared to the monotonic test, allowing for increased plastic deformation. 

The R=-1 load-controlled sample has a significantly smaller bulge, with increased cracking 

stemming from the main fracture. Despite this, the general shape of the deformity shows some 

similarities, as the bulge protrudes from the lower face, indicating that the main deformation is 

imparted by the upper punch, as the initial loading induces enough plastic deformation 

downwards that reverse loading by the lower punch does not fully reverse the deformation. The 

displacement-controlled R=-1 samples, on the other hand, show only minimal protrusion of the 

surfaces, but with considerable damage and cracking surrounding the final fracture. The profile 

view of the fracture surface reveals only slight protrusion, indicating the direction in which the 

sample failed, despite fully reversed displacement, to be dictated by the initial loading direction. 

In these samples, plastic deformation is fully reversed due to the use of displacement control, 

which is analogous to strain control in conventional cyclic testing. There is evidence of increased 

surface damage to this sample as compared to its load-controlled counterpart, due to the 

repetitive application and reversal of plastic deformation causing increased impact from the 

punches, with the displacement-controlled sample showing signs of material flaking or being 

ground off from the sample.  
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Figure 5.38 - Fracture morphology for cyclically loaded 304SS room temperature samples with 
control modes of (a) R=0 load control (F2), (b) R=-1 load control (F3), and (c) R=-1 

displacement control (F4).  

 

The application of an elevated temperature during reversed cyclic loading results in 

significantly higher levels of deformation when compared to those tests conducted at room 

temperature. This can be attributed to an increase in plastic deformation facilitated by the higher 

temperature setting. In Figure 5.39, the effects of increases temperature can be seen on the 

resultant fractures when 304SS samples are cycled at R=-1 under (a) load and (b) displacement 

control conditions otherwise identical to those shown in Figure 5.38 (b) and (c), respectively. 
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The load-controlled sample in Figure 5.39 (a) features a significantly larger bulge than the room 

temperature counterpart, as the initial application of load stretches the sample much farther than 

at room temperature, so that reversed load applications do not return the sample to its original 

shape. Correspondingly, the high temperature displacement controlled sample, Figure 5.39 (b) is 

also affected by the increased plasticity, so that resultant fracture morphology more closely 

resembles that of the room temperature load controlled sample Figure 5.38 (b) than (c), the 

displacement controlled counterpart. Additionally, Figure 5.39(c) shows the effects of 

implementing a hold time to cyclic conditions of R-1 with load control. This sample, CF1, was 

subjected to creep-fatigue conditions by adding a 15s hold time at a load of 0.5kN, but conditions 

were otherwise identical to those which the sample in (a) was subjected to. There does not 

appear to be any obvious significant morphological difference between these two samples at 

final fracture, though the data suggests a large reduction in cyclic life due to the hold time, which 

allows for increased displacement during each 0.5kN loading phase. 

 

 

Figure 5.39 - Fracture of cyclically loaded 304SS samples at 200°C with control modes of (a) 
R=-1 load control, (b) R=-1 displacement control, and (c) R=-1 load control with 15s hold time. 
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As the data suggests, fracture behavior is dependent on manufacturing, processing, and 

testing conditions. A general comparison of the fracture morphology of conventionally produced 

304SS samples to SLM manufactured IN939V samples reveals more brittle behavior for the 

SLM material, as fractures begin in a central point and tend to branch and deflect, while 

increased stretching and a continuous fracture typically characterize the 304 samples. For SLM 

materials, orientation effects can clearly be seen in as-manufactured samples for both monotonic 

and cyclic testing, and significantly less so for fully post-processed samples, though some 

differences are present under certain loading conditions. Additionally, the variation of the 

recrystallization cycle duration resulted in only slight differences in overall fracture morphology, 

suggesting that in terms of fracture behavior, the HIP and heat treatment cycles alone 

significantly reduce orientation effects. For both SLM and conventional materials under cyclic 

loading, final fracture morphology will be highly dependent on application type (single or dual 

punch) and the control parameters employed therein. Future work of high interest in this sense 

would involve in-situ monitoring of fracture formation and development of AM materials in the 

as-manufactured state, as well as inspection of final fracture morphology using 3D imaging 

technologies such as CT scanning.  
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CHAPTER 6: CORRELATION OF SMALL PUNCH AND 

CONVENTIONAL TEST RESULTS 

Results from the small punch test trials presented throughout Chapter 5 will be compared 

to conventional test results in this chapter to assess the suitability of SPT for characterizing SLM 

materials, as well as conventional ones. Assessment will be made on accuracy of material 

properties established via the use of the inverse method and through those established using 

correlation values and formulae presented in Chapter 2. Comparisons of percentage differences 

of sample and test variations, such as orientation and temperature, will be made between 

conventional and small punch test results.  

6.1 Comparison of SPT and Conventional Test Result Trends 

It has been shown that material properties from conventional tests correlate linearly with 

equivalent properties determined via the small punch test. As such, variances in orientations 

should also vary linearly, and differences between them should be similar despite the test 

method. Percentage differences between testing and manufacturing conditions will thus be 

compared between tensile and SPT results to assess the accuracy of the SPT results.  

6.1.1 Conventional 304SS 

Tensile material property values for 304 stainless steel are readily available in literature, 

as the material is widely used for a variety of applications. The material property values of 

interest to this study are given in Table 6.1 at the various temperatures correlating to those of the 

small punch tests performed here. Percent different values calculated here represent the drop in 

the material property value of interest at each temperature as compared to room temperature 
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material specifications. These show a gradual reduction, though at different scales, of each 

property as temperature rises. These trends will be used to provide context for the data for the 

SPT tests conducted at those temperatures, using percent differences to quantify their likeness, 

and comment on the accuracy the SPT as pertaining sensitivity to temperature. 

