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ABSTRACT 

Internal Duct Cooling (IDC) with rib turbulators is one of the common cooling techniques applied 

inside the turbine airfoils. It is very important for the gas turbine industry to design and develop 

an optimized cooling channel that maximizes the amount of heat removed, while simultaneously 

minimizing the pressure drop for a target overall cooling effectiveness. Angled ribs perform 

superior to the transverse ribs due to additional secondary flow associated with them. However, 

they result in a highly non-homogenous heat transfer distribution, which is a manifestation of the 

complex, turbulent flow field inside the channel. It is very important to comprehend the secondary 

flow physics to characterize the heat transfer distribution in such angled ribbed channels. 

Additionally, due to the manufacturing constraint, the gas turbine industry encounters a challenge 

to make ribs edge sharp and results in ribs with rounded edges. The one of the main objectives of 

the present study is to provide a fundamental understanding of the flow physics on the heat transfer 

and pressure drop behavior in 45° ribbed channels both with sharp and rounded-edge ribs. It is 

found that the secondary flow has a significant effect on the heat transfer behavior for both types 

of ribs. There is a great need of high-fidelity PIV flow field data in the inter-rib space for an angled 

ribbed channel which can be used for CFD validation, especially for LES. The current study 

provides benchmarking flow field data in the inter-rib space in a square channel with 45° ribs using 

stereoscopic PIV technique. Besides the experiments, numerical studies were also conducted by 

using LES and different RANS models. The LES results show an excellent prediction capability 

for aerothermal behavior in such channels. However, the prediction capability of RANS models is 

found to be inconsistent for different rib configurations and flow conditions.  
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CHAPTER 1: INTRODUCTION 

Background 

Gas turbines are the prime movers in land-based power generation, aviation, oil and gas industries, 

processing plants, etc. The thermodynamic cycle of the gas turbine is the Brayton cycle as shown 

in Figure 1. The thermal efficiency of the Brayton cycle primarily depends on the turbine inlet 

temperature. To achieve higher power output and higher thermal efficiency, advanced gas turbines 

operate at very high inlet temperature (~ 1500°C or above) which exceeds the melting temperature 

of the metallic airfoils of the turbine. First stage turbine airfoils are most susceptible to this kind 

of damage since those are exposed to the hottest gases from the exit of the combustor. To ensure 

safe operation of the gas turbine, it is necessary to maintain the turbine airfoils several hundred 

degrees below the operating temperatures. 

 

 
 

Figure 1 Ideal thermodynamic cycle (Brayton cycle) 
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In modern gas turbines, both Thermal Barrier Coating (TBC) and different sophisticated cooling 

techniques are incorporated for the reliable operation of the engine. TBC is applied on the turbine 

airfoils and it acts as insulation which allows a 200°F-300°F higher turbine inlet temperature. To 

cool the turbine airfoils, the coolant air is extracted from the compressor which is also known as 

compressor bleed air. The cooling techniques used in modern gas turbines’ airfoils are broadly 

categorized into two types, i.e. (i) internal and (ii) external cooling. In one of the internal cooling 

techniques, the compressor bleed air is circulated through multiple serpentine channels inside of 

the airfoils. Such cooling technique is known as the Internal Duct Cooling (IDC). The 

impingement and pin-fin cooling are the other internal cooling methods used in turbine airfoils. A 

portion of the inside coolant is evicted out through some discrete holes. This ejected cooler air 

forms a blanket along the airfoil surface and protects the metal from the hot gases which is known 

as Film cooling. The extraction of compressor bleed air for cooling causes a reduction in the power 

output as well as the thermal efficiency of the engine. If the coolant flow is too little, it causes high 

airfoil temperature and reduces component life. If the flow is excessive, it decreases engine’ 

thermal efficiency. Therefore, novel cooling strategies are paramount to the successful turbine 

operations. 

Turbine Airfoil Cooling Techniques  

To obtain high overall cooling efficiency, modern gas turbines use very sophisticated, complex 

cooling techniques. Some of the cooling techniques used in turbines' airfoils also vary between 

engine manufacturers. Figure 2 shows a sectional view of a turbine’s airfoil. Different zones of the 

airfoils are cooled with different cooling methods based on its thermal load. The film cooling holes 
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are applied at the different zones, such as the leading edge, pressure, and suction sides, and the 

airfoil’s tip area. The leading edge faces the highest thermal load as the hot gas directly impinges 

in this zone. The jet impingement along with film cooling is applied to cool this zone. The pin fins 

and the trailing edge ejection is utilized to cool the trailing edge as this area has space restriction. 

The zone in between the leading and trailing edge is known as the main body. Internal duct cooling 

is applied to cool this portion. 

 

  

Figure 2 Schematic of turbine airfoil with different cooling technologies in different zones [1]  

Turbulated Internal Duct Cooling  

Inside turbine airfoils, cold air circulates through the internal cooling channels. The cooling 

performance of internal cooling channels is often improved by applying different types of 
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turbulators within the channels. For instance, ribs, pin fins, wedges, dimples, etc. are the different 

kinds of turbulators used in the internal cooling channels. Turbulators help in heat transfer 

enhancement by disrupting viscous sublayer formation and promoting mixing of the hotter fluid 

near the metallic surface with the colder fluid at the core. Research has found that the boundary 

layer separation occurs both in front and behind the ribs (as shown in Figure 3) as well as on top 

of the ribs [2]. The separated flow reattaches again and increases the Heat Transfer Coefficient 

(HTC). However, turbulators are also responsible for high pressure drop due to high friction 

factors. To improve the cooling performance of turbulated internal cooling channels of gas turbine 

airfoils, it is essential to design and develop an optimized channel that maximizes the amount of 

heat removed, while simultaneously minimizing the pressure drop, and subsequently lowering the 

coolant flow rate for a target overall cooling effectiveness. The efficiency of the internal cooling 

channel depends on the flow pattern inside the cooling channel which in turn depends on rib 

parameters, such as, rib height (e), rib pitch (P), blockage ratio (
𝑒𝐷ℎ), the relative orientation of the 

ribs (α) to the flow direction. In addition to this, the flow pattern is also influenced by the channel 

geometry (cross-section, aspect ratio, AR) and the coolant flow rate (Re). 

Literature Review  

Turbulated Internal Duct Cooling Channel 

For the past few decades, research on the evaluation and improvement of the cooling performance 

of different types of turbulated internal cooling passages has been of great interest. Many 

experimental and numerical investigations have been conducted to quantify the heat transfer 
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coefficient values (both local and overall) and friction factor (f) of the internal cooling channels 

with different turbulators configuration over the last fifty years. J.C Han and his group did many 

early research on different aspects of rib turbulators. For example, Han [3] studied the heat transfer 

and friction behavior in rectangular channels roughened with transverse ribs (
𝑒𝐷ℎ  = 0.047 and 

0.078; P/e = 10 and 20) for Re = 10,000-60,000. They found that the streamwise distribution of 

regional average Nusselt result shows periodicity (fully developed flow) after 3Dh after the 

entrance. They observed that ribs not only enhance the heat transfer of the ribbed walls but also 

that of the adjacent smooth walls by 20% - 50%. Their investigations were performed under 

different channel aspect ratio (𝐴𝑅 = 1/4, 1/2, 1, 2, 4) and found that the narrower channel had 

higher heat transfer enhancement for the ribbed walls but showed slightly lower value for the 

average (average of ribbed walls and smooth walls) heat transfer enhancement.  

 

 

Figure 3 Flow separation by angled ribs [1] 

 



6 

 

Han et al. [4] also studied the effect of the angle of attack (90°, 60°, 45°, and 30°) of the ribs on 

the heat transfer and friction behavior in a square channel (
𝑒𝐷ℎ = 0.0625; P/e = 10) for Re = 7,000-

90,000. It was found that, besides the flow separation, inclined ribs caused additional secondary 

flow structures, which enhances heat transfer notably. For instance, the heat transfer enhancement 

with inclined ribs (α = 45°, 30°) was about 10%–20% higher than the transverse ribs. Moreover, 

the inclined ribs also cause 20% - 50% lower pressure drop than the transverse ribs. However, the 

amount of additional heat transfer enhancement caused by the ribs also depends on the aspect ratio 

of the channel. Han and Park [5] investigated (
𝑒𝐷ℎ = 0.047, and 0.078; P/e = 10 and 20; Re = 10,000-

50,000) the collective effects of the rib’s orientation angle (30°, 45°, 60°, 90°) and the channel 

aspect ratio (𝐴𝑅 = 1, 2, 4). Their results showed that the angle-of-attack of the ribs highly affects 

the heat transfer performance in a square channel; whereas, it has little effect on a rectangular 

channel (with 𝐴𝑅 = 2 and 4). For instance, angled ribs (30° and 45°) show almost 30% and only 

5% higher heat transfer performance than transverse ribs in a square channel and a rectangular 

channel, respectively. They also proposed the semi-empirical correlations for heat transfer and 

friction using the similarity law of the wall. These correlations consider the orientation angle and 

spacing of the ribs, channel aspect ratio, and blockage ratio and flow Re. This correlations are 

applicable for their experimental range: e+ > 50, 30° < α< 90°, 0.021 < e/Dh < 0.078, 10 < P/e < 

20, 1 < W/H< 4, and 8000 < Re < 80000, where,  𝑒+ is viscous scaled roughness height (ratio of 

the roughness height to viscous effects) or also called as roughness Reynolds number. This 

parameter is one of the most important length scales which is essential to classifying a rough-

walled flow which is defined as, 𝑒+ = 𝑒𝑢∗𝜗 = ( 𝑒𝐷ℎ)𝑅𝑒√𝑓2, where, the friction velocity  𝑢∗ = √𝜏𝑤𝜌 .  
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Park et al. [6] (
𝑒𝐷ℎ = 0.047 and 0.078, P/e = 10; 𝐴𝑅 = 1/4, 1/2, 1, 2, 4; Re = 10,000 to 60,000) 

reported that the 60°/45° ribs offer the maximum heat transfer performance for the 𝐴𝑅 = 1. The 

45°- 60° ribs show higher thermal performance for the lower aspect ratio channel (𝐴𝑅 = l/4 or l/2), 

while 30°/45° ribs display superior performance for the larger 𝐴𝑅. That concludes that 45° ribs 

perform good irrespective of all the aspect ratios. So far, it was found that inclined ribs perform 

better than the transverse ribs, but it is not always true. Taslim and Lengkong [7] investigated heat 

transfer performance of 45° and 90° ribs (both sharp and rounded corners) with higher blockage 

ratio (
𝑒𝐷ℎ = 0.133, 0.167, and 0.25; P/e = 5,8.5, and 10; Re = 10,000-50,000) in a square channel. 

Their results show that for high blockage ratio ribs (
𝑒𝐷ℎ = 0.25), the transverse ribs have superior 

thermal performance than 45° ribs.  

 

Bailey and Bunker [8] studied the heat transfer performance of staggered 45° ribs with high 

blockage ratio (
𝑒𝐷ℎ = 0.193-0.333) in a rectangular channel with an aspect ratio of 2.5. Their results 

also agreed with Taslim and Lengkong [7] that with higher blockage ratio ribs, transverse ribs 

cause higher heat transfer than 45° ribs. They illustrated the reason behind this contradictory 

phenomenon. As mentioned earlier, the secondary flow structures caused due to the angled ribs 

are the primary factor of the increase in heat transfer enhancement by inclined ribs over transverse 

ribs. However, in case of high blockage ratio inclined ribs, the strength of the rotating cell 

secondary flow structures gets reduced, which results in lower heat transfer augmentation than 

transverse ribs. Taslim et al. [9] also investigated the effects of the number of ribbed walls and 
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found that roughening all walls with ribs has much potential for increasing the heat transfer 

performance. 

 

Some researchers also studied the effect of the distance between the ribs (P/e) on the heat transfer 

and pressure drop behavior in a ribbed channel. For example, Taslim and Spring [10] researched 

how the rib spacing affects the heat transfer and friction performance in a rectangular channel (𝐴𝑅 

= 2) turbulated with transverse ribs. They also varied the rib blockage ratio (
𝑒𝐷ℎ) in the range 

between 0.15-0.285. Their results show that a favorable rib spacing P/e exists for every 
𝑒𝐷ℎ. If there 

is sufficient space between the ribs, the flow reattachment occurs. This reattachment zone shows 

the maximum heat transfer enhancement and then reduces continuously in the flow direction 

before it hits the following rib. Therefore, intentional reduction in the distance after the 

reattachment location helps to increase the heat transfer enhancement. Conversely, if the rib space 

is decreased too much such that the length is not enough for the reattachment, the zone of the high 

heat transfer coefficient associated with it is absent and reduces the heat transfer enhancement. 

However, this phenomenon is valid for transverse ribs only. It is found in the literature that in the 

case of 45° ribbed channel, the heat transfer enhancement increases monotonically with the 

reduction of rib spacing. Rallabandi et al. [11, 12] investigated the spacing effect on the square 

channel with 45° angled ribs (
𝑒𝐷ℎ = 0.1-0.2, Re = 30,000-400,000) with sharp edges and as well as 

rounded edges. They studied three different ratios of rib pitch to rib height (P/e) ranging between 

5-10. The result showed that the reduction of ribs-to-ribs spacing enhances the heat transfer 

enhancement of the channel due to increased available heat transfer area. Additionally, reduction 
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of rib spacing results in more ribs which cause more secondary flow in case of angled ribs. The 

secondary flow intensifies the circulation of the coolant between the ribs. Consequently, heat 

transfer enhancement keeps increasing as the P/e ratio [13] decreases.  However, the resultant high 

heat transfer enhancement due to the reduction in rib spacing is also accompanied by a large 

pressure drop.  

 

Alkhamis et al. [14] studied V-shaped ribs (α = 45° and 
𝑒𝐷ℎ = 0.1-0.18) in a square channel for a 

wide range of Re = 30,000-400,000. They experimented with P/e in the range of 5 to 10.  Wright 

et al. [15] also investigated the V-shaped and W-shaped ribs (α = 45° and 
𝑒𝐷ℎ = 0.078, P/e = 10) in 

a rectangular channel (𝐴𝑅 = 4) for Re = 10,000-40,000. In both studies, the comparative heat 

transfer performance results with parallel 45° ribs demonstrated that both V-shaped and W-shaped 

ribs possess higher heat transfer capacity than conventional parallel angled ribs due to the increased 

number of additional secondary flow structures caused by V and W-shaped ribs. In the rectangular 

channel, a substantial spanwise variation in heat transfer distribution has also been observed for 

conventional angled ribs. V and W shaped ribs help to reduce this spanwise variation of heat 

transfer too. Han and Zhang [16] studied the effect of the discretization of the ribs on the heat 

transfer and pressure drop behavior of a square channel. They investigated continuous and discrete 

(broken) parallel ribs at an angle of 90°, 60°, and 45°, and continuous and broken V ribs with 60° 

and 45° angle. Their results also confirmed that the V-shaped ribs’ performance is superior to the 

parallel angled ribs. Moreover, broken V ribs have higher performance than the continuous V ribs, 

which concludes that the discretization of the ribs has a good chance to enhance the heat transfer 

augmentation. It is conjectured that discretization creates even more additional secondary flow 
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structures than those caused by continuous V ribs. Valentino et al. [17] studied the thermal 

performance of symmetric (full) and non-symmetric (half) wedge turbulators in a rectangular 

channel (𝐴𝑅 = 2). Their results show that the non-symmetric wedges resulted in a higher reduction 

of both heat transfer augmentation and friction augmentation than the symmetric wedge cases. All 

studies mentioned above showed that the heat transfer coefficient rises when the Re increases, but 

the heat transfer augmentation reduces or remains almost same for increasing Reynolds number. 

In other words, the advantage of applying ribs decays at higher Reynolds numbers. Conversely, 

the friction augmentation caused by the ribbed channel increases with Reynolds number. Most of 

the studies in the literature were conducted at lower Re (< 70,000). Rallabandi et al. [11] studied 

the heat transfer and friction behavior in a square channel with 45° ribs at a wide range of Re = 

30,000-400,000. They varied the blockage ratio 
𝑒𝐷ℎ in the range between 0.1 and 0.18. Their data 

do not agree with the earlier published correlations proposed by Han et al. [18]. Therefore, they 

proposed new correlations for their experimented range. Note that the old correlations by Han et 

al. [18]  were based on 0.048 <  
𝑒𝐷ℎ < 0.078 and 10 < P/e < 20, and Re< 70,000. 

 

The cooling channels inside the turbine airfoils are not always of a rectangular shape. The leading-

edge cooling channels can be modeled as a triangular channel. The leading edge has the highest 

thermal load due to the presence of a stagnation point. Taslim et al. [19] and Domaschke et al. [20] 

have investigated the heat transfer and pressure drop behavior in a leading-edge channel. They 

measured heat transfer behavior in a leading-edge cavity like a duct roughened with 45° ribs (
𝑒𝐷ℎ = 
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0.1, Re = 20000-50000) using Transient Liquid Crystal (TLC) technique. They also analyzed the 

flow behavior of such channels numerically by using the SST turbulence model.  

 

Most of the research on turbulated internal duct cooling focus on the single straight channel. Some 

studies are performed on multi-pass passages. For instance, Lei et al. [21] and Huh et al. [22] 

investigated heat transfer behavior in a square two pass channels with 45° ribs. Smith et al. [23] 

studied thermal performance in a three-pass serpentine channel. Their investigation was performed 

with 45° angled ribs with varying aspect ratio of the channel (𝐴𝑅 = 1, 1/2, 1/6; 
𝑒𝐷ℎ = 0.1 to 0.058, 

Re = 4,000-130,000). Their results depict that the maximum heat transfer augmentation happens 

in  𝐴𝑅 = 1/6 when Re ≥ 50,000. Rallabandi et al. [24]  and Yang et al. [25] also studied the heat 

transfer characteristics in a three-pass serpentine channel. They also performed the investigation 

with 45° ribs with varying 𝐴𝑅 of the channel.  

 

The above mentioned research indicate that the performance of a turbulated channel is affected by 

different parameters such as 
𝑒𝐷ℎ, P/e, Re, number of ribbed walls, the configuration of the ribs and 

the aspect ratio of the channel, etc. Any variation of these parameters causes a difference in the 

flow behavior as well as the heat transfer capability and friction of the channel. Experimental 

investigation of each turbulated channel is expensive both in terms of time and cost. Numerical 

simulation is a good and effective alternative. Therefore, several researchers tried to investigate 

heat transfer and friction behavior of a ribbed channel numerically, especially with RANS 

(Reynolds Average Navier Strokes) turbulence models. For instance, Acharya et al. [26] studied 

the flow as well as the heat transfer behavior in a channel with a rectangular cross section with 
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transverse ribs. They used non-linear and standard k-ε turbulence models for their investigation. 

They observed that both turbulence models failed to detect the recirculation zone just behind the 

ribs. Rigby et al. [27] numerically studied the heat transfer behavior in a square channel with 

transverse ribs and bleed holes using k-ω turbulence models and found reasonable agreement with 

the experimental data. Jang et al. [28]  investigated both rotating and stationary straight channel 

with 45° ribs (
𝑒𝐷ℎ = 0.1) by Reynolds stress turbulence model. The summary of the studies 

conducted on the different parameters of the ribbed internal duct cooling channels is shown in 

Table 1. 
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Table 1 Summary of the studies on the internal duct cooling channel with ribs 
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Square 2 1 

0.048-

0.078 

10,20 - 

Uniform 

heat flux 

Yes - - 

Han et al. [4] 1985 1 

8k-
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15°-
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Square 2 1 0.093 10,20 - 

Uniform 

heat flux 

Yes - - 

Han [3] 1988 

1/4,1/2,

1,2, and 

4 

10k-

60k 

90° Square 2 1 

0.047, 

0.078 

10,20 - 

Uniform 

heat flux 

Yes - - 

Han and Park 

[5] 

1988 

1,2, and 

4 
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Square 2 1 

0.047, 

0.078 

10,20 - 
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Yes - - 

Han and 

Zhang [16] 

1991 1 
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30°-

90° 

V  

Square 2 1 0.0625 10 - 

Uniform 

heat flux 

Yes - - 
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Park et al. [6] 1992 

1/4,1/2,

1,2, and 

4 

10k-

60k 

30°-

90° 

Square 2 1 

0.047, 

0.078 

10 - 

Uniform 

heat flux 

Yes   

Ekkad and 

Han [29] 

1997 1 

6k-

60k 

V (90° 

and 

60°) 

Square 1 2 0.125 10 - TLC - - - 

Taslim and 

Lengkong [30] 

1998 1 

10k-

50k 

45° Square 2 1 

0.133, 

0.167, 

and 

0.25 

5,8.5, 

10 

- 

Yes 

HTC on rib 

surfaces 

Yes - - 

Taslim et al. 

[9] 

1998 

1 and 

trapezoi

dal 

5k-

30k 

45° 

Square 

and 

round 

2,3,

4 

1 0.22 

8.5,9.1

,7.99 

- TLC Yes - - 
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Wright et al. 

[15] 

2001 4 

10k-

60k 

45° V 

and W 

shaped 

Square 2 1 0.078 10 Yes 

Uniform 

heat flux 

Yes - - 

Bailey and 

Bunker [8] 

2003 2.5 

20k-

100k 

45° 

Square 

and 

round 

2 1 

0.193-

0.333 

10 - TLC Yes - - 

Acharya et al. 

[26] 

2004 4.9 

Uref 

= 

3.6 

m/s 

90° Square 1 1 0.063 20 - 

Uniform 

heat flux 

- LDV 

(nonlinear 

k-ε), FDI 

Liu et al. [13] 2006 2 

5k-

40k 

45° Square 2 2 0.094 

10,7.5,

5,3 

Yes 

Uniform 

heat flux 

Yes - - 
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Rallabndi et al. 

[11] 

2010 1 

30k 

-

400k 

45° Square 2 1 

0.1,0.15

,0.18 

5,7.5, 

10 

- 

Uniform 

heat flux 

Yes - - 

Alkhamis et al. 

[14] 

2011 1 

30k-

400k 

45° V 

shaped 

Square 2 1 

0.1-

0.018 

5, 

7.5,10 

 

Uniform 

heat flux 

Yes - - 

Domaschke et 

al. [20] 

2012 

Leading 

edge 

cavity 

20k-

50k 

45°  2 1 0.1 10 - TLC Yes - SST, FDI 

Lei et al. [21] 2012 2 

10k-

40k 

45° Square 2 2 0.098 

5,7.5, 

10 

Yes 

Uniform 

heat flux 

 - - 

Smith et al. 

