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ABSTRACT 

Engineering materials and structures are usually subjected to multiaxial stress 

states loading due to geometrical effects, residual stresses, or multi-directional loading. 

Ductile fracture and Extremely Low Cycle Fatigue (ELCF), less than 100 cycles to fail, 

are two common and co-exist failure modes in many engineering structures. However, 

the linkage between these two failure modes under multi-axial loading conditions has 

never been systematically studied. This research summarizes an extensive work of 

experimental and numerical studies of ductile fracture and ELCF under different stress 

states for nickel-base superalloy material “IN718” under room temperature. Specially 

designed specimens and tests were used to achieve desired multi-axial loading conditions. 

Four types of specimens with four different shapes, total of 16 specimens, were tested 

until complete fracture. Two groups of tests were conducted: (a) round bar specimens 

with different notches; (b) plane strain specimens.  Experimental data of force-

displacement curves and strain-life graph were plotted for analysis.  

The first part of this research focuses on a numerical study of monotonic tensile 

loading with different stress states. This part of the investigation deeply studies the 

dependency of the hydrostatic stress (related to stress triaxiality) and the normalized third 

invariant of the deviatoric stress (related to Lode angle parameter) in plastic behavior and 

ductile fracture. Constitutive plasticity model proposed by Bai & Wierzbicki and the 

modified Mohr-Coulomb (MMC) ductile fracture model were adapted with several 

extensions. The plasticity model and ductile fracture criterion were implemented into 

ABAQUS through a user-defined material subroutine (VUMAT). Extensive experimental 
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results are used to calibrate the models.  After setting up the parameter optimization 

during model calibration, the experimental results and numerical simulations were well 

correlated in both plasticity deformation and fracture initiation. A 3D fracture locus of 

Inconel 718 was constructed by knowing the strain at fracture, stress triaxiality, and 

normalized Lode angle of the tested samples.  By introducing a suitable element post-

failure behavior, not only the fracture initiation but also the fracture propagation modes 

are successfully predicted in finite element simulations for monotonic loading. 

The second part extensively investigates ELCF on IN718. The IN718 cyclic 

plasticity behavior and the Bauschinger effect are studied and simulated using the well-

known nonlinear kinematic hardening law by J. L. Chaboche and his co-workers under 

different strain amplitudes and different stress states. Moreover, the Vocé isotropic 

hardening law was applied in combination with the Bai-Wierzbicki plasticity model. The 

Bai-Wierzbicki plasticity model was used to capture the effect of different stress states on 

ELCF based on the stress triaxiality and Lode angle parameters. On the other hand, the 

modified Mohr–Coulomb (MMC) ductile fracture model for monotonic loading was 

extended by a new damage evolution rule to cover the ELCF regime. A new parameter 

was introduced to represent the effect of the cyclic loading at ELCF. The new parameter 

is responsible for capturing the change of non-proportional loading direction between the 

current stress and the backstress tensors. The model explores the underlying damage and 

fracture mechanisms through the equivalent plastic strain evolution under cycling 

loading.  
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Finally, the mechanism linkage between these two failure modes was studied. A 

comparison between the experimental data and the finite element simulation results (by 

Abaqus/Explicit) shows very good correlations. In addition, fractographic examinations, 

analysis, and finite element simulations are presented. 
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CHAPTER ONE: 

 INTRODUCTION 

Mechanical failure can cause fatal incidents or major injuries along with huge 

monetary loss. An example of a tragic major incident pertaining to a mechanical fracture 

and fatigue failure happened in 1968 for the famous RMS “Queen Elizabeth 2” liner. The 

failure occurred during the ship’s maidan voyage from Tail O’ the bank, resulting in a 

severe damage to the 9th stage starboard High Pressure (HP) and the 9th stage port HP 

turbine rotor. The investigation concluded that the failure occurred due to the resonances 

of the blade packet.   

Another major incident occurred in 1983 when a 600 MW turbo-set was restarted 

after a periodic inspection. An explosion happened during the testing stage prior to 

processing the machine to the live service.  The blast investigation shows two complete 

ruptures on the exciter end of the generator shaft in the high-pressure section. It also 

shows beach marks on a broken blade surface in the low-pressure stage. The damage cost 

was estimated to be more than $40 million. These major incidents were attributed to 

fracture in the high-pressure stages and to fatigue in the low-pressure stages [1-3]. 

Nevertheless, the number of mechanical failures significantly decreased in the 

past years due to the enormous amount of research in different failure modes and the 

well-designed components and structures. Many factors can be involved in mechanical 

failures such as time, temperature, corrosion, erosion, impact, and other load types. Each 

factor can be solely a cause of a mechanical failure, or it can be a complex interaction of 

two or more factors. The time factor can be years ( i.e. steel bridges) or milliseconds ( i.e. 
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fire gun cartage malfunctions). The temperature factor may range from cryogenic in 

spaceships to high temperature (over 1000𝑜C) in gas turbine engines. Temperature may 

also vary or remain steady. Corrosion factor may be severe such as exposing a structure 

to a salt water environment or may have negligible effects like in a vacuum.  The load 

factor itself can be separated into many conditions such as static, quasi-static, monotonic, 

cyclic, uniaxial, multiaxial, etc.   

In summary, mechanical failure modes of metals occur in many possible 

scenarios.  However, a large number of studies proposed many plasticity models for 

monotonic and cyclic loading, independently, to understand the material’s behavior under 

different loading conditions [4-22]. In addition, many ductile fracture criteria were also 

developed for both monotonic and cyclic loading [23-30]. Mechanical engineering 

designers often use these models independently to study the metal structure behavior and 

life prediction for each failure scenario separately. Thus, it is more efficient to generate a 

procedural approach with a minimum amount of material parameters to study both 

mechanical failures (fracture and fatigue) which can be carried out by finite element 

analysis packages. For designers, this will save them an enormous amount of money and 

time. Also, more parametric studies will probably lead to improve components or 

structures design.     

1.1 Quasi-Static and Cyclic Loading 

Mechanical failure modes of metals occur in many possible scenarios. However, 

the current dissertation will solely focus the investigation on two types of mechanical 
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failures. The two types of mechanical failures are ductile fracture and metal fatigue. The 

ductile fracture is caused by quasi-static loading. Quasi-static loading is considerably 

slow such that the inertial effects are neglected. A thorough evaluation of Inconel 718 

plastic flow behavior under quasi-static and cyclic loading with ductile fracture modeling 

under different loading conditions is studied. 

The other type of the mechanical failures is fatigue under cyclic loading 

conditions. Fatigue is the process of progressive localized permanent structural change 

occurring in a material subjected to conditions that produce fluctuating stresses and 

strains at some point or points, and that may culminate in cracks or complete fracture 

after a sufficient number of fluctuations [31]. Based on the number of loading cycles to 

failure, fatigue can be divided into three major types: High Cycle Fatigue (HCF), Low 

Cycle Fatigue (LCF), and Extremely Low Cycle Fatigue (ELCF). The definition of the 

transition cycle from one fatigue regime to another is generally vague and varies by the 

material in different sources. For Inconel 718 behavior, many sources consensus the 

transient number of cycles are as in Figure 1 [32-39]. Apparently, the ELCF regime starts 

at 1 cycle to 102 cycles. The HCF regime starts just above 104 cycles whereas LCF 

regime falls in between. The ELCF and LCF regimes are usually characterized by strain-

controlled testing. The stresses in these two regimes are between the yielding stress and 

the ultimate tensile strength. On the other hand, HCF is characterized by stress-controlled 

testing and the loading amplitudes are below the yield stress limit [40]. Studies on cyclic 

loading in this dissertation will only focus on the Extreme Low Cycle Fatigue pertaining 

to high strain amplitudes. 
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Figure 1: A log scale plot illustrating the number of cycles for the fatigue regimes. 

In history, the study of ductile fracture and fatigue were independently studied.  

The need for combining both failure modes arises in the process of designing a structure 

to withstand high stresses or large deformations. One example of this is the seismic 

loading.  In a seismic event, metal structures are assumed to undergo a large plastic 

deformation due to the earthquake’s extreme forces without a significant loss of strength. 

Another example that can combine both scenarios of mechanical failures is blade-out 

failure in a jet engine. Due to the high pressure in a jet engine and the massive centrifugal 

forces, blades are more apt to failures pertaining to abrupt ductile fracture or ELCF 

failures.  
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1.2 Motivations and Objectives 

In real applications, most components and structures are subjected to multiaxial 

loading. These loads may vary in amplitudes and applied under different loading 

conditions. Therefore, in the aircraft-engine design standard, all manufacturers are 

subjected to run severe tests on their engines to examine its integrity. Monotonic and 

cyclic loading tests on the rotor blades are part of these severe tests. The statistics show 

that more than 90% of all mechanical failures are caused by metal fatigue [41]. 

Therefore, more research in studying these two types of mechanical failures is 

increasingly progressing.  

The objective of this research is to build a framework for a metal’s plasticity 

model that can describe the materials’ behavior under multiaxial stresses.  Also, 

predicting the materials’ life by using a damage-based model is another part of the thesis 

objective. The established study will help designers to improve and understand the life 

performance of a simple metal component to complicated metal structure systems.  

1.3 Structure of the Thesis 

The thesis will consists of seven chapters.  Chapter 1 expresses the introduction, 

motivations, and objectives of the research. Chapter 2 involves a literature review of the 

metal plasticity material models and fundamentals for both monotonic and cyclic 

loadings. Four research papers were published in accordance with this research. These 

papers will be included in chapters 3 to 6. Each chapter will present a single research 
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paper.  Finally, chapter 7 shows the comprehensive Ph.D. research conclusion and the 

suggested future work. The contents of each chapter are summarized as follows. 

CHAPTER 1:  A brief introduction about quasi-static and reversal loading followed by 

the motivation and objectives. 

CHAPTER 2: An extended literature review of the theory of metal plasticity and a 

thorough overview of the phenomenological and current metal plasticity 

models. In the end, two summary tables of the metal plasticity models and 

ductile fracture models assist in a fast tracking. 

CHAPTER 3: Paper I: M. Algarni, Y. Jia, J. Karl, A. P. Gordon, Y. Bai, M. The 

Minerals, et al., "Linkage between Ductile Fracture and Extremely Low 

Cycle Fatigue of Inconel 718 Under Multiaxial Loading Conditions," in 

TMS2015 Supplemental Proceedings, ed: John Wiley & Sons, Inc., 2015, 

pp. 1023-1030.  

CHAPTER 4: Paper II: Algarni, Mohammed, Yuanli Bai, and Youngsik Choi. "A study 

of Inconel 718 dependency on stress triaxiality and Lode angle in plastic 

deformation and ductile fracture." Engineering Fracture Mechanics 147 

(2015): 140-157.  

CHAPTER 5: Paper III: Algarni, M., and Yuanli Bai. "A unified material model for 

multiaxial ductile fracture and extremely low cycle fatigue of Inconel", 

ready to be submitted to IJ Fatigue in fall 2016. 

CHAPTER 6: Paper IV: M. Algarni, Y. Bai., “Extremely Low Cycle Fatigue Damage 

Mechanism, Fractographic Examination, And Life Prediction," in 
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Materials Science & Technology Conference and Exhibition 2016; 

Supplemental Proceedings, Salt Lake City, Utah, USA, publication due in 

October 2016.  

CHAPTER 7: Conclusion and future work.  
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CHAPTER TWO: 

 LITERATURE REVIEW 

This chapter will cover a brief overview of the early and current ongoing research 

related to fracture and ELCF. It will then address the most phenomenological metal 

plasticity and ductile failure models. Accordingly, a list of coupled and non-coupled 

plasticity models and ductile failure criteria will be thoroughly explained to set a strong 

background to help understand the succeeding chapters.  The first section (2.1) covers a 

comprehensive literature review to show the current state of the art of fracture and ELCF. 

The second section (2.1) starts with an explanation of the principle stresses to show how 

they represent a yield surface. Since most yield functions are functions of the stress 

invariant, an extended explanation of stress invariants space is described. After that, the 

most phenomenal plasticity and fracture models for continuum mechanics are listed. All 

these models assume the material isotropy, homogeneous and behave in an elastic-plastic 

behavior. A list of isotropic hardening and kinematic hardening models for reversal 

loading are described in section (2.2.5.3). Isotropic hardening controls the yield surface 

expansion or shrinkage whereas the kinematic hardening only translates the yield surface 

in the stress space. Section (2.4) shows the fundamentals of fatigue strain-life and the 

underlying models used. 

2.1 Ductile Fracture and Extremely Low Cycle Fatigue 

Ductility is defined as the ability of a material to accept large amounts of plastic 

deformation without crack [42]. Bai and Wierzbicki [4] have proposed a new model for 
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metal plasticity and ductile fracture that includes the effect of the hydrostatic pressure 

(related to the stress triaxiality) and the effect of the third invariant of the deviatoric stress 

tensor. The effect of the hydrostatic pressure is responsible for controlling the size of the 

yield surface whereas the effect of the third invariant of the stress deviator is responsible 

for the shape of the yield surface [43]. An efficient numerical integration algorithm for 

this model was presented in Ref. [44], where the simulation results in finite element (FE) 

analysis  are satisfactory.  

Decades ago, McClintock [45], Rice and Tracey [46], Hancock and Mackenzie 

[47], Hancock and Brown [48] have showed that ductile fracture is a function of the 

hydrostatic pressure (stress triaxiality). As a result, the Johnson-Cook ductile fracture 

model [26] was provided and widely used. On the other hand, many ongoing numerical 

and experimental studies on ductile materials have verified that a new parameter (along 

with the stress triaxiality) needs to be considered in predicting the ductile fracture. This 

parameter is the third invariant of deviatoric stress tensor (which is related to the Lode 

angle). It plays a crucial role in providing a better fracture prediction along with the stress 

triaxiality [4, 5, 7, 8, 25, 49-55]. These intense research works showed a decisive relation 

of the Lode angle to predict correctly ductile material failure. An extension of the 

classical Mohr-Coulomb fracture criterion was postulated in Ref. [25] under assumption 

of proportional loading and asymmetric metal plasticity (considering both the pressure 

sensitivity and the Lode angle dependence).  This model predicts shear fractures as well 

as tensile cracks under multiaxial loading conditions. Over the past few years, this model 
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has been successfully applied to various applications, especially the metal sheet ductile 

fracture [6, 38, 56-60]. 

Inconel 718 was tested to calibrate a multiaxial constitutive model that accounts 

for the strength-differential [61]. The term “strength-differential” means different plastic 

flow behavior under uniaxial tension and uniaxial compression. This multiaxial 

constitutive model differs from the classical metal plasticity by adding all three stress-

invariants in its yield function. This promising model is a general form of Durcker [62] 

and Drucker-Prager  [63] models. The plastic deformation behavior of Inconel 718 at 

different strain rates was studied in Refs. [64, 65] and [66] using the Johnson-Cook (J-C) 

constitutive relation [10]. Nevertheless, the J-C plasticity model does not take the stress 

triaxiality ratio nor the Lode angle into account.  A study was reported in Ref. [67] to 

investigate the effect of superimposed hydrostatic pressure using a pressure vessel. The 

pressure used ranges from 210 to 630 MPa using Ar gas. It was concluded that the 

plasticity of Inconel 718 is independent of superimposed ambient hydrostatic pressure.  

Recently, Inconel 718 is tested to validate a coupled elastoplastic-damage 

constitutive model with Lode angle dependent failure criterion by Eric and Galvez [9]. 

This model introduced a new factor, called the weakening function, to the classical 

Johnson-Cook relationship [10]. It was shown that the combination of a Lode angle 

dependent failure criterion with weakened constitutive equations is necessary to predict 

fracture patterns of the mechanical tests performed and provided reliable results. The 

same research group [68] investigated the ductile failure of Inconel 718 superalloy under 
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quasi-static and impact loading using the proposed hardening model and the coupled 

elastoplastic-damage constitutive model with failure criterion [9].  

In comparison, this dissertation will study the plasticity and ductile fracture of 

Inconel 718 using the recent uncoupled continuum plasticity model proposed by Bai and 

Wierzbicki [4] and the modified Mohr-Coulomb (MMC) ductile fracture criterion [25]. 

Mechanical tests under different stress states are designed and conducted. Numerical 

simulations are set up using ABAQUS/explicit to provide information when direct 

measures are not possible.  

2.2 Metal Plasticity and Ductile Fracture 

A comprehensive explanation of some phenomenological and current metal 

plasticity and ductile fracture models is explained here.  Fundamental concepts of solid 

mechanics (i.e. deviatoric stresses and stress invariants), yielding criteria, and uncoupled 

and coupled damage-plasticity models are described in the coming sections to establish a 

solid ground that will assist in comprehending the methodology and terminologies in this 

dissertation.  