  

Table 6.1 – Material properties of 304 stainless steel at various temperatures [302, 303]. 

  RT 200°C 315°C 

E (Gpa) 196 183 174.5 
% diff. E - 6.63 10.97 

σy (MPa) 297 160 145.5 
% diff. σy - 46.1 51.01 
σuts (MPa) 680 472 453.5 
% diff. σult - 30.58 33.31 

 

As noted in section 5.1.2, the SPT response of T12, the monotonic SPT trial conducted at 

300°C is characterized by severe irregularities to the initial portion of the P-δ curve. 

Consequently, this affects the calculation of the equivalent material property values for which 

this portion of the response is utilized. As such, the SPT counterparts to trends shown in Table 

6.1, found in  

Table 5.3, show inconsistencies when comparing the 300°C values to room temperature 

values. Additional data was included there to facilitate this comparison, utilizing the initial 

loading cycle of trial F5, conducted at 200°C, though no ultimate strength value is given there 

due to the cyclic nature of the test. However, comparing the normalized max load difference 

between 300°C and room temperature SPT values, 32.98%, to that between the tensile values, 

33.31%, shows a difference of under 1%. Of note, the values for the tensile properties are taken 
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as approximations at 315°C, so the real difference is likely somewhat larger, but logically would 

not be much higher. Contrastingly, the percentage change for the tensile yield strength between 

room temperature and 200°C is 46.13%, significantly higher than that of the SPT counterparts at 

only 12.42%. The difference between the elastic moduli, however, is much smaller; 13.34% for 

SPT and 6.63% for tension. While the difference here is notable, it could be explained by factors 

such as material post-processing which could affect microstructure and subsequently behavior at 

elevated temperatures, as tensile data was gathered from literature and not directly acquired from 

the same source material used for SPT samples. The large difference in yield strengths is cause 

for concern, however, and casts doubt on the method used to determine the SPT yield point.  

A limited comparison of fully-reversed fatigue testing of conventional 304 stainless steel 

can be facilitated by comparing tests F6 and F7 to the results of [302], namely the results of trials 

K004 and K021. Trials K004 and K021 were conducted with fully-reversed cycling at 200°C 

with strain ranges of 1.0% and 0.7%, respectively. A comparison of these based on the strain 

yields a low/high ratio of 0.7. The SPT trails F6 and F7 were also conducted with reversible 

loading at 200°C, though with different control modes, F6 being load-controlled at a range of 

±0.5kN and F7 being displacement-controlled at ±0.5mm. The load control test shows a 

displacement range of roughly 0.5mm for the majority of the duration of the curve, whereas the 

displacement control test has a range closer to ±0.4mm due to the inherent compliance errors 

between the load frame and the LVDT. Comparison of these yields a displacement ratio of 0.625, 

similar to that of the conventional fatigue results presented in [302], and this is used as a basis 

for a limited comparison of the methodologies. The stress histories of the conventional fatigue 

tests from [302] as well as those from F6 and F7 are shown in Figure 6.1 (a) and (b), 
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respectively. The conventional results show similar behavior in the early stages of the stress-life 

curves, but with a significant shortening of cycles for the higher stain range. The SPT results 

show similar trends, though to a more exaggerated extent. Notable from Figure 6.1 is the likeness 

of the displacement control results to the conventional curves, as the stress history develops in a 

similar fashion, though the cycle count is much lower, as the equivalent strain for the 

displacement used is likely magnitudes higher. There are, however, discrepancies in making the 

comparison, as F6 and F7 utilize different control modes. As such, the displacement control test, 

F7, experienced a strain history centered about zero, whereas the load control test, F6, always 

had a positive displacement. Additionally, due to the control type, F6 displays a more linear 

stress history than that of F7, as well as a sudden rupture as opposed to a gradual accumulation 

of damage as the material was increasingly displaced in order to satisfy the control condition. 

These discrepancies limit the ability to even compare the SPT trials to each other.  
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Figure 6.1 - Comparison of (a) conventional fatigue tests [302] with (b) dual-punch reverse-
loading SPT cyclic tests (F6 and F7) of 304SS at 200°C. 
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6.1.2 SLM IN939V 

Comparing the differences between the orientations for strength and modulus for IN939V 

found via SPT to those seen in the tensile recrystallization study outlined in section 3.2.1, it is 

evident that some discrepancies exist in the SPT data. A summary of the material property values 

from these tests, as well as an analysis of the anisotropy as it evolves with respect to 

recrystallization time are given in Table 6.2. Once again, the material property values have been 

normalized with respect to average cast values due to the proprietary nature of the material. The 

percentage differences between orientations in the tensile results show clear indications of 

reduced strengths with increasing recrystallization time in both orientations, though this is 

accompanied with a slight increase in anisotropy, which is exacerbated more in the ultimate 

strengths than in yield strengths. The values for Young’s Modulus, however, show a clear 

reduction in anisotropy, achieved by a simultaneous reduction in the horizontal sample moduli 

and an increase in the vertically-produced sample moduli. These trends are reflected in the SPT 

results, for both the general changes in strength and in the change in level of anisotropy. This 

indicates good correlation between the tensile and SPT trials, though the inconsistencies in the 

SPT results suggest the need for replicates when using SPT to evaluate materials, as small 

changes in test results can easily affect material property calculations and thus the comparison of 

results such as those of interest to this study. 
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Table 6.2 – Material property values from tensile test results of the recrystallization study 
outlined in section 3.2.1.  