[23] 

2013 

1,1/2, 

1/6 

50k 45° Square 2 3 

0.058-

0.1 

10 Yes 

Uniform 

wall 

temperature 

Yes - - 
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Rallabandi et 

al. [24] 

2014 

trapezoi

dal 

75k-

165k 

45° Square 2 3 

0.081-

0.133 

10 Yes 

Uniform 

heat flux 

Yes - - 

Current study 2018 1 

6k-

135k 

45° 

Square 

and 

rounded 

edge 

1, 2 1 0.0625 10 - 

Uniform 

wall 

temperature 

Yes PIV 

LES, 

RANS 

(RKE, v2-f, 

SST k-ω), 

FDI  
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Study on Rounded-Edged Ribs 

Due to manufacturing constraints, the gas turbine industry faces a challenge to make the sharp-

edged ribs, which often results in rounded edge ribs. Therefore, it is essential to study the 

consequence of the rounded edged ribs on the heat transfer and pressure drop. Taslim and 

Lengkong [7] studied the effect of rounding the top edges of the ribs on the heat transfer and 

friction behavior in a square channel. Their study was done for three different high blockage ratio 

ribs ( 𝑒𝐷ℎ = 0.25, 0.167 and 0.133; P/e = 5-10, 45° ribs) for Re = 10,000 to 50,000. They found that 

rounded edge ribs reduce both heat transfer and friction factor than those of sharp-edged ribs. The 

reduction of heat transfer and friction factor lessens with the decrease in blockage ratio. However, 

the rounded edged ribs cause a higher amount of reduction in pressure drop than the reduction in 

heat transfer for all the cases. For example, the rounded edge ribs cause 17.5% to 12% lower heat 

transfer, but 41% to 15% lower pressure drop compared to the sharp ribs for 𝑒𝐷ℎ = 0.25. Jang et al. 

[28] used Chimera RANS model to study the heat transfer as well as the flow behavior in a duct 

with 45° ribs of round cross-section (𝐴𝑅 = 1, 𝑒𝐷ℎ = 0.1, P/e = 10, Re = 25,000) with different 

rotation number. Rallabandi et al. [12] also studied the effect of all edges filleted 45° ribs on the 

heat transfer and friction behavior in a square channel. Their investigation was also conducted for 

high blockage ratio ribs ( 𝑒𝐷ℎ = 0.0944 - 0.188; P/e = 5-10) but in a wide range of Re values (30,000-

400,000). They also reported that rounding the edges of the ribs do not have a significant effect on 

the heat transfer coefficient. However, rounded edge ribs caused lower pressure drop compared to 

the sharp-edged ribs, especially with the taller ribs. They anticipated that the reduced recirculation 
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zone at the base of the rounded edge ribs caused the reduction in the local pressure loss. These 

studies indicate that the round ribs have a great potential for better thermal performance. However, 

all these investigations were performed at the high blockage ratio ribbed channels (tall ribs). To 

the best of our knowledge, no study was performed to see the effect of rounding edges with low 

blockage ratio ribs. A new study on the low blockage ratio ribbed channel (smaller ribs) may offer 

an interesting insight. Additionally, the studies on the round ribs were limited to the heat transfer 

and pressure drop mainly. To understand the effect of the rounded edge ribs on the heat transfer 

distribution properly, comprehension of its flow behavior is very important. Table 2 shows the 

summary of the research done on the ribs with a rounded edge.  

 

The current study examines the effect of rounded-edged ribs on the heat transfer and friction 

behavior in a low blockage ratio ( 𝑒𝐷ℎ = 0.0625, ribs on two walls applied in parallel fashion) 45° 

ribbed channel. To achieve this, both sharp and rounded edge ribs (all other parameters same) were 

studied in a wide range of Re both experimentally and numerically. Three different turbulence 

models, namely SSST k-ω, Realizable k-ε (RKE) and v2-f turbulence models were used. To 

understand the effect of the rounded edge ribs on the heat transfer distribution properly, a detail 

comparative flow field study between the sharp and round ribs was performed using numerical 

results. 
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Table 2 Summary of the work on rounded-edged ribs 
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Taslim and 
Lengkong [7] 1999 1 

10,000-
50,000 

45° 
Top 

edges 
2 

0.25, 0.167, 
0.133 

5-10 

Average heat 
transfer and 

pressure drop 

No 

Jang et al. [28] 2000 1 25,000 45° 

Top and 
bottom 
edges 

2 0.1 10 - 
Yes, 

Chimera 
RANS 

Rallabandi et al. 
[12]  2011 1 

30,000-
400,000 

45° 

Top and 
bottom 
edges 

2 
0.0944 - 

0.188 
5-10 

Average heat 
transfer and 

pressure drop 

No 

Current study 2018 1 
6,000-

135,000 
45° 

Top and 
bottom 
edges 

2 0.0625 10 

Average heat 
transfer and 

pressure drop 

Yes, 
RANS 

 

 



21 

 

Flow Behavior Investigation in Internal Duct Cooling Channels 

Thermal performance of different kinds of turbulators is an active area of research. Many 

researchers have performed experiments and produced a volume of data which help the gas turbine 

industry to move forward. Compared to that, few researchers have investigated the complex three-

dimensional turbulent flow fields in a ribbed channel. The flow field is very complicated due to 

the presence of flow separation and reattachment, secondary flows and bends, centrifugal 

buoyancy forces, and the Coriolis effect due to the rotation, etc. These factors make the flow 

prediction very difficult. Some researchers have tried to understand the flow physics 

experimentally by using some advanced technologies such as Hot Wire Anemometry (HWA), 

Particle Image Velocimetry (PIV), and Laser Doppler Velocimetry (LDV), etc. For example, Rau 

et al. [31] studied the detailed heat transfer and aerodynamic behavior of a square channel with 

transverse ribs (
𝑒𝐷ℎ = 0.1, P/e = 6, 9, 12, AR = 1, one and two ribbed walls) using LDV and TLC at 

Re = 30,000. The results showed that the flow inside a turbulated channel, especially near the ribs 

is very complex, unsteady, turbulent, and highly three dimensional. This complex flow field results 

in uneven heat transfer distributions within the channel.  

 

The major drawback of HWA and LDV method is that these techniques only provide velocity 

measurements at a point. Unlike the HWA and LDV, PIV provides the flow field data in a plane 

of interest which makes the PIV a better tool to comprehend the flow physics in such turbulated 

channels. For instance, Son et al. [32] determined flow field in a square, two passes, smooth and 

90° ribbed (
𝑒𝐷ℎ = 0.125 and P/e = 10) channel at Re = 30,000 using planer PIV. They correlated 
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their flow field data with a previously conducted heat transfer study [29]. The result shows the 

wall heat transfer enhancement highly is influenced by the secondary flow characteristics, such as 

shape, strength, the direction of the rotation, and the position of the vortex.  Casarsa and Arts [33] 

also used the planer PIV technique to investigate the flow field inside a square channel with high 

blockage transverse ribs (
𝑒𝐷ℎ = 0.3) installed on one wall (Re = 40,000). They established a 

quantitative correlation between the aerodynamic results with previously studied heat transfer data 

for high blockage ration channel. Liou et al. [34]  investigated the flow field inside a parallelogram-

shaped two pass channels with transverse ribs. They used planer 2D PIV for their study. Gao and 

Sundén [35, 36] studied flow field of a rectangular duct (𝐴𝑅 = 8)  with various rib configuration, 

such as inclined ribs with the various angle of attack (30°- 45°), crossed and V-shaped ribs with α 

= 60° at Re ≈ 5800. They measured the local flow structure between the ribs, but a detailed 

turbulence data was not reported in the inter-rib space. They found that the rib orientation angle 

highly influences the style and strength of the secondary flow for inclined ribs, and 45° ribs 

produce the strongest secondary flow (two cells) between all the inclined ribs.  

 

Schabacker et al. [37] used stereoscopic PIV technique to investigate the effect of the bend in a 

two-pass internal cooling channel roughened with 45° ribs (
𝑒𝐷ℎ = 0.1, P/e = 10) at Re = 45,700. 

Chanteloup et al. [38] used PIV to determine the flow field data in a two-pass channel with 45˚ 

ribs (
𝑒𝐷ℎ = 0.1, P/e = 10, staggered) on two walls (Re = 50,000). They used stereoscopic PIV to 

determine all the three mean velocity components in several planes to determine how the main and 

secondary flow characteristics influence heat transfer. No turbulence data, e.g., turbulent kinetic 
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energy, Reynolds normal and shear stresses are reported in this study. Due to the light reflections, 

the results at the vicinity of the wall in the inter-rib space could not be captured too. 

 

Most of the experimental flow behavior studies reported on the transverse ribs. There are very few 

studies conducted in a channel with angled ribs. It is very challenging to measure the flow field 

data in the inter-rib space for a channel with angled ribs due to the obstruction caused by the ribs. 

There is a great need for high fidelity experimental data in the inter-rib space for an angled ribbed 

channel which can be used for CFD validation, especially for LES. The current study measures 

the detailed flow field data in the inter-rib space in a square channel with 45° ribs using 

stereoscopic PIV technique. The results of mean velocity components, turbulent kinetic energy, 

and all the Reynolds stresses are presented. The investigation was done in a wide range or Re = 

10,000-150,000. An LES study at Re ≈ 30k was also performed and validated with the 

experimental stereo PIV results which is discussed in chapter 7. 
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Table 3: Summary of the flow investigations in the ribbed channel using PIV 
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Son et al. [32] 2002 1 30,000 90° 1 0.125 10 Planer PIV 

Chanteloup et al. 
[38] 2002 1 50,000 45° 2 0.1 10 Stereo PIV 

Gao and Sundén 
[35, 36] 2004 8 5800 

30°, 45°,  
60°, 90° 

(Round cross 
section-ribs) 

2 0.06 10 Planer PIV 

Casarsa and Arts 
[33] 2005 1 40,000 90° 1 0.1 10 Planer PIV 

Coletti [39] 2012 0.9 15,000 90° 1 0.1 10 Planer PIV 

Liuo et al. [34] 2015 Parallelogram 10,000 90° 2 e/H = 0.1 10 Planer PIV 

Current study 2018 1 
10,000-
150,000 

45° 1 0.0625 10 Stereoscopic PIV 



25 

 

LES Work on Internal Duct Cooling Channels 

With the exponential increase in computational power in the last few decades, Direct Numerical 

Simulations (DNS) and Large Eddy Simulations (LES) are also being used to investigate the 

complex flow field inside of a ribbed channel. For example, Burattini et al. [40] and Leonardi et 

al. [41] performed DNS in a channel with transverse ribs. Orlandi and Leonardi [42] investigated 

two and three-dimensional roughness elements using DNS. Till date, DNS is prohibitively 

expensive at high Re. Researchers rely on LES for higher accuracy (than RANS) which has much 

lower computational expenses than DNS. 

 

Tyacke [43] studied flow and heat transfer behavior in a square duct with a 180° bend (transverse 

ribs, 
𝑒𝐷ℎ = 0.1, P/e = 10) at Re = 20,000. They used LES and hybrid RANS–LES methods for their 

study. A comparison was conducted with experimental data and found a good match. They 

concluded that the choice of the LES does not matter since the large scales dominates the flow 

mainly. The inlet turbulence is found to have a little effect as the ribs generate very strong 

turbulence in the flow.  

 

Kubacki et al. [44] conducted a flow study in a rotating rectangular channel with transverse ribs at 

Re = 15,000. The flow is simulated with periodic assumption and the computational domain 

consists of two streamwise periods. They used both hybrid RANS/LES and basic RANS k-ω model 

to determine its capability in reproducing the flow structures in such channel. Comparing with the 

experimental results, they found that the hybrid RANS/LES k-ω model reproduce the flow field in 
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a rotating ribbed channel precisely. However, the modified k-ω model for frame rotation also 

predicts the mean velocity profiles in the midplane of the channel well. However, it does not 

predict the fluctuations and the secondary vortices result well. 

 

Patil and Tafti [45] conducted LES of flow and heat transfer in a square ribbed duct with transverse 

ribs of 
𝑒𝐷ℎ = 0.1 and 0.05 and P/e = 10 and 20. Their investigated Re were 20,000 and 60,000. The 

computational methodology assumes a periodic fully developed flow and heat transfer and hence 

the computation domain contained only one pitch. They compared their wall modeled LES results 

with the previously conducted wall-resolved LES data and some other available data. They found 

a good match between the experimental results and LES. Both of the wall modeled and wall-

resolved LES showed similar accuracy at the higher Re. However, the wall modeled LES lessens 

the computational difficulties significantly than the wall-resolved LES. 

 

O Labbé [46] conducted an LES study of turbulent flow and heat transfer in a duct roughened with 

transverse ribs (
𝑒𝐷ℎ = 0.3, P/e = 10, 𝐴𝑅 = 1) at Re = 40,000. They performed two simulations. The 

first one was full domain consists of five ribs and the second one was with the periodic interface 

in streamwise direction with one rib. Both the simulations show excellent match with the 

experimental results of recirculation zones and the center plane mean velocities. However, the LES 

results obtained in the periodic domain case shows a better match with experimental results than 

the one with the full domain. One possibility of this discrepancy might be the inlet boundary 

conditions, which do not represent the experiments. 
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Kang and Yang [47] studied the effect of the rib spacing (P/e) on turbulent heat transfer in a 

circular ribbed-pipe flow using LES (with dynamic subgrid model). The ribs were of 
𝑒𝐷ℎ = 0.0625 

and the P/e varied 2, 4, 6, 8, 10 and 18. The investigation was performed at Re = 24,000.  

 

Sewall et al. [48] examined the prediction capability of LES for reproducing the experimental data 

of heat transfer and flow behavior in a 2-pass square duct with transverse ribs ( 𝑒𝐷ℎ = 0.1, P/e = 10) 

at Re = 20,000. The three calculations domains used, i) developing flow region (eight ribs) ii) Fully 

developed flow model (one rib- periodic fully developed flow) iii) 180˚ bend. They reported that 

the LES predicts the flow physics accurately within 10% - 15% of experiments.  

 

Tyagi and Acharya [49] investigated  aerothermal behavior in a ribbed (α = 90˚, 𝑒𝐷ℎ = 0.1, P/e =10) 

channel (𝐴𝑅 = 1) at Re = 12,500 using LES with rotating condition. They used the periodic 

boundary condition in streamwise direction for the simulation. Their computation domain contains 

two inter-rib space/pitches. Most of the LES studies reported with the periodic Fully Developed 

Interface (FDI) used constant heat flux boundary conditions because of the high computational 

cost associated with the isothermal wall boundary condition. Since isothermal wall conditions 

represent the turbine blade wall temperatures better, they applied isothermal wall conditions for 

the simulation by using a newly proposed noniterative method which makes it cost effective. There 

are many other LES work done with the transverse ribbed channel. Watanabe and Takahashi [50] 

and Tafti [51] also investigated the heat transfer and aerodynamic behavior with LES for a 

transverse ribbed channel. Cui et al. [52] investigated turbulent flow behavior in a square channel 
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with d and k-type transverse ribs at Re ≈ 10,000 based on the bulk velocity and half of the channel’s 

height. 

 

Dritselis [53] performed an LES investigation in a channel with transverse turbulators of various 

cross-sections (square, triangular, circular) applied on one wall at a very low Re = 5,600. The 

investigator evaluated the feasibility of different subgrid-scale models by comparing the results 

with DNS generated results [54, 41, 42]. The results showed that all the mentioned subgrid-scale 

models predict the main flow physics with fidelity and exhibit similar performances.  

 

Wahab and Tafti [55] investigated flow and heat transfer behavior in a ribbed duct (α = 45°, 
𝑒𝐷ℎ 

=0.1, P/e = 10, Re ≈ 47,000). The ribs were applied on two opposite walls in a staggered fashion. 

They used the dynamic Smagorinsky subgrid model for the simulation. Their results showed good 

compliance with the experimental results.  

 

Jia et al. [56] studied the heat transfer behavior of the upstream and downstream pointing V-shaped 

ribs using v2-f ( α = 45˚, 𝑒𝐷ℎ = 0.0625 and 0.125, Re = 4,000 to 32,000), as well as LES (α =60˚, 𝑒𝐷ℎ 

= 0.0625 and 0.125, Re = 4,000). The simulations were done with the fully developed periodic 

condition in a streamwise direction which allowed the computation domain of one pitch length.  

 

There are many LES studies for flow and heat transfer behavior investigation in internal duct 

cooling channels; most of the these are performed with transverse ribs. A recent review paper by 

Holgate et al. [57] summarizes the LES studies done for internal flows till date. Only a handful 
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LES studies are performed for a channel with angled ribs, especially with 45° ribs. There is a great 

need to investigate the prediction capability of LES for angled ribbed channels. One of the primary 

objectives of the present study is to conduct an LES study of aerothermal behavior in a square 

channel with 45° ribs (
𝑒𝐷ℎ = 0.0625, P/e = 10) applied on one wall at Re ≈ 30,000. The LES results 

were validated with the experimental data obtained with stereoscopic PIV. Besides LES, RANS 

simulations with different turbulence models were also conducted and compared with the 

experimental results as well as LES to evaluate the prediction capability of RANS models in such 

turbulated channels.  
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CHAPTER 2: RESEARCH OBJECTIVES  

 Objectives of the Present Study 

One of the main objectives of the current study is to provide a detailed understanding of the heat 

transfer and pressure drop behavior in a square internal duct cooling channel roughened with 45° 

ribs and the flow physics associated with it. The application of an internal duct cooling channel 

with 45° ribs is one of the most common cooling techniques in the gas turbines. It is found that the 

angled ribs result in a highly non-homogenous heat transfer distribution. The heat transfer 

distribution is directly affected by the complex turbulent flow inside the channel. Therefore, 

comprehension of the flow physics is essential for characterizing the heat transfer behavior in such 

channels properly. In the current study, both sharp and rounded-edge ribs have been studied. The 

investigations were conducted in a combination of both experimental and numerical approaches. 

Research shows that only a handful of LES studies have been performed for a channel with angled 

ribs, especially with 45° ribs. The present study determines the suitability of LES for predicting 

aerothermal behavior in a square channel with 45° ribs. The prediction capability of different 

turbulence models was also evaluated. Additionally, the flow field data acquisition in the inter-rib 

space for a channel with angled ribs is very challenging due to the obstruction caused by the ribs. 

There is a great need for high fidelity experimental data in the inter-rib space for an angled ribbed 

channel which can be used for CFD validation, especially for LES. The current study provides the 

flow field data in the inter-rib space in a 45° ribbed duct using stereoscopic PIV technique.  
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The following approaches were applied to study the above mentioned problems.  

 

• Experimental heat transfer and pressure drop investigation in a square channel with 45° 

ribs at a wide range of Re (6,000-135,000).  

The investigations were conducted in three different configurations. Those are- A) Sharp-

edged ribs on two opposite walls, B) Rounded-edged ribs on two opposite walls, and C) 

Sharp-edged ribs on one wall. 

 

• RANS simulations using three different turbulence models- a) Realizable k-ε (RKE), b) v2-

f, and c) SST k-ω for both sharp and round ribs of two ribbed wall cases.  

The results of each turbulence model are compared with the experimental heat transfer and 

friction data to shed light on the prediction capability of these models for both types of the 

ribs at the wide range of Re (6,000-135,000). 

 

• To produce the benchmarking experimental flow field data in the inter-rib space in a 45° 

ribbed duct by using stereoscopic PIV.  

The experiment was conducted at the streamwise midplane of the one ribbed wall case. 

The investigations were done at different Re, ranging from 10,000 to 150,000. 

 

• To conduct LES as well as RANS simulations for the one ribbed wall case at Re ≈ 30,000.  
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The LES and RANS results are compared with the experimental flow field and heat transfer 

data. A detail discussion of the aerothermal behavior of the sharp ribs is conducted using 

the LES results.  

 

• Comparative aerothermal behavior study between the sharp and rounded-edged ribs.  

The investigation was done using the results obtained by the v2-f turbulence model at Re ≈ 

52,000. 

Novelty 

The present study provides a detailed understanding of the flow physics on the heat transfer and 

pressure drop behavior in 45° ribbed channels both with sharp and rounded-edged ribs. Both 

numerical and experimental approaches were implemented for the investigation. The effect of the 

rounded-edged ribs on heat transfer and pressure drop behavior in a low blockage ratio ( 𝑒𝐷ℎ = 

0.0625) channel is studied. The current study presents a detail comparative aerodynamic results 

between the sharp and rounded-edge ribs. A detailed discussion is done to correlate the 

aerodynamic behavior with the wall heat transfer distribution for both kinds of the ribs.  

 

To measure the detail flow field data in the inter-rib space for a channel with angled ribs is very 

challenging due to the obstacles caused by them. In the literature, there is not enough PIV flow 

field data in the inter-rib space for an angled ribbed channel which can be used for CFD validation, 

especially for LES.  The current study provides benchmarking flow field data in the inter-rib space 

in a square channel with 45° ribs using stereoscopic PIV technique. The investigation was done in 
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a wide range of Re = 10,000-150,000. A large eddy simulation was also performed for the 

aerothermal behavior investigation in a 45° ribbed channel at Re ≈ 30,000. The LES results are 

compared with the experimental flow and heat transfer results to determine its prediction capability 

in a 45° ribbed channel. The LES results show excellent agreement with the experimental data. 

The prediction capability of different RANS turbulence models was also evaluated by comparing 

their results with the experiment as well as the LES.  

Research Impact  

This research focuses on the importance to comprehend the secondary flow physics to characterize 

the heat transfer distribution in the internal duct cooling channels with angled ribs. Due to 

manufacturing constraints, gas turbine industry has the challenge to make perfectly sharp ribs, 

often the ribs' edges become filleted. This research highlights the comparative effect of the sharp 

and rounded edge ribs on the aerodynamic behavior and the consequent effect on the heat transfer 

distribution on the walls. This study produces benchmarking stereo PIV data very close to the 

ribbed wall in a 45° ribbed channel which can be used for CFD validation as well. With the recent 

improvement in computational capacity, CFD is used as investigation tool for different types of 

turbulated channels. RANS simulations are widely used due to its lower computational cost with 

a compromise of accuracy. LES show very good prediction capability of aerothermal behavior in 

ribbed cooling channels especially with transverse ribs. The current study evaluates the prediction 

capability of LES as well as different RANS turbulence models by comparing the results with the 

experimental flow field and heat transfer data in a 45° ribbed duct. The results focus on the high 

accuracy of the LES in predicting the aero-thermal behavior. However, the prediction capability 
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of different RANS models is found to be inconsistent for the different configurations and the flow 

conditions (Re). This study emphasizes the potential of LES for predicting the aerothermal 

characteristics in an angled ribbed channel with high accuracy, which can be leveraged to study 

turbulated internal cooling more reliably. 
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CHAPTER 3: INVESTIGATION TECHNIQUES 

Particle Image Velocimetry 

Particle image velocimetry is a nonintrusive instantaneous flow field measurement procedure. 