2.2.1 Principal Stress Space 

Any state of stress [𝑖𝑗] can be described in terms of three principal stresses 

denoted by 1,2 , 𝑎𝑛𝑑 3 . These principal stresses form the cartesian coordinate system 

in a principal stress space where 1 ≥ 2 ≥ 3 . The equation of the -plane in the 

principal stress state is  1 + 2 + 3 = 0 (see Figure 2). Accordingly, a stress tensor 
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𝑖𝑗  can be represented in a vector |𝑂𝑃⃗⃗ ⃗⃗  ⃗| in the principal stress space that starts from the 

origin 𝑂 (0, 0, 0) and ends at an arbitrary point 𝑃 ( 1,2 ,3 ). The image of the vector |𝑂𝑃⃗⃗ ⃗⃗  ⃗| on the -plane is called |𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  | and represent the deviatoric stress of the stress tensor 

by the definition [𝑆𝑖𝑗] = [𝑖𝑗 ] + 𝑚[𝐼] where 𝑆𝑖𝑗, 𝑚 , and 𝐼 are the deviatoric stress 

tensor, mean stress and the identity tensor, respectively. In addition, the image of the 

stress tensor |𝑂𝑃⃗⃗ ⃗⃗  ⃗| on the cylindrical shape is |𝑂𝑂′⃗⃗⃗⃗ ⃗⃗  ⃗| and lies on a hydrostatic axis that has 

a direction of ( 1√3 , 1√3 , 1√3), where all 1,2 ,3  are equal. The -plane of an isotropic 

material represents its yield surface and its failure criterion shape is written 

as 𝑓( 1,2 ,3 ) = 0. Thus, when yielding happens at any stress state {1,2 ,3 }, it 

must also yield for {2,1 ,3 } or {3,2 ,1 } as in Figure 3. Hence, the yield surface 

should be symmetric about 1 axis. By applying the same logic, the yield surface (-

plane) must be symmetric about 2 and 3 axes.  This leads us to image a yield surface 

of six-fold symmetric segments of 60o which represents the six possible ordering of the 

principal stresses state. In view of that, any point (or stress state) on the yield surface has 

six symmetry points on each segment. The yielding of any isotropic material occurs once 

the stress tensor lies on the yield surface. [69]  
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Figure 2: Imaginary yield surface in the space of principal stresses. 

 

Figure 3: Arbitrary  plane of an isotropic material symmetry yield surface 
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2.2.2 Stress Invariant Representation 

The three stress invariants ( 𝐼1, 𝐼2 , 𝐼3 ) can also represent a yield function  𝑓( 𝐼1, 𝐼2 , 𝐼3 ) = 0 based on the principal stresses. As mentioned before, the most common 

yield criteria are functions of the stress invariants. Nonetheless, a relative recent 

combination of invariants are extensively used in yield functions in recent ongoing 

researches. The combinations of invariants are 𝑓(𝐻,  ̅  ,  ) = 0 where 𝐻  is the 

hydrostatic stress,  ̅  is the von-Mises equivalent stress, and  is the Lode angle. The 

hydrostatic stress 𝐻  is based on the stress tensor whereas  ̅  and  are based on the 

deviatoric stress tensor. These combinations of invariants can be expressed by the 

following equations: 

𝐻 = 13  𝐼1 = 13  𝑡𝑟([]) =   13  (1 + 2 + 3)      ( 1 ) 

  ̅   =  √3𝐽2 =  √32  [𝑆] ∶ [𝑆] =  √12 [(1 − 2)2 + (2 − 3)2 + (3 − 1)2]   ( 2 ) 

 𝑐𝑜𝑠(3)  =   (3√3 𝐽32 𝐽23/2)  =   (27 𝐽32 ̅3 )      ( 3 )  

 𝐽2 =  12  [S] ∶ [S] =  12 ( 𝑆12 + 𝑆22  +  𝑆32 )   ( 4 )  

 𝐽3 =  13  tr([𝑆])3 =  𝑆1 𝑆2  𝑆3      ( 5 ) 

 The hydrostatic stress controls the elevation of the -plane along the hydrostatic 

axis. Since 𝐽2 and 𝐽3 cannot be easily interpreted on the -plane, we use the Lode angle  

parameter instead to describe the stress state. The Lode angle  is a function of 𝐽2 and 𝐽3. 

The Lode angle is the angle between  |𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  | and the closest principal axis. Therefore, the 

range of the Lode angle is − /6 ≤   ≤  /6. The Lode angle can be normalized and 
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known as the normalized Lode angle ( ̅) that range from -1 ≤  ̅ ≤ 1. Finally, Stress 

triaxiality () is a dimensionless hydrostatic pressure used to relate the elevation angle of |𝑂𝑃⃗⃗ ⃗⃗  ⃗| to the -plane [43, 70].  Stress triaxiality is defined by  

 =   𝐦
̅
=  √𝟐𝟑  |𝐎𝐎′⃗⃗⃗⃗⃗⃗ ⃗⃗ ||𝐎′𝐏⃗⃗ ⃗⃗ ⃗⃗  ⃗|       ( 6 )  

  ̅ = 1 − 6


       ( 7 )  

By using these parameters ( ,  ̅), one can uniquely characterize several stress 

state specimens that are used for plasticity and fracture tests. The characterization using 

analytical values are shown in Table 1 and represented on  and  ̅ map in Figure 4. 

Table 1: The characterization of classical specimens for plasticity and fracture tests [4]. 

No. Specimen Type   ̅ 
1. Smooth round bars, tension 1/3 1 

2. Plastic plane strain, tension √3/3 0 

3. Torsion or shear 0 0 

4. Cylinders, compression −1/3 −1 

5. Equi-biaxial plane stress tension 2/3 −1 

6. Equi-biaxial plane stress compression −2/3 1 

7. Plastic plane strain, compression  −√3/3 0 
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Figure 4. Different stress states on   and  ̅  map [4]. 

2.2.3 Isotropic Yield & Damage Criteria 

Most metals are significantly homogenous in properties due to it polycrystalline 

microstructure. This makes most metals classified as isotropic. The most common 

yielding criteria applied to metals are independent of the hydrostatic stress/pressure 

(𝐻 = −𝑝 =  13  𝐼1)  [71, 72]. The hydrostatic stress becomes necessary when yielding 

criteria is applied to rocks, soils, and concrete [73]. For the sake of simplicity, yielding 

criteria based on the hydrostatic stress (i.e. Drucker-Prager criterion [74]) will not be 

considered here in the literature review chapter nor in this dissertation. 
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2.2.3.1 Tresca Yield Criteria 

The Tresca yield criteria is historically the oldest. It was found in 1864 and it 

embrace the assumption that material yield onset when the maximum shear stress attains 

a particular value of 𝐾( ) where 𝐾( ) is the shear yield stress function of an internal 

variable [75].  

𝑚𝑎𝑥 = 12  (1 − 3)      ( 8 ) 

12  (1 − 3) = 𝐾( )      ( 9 ) 

where 1 and 3 are the maximum and minimum principal stress, respectively. Since the 

uniaxial yield stress 𝑌( ) is equal to 2𝐾( ), the Tresca yield criterion can be described 

as: 𝑓(,  ) =  (1 − 3) − 𝐾( )      ( 10 ) 

and may also be described in terms of   𝐽2 and Lode angle ( ) as follows:  𝑓(𝐽2,  ) =  2√𝐽2 cos − 𝐾( )     ( 11 ) 

The projection of the Tresca yield surface in the -plane (see Figure 5 and Figure 

6) is a hexagonal shape and a hexagonal prism in the principal stress space with a 

longitudinal axis laying on the hydrostatic axis [73]. 
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Figure 5: The Tresca criterion in the π-plane [73] 

 

Figure 6: The Von Mises and Tresca yield surfaces in 3D stress space. [73] 
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2.2.3.2 Von Mises Yield Criteria 

At the beginning of the 20th century (1913), von-Mises proposed his 

phenomenological yield criterion [76]. He proposed a new model that only depends on 

the second deviatoric invariant  𝐽2  and he postulates that yielding onsets when  𝐽2  equals 

a yield stress function  𝐾( ) of an internal variable. Hence, von-Mises is globally known 

as  𝐽2  plasticity, referring to second deviatoric invariant.  A simple example of a uniaxial 

stress state will be used to explain the yielding function. The uniaxial stress state tensor 

and its deviatoric stress tensor are shown in matrices in the following respectively. 

 =  [ 0 00 0 00 0 0]       ( 12 ) 

′ = [   
 23 0 00 −13  00 0 −13 ]  

        ( 13 ) 

By the definition,  𝐽2 = 1 3⁄   2 the yield function for the uniaxial stress state is: 𝑓(,  ) =   ̅() − 𝑌( )     ( 14 ) 

where 𝑌( ) =  √3𝐾( )   in a uniaxial yield stress and  ̅() in the von Mises 

(equivalent) stress defined as: 

 ̅ = √12 [(11 − 22)2 + (22 − 33)2 + (33 − 11)2] + 6[ 𝜏122 + 𝜏232 + 𝜏312  ]  ( 15 ) 

 The form of the von-Mises yield surface in the 𝜋-plane is a circle with a √3 𝐽2   
radius and shape in a cylindrical form in the principal stress space with a longitudinal 

axis laying on the hydrostatic axis as in Figure 6 and Figure 7 [73]. 
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Figure 7: The Von Mises criterion in the π-plane. [73] 

2.2.3.3 Isotropic Damage 

Any internal degradation of a continuum solid is referred as damage. This 

definition applies in continuum mechanics. The forms of damage can be micro-voids, 

cavities, or micro-discontinuities, in general. Since 1950 and on, scientists are trying to 

represent the damage physically and to attempt to quantify the damage in the laws of 

continuum mechanics. The first effort to study and quantify internal damage by 

presenting a scalar that represent damage was by Kachanov [77]. He introduced the idea 

of measuring internal damage by internal variable factors such as the equivalent plastic 

strain Ɛ̅𝑝𝑙 without explaining the damage physical meaning. Years later, Rabotnov [78] 

measured the damage in creep failure due to an internal voids or cracks in the micro-level 

in a simple way. His proposal was to calculate the damage 𝐷 by determining the 

reduction of the cross section area due to the micro-voids as: 
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𝐷 =  𝐴− 𝐴𝑜𝐴        ( 16 ) 

 where  𝐴𝑜 and 𝐴 are the initial cross section area and the effective load bearing areas of 

the virgin and damaged materials, respectively [79]. The damage parameter  𝐷 ranges 

from 0 ≤ 𝐷 ≤ 1, where 𝐷 = 0 is for a virgin material and 𝐷 = 1 is when the material 

shows no resistance to load (see Figure 8). In addition, damage evolution is an 

irreversible process. 

 

 

Figure 8. A schematic illustration showing the ductile damage in metals. (a) Virgin 

material, (b) Nucleation growth of microscopic cracks and voids, (c) voids coalescence 

and macroscopic fracture.  

Since it was plausible to define the damage parameter, the applied original 

undamaged uniaxial stress 𝜎 can be replaced by the effective softened flow stress �̃� 

where  �̃� =  𝜎1−𝐷       ( 17 )  
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The idea of applying the damage parameter to continuum mechanics was strongly 

valid throughout the years. Therefore, any continuum constitutive model that includes 

internal parameters of density or defects will be known as Continuum Damage 

Mechanics (CDM). In elasto-plastic theory, the damage parameter takes into account the 

principle of the strain equivalence that makes it a ductile isotropic variable in metals [79-

81]. The approach explained above is essentially for isotropic materials. Anisotropic 

materials damage variable is formed in a fourth-order non-symmetric tensor instead of a 

scalar. This dissertation will solely focus on damage variable for isotropic materials for 

the sake of simplicity.  

2.2.4 Uncoupled Continuum Material Models 

The uncoupled ductile material models do not incorporate damage accumulation 

the elastoplastic plastic constitutive equation. Therefore, damage accumulation affects the 

failure only in the uncoupled ductile continuum material models. In other words, 

plasticity behavior and failure criteria are independent. On the other hand, damage 

accumulation is incorporated in the elastoplastic model. Thus, damage accumulation 

affects the elastoplastic and failure in the coupled continuum material models. Example 

of this is shown below for coupled models  𝑓 =  √3 𝐽2 −   (Ɛ̅𝑝𝑙)      ( 18 ) 

and the below equation for uncoupled models.  𝑓 =  √3 𝐽2 −   𝑤(𝐷)  (Ɛ̅𝑝𝑙)     ( 19 ) 
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Note that weakening function 𝑤(𝐷) is based on the internal damage of the 

material. It is noteworthy to mention that damage accumulation for ductile materials is 

based on the plastic strain accumulation 𝐷 (Ɛ̅𝑝𝑙). 
In the research domain, the most used models are the uncoupled material models. 

The foremost advantage of the uncoupled material models is that they are relatively easy 

to calibrate because of its independence of the weakening function (damage 

accumulation). In other words, the loading stress update is independent of the weakening 

due to the internal damage process. 

In this dissertation, von-Mises yield function will be used to exhibit the material 

models. In addition, the development yield surface will be controlled by the isotropic 

hardening functions. From now on, the internal variable parameter ( ) that was used 

before will be assigned as the equivalent plastic strain  (Ɛ̅𝑝𝑙) as the following: 

Ɛ̅𝑝𝑙 = √23  Ɛ𝑝𝑙 ∶   Ɛ𝑝𝑙        ( 20 ) 

.The general scenario (flow potential) to explain the elasto-plastic behavior of a 

material is as:  𝑓( 𝐽2 , Ɛ̅𝑝𝑙)  =  √3 𝐽2 −   (Ɛ̅𝑝𝑙)     ( 21 ) 

Since we mentioned before that it was more convenient to use the stress triaxiality 

  and Lode angle parameter  ̅ , the general flow potential becomes is as:  𝑓( 𝐽2, Ɛ̅𝑝𝑙, ,  ̅) =  √3 𝐽2 −   (Ɛ̅𝑝𝑙, ,  ̅ )   ( 22 ) 
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2.2.4.1 Johnson-Cook Model 

Johnson-Cook (or J-C) plasticity model is the most phenomenological model in 

most applications [10].  This is because it considers the strain rate phenomena and the 

effect of the thermal softening. The potential flow is as: 𝑓 =  √3 𝐽2 −   (Ɛ̅𝑝𝑙, Ɛ̇̅𝑝𝑙∗  , 𝑇∗ )      ( 23 ) 

The J-C model consist of three terms: the isotropic plastic strain hardening, the 

effect of strain rate ( Ɛ̇̅𝑝𝑙 ), and the effect of temperature.  Each term is independent of the 

others. The J-C model is shown below:  

 (Ɛ̅𝑝𝑙, Ɛ̇̅𝑝𝑙∗  , 𝑇∗ ) = [𝐴 + 𝐵 Ɛ̅𝑝𝑙𝑛 ] [ 1 + 𝐶 ln Ɛ̇̅𝑝𝑙∗ ] [ 1 − 𝑇∗𝑚]    ( 24 ) 

where the constants 𝐴, 𝐵, 𝑛, 𝐶, 𝑎𝑛𝑑 𝑚 are material constants, and Ɛ̇̅𝑝𝑙∗  , 𝑎𝑛𝑑 𝑇∗ are 

dimensionless plastic strain rate and homologous temperature, respectively.  

Ɛ̇̅𝑝𝑙∗ =  Ɛ̇̅𝑝𝑙 Ɛ̇𝑜        ( 25 ) 

𝑇∗ = ( 𝑇− 𝑇𝑟)( 𝑇𝑟− 𝑇𝑚)        ( 26 ) 

The reference strain rate, current temperature, room (reference) temperature, and 

melting temperature are the following parameters  Ɛ̇𝑜 , 𝑇 , 𝑇𝑟 , 𝑎𝑛𝑑 𝑇𝑚 respectively.  This 

model can be seen extensively built-in in many finite elements code. The internal variable 

parameter ( ) for J-C model is  Ɛ̅𝑝𝑙, Ɛ̇̅𝑝𝑙∗  , 𝑇∗.  
J-C damage model [26] was developed two years after J-C plasticity model. It is 

an accumulation law of three independent parameters: equivalent plastic strain 

rate  ( Ɛ̇̅𝑝𝑙  ), stress triaxiality  , and temperature  𝑇 as follows: 
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Ɛ̅𝑝𝑙𝑓  ( ,   Ɛ̇̅𝑝𝑙  ,   𝑇 ) = [ 𝐷1 + 𝐷2 exp(𝐷3 )] [1 + 𝐷4 ln Ɛ̇̅𝑝𝑙∗  ] [1 + 𝐷5 𝑇∗]   ( 27 ) 

where 𝐷1, 𝐷2 , 𝐷3 , 𝐷4 ,  𝐷5, 𝑎𝑛𝑑 𝐷6  are material constants that needs to be calibrated. 

The first term in Ɛ̅𝑝𝑙𝑓  is similar to the Hancock and Mackenzie model [47] which is based 

on Rice and Tracey model  [46]. The second and third term presents the fracture strain Ɛ̅𝑝𝑙𝑓  dependency on strain rate and temperature.   

J-C damage evolution law is expressed in a numerical simulation code by: 𝑑𝐷 = 1Ɛ̅𝑝𝑙𝑓  ( ,   Ɛ̇̅𝑝𝑙  ,   𝑇 )   Ɛ̇̅𝑝𝑙       ( 28 ) 

 The accumulation damage (D) is in an integration form as shown below: 

𝐷 =  ∑ 1Ɛ̅𝑝𝑙𝑓  ( ,   Ɛ̇̅𝑝𝑙  ,   𝑇 )   ∆Ɛ̅𝑝𝑙 Ɛ̅𝑝𝑙𝑓0     ( 29 ) 

 The damage parameter 𝐷 starts at zero for a virgin material and accumulates 

damage by means of Ɛ̅𝑝𝑙𝑓   until 𝐷 reaches unity where the material shows no resistance to 

load and accordingly fracture occurs.  