 

RX1 

(H,Base) 

RX2 

(V,Base) 

RX3  

(H,3X Base) 

RX4 

(V,3X Base) 
RX7 (H,0) RX8 (V,0) 

σy (ksi/ksi) 1.130 1.049 1.123 1.034 1.261 1.201 
% diff. yield  7.159  7.944  4.762 
σuts (ksi/ksi) 1.259 1.171 1.250 1.097 1.249 1.215 
% diff. UTS  7.035  12.27  2.713 
E (ksi/ksi) 1.121 0.936 1.077 1.017 1.067 0.791 
% diff. E  16.52  5.536  25.89 

 

Further comparison of SPT data for selective laser melted IN939V is facilitated with 

results from conventional tests from the study on which the test matrices completed here were 

based. This included, among others, tension tests of fully heat-treated samples at varying 

temperatures. The percent differences between orientations (using transverse values as a basis for 

the error calculation) for select conventional tensile test results are given in Table 6.3, only those 

relevant to this study are shown. Although some scatter is present in the data, the conventional 

tensile test results generally show a decrease in strength differences with increasing temperature, 

though ductility values suffer, as do the differences between the orientations, with longitudinally-

manufactured samples mostly conserving ductility through increasing temperatures up to 649°C. 

This suggests some residual anisotropy persists between layers despite full treatment, with 

increased brittleness in a transverse loading situation when compared to longitudinal loading. 

The relevant difference values for comparison to those presented in Table 6.3 were given in 

Table 5.4 for T2 and T3, which were conducted at room temperature, and T13 and T14, which 

were conducted at 427°C. These results indicate a slight advantage in the longitudinal direction 

over the transverse, though at a reduced scale in comparison to tensile results. A general 

reduction in strength is seen with increased temperature as well. 
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Table 6.3 – Directional differences of tensile tested SLM IN939V at room temperature and 
427°C, using transverse values as a basis for calculation. 

 
RT 427°C 

% diff. σy 9.29 7.55 

% diff. σuts 6.71 4.35 

% diff. E 7.45 8.20 

 

Several factors need to be considered when making comparisons between these tables, 

however. The first, as stated in the discussion of the values of Table 5.4 in section 5.1.2, is of the 

evident error present in the displacement results of T13, as they cause large directional 

differences, lead to calculation of unreasonably high stiffness, and indicate an increase in 

strength for heated tests over room temperature results. As such, a comparison of trends with 

increasing temperature is difficult to conduct. Additionally, the samples used for the SPT tests 

were sourced from the same donor material, varying cutting direction to acquire the different 

orientation, whereas those for conventional tests were manufactured in bars with the length 

aligned along the orientation of interest. As discussed previously, the shape of the donor source 

can affect material microstructure due to differences in heating gradients as the sample is being 

built. These factors could affect the overall comparison between these trials, especially when 

comparing anisotropy and a dominant build direction. This is seen when considering the level of 

difference between directions for SPT versus tensile. That is, the results for the SPT tests 

indicate a variation of only 2-3% between directions at room temperature, whereas those for the 

tensile tests range from 6-9%. In this case, the SPT samples were sourced from the same test 

block, but the tensile samples were manufactured in such a way as to limit necessary machining, 

either vertically or horizontally depending on the sample. 
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Due to the limited capabilities of the heating system in the current experimental setup, 

comparison of SPT fatigue results to conventional fatigue results is limited. Differences in 

loading and temperature are present between conventional and SPT data sets so direct 

comparison is not possible, though general trends can be discerned for both. With respect to 

IN939V results, conventional results will be discussed but cannot be shown, due to concerns of 

proprietary information. Conventional fatigue tests of IN939V were conducted at 649°C with 

R=0, using strain control, whereas those of the SPT tests were conducted at 427°C with R=0 

using load control. Once again, these test results may also be susceptible to differences in 

manufacturing due to the original sample geometry, as conventional samples were manufactured 

in the orientation they would be tested, while SPT samples for both orientations were sourced 

from the same block. In general, conventional results favor the transverse direction for these 

tests, though some variation to directional dominance can be seen with respect to temperature 

and strain range. Transverse samples also required higher stress ranges than the longitudinal 

samples for each of the displacement ranges tested. Of note, conventional results of R=-1 tests 

favored the longitudinal direction over the transverse direction in terms of cycles to failure. In 

comparison, the SPT results seem to indicate opposite trends, as results favor the longitudinal 

direction in terms of life. Transverse samples are also shown to be more sensitive to load 

changes in the SPT tests, whereas the conventional results show that longitudinal samples are 

more sensitive to changes in strain range, though both show a significant decrease in life with 

increased loading range. As noted, several factors differ between the studies, including control 

type and temperature, yet the trends clearly indicate disagreement between the two methods for 

tests conducted with R=0.  
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6.1.3 DMLS GP1 

Material properties for the EOS 17-4PH stainless steel equivalent, GP1, are available for 

comparison to SPT data from tensile and cyclic tests conducted on the samples which also served 

as the source for the SPT samples [304]. The tensile material properties are shown in Table 6.4, 

along with a calculation of the percentage difference between the two axes along which the 

transverse tension samples were built. Percentage differences are calculated with respect to the 

sample built along the y-axis. Of note, the values for Young’s modulus from the tension tests are 

not given here, these were determined form the initial loading of cyclic tests. The data in Table 