Unlike the HWA and LDV, PIV provides the instantaneous flow field data in a plane of interest. 

The mean velocity maps can also be achieved by using the PIV generated instantaneous velocity 

data. For PIV measurements, the flow is homogeneously entrained with small tracer particles 

(diameter 0.5–5μm) so that the tracer particles faithfully follow the flow motion. The ratio between 

the response time of particle and the integral time scale of the flow (Stokes number) requires to be 

very low for the particles to track the flow motion with high fidelity. Therefore, the tracer particles 

need to be very small to have a low Stokes number. On the contrary, the particle size must be large 

enough to scatter an adequate amount of light for being identified by the CCD camera. A 

combination of lenses and a high-power Nd: YAG laser are used to generate the light sheet to 

illuminate the seeded fluid. Then the entrained fluid is illuminated twice in short succession and 

an image pair of particle patterns are recorded by using a CCD camera. The displacement field of 

the seeding particles is estimated using the cross-correlation of the image pairs in the interrogation 

area. Finally, the velocity vector field is determined from the displacement field and the time 

interval between the successive image pairs. 

 

The traditional 2-dimensional-2C (two components) PIV method can provide only the projection 

of a velocity vector in the measurement plane. The 2D-2C is incapable of estimating the out of 

plane velocity component. For highly three-dimensional flow such as turbulent flow in a ribbed 

https://en.wikipedia.org/wiki/Fluid_dynamics
https://en.wikipedia.org/wiki/Dynamics_(mechanics)
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channel, this unmeasured out of plane component can result in a substantial error in the measured 

in-plane components with a non-orthogonal camera and the measurement plane arrangement. 

Stereoscopic PIV can measure all 3-components of velocity in the measurement plane. In this 

arrangement, two cameras are placed at two different viewing direction to acquire projections of 

the velocity vectors in two planes. Then, using the combination of these two 2D-2C vector fields, 

the 2D-3C (all three velocity components) PIV velocity vector field is reconstructed. A calibration 

of the camera system is essential to determine the viewing directions of both cameras with respect 

to the orientation of the light sheet. Calibration also helps to rectify for the image distortion in the 

lenses and the plexiglass walls of the duct.  

Reynolds Averaged Navier-Stokes Equation (RANS) 

The equations of instantaneous motion of an incompressible fluid are as follows [58] 

𝜕𝑢𝑖𝜕𝑥𝑖 = 0 (1) 

𝜕𝑢𝑖𝜕𝑡 + 𝑢𝑗 𝜕𝑢𝑖𝜕𝑥𝑗 = 𝑓𝑖 − 1𝜌 𝜕𝑝𝜕𝑥𝑖 + 𝜗 𝜕2𝑢𝑖𝜕𝑥𝑗𝜕𝑥𝑗 (2) 

The velocity 𝑢𝑖 is decomposed into a mean flow 𝑢�̅� and velocity fluctuation 𝑢𝑖′ such that 𝑢𝑖 = 𝑢�̅� + 𝑢𝑖′ (3) 

Where, 𝑢�̅� = 𝟏∆𝒕 ∫ 𝑢𝑖(𝑡)𝑑𝑡∆𝑡0  (4) 

The time average of the fluctuating components is zero.  𝑢𝑖′̅̅̅̅ = 𝟏∆𝒕 ∫ 𝑢𝑖′(𝑡)𝑑𝑡∆𝑡0  =0 (5)  

The pressure and other variables are also decomposed into mean and fluctuating components.  
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Applying these decompositions, the equations for mean flow are obtained [58]. 

𝜕𝑢𝑖𝜕𝑥𝑖 = 0 (6) 

�̅�𝑗 𝜕𝑢𝑖𝜕𝑥𝑗 = 𝑓�̅� + 1𝜌 𝜕𝜕𝑥𝑗 [−�̅�𝛿𝑖𝑗 + 𝜇 (𝜕𝑢𝑖𝜕𝑥𝑗 + 𝜕𝑢𝑗𝜕𝑥𝑖) − 𝜌𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ] (7) 

This equation also can be written as,  �̅�𝑗 𝜕𝑢𝑖𝜕𝑥𝑗 = 𝑓�̅� + 1𝜌 𝜕𝜕𝑥𝑗 [−�̅�𝛿𝑖𝑗 + 2𝜇𝑆�̅�𝑗 − 𝜌𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ] (8) 

Where, 𝑆�̅�𝑗 = 12 (𝜕𝑢𝑖𝜕𝑥𝑗 + 𝜕𝑢𝑗𝜕𝑥𝑖) 

These equations are known as Reynolds Averaged Navier-Stokes (RANS) equations. The 

additional terms  (𝜌𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ) which have evolved in the mean momentum equation are known as the 

Reynolds stresses. To solve these equations, the nonlinear Reynolds stress terms involve additional 

modeling for closure. Different turbulence models have been developed to close the RANS 

equation. These models are categorized into two main types, namely 1) Eddy viscosity models 

(EVM), and 2) Reynolds stress model (RSM). 

Eddy Viscosity Models (EVM) 

In this method, the Reynolds stress terms are modeled using the Boussinesq hypothesis. This 

hypothesis assumes that the turbulent Reynolds stress terms are proportional to the mean velocity 

gradient similar to the viscous stresses.  

The viscous stresses are proportional to the rate of deformation of the fluid element. 

𝜏𝑖𝑗 =  𝜇 (𝜕𝑢𝑖𝜕𝑥𝑗 + 𝜕𝑢𝑗𝜕𝑥𝑖) (9) 
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Joseph Boussinesq introduced the concept of turbulent eddy viscosity 𝜈𝑡 and correlated the 

Reynolds stresses and the deformation rate of the fluid element using it [59]. 

−𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ = 𝜈𝑡 (𝜕𝑢𝑖𝜕𝑥𝑗 + 𝜕𝑢𝑗𝜕𝑥𝑖) − 23 𝑘𝛿𝑖𝑗 (10) 

where, 𝜈𝑡 = turbulent eddy viscosity  𝑘 = − 12 𝑢𝑖′𝑢𝑖′̅̅ ̅̅ ̅̅  = turbulent kinetic energy 𝛿𝑖𝑗 is the Kronecker delta. 

The 𝜈𝑡 is calculated using a single length and velocity scale. There are several models established 

based on the Boussinesq hypothesis which are known as eddy viscosity models or EVM's, such 

as, k-ε, k-ω, Mixing Length Model and Zero Equation Model, etc. The models are often called by 

the number of transport equations associated with them. For example, the k-ε is referred to as a 

“Two Equation" model as it solves two transport equations (one for k and one for ε). The major 

drawback of EVM models is that it assumes an isotropic turbulent viscosity which is not often 

realistic.  

k-ԑ Turbulence Model 

The k-ε turbulence model is the most common two equation EVM model. The first transport 

equation this model solves is for turbulent kinetic energy (k) in the flow. The turbulent kinetic 

energy is used to determine the velocity scale. The second transport equation is for the turbulent 

dissipation (ε) of the turbulent kinetic energy which is used to determine the length scale. The 

turbulent viscosity 𝜇𝑡 is modeled as, 
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𝜇𝑡 = 𝜌𝐶𝜇 𝑘2𝜖  (11) 

The transport equations for k and ε are as following [60]. 

𝐷𝑘𝐷𝑡 ≈ 𝜕𝜕𝑥𝑗 [𝜗𝑡𝜎𝑘 𝜕𝑘𝜕𝑥𝑗] + 𝜗𝑡 𝜕𝑢𝑖𝜕𝑥𝑗 (𝜕𝑢𝑖𝜕𝑥𝑗 + 𝜕𝑢𝑗𝜕𝑥𝑖) − 𝜀 (12) 

𝐷𝜀𝐷𝑡 ≈ 𝜕𝜕𝑥𝑗 [𝜗𝑡𝜎𝜀 𝜕𝜀𝜕𝑥𝑗] + 𝐶1𝜗𝑡 𝜀𝑘 𝜕𝑢𝑖𝜕𝑥𝑗 (𝜕𝑢𝑖𝜕𝑥𝑗 + 𝜕𝑢𝑗𝜕𝑥𝑖) − 𝐶2 𝜀2𝑘  (13) 

𝐶𝜇, 𝐶1, 𝐶2, 𝜎𝑘, 𝜎𝜀= empirical constants 

Since molecular viscosity and sublayer damping effects are not considered in the model, this model 

is well suited only for predicting the outer and overlap layer. 

Realizable k-ԑ Turbulence Model (RKE) 

The standard k-ε model is unsuitable for resolving the flow region very close to the wall since it is 

developed based on turbulent core flows. The Realizable k-ε model is a variant of the standard k-

ε model. It applies an improved method for calculating turbulent viscosity. It also incorporates a 

new transport equation for the dissipation rate which is formulated using an exact equation for the 

transport of the mean-square vorticity fluctuation. This model exhibits better prediction capability 

than the standard k-ε model for boundary layers under strong adverse pressure gradients, flows 

involving rotation, separation, and recirculation [61]. 

k-ω Turbulence Model 

The k-ω turbulence model is another two-equation model developed by Wilcox and Rubesin et al. 

[62]. This model solves the transport equations for k and ω, where k and ω denote the turbulent 
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kinetic energy and the specific rate of dissipation, respectively. The length and velocity scales of 

the turbulence is evaluated using the ω and k, respectively. The prediction capability of the k-ω 

model is very good for simulating the flow in the viscous sublayer.  

SST (Shear Stress Transport) k-ω Turbulence Model 

The standard k-ω model can resolve flow through the boundary layer. SST k-ω is a hybrid model 

that combines the k-ω turbulence model and k-ɛ turbulence model. This model ensures that the 

appropriate model is used in every part of the flow field (k-ω in the wall region and the k-ε away 

from the wall)  [61]. 

v2-f Turbulence Model 

The v2-f model is similar to the standard k-ε model but solves two additional transport equations. 

This model includes some near-wall turbulence anisotropy as well as non-local pressure-strain 

effects. Hence, it should be capable of predicting the near wall turbulence more accurately. 

Researchers have recommended this model for simulating flows which are highly dominated by 

separation [63]. 

Large Eddy Simulation (LES) 

Turbulent flow involves an ample range of time and length scales which makes the numerical 

simulation of turbulent flows solving the Navier–Stokes equations very difficult. Only Direct 

Numerical Simulation resolves all the scales which is computationally very expensive and 



41 

 

currently impractical for real-world problems. On the other hand, RANS based turbulence models 

do not resolve any of the length scales. It does not first compute the full time-dependent flow field 

to calculate the mean flow. Instead, it models the effect of all the scales on the mean flow motion 

which reduces the computational cost greatly. 

 

In the LES technique, a low pass filtering operation of the Navier-Stokes equations is executed to 

remove the smallest scales of the flow. Only the large-scales of the flow are solved and the subgrid 

scale (SGS) models are used to model the effect of the removed small scales. In this way, LES 

reduces the computational expense incurred by the smallest scales. Thus, LES is much more 

computationally expensive than RANS but is remarkably economical than DNS. The classical 

motivation for LES is that the modeling large scales is problem dependent and difficult since the 

boundary conditions directly affect the largest eddies. They carry most of the Reynolds stresses 

and are anisotropic in behavior. It is easier to model smaller scales as they have less contribution 

to the turbulent Reynolds stresses and are universal and isotropic in nature. 

Governing Equations 

In LES, the filtering operation in Navier Stokes equations decomposes the velocity field (𝑢𝑖) into 

a resolved (�̅�𝑖) and sub-grid part (𝑢𝑖′). The resolved part and the subgrid part represent the "large" 

eddies and small scales, respectively. The effect of the subgrid part on the resolved field is included 

through the SGS models [59]. 𝑢𝑖(x, t) = �̅�𝑖(x, t) + 𝑢𝑖′(𝑥, 𝑡) (14) 
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The filtered continuity and momentum equations are as follows [59]. 

𝜕�̅�𝑖𝜕𝑥𝑖 = 0 (15) 

𝜕𝑈𝑖̅̅ ̅𝜕𝑡 + 𝜕𝑈𝑖̅̅ ̅ 𝑈𝑗̅̅̅̅𝜕𝑥𝑗 = − 1𝜌 𝜕�̅�𝜕𝑥𝑖 + 𝜗 𝜕2𝑈𝑖̅̅ ̅𝜕𝑥𝑗𝜕𝑥𝑗 − 1𝜌 𝜕𝜏𝑖𝑗𝜕𝑥𝑗  (16) 

The term 𝜏𝑖𝑗 is residual (SGS) stress tensor and requires to be modeled for the closure of the 

equations. Subgrid-scale turbulence models generally use the Boussinesq hypothesis to determine 

the SGS stress using the following equation [59].   𝜏𝑖𝑗 = −2𝜇𝑆𝐺𝑆𝑆𝑖𝑗̅̅̅̅  (17) 

where 𝜇𝑆𝐺𝑆 is the SGS turbulent viscosity. Substituting into the filtered Navier-Stokes equations,  

𝜕𝑈𝑖̅̅ ̅𝜕𝑡 + 𝜕𝑈𝑖̅̅ ̅ 𝑈𝑗̅̅̅̅𝜕𝑥𝑗 = − 1𝜌 𝜕�̅�𝜕𝑥𝑖 + 𝜕𝜕𝑥𝑗 [|𝜗 + 𝜗𝑆𝐺𝑆| 𝜕𝑢𝑖̅̅ ̅𝜕𝑥𝑗] (18) 

The formulation of 𝜗𝑆𝐺𝑆 depends on the applied SGS models. In the case of the Smagorinsky 

(1963) model (classical LES model):  𝜇𝑆𝐺𝑆 = (𝐶𝑠∆)2√𝑆𝑖𝑗𝑆𝑖𝑗 where  is a measure of the grid 

spacing of the numerical mesh, 𝑆𝑖𝑗 = 12 (𝜕𝑢𝑖𝜕𝑥𝑗 + 𝜕𝑢𝑗𝜕𝑥𝑖) and Cs is a constant. 

One of the downsides of the eddy viscosity SGS model is that it assumes constant Cs which is not 

ideal. The coefficient Cs depends on flow behavior. Additionally, the Smagorinsky model does not 

permit the negative Cs value; therefore it does not allow energy backscatter. These drawbacks were 

addressed in the dynamic Smagorinsky model in which Cs is calculated dynamically as the solution 

progresses and allows energy backscatter [64].  

 

The Adapting Local Eddy-viscosity (WALE) subgrid model [65] is an improvement of the 

Smagorinsky model. Both strain rate and the rotation rate effect of the smallest resolved turbulence 
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fluctuations is considered in this model. The subgrid-scale viscosity is calculated in the following 

method [65]. 𝜇𝑆𝐺𝑆 = 𝐶𝑤∆2𝜌 𝑂𝑃1𝑂𝑃2 (19) 

𝑂𝑃1 = (𝑆𝑖𝑗𝑑𝑆𝑖𝑗𝑑)1.5
 (20) 

𝑂𝑃2 = (𝑆𝑖𝑗𝑑𝑆𝑖𝑗𝑑)2.5 + (𝑆𝑖𝑗𝑑𝑆𝑖𝑗𝑑)1.25
 (21) 𝑆𝑖𝑗𝑑 = 12 (�̅�𝑖𝑗2 + �̅�𝑗𝑖2) − 13 𝛿𝑖𝑗�̅�𝑘𝑘2  (22) 

�̅�𝑖𝑗 = 𝜕�̅�𝑖𝜕𝑥𝑗 (23) 

The WALE SGS model was used for the current study. 

Periodic Fully Developed Flow  

The formulation for periodic fully developed flow and heat transfer have been described by 

Patankar et al. [66]. They developed the equations for fully developed flow and heat transfer for a 

duct with the periodic cross-sectional area in the streamwise direction. For their analysis, they 

considered a two dimensional or axisymmetric duct flows with x as the streamwise coordinate and 

y as the wall normal coordinate. Let L is the period of the variation.  

The velocity field for the periodic fully developed regime is as follows. 𝑢(𝑥, 𝑦) = 𝑢(𝑥 + 𝐿, 𝑦) = 𝑢(𝑥 + 2𝐿, 𝑦) = ⋯ (24) 𝑣(𝑥, 𝑦) = 𝑣(𝑥 + 𝐿, 𝑦) = 𝑣(𝑥 + 2𝐿, 𝑦) = ⋯ (25) 

Periodicity condition for pressure: 𝑝(𝑥, 𝑦) − 𝑝(𝑥 + 𝐿, 𝑦) = 𝑝(𝑥 + 𝐿, 𝑦) − 𝑝(𝑥 + 2𝐿, 𝑦) = ⋯ (26) 
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𝑝(𝑥,𝑦)−𝑝(𝑥+𝐿,𝑦)𝐿 = 𝛽 (27) 

The pressure field can be expressed as: 𝑝(𝑥, 𝑦) = −𝛽𝑥 + 𝑃(𝑥, 𝑦) (28) 

The 𝛽𝑥 term is associated with the global mass flow. 𝑃(𝑥, 𝑦) is associated to the detail local 

motions and periodic in nature. 𝑃(𝑥, 𝑦) = 𝑃(𝑥 + 𝐿, 𝑦) = 𝑃(𝑥 + 2𝐿, 𝑦) = ⋯ (29) 

The 𝛽 term acts as a source term in the momentum equation in the x direction. 

Periodic Fully Developed Heat Transfer 

The periodic fully developed temperature depends on the thermal boundary condition a) Uniform 

heat flux, b) Uniform wall temperature.  

Uniform Heat Flux 

For the thermally fully developed region in a duct with uniform heat flux can be characterized as 

the following equations. 

𝜕𝑇𝜕𝑥 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (30) 𝑇(𝑥 + 𝐿, 𝑦) − 𝑇(𝐿, 𝑦) = 𝑇(𝑥 + 2𝐿, 𝑦) − 𝑇(𝑥 + 𝐿, 𝑦) = ⋯ (31) 

The temperature field can be expressed as: 

𝑇(𝑥+𝐿,𝑦)−𝑇(𝑥,𝑦)𝐿 = 𝛾 (32) 

The constant 𝛾 can be determined by the following equation. 
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𝛾 = 𝑄�̇�𝐶𝑝𝐿 (33) 

where Q is the heat rate per unit span in the fluid over the period L. The temperature field can be 

divided into two parts. 𝑇(𝑥, 𝑦) = 𝛾𝑥 + 𝒯(𝑥, 𝑦) (34) 𝒯(𝑥, 𝑦) = 𝒯(𝑥 + 𝐿, 𝑦) = 𝒯(𝑥 + 2𝐿, 𝑦) = ⋯ (35) 

Uniform Wall Temperature 

For the thermally fully developed region in a duct with uniform wall temperature can be 

characterized as following equations. 

𝑇(𝑥,𝑦)−𝑇𝑤𝑇𝑏𝑥−𝑇𝑤 = 𝑓(𝑦) (36) 

𝑑(𝑇𝑏𝑥−𝑇𝑤)/𝑑𝑥𝑇𝑏𝑥−𝑇𝑤 = constant (37) 

where, 𝑇𝑏𝑥 denotes the local bulk temperature. The non-dimensional temperature can be defined 

as the following equation. 𝜃(𝑥, 𝑦) = 𝑇(𝑥,𝑦)−𝑇𝑤𝑇𝑏𝑥−𝑇𝑤  (38) 

𝑇𝑏𝑥 − 𝑇𝑤 = ∫ (𝑇−𝑇∞)|𝑢|𝑦2𝑦1 𝑑𝑦∫ |𝑢|𝑦2𝑦1 𝑑𝑦  (39) 

The periodicity condition for 𝜃: 𝜃(𝑥, 𝑦) = 𝜃(𝑥 + 𝐿, 𝑦) = 𝜃(𝑥 + 2𝐿, 𝑦) = ⋯ (40) 

The energy equation (not shown here) in terms of 𝜃 shows that the 𝜆 is also periodic.  𝜆(𝑥) = 𝑑𝑇𝑏𝑥/𝑑𝑥𝑇𝑏𝑥−𝑇𝑤 = 𝑑(𝑇𝑏𝑥−𝑇𝑤)/𝑑𝑥𝑇𝑏𝑥−𝑇𝑤  (41) 
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𝜆(𝑥) = 𝜆(𝑥 + 𝐿) = 𝜆(𝑥 + 2𝐿) = ⋯ (42) 

The presence of the unknown function 𝜆(𝑥) complicates the solution. It requires an iterative 

method to determine 𝜃 and 𝜆. The 𝜆 needs to be such that the resultant 𝜃 holds the equation below. ∫ 𝜃|𝑢|𝑦2𝑦1 𝑑𝑦 = ∫ |𝑢|𝑦2𝑦1 𝑑𝑦 (43) 
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CHAPTER 4: EXPERIMENTAL SETUP 

Heat Transfer and Pressure Drop Investigation 

The average heat transfer and friction behavior of a square channel with 45˚ ribs were studied at a 

wide range of Re (6,000-135,000). The investigations were conducted in three different 

configurations. Those are- a) Sharp-edged ribs on two opposite walls, b) Rounded-edge ribs on 

two opposite walls, and c) Sharp-edged ribs on one wall. The preliminary results of these studies 

were published in references [67, 68, 69]. The details of the experiments are described in the 

following sections.  

Experimental Setup and Procedure 

The ratio of rib height to channel hydraulic diameter (
𝑒𝐷ℎ) and the ratio of pitch to rib height (P/e) 

were 0.0625 and 10, respectively for all the configurations. The test sections had a square cross 

section (𝐴𝑅 = 1). The channel height and width were equal to 2 inches (0.0508 m) and hence, the 

hydraulic diameter was 2 inches (0.0508 m) as well. The channels were made of four 43.85 inches 

(1.114 m) long continuous aluminum plates, and the length of the channel was ~ 22𝐷ℎ. Figure 4 

shows the schematic diagram of the test section with two opposite ribbed walls. The ribs of the 

two opposite walls were arranged in parallel fashion, while the side walls were kept smooth.  

Figure 5 shows the cross-section of the one ribbed wall case. The bottom wall was roughened with 

the ribs while the other walls were kept smooth. All other arrangements were the same for all the 

three cases. A thin strip of cork was used to separate the adjacent walls which helped to reduce 

heat conduction between two adjacent walls. 
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Figure 4 Schematic diagram of the test section (a) Sharp ribs (b) Round ribs (c) Cross sectional 

view of the two ribbed wall case 

 

 

Figure 5 Cross-sectional view of the one ribbed wall case  

 

The ribs were of a square cross section with a height (e) of 0.125 inches (0.003175 m) and spaced 

1.25 inches (0.03175 m) from the next rib resulting in a pitch-to-height ratio (P/e) of 10. 
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Hereinafter, the sharp and rounded-edge ribs are referred to as, sharp and round ribs, respectively.  