2.2.4.2 Wilkins’ et al. Material Model 

Wilkins et al. [82] proposed a strain hardening function that incorporates a scalar 

parameter 𝐴 that acts in a same way as the Lode angle parameter. Their 𝐴 parameter 

assist in modeling the function of different flow stresses in pure shear and in tension. In 

addition, it assist in modeling all the stresses in-between.  Their 𝐴 parameter ranges from 0 ≤ 𝐴 ≤ 1 is expressed in terms of the deviatoric principle stresses: 𝐴 = max (𝜎2′𝜎3′  ,   𝜎2′𝜎1′)       ( 30 ) 
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This model distinguish between two kinds of stress loading: the asymmetric 

loading or pure shear represented by 𝐴 = 0 and the symmetric loading or uniaxial 

tension/compression represented by 𝐴 = 1 as in Figure 9. This model uses the equivalent 

strain hardening to describe the stress flow as: 

 (Ɛ̅𝑝𝑙 , 𝜃  ) =   (Ɛ̅𝑝𝑙  , 𝐴) =  𝑡  (Ɛ̅𝑝𝑙) 𝐴𝜆 + 𝑠 (Ɛ̅𝑝𝑙) ( 1 − 𝐴𝜆)    ( 31 ) 

where 𝑡 is the equivalent strain hardening functions for uniaxial tension/compression 

and 𝑠 is the equivalent strain hardening functions for pure shear/torsion. The power  𝜆  is 

a material parameter for adjusting the yield surface. Note that when 𝜆 is 1, it acts as the 

known 𝐽2 palasticity.  

 

Figure 9: Defenition of the parameter A that depends on the stress state [83]. 

As for their damage model, plastic strain history controls the model's evolution 

law along with two separable weighting functions. Their damage model evolution law 

acts as: 
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𝑑𝐷 = 𝑤1(𝑝) 𝑤2(𝑝) dƐ̅𝑝𝑙       ( 32 ) 

where 𝑤1(𝑝) is the hydrostatic pressure weighting function and  𝑤2(𝑝) is the 

asymmetric-strain weighting function. 𝑤1(𝑝) =  ( 11+𝑎𝑝)𝛼       ( 33 ) 

𝑤2(𝑝) =  (2 − 𝐴)𝛽       ( 34 ) 

where 𝑎, 𝛼 𝑎𝑛𝑑 𝛽  are positive material constants. The hydrostatic pressure (𝜎𝐻 = −𝑝) 
is represented by 𝑝.  

2.2.4.3 Bai-Wierzbicki Model 

A plasticity model that incorporates effects of strain hardening, hydrostatic 

pressure , and the Lode angle dependence  ̅ was proposed by Bai and Wierzbicki [4]. 

The concept of introducing the hydrostatic pressure  in a hardening function was 

introduced earlier in [63, 84-87]. The potential flow is as:  𝑓 = √3 𝐽2 −   (Ɛ̅pl , , ) = 0    ( 35 ) 

The Bai and Wierzbicki model is expressed as: 

 (Ɛpl , , ) =  (Ɛ̅pl)[1 − c (− o)] [cs + (cax − cs) (− m+1m+1)]  ( 36 ) 

cax  =  {ct     for ̅ ≥  0cc    for ̅  ˂  0      ( 37 ) 

The first term is isotropic strain hardening function (see section 2.3.1 for more 

about isotropic hardening function). The second term is the effect of the hydrostatic 

pressure on yield where c is a material parameter, which needs to be calibrated. The 
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other parameter o is the reference value of stress triaxiality from the reference test. So if 

the tensile test was calibrated base on smooth round bar, o = 1/3, and o= -1/3 for 

cylindrical specimen compressive test, o = 0 for torsion test and so on. The third term in 

this model is the Lode dependence. The Lode angle term consists of four material 

constants cs, ct , cc, and 𝑚 that needs to be calibrated. The terms cs, ct , cc  are relative 

and at least one of them equals one. This depends on the type of the calibration test when 

calibrating the strain hardening function. The parameter  is the strength difference 

between von Mises and Tresca in the deviatoric stress plane.  The parameter  is 

expressed as: 

 = 6.4641 [sec ( −  /6) − 1]    ( 38 ) 

After modification and normalization, the range of  is 0 ≤  ≤ 1. In axial 

symmetry and plane strain conditions, the parameter  is 1.0 and 0.0, respectively. This 

model yield surface can breakdown into other famous yield criteria by setting the 

constants, see Table 2.  

Table 2. Contansts setting to attain different well-known yield surfaces.  

 Yield Criterion 𝐜 𝐜𝐭  𝐜𝐜 𝐜𝐬 𝐦 

Von-Mises [76] 0 0 0 0 0 

Tresca [75] 0 0.866 1 1 +  

Dracker-Prager [63] ≠ 0 0 0 0 0 

Pressure-modified Tresca [88] ≠ 0 0.866 1 1 +  
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The damage accumulation rule is similar to what was seen in J-C model. 

However, the damage accumulation here is based on the stress triaxiality  and the 

normalized Lode angle  ̅.  Their fracture locus function has six material constants  𝐷1,𝐷2, 𝐷3, 𝐷4, 𝐷5, 𝐷6 that need to be calibrated.  

𝐷 =  𝐷 (Ɛ̅𝑝𝑙) =  ∫ 𝑑Ɛ̅𝑝𝑙�̅�𝑓( ,̅)Ɛ̅̅𝑝𝑙0      ( 39 ) 

Ɛ̅𝑝𝑙𝑓  (  ,  ̅ ) =  12 [( Ɛ̅𝑝𝑙𝑓(+) + Ɛ̅𝑝𝑙𝑓(−)) − Ɛ̅𝑝𝑙𝑓(0) ]   ̅2 + 12 ( Ɛ̅𝑝𝑙𝑓(+) − Ɛ̅𝑝𝑙𝑓(−))  ̅ +  Ɛ̅𝑝𝑙𝑓(0) = 12  [( 𝐷1𝑒−𝐷2 + 𝐷5𝑒−𝐷6) − 𝐷3𝑒−𝐷4  ]  ̅2 + 12  ( 𝐷1𝑒−𝐷2 − 𝐷5𝑒−𝐷6)  ̅ + 𝐷3𝑒−𝐷4 
            ( 40 ) 

The term Ɛ̅𝑝𝑙𝑓(+) shows the fracture locus of the axial symmetric in deviatoric 

tension ( ̅ = 1). The term Ɛ̅𝑝𝑙𝑓(−) shows the fracture locus of the axial symmetric in 

deviatoric compression ( ̅ = −1). The term Ɛ̅𝑝𝑙𝑓(0) shows the fracture locus of the shear 

or plane strain in deviatoric tension ( ̅ = 0). A geometrical representation of this fracture 

locus in the 3D space is shown in Figure 10. 
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Figure 10. A 3D asymmetric fracture locus of Bai & Wierzbicki model [4] 

2.2.5 Coupled Continuum Material Models 

The damage-coupled models incorporate a parameter that represents damage 

accumulation (material degradation) in the elastoplastic model. Each model has its 

distinctive approach to representing the internal variables of degradation. These internal 

variables may be load-carrying area, void volume fraction, or distribution of microvoids. 

As mentioned earlier, the internal damage accumulation is due to voids nucleation, voids 

growth, and voids coalescence (crack propagation) in the micro level as seen in Figure 8.  

In comparison to uncoupled models, damage-coupled models are not easy to 

calibrate and, therefore, time-consuming. Setting their material constants requires number 

of experiment tests and data for a better calibration results. The advantages of the 

damage-coupled models over uncoupled models are that it well predicts the material 

failure occurrence. Many phenomenological coupled models showed significant success 

in martial behavior plasticity and failure simulations.  For simplicity, the coming 
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subsections will demonstrate simple coupled models to set a solid background for the 

reader to visualize the effect of the internal damage on the yielding onset, plasticity 

behavior, and failure mode. The reader is advised to review the following historical 

references to know more about coupled models [45, 46, 80-82, 89-100].  

2.2.5.1 Modified Johnson-Cook Model 

The Johnson-Cook model was modified in 2001 by Børvik et al. [101]. They 

coupled the J-C plasticity model with an internal variables damage function and adopted 

the same well-known 𝐽2 yield function: 

𝑓( ,  𝐽2, 𝐷)  =  √3 𝐽2( �̃̅�, 𝐷) −   (Ɛ̅𝑝𝑙, Ɛ̇̅𝑝𝑙  , 𝑇   )   ( 41 ) 

They presented the internal variables of the damage function as the equivalent 

plastic strain ( Ɛ̅𝑝𝑙) and damage  (𝐷). The damage evolution rule is expressed in: 

𝑑𝐷 = {               0                   𝑓𝑜𝑟 Ɛ̅𝑝𝑙 ≤ Ɛ̅𝑝𝑙𝑑      𝐷𝑐  𝑑Ɛ̅𝑝𝑙Ɛ̅𝑝𝑙𝑓 − Ɛ̅𝑝𝑙𝑑            𝑓𝑜𝑟  Ɛ̅𝑝𝑙 ˃  Ɛ̅𝑝𝑙𝑑      ( 42 ) 

where Ɛ̅𝑝𝑙𝑑  is the threshold equivalent plastic strain and 𝐷𝑐 is the critical limit when 

material failure occurs.  They also have applied the concept of the effective stress tensor 

 ̃  instead of the Cauchy stress tensor  . Therefore, the equivalent stress ( ̅) has been 

changed to the effective equivalent stress �̃̅�: �̃̅� =   ̅(1−𝛽𝐷)       ( 43 ) 

where the parameter 𝛽 is 0 or 1 to switch from J-C model to the modified J-C model, 

respectively.  
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In addition, they introduced a new thermal rate-of-deformation Ɛ̇𝑡 to the total 

strain rate tensor as in: Ɛ̇𝑡 = 𝛼 �̇� 𝑰       ( 44 ) 

where 𝛼 is the material thermal expansion coefficient, �̇� is the temperature rate, and 𝑰 is 

the 2nd order unit tensor. Ɛ̇𝑡𝑜𝑡 = Ɛ̇𝑒 + Ɛ̇𝑝𝑙 + Ɛ̇𝑡      ( 45 ) 

Finally, the modified J-C model and the modified strain to fracture reads as 

follows, respectively: 

 (Ɛ̅𝑝𝑙, Ɛ̇̅𝑝𝑙∗  , 𝑇∗ ) = [𝐴 + 𝐵 Ɛ̅𝑝𝑙𝑛 ] [ 1 + ln Ɛ̇̅𝑝𝑙∗ ]𝐶 [ 1 − 𝑇∗𝑚]   ( 46 ) 

Ɛ̅𝑝𝑙𝑓  ( ,   Ɛ̇̅𝑝𝑙  ,   𝑇 ) = [ 𝐷1 + 𝐷2 exp(𝐷3 )]  [1 + ln Ɛ̇̅𝑝𝑙∗ ]𝐷4  [1 + 𝐷5 𝑇∗]   ( 47 ) 

where 𝐴, 𝐵, 𝑛, 𝐶, 𝑚, 𝐷1, 𝐷2 , 𝐷3 , 𝐷4 ,  𝐷5, 𝑎𝑛𝑑 𝐷6  are material constants.  

2.2.5.2 Xue-Wierzbicki Model 

Another coupled model was proposed by Xue and Wierzbicki [23, 27] in 2008. 

The advantages of this model are that it is simple and easy to use. It represents the 

internal variables of the damage function as the equivalent plastic strain ( Ɛ̅𝑝𝑙) and 

damage  (𝐷). The weakening function 𝑤(𝐷) is introduced in the elastic law:  = 𝑤(𝐷)𝑪 ∶  Ɛ𝑒𝑙  and in the flow potential equation using the von-Mises yield criterion.   𝑓 =  √3 𝐽2 −   𝑤(𝐷)  (Ɛ̅𝑝𝑙)      ( 48 ) 

The damage evolution law is no longer linear with ( Ɛ̅𝑝𝑙)  as in: 
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𝑑𝐷 = 𝑚 ( Ɛ̅𝑝𝑙Ɛ̅𝑝𝑙𝑓  )(𝑚−1)  1Ɛ̅𝑝𝑙𝑓   𝑑Ɛ̅𝑝𝑙     ( 49 ) 

The equivalent plastic strain to failure Ɛ̅𝑝𝑙𝑓  (𝑝 ,  )  is expressed as follows where 𝑝 is the hydrostatic pressure (𝑝 = 13  𝐼1) and   is the Lode angle.  

Ɛ̅𝑝𝑙𝑓 = Ɛ̅𝑜𝑓  [1 − 𝑋1  𝑝𝑝lim]    ( )     ( 50 ) 

where  Ɛ̅𝑜𝑓,  𝑋1 ,  𝑝lim are material failure constants. The lode angle dependent function   ( ) have two kinds known as first kind and second kind Lode dependent functions. 

 1 ( ) =  {  
  √2−  +1 1+ (√3


−2)                  𝑓𝑜𝑟    0 ≤  ≤ 0.5

√2−  +1 1+ (√3

−2)(1−)         𝑓𝑜𝑟  0.5  ˂    ≤ 1       ( 51 ) 

 2 ( ) =  + (1 − ) (6 | |𝜋 )𝑘        ( 52 ) 

 =  𝑆2−𝑆3𝑆1−𝑆3        ( 53 ) 

where  is the relative ratio of the principal deviatoric stresses,  is a material constant of 

the fracture strain, 𝑘 the shape parameter.  
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Figure 11. The two kinds of Lode angle dependence functions used in Xue and 

Wierzbicki.[27]. 

2.2.5.3 JCXd Model 

Recently in 2014, Erice & Galvez [9, 68] postulated a new coupled damage-

elastoplastic constitutive model known as JCXd model. Their efforts were primarily 

gathering two model (J-C model in sec 2.2.5.1 and 2.2.4.1 and Xue-Wierzbicki model 

sec 2.2.5.2) into one model. The name JCXd is actually decomposed as Johnson-Cook, 

Xue, and damage. The concept of this model is to have the advantages of each model into 

one general model. This can be clearly seen in the equation below by adding the 

weakening function 𝑤(𝐷) to the J-C plasticity model and by introducing the two kinds 

Lode angle dependent function   ( ) invented by Xue-Wierzbicki to the J-C fracture 

strain model. Accordingly, the general JCXd coupled model becomes dependent on 

strain-rate, temperature, Lode angle, and stress triaxiality.  
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 (Ɛ̅𝑝𝑙, Ɛ̇̅𝑝𝑙∗  , 𝑇∗, 𝐷 ) = 𝑤(𝐷) [𝐴 + 𝐵 Ɛ̅𝑝𝑙𝑛 ] [ 1 + 𝐶 ln Ɛ̇̅𝑝𝑙∗ ] [ 1 − 𝑇∗𝑚]  ( 54 ) 

Ɛ̅𝑝𝑙𝑓 ( , Ɛ̇̅𝑝𝑙  , 𝑇, 𝜃 ) =   ( ) [ 𝐷1 + 𝐷2 exp(𝐷3 )][1 + 𝐷4 ln Ɛ̇̅𝑝𝑙∗  ][1 + 𝐷5 𝑇∗]   ( 55 ) 

 𝑑𝐷 =   𝑚   ( Ɛ̅𝑝𝑙 )(𝑚−1)  1Ɛ̅𝑝𝑙𝑓   𝑑Ɛ̅𝑝𝑙      ( 56 ) 

where 𝑚 is a material constant. 

 In summary, Table 3 and Table 4 are set to summarize the coupled and 

uncoupled models to compare easily among the models and illustrate its dependent 

parameters.  

Table 3. The summary among plasticity models. 