6.4 shows a directional dependence with respect to the orientation of the long axis of the sample 

on the build plate, with the y-axis sample showing at least an 11% increase over the x-axis 

sample in strength parameters. Tensile test responses show both an upper and lower yield point, 

which vary 16% and 14%, respectively, between the y- and x-axis samples, with a difference of 

12% for the ultimate tensile strength and -3% for the Young’s modulus, indicating a higher value 

for the x-axis sample. Comparatively, the SPT data shows differences of 12% for yield load, 2% 

for max load, and 19% for the Young’s modulus. While the difference in SPT yield loads is close 

to the difference of the lower yield points of the tensile tests, the SPT data is incomplete (as the 

max load for frame was reached before load peaked), so the depiction of the max strength as 

compared to tensile tests is inaccurate, as the loading of the SPT samples exceeded the capacity 

of the load frame before the samples failed. In terms of correlation between SPT and tensile test 

results, then, data available is limited, though the yield strength differentials show promise. In 

the case of the moduli, however, while the SPT data conserves the trend of higher values for the 

sample produced along the y-axis, the data from [304] indicates a minimal advantage for the x-
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axis sample. The source data, however, comes from the first cycle of fatigue tests within the 

work, rather than from the tensile tests, so rate-related differences could be possible. In terms of 

cyclic behavior, the SPT results continue to indicate an advantage in strength for the sample 

manufactured along the Y-axis over the sample manufactured along the X-axis. The 

conventional low cycle fatigue results presented in [304] seem to indicate similar behavior, 

though this advantage switches with stabilized cycle results; the duration of cycling in SPT is not 

long enough to indicate whether or not this would be the case.  

 

Table 6.4 – Material properties of DMLS GP-1 [304]. 

 
x-axis y-axis % diff. 

σy_upper(MPa) 597 698 14.5 
σy_lower(MPa) 534 638 16.3 
σuts (MPa) 956 1086 11.97 
E (MPa) 164571 159171 -3.393 

 

6.1.4 DMLS IN625 and IN718 

The small punch test results of DMLS IN718 and IN625 produced results with trends 

inconsistent to those of traditionally manufactured materials, as stated in section 5.1.5. However, 

consideration for differences stemming from manufacturing and the adaptation of a material to 

additive methods must be given, as materials may sometimes be modified to some extent to 

allow manufacturability and the methodology affects material properties. As such, the material 

properties for each material in the as-manufactured condition as provided by the manufacturer 

when using the recommended processing parameters are given in Table 6.5. Of note, the IN718 

data was provided with respect to manufacturing orientation, while the IN625 was not, and 
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presumably the maximums are provided. The SPT results in Table 5.7 give consistently higher 

values for the analogues of the material properties in Table 6.5 for IN625 as compared to IN718. 

However, the manufacturer-supplied data shows that the IN718 should have higher material 

property values than the IN625, similar to what is seen with conventional versions of these 

materials, though to a lesser extent. This indicates likely error in manufacturing of one or both of 

these materials, or large error in testing with the SPT, as the differences in the trends are quite 

distinct. Additional testing types and analyses of the source materials is required to determine the 

exact source of the error. As the IN625 and IN718 samples used for SPT were manufactured in 

opposing orientations (longitudinal vs. transverse, respectively), additional uncertainty exists 

when comparing resulting trends to those provided by the manufacturers, given that the data for 

IN25 is not provided with respect to orientation. 

 

Table 6.5 – Material properties of AM IN625 and IN718 as reported by Stratasys and EOS, 
respectively [305, 306].  

  IN625 (unspecified) IN718 (horizontal) 

σuts (MPa) 1006.63 1060 
σy (MPa) 668.79 780 
E (GPa) 179.26 160 

 

6.2 Correlation of Material Properties 

As was reviewed in section 2.3.3, linear relationships exist between small punch test data 

and tensile data for the same material. Equivalent values for mechanical properties are 

determined by normalizing corresponding inflection points in the force-displacement data. These 

linear relationships involve the use of a correlation constant to equate them, which is determined 
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by establishing the linear relationship by plotting tensile mechanical properties against their SPT 

counterparts. As shown previously, plotting various materials together yields correlation values 

which may be used to estimate material properties of a range of materials from their SPT results.  

Plotting the various additively manufactured materials tested here against tensile 

mechanical properties reveals a relationship which is incompatible with those cited previously 

for various conventionally produced metals. The plots shown in Figure 6.2 give correlations for 

IN939V for the ultimate tensile strength, σuts, and its SPT equivalent Pmax/δmt, the yield strength, 

σy, and its equivalent Py/t
2, and the Young’s modulus, E, with k/t, the initial slope normalized by 

the sample thickness. Due to confidentiality concerns, these values are normalized with respect 

to typical properties exhibited by the cast equivalent. Of the three plots shown in Figure 6.2, only 

the correlation for Young’s modulus shows a reasonable trend for the linear fit used, although the 

correlation plots for the yield and ultimate strengths have higher R2 values. The plots for σy and 

σuts, however, are skewed by the presence of outliers which affect the linear trendline, as they 

reduce the relative scatter of the data around it by increasing its length so much. This is not the 

case for the Young’s modulus plot, however, as all of the results are clustered around the 

trendline to some extent. 
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Figure 6.2 - Normalized correlation plots of material properties from tension tests with 
corresponding SPT inflection points. 
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Eliminating the outliers present in the data has a severe impact on the correlation plots for 

σy and σuts, though the extent of that impact varies between the two. For the correlation plot of σy 

with Py/t
2 one obvious outlier exists, that of T13 which appears far to the right of all other points. 