Figure 4 shows the rib features for both sharp and round cases. The fillet radius of the round ribs 

is equal to half of the rib height (e/2). The experimental setup and procedures for all the cases were 

identical, except that in the cases (both two wall study and one wall study) of sharp ribs, brass ribs 

were bonded on the aluminum plates with LOCTITE 384 Adhesive. For the round ribs case, the 

ribs were machined directly from the aluminum base plate.  

 

 

Figure 6 Experimental layout for heat transfer test 

 

Figure 4 (c) and Figure 5 shows the cross section of the test sections. The aluminum test section 

was surrounded by four Rohacell walls for insulation. Rohacell is a good insulating material, which 

has very low thermal conductivity (~ 0.03W/m-K). The entire test section with the Rohacell walls 

was placed in an acrylic outer housing to support the structure of the rig. Figure 6 shows the 

schematic diagram of the heat transfer test setup. An acrylic 20𝐷ℎ long entrance section was used 



50 

 

to ensure hydro-dynamically fully developed flow before entering the heated section. The interior 

of the entrance section was the same as that of the test section. There was a contraction (8:1) nozzle 

followed by a 3𝐷ℎ smooth inlet section prior to the ribbed entrance section. Additionally, there 

was a 6𝐷ℎ long smooth exit section which helps to prevent backflow effects in the test section. To 

measure the average velocity 𝑈𝑏 of the flow, a pitot static tube was placed in the middle of the 

channel’s cross section at 1Dh downstream from the contraction nozzle. This velocity measurement 

was used to determine the mass flow rate and Reynolds number using the following two equations. �̇� = 𝜌𝑎𝑖𝑟𝐴𝑐𝑈𝑏 (44) 

Re = 𝑈𝑏𝐷ℎ𝜗  (45) 

For heat transfer tests, the four walls of the test section were maintained at isothermal conditions 

(within ±1˚C). To achieve isothermal conditions on the aluminum plate surfaces, 14 etched foil 

heaters (3.1in×2 in) were attached to the outer surface of each aluminum plate with double-sided 

Kapton® tape. There was a small gap ~ 0.1 inch (~ 2.5 mm) between the heaters to accommodate 

the pressure taps. Each heater location contained two thermocouples inserted into machined holes 

from the outer side of the aluminum plate to measure the wall temperature under the heater. The 

thermocouple holes were placed at the center of each heater locations. The ends of the 

thermocouple holes were ~ 1mm from the flow surface of the aluminum plate. The thermocouples 

were held in place with high conductivity thermal cement. The schematic diagram for the heater 

arrangement is shown in Figure 7. The location of the thermocouples is listed in Table 4. The 

voltage applied to each heater or heater group was controlled individually by using a rheostat and 

variac. For this purpose, a total of thirty six rheostats and ten variacs were used. Each individually 

controlled heater/heater group will be referred to as a module hereinafter. There were nine modules 
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per wall or 36 (= 9×4) for four walls in total. Additionally, two thermocouples were placed at the 

inlet and exit of the test section to measure the inlet and exit bulk air temperature. This measured 

exit bulk air temperature was used to cross-check the thermal energy balance of the system. 

 

Dimensions are in inches 

Figure 7 Schematic diagram of the heaters arrangement  

 

Table 4 Thermocouple locations from the inlet of the aluminum test section 

Heater # 1 2 3 4 5 6 7 

TC locations, in 1.53 4.63 7.78 10.88 14.03 17.13 20.28 

Heater # 8 9 10 11 12 13. 14 

TC locations, in 23.38 26.53 29.63 32.78 35.88 39.03 42.13 

Heat Leakage Test 

 The amount of heat leakage to the surroundings from each module was determined by separate 

experiments, namely heat leakage tests. The heat leakage tests were performed under a no-flow 

condition. Some insulation material was inserted into the inlet and outlet sections to prevent air 

flow. The heat was supplied by the heaters to maintain all the wall’s temperature at a specific value. 

After reaching steady state, the temperature, voltage, and resistance of each module were recorded. 

Three different wall temperatures were tested. A linear curve fit for heat leakage to the 
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surroundings from each module as a function of temperature difference between wall and ambient 

was constructed by using these data. Additionally, another linear curve fit of resistance as a 

function of wall temperature was also established.  

𝑄𝑙𝑒𝑎𝑘𝑎𝑔𝑒𝑥 = 𝑉𝑥2𝑅𝑥 = 𝑓𝑛(𝑇𝑤𝑥 − 𝑇𝑎𝑚𝑏)  (46) 

𝑅𝑥 = 𝑓𝑛(𝑇𝑤𝑥) (47) 

Here, x denotes a module number. 

During the heat leakage test, all the walls of the channel were maintained at an isothermal condition 

and were insulated from all the sides. At steady state, the air and wall temperatures should be equal 

which makes the possibility of natural convection inside the channel negligible. 

Heat Transfer Test 

Heat transfer tests began with setting up the flow rate to obtain the desired Re. Two Spencer VB110 

vortex blowers were used to draw the air flow from the ambient. The blowers were connected in 

parallel fashion and operated under suction. The tests were conducted at nine different Re in the 

range from 6,000 to 135,000. The Re mentioned here is based on the hydraulic diameter of the 

channel and the bulk velocity of the channel. The test matrix for the heat transfer tests is shown in 

Table 5. Heat supplied to each module was individually regulated by variacs and rheostats to attain 

an isothermal wall temperature throughout the channel walls. After the modules reached steady 

state, the temperature and voltage of each module were recorded. 
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Table 5 Test matrix for heat transfer test 

Number of 

ribbed walls 

Ribs type Nominal Re 

Two 

Sharp ribs 6k 20k 30k 50k 55k 65k 90k 118k 134k 

Round ribs 6k 26k 36k 51k 66k 75k 90k 120k 143k 

One Sharp ribs - 23k 45k 57k 69k 84k 97k 106k - 

Friction Test 

 

 

All dimensions are in inches 

Figure 8 Location of the pressure taps 

 

Friction tests were conducted under unheated conditions. Eight equally spaced pressure taps were 

implemented on each of the left, right, and top walls (8 pressure taps on each wall, for a total of 

24 pressure taps) of the test section. As mentioned earlier, there was a small gap between the 

heaters to place the pressure taps.  
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The schematic diagram for the pressure taps locations is shown in Figure 8. The streamwise 

distances for the pressure taps from the inlet of the test section were the same for all the three 

walls. The pressure tap locations are tabulated in Table 6. Additionally, there were 14 more 

pressure taps on the right-side wall of the acrylic developing section (which are not shown here). 

The pressure distribution of this section was monitored to ensure that the flow becomes 

hydrodynamically fully developed before it reaches to the metallic test section. The static pressure 

at all these locations was measured by a Scanivalve, which is a mechanically multiplexed pressure 

transducer. The friction tests were performed for several Re ranging from 6,000-150,000. 

 

Table 6 Pressure tap locations from the entrance of the aluminum test section 

Pressure tap # 1 2 3 4 5 6 7 8 

Locations, inch 0.05 6.30 12.55 18.80 25.05 31.30 37.55 43.80 

Data Reduction 

To determine the regional /module average heat transfer results, first, the amount of heat supplied 

to the module was calculated using the following equation. 

𝑄𝑖𝑛𝑝𝑢𝑡𝑥 = 𝑉𝑥2𝑅𝑥 (48) 

where x denotes a module number (starts from 1), 𝑉 and 𝑅  are the voltage and resistance for the 

module, respectively. Resistance of each module, 𝑅𝑥 was determined by the resistance curve fit 

equation for the measured wall temperature. 
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The actual heat supplied was calculated by subtracting the amount of heat leakage from the 

supplied heat to the module, as shown in the following equation. 𝑄𝑎𝑐𝑡𝑢𝑎𝑙𝑥 = 𝑄𝑖𝑛𝑝𝑢𝑡𝑥 − 𝑄𝑙𝑒𝑎𝑘𝑎𝑔𝑒𝑥 (49) 𝑄𝑙𝑒𝑎𝑘𝑎𝑔𝑒𝑥  was calculated from the heat leakage curve fit for measured temperature differences 

between the aluminum wall and ambient. Since the walls were maintained at isothermal conditions, 

lateral heat conduction between the modules was disregarded. 

The bulk temperature of the air at the end of each module in the channel was determined using a 

bulk temperature marching starting from the inlet using an energy balance.  

𝑇𝑓𝑥 = ∑ 𝑄𝑎𝑐𝑡𝑢𝑎𝑙𝑥𝑤𝑎𝑙𝑙𝑠�̇�𝐶𝑝 + 𝑇𝑓𝑥−1 (50) 

where, 𝑇𝑓0 is the recorded inlet fluid temperature. 

Module-average heat transfer coefficient can be calculated as follows using the bulk temperature 

of the air at the beginning and the end of each module, wall temperature and the actual heat 

supplied to the flow at each module.  

ℎ𝑥 = 𝑄𝑎𝑐𝑡𝑢𝑎𝑙𝑥𝐴𝑥(𝐿𝑀𝑇𝐷𝑥) (51) 

𝐿𝑀𝑇𝐷𝑥 = (𝑇𝑤𝑥−𝑇𝑓𝑥−1)−(𝑇𝑤𝑥−𝑇𝑓𝑥)𝑙𝑛(𝑇𝑤𝑥−𝑇𝑓𝑥−1)(𝑇𝑤𝑥−𝑇𝑓𝑥)  (52) 

where, 𝐴𝑥 is the projected area of the module. 

The module/regional average Nusselt and friction factor f were calculated by using the following 

equations. 

Nux = ℎ𝑥𝐷ℎ𝑘𝑎𝑖𝑟  (53) 

𝑓 = ∆𝑃∆𝑍𝐷ℎ0.5 𝜌𝑎𝑖𝑟𝑈𝑏2 (54) 
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The relative benefit of the heat transfer enhancement to the increase in pumping power (due to the 

ribs application) is indicated by thermal performance. The following equations [70, 71] were used 

to calculate the thermal performance. 

𝜂 = (Nu Nu0⁄ )(𝑓 𝑓0⁄ )1/3  (55) 

where, Nu0 and 𝑓0 are the smooth channel Nusselt number and friction factor, respectively. Nu0 

was determined by the Dittus-Boelter correlation as follows. Nu0 = 0.023𝑅𝑒0.8𝑃𝑟0.4 (56) 𝑓0 was determined by the Blasius correlation. 

𝑓0 = 0.316(𝑅𝑒)0.25 (57) 

Uncertainty Estimates in Heat Transfer and Pressure Drop Measurement 

Experimental uncertainties have been estimated by the methods described in ASME PTC 19.1-

2005 [72], Kline and McClintock [73] and Moffat [74]. All the uncertainties are calculated for 

95% confidence level.  The uncertainty in Re measurement is estimated to be less than 4% in all 

cases at Re ≥ 10k. The uncertainty in velocity measurement by the pitot static tube contributes 

primarily to the uncertainty calculation of the Re. The relative uncertainty in bulk velocity 

calculation is higher at the lowest tested Re ≈ 6k which causes higher uncertainty ~ 7.5% in the 

resulted Re as well.  

 

Uncertainties in parameters such as voltages, resistances, temperatures, and mass flow rate 

measurements are the main contributors to the Nu uncertainty. Unlike the round ribs case, the 

sharp ribs were made of brass and glued to the aluminum plates in this experiment. In this case, 
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the contact resistance caused by the adhesive layer (Loctite 384, k ~ 0.76 W/m.K) can cause a bias 

uncertainty in the measured Nu. The effect of the contact resistance has been quantified by the 

order-of-magnitude analysis as shown in Rallabandi et al. [12]. The thickness of the adhesive layer 

is assumed as ~ 0.1 mm for this calculation. The highest Re (or the highest HTC) case has the 

maximum uncertainty due to this effect (~ 2% higher for the both two and one ribbed wall cases). 

For this reason, the sharp ribs case has higher measurement uncertainty for ribbed wall Nu than 

the round ribs case. The maximum uncertainty quantified for ribbed wall Nu in the sharp case is ~ 

6% at the highest Re for both two walls and one wall cases. The uncertainty in Nu for the smooth 

walls or ribbed wall for the round case have lower measurement uncertainty. The maximum 

uncertainty in ribbed wall Nu for round ribs ~ 4.5% the lowest Re ≈ 6k. The other Re shows 3.6% 

- 3.9% uncertainty in the ribbed wall Nu of the round ribs case. The uncertainty in Nu of the smooth 

walls is less than ~ 3.3% and ~ 4% for two wall sharp and round ribs, respectively at Re ≥ 20,000. 

The uncertainty in smooth wall Nu for the two ribbed wall study is higher (~ 5.3%) at Re ≈ 6k. 

The uncertainty in Nu of the smooth wall and the top wall of the one wall study is less than ~ 3.8% 

and ~ 5.5%, respectively. 

 

The uncertainty in pressure and the average velocity measurements are the dominant contributors 

to the friction factor uncertainty estimation, which is less than 7% for Re ≥ 20,000. The uncertainty 

in the friction factor is as high as ~ 15% for the lower range of Re values (i.e., 6,000 ≤ Re ≤ 

20,000).  The uncertainty tress for Re, friction factor and Nu are shown in the Appendix A. 
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Turbulent Flow Investigation Using Stereo PIV 

The detail flow field for the one ribbed wall case was investigated using PIV. The PIV 

measurements were conducted at a fully developed flow region for multiple Re in the range of Re 

= 10,000-150,000. To confirm the flow is fully developed, the investigation was done on and 

between three ribs starting after 54 ribs at the streamwise midplane ( 𝑋𝑊 = 0.5) up to 
𝑌𝐷ℎ = 0.4 of the 

channel.  

(a) 

 

(b) (c) 

Figure 9  (a)-(b) Coordinate system of PIV test (c) PIV test window 
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The coordinate system for the PIV tests is shown in Figure 9. Stereoscopic (2D-3C) PIV was used 

for the investigation. Stereo PIV can determine all the three velocity components as well as all the 

six Reynolds stresses. Table 7 shows the test matrix of the PIV tests. 

 

Table 7 Test matrix for PIV test 

Nominal Re 10k 30k 50k 70k 100k 150k 

Actual Re 10171 29089 535489 68836 105943 145503 

 

 

Figure 10 Schematic of the PIV rig set up 

 

The PIV experiments were conducted in an open-circuit turbulent channel-flow facility. The setup 

used for the current study is a modification of the previously used heat transfer and friction 

experiment. The experimental setup had a 22Dh metallic section for heat transfer tests. Additional 

20Dh long entrance Polymethyl methacrylate PMMA (commercially known as Plexiglass) section 
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was used to ensure hydro-dynamically fully developed flow before entering the heated section. 

The interior of the entrance section was the same as that of the test section. For PIV tests, the 

heated section was replaced by another similar PMMA section. The ribbed wall was placed at the 

top to allow the laser light sheet to go through the bottom wall without any disturbance. Figure 10 

shows the modified open loop wind tunnel for the current flow investigation.  

 

 

Figure 11 Schematic of stereoscopic PIV setup 

 

Ambient air was drawn through the test section using two Spencer VB110 vortex blowers. The 

blowers were connected in parallel fashion and operated under suction. A 3𝐷ℎ long smooth channel 

was connected before the developing section. A pitot static tube is installed at channel center and 
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at a 1𝐷ℎ axial distance from inlet to calculate the bulk velocity in the channel using measured 

dynamic pressure. The tests were conducted at seven different Re ranging from 10,000 to 150,000.  

 

The arrangement for stereo PIV measurement is shown in Figure 11. The imaging system uses two 

Andor Zyla CMOS 5.5-megapixel cameras. Due to the oblique ribs at 45˚, both cameras were 

placed with an oblique angle of ~ 45˚ from the light sheet normal. The two cameras were placed 

with ~35˚ angle between them. A 55 mm camera lens was used for each camera. The Scheimpflug 

adapter on each camera was adjusted in such a way that both cameras focused across the entire 

plane. A careful adjustment of the magnification and the camera-to-measurement plane distance 

allowed us to obtain a resultant particle image size of ~ 2-3 pixels. A calibration of the camera 

system was performed to determine the viewing directions of both cameras with respect to the 

light sheet, as well as the real-world scaling in the measurement location. Calibration is also useful 

to rectify the image distortion in the lenses and the plexiglass passage walls. For this purpose, a 

LaVision dual plane calibration plate was used for the calibration as shown in Figure 12. Unlike 

the common flat calibration targets, it does not need to take several views in the out-of-plane-

direction; only a single view from one target location is adequate for the calibration of the stereo 

set up.   
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Figure 12 LaVision dual plane calibration plate 

 

The flow was seeded with Di-Ethyl-Hexyl-Sebacate droplet (1-2 µm) since these particles offer 

good scattering efficiency and a small associated velocity lag. A Laskin nozzle-based atomizer 

was used to generate the Sebacate particles and were introduced at the inlet of the channel 

bellmouth. A Quantel Evergreen Nd: YAG (532 nm) double pulsed laser with up to 200 mJ per 

pulse was used to generate the laser beam. The optical system consists of a pair of spherical lenses 

with a variable distance between them, a cylindrical lens to spread the beam into a sheet, and a 45 

degree mirror which bends the sheet up into the test section; the pair of spherical lenses allows for 

a variable focal length. The focal length is then varied, so that the resultant laser sheet, is ~ 2 mm 

thick at the measurement location.  Cameras were synchronized with the laser at specifically timed 

pulses. The fluid with entrained particles was illuminated twice in short succession and an image 

pair of particle patterns for each camera were obtained. The time delay between the two successive 

pulses was changed from 6 to 200 μs on the basis of the flow Reynolds number. These pulse 

separations were chosen so that at the largest particle displacement does not exceed ~ 1/4 of the 
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interrogation window size. Around 1,500 image pairs (3,000 images) for each camera were 

obtained and used to process the data; this is enough to ensure fully converged statistical quantities. 

The stereoscopic PIV vector fields are generated from two, 2D velocity fields, which are obtained 

from the displacement of the seeding particles, and the time lag between the successive image pairs 

of each camera. Next, the 3D PIV velocity vector field is reconstructed from the combination of 

the two-2D vector fields, and knowledge of the relative camera angles to the measurement plane. 

 

During the post processing, a high interrogation window overlap scheme was used to achieve 

increased spatial resolution. Therefore, high particle image density was provided, on the order of 

8 to 12 particles per 32 x 32 pixel interrogation window. LaVision DaVis 8.3 software was used 

for velocity field correlation. After image pre-processing, a multi-pass algorithm was used. At first 

two initial passes of 64 x 64 windows at 50% overlap were performed, which were followed by 4 

final passes at the interrogation window size of 32 x 32 with a 75% overlap. The adaptive window 

shape was used for the final passes, as implemented in DaVis 8.3. Additionally, the universal 

outlier detection scheme implemented within DaVis 8.3 was used to minimize the numbers of 

spurious vectors in the final resultant velocity fields. After vector correlation, an ensemble average 

of the ~ 1,500 velocity fields is performed to yield the statistical quantities of interest. Final vector 

resolution is 0.25 mm x 0.25 mm. 
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Coordinate Transformation of Vector Components 

 

Figure 13 Coordinate transformation of vector components 

 

The direction of the coordinate system 𝑋𝑌𝑍 for the PIV experiment and CFD is shown in Figure 

9 (a)-(b). Vectors can exist independently of any coordinate system. For example, the vector V in 

Figure 13 can be expressed as: �⃗� =  𝑉𝑋𝑒1 + 𝑉𝑌𝑒2 + 𝑉𝑍𝑒3 = 𝑉𝑋′𝑒1′ + 𝑉𝑌′𝑒2′ + 𝑉𝑧′𝑒3′  (58) 

A new coordinate system 𝑋´𝑌´𝑍´ is created by a rotation of the base vectors by 𝛼 about the Y axis. 

To transform any vector components from the 𝑋𝑌𝑍 to the 𝑋´𝑌´𝑍´ coordinate system, the following 

method has been used.  

For two-dimensional transformation, only 𝑋 − 𝑍 and 𝑋´ − 𝑍´ are considered here. The vector 

components in 𝑋 and 𝑍 coordinates can be expressed as:  

𝑉𝑍 = 𝑉𝑍′ 𝑐𝑜𝑠 𝛼 + 𝑉𝑋′ 𝑠𝑖𝑛 𝛼  (59) 
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𝑉𝑋 = 𝑉𝑋′ 𝑐𝑜𝑠 𝛼 − 𝑉𝑍′ 𝑠𝑖𝑛 𝛼  (60) 

[𝑉𝑍𝑉𝑋] = [ 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛼−𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼] [𝑉𝑍′𝑉𝑋′]  (61) 

where, transformation matrix [𝑄] = [ 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛼−𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼] 
Multiplying the above equation with the inverse matrix  [𝑄]−1, the components in X´ and Z´ can 

be determined by the following equations. 

[𝑉𝑍′𝑉𝑋′] = [𝑐𝑜𝑠 𝛼 −𝑠𝑖𝑛 𝛼𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼 ] [𝑉𝑍𝑉𝑋]  (62) 

𝑉𝑍′ = 𝑉𝑍 𝑐𝑜𝑠 𝛼 − 𝑉𝑋 𝑠𝑖𝑛 𝛼  (63) 𝑉𝑋′ = 𝑉𝑍 𝑠𝑖𝑛 𝛼 + 𝑉𝑋𝑐𝑜𝑠𝛼  (64) 

Uncertainty in PIV Experiment 

The uncertainties of the vector components mean 𝑉𝑍, 𝑉𝑌, 𝑉𝑋  obtained by the PIV were calculated 

using LaVision DaVis 8.3 software. This software uses the Wieneke’s correlation statistics method 

[75, 76, 77] to calculate the uncertainties. In this method, the two images are overlapped on each 

other by the computed displacement vector field. In an error free measurement, these paired images 

exactly match which does not happen in real experiments. The particle image size, seeding density, 

displacements, shear, etc. influence the accuracy of the experiment. Using the statistical analysis 

of the disparity between the two images the uncertainty of a displacement vector is estimated.  
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(a) Uncertainty in VZ (b) Uncertainty in VY 

  

(c) Uncertainty in VX (d) Uncertainty in TKE 

Figure 14 Uncertainties in PIV experiment at Re ≈ 30k 

 

Figure 14 (a)-(c) shows the uncertainties in mean velocity components at Re ≈ 30k. The 

uncertainties are calculated for 95% confidence level.  The bulk velocity 𝑈𝑏 has been used for 

normalizing all the uncertainties. It was determined that the uncertainties in the mean velocities 

vary between 1% - 2% of 𝑈𝑏, respectively, depending on the flow turbulence. The uncertainties 

values are higher near the ribs due to high three-dimensional flow and high turbulence in this zone. 