Plasticity models Hydrostatic 
stress or 
pressure 

𝐽2 
 

Lode 
angle  

Strain rate 
and 

temperature 

Coupling 

Johnson-Cook (J-C) [10] No Yes No Yes No 

Wilkins et al. [82] No Yes Yes No No 

Bai-Wierzbicki [43] Yes Yes Yes No No 

Lemaitre [93, 94] No Yes No No Yes 

GTN [95-98] Yes Yes No No Yes 

Modified J-C [101] No Yes No Yes Yes 

Xue-Wierzbicki [23, 27] No Yes No No Yes 

JCXd [9, 68] Yes Yes Yes Yes Yes 

Table 4. The summary among damage models. 
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Damage models Hydrostatic 
stress or 
pressure 

Lode 
angle  

Damage 
evolution 
law, dD 

Strain rate 
and 

temperature 

Weakening 

Johnson-Cook (J-C) 

[26] 

Yes No Linear Yes No 

Wilkins et al. [82] Yes Yes Linear No No 

Bai-Wierzbicki [43] Yes Yes Nonlinear No No 

Lemaitre [93, 94] Yes No Nonlinear No Yes 

GTN [95-98] Yes No Nonlinear No No 

Modified J-C [101] Yes No Linear Yes Yes 

Xue-Wierzbicki [23, 

27] 

Yes Yes Nonlinear No Yes 

JCXd [9, 68] Yes Yes Nonlinear Yes Yes 

 

2.3 Hardening Models 

There have been extensive studies to understand metals behavior experiencing 

reversal loading. Studies on models and simulations of the behavior of metals have been 

increasingly ongoing in research. Accordingly, fatigue failure and crack propagation due 

to the loading cycles were also investigated.  Yielding onset and plastic behavior of 

metals in each load cycle where found to be controlled and described by two main types 

of hardening: Isotropic hardening and Kinematic hardening (known as the Bauschinger 

effects). Isotropic hardening controls the yield surface form and size in the principal 

stress space during the plastic deformation (see Figure 12).  
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Figure 12: Yield surface expands uniformly during plastic flow [102] 

On the other hand, kinematic hardening translates the yield surface in the 

principal stress space only (see Figure 13).  Both isotropic and kinematic hardening 

describes metal behavior under reverse loading (i.e. tension and compression). In this 

section, hardening models will be introduced and explained to set a solid knowledge base 

for the reader.   
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Figure 13: Yield surface translate in the principal stress space in reverse loading [102] 

2.3.1 Isotropic Hardening Models 

The general form of the flow potential has no effect of the isotropic hardening nor 

the kinematic hardening where the initial yield here 𝑜 is in a scalar form. 

𝑓 = √32  [𝑆𝑖𝑗] ∶ [𝑆𝑖𝑗] − 𝑜  = 0     ( 57 ) 

 For the material that behaves isotopically, we substitute  𝑜 to  𝑦, where the 

yield stress  𝑦 is a function of the equivalent plastic strain  Ɛ̅𝑝𝑙. Accordingly,  𝑦 

increases monotonically as the plastic strain deformation increases. 

𝑓 = √32  [𝑆𝑖𝑗] ∶ [𝑆𝑖𝑗] − 𝑦  = 0      ( 58 ) 

There are many forms of  𝑦 equations that simulates the isotropic behavior and 

the plastic flow of many metals. The most known simple forms that neglects temperature 

variation and deformation rates are as follows: 
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The Hollomon equation [103]: 𝜎𝑦 = 𝐶 Ɛ̅𝑝𝑙𝑛      ( 59 ) 

The Ludwik equation [104]:  𝜎𝑦 = 𝜎𝑜 +  𝐶 Ɛ̅𝑝𝑙𝑛    ( 60 ) 

The Swift equation [105]:  𝜎𝑦 = 𝐶 (Ɛ𝑜 + Ɛ̅𝑝𝑙) 𝑛     ( 61 ) 

The Samanta equation [106]:  𝜎𝑦 = 𝜎𝑜 +  𝐶  ln Ɛ̅𝑝𝑙     ( 62 ) 

The Voce equation[107, 108]: 𝜎𝑦 = 𝜎𝑠 − (𝜎𝑠 − 𝜎𝑜) 𝑒𝑥𝑝 (−𝑛Ɛ̅𝑝𝑙)  ( 63 ) 

The Misiolek equation[109]:  𝜎𝑦 = 𝐶  Ɛ̅𝑝𝑙𝑛 exp (𝑛Ɛ̅𝑝𝑙)    ( 64 ) 

where 𝐶, 𝑛, 𝜎𝑜, Ɛ𝑜, 𝜎𝑠 are material constants. The best and common way to calibrate 

these equations is by conducting a standard tensile test for a round smooth bar to examine 

the stress–strain curve for a homogeneous material. 

2.3.2 Kinematic Hardening Models 

It was seen that the isotropic hardening effect was not enough to describe the 

material behavior in the case of reversal loading. To help simulate the materials’ response 

under reversal loading,   kinematic hardening is introduced to illustrate the Bauschinger 

effect where the yield surface translates in the stress space (see Figure 13.). The 

Bauschinger effect states that “Pre-straining in any direction, as defined by the principal 

axis of the strain tensor, will introduce an anisotropy for further deformation in any other 

direction. The intensity of this pre-strain-associated anisotropy is at maximum when the 

direction of further straining is opposite to that of the pre-strain” [110]. In other words, 

the tension yielding point and the compression yield point of a material under reversal 

loading are asymmetric. The kinematic hardening in the flow potential equation is 

described as: 
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𝑓 = √32  [𝑆𝑖𝑗 − 𝛼𝑖𝑗] ∶ [𝑆𝑖𝑗  − 𝛼𝑖𝑗] − 𝑜  = 0   ( 65 ) 

where 𝛼𝑖𝑗 is the 2nd order tensor backstress. The kinematic and isotropic combined 

hardening rule becomes:   

𝑓 = √32  [𝑆𝑖𝑗 − 𝛼𝑖𝑗] ∶ [𝑆𝑖𝑗  − 𝛼𝑖𝑗] − 𝑦  = 0   ( 66 ) 

2.3.2.1 Linear Kinematic hardening 

Many linear hardening models were proposed since the 1950’s. Prager [111] was 

the first to suggest a linear model to depict a materials’ behavior under cyclic loading. 𝑑𝛼𝑖𝑗 = 𝐶 𝑑Ɛ𝑖𝑗𝑝𝑙         ( 67 ) 

where 𝑑Ɛ𝑖𝑗𝑝𝑙  is the plastic strain increment tensor and  𝐶 is a material constant. Years 

later, Ziegler [112] modified Pragers’ rule to incorporate the mean stress influence on the 

kinematic hardening as follows:   𝑑𝛼𝑖𝑗 = (𝜎𝑖𝑗 − 𝛼𝑖𝑗)𝑑       ( 68 ) 

where 𝑑 is a multiplier. Although Prager and Ziegler models differ in the Tresca case, 

they are similar in the von-Mises case [17]. 

The linear kinematic hardening is capable of portraying the Bauschinger effect but not 

the ratcheting. Therefore, the need for a model that incorporates tension-compression 

asymmetry yielding point, Bauschinger effect, and ratcheting raised.  
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2.3.2.2 Nonlinear Kinematic Hardening 

In order to accurately present the materials’ behavior under cyclic loading, many 

nonlinear models were proposed. It started with Mroz model [113] and Dafalias & Popov 

models [114, 115] presenting a simple bounding surface plasticity model that describes 

the materials nonlinear kinematic hardening effect. Soon later, new models holding a new 

concept  were proposed [116, 117]  that explained the kinematic hardening rule on a two-

surface perception: yield surface and bounding surface. The yield surface was to capture 

the isotropic and kinematic hardening while bounding captures the isotropic hardening 

only. This notion of two surfaces was significantly modified by Minagawa et al. [118], 

Bower [119], Mizuno et al. [120], Shen et al. [121], Basuroychowdhury and Voyidjis 

[122], Montáns [123], Geng and Wagoner [124], Yoshida and Uemori [125-127], and 

Lee et al. [128]. They all tried to attain a constitutive model with a more realistic 

behavior. However, the primary difference among these nonlinear kinematic models is in 

the way of expressing the generalized plastic modulus. The most known and most used 

nonlinear kinematic hardening model was introduced in 1966 by Armstrong and 

Frederick (AF) [129]. Its main advantage is that it is relatively straightforward to write a 

code for a subroutine in any finite element packages. AF model predicts the evolution of 

the backstress as follows:  �̇�𝑖𝑗 = 23  𝐶 Ɛ̇𝑖𝑗" − 𝐵  𝛼𝑖𝑗 �̇�      ( 69 ) 

where Ɛ̇𝑖𝑗"  is the rate of effective plastic strain, 𝐶  𝑎𝑛𝑑 𝐵 are material constants, and �̇� is 

the accumulated plastic strain rate defined as 
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�̇� =  √23  Ɛ̇𝑖𝑗"  Ɛ̇𝑖𝑗"  .       ( 70 ) 

Chaboche and co-workers [14-17] improved the ratcheting prediction and better 

simulates the hysteresis loops under different loading conditions by expanding the AF 

backstress evolution rule to three compositions (eq.). In other words, Chaboche model 

decomposes a stable hysteresis loop into three major parts: (1) the initial high modulus at 

beginning of yielding (𝛼1), (2) the transient nonlinear part (𝛼2) and (3) the constant 

modulus part at a higher strain extent (𝛼3) [11].  �̇�𝑖 = 23  𝐶𝑖Ɛ̇ " − 𝐵𝑖 𝛼𝑖 �̇�   ,        𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2, 3, . ..   ( 71 ) 𝛼  = ∑ �̇�𝑖𝑛1        ( 72 ) 

where n is the number of the back stresses This leads to having more material constants 

to simulate Bauschinger effect accurately, ratcheting effect and combined hardening. To 

calibrate Chaboche’s material parameters, many researchers have been investigating 

many approaches to explore the easiest and optimum algorithm to attain the material 

parameters that describe the material behavior under numerous loading conditions [11, 

22, 130-133] as in Figure 14. 
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Figure 14: The three decomposed rule of Chaboche model in a strain controlled stable 

hysteresis loop [11].  

2.4 Fatigue life 

In cyclic loading, the stress-strain behavior differs from what is seen in a 

monotonic tension or compression test. The yielding strength, hardening, softening 

behavior may increase or decrease from a cycle to another. In a stress-strain cyclic 

loading, the variables used to express the hysteresis loop are the following. The stress 

range Δσ is the difference between the maximum stress 𝜎𝑚𝑎𝑥 and the minimum stress 𝜎𝑚𝑖𝑛 in a hysteresis loop.  Δσ =  𝜎𝑚𝑎𝑥  −  𝜎𝑚𝑖𝑛        ( 73 ) 

The mean stress 𝜎𝑚 is the average of the minimum and maximum stress. 𝜎𝑚 = 𝜎𝑚𝑎𝑥+ 𝜎𝑚𝑖𝑛2        ( 74 ) 
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 Likewise, the same definitions that apply for stress may apply to strain. The 

elastic and plastic strains are defined as below where 𝐾′ , 𝑛′ and 𝐸 are the strain 

hardening coefficient, the strain hardening exponent and elastic modulus, respectively.  Ɛ𝑒𝑙 = 𝜎𝐸       ( 75 ) 

Ɛ𝑝𝑙 = ( 𝜎𝐾′)1 𝑛′⁄
      ( 76 ) 

The total strain range ∆Ɛ𝑡𝑜𝑡 is the summation of the elastic and plastic strain 

ranges as illustrated in Figure 15.  ∆Ɛ𝑡𝑜𝑡 = ∆Ɛ𝑒𝑙 + ∆Ɛ𝑝𝑙      ( 77 ) 

 

 

Figure 15: A stable stress-strain hysteresis loop showing strain and stress ranges [134]. 

 The stress amplitude 𝜎𝑎 is half the stress range Δσ and strain amplitude Ɛ𝑎 is half 

the strain range ΔƐ. 
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𝜎𝑎 = Δσ2        ( 78 ) 

Ɛ𝑎 = ΔƐ2        ( 79 ) 

 The stress ratio 𝑅𝜎 and strain ratio 𝑅Ɛ are described as below: 𝑅𝜎 = 𝜎𝑚𝑖𝑛  𝜎𝑚𝑎𝑥         ( 80 ) 

𝑅Ɛ = Ɛ𝑚𝑖𝑛Ɛ𝑚𝑎𝑥       ( 81 ) 

 The Basquin equation [135] presents the strain life equation using the elastic 

strain term only where 𝜎𝑓′ and  𝑏 are the fatigue strength coefficient and fatigue strength 

exponent, respectively.  

∆Ɛ𝑒𝑙2 = 𝜎𝑓′𝐸  (𝑁𝑓)𝑏      ( 82 ) 

The Coffin-Manson equation [136, 137] presents the strain life equation using the 

plastic strain term only where Ɛ𝑓′  and 𝑐 are the strain ductility coefficient and the strain 

ductility exponent.  

∆Ɛ𝑝𝑙2 = Ɛ𝑓′  (𝑁𝑓)𝑐      ( 83 ) 

The total strain-life equation is the combination of the Basquin equation and the 

Coffin-Manson equation expressed below and shown in Figure 16. The four fatigue 

material constants (𝜎𝑓′, 𝑏, Ɛ𝑓′ , 𝑎𝑛𝑑 𝑐 ) can be approximated by many methods such as in 

Ref. [138-142]  

∆Ɛ𝑡𝑜𝑡2 = ∆Ɛ𝑒𝑙2 + ∆Ɛ𝑝𝑙2 = 𝜎𝑓′𝐸  (𝑁𝑓)𝑏 + Ɛ𝑓′  (𝑁𝑓)𝑐    ( 84 ) 
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Figure 16: Strain-life curves are showing total strain, elastic strain (Basquin model), and 

plastic strain (Coffin-Manson model) [134]. 

The strain-life is expressed in term of cycles (𝑁). To be more precise, the number 

of cycles to failure will be specified as (𝑁𝑓) which is the number of cycles for the 

specimen to fail. It is worth to notice that the strain-based life equation of Basquin and 

Coffin-Manson equations are for zero mean stress 𝜎𝑚 or known as fully reversed loading 

(𝑅𝜎 = −1). In a case where the mean stress is not zero, a modified model of Basquin and 

Coffin-Manson equations known as Modified Morrow includes the effect of the mean 

stress in the plastic strain part only [143]. 

∆Ɛ𝑒𝑙2 = 𝜎𝑓′− 𝜎𝑚𝐸  (𝑁𝑓)𝑏      ( 85 ) 
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∆Ɛ𝑡𝑜𝑡2 = 𝜎𝑓′− 𝜎𝑚 𝐸  (𝑁𝑓)𝑏 + Ɛ𝑓′  (𝑁𝑓)𝑐    ( 86 ) 

Manson and Halford [144] included the effect of the mean stress in the elastic and 

plastic strain parts of the strain-life equation.  

∆Ɛ𝑡𝑜𝑡2 = 𝜎𝑓′− 𝜎𝑚 𝐸  (𝑁𝑓)𝑏 + (𝜎𝑓′− 𝜎𝑚 𝜎𝑓′ )𝑐 𝑏⁄  (𝑁𝑓)𝑐    ( 87 ) 

It was seen that this model overestimate the mean stress effect on the LCF 

regimes because of the vast amount of the plastic deformation in this particular regime 

[145]. 

  



48 
 

CHAPTER THREE: 

LINKAGE BETWEEN DUCTILE FRACTURE AND EXTREMELY 

LOW CYCLE FATIGUE OF INCONEL 718 UNDER MULTIAXIAL 

LOADING CONDITIONS 

3.1 Abstract 

Ductile fracture and extremely low cycle fatigue (ELCF) [146] are two common 

failure modes in aircraft engines and turbomachinery designs; however, the linkage 

between these two failure modes under multi-axial loading conditions has never been 

systematically studied. Inconel 718 (IN718) is one type of high temperature alloys widely 

used in turbomachines. Specially designed specimens and tests were used to achieve 

desired multi-axial loading conditions. Two groups of tests were conducted: (a) round bar 

specimens with different notches; (b) plane strain specimens. Similar types of tests were 

conducted for IN718 under both types of failure modes (ductile fracture and ELCF). It is 

found that the ductile fracture of IN718 under multi-axial loading conditions is strongly 

dependent on stress triaxiality, but weakly dependent on the Lode angle parameter [4]. A 

3D fracture locus was calibrated using modified Mohr-Coulomb (MMC) criterion 

proposed by Bai and Wierzbicki [25]. It is found that the same phenomenon of stress 

state dependency exists in the ELCF, which need to be addressed. The mechanism 

linkage between these two failure modes was explored.  

 

3.2 Introduction 

Ductile fracture is an important failure mode for many materials and structures 

including turbomachines. For example, the foreign object damage (FOD) on the blade 
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and casing is a design factor in aircraft engines and turbomachinery under extreme 

loading conditions [70], Here are two examples of FOD on turbomachines. The first one 

is bird/ice/hail strike on aircraft engines fan blades and further ingestion into the engine 

hot sections, which may cause blade out and further damage on engine casing. Each year, 

bird and other wildlife strikes to aircraft (including engines and fuselage) cause more 

than $600 million in damage to U.S. civil and military aviation [147].  The second one is 

the bolts and nuts (or other hard bodies) passing screen and ingestion into gas/steam 

turbines, which may cause damage on high speed rotating blades. One critical technique 

here is the accurate prediction of ductile fracture under complex loading conditions. 

Extremely low cycle fatigue (ELCF) is another critical failure mode for turbomachinery. 

For example, the damage caused by frequently turning on and off in gas turbines. It is 

also one of important failure mechanisms of aircraft engine casings under blade out 

events, which can be caused by, for instance, foreign object impacts as described above.  

Fatigue crack growth and life prediction of Inconel 718 was studied by Chen et al. 