Considering the data without this point gives much closer grouping, but with vertical spread and 

lacking lateral distribution, the R2 of the linear fit is reduced to 0.0049 with a correlation constant 

of -0.0142 and an intercept value of 1.1395. For σuts the fit of the trendline, and therefore the 

ability of this linear model to describe the data, are improved considerably in terms of R2 when 

removing the outliers. If the data of T13, which is the lone point appearing on the far right of the 

plot, is not considered, then the adjusted model fits with an R2 of 0.3391, a decrease in fit from 

the original R2 value of 0.4507, though visually the trendline makes more sense after the 

adjustment. Excluding one additional point, that of T5 which utilized RX3 and whose results 

were indicated as atypical in section 5.1.3 due to being abnormally high, then the R2 value then 

increases to 0.7352. The outcome of these omissions is shown in Figure 6.3. Although there are 

general abnormalities in the trends of the SPT results normalized with respect to δ and t for the 

tests using the RX trial samples, that of RX3 exhibits the highest level of inconsistency, and as 

such it has the greatest effect on the correlation plot. Further consideration of omissions can be 

made for the other high temperature test, T14, as it no longer fits within the testing bounds of the 

other data since T13 is omitted due to being erroneous. Doing so changes the R2 to 0.8654. Even 

considering these omissions, the model still shows scatter and a less than perfect fit but suggests 

that the use of the small punch test to evaluate changes in processing and testing conditions is 

feasible, as a linear relationship does exist. Characteristic of these correlation plots for all but 



266 
 

that of E is the negative slope, or correlation constant, and high intercept value for the linear fit, 

both of which differ from the relationships published widely in literature. 

 

Figure 6.3 - Normalized correlation plot of σuts for IN939V data with outliers omitted. 

 

The addition of the other materials tested to the normalized IN939V data has varying 

effects on the correlation plots. The results of combining the other materials with the IN939V 

data are shown in Figure 6.4. For the σuts plot this includes only the IN625 and IN718 data, as the 

strength of the GP1 samples exceeded the 2kN load limit of the test frame so Pmax data is not 

available for these. For the σy and E plots this includes IN625, IN718, and GP1. Again, the data 

has been normalized with respect to IN939V cast data due to confidentiality concerns, and the 

results of T13 omitted. Introduction of the additional material data for the σuts correlation serves 

only to add significant scatter to the plot and diminishes the quality of the linear fit. For the σy 

correlation plot, however, the data shows independent linear trending and fits well within the 

bounds of the IN939V data, improving significantly upon the previous linear fit for the IN939V 
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data alone. For the Young’s modulus, the additional material data fits within the lateral bonds of 

the IN939V data, but adds scatter along the vertical axis, diminishing the fit as perceived by the 

calculated R2 value due to a lack of trending within the limited additional AM data 

independently.  
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Figure 6.4 - Normalized correlation plots for assimilated data of all AM materials tested. 
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Regardless of the varying effects, however, the combined data serves to enforce the idea 

that the small punch test can be used to evaluate the evolution of AM materials due to processing 

parameters and post-processing techniques. Notable changes in the plots in Figure 6.4 as 

compared to those in Figure 6.3 include positive correlation constants for all of three 

relationships examined, trending closer to what is typically found in literature. This suggests that 

relationships can be established for estimating material properties for AM materials. Refinement 

of the linear models will require additional AM material data and refined testing procedures, 

however, given the outliers within the present study.  

Within the wider context of literature, however, the data fits well, though enough data 

could not be gathered for a Young’s modulus correlation plot. The plots in Figure 6.5 and Figure 

6.6 account for an expanded array of materials from various sources, building on the relationship 

established in [12], and including the experimental data from this study. Several of the sources 

added are generalized via material class despite the inclusion of material variations, such as 

various grades of boiler steels (4), Al alloys (5), and iron-based powdered metals (6 varieties + 

HT versions). These present added variety which strengthens the validity of the correlation. The 

plots show the correlations of the σuts and σy as determined via tensile testing against the 

corresponding SPT values Pmax/δmt and the Py(t/10)/t
2, respectively. Although the combined data 

add scatter which reduce the R2 values from those seen in [12], the data points fit well along the 

trend line, and the correlation values produced for the linear fit with a zero-value y-intercept are 

similar to those proposed by Garcia et al. as cited in section 2.3.3. Using a non-zero y-intercept 

for the yield strength correlation value increases the fit as described by the R2 value but only by a 

minor amount and changes the correlation factor by a more significant amount. The difference is 
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more pronounced for the ultimate tensile strength correlation, however, and as such a non-zero 

intercept is more appropriate for a large variety of materials. Some materials gathered from 

literature seem to present a special case in terms of behavior, such as MnMoNi55 in the yield 

plot or the H11in the tensile strength plot; in the case of H11 the point is not included in the 

trendline due to the severe impact on fit. While the class of material matters, these plots and the 

resulting correlation are also sensitive to individual researchers’ methodology, errors, the 

sensitivity and accuracy of their displacement measurements, and the stiffness of their testing 

systems, as shown in [307]. Note that no correlation plot is given here for the range of collected 

data. This is due to both the general lack of data given in literature to support this relationship, as 

well as the poor fit presented by the data found. Creating a correlation using only the limited data 

found in literature, the fit line is characterized by an R2 value of 0.431; adding the results of the 

various AM materials from this study reduces this to 0.266. The poor fit may again be an 

indication of the inadequacy of utilizing the k/t value to establish a correlation with the Young’s 

modulus, and that an alternative method should be pursued, such as that suggested in [221]. 
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Figure 6.5 - Correlation of tensile and SPT yield data, compiled from experimental data and [12, 
19, 24, 30, 207, 213, 215, 219, 220, 276, 277, 283, 302-304, 307-310]. 
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Figure 6.6 - Correlation of tensile and SPT tensile strength data, compiled from experimental 
data and [12, 19, 24, 30, 207, 213, 215, 219, 220, 276, 277, 283, 302-304, 307-311]. 