The uncertainty in the turbulent kinetic energy is shown in Figure 14 (d). The maximum 

uncertainty in turbulent kinetic energy is ~ 0.4% of 𝑈𝑏2. Figure 15 shows the normalized 

uncertainties in Reynolds normal and shear stresses at Re ≈ 30k. The high uncertainties are presents 
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in the separated shear layer generated from the ribs. The uncertainties for other Reynolds numbers 

are shown in the Appendix B.  

 

   

(a) Uncertainties the Reynolds normal stresses  

   

(b) Uncertainties in Reynolds shear stresses 

Figure 15 Uncertainties in PIV experiment at Re ≈ 30k 
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CHAPTER 5: NUMERICAL SETUP 

CFD studies were conducted for all the three configurations by using a commercial CFD software 

STAR-CCM+. One ribbed wall case was investigated using LES as well as RANS. The two ribbed 

wall cases were studied by RANS only. Three different EVM turbulence models were used to 

solve the RANS equations. They are as follows: a) Realizable k-ε model (RKE), b) SST k-ω, and 

c) v2-f. All the three turbulence models as well as the SGS model for LES were used with default 

settings given in STAR CCM+ 10.06.010-R8. 

Boundary Conditions 

A comprehensive comparative study has been conducted between the numerical and experimental 

results. The setup of the numerical simulation resembled the experimental setup completely, 

except for the length of the channel. In the numerical simulations, the periodic fully developed 

flow condition at the inlet and outlet was applied, which allowed the calculation domain to be only 

one pitch, 1.25 inch (31.85 mm) of the test section. The periodic fully developed flow condition 

assumes that the flow repeats itself cyclically from one rib to the next. The experimental results 

corroborate this assumption as the flow becomes fully developed after 8Dh length from the 

entrance of the heated section. A study was performed to determine the sensitivity of the number 

of pitches in the computational grid. The sensitivity tests were done for a domain with three pitches 

and one pitch for the current geometry with the same mesh settings. Both cases showed very 

similar results. Therefore, only one rib pitch has been considered for the current study which is a 

common practice for these kind of geometries [28, 46, 56]. The assumption of a periodic fully 
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developed flow condition helped to achieve a reasonable number of nodes in the computational 

grid, thus reduced the computational time and cost. For this purpose, a periodic FDI boundary 

condition with a constant mass flow rate was applied at the inlet and outlet. All the walls including 

the ribs were specified as isothermal. The temperature of the walls was set to the temperature 

identical to the experiments. The test matrix for the CFD is listed in Table 8. Experimental results 

showed that flow became fully developed after 8𝐷ℎ (will be discussed in the following section) 

from the starting point of the heated section. All the experimental fully developed heat transfer 

results presented here were located at | 𝑍𝐷ℎ| ≈ 11.0. Therefore, for consistency, the bulk temperature 

at the inlet in the CFD simulation was taken from the experimental bulk temperature data at | 𝑍𝐷ℎ| 
≈ 11.0. Additionally, for the two ribbed wall cases, a symmetry condition was enforced at half of 

the channel height to reduce the domain further. The computational domain for CFD for two and 

one ribbed wall cases is shown in Figure 16 (a) and Figure 18 (a). The boundary conditions for the 

CFD simulations are listed in Table 9. 

 

  Table 8 Test matrix for CFD 

  Nominal Re 

Ribbed wall Ribs type LES RANS 

Two walls 

Sharp ribs - 20k 52k 95k 145k 

Round ribs - 20k 52k 95k 145k 

One wall Sharp ribs 30k 30k - - - 
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Table 9 Boundary conditions for CFD 

Boundary condition Two ribbed wall cases One ribbed wall case 

Walls No-slip, Isothermal (~ 80°C) No-slip, Isothermal (~ 70°C) 

Inlet-Outlet FDI with a const. mass flow rate FDI with a const. mass flow rate 

Symmetry At the half of the rib height N/A 

Inlet bulk temperature ~ 35° C ~ 30° C 

Mesh for RANS 

  

a) Computational domain b) Streamwise midplane mesh 

  

c) Grid topology near ribs 

Figure 16 Computational domain and grid topology for two ribbed wall cases 

Flow 

1P 
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a) Sharp ribs b) Round ribs 

Figure 17 Grid convergence study at Re ≈ 145k for two ribbed wall cases 

 

Table 10 Mesh parameters for the computational grid for two ribbed wall cases 

 

Sharp ribs  Round ribs 

Fine 1  Fine 1 Fine 2 

Prism layer thickness (mm) 0.25  0.3 0.25 

Number of prism layers 18  12 15 

Stretching factor 1.14  1.24 1.16 

First layer y+ < 1  < 1 < 1 

Total number of cells (million) ~ 13.5  ~ 8.4 ~ 12.5 
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a) Computational domain b) Streamwise midplane mesh (LES) 

  

c) Grid topology near ribs in LES domain d) Grid topology near ribs in RANS domain 

Figure 18 Computational domain and grid topology for CFD for one ribbed wall case 

 

The computational grid consisted of unstructured hybrid meshes generated by STAR-CCM+. The 

near wall discretization was done with prism layers, while the main flow area was discretized using 

a polyhedral mesh. The grid topology for two ribbed wall cases is shown in Figure 16 (b) and (c). 

The grid topology for the RANS simulation for the one ribbed wall case is shown in Figure 18 (d).  
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By using a conscientious volumetric control and proper surface size, a very refined mesh was 

developed around the ribs and the walls. Strategical selection of the density and growth cell rate 

was helped to reduce the total number of cells. The smooth transition between the volume control 

and the regular polyhedral mesh growth was assured by using the proper blending factors. The 

mesh was designed to satisfy the first layer y+ values less than one for all the Re cases. Table 10 

shows the parameters used to generate the prism layers in the simulation grid for both two ribbed 

wall cases. 

Grid Convergence for Two Ribbed Wall Cases 

The mesh resolution around the ribs and on the walls is very critical for precise prediction of heat 

transfer and pressure drop in such turbulated channels. Hence, a mesh sensitivity analysis was 

conducted to obtain a mesh independent solution for all the three turbulence models at the highest 

investigated Re ≈ 145k for both two ribbed wall cases which are shown in Figure 17. The overall 

base size of the mesh was modified to achieve the finer grid. The left picture in Figure 16 (c) shows 

the grid topology for the sharp ribs case for Fine 1 mesh referred to Figure 17. To determine if the 

mesh refinement near the ribs and the walls in Fine 1 mesh were enough, more refinement was 

done around this zone in Fine 2 mesh. The sensitivity study (Figure 17 (a)) shows that change in 

channel average Nu is only about 0.2%, 0.03% and 0.36% from 13.5 million (Fine 1) to 17.5 

million (Fine 2) cells for v2-f, RKE, and SST k-ω turbulence models, respectively. Therefore, the 

Fine 1 (13.5 million) mesh was selected for the present study. Similarly, Figure 17 (b) shows the 

grid convergence study for the round ribs case. It shows that the channel average Nu changes about 

0.1%, 1.4%, and 1% from 8.4 (Fine 1) to 12.5 (Fine 2) million cells for v2-f , RKE, and SST k-ω 
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models, respectively. The Fine 1 grid for the round ribs case has a slightly high stretching factor 

~1.24 for prism layers (Table 10). However, the prism layers of Fine 2 mesh have a stretching 

factor ~1.16 and the results with this mesh show an excellent agreement with the Fine 1 results. 

Therefore, Fine 1 (~ 8.4 million) mesh was chosen for the round ribs case.  

Grid Convergence for One Ribbed Wall Case 

The mesh sensitivity analysis for the computational grid of the RANS for the one ribbed wall case 

was also conducted. The overall base size of the mesh was modified to achieve the finer grid which 

can be seen in Figure 19. The smooth transition was ensured between the prism layers and the 

regular polyhedral mesh as well as between the volume controls for all the three meshes (coarse 1, 

Fine 1 and Fine 2). The smooth transition was achieved by the strategical selection of the different 

mesh setting parameters, such as surface size, mesh density, and growth factor, surface growth 

rate, volume growth rate, and the volumetric control blending factor.   

 

 

Figure 19 Grid convergence study for one ribbed wall case at Re ≈ 30k 
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The sensitivity study (Figure 19) shows that change in channel average Nu is only about 0.3%, 

0.7% from 13.2 million (Fine 1) to 16.7 million (Fine 2) cells for v2-f  and SST k-ω turbulence 

models, respectively. The change in channel average Nu is only about 0.8% from 6.3 million cells 

(coarse 1) to 13.2 million cells (Fine 1) for RKE. Therefore, the Fine 1 (13.2 million) mesh was 

selected for the RANS simulations of the one wall study case. 

 

Table 11 Numerical settings for RANS for two ribbed wall cases 

Parameters Settings 

Space 3D 

Time Steady 

Viscous SST k-ω RKE v2-f 

Wall treatment All y+ Two-layer all y+ All y+ 

Pressure-velocity Coupling SIMPLE 

Equations solved Flow, Energy 

Solver for flow Segregated flow 

Solver for energy Segregated fluid temperature 

Discretization scheme for momentum 2nd order 

Discretization scheme for energy 2nd order 

 

The working fluid of the simulations was air and used the ideal gas law for the simulation. The 

temperature of the walls was set to the temperature identical to the experiment for each Re. The 

settings for the RANS simulation for two ribbed wall cases are listed in Table 11. The post 
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processing of the CFD results was performed with the same methodology as that of the 

experiments. Unlike the experiments, friction investigations were conducted simultaneously with 

the heat transfer in the CFD analysis. A separate CFD friction investigation was performed at Re 

≈ 100,000 for the cold condition by setting adiabatic boundary conditions at all the walls, and inlet 

bulk temperature to 23°C. The result indicates only ~ 1% variation in friction result with the heated 

case. 

LES Mesh 

Like the RANS meshes, the computational grid for LES also consisted of unstructured hybrid 

meshes. The near wall discretization was done by prism layers while the main flow area was 

discretized using a polyhedral mesh. Figure 18 (c) shows the grid topology near the ribs for LES. 

The volumetric control and the surface size were chosen very meticulously to obtain a very fine 

mesh near the ribs and the walls. A carefully chosen blending cell factor helped to achieve a smooth 

transition among the control volumes and regular polyhedral mesh growth. A good boundary layer 

resolution is required to capture the physical behavior accurately. The mesh was designed to satisfy 

the first layer y+ values less than 1 and the total thickness of the prism layers contained the entire 

boundary layer. Table 12 shows the mesh criterion for wall-bounded LES calculation proposed by 

Piomelli and Chasnov [78]. These criteria are provided for the structured mesh. Since the mesh for 

the current study was unstructured mesh, the grid size was chosen such that ∆𝑑+ < 3-16 

everywhere in the domain and the first layer y+ < 1. Here, ∆𝑑  is each nominal cell size (∛ (cell 

volume)).  
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Table 12 Mesh criteria for wall-bounded LES calculation [78] 

Dimensionless grid spacing Piomelli and Chasnov [78] Current study 

Δx+ < 100-300 ∆𝑑+ <3-16 

Δz+ < 100-600 

y+ < 25-30 y+ < 1 

 

  

a) b) 

Figure 20 a) The ratio of resolved turbulent kinetic energy to the total kinetic energy b) 

Convective Courant number in the streamwise midplane 

 

Pope [59] describes that the ratio (M) of the resolved turbulent kinetic energy to the total kinetic 

energy is crucial to determine the resolution of the LES. He suggests that the ratio M needs to be 

greater than 80% to obtain a well resolved LES results. The grid was refined to satisfy this 

condition everywhere. Figure 20 (a) displays the ratio M in the streamwise midplane in terms of 

percentage. To satisfy this condition, the computational grid of LES needs a high refinement, 

which resulted in ~ 23million cells in the computational domain. Due to unstructured mesh, to 
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achieve the value of M ratio greater than 80% in the full domain, the grid needs to be more refined 

which will cause massive cell counts. To avoid this, the current grid was chosen where only 0.33% 

of total cell counts show M < 80%. The minimum M for the domain is ~ 55%. Figure 20 (a) shows 

the ratio M in the streamwise midplane. The mesh parameters for the computational grid of the 

one ribbed wall case are listed in Table 13. 

 

Table 13 Mesh parameters for the one ribbed wall case 

 LES RANS 

Prism layer thickness (mm) 0.44 0.3 

Number of prism layers 20 20 

Stretching factor 1.15 1.18 

Prism layer near wall thickness, mm 4E-3 2E-6 

First layer y+ < 1 < 1 

Total number of cells (million) ~ 23.4 ~ 13.2 

Solvers and Solution Method 

For LES, a steady RANS model was performed at first and then LES was carried out. An implicit 

time stepping was used. The time step (∆𝑡) is required to be small enough to achieve the 

Convective Courant number  (
𝑢∆𝑡∆𝑑 ) smaller than one in the whole domain. The time step ∆𝑡 = 2E-

6 s used for the simulation. Due to the unstructured nature of the grid, ~ 0.1% cells showed Courant 

number > 1. To achieve the Courant number < 1 in the whole domain, the ∆𝑡 needs to be even 
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smaller, which makes the computational cost very high. Figure 20 (b) shows the Convective 

Courant number values in the streamwise midplane of the channel.  

Table 14 Numerical settings for the one ribbed wall case 

Model LES RANS 

Space 3D 3D 

Time 

Unsteady, 2nd order 

implicit 

Steady 

Viscous LES RANS 

Sub-Grid Scale Model WALE N/A 

Turbulence Model N/A RKE SST k-ω v2-f 

Wall treatment All y+ Two-layer all y+ All y+ All y+ 

Pressure-Velocity Coupling SIMPLE SIMPLE 

Equations solved Flow, Energy Flow, Energy 

Discretization Scheme 

Momentum 

Bounded Central 

Differencing 

2nd order 

Energy 2nd order 2nd order 

Temporal 2nd order N/A 

Unsteady Calculation Parameters 

Time Step (s) 2.0E-6 s N/A 

Maximum iterations per time step 25 N/A 

Total Time (s) 0.38s N/A 
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The LES simulation was allowed to run 25 flow through times until the flow reached to statistically 

stationary state. Once stationary conditions were accomplished, acquisition of samples to 

determine mean and turbulent quantities was performed for ~ 85 flow through times to achieve 

statistical convergence. Table 14 shows the list of the numerical settings for both the LES and 

RANS simulation for one ribbed wall case. 

Convergence Criterion 

For all RANS cases, the continuity, momentum, and energy residuals for the solution were reached 

below 10-5. Apart from residuals, the convergence of primitive variables like pressure and 

velocities were also monitored. The boundary heat transfer on all four walls was also monitored 

to assure the convergence of the simulation. Among these models, SST k-ω showed fluctuations 

in the primitive variables. Once the solution became steady, the average of the last 3000 iterations 

was calculated to report the final flow field and heat transfer results.  

 

For LES, inner iteration steps were applied at each time step so that a relative reduction of the 

continuity, momentum, and energy residuals reach to 10-3. Multiple point probes were introduced 

inside the separated shear layer region near the ribs to check statistical convergence. The mean 

and the second order statistics of the flow variables ensured statistical convergence. Figure 21 

shows some examples of statistical convergence. Some other examples of the statistical 

convergence have been shown in the Appendix C. 
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Figure 21 Statistical convergence of LES 
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CHAPTER 6: HEAT TRANSFER AND PRESSURE DROP RESULTS FOR 

SHARP AND ROUND RIBS 

Several heat transfer and pressure drop experiments for the two ribbed wall cases with sharp and 

round ribs were performed at different Re ranging from 6,000 to 135,000. Measurements for sharp 

ribs were first collected for Re ≈ 6,000 to 70,000 to benchmark the results against data presented 

in Han et al. [18]. Then, experiments were extended up to Re ≈ 135,000 for both sharp and round 

cases. Note that, the results discussed in this chapter are of two ribbed wall cases. 

 

 

Figure 22 Module average Nu for the sharp ribs at Re ≈ 55,000 

 

The module/regional average Nu distribution along the streamwise direction shows that the 

beginning of the test section has a higher value of Nu because of the developing thermal boundary 

layer. After a distance of 8𝐷ℎ from the heated test section entrance, Nu becomes almost constant 

and this phenomenon is consistent for all the Re cases for all the configurations. For instance, the 

regional average Nu distribution along the channel for Re ≈ 55,000 is shown in Figure 22, where 

the regional average Nu for both smooth and ribbed walls become almost invariant around 200 
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and 315, respectively after | 𝑍𝐷ℎ| =8.0. The abscissa of Figure 22 denotes the distance of the center 

of each module from the beginning of the heated section. The average smooth wall Nu denotes the 

average Nu value of the two opposite smooth side walls. Similarly, the average ribbed wall Nu 

denotes the average Nu of two opposite ribbed walls. 

Comparative Study with Literature 

A detailed comparison was conducted for the heat transfer and friction results for the sharp ribs 

case with the results presented in Han et al. [18]. Figure 23 (a) shows the comparative results of 

fully developed average Nu of two opposite smooth (SW) and ribbed walls (RW) for sharp ribs. 

Note that the Re numbers reported in Han et al. [18] and the current study were not the same. For 

a fair comparison, the results of the current studies are correlated with Re and reported at the same 

Re values as in Han et al. [18]. For validating the experimental results, fully developed average 

Nu at | 𝑍𝐷ℎ| ≈ 11.0 are compared with the results at the similar location in Han et al. [18]. All the Re 

reported in this article are the local Re at | 𝑍𝐷ℎ| ≈ 11.0. The local Re denotes the Re calculated at the 

local air bulk temperature. The results of both smooth and ribbed walls (Figure 23 (a)) are in 

excellent agreement with Han et al. [18] within measurement uncertainties. Note that, Han et al. 

[18] reported the maximum experimental uncertainty in their Nu and friction results, are 6.8% and 

6.6 %, respectively at Re > 10,000. When Re is greater than 20,000, the maximum observed 

difference between the current study and Han et al. [18] is around 4% and 8% for ribbed and 

smooth walls, respectively. Higher deviations have been observed for Re ≈ 6,000 and 20,000. 

Higher experimental uncertainty at low Re results from both the current study and Han et al. [18], 
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may have caused these deviations. Moreover, the flow physics is also not well understood at such 

low Re and needs further investigation. Figure 23 (b) presents the comparative results of fully 

developed channel average Nu (average of smooth and ribbed wall Nu) for sharp ribs between the 

experiments, and Han et al. [18] in log-log scale. This figure demonstrates an excellent match 

between the results of the current experimental study and Han et al. [18]. Both these results fit 

within the measurement uncertainty. The maximum deviation between the two studies is around 

4% beyond Re ≈ 20,000.  

 

The friction factor in a smooth channel is caused by skin friction only. On the other hand, friction 

in a ribbed channel is primarily caused by the ribs produced form drag. In a ribbed channel, flow 

separation occurs behind and top of the ribs which in turn results in form drag. Ribs also cause 

flow separation of the boundary layer, which contribute to higher pressure losses as well. Figure 

23 (c) and (d) presents the comparative study of the friction factor and friction augmentation for 

the sharp ribs between the experiments and Han et al. [18]. Friction augmentation is the friction 

enhancement caused by the application of ribs compared to that of the smooth channel of equal 

hydraulic diameter. For this reason, the friction factor is normalized with the smooth channel f0 

value. In Figure 23 (c), the vertical error bars represent the experimental uncertainties in the 

friction factor. Similarly, the horizontal error bars represent the experimental uncertainties in Re. 

The friction results of the current study show very good agreement with Han et al. [18] (within 

measurement uncertainties). The current study also confirms the friction vs. Re curve trend 

observed in Han et al. [18]. Both studies show that the friction factor increases with Re at very low 
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Re (6,000-15,000). After that, it decreases as Re increases and settles to a value beyond Re = 

30,000. Friction factor remains unchanged with Re larger than 30,000. 

Comparative Study between Sharp and Round Ribs 

In this study, a detailed comparative analysis of the sharp and round ribs was conducted both 

experimentally, and numerically. Similar to the sharp ribs, the heat transfer and friction 

  

a) Fully developed smooth and ribbed wall 

Nu vs. Re 

b)  Fully developed channel average Nu vs. 

Re 

  

c) Friction factor vs. Re d) Friction augmentation vs. Re 

Figure 23 Comparative study between the experiment and Han et al. 1984 for the sharp ribs  
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experiments for the round ribs were performed for several different Re values in the range of 6,000 

to 135,000. Numerical simulations for both sharp and round ribs were performed at Re ≈ 20,000, 

52,000, 95,000, and 145,000.  

Heat Transfer Results 

Figure 24 shows the comparative results of experimental fully developed heat transfer results for 

sharp and round ribs at different Re.  

 

a) Smooth and ribbed wall Nu vs. Re b) Channel average Nu vs. Re 

Figure 24 Comparative fully developed heat transfer results between the sharp and round ribs 

 

Both Figure 24 (a) and (b) show that the sharp ribs case, possesses a significantly higher heat 

transfer capacity than that of the round ribs case, especially on the ribbed walls at high Re. The 

enhancement of Nu with the sharp ribs over the round ribs increases with increasing Re. For 

instance, at the lowest tested Re ≈ 6,000, both sharp and round ribs show very similar heat transfer 
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results. After that, sharp ribs result in more heat transfer than the round ribs with increasing Re. 