[148] at different temperatures. They discovered that the fatigue strength is considerably 

lesser at room temperature than at elevated temperature. A recent published paper by 

Shamsaei et al. [149] studied the fatigue life estimation of Inconel 718 when subjected to 

multiaxial loading based on their basic tensile properties and the without using any 

fatigue data. It was found that fatigue life could be estimated using simple tensile 

properties and suitable damage models. Lately, Ince & Glinka [150] proposed a 

generalized fatigue damage parameter for multiaxial fatigue life prediction. This new 

parameter was examined using steel and Inconel 718 superalloy. Their numerical results 
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show good agreement with the experimental data. Generally, low cycle fatigue under 

multiaxial loading damage models (strain-based models) has shown great results and 

correlations. Strain based damage models implicitly incorporates the significance of the 

plastic deformation [151-155]. 

The common thing between these two failure modes is that notable plastic 

deformation is involved before material failure. Material fatigue failure can be divided 

into three groups: high cycle fatigue, low cycle fatigue and extremely low cycle fatigue. 

The ductile fracture can be treated as an extreme case of ELCF with only 1/4 cycle. The 

ELCF is the bridge to link the fatigue and fracture mechanics. Study on ductile fracture 

and ELCF of Inconel 718 (IN718) under multiple axial loading conditions and failure 

mechanism/linkage of these two failure modes is the main subject of this paper. The 

chemical composition of IN718 studied by the authors is listed inTable 5: Material 

composition of the used IN718.  

 

 

Table 5: Material composition of the used IN718 

Element Content wt% Element Content wt% 

Ni 52.90 Al 0.58 
Cr 18.41 Co 0.19 
Mo 2.89 C 0.04 

Cb+Ta 5.17 S 0.0005 
N 0.0078 Mn 0.09 
Si 0.08 B 0.004 
Cu 0.06 P 0.007 
Fe Bal. 
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3.3 Multiaxial Ductile Fracture 

Multiaxial ductile fracture under monotonic loading condition is the baseline for 

studying ELCF. Four types of specimens (Figure 17) are designed and tested: smooth 

round bars (denoted by type R0), round bar with notch ratio 1 ( 𝑎𝑅 = 0.125"0.375" = 13 ) where 𝑎 

is the minimal cross-section radius, and 𝑅 is the notch radius, denoted by type R1), round 

bar with notch ratio 2 ( 𝑎𝑅 = 0.125"0.125" = 1, type R2), and plane strain tension (denoted by 

type PE). The dimensions of all four different specimens shape are clearly shown in 

Figure 18, and all units declared are mm in the drawings.  
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(a) (b)  
Figure 17: (a) Symbol notation of the cross section of a notched specimen (b) Four 

different shapes of the specimens before fracture. 

(a) (b)  
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(c) (d)  

Figure 18: Drawings show different dimensions of four types of specimens. The 

specimens notation used are R0, R1, R2, and PE (a, b, c, and d, respectively) 

All the tests were conducted at room temperature and quasi-static loading 

conditions at a MTS servo-hydraulic testing machine. The used MTS hydraulic machine 

has a capacity of 100kN. A collection of one of each specimen before testing is shown in 

Figure 17(a). The fractured surfaces of specimens are shown in Figure 20. Cup-cone 

failure modes and slant fracture surface indicate that the fracture is shear dominated. The 

material initial yield stress is about 1050MPa, and the engineering stress-strain curve is 

shown in Figure 19(a). The material strain hardening can be described by the following 

power hardening law, 𝜎 = 1480.3𝜀 ̅0.0813. 
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(a) (b)  

Figure 19: (a) Engineering stress vs. strain hardening curve obtained from smooth round 

bar specimen (R0). (b) One example of the displacement controlled extremely low cycle 

fatigue test for R1 notched specimen. 

(a)    (b)  

Figure 20: (a) The specimens were spray painted in black and white before the ELCF test 

for optical measurement and digital imaging correlation (DIC). From left to right are R0, 

R1, R2, and PE, respectively. (b) Fractured specimens after ELCF tests of R1 (a/R=1/3, 

left) and R2 (a/R=1, right) 

 

The classical Mohr-Coulomb criterion was extended by Bai and Wierzbicki [25] 

to describe ductile fracture under multi-axial loading conditions. This model is referred as 

the modified Mohr-Coulomb (MMC) model. The equivalent plastic strains to fracture of 

all tests are directly measured by area reduction or thickness reduction. The stress 

triaxiality and Lode angel parameter are calculated using derived analytical solutions 
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[43]. For round specimens (R0, R1, & R2), the Lode angle parameter is 𝜃 ̅̅ ̅ = 1, and the 

stress triaxiality η can be estimated using the Bridgman equation (Eq. ( 88 )).  

η= 13+ ln  (1 + a2R)     ( 88 ) 

η =  √33 [1 +  2 ln  (1 + 𝑎2𝑅)]     ( 89 ) 

For plane strain specimens, the Lode angle parameter is 𝜃 ̅ = 0, and Eq. ( 89 ) is 

used for stress triaxiality [43]The calibrated 2D and 3D fracture locus using MMC model 

are shown in Figure 21. Note that the stress triaxiality and Lode angle parameter are used 

to describe different stress states under multi-axial loading conditions. Experiment results 

show that the fracture limits of IN718 are strongly dependent on the stress triaxiality and 

weak dependent on the Lode angle parameter. 
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(a)  

(b)  

Figure 21: (a) Calibrated ductile 2D fracture locus of IN718 and a generic 3D fracture 

surface with the Lode angle dependency. (b) 3D fracture locus of IN718. Stress triaxiality 

is denoted by η, Lode angle parameter θ, and equivalent strain to fracture εf 
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Figure 22: The applied modified Mohr-Coulomb failure criterion in Finite Elements 

simulations shows good agreement with the experimental results in monotonic ductile 

fracture tests. 

3.4 Extremely Low Cycle Fatigue 

Fully reversed displacement controlled fatigue tests were conducted on the same 

type of specimens as ductile fracture tests to calibrate the ELCF properties of IN718. The 

test had a total number of 16 specimens with 4 pieces for each shape. Before testing, the 

estimated numbers of cycles to failure range from 5 to 100 cycles. Note that the real 

cycles to failure were different. Real failure cycles are used when the data are presented 

in strain life diagram. Digital Imaging Correlation (DIC) was utilized to capture the full 

field strain and determine strain amplitude during tests. The force displacement hysteresis 

loops were observed and recorded by the help of the DIC. It is noticeably observed in 

Figure 19.(b) that the plasticity of Inconel 718 should be described using a combined 
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hardening law (isotropic and kinematic hardening). The tests were run until total failure 

and the numbers of cycles were counted.  

The measured strain results are divided into two parts: elastic strain amplitude and 

plastic strain amplitude for ELCF (see Eq.( 90 )). Using Eqs. ( 91 ) & ( 92 ) and with 

accurate measurements of the changes in the diameters and axial displacement during the 

ELCF tests by the help of the DIC, we can measure the changes of the total strain in each 

cycle during tests. Eq. ( 91 ) is used for R0, R1, and R2 while Eq. ( 92 ) is only applied 

for plane strain (PE) stress state. The strain in each cycle for specimen R1 is presented in 

Figure 23.  𝜀̅ =  𝜀�̅� + 𝜀�̅�        ( 90 )  𝜀̅ = 2 ln (𝐷0𝐷 )      ( 91 ) 

𝜀̅ =  √32  ln ( 𝐿𝐿0)      ( 92 ) 

 

Figure 23: Total Strain vs. cycles for specimen R1. 

These results are illustrated in the strain life curve, as shown in Figure 24. The 

fractured specimens of two ELCF tests are shown in Figure 24. 
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Figure 24: Dependence of fatigue life on plastic strain and different stress states (each 

cycle has two strain reversals) 

The results shown in Figure 24 can tell us that fracture strain’s strongly 

dependency on stress states (due to the difference of stress triaxiality and Lode angle 

parameter) give different starting points at 1/4 to failure in strain-life plot. These 

differences have propagated to the region of ELCF. It should be noted that the data point 

of smooth round specimen (R0) at 100-cycle ELCF is from model estimation because 

significant buckling was found in the compression loading and tests were stopped. 
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3.5 Conclusion and Discussion 

This paper presents results on ductile fracture of IN718 under multi-axial loading 

conditions, which is achieved by novel design of specimen geometry. Four types of 

specimens are used to calibrate the fracture of IN718. It is found that ductile fracture 

strain of IN718 is strongly dependent on the stress states, especially the stress triaxiality. 

This phenomenon is usually contributed to the effect of hydrostatic pressure on the micro 

void growth and nucleation rate. The ELCF tests on IN718 on the same group of 

specimens indicate that the similar pressure dependent mechanism applies to ELCF, 

which was seldom addressed in the literatures. This paper presents a novel method using 

stress triaxiality to describe the notch effect on material fatigue. 

The current tests were conducted under room temperature, quasi-static loading and 

fully reverse loading conditions. The effect of frequency, temperature, and loading 

history effects will be needed to investigate as well, and the coupling effects of these 

parameters should also be studied in the future. 
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CHAPTER FOUR: 

A STUDY OF INCONEL 718 DEPENDENCY ON STRESS 

TRIAXIALITY AND LODE ANGLE IN PLASTIC DEFORMATION 

AND DUCTILE FRACTURE 

4.1 Abstract 

A numerical and experimental study of monotonic tensile tests on Inconel 718 

with different stress states has been investigated. Focus was put to dependencies of stress 

triaxiality and Lode angle parameter on plastic behavior and ductile fracture. The 

constitutive plasticity model proposed by Bai and Wierzbicki [4] and the modified Mohr-

Coulomb (MMC) ductile fracture model [25] were adapted with suitable extensions. 

Experimental results were used to calibrate the models. By setting up parameter 

optimization for model calibration, the experimental results and numerical simulations 

were well correlated. Finally, the MMC fracture model well predicted both fracture 

initiation and fracture propagation modes. 

4.2 Introduction 

Inconel 718 is a nickel-base high temperature super alloy, which is used in space 

navigation, nuclear industries, power plants, shipping industries, and extensively used in 

gas turbine engine hot section parts. Its weldability is deemed good because of its 

resistance to strain-age cracking. However, it is known to be very difficult for machining, 

forging and fabrication manufactures due to its high hardness and toughness.  Inconel 718 

can be widely found in high temperature applications due to its high strength and 
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corrosion resistance at high temperature. The melting point of this material is about 

1336°C.  

Ductility is defined as the ability of a material to accept large amounts of plastic 

deformation without crack [42]. Bai and Wierzbicki [4] have proposed a new model for 

metal plasticity and ductile fracture that includes the effect of the hydrostatic pressure 

(related to the  stress triaxiality) and the effect of the third invariant of the deviatoric 

stress tensor. The effect of the hydrostatic pressure is responsible for controlling the size 

of the yield surface whereas the effect of the third invariant of stress deviator is 

responsible for the shape of the yield surface [156]. An efficient numerical integration 

algorithm for this model was presented in Ref. [44], where the simulation results in finite 

element (FE) analysis  are satisfactory.  

Decades ago, McClintock [45], Rice and Tracey [46], Hancock and Mackenzie 

[47], Hancock and Brown [48] have showed that ductile fracture strain is a function of 

the hydrostatic pressure (stress triaxiality). As a result, the Johnson-Cook ductile fracture 

model [26] was provided and widely used. On the other hand, many ongoing numerical 

and experimental studies on ductile materials have verified that a new parameter (along 

with the stress triaxiality) needs to be considered in predicting the ductile fracture. This 

parameter is the third invariant of deviatoric stress tensor (which is related to the Lode 

angle). It plays a key role in providing a better fracture prediction along with the stress 

triaxiality [4, 5, 7, 8, 25, 49-55]. These intense research works showed decisive relation 

of the Lode angle to predict correctly ductile material failure. An extension to the 

classical Mohr-Coulomb fracture criterion was postulated in Ref. [25] under assumption 
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of proportional loading and asymmetric metal plasticity (considering both the pressure 

sensitivity and the Lode angle dependence).  This model predicts shear fractures as well 

as tensile cracks under multiaxial loading conditions. Over the past few years, this model 

has been successfully applied to various applications, especially the metal sheet ductile 

fracture [6, 38, 56-60]. 

Inconel 718 was tested to calibrate a multiaxial constitutive model that accounts 

for the strength-differential [61]. The term “strength-differential” means different plastic 

flow behavior under uniaxial tension and uniaxial compression. This multiaxial 

constitutive model differs from the classical metal plasticity by adding all three stress-

invariants in its yield function. This promising model is a general form of Durcker [62] 

and Drucker-Prager  [63] models. The plastic deformation behavior of Inconel 718 at 

different strain rates was studied in Refs. [64, 65] and [66] using the Johnson-Cook (J-C) 

constitutive relation [10]. Nevertheless, the J-C plasticity model does not take the stress 

triaxiality ratio nor the Lode angle into account.  A study was reported in Ref. [67] to 

investigate the effect of superimposed hydrostatic pressure using a pressure vessel. The 

pressure used ranges from 210 to 630 MPa using Ar gas. It was concluded that the 

plasticity of Inconel 718 is independent of superimposed ambient hydrostatic pressure.  

Recently, Inconel 718 is tested to validate a coupled elastoplastic-damage 

constitutive model with Lode angle dependent failure criterion by Eric and Galvez [9]. 

This model introduced a new factor, called the weakening function, to the classical 

Johnson-Cook relationship [10]. It was shown that the combination of a Lode angle 

dependent failure criterion with weakened constitutive equations is necessary to predict 
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fracture patterns of the mechanical tests performed and provide reliable results. The same 

research group [68] investigated the ductile failure of Inconel 718 superalloy under quasi-

static and impact loading using the proposed hardening model and the coupled 

elastoplastic-damage constitutive model with failure criterion [9].  

In comparison, this paper will study the plasticity and ductile fracture of Inconel 

718 using the recent uncoupled continuum plasticity model proposed by Bai and 

Wierzbicki [4] and the modified Mohr-Coulomb (MMC) ductile fracture criterion [25]. 

Mechanical tests under different stress states are designed and conducted. Numerical 

simulations are set up using ABAQUS/explicit to provide information when direct 

measures are not possible. The material model of plasticity and fracture was implemented 

in ABAQUS non-linear code by means of a user defined material subroutine (VUMAT). 

The results show strong stress state effects on the plastic behavior and the ductile fracture 

of this material, which can be described by the combination of stress triaxiality and Lode 

angle parameter. Excellent correlation between FE simulations and experimental results 

are achieved. By introducing the element or material softening behaviors after fracture 

initiation, the proposed model can well predict not only the fracture initiation but also the 

correct fracture propagation modes.  

4.3 Material description  

Inconel 718 is a polycrystalline nickel-base superalloy with high content of Cr 

and Fe. The phases presented in Inconel 718 are austenitic with FCC structure.  Its 

chemical composition (as received) in %wt. is shown in Table 6. Inconel 718 superalloy 
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is used in many aggressive applications due to its superior properties like wear resistance, 

high corrosion and creep resistance at high temperatures, and high melting temperatures. 

This encourages industries to use it in power plants and rotary parts in gas turbine 

engines such as blades and disks.   

Table 6: Chemical composition in %wt. of Inconel 718 as received for testing. 

Ni Cr Mo Cb + Ta N Si Cu Al C S Mn P Fe 

52.9 18.41 2.89 5.17 0.0078 0.08 0.06 0.58 0.04 0.0005 0.09 0.007 Bal. 

4.4 Characterization of stress state 

This paper is primarily to investigate Inconel 718 dependencies of stress 

triaxiality () and Lode angle () on its plastic behavior and ductile fracture modes. The 

Bai-Wierzbicki plasticity model and the MMC fracture criterion are formulated in terms 

of the stress triaxiality (, normalized pressure) and the Lode angle parameter (̅). For a 

given stress tensor [] and its stress deviator[𝑆], three stress invariants (𝑝, 𝑞, 𝑟) can be 

expressed by the following equations [4, 7, 157-167]. p =  −m = 13  tr([]) =  − 13 ( 1 + 2 + 3 )   (93)  

q =  ̅ = √3𝐽2 =   √32 [𝐒] ∶ [𝐒] =  √12 [(1 − 2)2 + (2 − 3)2 + (3 − 1)2] (94)  

r = [272 det([𝐒])]1 3⁄ = [272 (1 − m)(2 − m)(3 − m)]1 3⁄    (95)  [𝐒] = [ ] + p[𝐈]      (96)  
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Here, [S] and [I] are the deviatoric stress tensor and the identity tensor, 

respectively. The three principle stresses are denoted by 𝟏,𝟐 , and 𝟑  and it is usually 

assumed that 1 ≥ 2 ≥ 3. Note that the pressure  𝒑 is positive when a compression load is 

applied, while 𝒎 is positive in tension. Stress triaxiality () is a dimensionless 

hydrostatic pressure defined by  

 =  − pq = m
̅
= 1+ 2+ 33̅      (97)  

For more analogy to explain the concept of stress triaxiality and Lode angle, a 3-

D differential volume having three-principle stress (𝟏,𝟐 , and 𝟑 ) can be geometrically 

represented in the Cartesian coordinate system as illustrated in Figure 25. The stress 

triaxiality becomes  

 =   m
̅
=  √23  |OO′⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ||O′P⃗⃗ ⃗⃗ ⃗⃗  ⃗|     (98)  

The Lode angle () is defined on the deviatoric plane (or 𝜋 plane), and it is known 

as the angle between the stress tensor that passes through the deviatoric plane and the 

axis of the principal stresses. tan  = 23− 2− 1√3(2− 1)      (99)  

In addition, Lode angle can be written in a way to show the relation with the 

normalized third deviatoric stress invariant [168, 169] by the following equation. 