 

The added data for the tested AM materials are on the higher end of the data range and 

present a wide spectrum of results depending on treatment and testing temperature. Although not 

considered additive, the powdered metal alloys in [30] present a similar sensitivity and variance, 
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as shown in Figure 6.6, which skews the trendline. Excluding these can change the trendline R2 

values to 0.7965 and 0.8471 with and without a zero-value y-intercept, respectively. A similar 

effect is seen when considering the IN939V data in the yield correlation, which changes the 

correlation relationships to  

 𝜎𝑦𝑠 = 0.3345 𝑃𝑦𝑡2 + 35.94 (𝑅2 = 0.7513) (33) 

 𝜎𝑦𝑠 = 0.3539 𝑃𝑦𝑡2 (𝑅2 = 0.7485) (34) 

The effect is minor, however, on both the correlation constants and the fit value, indicating that 

the calculated constants should provide suitable estimates of the yield strength. Including the 

IN939V data in the σuts
 correlation produces an adverse effect, however, as the data falls closely 

around the existing fit line, and as such improves the fit, even including the scatter presented by 

the powdered metal alloy data. The all-inclusive relationships between σuts and Pmax then become 

 

 𝜎𝑢𝑡𝑠 = 0.2243 𝑃𝑚𝑎𝑥𝛿𝑚𝑡 + 153.3 (𝑅2 = 0.8082) (35) 

 𝜎𝑢𝑡𝑠 = 0.2727 𝑃𝑚𝑎𝑥𝛿𝑚𝑡 (𝑅2 = 0.7653) (36) 

These relationships can then be used to produce material property estimates, which can 

be compared to conventional test results. The added scatter and diminished R2 values are 

reflected in the values predicted using the non-zero y-intercept relationships, Equations 30 and 

32, as well as in the high and varied errors as compared to published tensile material properties, 

as seen in Table 6.6. The yield strength errors in particular showcase a range of error indicating 
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both under- and over-estimation. These can be likely be linked to errors in the initial portion of 

the P-δ curve, which is utilized for determining Py. The error range for σuts estimation is smaller 

and consistently over-estimates versus the actual value, particularly the higher temperature test. 

As such, though the fits of the correlation relationships indicate the ability to make reasonable 

estimates of material properties, the calculations indicate that these relationships are not wholly 

reliable for acquiring material properties. Therefore, they may be used to assess trends in data 

due to processing changes in order to establish best practices in terms of processing and testing, 

but not recommended as a substitution to conventional testing for determining material 

properties. Rather, these methods should be implemented to expedite and economize the process 

of refining process settings for production of AM materials, and the correlations established used 

to give numerical trends, with full-sized test coupons produced to tensile test standards used for 

final determination of material properties.  

 

Table 6.6 – Error calculation for strength properties predicted using experimental results and 
correlation relationships established in this study. 

 
Py(t/10)/t2 

σys 

pred. 

σys 

actual 

% 

error 
Pmax/δmt 

σuts 

pred. 

σuts 

actual 

% 

error 

T17 GP-1 

X-axis 
1243.41 444.23 597 25.59 4347.5 1128.44 956 -18.04 

T18 GP-1 

Y-axis 
1411.63 499.29 698 28.47 4427.69 1146.43 1086 -5.56 

T15 IN625 2028.07 701.05 668.79 -4.82 4881.1 1248.13 1006.63 -23.99 

T16 IN718 1773.20 617.63 780 20.82 4301.15 1118.05 1060 -5.48 

T1 304SS 

RT 
1050.00 380.93 297 -28.26 3100.33 848.705 680 -24.81 

T12 304SS  

300°C 
1110.00 400.57 145.5 -175.30 2077.91 619.374 453.5 -36.58 

F5 304SS 

200°C 
917.00 337.40 160 -110.87 

    

 



275 
 

6.3 Summary 

Comparison of experimental small punch test data and equivalent conventionally-sourced 

data indicates good agreement between them. For monotonic SPT tests of SLM materials, trends 

are mostly preserved with respect to variations of orientation and processing conditions, as well 

as with changes in test conditions. The SPT results reflect the sensitivity of the methodology to 

track changes in material properties due to alterations to microstructure caused by process 

parameter variation. Though some negative correlations were seen in cyclic test comparisons, 

these tests should be considered to have primarily served as proof-of-concept runs for the 

apparatus design and the methodologies proposed. Further tests of this nature should be 

constructed with considerations for equivalent load and displacement levels using equations such 

as those for equivalent strain, considering the ±0.5mm displacement-controlled trial was 

effectively conducted at a 200% strain level with respect to sample thickness. The reversed-

cycling results themselves, however, are a promising indicator for the novel design presented 

here, due to their likeness to traditional test results.  

The strength of the match of these trends is not reflected in estimation of material 

properties. The plots correlating SPT and tensile properties generally have R2 values indicating 

an acceptable goodness-of-fit with a wide array of materials, including those produced via AM. 