For instance, sharp ribs show 9% to 23% and 1% - 13% higher heat transfer capability on the 

ribbed and smooth wall, respectively. This leads to 7% - 23% higher channel average (average of 

smooth and ribbed wall Nu) heat transfer for sharp ribs than the round one, which is demonstrated 

in Figure 24 (b). This figure presents the comparative results of channel average Nu for both sharp 

and round ribs between the experiments, and the CFD results using SST k-ω, RKE, and v2-f 

turbulence models at different Re. The CFD results also establish the fact that round ribs cause 

lower heat transfer than the sharp ribs. It is found that the v2-f turbulence model highly overpredicts 

the measured heat transfer results for sharp ribs by 10% - 17% for all Re cases. The percentage of 

overprediction by v2-f increases as Re increases. The possibility of overprediction by this 

turbulence model on heat transfer and pressure drop in a turbulated channel is well documented in 

the literature (e.g., Schüler et al. [79]). They studied different turbulence models including v2-f for 

investigating the heat transfer and friction behavior in a two-pass ribbed channel with 45° ribs and 

found that the v2-f turbulence model overpredicts their experimental results by 25% - 80% which 

agrees with the results in this study. However, the v2-f turbulence model does not overpredict by a 

large margin for round ribs, compared to the sharp ribs. It shows 5% - 7% overprediction from the 

experimental data of round ribs. For sharp ribs, both RKE and SST k-ω show very similar Nu 

results and predict the measured data very well with a maximum overprediction of ~ 4%. Similarly, 

RKE also shows a very good match for the round ribs’ measured data (maximum under prediction 

~ 6% beyond Re > 20,000). However, SST k-ω model underpredicts the round ribs’ results by 

approximately 9% - 13%. 
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Figure 25 (a) presents the comparative results of the fully developed channel average Nu 

augmentation (
𝑁𝑢𝑁𝑢0) between the sharp and round ribs. For this, the fully developed channel 

averaged Nu is normalized with the smooth channel Nu0 value. The Dittus-Boelter correlation for 

smooth circular tubes has been used to calculate Nu0. The experimental results show that both 

types of the ribs cause similar heat transfer augmentation at Re ≈ 6,000. The sharp ribs produce 

higher heat transfer augmentation than the round ribs in all other Re cases. The Nu augmentation 

of the sharp ribs remains almost constant with the increasing Re. However, the round ribs show a 

decreasing trend of  
𝑁𝑢𝑁𝑢0 with Re. As Re value is changed from 6,000 to 135,000, the 

𝑁𝑢𝑁𝑢0 value 

decreases from 2.09 to 2.05 and 2.09 to 1.66 for sharp and round cases, respectively. It concludes 

that at lower Re, the heat transfer augmentation capabilities of both types of ribs are similar, but 

sharp ribs perform better at high Re. In contrast with the experiment, the v2-f turbulence model 

shows an increasing trend of Nu augmentation with Re for sharp ribs. For the same case, RKE also 

shows a slightly increasing trend of Nu augmentation with Re. Only SST k-ω conforms to the 

experimental trend for this case. On the other hand, all three turbulence models show the 

decreasing trend for Nu augmentation for round ribs.  

Friction Results 

Figure 25 (b) presents the comparative friction augmentation (
𝑓𝑓0) results caused by both sharp, and 

round ribs. Both sharp and round cases depict that friction augmentation increases linearly with 

increasing Re. Results show that round ribs cause only 6% - 9% lower friction than sharp ribs in 

the experimented Re range. On the other hand, the round ribs experience a much greater reduction 
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in heat transfer, compared to the sharp ribs especially at higher Re. The round ribs cause ~ 10% - 

20% reduction in heat transfer than sharp ribs at Re ≥ 50,000. This is also shown in Figure 25 (c). 

For the current geometry (
𝑒𝐷ℎ = 0.0625), rounding the rib corners does not reduce the friction to a 

great degree, but reduces heat transfer especially at high Re. This finding is in contrast with the 

results found with high blockage ratio ribs [12, 7].  

 

  

a) Nu augmentation vs. Re b) Experimental friction augmentation vs. Re 

 

c) Reduction of Nu and 𝑓 with round ribs compared to the sharp ribs 

Figure 25 Comparative results of sharp and round ribs at different Re 
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Figure 26 presents the comparative results of friction augmentation between experiment and CFD. 

Similar to the experimental data, all three turbulence models suggest that rounding the edges of 

the ribs helps in lowering the pressure drop/friction. CFD data indicates that both types of ribs 

cause similar friction at very low Re. The round ribs produce less and less friction augmentation 

compared to the sharp ribs with the increasing Re. All three turbulence models are found to 

overpredict the friction for both types of ribs. Among them, v2-f shows the maximum 

overprediction by ~ 13% - 18% and 6% - 30% for sharp and round ribs, respectively. RKE and 

SST k-ω predicts similar friction augmentation for both cases. These models display better match 

with the experimental results of the sharp ribs with maximum ~ 9% (RKE) and 13% (SST k-ω) 

overprediction at the lowest Re. At the higher Re, both models match the experimental data even 

more. Similarly for the round ribs, these models show higher deviation at lower Re (maximum ~ 

20%) but match its data well (within ~ 6% deviation) at higher Re (Re > 50,000).  

 

  

a) Sharp ribs b) Round ribs 

Figure 26 CFD results of friction augmentation at different Re 
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Thermal Performance Results 

Figure 27 (a) and (b) shows the comparative thermal performance results of sharp and round ribs 

at different Re, respectively. As mentioned earlier, both heat transfer and friction experiments were 

conducted for several Re in the range of 6,000 to 135,000, but not at the exact Re. Therefore, a 

linear curve fit for friction augmentation to Re was constructed to determine friction factor at any 

Re for both sharp and round ribs cases. Similarly, separate power curve fits were also constructed 

to correlate the channel average Nu with Re. Then, these curve fits were utilized to find the Nusselt 

number and friction factor during the thermal performance calculation.  

 

  

a) Sharp ribs b) Round ribs 

Figure 27 Comparative results of thermal performance for sharp and round ribs at different Re 

 

In Figure 27 (a) and (b), both CFD and experimental results show that the thermal performance 

value is higher due to the lower friction augmentation at lower Re. With increasing Re, the friction 

augmentation increases linearly while the Nu augmentation value remains almost the same for all 
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the Re cases (slightly decreases with Re as shown in Figure 25 (a)), which causes a gradual 

decrease in thermal performance for both sharp and round ribs. It has been found that both types 

of ribs show similar thermal performance at very low Re (≈ 6,000). Beyond 6,000, the sharp ribs 

show higher thermal performance for all other tested Re. As the Re increases, the difference 

between the thermal performances curves of the two cases diverges. The thermal performance 

curve for the round ribs is steeper than that of the sharp case. Consequently, the thermal 

performance of the round ribs becomes lower than unity at comparatively lower Re ≥ 90,000.  

However, thermal performance of the sharp ribs remains above unity in the tested Re range. The 

trend of the thermal performance curve indicates that it falls below unity at Re ≥ 180,000.  

 

The CFD results show that the v2-f turbulence model overpredicts the sharp rib’s thermal 

performance result by 3% to 13%, whereas it shows a good match with the round ribs case 

(deviation ~ 1% - 5%). The overprediction by v2-f for the sharp case increases with the increasing 

Re. On the other hand, both RKE and SST k- ω display very similar results for sharp ribs and agree 

with the experimental data very well (maximum deviation ~ 6%).  However, both models overly 

underpredict the round case’s experimental data; i.e., RKE and SST k-ω results deviate from the 

data by 1% - 16% and 9% - 19%, respectively. 
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CHAPTER 7: AEROTHERMAL ANALYSIS OF SHARP RIBS 

This chapter presents the flow study results of the one ribbed wall case obtained by stereo PIV at 

different Re. A detailed comparison of the aerothermal behavior was also made between the 

experimental data and the numerical results at Re ≈ 30,000. The discussion starts with a detailed 

comparison between the flow field results obtained with PIV, LES, and RANS. Next, a 

comparative analysis of heat transfer and the pressure drop behavior has been conducted between 

the experiment, LES as well as the RANS. It follows up with a detailed analysis of flow, especially 

the secondary flow behavior and the heat transfer behavior of the walls obtained by LES. Finally, 

the stereo PIV results at different Re are presented focusing on the change of flow field with the 

increasing Re. 

Mean Velocity Results 

Figure 28 (a)-(d) present the non-dimensional mean velocity and turbulent kinetic energy contour 

plots in the streamwise midplane at Re ≈ 30k obtained by Stereo PIV. The bulk velocity 𝑈𝑏 is used 

for normalization. Note that the main axial flow goes in –𝑍 direction. Consequently, the mean  
𝑉𝑍𝑈𝑏 

is negative in the streamwise direction. A new local coordinate 𝑍1 is introduced along the Z axis. 

The 𝑍1 = -1 is located at the trailing edge of the first rib in the plane.  Hereinafter, the wall-normal 

and streamwise coordinates are normalized with the channel’s hydraulic diameter, 𝐷ℎ and rib 

pitch, P, respectively. In these figures, the results are presented for the two rib pitches between the 

three ribs. It is clearly observed that flow characteristics between both the pitches are identical 
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which confirms that flow is fully developed at the point of measurement. This finding applies to 

all the tested Re cases. 

 

  

(a) Non-dimensional mean streamwise 

velocity 

(b) Non-dimensional mean wall-normal 

velocity 

  
(c) Non-dimensional mean spanwise velocity (d) Non-dimensional mean turbulent kinetic 

energy 

 Figure 28 Fully developed flow between two rib pitches at Re ≈ 30k 

 

Figure 29 (a)-(c) show the comparative results of non-dimensional mean velocity components 

between stereo PIV and LES in the streamwise mid-plane at Re ≈ 30k. The top row shows the PIV 

results. Since PIV results confirm that the flow is fully developed, only the results of the first rib 

pitch are used for the comparison. Figure 29 (a)-(c) clearly show that the flow is highly three 

dimensional near the inter-rib area. 
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(a) Non-dimensional mean 

streamwise velocity 

(b) Non-dimensional mean 

wall-normal velocity 

(c) Non-dimensional mean 

spanwise velocity 

Figure 29 Comparative results of mean velocity components between PIV and LES at Re ≈ 

30k at the streamwise midplane. 

 

 

Figure 30 Location for ǀZ1/Pǀ = 1.21 
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Loc |𝑍1𝑃 |  = 1.21 at the streamwise midplane 

Figure 31 Comparative mean velocity results between LES and PIV at Re ≈ 30k 

 

Figure 31 shows the comparative time average velocity results between LES and the experiment 

at |𝑍1𝑃 |  = 1.21. The location of the |𝑍1𝑃 |  = 1.21 has been shown in Figure 30. This location lies in 

the separated shear layer region which is shown in the later section. The LES results match the 

experimental data of mean streamwise velocity well, especially near the rib region. However, LES 

shows a larger gradient of 𝑉𝑍  in the 𝑌 direction, which is not observed in the experimental results. 

The velocity profiles obtained by stereo PIV are very flat, shows almost no gradient in the Y 

direction above 
𝑌𝐷ℎ = 0.15. LES shows a higher (~ 15.5%) core velocity than the PIV data. 

Experimental results show that the core velocity is ~ 1.2Ub, whereas, LES predicts the core velocity 

~ 1.4Ub. The different RANS turbulence models also show similar results to LES data which is 

shown in Figure 32 (a). To ensure the accuracy of the stereo PIV results, another 2D PIV 

experiment was conducted for the streamwise midplane. In this 2D PIV set up, the camera was 

placed orthogonally to the measured plane which is an ideal set up for planer PIV measurement 

and provides the most accurate results. Due to the obstacles created by the ribs, the measurement 
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could not be achieved in the inter-rib space with this setup, but the flow field away from the ribs 

was measured. The streamwise mean velocity 𝑉𝑍 of the 2D planer PIV results corroborate to the 

stereo PIV data. The set up for the planer PIV and its results are presented in the Appendix D. We 

conjecture that the LES, as well as, all RANS predicts more parabolic shape streamwise velocity 

profile due to the applied fully developed interface at the inlet and outlet of the CFD domain.  

 

    

(a)  (b) (c) 

Loc |𝑍1𝑃 | = 1.21 at the streamwise midplane 

Figure 32 Comparative mean velocity results between LES and different RANS models at Re 

≈ 30k 

 

The basic characteristics of the flow in a ribbed channel are found in different literatures [33, 38, 

45]. As the ribs cause a reduction of the cross-sectional area, the flow acceleration occurs on top 

of them. Afterward, the flow encounters a sudden expansion and forms a recirculation zone behind 

the ribs. Then if there is enough space, flow reattaches and the boundary layer develops in the 

direction of the next rib. Figure 29 (a) shows the contour plot of the non-dimensional streamwise 

velocity at the streamwise midplane. In this figure, the expected recirculation zone (no reverse 

flow of 𝑉𝑍 ) is not seen, but a flow retardation is evident behind the ribs. This is because, in such 
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angled ribs, the separated recirculating vortex moves along the ribs and the X - Z coordinate system 

is not a proper representative coordinate system to capture it. To detect the recirculating secondary 

flow structure, a new coordinate system  𝑋´ − 𝑍´ is introduced. The direction of  𝑋´and  𝑍´ is 

parallel and normal to the ribs, respectively as shown in Figure 33.  

 

 

Figure 33 Coordinate system X´-Z´ 

 

The velocity components 𝑉𝑋 ´  (in the 𝑋´ direction) and 𝑉�́� (in the 𝑍´ direction) were determined by 

the coordinate transformation of vector components method using the velocity 𝑉𝑋  (in the 𝑋 

direction) and 𝑉𝑍  (in the 𝑍 direction). The method for the two-dimensional coordinate 

transformation of vector components is described in Chapter 4.  Figure 34 shows the contour plot 

of mean 𝑉�́� in the streamwise midplane obtained by LES. The streamlines clearly display the 

recirculation regions in Figure 34. As mentioned earlier, flow experiences an acceleration on the 

ribs’ top surface with a subsequent sudden expansion behind the ribs. Consequently, the flow 

separation occurs and a wide recirculation zone V1 behind the ribs is observed. This is called rib 

induced vortex often mentioned in the literature. This vortex is accompanied with another small 
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counter-rotating vortex V2 at the lower corner behind the ribs. There is another flow separation 

region V3 is detected in front of the next rib. Later the flow hits the next rib, the flow deflects and 

another separated zone V4 forms on top of the ribs.  

 

 

 

Figure 34 LES results of mean velocity VZ
´ in the streamwise midplane at Re ≈ 30k 

 

The LES results of non-dimensional wall normal velocity component shown in Figure 29 (b) 

display consecutive positive-negative velocity zones which are associated with the rib induced 

secondary vortices. There is a slight negative normal velocity (associated with vortex V2) zone at 

the lower corner of the ribs followed by a small positive normal velocity zone which is caused by 

both V1 and V2. Afterward, there is a wide zone of negative normal velocity at the middle of the 

rib pitch related to the vortex V1. There is again a positive and negative normal velocity zone just 

upstream of the next ribs associated with the vortex V3. The experimental results corroborate the 
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LES results very well which is also observed in Figure 31 (b). There is a slight discrepancy in 

mean normal velocity in the core flow between experiment and LES results. The experiment shows 

a slight positive normal velocity in the core which can be caused by the unaccounted measurement 

bias uncertainty due to the unfavorable highly asymmetric camera angle of the current stereo PIV 

setup.  

 

 

Figure 35 Streamwise plane locations 

 

It is found that rib’s inclination angle strongly guides the secondary flow vortices. The vortex, V1 

begins from the intersection of the trailing face of the rib and upstream side wall (in this case, right 

wall), and moves toward the downstream side wall (left wall) diagonally following a spiral path. 

This is also evident in the nondimensional mean spanwise velocity (𝑉𝑋) contour plot shown in 
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Figure 29 (c). There exists a negative zone in the inter-rib space, which indicates that the secondary 

recirculating flow travels toward the downstream side wall. The streamwise and spanwise mean 

velocity components in the inter-rib space are very similar in order of magnitude (see Figure 29). 

This, along with other reasons, limits the current study to use simpler 2D planer PIV measurement 

by placing the camera axis along the ribs. This high out of plane motion (VX) can cause an 

irrecoverable error in the measured data with the 2D planer PIV with a non-orthogonal camera set 

up. The comparative results of mean normal and spanwise velocity components between LES and 

different turbulence models are shown in Figure 32 (b) and (c), respectively. It is observed that the 

RKE and v2-f turbulence model predict the mean velocity components better than the SST k-ω 

turbulence model.  

 

The flow data at the nine different streamwise planes ( 𝑋𝑊 = 0.9-0.1) were extracted from the LES 

results. The locations of the extracted planes are shown in Figure 35. Among these planes, the 
𝑋𝑊 

= 0.9 is the nearest to the upstream side wall and 
𝑋𝑊 = 0.1 is the furthest plane from it. The non-

dimensional mean velocity 𝑉�́� in the different planes ( 𝑋𝑊 = 0.9-0.1) are shown in Figure 36. Note 

that, the local coordinate 𝑍1= -1 starts from the trailing edge of the rib for each plane. As the vortex 

moves along the rib, the center of the vortex V1 moves away from the ribs, causing larger vortex 

size. Simultaneously, the other vortices, V2 and V3 also grow as those advance toward the 

downstream side wall. Eventually, the secondary flow approaches close to the downstream side 

wall, the streamlines impinge on the downstream side wall and merge with the main flow. The 

dissipation of the vortices is observed to start at  𝑋𝑊 = 0.3. 
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Figure 36 Non-dimensional VZ
´ at different streamwise planes obtained by LES 
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Figure 37 Reattachment length and size of the vortex V1 

 

Figure 37 shows the close view of the recirculation zone in the planes, 
𝑋𝑊 = 0.9 and 

𝑋𝑊 = 0.5. An 

isoline 𝑉�́� = 0 is shown by the solid black line to detect the extent of the vortices. In the plane 
𝑋𝑊 = 

0.9, the recirculation zone V1 is observed to reattach at |𝑍1𝑃 | ~ 1.27. However, the recirculation 

zone V1 is seen not to be reattached in the plane  
𝑋𝑊 = 0.5. Instead, a saddle point observed between 

the vortex V1 and V3 at this plane. The recirculation vortex V1 shows a reattachment only for  
𝑋𝑊 = 

0.9-0.8 planes. The rest of the planes do not indicate any reattachment of vortex V1. The extent or 

size of the vortex V1 is denoted by 
𝑙𝑟𝑃 . Figure 38 shows the size and the height of the core (

𝑦∗𝐷ℎ) of 

vortex V1 at different streamwise planes ( 𝑋𝑊 = 0.9-0.3). The figure clearly depicts that the vortex 
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V1 grows continuously larger as it advances toward the downstream lateral wall. The height of the 

vortex core from the wall remains similar for 
𝑋𝑊 = 0.9 and 0.8 as the vortex V1 reattaches at these 

planes. Past those planes, the vortex V1 starts to lift off from the wall and results in the taller vortex 

core from the wall. At  
𝑋𝑊 = 0.3 vortices are observed to begin dissipation. Consequently, both the 

size and height of the core of the vortex begins to reduce at this plane. 

 

 

Figure 38 Size and height of vortex V1 at different streamwise planes 

 

One of the most popular method to detect a vortex core in the flow is to determine Q criterion [80]. 

The positive value of Q identifies a vortex core.  

𝑄 = 12 (‖𝛺‖2 − ‖𝑆‖2) > 0 (65) 

Here, 𝛺 and 𝑆 are vorticity and strain rate tensor, respectively. Positive value of Q implies where 

vorticity magnitude dominates over the strain-rate magnitude. 
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Figure 39 (a) shows the contour of the time-averaged Q criterion values in 
𝑋𝑊 = 0.9 and 

𝑋𝑊 = 0.5 

planes. It depicts that the vortices lose their strength (indicated by Q criterion) as they travel toward 

the downstream lateral wall which is displayed in Figure 39 (b). 

 

 

  

(a) 

 
(b) 

Figure 39 LES results of time-averaged Q criterion (a) Contour at X/W = 0.9 and 0.5 planes (b) 

At different streamwise planes 

 

Figure 40 shows the comparative results of non-dimensional 𝑉�́� at the streamwise plane 
𝑋𝑊 = 0.8 

between LES and different RANS models. All the turbulence models show the presence of the 
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vortices V1, V2, V3, and V4 very clearly. Figure 41 shows the comparative results of non-

dimensional 𝑉�́� at the streamwise midplane plane 
𝑋𝑊 = 0.5. The vortices V1, V2, and V3 are 

observed to grow than those at the plane 
𝑋𝑊 = 0.8. However, in this plane, the SST shows very 

different results in terms of vortex V2 and V3. The vortex V2 breaks into two smaller vortices 

which are not seen either in the experiment or in LES. The vortex V3 starts to merge with the 

vortex V1. 

 

 

  

LES RKE 

  

v2-f SST k-ω 

Figure 40 Comparative results of non-dimensional VZ
´ at X/W = 0.8 plane between LES and 

different RANS models 
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LES RKE 

  

v2-f SST k-ω 

Figure 41 Comparative results of non-dimensional VZ
´ at X/W = 0.5 plane between LES and 

RANS models 

 

Table 15 Size of the vortex V1, lr/P  

Streamwise Plane LES v2-f RKE SST k-ω 

X/W = 0.9 0.27 0.33 0.35 0.31 

X/W = 0.5 0.73 0.72 0.66 0.75 

 

Table 15 presents the size of the vortex V1 predicted by LES and different RANS models at the 

streamwise planes, 
𝑋𝑊 = 0.9 and 

𝑋𝑊 = 0.5. Results show that all the turbulence models overpredict 
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the reattachment length (size of vortex V1) at the plane 
𝑋𝑊 = 0.9. SST k-ω and v2-f turbulence 

models show better match with the LES results of vortex V1 size. As it is already discussed that 

SST k-ω predicts some unphysical behavior of vortex V2 at this plane. Overall, the v2-f turbulence 

model shows the best agreement with the LES results both quantitively and qualitatively. 