 =  ( rq )3 = cos(3)     (100)  
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The range of the Lode angle is 0 ≤  ≤ /3, and consequently the range of  is -1 ≤ 

 ≤ 1. Thus, the Lode angle also can be normalized and known as the normalized Lode 

angle or Lode angle parameter (̅) [156].  

̅ = 1 − 6


       (101)  
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Figure 25: (a) Differential volume with principal stress axes, (b) Lode angle definition on 

the 𝜋-plane, the red circle shape represents von-Mises yield locus, the green hexagon 

shape represents Tresca yield locus, and the dotted line shape represent Bai-Wierzbicki 

yield locus, (c) schematic representation  of an arbitrary stress state on the space of three 

principal stresses [4] 

4.5 Design of Specimen 

In this study, specimens of four different shapes were tested. The four distinctive 

shapes are a smooth round bar, a round bar with small external circular notch, a round bar 

with large external circular notch, and a flat plane strain bar. Three-dimension (3D) 

sketches and real machined parts for these geometries are illustrated in Figure 26 and 

Figure 27. In addition, more information about detail dimensions is demonstrated in 

Figure 28, Figure 29, Figure 30 and Figure 31. These geometries are designed in a way to 
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ensure fractures initiate at desired stress states. Also, there are analytical solutions of 

stress state parameters available for these specimens. These four types of specimen will 

help to study the stress triaxiality and Lode angle dependencies on plasticity and fracture. 

To easily distinguish each specimen, the Table 7 explains the denotation used hereinafter.  

 

Table 7: Denotation of sample names with their key dimensions (unit: mm) 

Specimen type Denotation Notch radius 
Minimum 

diameter 

Minimum 

thickness 

(a) Smooth round bar R0 N/A 6.350 N/A 

(b) Small radius notched bar R1 3.175 6.350 N/A 

(c) Large radius notched bar R2 9.525 6.350 N/A 

(d) Plane strain PE N/A N/A 3.048 
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Figure 26: A 3D sketch of (a) smooth round bar, (b) small radius notch bar, (c) large 

radius notch bar, and (d) plane strain flat bar 

 

Figure 27: Real specimens before testing denoted as R0, PE, R2, and R1 from left to 

right. 
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Figure 28: Geometry and dimensions in mm of the smooth round bar, R0. 
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Figure 29: Geometry and dimensions in mm of the small notched bar, R1. 
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Figure 30: Geometry and dimensions in mm of the large notched bar, R2. 
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Figure 31: Geometry and dimensions in mm of the plane strain bar, PE. 
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4.6 Theoretical analysis of stress states 

Hypothetically, each specimen with different geometries and stress state is 

expected to experience different values of stress triaxiality (), Lode angle parameter (̅), 

and equivalent fracture strain (Ɛ̅𝑓). In this section, analytical solutions will be presented 

for these four types of specimens. 

4.6.1 Smooth Round Bar 

This type of specimen (denoted as “R0”) is the most common type used in tensile 

tests by many studies. Tensile tests on smooth round bars (axial symmetry) helps to get 

the material properties and other constants related to plasticity and fracture models.  The 

critical location is the site where necking occurs. Necking was clearly observed before 

fracture initiation for this material (see Figure 33 later). Fracture strain in this test can be 

estimated by area reduction at the necking area: Ɛ̅𝑓 = 2 ln ( aoa  )      ( 102 ) 

 A sketch of the necking area is shown in Figure 32. The classical Bridgman 

solution gives the stress components inside the necking area: 

zz = ̅  [1 + ln (a2+2aR− r22aR )]     ( 103 ) 

xx = yy = ̅  ln (a2+2aR− r22ax )     ( 104 ) 

 By definition, the stress triaxiality inside the necking can be calculated using the 

following equation. [42, 43, 71] 

 =  m
̅
= 13+ ln (a2+2aR− r22aR )     ( 105 ) 
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Figure 32: Stress distribution inside a neck of round bars, left and plane strain specimen, 

right. [43] 

Here, zz,xx,yy,m and ̅ are the axial, radial, hoop, mean and equivalent 

stresses, respectively. Other geometrical parameters (a, ao, R) are demonstrated in Figure 

32. The symbol 𝑟 denotes the radial coordinate from the center of necking/notched area.  

4.6.2 Notched Round Bars 

Another two types of tensile tests are the notched round bar specimens (denoted 

as “R1” and “R2”). The term “notch” is defined as a localized discontinuity in a smoothly 

contoured geometry [170].  Similarly, the equations used to estimate local stress 

components, equivalent fracture strain (by area reduction) and stress triaxiality inside the 

necking are the same as the smooth round bar specimen and listed in section 4.6.1. We 

postulate these notched specimens to fail with lower strain fracture due to the higher 

stress triaxiality than that of smooth round bars.  Two different external radii of the notch 
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are designed to examine the effect of stress triaxiality on ductile fracture strain.  Detailed 

information regarding the notched bar geometries can be found in Figure 29 and Figure 

30. The estimated initial stress triaxiality of these two specimens are 𝜂 = 0.7413 for 

“R1” and 𝜂 = 0.5105 for “R2”. Note that the stress triaxiality will change as the neck 

area further develops.  The average stress triaxiality will be calculated based on finite 

element simulations, which will be presented in section 4.6.  

4.6.3 Plane Strain Specimen 

This type of specimen is designed for a plane strain loading condition (denoted as 

“PE”). Compared to the other three specimens, this specimen has a different value of the 

Lode angle parameter (̅) but a similar range of stress triaxiality (). This feature helps to 

investigate the effect of the Lode parameter on material plasticity and fracture [4]. A 

sketch of the necked area at plane strain condition is shown in Figure 32. When a necking 

is developed in the specimen, the equations to estimate the local stress distribution, 

equivalent fracture strain, and stress triaxiality are listed below, which are taken from 

analytical solutions provided in Ref. [171]. Ɛ̅𝒇 = 𝟐√𝟑  𝐥𝐧 ( 𝐭𝐨𝐭  )       ( 106 ) 

𝐱𝐱 = 𝟐√𝟑  ̅  𝐥𝐧 (𝐚𝟐+𝟐𝐚𝐑− 𝒙𝟐𝟐𝐚𝐑 )     ( 107 ) 

𝐲𝐲 = 𝟐√𝟑  ̅  [𝟏𝟐+ 𝐥𝐧 (𝐚𝟐+𝟐𝐚𝐑− 𝐱𝟐𝟐𝐚𝐑 )]     ( 108 ) 

𝐳𝐳 = 𝟐√𝟑  ̅  [𝟏 + 𝐥𝐧 (𝐚𝟐+𝟐𝐚𝐑− 𝐱𝟐𝟐𝐚𝐑 )]    ( 109 ) 
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 =  𝐦
̅
= √𝟑𝟑  [𝟏 + 𝟐 𝐥𝐧 (𝟏 + 𝒂𝟐𝑹)]    ( 110 ) 

4.7 Lab Experiment 

The four types of specimens with different shapes were fabricated from the same 

piece of rod of Inconel 718 alloy. They were tested at room temperature and quasi-static 

loading conditions. Monotonic tensile tests were carried out on an MTS servohydraulic 

testing machine with a 100 kN (22kip) load cell capacity at a loading rate of 0.003 

mm/sec. All tests were conducted until total fracture of specimens. The load-

displacement curves were simultaneously recorded by testing machine and an optical 

measurement system. The full fields of surface strain were captured using a 2-D Digital 

Imaging Correlation (DIC) software provided by Correlated Solution Inc. (Vic2D 2009). 

The DIC measurement requires the samples to be spray painted in white then speckle 

patterned in black dots to get a perfect contrast for image correlation. This spackle pattern 

can be seen in Figure 33 
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Figure 33: Deformed shapes prior to fracture of all specimens during the tests and the FE 

models showing a clear necking under all stress states. The contour plot shows the 

location of the high accumulation damage within the root of the necking area. 

The measured force-displacement curves are shown in Figure 1 Figure 34. The 

reference gauge length (Lo) for these curves, corresponding axial displacement to 

fracture, gauge elongation, and area/thickness reduction at fracture site are summarized in 

Table 8. The experimental fracture strain can be estimated by area/thickness reduction at 

fracture site using the Equations in sections 4.6.1 and 4.6.3. The corresponding results are 

also listed in Table 8.  
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Figure 34: Experimental measured force-displacement responses along with the fracture 

occurrence with the gauge length of each test listed in Table 7. 

Table 8: Experimental measurement of fracture for tensile tests of IN718. 

Specimen 
Gauge 

length 
Displacement 

Gauge 

Elongation  

Gauge Area 

reduction 

Fracture 

strain 

R0 15.27 mm 4.23 mm 27.7% 50.6% 0.68 

R1 9.16 mm 0.72 mm 7.9% 58.3% 0.39 

R2 15.98 mm 1.63 mm 10.2% 55.3% 0.44 

PE 4.19 mm 1.12 mm 26.7% 66.2% * 0.40 

* Thickness reduction 

4.8 Constitutive Models and Calibrations 

4.8.1 Plasticity Model and Ductile Failure Criterion 

A plasticity model that incorporates effects of strain hardening, hydrostatic 

pressure, and the Lode dependence was proposed by Bai and Wierzbicki [4]. This model 

is used for IN718 in the present paper. The plastic potential is shown as follows: 
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𝑓 = √32  [S] ∶ [S] −   (Ɛ̅pl , , ) = 0    ( 111 ) 

 The formulation to evince the plastic behavior in terms of plastic strain, 

hydrostatic pressure, and Lode dependency is described below: 

 (Ɛpl , , ) =  (Ɛ̅pl)[1 − c (− o)] [cs + (cax − cs) (𝑚+1𝑚 ) ( − m+1m+1)] ( 112 ) 

The first term of the plasticity model (above) is the Ludwik isotropic strain 

hardening function: 

 (Ɛ̅𝑝𝑙) =  y + K Ɛ̅𝑝𝑙𝑛     ( 113 ) 

where 𝜎𝑦, 𝐾 and 𝑛 are the initial yield stress, strength index, and strain hardening 

exponent, respectively [104, 172].  

The second term of the plasticity model is the effect of the hydrostatic pressure on 

yield where c is a material parameter which needs to be calibrated. The other parameter 

o is the reference value of stress triaxiality set from the calibration test to get the first 

hardening term. In our work, the parameter o is set to be 1/3 because the base hardening 

curve was obtained from uniaxial tension (specimen “R0”). It should be noted that the 

term of [1 − c (− o)] should be bounded within certain limits for the very high or 

very low stress triaxiality region. For example, 0.5 ≤ [1 − c (− o)] ≤ 2.0 was used 

in our simulations.  

The third term in this model is the Lode dependence, where a correction 

term, (𝑚+1𝑚 ), is introduced to make it more user-friendly. This is slightly different from 

the original term in the paper [4]. The Lode angle term consists of four material 
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constants cs, ct , cc, and 𝑚 that needs to be calibrated. The terms cs, ct , cc  are relative 

and at least one of them equals one. This depends on the type of the calibration test when 

calibrating the strain hardening function. The parameter ct  is set unity because the 

specimen “R0” is used.  

cax  =  {ct     for ̅ ≥  0cc    for ̅  ˂  0     ( 114 ) 

Calibration of other material constants are stated and justified in the section 4.8.2 

with details. The parameter  defined in the following equation, is the strength difference 

between von Mises and Tresca in the deviatoric stress plane. 

 = 6.4641 [sec ( −  /6) − 1]     ( 115 ) 

 After modification and normalization, the range of  is 0 ≤  ≤ 1. In axial 

symmetry and plane strain conditions, the  is 1.0 and 0.0, respectively.  

The term cs in the Lode angle dependency part is not necessary a constant.  

cs (Ɛ̅𝑝𝑙, �̅�) = √32 + (𝐵1 𝑒− 𝐵2Ɛ̅𝑝𝑙 ) 𝑓 (�̅�)    ( 116 ) 

It is found that this parameter (cs) evolves for In718 as plastic deformation 

continues, which is the second extension from the original plasticity model. A new 

formulation is proposed, where cs  is a function of the equivalent plastic strain (Ɛ̅pl) and 

the Lode angle parameter (θ̅). FE simulations of individual cases revealed that the value 

of cs does not affect at θ̅ = 1 for “R0”, “R1”, and “R2” specimens (axisymmetric 

condition). On the other hand, cs for the PE specimen (plane strain condition) varies as a 
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function of the equivalent plastic strain (controlled by parameter 𝐵2) and the Lode angle 

parameter.  

𝑓 (�̅�) =  ( 1 − |θ̅|𝐵3)𝐵4     ( 117 ) 

The construction of 𝐵3 and 𝐵4 in function 𝑓 (�̅�) was built in a way to ensure zero 

slopes at θ̅ = -1, 0, and 1 as shown in Figure 35. This consideration is to make the yield 

locus smooth. An example plot of the function 𝑓(�̅�) is illustrated in Figure 35.  

 

Figure 35: An example of function f (θ̅) used in the parameter (cs ) controlling the Lode 

angle dependence on material plasticity 

The proposed plastic flow potential with both pressure and Lode angle 

dependence is designed for material strength under different loading conditions. The 

plastic flow of metallic materials is usually believed to be incompressible [87], so a fully 

associated flow rule (AFR) cannot be directly applied. According to Ref. [4], a partially 

associated flow rule (or called deviatoric associated flow rule) is used, which neglects the 
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term of stress triaxiality while calculating derivative of plastic flow potential to get flow 

directions.  

Regarding the ductile fracture modeling, the modified Mohr-Coulomb criteria 

(MMC) [25] is used to predict crack initiation and propagation under different stress 

states.  The classical form of Mohr-Coulomb was transformed from the three principal 

stresses space to the mixed space of ( Ɛ̅f , , ̅) (equivalent strain to fracture, stress 

triaxiality, and Lode angle parameter, respectively) [25]. The coupling effect of stress 

triaxiality and Lode angle is captured by the MMC model. This phenomenological 

fracture criterion has shown great prediction capabilities to onset of fracture in various 

applications [49, 50, 57, 173-175].  The general representation of the MMC criterion in 

terms of Ɛf,, ̅ is as below:  

 

Ɛf =  {  
  Ac2  [𝟏 − 𝐜 ( −  𝐨)] 
  [𝐜𝐬 + √𝟑𝟐− √𝟑 (𝐜𝐚𝐱 − 𝐜𝐬) (𝐬𝐞𝐜 (̅ 𝟔 )  −  𝟏)] 
 [√𝟏+ 𝐜𝟏𝟐𝟑   𝐜𝐨𝐬 (̅ 𝟔 ) + 𝐜𝟏  ( +  𝟏𝟑  𝐬𝐢𝐧 (̅ 𝟔 ))] }  

  −1 N⁄
   ( 118 ) 

Since the effects of c and c1 are similar in stress triaxialtiy, one can omit the term 

of pressure dependence on yield surface due to its negligible effect [25]. The below form 

of fracture locus is employed for current investigation. The fracture locus of MMC model 

reads: 
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Ɛ̅f(, ̅)  =
{  
         Ac2  [�̃�𝜃𝑠 + √𝟑𝟐 − √𝟑 (�̃�𝐚𝐱 − �̃�𝜃𝑠) (𝐬𝐞𝐜 (̅ 𝟔 ) −  𝟏)]            [√𝟏 + 𝐜𝟏𝟐𝟑   𝐜𝐨𝐬 (̅ 𝟔 ) + 𝐜𝟏  ( +  𝟏𝟑 𝐬𝐢𝐧 (̅ 𝟔 ))] }  

  −1 N⁄
(119) 

There are eight parameters, 𝐴, 𝑁, c , o, �̃�𝜃𝑠 , c̃𝑎𝑥, c1, and c2, need to be calibrated. 

The parameters 𝐴 and 𝑁 are material strain hardening properties from the reference 

material strain hardening curve, and c̃𝑎𝑥 is assumed to be one for simplicity, whereas �̃�𝜃𝑠  , c1, and c2  will be calibrated from the fracture tests.  