However, there are still significant levels of scatter which produce high errors when using the 

linear relationships determined from these plots to estimate material properties from the 

experimental results. Likewise, the visual fits of the simulated responses produced by the 

optimization of numerical model to each test response were generally on the high side as 

indicated by the calculated R2 values and correspondingly low error.  
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The methodology presented here correlates well with conventional test results and is thus 

suitable for the purposes of analyzing SLM material evolution due to process and post-process 

parameter variation. This allows for the use of the SPT to economize the optimization of process 

parameters and post-processing routines. The determination of material properties, however, is 

best conducted via traditional testing techniques once best practices for manufacturing have been 

determined via SPT. Estimates may be acquired with the correlation relationships and the use of 

the inverse method as presented here, but these should serve as a basis for inspecting trends. 

Although the correlation plots seem to indicate usability for many materials and corroborates the 

findings in literature, the collection of these shows that the differences in test setups and 

procedures will produce enough scatter to make estimates unreliable. Formal standardization is 

needed to promote uniformity in order to remedy these issues and improve the accuracy and 

usability of these relationships. 
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CHAPTER 7: CONCLUSIONS 

The rapid evolution of additive manufacturing technologies has had a disruptive effect on 

the modern manufacturing landscape. The added complexity afforded by AM techniques 

continues to influence the design and implementation of these technologies into industries such 

as medical, automotive, aerospace, and energy. As these techniques are implemented, more 

materials are adapted for use with them, but due to the inherent characteristics of layer-wise 

manufactured materials, they must first be fully characterized, and their processing optimized to 

ensure the strength and safety requirements of the applications are met. To economize the time 

and cost involved in optimizing new materials for AM, the small punch test has been 

investigated in this study as a means to track morphological changes due to processing and post-

processing parameter variations. As such, a framework has been created in this study by which 

the small punch test may be utilized to optimize processing parameters and post-processing 

operations for additively manufactured materials. This has been shown by studying the effects of 

varying post-processing conditions on the material properties of samples produced with selective 

laser melting in varying orientations and geometries. Additionally, efforts have been expended 

towards the advancement of acceptance of the SPT as a methodology for material 

characterization, expanding the capabilities and applicability of such.  

A novel SPT device was developed and used to characterize conventionally produced 304 

stainless steel as well as an assortment of additive manufactured materials in a variety of 

processing conditions. Several test types, conditions, and control modes were investigated to 

investigate the independent effects, and the variations and trends between tests were compared to 

equivalent conventional tests. Correlation plots of tensile material properties and corresponding 
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inflection points from P-δ data were created to find the relevant linear relationships between 

them. The practices developed here can thus be recommended for use in determining optimal 

process-parameter settings at a reduced cost in terms of time and material, with the conclusions 

of such a study then used to produce tensile samples for determining material properties. The 

simplicity and accessibility of the apparatus developed is ideal for such a purpose, allowing for 

testing to be conducted at a number of facilities, rather than requiring the complex testing 

mechanisms used for conventional testing of these high-strength materials. An overview of the 

accomplishments made within this investigation is provided: 

• A variety of test methodologies were implemented using the small punch test 

to evaluate material properties. Small punch test methodologies were 

implemented in this study to examine the mechanical properties of materials 

including conventionally manufactured 304 stainless steel and various AM 

materials. The experimental device developed here is capable of reproducing 

small punch tests equivalent to several conventional tests. Test methods include 

those equivalent to conventional tests such as tensile, fatigue, and the introduction 

of creep-fatigue, all under various conditions and with materials at different stages 

of processing but utilizing the same simple sample design. A compact heating 

device allowed for testing at various temperatures, and results showed high 

sensitivity to these conditions, as is seen in conventional tests. Optical microscopy 

was utilized to correlate SPT results with changes in fracture morphology as they 

relate to differences in the processing state of the samples. 
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• Developed experimental routines to investigate processing parameters 

involved in AM. The experimental matrix executed in this study was designed to 

test the differences in processing and post-processing parameters of AM 

materials, including manufacturing orientation, the application of heat treatment, 

and differences in the heat treatments applied. The responses of the materials 

under these varied conditions were manifest in the P-δ responses of the 

monotonic loading tests, as well as in the P-N and δ-N plots of the cyclic 

responses. Several variations of control were tested during the study to establish 

best practices for future endeavors, and in the hopes of advancing efforts to 

formally standardize the SPT. As has been shown, adaptation of this methodology 

has the potential to expedite the optimization of processing and post-processing 

routines for new AM materials, economizing the time and cost required to bring 

components made with these materials to market. 

• A novel adaptation for cyclic reversible loading was developed. To emulate 

the effects of conventional fatigue testing more closely, a novel cyclic testing 

apparatus was developed. This removable adaptation allows for the application of 

fully-reversed loading routines, mimicking those utilized with conventional 

fatigue tests. Results show trends similar to responses seen with conventional 

fully-reversed fatigue tests, though on a reduced scale. Several loading and 

control types were explored, yielding a recommendation for best practice for 

continued work. Additionally, the effects of a hold time were explored, 

mimicking those conditions seen in creep-fatigue testing.  
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• Relationships were established for correlating conventional and SPT 

material properties. Working from the basis of correlation factors provided in 

literature, SPT and tensile tests results have been collected from several works 

and presented together to propose a refined set of factors. These factors are 

inclusive or a diverse set of materials, including those presented here. The results 

produced here fit well within the body of these collected works, though together 

they tend to present some additional scatter. The scatter in these plots can be 

largely attributed to differences in testing apparatuses and methodologies of 

different researchers, as variations in system stiffness have been shown to affect 

results. The goodness of fit shown in these plots indicates high promise for 

establishing universal correlation factors for different classes of materials which 

produce quality material property estimates and bodes well for efforts to 

standardize SPT practices. 