Turbulent Kinetic Energy  

Figure 42 shows the comparative results of the non-dimensional turbulent kinetic energy at Re ≈ 

30k between LES and the PIV experiment in the streamwise midplane. In the core flow, the TKE 

is as low as ~ 1% of 𝑈𝑏2. A strong shear layer behind the ribs is clearly observed both in the 

experiment and LES. The shear layer forms as the flow separates from the rib’s upper surface. The 

shear layer possesses high turbulent kinetic energy due to the periodic flow acceleration-

deceleration and separation process. High velocity gradient exists in this high turbulent kinetic 

energy zone. Both the experiment and LES results depict that the shear layer covers almost the full 

inter-rib space in this plane. The maximum strength of the shear layer exists from the leading edge 

of the ribs to the middle of the rib pitch (|𝑍1𝑃 | < 1.45). A deep decay of TKE is found at |𝑍1𝑃 | > 1.45 

up to the leading edge of the next ribs. However, the LES results predict slightly higher maximum 

TKE than the experiment. Experimental results show a maximum value of TKE is ~ 6.3% of 𝑈𝑏2, 

whereas LES predicts the maximum value of TKE ~ 7% of 𝑈𝑏2 at the location |𝑍1𝑃 | = 1.21. 
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(a) PIV (b)LES 

 

Loc |𝑍1𝑃 | =1.21 at the streamwise midplane 

(c) 

Figure 42 Comparative results of non-dimensional TKE between PIV and LES at Re ≈ 30k 
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LES RKE  

  

 

v2-f SST k-ω  

Figure 43 Comparative results of non-dimensional TKE at streamwise midplane between 

LES, SST k-ω, v2-f, RKE  

 

 

Figure 43 shows the comparative non-dimensional turbulent kinetic energy contour plots between 

LES and different RANS models at the streamwise midplane. All the turbulence models show the 

presence of a shear layer with high turbulent kinetic energy behind the ribs. The comparative 

results with LES show that none of the RANS models reproduce the strength of the shear layer 

well. All of them underpredicts the maximum value of TKE than LES. SST k-ω fails to predict the 

shape of the shear layer as well. Among them, the v2-f model shows the reasonably good prediction 

of the shear layer both quantitatively and qualitatively. Figure 44 shows the comparative results of 

non-dimensional turbulent kinetic energy at |𝑍1𝑃 | =1.21. 
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Loc |𝑍1𝑃 | =1.21 at the streamwise midplane 

Figure 44 Comparative results of non-dimensional TKE between LES and different RANS 

models 

Reynolds Stresses 

The experimental and LES results of Reynolds normal stresses are shown in Figure 45 (a)-(c). The 

Reynolds normal stresses 𝑅𝑍𝑍, 𝑅𝑌𝑌, 𝑅𝑋𝑋 denotes the square of the velocity fluctuations in 

streamwise (𝑤′2̅̅ ̅̅̅), wall normal (𝑣′2̅̅ ̅̅ ), and spanwise (𝑢′2̅̅ ̅̅ ) direction, respectively. All the velocity 

fluctuations are higher behind the ribs and form the high TKE shear layer. However, the 

streamwise fluctuations are much higher than the wall normal and spanwise ones, especially in the 

region of maximum strength of the shear layer. Figure 46 shows the experimental results of the 

non-dimensional 𝑤′2̅̅ ̅̅̅, 𝑣′2̅̅ ̅̅ , 𝑢′2̅̅ ̅̅  at the location |𝑍1𝑃 | = 1.21. It clearly shows that turbulence is highly 

anisotropic near the ribs. 
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(a) Streamwise (b) Wall normal (c) Spanwise 

Figure 45 Comparative results of non-dimensional Reynolds normal stresses between PIV and 

LES 

 

Figure 47 shows the comparative results of all the six Reynolds stresses between the experiment 

and LES at |𝑍1𝑃 | = 1.21. The LES results are in excellent agreement with the experimental data.  

However, LES results show slightly higher maximum values for the 𝑣′2̅̅ ̅̅  and 𝑢′2̅̅ ̅̅ .  Figure 45 shows 

the maximum strength of the streamwise velocity fluctuation 𝑤′2̅̅ ̅̅̅ is ~ 8% of 𝑈𝑏2 in the tested plane. 

The high strength of the streamwise fluctuation exists from the leading edge of the ribs up to |𝑍1𝑃 | 

~ 1.25. However, the wall normal (𝑣′2̅̅ ̅̅ ), and spanwise (𝑢′2̅̅ ̅̅ ) velocity fluctuations shows maximum 

value (~ 3.5% of 𝑈𝑏2) slight downstream of the ribs. There is also a higher 𝑤′2̅̅ ̅̅̅ and 𝑢′2̅̅ ̅̅   observed 

just ahead of the downstream ribs in the LES results. 
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Location |𝑍1𝑃 | = 1.21 

Figure 46 Turbulence anisotropy 
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Figure 47 Comparative results of Reynolds stresses between LES and PIV at the location 

ǀZ1/Pǀ = 1.21 

 

 

  

Figure 48 Comparative results of non-dimensional 𝑅𝑌𝑍 between PIV and LES 
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The contour of non-dimensional Reynolds shear stress (𝑅𝑌𝑍 = 𝑣′𝑤′̅̅ ̅̅ ̅̅ ) is shown in Figure 48. The 𝑣′𝑤′̅̅ ̅̅ ̅̅  is higher in the separated shear layer. In the LES results, the maximum shear stress (~ 2.5% 

of 𝑈𝑏2) is observed from the top of the trailing edge of the ribs up to |𝑍1𝑃 | ~ 1.25 in the shear layer. 

However, the experimental results show the maximum value (~ 2.2% of 𝑈𝑏2) exists little behind 

the ribs between 1.15 < |𝑍1𝑃 | < 1.3. The comparative results of all the three components of Reynold 

shear stresses (𝑅𝑌𝑍 = 𝑣′𝑤′̅̅ ̅̅ ̅̅ , 𝑅𝑋𝑌 = 𝑢′𝑣′̅̅ ̅̅ ̅̅ , 𝑅𝑋𝑍 = 𝑢′𝑤′̅̅ ̅̅ ̅̅  ) between LES and PIV are shown in the 

bottom row in Figure 47. LES shows an excellent match with the experimental data, especially for 𝑅𝑌𝑍 and 𝑅𝑋𝑌.  

Heat Transfer and Friction Results  

The fully developed heat transfer and pressure drop behavior in the one ribbed wall case were 

investigated at different Re. Figure 49 (a) and (b) show the fully developed average Nu results for 

all the walls and the friction results, respectively. The friction results of two ribbed wall case for 

the sharp ribs are shown in  Figure 49 (b) as well. For the fair comparison with the numerical study, 

the experimental results for the exact Re (= 28668) were interpolated from these data and tabulated 

in Table 16. The experimental uncertainties are also presented in this table. 

 

The comparative LES and RANS results of fully developed average Nu and friction results at the 

same Re are tabulated in Table 17. LES shows excellent agreement with the experimental data of 

average Nu of the ribbed and the top wall (~ discrepancy 2%). However, it shows ~ 8% and 12% 

discrepancy with the Nusselt results of the left wall and right wall, respectively. Note that, the left 
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and right wall is the downstream and upstream side wall, respectively. The relatively coarser mesh 

at the side walls may cause this deviation. Note that the experimental uncertainty in the left and 

the right wall is ~ 4.2%. If the experimental uncertainty is considered, the prediction of LES for 

the left and right wall are reasonably good. LES predicts the experimental channel average Nu 

within ~ 5.4% deviation. Friction results also show a very good match between LES and the 

experiment within the experimental uncertainty. 

 

Table 16 Experimental results of average Nu and friction factor for one ribbed wall case at Re ≈ 

30k 

  Nu  

 Re 

Ribbed 

wall 

Top 

wall 

Left 

wall 

Right 

wall 

Channel 

average  

Friction 

factor 

Experiment 28668 156.4 74.8 104.8 87.1 106.1 0.061 

Uncertainty 3.3% 4.6% 4.9% 4.2% 4.2% 2.3% 7.65% 

 

  

Figure 49 Experimental results of (a) Fully developed Nu (b) Friction factor at different 

Re for one ribbed wall case 
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Table 17 shows the comparative results of different turbulence models with the experiment as well 

as the LES. Note that both SST k-ω and RKE turbulence models underpredict the experimental 

results to a great extent. Among the RANS models, the v2-f turbulence model shows the closest 

results to the experiment. It matches the experimental heat transfer results of the ribbed and top 

wall very well. This model also displays a very good match with the experimental friction data as 

well. 

 

Table 17 Comparative results of average Nu and friction factor between experiment, LES and 

different RANS models at Re ≈ 30k (actual Re 28668) 

 Nu 

 

Ribbed 

wall 

Top 

wall 

Left 

wall 

Right 

wall 

Channel 

average  

Friction 

factor 

Experiment 156.4 74.8 104.8 87.1 106.1 0.061 

LES 154.8 73.9 96.0 76.6 100.3 0.058 

SST k-ω 124.9 53.6 61.0 59.8 74.8 0.049 

RKE 129.2 62.0 72.8 66.6 82.7 0.054 

v2-f 156.3 72.1 85.3 76.4 97.5 0.059 
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Coordinate system (a) Ribbed wall 

  

(b) Downstream side/ left wall (c) Upstream/ right side wall 

Figure 50 LES results of local heat transfer augmentation Nu/Nu0 

 

Figure 50 presents the time-averaged local Nu augmentation contour plot for ribbed and the side 

walls obtained by LES. The computational domain consists of one pitch only. For a better 

comprehension, the results are periodically transformed for two more ribs and presented in Figure 

51. The Nu0 for the smooth channel is determined by using the Dittus Boelter equation and used 
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for normalization of the heat transfer results. It is observed that local heat transfer is highly non-

homogenous and influenced by the secondary flow induced by the ribs. The maximum heat transfer 

augmentation happens at the upper portion of the rib’s front face because of the shear layer 

impingement (Figure 51 (b)). The maximum 
𝑁𝑢𝑁𝑢0 in this region is above 5.0. There is another high 

heat transfer (max 
𝑁𝑢𝑁𝑢0 ~ 3.7) zone noticed near the upstream side wall corner in the inter-rib space. 

This high heat transfer zone is caused due to the start of the rib induced recirculating vortex V1. 

 

 

 

  

(a) (b) 

Figure 51 LES results of local heat transfer augmentation Nu/Nu0   
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As mentioned earlier, the recirculating vortex travels diagonally toward the downstream lateral 

wall following a spiral path. This helps in the exchange of energy and momentum transfer between 

the recirculating structure and the shear layer behind the ribs and results in high heat transfer zone 

in the inter-rib space. It is observed that this high heat transfer zone diverts away from the rib in 

the direction of the downstream side wall. The progressive contact between the flow and the wall 

while the recirculating structure V1 moves toward the downstream side wall causes the convective 

heat transfer less effective. This results in a reduction in the augmentation value in this area toward 

the downstream side wall. There is a narrow portion just behind the ribs where the flow is almost 

stagnant and moves into the small counter-rotating vortex V2 which causes a lower heat transfer 

zone. This lower heat transfer zone becomes wider as V2 grows while it travels toward the 

downstream side wall. However, the vortex V3 created in front of the downstream ribs causes a 

slight increase in heat transfer in this narrow area. There is a high heat transfer zone observed near 

the trailing edge of the top surface of the ribs due to the presence of vortex V4. There is a small 

zone of very high heat transfer augmentation at the corner of the rib’s top surface and the upstream 

side wall which is as high as 5.5. 

 

On the downstream side wall, there is an elongated high heat transfer area exists above and behind 

the ribs reaching augmentation ratios as high as ~ 2.5. The impingement of the streamlines of the 

main flow and the secondary flow results in this high heat transfer area. Figure 50 (c) also shows 

the Nu augmentation on the upstream side wall. The Nu augmentation on the upstream side wall 

is noticeably lower than the downstream side wall. This also corroborates with the experimental 

results shown in Table 16. On the upstream side wall, a thin area of high heat transfer ( 𝑁𝑢𝑁𝑢0 ~ 2.2) 
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is observed near the ribbed wall behind and on the rib. This is associated with the start of the vortex 

V1 formation behind the ribs. The maximum heat transfer augmentation (~ 3.8) on this wall occurs 

at its intersection with leading edge of the ribs. 

 

 
(a) Location for the streamwise polylines 

  

(b) at X/W = 0.9 (c) at X/W = 0.5 

Figure 52 LES results of Nu/Nu0 on the ribbed wall along the streamwise polylines  

 

The local heat transfer augmentation results of LES at the nine different streamwise polylines ( 𝑋𝑊 = 

0.9-0.1) on the ribbed wall were extracted as shown in Figure 52 (a). The results of the local heat 



122 

 

transfer augmentation for the isolines 
𝑋𝑊 = 0.9 and 

𝑋𝑊 = 0.5 are presented in Figure 52 (b) and (c), 

respectively. In these figures, the local coordinate 𝑍1= -1 starts from the downstream point of the 

ribs for each plane. Recall that, the main flow is in -Z (or -Z1) direction. 

 

Integration of the local 
𝑁𝑢𝑁𝑢0 was performed along the polylines as shown in Figure 53 (a). This 

integration denotes the total heat transfer augmentation along the polylines. Similarly, another 

integration was done up to vortex V1 extent on the isoline which is shown in Figure 53 (b). This 

value indicates the contribution of vortex V1 to the total heat transfer augmentation along the 

polyline. Both results are presented in Figure 53 (c). The results are calculated for 
𝑋𝑊 = 0.9 to 0.3 

as the vortex V1 starts to dissipate at  
𝑋𝑊 = 0.2. The average 

𝑁𝑢𝑁𝑢0 for the polylines are also calculated 

and shown in Figure 53 (d). It is found that the integrated 
𝑁𝑢𝑁𝑢0, as well as the average 

𝑁𝑢𝑁𝑢0  along the 

polylines, decreases as the flow travel from the upstream to the downstream side wall. As 

mentioned earlier, the vortex V1 becomes larger while it travels toward the downstream side wall. 

Consequently, the integrated 
𝑁𝑢𝑁𝑢0 up to the vortex extent V1 continuously increases from 

𝑋𝑊 = 0.9 

to 0.5. Afterward, the vortex size decreases and results in a reduction in integrated 
𝑁𝑢𝑁𝑢0 up to vortex 

extent as well. However, the average 
𝑁𝑢𝑁𝑢0 up to the vortex V1 extent also shows a continuous 

reduction from 
𝑋𝑊 = 0.9 to 0.3. Close to the upstream side wall at  𝑋𝑊 = 0.9, the contribution of vortex 

V1 is ~ 37% to the total heat transfer augmentation. While 
𝑋𝑊  moves from 0.9 to 0.5, the 

contribution of vortex V1 to the total heat transfer increases continuously. At  𝑋𝑊 = 0.5, almost 90% 
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of total heat transfer is associated with the vortex V1. Past 
𝑋𝑊 = 0.5, the vortex V1’s contribution 

starts to reduce again.   

 

  
(a) (c) 

  

(b) (d) 

Figure 53 (a)-(b) Area under Nu/Nu0 vs. Z1/P curve (c) Integrated Nu/Nu0 (d) Average Nu/Nu0 

along the streamwise polylines 

Effect of Re 

The in-plane velocity components of the streamwise mid-plane were measured by PIV for Re ≈ 

10,000-150,000. The velocity components were transformed to  𝑋´ − 𝑍´ coordinates as shown in 

Figure 33. Figure 54 presents the non-dimensional 𝑉�́� at the different Re. The rib induced vortex 
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V1 is clearly visible for all the Re. The other vortices, such as V2, V3, and V4 could not be captured 

due to lack of data measured very close to the wall. As Re increases from Re ≈ 10k to 70k, the 

vortex V1 shrinks toward the rib’s trailing edge, yielding in smaller vortex size. The height of the 

vortex core also observed to move up slightly as Re increases from Re ≈ 10k to 70k. The size and 

height of the vortex core remain invariant at Re ≥ 70k.   

 

Figure 55 shows the experimental non-dimensional turbulent kinetic energy in the streamwise 

midplane for different Re. The core flow shows similar TKE for all the Re which is around 1% of 𝑈𝑏2. Reynolds number has a significant influence on the rib generated shear layer regarding the 

size, and the TKE value. At the lower Re, the shear layer is found to cover the full inter-rib space. 

As Re increases, the shear layer shrinks toward the upstream rib up to Re ≈ 70k. For example, the 

high turbulent kinetic energy shear layer covers the full inter-rib space at Re ≈ 10k-30k, but it 

spreads up to |𝑍1𝑃 | ~ 1.4 at 50k ≤ Re ≤ 150k. The value of the non-dimensional TKE of the shear 

layer is found to decay with the increasing Re up to Re ≈ 70k. The maximum strength of the non-

dimensional TKE reduces from 0.07 to 0.05 as Re increases from Re ≈ 10k to 70k. However, the 

maximum value of the non-dimensional TKE is observed to rise at Re ≈ 100k and 150k. This can 

attribute to the higher uncertainty in the PIV measurement at high Re cases due to fogging or 

pulling off the oil. 
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Figure 54 PIV results of the non-dimensional VZ
´ at the streamwise midplane at different Re 
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Figure 55 PIV results of the non-dimensional turbulent kinetic energy at different Re 
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CHAPTER 8: AEROTHERMAL ANALYSIS OF SHARP AND ROUND RIBS 

The comparative results of fully developed average heat transfer and friction results between the 

sharp and round ribs (two ribbed walls) are discussed in Chapter 6. The detailed flow and heat 

transfer results for the sharp ribs for one wall study has been discussed in Chapter 7. This chapter 

discusses the comparative effect of the sharp and round ribs (two ribbed wall cases) on the flow 

behavior and the consequent impact on the heat transfer and pressure drop behavior. No 

experiment was conducted to investigate the flow behavior for both the sharp and round cases of 

the two ribbed wall study. Therefore, the flow behavior for these cases is analyzed with the help 

of the numerical results. It is found in Chapter 7 that the v2-f model predicts the experimental flow 

behavior best among the RANS models. Hence, the v2-f turbulence model has been chosen for this 

purpose. The analysis is done at Re ≈ 52,000. The coordinate system for the computational 

domains for both cases is shown in Figure 56. 

 

  

Sharp ribs Round ribs 

Figure 56 Coordinate System for the computational domains 



128 

 

Flow Behavior Analysis 

To analyze the comparative flow behavior for sharp and round ribs, the flow field results at the 

nine streamwise planes were extracted as shown in Figure 57. Similar to the one ribbed wall case 

described in the previous chapter, the velocity components were transformed to the 𝑋´ − 𝑍´ to 

capture the secondary vortices. Figure 58 and Figure 59 show the comparative results of non-

dimensional 𝑉�́� between the sharp and round ribs at the streamwise planes, 
𝑋𝑊 = 0.9 and 

𝑋𝑊 = 0.5, 

respectively. In these figures, the local coordinate 𝑍1= -1 starts from the trailing edge of the rib 

for each plane.  

 

  

Sharp ribs Round ribs 

Figure 57 Location of the streamwise planes for sharp and round ribs. 
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(a) 

 
(b) 

Figure 58 Non-dimensional VZ
´ contour plots near the ribs for (a) Sharp ribs (b) Round ribs at 

the plane X/W = 0.9 

 

In the previous chapter, a detail discussion has been done for the characteristics of the secondary 

flow created by the sharp ribs in one ribbed wall case. The characteristics of the secondary flow in 

the two ribbed wall case with the sharp ribs is very similar to the one in the one ribbed wall case. 

The flow experiences an acceleration on top of the ribs due to the reduction of the cross–sectional 

area caused by the ribs. Then, the flow encounters a sudden expansion behind the ribs. 

Consequently, the flow separation occurs and a wide recirculation zone V1 behind the ribs is 

observed. The vortex V1 is clearly seen in both sharp and round cases in Figure 58 and Figure 59. 

For sharp case, the vortex V1 is found to be accompanied with another small counter-rotating 

vortex V2 at the lower corner behind the ribs. There is another flow separation region V3 in front 

of the next rib. Later the flow hits the next rib, the flow deflects and another separation happens 
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and a small vortex V4 forms on top of the ribs. The flow does not separate on top of the ribs for 

the round case as the round ribs are streamlined. Hence the vortex V4 is not observed in this case. 

The vortex V2 and V3 are also not prominent for the round ribs due to the same reason. 

 

 

 
(a) 

 
(b) 

Figure 59 Non-dimensional VZ
´ contour plots near the ribs for (a) Sharp ribs (b) Round ribs at 

the plane X/W = 0.5 

 

The contour plots of non-dimensional 𝑉�́� at the different streamwise planes (
𝑋𝑊 = 0.9-0.2) for the 

sharp and round ribs are shown in Figure 60 and Figure 61, respectively. The secondary flow 

vortices are strongly guided by the rib’s inclination. For both the sharp and round cases, the 

inception of the vortex V1 occurs at the intersection of the downstream face of the rib and upstream 

side wall and swirls diagonally toward the downstream side wall. As the vortex V1 moves toward 



131 

 

the downstream side wall, the vortex center moves away from the ribs, causing larger vortex size. 

The isolines 𝑉�́� = 0 (black solid line) show the extent of the vortices. Simultaneously, the other 

vortices, V2 and V3 also grow as those advances toward the downstream side wall in the sharp 

ribs case. However, a slight growth of the vortex V2 and V3 is also detectable for the round ribs. 

Eventually, the secondary flow reaches the downstream side wall and the streamlines impinge on 

the downstream wall and merge with the main flow.  

 

  

  

  

  

Figure 60 Non-dimensional VZ
´ contour plots at different streamwise planes for sharp ribs 



132 

 

 

  

  

  

  

Figure 61 Non-dimensional VZ
´ contour plots at different streamwise planes for round ribs 

 

Figure 58 and Figure 59 show the close view of the recirculation zone in the planes, 
𝑋𝑊 = 0.9 and 

𝑋𝑊 = 0.5, respectively. An isoline 𝑉�́� = 0 (red, broken line) is used to detect the extent of the vortices. 

In the plane 
𝑋𝑊 = 0.9, the recirculation zone V1 is observed to reattach at |𝑍1𝑃 | ~ 0.29 (= 1.29 since 
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the flow is periodically fully developed) for both the sharp and round ribs. However, the 

recirculation zone V1 is seen not to reattach in the plane 
𝑋𝑊 = 0.5 for both the cases. Instead, a 

saddle point observed between the vortex V1 and V3 at this plane. For both the cases, the 

recirculation vortex V1 shows a reattachment for  𝑋𝑊 = 0.9-0.7 planes. The rest of the planes do not 

show reattachment of vortex V1. Rather, the vortex V1 starts to lift off from the wall 
𝑋𝑊 ≤ 0.6. 

Figure 62 displays the comparative size of the vortex V1 at different streamwise planes ( 𝑋𝑊 = 0.9-

0.3) between the sharp and round ribs. The vortices start to dissipate at 
𝑋𝑊 = 0.2. It is clearly 

observed that the vortex V1 grows continuously larger as it travels toward the downstream lateral 

wall. Another observation is that the round ribs cause a slight larger vortex V1 than the sharp ribs 

at the planes 
𝑋𝑊 = 0.8-0.3.  

 

 

Figure 62 Comparative results of the size vortex V1 between sharp and round ribs 
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Figure 63 shows the contour of the Q criterion at the plane 
𝑋𝑊 = 0.8 for both the sharp and round 

ribs. The sharp ribs show high positive Q criterion at the locations for vortices V1, V2, V3, and 

V4. The round ribs case has a high positive value of Q at the core of the vortex V1 only. This also 

verifies the absence (or very weak) of other vortices in the round ribs case.  

 

 

  

Sharp ribs  Round ribs 

Figure 63 Q criterion at the streamwise plane, X/W = 0.8 

 

 
 

Figure 64 Q criterion at the vortex center V1 at different streamwise planes 
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The value of the Q criterion at the vortex V1 core at the different streamwise planes for both the 

sharp and round cases are shown in Figure 64. It depicts that the vortex V1 lose strength (indicated 

by Q criterion) as it travels toward the downstream lateral wall. The round ribs show the higher 

value of Q near the vortex inception location at  
𝑋𝑊 = 0.9; afterward, the vortex V1 loses its strength 

faster for the round ribs than the sharp ribs and both types of ribs show the similar value of Q at 

the other planes.  