In general, for the Von-Mises yielding function, the parameters become c = 0, cs = cc = 1, making the general equation to be: 

Ɛ𝐟 = {  𝐀𝐜𝟐   [  √𝟏+ 𝐜𝟏𝟐𝟑   𝐜𝐨𝐬 (̅ 𝟔 ) + 𝐜𝟏  ( +  𝟏𝟑  𝐬𝐢𝐧 (̅ 𝟔 ) )]}−𝟏 𝐍⁄   ( 120 ) 

While in the Tresca yield function, the parameters become c = 0, cs = √3 ⁄ 2, cc = 1, the general equation reduces to  

Ɛ𝐟 =  {  𝐀𝐜𝟐   [  √𝟏+ 𝒄𝟏𝟐𝟑   + 𝒄𝟏 √𝟑𝟐  𝐬𝐞𝐜 (̅ 𝟔 ) ( +  𝟏𝟑  𝐬𝐢𝐧 (̅ 𝟔 ) )]}−𝟏 𝑵⁄   ( 121 ) 

In order to simulate the fracture propagation and get the correct crack modes 

(especially the slant fracture in plane strain conditions and the cup-cone failure mode in 

round bars), material or element softening after fracture initiation was found to be 

necessary [56, 60, 176]. A general form of the softening law is described by introducing a 
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softening coefficient 𝛽. The symbol �̃�𝑦𝑖𝑒𝑙𝑑  is the softened flow stress, and 𝜎𝑦𝑖𝑒𝑙𝑑 is the 

undamaged original flow stress: �̃�𝑦𝑖𝑒𝑙𝑑 =  𝛽 𝜎𝑦𝑖𝑒𝑙𝑑      ( 122 ) 

𝛽 =   (𝐷𝑐−𝐷𝐷𝐶−1)𝑤      ( 123 ) 

The coefficient 𝛽 is assumed to be a nonlinear function of damage indicator 𝐷  

where 𝐷𝑐 and 𝑤 are material softening parameters that will be calibrated later. Note that 

the softening law is effective only after the fracture initiates (𝐷 > 1). The fracture 

initiates when 𝐷 = 1, which corresponds to 𝛽 = 1. Accordingly, a complete split of the 

material points happens when 𝐷 = 𝐷𝑐, after which the material element shows no 

resistance [56]. In other words, the parameter 𝐷𝑐  is the value of damage indicator when 

an integration point of an element in the ABAQUS user defined material subroutines will 

be deleted and shows zero resistance. It is assumed that the evolution of damage indicator 𝐷 follows a linear damage rule, as shown: 

𝐷 =  𝐷 (Ɛ̅𝑝𝑙) =  ∫ 𝑑Ɛ̅𝑝𝑙�̅�𝑓(,̅)Ɛ̅𝑝𝑙0      ( 124 ) 

4.8.2 Model Calibration 

The proposed plasticity and fracture model was implemented to Abaqus/Explicit 

as a material subroutine (VUMAT). This section will present the detail calibration 

processes. The Ludwick isotropic strain hardening parameters in  (Ɛ𝑝𝑙) = y + K Ɛ𝑝𝑙𝑛  
were calibrated by utilizing the true stress-true strain curve of the smooth round bar 

specimen (“R0”). The load-displacement curve of the smooth round bar was recorded 
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during the test. This curve was converted to the engineering stress-engineering strain 

curve (𝐸, Ɛ𝐸). Then, the true stress-true strain curve (𝑡  , Ɛ𝑡)  was obtained through the 

transformation equations. 

𝑡 = E(1 + ƐE )       ( 125 ) Ɛ𝑡 = ln(1 + ƐE)      ( 126 ) 

Note that these two equations are not valid after the necking initiation. The curve 

data before necking were fitted using the Ludwik isotropic strain hardening function. 

 Three parameters of the Ludwick model (𝑦, 𝐾, and 𝑛) were Table 9. This 

calibrated strain hardening curve was then applied to all specimens for numerical 

simulations as a baseline.  

The stress-strain curve after necking was firstly estimated by extrapolation of the 

Ludwick equation, and then it was followed by a trail-and-error method (adjusting 

parameters from the softening part) until the numerical load-displacement curve showed 

perfect agreement with the test one (specimen “R0”).  

Special consideration was taken in calibrating the pressure effect in the plasticity 

model in order to simulate the load-displacement responses of two notched-specimens 

(“R1” and “R2”). Compared to the smooth round bar (“R0”), these two specimens have 

the same Lode angle parameter (�̅� = 1) but higher stress triaxiality, so they can be used 

to investigate the pressure dependence on plasticity. It is found that the parameter  c in 

the hydrostatic pressure term the plasticity model needs to be increased to have a 

satisfactory curve fit for specimens “R1” and “R2”.  
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To characterize the Lode angle dependence on plasticity, efforts were put to the 

plane strain specimen (“PE”). Since the pressure dependency has been calibrated by 

notched round specimens, the plane strain specimen has same range of stress triaxiality 

but different Lode angle parameter (�̅� = 0), so it can be used to study the Lode angle 

effect. The corresponding parameter are cs and cc. Since there are no compression or 

equi-biaxial test data available, it is assumed that yield locus of IN718 is symmetric 

between tension and compression, so cc = 1. In simulating the test of plane strain 

specimen, it is found that the parameter  c𝑠  cannot be constant as plastic deformation 

continues. The interesting phenomenon will be discussed again in section 4.9.1 By 

adjusting the parameters in function cs (Ɛ̅𝑝𝑙, �̅�) a nice correlation of force-displacement 

curves between test and simulation is achieved for specimen “PE”. This concludes the 

calibration process for plasticity model. All the calibrated parameters for the proposed 

plasticity model are listed in Table 10. 

The modified Mohr-coulomb model (MMC) was used to predict both fracture 

initiation and propagation. The power hardening parameters (𝐴 and 𝑁) for the MMC 

criterion takes from ̅ = 𝐴 Ɛ̅𝑁 = 1480 Ɛ̅0.0813. Finite element simulations were 

conducted until fracture initiation without involving fracture option to get the history of 

stress triaxiality  (Ɛ̅𝑝𝑙),  and history of Lode angle parameter  ̅(Ɛ̅pl). Subsequently, 

three fracture parameters (�̃�𝜃𝑠  , c1, and c2) were calibrated by evaluating the damage 

evolution 𝐷(Ɛ̅𝑝𝑙) using the integral definition explained in page 86 . The hypothesis states 

that a material element fails when the limit of ductility is reached, Ɛ̅𝑝𝑙 = Ɛ̅𝑓, so 
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that 𝐷(Ɛ̅𝑓) = 1. The stress triaxiality, Lode angle, and equivalent plastic strain at fracture 

initiation sites are output from the numerical simulations at each time step. A Matlab 

code was created to run the damage evolution integration to get the best estimation for 

the three constants ( �̃�𝜃𝑠 , c1 and c2 ) such that the calculated damage indicates (𝐷) for all 

four cases are as close to unity as possible.  The results of fracture model parameters are 

summarized in Table 11, which gives satisfactory simulation results.  

Finally, in order to depict the experimental results of material post failure 

behavior (which affects the fracture propagation and final fracture modes), the softening 

of yield stress is introduced in the current investigation. There are two additional 

parameters need to be identified: 𝐷𝑐 and 𝑤. It is found that the power parameter 𝑤 must 

be large enough to get the best simulation of the experimental stress response when force-

displacement curves instantly drop after fracture initiation. Many iterations of finite 

element simulation were conducted for each specimen with different values of the power 

coefficient w in order to simulate the actual experimental fracture patterns perfectly for 

each specimen. The calibrated softening parameters are listed in Table 11. 

Table 9: List of material elastic-plastic properties used in the FEA. 

young’s modulus, E Poisson ratio, v y K n 

200 GPa 0.284 945.1 835.4 0.425 
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Table 10: List of material parameters of yield locus used in the plasticity model. 𝐜 𝐨 𝐜𝐜 𝐜𝐚𝐱 m B1 B2 B3 B4 

0.11 0.333 1 1 0.75 0.23 5.50 40.80 8.00 

 

Table 11: List of material fracture parameters used for the MMC criterion and the 

material softening equation. 𝐜𝟏 𝐜𝟐 �̃�𝜽𝒔  𝐜𝐚𝐱 A N 𝑫𝒄 𝒘 

0.05896 764.588 MPa 0.86276 1 1480 0.0813 1.2 6 

 

4.9 Experimental and Numerical Simulations Results 

In this chapter, results from tests and finite element simulations using 

Abaqus/Explicit with VUMAT are presented together for a direction comparison. The 

detail constitutive/ductile fracture models and their calibration procedures have been 

described in sections 4.8.1 and 4.8.2. 

4.9.1 Comparison of Plasticity and Fracture Results 

The first three round specimens (“R0”, “R1”, and “R2”) were developed in 

ABAQUS using quarter models due to symmetric conditions, and 4-node axisymmetric 

elements (CAX4R) were used.  For the plane strain specimen, pure plane strain condition 

only exists at the central range of the specimen due to the limitation of specimen size and 

machine testing capacity for this tough material. The two edge regions are more close to 

plane stress and uni-axial tension. Therefore, an FE model was developed using 8-node 
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solid elements (C3D8R). Since the shape of the specimen is symmetric, only a quarter 

model of the specimen was created. Meshes of these four types of specimens are shown 

in Figure 36.  

Comparisons of specimen deformation right before fracture initiations and 

configurations from FE simulations are shown in Figure 33. For round specimens, one 

can see that the developments of the circumferential neck are clearly shown in both tests 

and the simulations. This is observed for the smooth round bar (“R0”) and the two 

notched round specimens (“R1” & “R2”) as presented in Figure 33. The quantitative 

measurements of the final radius at neck for each specimen are listed in Table 12. The 

diffuse necking for the plane strain specimen (“PE”) was also noticed in the test, and 

configuration of numerical simulation is illustrated in Figure 33. 

 

Figure 36: Meshes and different element types in Abaqus to conduct finite element 

simulations 
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Table 12: A summary of the characterized dimensions of the fracture radius/thickness. 

Specimen 

Analytical Numerical Simulation 

Neck diameter Thickness Neck diameter Thickness 

R0 4.54 mm N/A 4.83 mm N/A 

R1 5.26 mm N/A 5.59 mm N/A 

R2 5.13 mm N/A 5.26 mm N/A 

PE N/A 2.02 mm N/A mm 2.00 mm 

 

Comparisons of the predicted force-displacement curves are shown in Figure 37 

for all four types of specimens. Solid curves represent test data, and dash curves are 

simulation results. One can see that an excellent correlation is achieved for the calibrated 

plasticity model. The comparative results of plastic deformation (Figure 33) and material 

strength (Figure 37) validate the proposed constitutive model. 

The calibration procedure of proposed ductile fracture model is described in 

Section 4.8.2. To construct the fracture locus, one key step is to obtain the accurate 

histories of two stress state parameters, which vary as plastic deformation continues even 

under monotonic loading conditions.  Obtaining the average stress triaxiality and the 

average Lode angle parameter will help in constructing a fitted 3D fracture locus and 

properly calibrating the failure criterion. These average values (avg, ̅avg) are defined 

in:  

avg = 1 Ɛ̅f  ∫    (Ɛ̅pl) dƐ̅pl  Ɛ̅f0      ( 127 ) 
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̅avg = 1 Ɛ̅f  ∫ ̅(Ɛ̅pl) dƐ̅pl      Ɛ̅f0      ( 128 ) 

The numerical simulations provide real histories of  (Ɛ̅pl) and ̅ (Ɛ̅pl), which are 

illustrated in Figure 38 and Figure 39. The average values of stress triaxiality are also plot 

in the same figure.  The equivalent strains to fracture Ɛ̅𝑓 were obtained from FE 

simulations corresponding to the measured displacements to fracture (𝑑𝑓). Those fracture 

strains are marked in Figure 38. The changes in the stress triaxiality with respect to the 

equivalent plastic strain were evident. The notched round specimens (“R1”, “R2”) and 

the plane strain specimen (“PE”) show a dramatic increase of the stress triaxiality in the 

initial stages of plastic deformation, and then a gradual change follows. On the contrary, 

the smooth round bar (“R0”) shows a steady increase in the stress triaxiality as the 

equivalent plastic strain increases with no sign of decrease in value. 
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Figure 37: Measured force-displacement responses with the gauge length of each test 

listed in Table 8. A comparison of the numerical and experimental results along with the 

fracture occurrence for all specimens shows good correlation. 

 

Figure 38: Numerical stress triaxiality values vs. equivalent strain in the necking center of 

each specimen (fixing θ ̅=1 for MMC model). Fracture locus of Inconel 718 alloy from 

numerical simulations showing both the average stress triaxiality (dash lines) and the 

evolution of stress triaxiality (solid curves) in the loading process. 
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Figure 39: Numerical results of Lode angle parameter vs. equivalent strain in the necking 

center of each specimen. 

Theoretical solutions of stress triaxiality and the fracture strain estimation based 

on area reduction are compared to the numerical results of avg and Ɛ̅𝑓 , see Table 13. 

The comparison shows reasonable good agreement between analytical and numerical 

solutions for the values at the center of the neck, where cracks initiate. The existence of 

some differences is mainly due to two reasons. One is that the analytical solution of stress 

triaxiality is just the initial value rather than the average value. The second one is that the 

analytical solutions of fracture strain are based on the average value of the whole necking 

cross-section, while the numerical fracture strain is the local strain at the center.  Another 

difference is the Lode angle parameter for the plane strain specimen. Theoretical solution 

of plane strain condition gives �̅� = 0, but the average value is 0.4530. The real history 

this parameter is shown in Figure 39. The main reason for this difference is due to the 

design of plane strain specimen. The “PE” specimen is not wide enough (subjected to 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

E
q

u
iv

a
le

n
t 

st
ra

in
 t

o
 F

ra
ct

u
re

Normalized Lode Angle 

R0

R1

R2

PEPE

avg PE



96 
 

material size and testing machine limits) to achieve pure plane strain condition. However, 

the numerical simulation helps to construct its real loading condition.   

Table 13: A summary of stress triaxiality, Lode angle, and equivalent plastic strain to 

failure from both experimental data and numerical simulations 

Specimen 
Theoretical solution Numerical simulations 

 ̅ Ɛ̅𝒇 𝐚𝐯𝐠 ̅𝐚𝐯𝐠 Ɛ̅𝒇 
R0 0.3333 1 0.6804 0.4520 1 0.6129 

R1 0.7413 1 0.3861 1.0213 1 0.2924 

R2 0.5105 1 0.4424 0.7165 1 0.5123 

PE 0.5774 0 0.4004 0.6141 0.4530 0.6331 

 

The results in Table 13 is used to construct the 2D fracture locus in the space of 

stress triaxiality versus the equivalent strain to fracture as illustrated in Figure 40. It is 

seen that the equivalent plastic strain to fracture (Ɛ̅𝑓) of Inconel 718 generally decreases 

as the stress triaxiality increases except for the plane strain conditions. This is due to the 

effect of Lode angle parameter on ductile fracture. 

The numerical simulation results are used to calibrate the MMC 3D fracture locus 

according to the procedures described in Section 4.8.2. The calibrated parameters of 

MMC fracture model are listed in Table 11. By invoking the fracture option in Abaqus 

simulation, the displacements corresponding to fracture initiation can be predicted in 

finite element simulations, which are marked in Figure 37. One can see that the plastic 

behavior and fracture initiation in the numerical simulation agree very well with test 

results of all four specimens. The fully calibrated 3D fracture locus of IN718 is shown in 

Figure 41. The differences between model prediction and test results for each specimen 
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are also marked. It is found that the fracture surface based on the MMC criterion in this 

study agrees with the that established by JCXd fracture model in Ref. [68]. Two test data 

under shear and plane strain tension (�̅� = 0) from Ref. [9] for the same grade of material 

are also plotted in the same figure for comparison. The comparison results show 

satisfactory agreement as in Figure 41. It is concluded that the MMC fracture model can 

be used to describe the ductile fracture of IN718 with good accuracy. 

 

Figure 40: Calibrated MMC 2D ductile fracture locus (setting  �̅� = 1) shows the 

relationship of average stress triaxiality and equivalent strain to fracture for Inconel 718. 

The theoretical solutions of stress triaxiality and fracture strains are marked as solid 

triangles for comparison. 
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Figure 41: Calibrated MMC 3D fracture locus corresponding to monotonic tensile test of 

Inconel 718. Experimental data lie on the fracture surface. Two data points shown as blue 

circles on the plane strain line (�̅�=0) are taken from Ref. [9] for comparison. 

4.9.2 Simulation of Ductile Fracture Propagation and Crack Modes 

Conventional finite element simulations typically predict a flat fracture surface 

that is perpendicular to the load direction. In contrast, the experimental results show that 

crack propagated along a developed shear band with the least energy dissipation [98, 

176]. During the tests, three round bars specimens (“R0”, “R1”, and “R2”) exhibit vivid 

necking in the gauge section (the minimal cross section diameter) with a cup-cone 

fracture mode. Initial micro cracks occurred in the gauge center followed by crack 

propagation outward. Then, a shear lip was formed at the circumferential edge of the 

outer radius (which is close to plane strain condition). This created a cup-cone fracture 

mode. On the other hand, the plane strain specimen (“PE”) shows a slant fracture mode, 
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which was caused by a shear band generated in the gauge section. The sudden fracture 

initiation and propagation for all specimens causes a quick load drop in the force-

displacement curves. In reality, many local phenomena happened within this short 

increment of displacement. 

It is found that the material/element post-failure softening behavior controls the 

prediction of fracture propagation. The calibration procedure of the softening function is 

described in Section 4.8.2. Through iterative finite element simulations, a suitable 

parameter, 𝑤 = 6, is identified. The predicted fracture modes well correlate with test 

results for all specimens as illustrated in Figure 42, Figure 43, Figure 44, and Figure 45. 