• A numerical model was developed to establish SPT sensitivity to variation of 

conditions and implemented for the inverse solution. An axis-symmetric 

numerical representation of the apparatus used in this study developed in ANSYS 

and used for numerous purposes. First, a parametric study was conducted to 

confirm the ability of the SPT to track small changes to material properties as 

caused by variations in processing parameters. This model was then further 

developed and used to implement an inverse solution, whereby the properties of 

the model were altered to match the equivalent experimental response until an 

optimal solution was found with minimized error. The optimized solution can 
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then be used to estimate material properties and an equivalent tensile stress-strain 

curve.  
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CHAPTER 8: RECOMMENDATIONS 

A methodology has been established which can be used for the assessment of 

microstructural and mechanical property evolution of AM materials due to changes in processing 

parameters. In the course of the study, however, and in the results presented in Chapters 5 and 6, 

it has become evident that these methods can benefit from refinement and further study. 

Suggestions to address these issues are addressed here, along with ideas for refining and 

enhancing the quality of future studies. These recommendations will aid in focusing future 

studies utilizing the novel fatigue procedures developed here, optimizing novel AM materials, as 

well as in efforts to standardize SPT practices. 

• Establishment of test procedures for increased accuracy and sensitivity. The 

occurrence of outliers and their negative effects on results due to procedural errors 

or otherwise has been shown. As the small punch test is lacking formal 

standardization, errors such as these are not surprising. This is especially true 

when considering the scale of the test, where small deviations in sample or 

measurement quality can translate into large errors. Improvements to general test 

practices include increased accuracy measurements for displacement, established 

heat-up and soak procedures to avoid initial deformation from thermal expansion, 

and general experimental design considerations. In part, this could be achieved by 

focusing studies using design of experiments techniques to emphasize variable 

effects on individual test modes, including multiple replicates to curb the 

influence of outliers and gage the effects of possible interactions. As SLM 

materials have been shown vulnerable to defects, the use of multiple donors (or 
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locations with a donor) for each sample type should also be considered, to avoid 

the possibility that an entire donor component is in itself an outlier. Sample 

sectioning and polishing routines should be refined to achieve uniform thickness 

and finish to mitigate any such complications and prevent the occurrence of 

defects which could cause premature failure. Finally, as it has been shown that 

sample donor geometry can affect material properties, it is suggested that future 

studies utilize simple, identical donor geometries for evaluating the variables of 

interest and the effects of directionality. 

• Refine fatigue/cyclic testing procedures. Several cyclic small punch 

experiments were developed and tested in this study, with loading direction and 

control modes variants affecting results. The results for these vary accordingly, 

with some tests more closely resembling the behavior of conventional fatigue 

tests. Refinements for cyclic SPT include control, such as in explicitly using 

displacement control for the dual punch setup, to resemble strain controlled 

conventional fatigue tests, while single punch tests should be load controlled. 

Regardless of which is used, however, lower load and displacement levels should 

be utilized to lengthen the test duration and examine more closely the deformation 

evolution. A suggestion is made to utilize relationships such as those presented in 

Chapter 2 for determining equivalent strain levels. An overall refinement in 

procedures should reduce errors, especially as there are concerns that initial 

thermal expansion of the sample causes undue deformation which affects results. 

The final objective of a concerted effort into refining the fatigue apparatus and 
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procedures would be to find an equivalency model relating conventional and 

cyclic SPT quantities, such as those which exist for tensile and creep testing.  

• Reconfigure test setup to better accommodate dual punch configuration and 

heating apparatus. Although the pipe furnace used in the experimental setup is 

compact in size, the overall design of the test apparatus does not afford much 

extra space for necessary heat shielding. The dual punch configuration was 

intentionally designed to eliminate slack in the system, minimizing extra space. 

However, due to the compactness of the design, heat from the furnace leaks onto 

the rest of the components and little room exists for adequate heat shielding to be 

installed, limiting the allowable temperature range. Redesign of core components 

for future tests should consider integration of high-temperature testing and 

environmental capabilities. These capabilities are essential to accurate replication 

of operating conditions for fatigue and creep testing for high temperature 

applications. Such could be achieved by inclusion of environmental chamber or a 

refined setup utilizing a direct heating source such as a microheater. Isolation of 

heat to eliminate thermal wear on sensitive components, as well as accurate 

monitoring of heat loads on samples should also be considered. 

• Improvement of FEA model performance and optimization routine. Although 

the least squares optimization method utilized in this study produced simulated 

responses with a high approximation to experimental results, the material 

properties estimated with these were less accurate. The use of constants 

determined via the inverse method did not produce accurate representations of the 
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respective stress-strain curves. As such, a more accurate method of producing 

curve fits is required, such as the use of neural networks or advanced damage 

models for the latter portion of the simulated P-δ responses. Additional 

considerations could be made for the use of multi-directional models to 

accommodate for the directionally-dependent microstructures of AM materials, 

such as with representation of the experimental setup with a quarter-symmetric 

model. 
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APPENDIX A: ANSYS WORKBENCH MODEL 
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The below screenshots are provided as a reference for building a model an optimization 

program such as that which was utilized in this study using ANSYS: 
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APPENDIX B: REPRODUCTION PERMISSIONS 
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