 

Figure 65 displays the contour plots of non-dimensional turbulent kinetic energy for both sharp 

and round ribs at the streamwise midplane. Both ribs generate strong separated shear layer behind 

the ribs which starts from the leading edge of the ribs and spread up to ~ |𝑍1𝑃 | < 1.5. The sharp ribs 

have a stronger separated shear layer (TKE ~ 8% of 𝑈𝑏2) than the round ribs on the top of the ribs 

due to the vortex V4 formation on it. Even behind the ribs, the round case possesses lower TKE 

(~ 5% of 𝑈𝑏2) in the shear layer than the sharp ones.  
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Sharp ribs 

 

Round ribs 

Figure 65 Non-dimensional turbulent kinetic energy contour plots at the streamwise midplane 
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Heat Transfer Behavior Analysis 

 

  

(a) Sharp ribs (b) Round Ribs 

Figure 66 Periodically transformed local Nu/Nu0 contour plots at Re ≈ 52,000 

 

The contour plots of local heat transfer augmentation for sharp and round ribs are shown in Figure 

66. As mentioned earlier, the computational domain for numerical studies were consists of one 

pitch only. For a better comprehension, the results are periodically transformed for two more ribs 

and presented in Figure 66. The Nu0 for smooth channel calculated by using Dittus Boelter 

equation is used for normalization.  
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Figure 67 Local Nu/Nu0 contour plots at Re ≈ 52,000 

 

Figure 67 shows the contour plots of local Nu augmentation, 
𝑁𝑢𝑁𝑢0 for the ribbed and the side walls 

of both sharp and round ribs. For both cases, the basic characteristics of the 
𝑁𝑢𝑁𝑢0  distribution are 

very similar to the one ribbed wall case described in the previous chapter. The local heat transfer 

is found to be highly non-homogenous and influenced by the secondary flow induced by the ribs. 

There is a high heat transfer zone is noticed on the ribbed wall near the upstream side wall corner 

in the inter-rib space. This high heat transfer zone is caused due to the inception of the rib induced 

recirculating vortex V1 which improves mixing of the hotter fluid near the wall with the colder 



139 

 

fluid at the core. As mentioned earlier, the reattachment of vortex V1 occurs at 
𝑋𝑊  ≥ 0.7 and shows 

the highest heat transfer augmentation in this zone. Afterward, the secondary vortex V1 does not 

reattach and cannot sweep away the heat from the wall effectively and reduces the heat transfer. 

The maximum Nu augmentation value in the inter-rib space is higher for sharp ribs (
𝑁𝑢𝑁𝑢0 ~ 4.8) 

than the round ribs (
𝑁𝑢𝑁𝑢0 ~ 4.6). It is clearly observed that this high heat transfer zone diverts away 

from the rib diagonally in the direction of the downstream side wall. The progressive contact 

between flow and wall while the secondary flow moves toward the downstream side wall causes 

the convective heat transfer less effective. This results in a reduction in the Nu augmentation value 

in this area toward the downstream side wall. There is a narrow portion of lower 
𝑁𝑢𝑁𝑢0  just behind 

the ribs due to the almost stagnant flow caused by the vortex V2. This lower heat transfer zone 

associated with V2 is more prominent in sharp ribs than the round ribs (especially up to 
𝑋𝑊 = 0.6) 

since the vortex V2 is very small for the latter case.  

 

For the sharp ribs, the highest heat transfer augmentation (
𝑁𝑢𝑁𝑢0 ~ 5.0) occurs at the upper portion of 

the rib’s front surface because of the shear layer impingement. The front face of the round ribs 

also possesses its highest heat transfer augmentation (
𝑁𝑢𝑁𝑢0 ~ 4.9) due to the high local acceleration 

of the flow on the round ribs. These high heat transfer augmentation zones can be seen clearly in 

Figure 68. The top face of the sharp ribs also shows higher heat transfer due to the presence of the 

stronger shear layer caused by the vortex V4. The maximum heat transfer augmentation (
𝑁𝑢𝑁𝑢0 ~ 4.5) 

on the top surface of the ribs is observed near the corner of the rib and the upstream lateral wall. 
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Since the round ribs are streamlined, no such high heat transfer zone is associated with the round 

ribs. 

 

 

  

Figure 68 Local Nu/Nu0 contour plots for ribbed and upstream side wall at Re ≈ 52,000 

 

Table 18 Average heat transfer augmentation for sharp and round ribs at Re ≈ 52,000 

 Average 
𝑁𝑢𝑁𝑢0 

 Ribs Inter-rib space 

Sharp ribs 2.58 2.10 

Round ribs 2.23 2.09 

 

The surface average of local heat transfer augmentation results of the ribs and the inter-rib space 

is tabulated in Table 18 for both types of the ribs. It shows that the average Nu augmentation in 

the inter-rib space is very similar for both cases. As discussed earlier, both types of the ribs cause 
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secondary vortex V1 of similar size and strength (Q criterion). This results in very similar average 

heat transfer augmentation in the inter-rib space. It also implies that the vortex V1 primarily 

dominates the local heat transfer distribution. The other smaller vortices have a minor influence 

on the local heat transfer augmentation distribution on the ribbed wall. 

 

On the downstream side wall, there is an elongated high heat transfer area exists above and behind 

the ribs. The impingement of the streamlines of the main and secondary flow causes this high heat 

transfer area. The sharp ribs show higher heat transfer augmentation in this area (max 
𝑁𝑢𝑁𝑢0 ~ 4.2) 

than the round ribs (max 
𝑁𝑢𝑁𝑢0  ~ 2.7) due to the stronger impingement of the flow caused by the 

sharp ribs. For better comprehension, the contour plots of the non-dimensional 𝑉�́� at a streamwise 

plane 
𝑋𝑊  = 0.02 (~ 1mm away from the downstream side wall) have been shown in Figure 69. The 

velocity 𝑉�́� implies the impingement velocity of the flow on the wall. Note that the negative value 

of 𝑉�́� denotes the flow toward the downstream side wall. It is clearly noticed that the Nu 

augmentation distribution on the downstream side wall is the direct manifestation of the flow 

impingement velocity. The sharp case causes higher impingement velocity than the round one 

which aids in higher heat transfer. A positive 𝑉�́� zone is observed at the bottom of the plane. This 

is caused by the downwash from the flow impingement on the wall, which causes a low heat 

transfer zone. This reverse flow zone is found to be wider for the sharp ribs than the round one. 

The Nu augmentation on the upstream side wall is noticeably lower than the downstream side wall. 

On the upstream side wall, a thin area of high 
𝑁𝑢𝑁𝑢0 is observed near the ribs for both cases. This 
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corresponds to the start of the secondary vortex formation behind the rib (V1). Overall, the round 

ribs cause much lower heat transfer augmentation on this wall than the sharp ribs.  

 

  

Figure 69 Non-dimensional VX
´ contour plot at the streamwise plane at X/W = 0.02 

 

  
Sharp ribs Round ribs 

Figure 70 Location for the polylines 

 

Nu augmentation results on nine different streamwise polylines ( 𝑋𝑊 = 0.9-0.1) on the ribbed wall 

were extracted as shown in Figure 70 for both sharp and round ribs. Note that, the 
𝑁𝑢𝑁𝑢0 data were 



143 

 

extracted only from the inter-rib space and the results are presented in Figure 71 and Figure 72. In 

these figures, the local coordinate 𝑍1 = -1 starts from the downstream point of the ribs for each 

plane. A peak in heat transfer augmentation is observed, especially at the planes 
𝑋𝑊  ≥ 0.7 for both 

the cases. The value of the peak 
𝑁𝑢𝑁𝑢0 decreases as the flow travel toward the downstream side wall.   

   

   

   

Figure 71 Local Nu augmentation along the streamwise polylines for sharp ribs 
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Figure 72 Local Nu augmentation along the streamwise polylines for round ribs 

 

Recall that the main flow goes in -Z1 direction in the Figure 71 and Figure 72. Figure 73 (a) 

presents the average 
𝑁𝑢𝑁𝑢0 along the extracted polylines for both sharp and round ribs. Both sharp 

and round ribs show very similar results for the average heat transfer augmentation. Therefore, the 

average 
𝑁𝑢𝑁𝑢0 in the inter-rib space is very similar for both sharp and round cases which are also 
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shown in Table 18. However, the average heat transfer augmentation for the ribs is higher (~ 

13.5%) for the sharp ribs than the round ribs which results in the overall higher heat transfer 

augmentation on the ribbed wall for the sharp ribs than the round ones.  

 

  

(a) (b) 

Figure 73 Comparative results of (a) Average Nu/Nu0 along the polylines (b) Integrated 

Nu/Nu0 between the sharp and round ribs 

 

Figure 73 (b) presents the comparative results of integrated 
𝑁𝑢𝑁𝑢0 along the streamwise polylines for 

both sharp and round ribs. Integrated 
𝑁𝑢𝑁𝑢0 denotes the total heat transfer augmentation along the 

polylines. Similarly, integrated 
𝑁𝑢𝑁𝑢0 up to the V1 extent indicates the contribution of vortex V1 to 

the total heat transfer augmentation along the polyline. The results are calculated for 
𝑋𝑊 = 0.9 to 0.3 

as the vortex V1 starts to dissipate at 
𝑋𝑊 = 0.2. It is found that the integrated 

𝑁𝑢𝑁𝑢0 along the polylines 

decreases as the flow travel toward the downstream side wall. The integrated 
𝑁𝑢𝑁𝑢0 along the 

polylines and the vortex V1 extent shows a higher value for the sharp ribs than the round ribs. 
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However, the polylines were extracted from the inter-rib space only. For the round ribs, the inter-

rib space, as well as the polylines are smaller due to the presence of rib fillet. Therefore, the average 𝑁𝑢𝑁𝑢0 shows similar values for both the sharp and the round case. As mentioned earlier, the vortex 

V1 becomes larger while it travels from the upstream side to the downstream side wall. 

Consequently, the integrated 
𝑁𝑢𝑁𝑢0 up to the vortex extent continuously increases from 

𝑋𝑊 = 0.9 to 

0.6. Afterward, the integrated 
𝑁𝑢𝑁𝑢0 up to the vortex again decreases as the vortex V1 lifts off and 

loses its strength (low Q criterion) 
𝑋𝑊 ≤ 0.6. Figure 74 shows the contribution of vortex V1 on the 

total heat transfer. It is observed that the contribution of vortex V1 is more for round ribs than the 

sharp ribs.  

 

Figure 74 Contribution of vortex V1 on the total heat transfer 
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CHAPTER 9: CONCLUSION AND FUTURE WORK 

Heat Transfer and Pressure Drop of Sharp and Round Ribs 

Comprehensive comparative studies have been conducted between sharp and round ribs in a wide 

range of Re (6,000-135,000) by both experimental and numerical methods. Experimental results 

show that rounding the ribs’ edges causes lower heat transfer than the corresponding sharp ribs for 

all the Re. The round ribs do not only reduce heat transfer on the ribbed wall but reduce the heat 

transfer on the adjacent side walls as well. At the lowest tested Re (~ 6,000), round ribs and sharp 

ribs possess similar heat transfer. Beyond that, the round ribs result in lower heat transfer than 

sharp ribs with the increasing Re (e.g., at Re ≈ 135,000, round ribs cause ~ 23% lower channel 

average heat transfer). The comparative friction results between sharp and round ribs show that 

rounding the rib corners does not reduce the friction appreciably for the tested blockage ratio. This 

contrasts with the findings with high blockage ratio round ribs, where high reduction of friction 

was reported [12, 7]. However, the current geometry shows that rounding the ribs edges causes 

only a 6% - 9% reduction in friction factor.  

 

Comparative RANS results show that prediction capability of different turbulence model varies 

with the type of the ribs as well as the flow Reynolds numbers. RKE predicts the measured heat 

transfer data for both sharp and round ribs well with a maximum deviation ~ 6% (at Re ≥ 50,000). 

Similarly, SST k-ω also shows very good agreement for the sharp ribs’ measured data (maximum 

deviation ~ 4%). However, this model underpredicts the round ribs’ results by ~ 9% - 13%. On the 

contrary, the v2-f turbulence model hugely overpredicts the heat transfer results for sharp ribs by 
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10% - 17%; however, it shows only 5% - 7% deviation from the experimental average Nu of round 

ribs. 

 

All the turbulence models overpredict the friction for both types of ribs. Among them, RKE and 

SST k-ω show a reasonable prediction for the experimental friction data at higher Re (> 50,000). 

The experimental and CFD results show that thermal performance gradually decreases with the Re 

in both cases. The trend of the experimental curve indicates that the thermal performance of the 

sharp ribs becomes lower than unity at Re ≈ 180,000. On the other hand, thermal performance of 

the round ribs case falls below unity at much lower Re (Re ≥ 90,000).  

Aerothermal Behavior Analysis with Sharp Ribs (One Ribbed Wall Case) 

The detailed flow behavior in a square channel with 45° ribs was studied using both experimental 

and numerical methods. The ribs were applied to one of the walls of the channel. A detail 

benchmarking flow field data at the streamwise midplane in a 45° ribbed channel was acquired 

using stereo PIV technique. The measurements were conducted at a fully developed flow region 

for multiple Re in the range of Re = 10,000-150,000. Numerical studies were performed using 

LES as well as different RANS models at Re ≈ 30k. A detailed comparison has been conducted 

between the experimental data, LES and different RANS models.   

 

The mean velocity and turbulence statistics results show excellent agreement between the 

experimental data and the LES. The rib induced recirculation zone is not visible in the mean 

streamwise velocity contour plot. It is found that the X-Z coordinate system is not a proper 
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representative coordinate system to capture the recirculating structure for the tested channel. To 

capture the recirculating secondary flow structure, a new coordinate system 𝑋´ − 𝑍´ was created. 

The direction of 𝑋´and 𝑍´ is parallel and normal to the ribs, respectively. The contour plots of mean 

velocity in 𝑍´ direction clearly shows a recirculation vortex V1 behind the ribs. This vortex is 

accompanied with another small counter-rotating vortex V2 at the lower corner behind the ribs. 

There are two more vortices V3 and V4 captured. The vortex V3 forms just in front ribs, and the 

vortex V4 forms on top of the ribs. The inception of the vortices happens in the corner of the 

upstream side wall with the trailing edge of the ribs. Then the vortices travel toward the 

downstream side wall diagonally following a spiral path. As the vortex swirls, the center of the 

vortex V1 moves away from the ribs, causing a larger vortex size. The other vortices also grow as 

they travel toward the downstream side wall. Moreover, the vortices lose their strength (indicated 

by Q criterion) as they approach the downstream lateral wall. Among the RANS models, RKE and 

v2-f show good prediction of the mean velocity results, as well as the characteristics of the rib 

induced vortices. However, SST k-ω model shows some non-physical behavior for the rib induced 

vortices, specially at the streamwise midplane.  

 

A strong shear layer behind the ribs is clearly observed both in the experiment, LES as well as 

RANS. A shear layer generates as the flow separation occurs from the rib’s upper surface. The 

shear layer covers almost the full inter-rib space in the streamwise midplane. The maximum 

strength of the shear layer exists from the leading edge of the ribs to the middle of the rib pitch 

(|𝑍1𝑃 | < 1.45). All the RANS models underpredict the strength of the separated shear layer. The v2-

f model shows the reasonably good prediction of the shear layer both qualitatively and 
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quantitatively. The results of the Reynolds stresses show that the flow is highly anisotropic near 

the ribs.  

 

The LES results show excellent compliance with the experimental average heat transfer and 

friction data. The v2-f turbulence model also matches the experimental results very well. An 

attempt is made to correlate the local 
𝑁𝑢𝑁𝑢0 with the flow behavior of the channel. It is observed that 

local heat transfer is highly non-homogenous and influenced by the secondary flow induced by 

ribs. The maximum heat transfer occurs near the top edge of the front wall of the ribs due to 

impingement of the shear layer. There is a high heat transfer zone in the inter-rib space which is 

associated with the vortex V1. There is a narrow portion behind the ribs with lower heat transfer 

associated with the almost stagnant flow caused by the vortex V2. There is also a slightly high heat 

transfer augmentation on the top surface and in front of the ribs associated with vortex V3 and V4. 

On the downstream side wall, there is an elongated high heat transfer area exists above and behind 

the ribs due to the impingement of the of the streamlines of the main and secondary flow. The 
𝑁𝑢𝑁𝑢0 

on the upstream side wall is noticeably lower than the downstream side wall. 

 

The stereo PIV results at different Re are analyzed to see the effect of increasing Re on the 

secondary flows. It is found that the rib induced vortex V1 shrinks toward the upstream rib’s 

trailing edge, yielding in smaller vortex size, as the Re increases from Re = 10,000 to 70,000. The 

size and height of the vortex core remain invariant at Re ≥ 70,000. Re is also found to have a 

significant influence on the rib generated shear layer regarding size and the TKE value.  
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Aerothermal Behavior of Sharp and Round Ribs (Two Ribbed Wall Cases) 

A detailed comparative study between the sharp and the round ribs (two ribbed walls) was 

conducted to see the effect of the round ribs on the aerodynamics as well as the heat transfer 

behavior. The v2-f turbulence model was chosen for the investigation as it matched the 

experimental flow field data for the sharp ribs best among the RANS models. It is found that the 

characteristics of the secondary flow in the two ribbed wall case with the sharp ribs are very similar 

to the one in the one ribbed wall case. The rib induced vortex V1 is detected for both sharp and 

round ribs. The flow does not separate on top of the round ribs and hence the V4 is not observed 

in this case. As the round ribs are streamlined, the vortex V2 and V3 also do not form very 

prominently in this case. The round ribs cause a slight larger vortex V1 than the sharp ribs. Both 

ribs generate strong shear layer behind the ribs which starts from the leading edge of the ribs and 

spread up to the middle of the pitch. The sharp ribs have stronger shear layer than the round ribs 

on the top of the ribs due to the vortex V4 formation on it. Even behind the ribs, the round case 

has lower TKE in the shear layer than the sharp ones.  

 

The distribution of the local heat transfer augmentation in the ribbed wall is found to have similar 

qualitative characteristics for both round and sharp ribs. Both cases show a high heat transfer zone 

in the inter-rib space which is associated with the vortex V1. For the sharp ribs, the highest heat 

transfer augmentation (
𝑁𝑢𝑁𝑢0 ~ 5.0) occurs at the upper portion of the rib’s front surface because of 

the shear layer impingement. The front face of the round ribs also possesses its highest heat transfer 

augmentation (
𝑁𝑢𝑁𝑢0 ~ 4.9) due to the high local acceleration of the flow on the round ribs. The 
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average heat transfer augmentation in the inter-rib space is very similar for both sharp and round 

cases. However, the average heat transfer augmentation for the ribs is higher (~ 13.5%) for the 

sharp ribs which results in the overall higher heat transfer augmentation on the ribbed wall for the 

sharp ribs than the round ones.  

Future Work 

The current study with the lower blockage ratio ( 𝑒𝐷ℎ = 0.0625) finds that the rounding the ribs’ 

edges cause a significant amount of lower heat transfer than the corresponding sharp ribs, 

especially at the higher Re. However, the round ribs do not reduce the friction appreciably. This 

contrasts with the findings with high blockage ratio round ribs [12, 7]. They reported that rounding 

the edges of the ribs do not have a significant effect on the heat transfer coefficient. However, the 

round ribs caused much lower pressure drop compared with the sharp ribs, especially with the 

taller ribs. To understand the effect of the blockage ratio on the round ribs, the author proposes an 

investigation on the comparative aerodynamical as well as the thermal behavior of the round ribs 

at the low and high blockage ratio. Both CFD and experimental approaches can be applied for the 

investigation. 

 

The present study investigates the aerothermal behavior of the round ribs using the v2-f turbulence 

model as it agrees best to the LES and experimental results. To achieve higher accuracy, the author 

proposes applying LES for the aerothermal investigation for the rounded edged ribs.  
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In the manual of the DaVis software, the detail guidelines for the stereoscopic PIV measurement 

is provided. For stereo PIV setup, a symmetrical camera arrangement is recommended to ensure 

higher accuracy in vector calculation. The optimal camera angle for stereo PIV (𝛼1 = 𝛼2) is around 

30°-35°. However, in the current study, a highly asymmetric camera arrangement was required to 

measure the flow field in the inter-rib space where 𝛼1 = 55° and 𝛼2 = 90° as shown in Figure 75. 

This extreme camera angle may result in a bias uncertainty in the stereo PIV measurement. The 

DaVis software provides the random or statistical uncertainties of the vector components 𝑉𝑍, 𝑉𝑌, 𝑉𝑋  based on the Wienke’s correlation statistics method [75, 76, 77]. The random or statistical 

uncertainties are caused due to the particle image size, seeding density, displacements, and shear, 

etc. However, this does not consider the probable bias uncertainties caused by the extreme camera 

angle which can have a considerable contribution to the error in the measurement. The author 

recommends DaVis software to incorporate the bias uncertainties due to the camera angle in the 

uncertainty calculation for stereo PIV.  

 

 

Figure 75 Asymmetric camera arrangement for the current study 
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APPENDIX A: EXPERIMENTAL UNCERTAINTY TREES
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Figure 76 Uncertainty tree for mass flow rate 

 

 

 

Figure 77 Uncertainty tree for Re 
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Figure 78 Uncertainty tree for friction factor 

 

 

Figure 79 Uncertainty tree for Nu 
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APPENDIX B: PIV UNCERTAINTY 
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Figure 80 Uncertainties in PIV experiment at Re ≈ 10k 
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Figure 81 Uncertainties in PIV experiment at Re ≈ 50k 
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Figure 82 Uncertainties in PIV experiment at Re ≈ 70k 
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Figure 83 Uncertainties in PIV experiment at Re ≈ 100k 
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Figure 84 Uncertainties in PIV experiment at Re ≈ 100k 
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Figure 85 Uncertainties in PIV experiment at Re ≈ 150k 
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APPENDIX C: STATISTICAL CONVERGENCE OF LES 
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Figure 86 Statistical convergence of LES 
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Figure 87 Statistical convergence of LES 
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APPENDIX D: 2D PLANER PIV MEASUREMENT
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Figure 88 2D planer PIV measurement set up 

 

 

Loc |𝑍1𝑃 |= 1.21 at the streamwise midplane 

Figure 89 Comparative results of non-dimensional VZ between 2D planer PIV, stereo PIV, 

LES, and RANS models 



169 

 

APPENDIX E: PERMISSION TO USE FIGURE 1 AND  2
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