The simulations of round specimen were presented using the sweep feature in ABAQUS 

to render a 2D axisymmetric model into a full 3D geometry. It is important to mention 

that fracture simulations are sensitive to the element mesh size. The finer mesh size will 

give clearer fracture surface configurations. The used mesh size was 0.05mm for all these 

simulations. It is concluded that the MMC fracture criterion is capable of depicting both 

the fracture initiation and the fracture propagation modes for all four types of specimens. 
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Figure 42:  Deformation and fracture steps in the numerical simulation show a cup-cone 

fracture pattern for the smooth round bar (“R0”). The right figure shows the experimental 

result. The contour plot is the equivalent plastic strain in ABAQUS. 

 

 

Figure 43: Deformation and fracture steps of the numerical simulation show a cup-cone 

fracture pattern for sharp notch round bar specimen (“R1”).  The right figure shows the 

experimental result. The contour plot is the equivalent plastic strain in ABAQUS. 
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Figure 44: Deformation and fracture steps of the numerical simulation show a cup-cone 

fracture pattern for the large notch bar specimen (“R2”). The right figure shows the 

experimental result. The contour plot is the equivalent plastic strain in ABAQUS. 

 

Figure 45: A comparison between the numerical simulation and experimental results 

shows a slant fracture mode for the plane strain specimen (“PE”). The right figure shows 

the experimental result. The contour plot is the equivalent plastic strain in ABAQUS. 

 

4.10 Discussion and Conclusion 

In this paper, the plasticity model with pressure and Lode angle dependence 

proposed by Bai and Wierzbicki [4] was extended to describe the evolution of yield 

surface for IN718. The Lode angle dependency parameter cs, which controls the shape of 

yield surface at the deviatoric plane, was found to be a function of equivalent plastic 
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strain and Lode angle parameter cs (Ɛ̅𝑝𝑙, �̅�).  The calibrated initial yield surface (2D 

plane stress condition) is shown in Figure 46. The classical von Mises and Tresca criteria 

are also plot for reference. Since there are no test data on compression or equi-biaxial 

tension, the yield behavior of IN718 was assumed to be symmetric between tension and 

compression (c𝑐 = 1). 

The evolution of yielding surface as plastic deformation continues is illustrated in 

Figure 47. This evolution can also be presented on the 𝜋-plane, as shown in Figure 48.  It 

is worth noting that the yield surface changes its shape as plastic strain increases. It 

develops to an elliptical shape (von Mises criterion) when the equivalent plastic strain 

reaches about 0.10. It keeps changing shapes as it deformation continues, which develops 

to be a hexagon shape (Tresca criterion) at about 0.3 plastic strain. The current test 

number is very limited. More tests are needed to fully understand this evolution of yield 

surface since it describes the plastic behavior of Inconel 718 under different stress states. 

The suggested tests to examine this irregular yield surface include equibiaxial tension and 

shear/torsion loading conditions.  

The calibrated 3D MMC fracture locus is shown in Figure 41. It is able to 

describe all test data points. It is interesting to find that the effect of the Lode angle on 

fracture is relatively small but the material plasticity has strong Lode angle dependency. 

The fracture locus is highly dependent on stress triaxiality while the plasticity has only 

some pressure dependency.  
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Figure 46: The calibrated initial yield surface for Inconel 718 (2D plane stress). The von-

Mises and Tresca criteria are also plot for comparison. Two different stress states from 

the current tests are marked. The stress unit is MPa. 
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Figure 47: Evolution of 2D plane stress yield surface as the equivalent plastic strain 

(PEEQ) increases. The arrow shows the direction of evolution for the yield locus 
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Figure 48: Evolution of the yield surface shape as the equivalent plastic strain (PEEQ) 

increases in the deviatoric stress plane (π-plane). 

In summary, this paper presents experimental and numerical simulation results of 

Inconel 718 high temperature super alloy. Four types of specimens (one smooth round 

bar, two notched round bars, and one plane strain specimen) with different loading 

conditions were designed and tested under room temperature and quasi-static loading. It 

is found that the stress state parameters (stress triaxiality and Lode angle parameter) have 

noteworthy effects on the plasticity and fracture of Inconel 718.  The plasticity model 

with pressure and Lode angle dependence proposed by Bai and Wierzbicki [4] was 

extended to describe the material’s plasticity behavior, and the MMC fracture model [25]  

with post failure softening [60] was used to successfully predict both ductile fracture 

initiation and propagation. 
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In order to conduct model calibration and numerical verification, finite element 

analysis was set up. The proposed plasticity model and ductile fracture criterion were 

implemented into ABAQUS/Explicit by means of a user defined material subroutine 

(VUMAT).  The final calibration gives satisfactory results. The force-displacement 

curves of the numerical simulations correlate very well with the experimental ones.  An 

excellent match is achieved in terms of initial yield stress, strain hardening, and plastic 

deformation behaviors.  

The MMC ductile fracture criterion was calibrated to fit the fracture test results. 

The sudden drop in the force-displacement curves was considered as the initiation of 

fracture. A Matlab code was created to help calibrate the MMC model. Material/element 

post-failure softening behavior was calibrated through iterative finite element simulations 

to match the correct fracture modes. Finally, both the fracture initiation and crack 

propagation in the finite element simulations show satisfactory agreement with test 

results for all four specimens. 

 

  



107 
 

CHAPTER FIVE: 

A UNIFIED MATERIAL MODEL FOR MULTIAXIAL DUCTILE 

FRACTURE AND EXTREMELY LOW CYCLE FATIGUE OF 

INCONEL 718 

5.1 Abstract 

This paper summarizes an extensive work of experimental and numerical studies 

of extremely low cycle fatigue (ELCF) on IN718 under room temperature. The ELCF is 

focused on low numbers of cyclic loading (fewer than 100 cycles) of fatigue failure. The 

IN718 cyclic plasticity behavior and the Bauschinger effect are studied and simulated 

using the well-known nonlinear kinematic hardening law by J. L. Chaboche and his co-

workers under different strain amplitudes and different stress states. Moreover, the Vocé 

isotropic hardening law was used in combination with the Bai-Wierzbicki plasticity 

model. The Bai-Wierzbicki plasticity model was used to capture the effect of different 

stress states on ELCF based on the stress triaxiality and Lode angle parameters. On the 

other hand, the modified Mohr–Coulomb (MMC) ductile fracture model for monotonic 

loading was extended by a new damage evolution rule to cover the ELCF regime. A new 

parameter was introduced to represent the effect of the cyclic loading at ELCF. The new 

parameter is responsible to capture the change of non-proportional loading direction 

between the current stress and the backstress tensors. A comparison between the 

experimental data and the finite element simulation results (by Abaqus/Explicit) shows 

excellent correlations. Lastly, a fractographic examinations and fracture modes 

simulations are presented. 
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5.2 Introduction 

In-service complex engineering structures and their components are typically 

subjected to multiaxial stress states loading due to geometrical effects, residual stresses, 

or multi-directional loading [177]. Also, metal fatigue is considered to be one of the main 

mechanical failure modes in real applications [134, 178]. Therefore, the need to 

understand and investigate multiaxial fatigue of engineering materials has grown. 

Accurate and intensive studies, along with the advanced finite-elements simulations, will 

help to safely utilize materials and superalloys to their full capacity in engineering 

structures and components. 

Inconel 718 (IN718) is a Nickel-base superalloy. IN718 has an FCC 

microstructure and is a polycrystalline Nickel-base superalloy with a high content of Cr 

and Fe that is fabricated by conventional melting and casting techniques. The examined 

IN718 chemical composition is shown in Table 14 as received. The usages of IN718 have 

been dramatically increased in many high-strength and high-temperature applications due 

to its exceptional characteristics. The common applications of IN718 are in the hot 

section of gas turbines, compressors and power generators (operating temperatures of 

650ᵒC.). For such applications, the machine start-up or shut-down are the most critical 

moments of the machines’ life where most failures commonly occur. During these critical 

moments, Extremely Low Cycle Fatigue (ELCF) is highly susceptible due to the very 

large-strain cyclic loading. This would lead to an unexpected catastrophic failure in an 

unexpectedly short time. Hence, studying ELCF under different stress states and different 
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strain amplitudes will assist to understand and improve the materials’ performance and 

life span in the machine’s design stage [179-182].  

The ELCF regime falls in between the ductile fracture due to monotonic loading 

and the Low cycle fatigue (LCF). The term ELCF describes cyclic loading with very-

large strain that causes the material to fail under 100 cycles of reverse loading (𝑁𝑓  <100) [183]. A common life example of ELCF are steel structures, i.e. steel bridge beams 

and welded joints, failing due to extreme loading conditions caused by earthquakes [184, 

185].  ELCF, unlike other fatigue regimes, exhibits very large accumulated plastic strain 

during the very large-strain cyclic loading. This causes unique changes in the material 

hardening and softening behaviors during reverse loading processes. Another unique 

characteristic of ELCF different from other fatigue regimes is its fracture mode.  ELCF 

fracture mode (fracture initiation and propagation) behaves similarly to ductile fracture 

mode and exhibits the same surface profile. This similarity is due to the very short life of 

this regime, as well as the rapid crack initiation and propagation of fatigue cracks in the 

ELCF regime. Lastly, the ELCF fracture initiates inside of specimens and propagates 

towards the outer radius. Conversely, the fracture of the other fatigue regimes usually 

initiates from the outer radius and propagates inwards [36, 183].  

Throughout the past decades, numerous researches studied and developed many 

constitutive models to describe the metals cyclic plasticity behavior and the Bauchinger 

effect. The constitutive models that are directly influenced by its kinematic hardening 

rule in the yield surface consistency status are known as the “coupled models,” such as 

those in Refs. [15-19, 122, 129, 186-196]. All these models are originally based on 
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Prager model in Ref. [197]. The other constitutive models category is known as the 

“uncoupled models.” These models are indirectly influenced by the material’s kinematic 

hardening rule, such as those in Refs. [113, 115, 117, 198]. For the sake of simplicity, 

readers are advised to Refs.  [11, 13] for more extensive explanations. The current 

research adopts a simple and well-known nonlinear kinematic hardening model that was 

invented by J. L. Chaboche and his co-workers [15, 17].   

The cyclic plasticity behavior of Nickel-base superalloys under LCF regime has 

been studied [65, 130, 199-206].  Manonukul et. al. [199] examined the behavior of 

Nickel-base superalloy “C263” in the Low Cycle Fatigue regime (LCF) (100 ≤ 𝑁𝑓 ≤ 

10000) using a multiaxial physically-based constitutive model. The results of their 

research show reasonable correlations when compared to the experimental data. More 

Nickel-base superalloy researches were conducted for thermomechanical fatigue behavior 

using viscoplastic constitutive models [130, 200-203, 206]. Recently, Becker and 

Hackenberg [65] proposed a constitutive model for IN718 under LCF that considers a full 

range of thermal and mechanical fatigue conditions (TMF) at small strains. In addition, 

Gustafsson et. al. [204] proposed a simple constitutive model for IN718 using Ohno and 

Wang model [205] for intermediate temperatures (400ᵒC) in LCF. Their model and 

numerical simulation results show good agreement with the experimental data.  

Many ongoing researches have focused on studying and predicting the ELCF life 

of different materials under multiaxial stresses. Early studies, in Refs. [32, 35, 207, 208], 

show that the experimental specimens fail sooner than the fatigue life predicted by the 

Coffin-Manson strain-based law [209, 210]. Studies observed that the Coffin-Manson law 
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can well-predict the metal’s life in LCF, yet it over-predicts the metal’s life in ELCF 

regime [33, 35]. Thus, it is concluded that the predicted life by Coffin-Manson law does 

not fit well in the range of ELCF [34, 35]. Therefore, studies [33, 39, 208] suggest adding 

an additional factor to Coffin-Manson law to improve the ELCF life prediction. This 

additional factor is called the “damage effect” which represents the huge plastic damage 

accumulation in the materials ductility during ELCF. However, researches are not yet 

certain whether or not the huge damage is responsible for dropping the fatigue life. 

Nevertheless, the plastic damage accumulation in the material’s ductility in ELCF is 

verified to be irreversible [211]. Moreover, other studies improved the ELCF prediction 

by contributing the effect of plastic internal void growth and coalescence in ELCF [212, 

213].   It is apparent that studies on ELCF of IN718 are exceedingly rare, although 

abundant studies on IN718 in Low Cycle Fatigue (LCF) can be found in Refs. [40, 154, 

203, 214-217]. 

Other approach of research studies [212, 218-220] predicted ELCF by extending 

ductile fracture models under monotonic loading to the case of cyclic loading, or ELCF. 

This approach was inspired by the similarities in the crack surface and crack modes under 

monotonic loading and ELCF (i.e. cup-cone fracture surface for round specimens). As a 

result, it was postulated that their failure mechanisms share similar crack formation 

characteristics of ductile fracture failure mode. This approach of research overcomes the 

shortcoming of traditional fatigue models, i.e. Coffin-Manson law. It was found that the 

traditional fatigue models could not accurately model ELCF due to the underlying 

fundamental physical processes, such as crack initiation and propagation mechanisms, in 
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ELCF. Mainly, the extreme plastic strain that accompanies ELCF nullifies the stress-

intensity-based of ∆K or ∆J models of Paris and Erdogan [221]. In addition, these types 

of stress-intensity-based models require or presume the existence of a sharp crack or 

defect, which is missing in most real application details. Secondly, in real applications 

such as earthquakes on steal bridges, loading histories are very random with few numbers 

of cycles. This makes it very challenging to count the cycles by adopting the 

conventional counting techniques, i.e. rainflow analysis [222] or the traditional strain-life 

approaches. Therefore, extending ductile fracture models from monotonic loading to the 

case of cyclic loading merits extensive consideration. Kanvinde and Deierlein [212] 

extended the Rice and Tracey ductile fracture model [46] to develop a cyclic void growth 

model (CVGM) that applies for ELCF life prediction. Although the CVGM shows fairly 

accurate results of predicting ELCF, it is limited by some assumptions stated in the study. 

Bao and Treitler [218] proposed a new ductile fracture model for compression-tension 

loading condition based on a model presented earlier in Ref. [223] . This fracture model 

gives good results but limited to a two-stage loading process; pre-compression followed 

by tension to failure. Bai [219] extended a ductile fracture model in Ref. [4] by proposing 

two weighting functions for 1045 steel. One function considers the nonlinear damage 

evolution and the other function incorporates the effect of change in loading directions.  

This study implies the importance of a nonlinear damage evolution in ELCF loading 

conditions. A very recent study by Wen and Mahmoud [220] extended their ductile 

fracture model in Ref. [224] to predict ELCF life span.  
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This study has three main objectives. First, it focuses on defining a simple 

constitutive model that describes both monotonic and very large-strain cyclic loading 

behavior of IN718 at room temperature. The plasticity behavior of IN718 is calibrated 

and modeled by combining the Chaboches’ nonlinear kinematic hardening model [15, 17]  

with the Bai-Wierzbicki plasticity model [4]. The Bai-Wierzbicki plasticity model takes 

into account different multiaxial stress states. The multiaxial stress states are described by 

two parameters: stress triaxiality and Lode angle parameter. Second, it extends the 

application of the modified Mohr–Coulomb (MMC) ductile fracture model to ELCF. This 

study of IN718 under ELCF regime is a continuation of the parallel studies in Refs. [225, 

226]. The model extension proposed herein extends the MMC ductile fracture application 

to cover the ELCF context by introducing a new factor that considers the cyclic loading 

effect, which is inspired by Ref. [219]. This model represents the fundamental physics of 

the accumulated plastic strain associated with ELCF and it can be conventionally 

investigated and simulated through FEM. Third, an evaluation of crack initiation and 

propagation due to ELCF will be addressed. This evaluation is assessed through a 

fractographic examination of the specimens’ experimental fracture surfaces.  A 

comparison between the experimental results and the finite element simulations (by 

Abaqus/Explicit) will be exposed. All the results of this paper are verified based on a 

series of experimental tests data.   

 

Table 14: The IN718 specimen’s chemical composition in %wt. (as received) 

Ni Cr Mo Cb + Ta N Si Cu Al Co C S Mn B P Fe 
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52.9 18.41 2.89 5.17 0.0078 0.08 0.06 0.58 0.19 0.04 0.0005 0.09 0.004 0.007 Bal. 

 

5.3 Characterization of the stress state 

It is known that an arbitrary stress tensor [ij] can be simplified to three principal 

stresses ( 1,2, and 3 ) by coordinate system rotation. It has been shown that a stress 

state can be uniquely described by two dimensionless parameters, stress triaxiality  

(mean stress normalized by equivalent stress) and Lode angle parameter ̅ (related to the 

normalized third deviatoric stress invariant), which is defined as follows [43]: 

 =  − pq = m
̅
= 1+ 2+ 33̅      (129)  

̅ = 1 − 6

= 1 − 2𝜋 arccos      (130)  

Here, m is the mean stress; ̅ is the equivalent stress;   is defined as normalized 

third deviatoric stress invariant,  =  𝐽3
̅3. Here 𝐽3 = 𝑠1𝑠2𝑠3   is the third deviatoric stress 

invariant. The parameter  can be further related to the Lode angle   by  = cos(3 ). 
The range of ̅ is -1 ≤ ̅ ≤ 1. Now, all isotropic loading conditions can be uniquely 

characterized by the above defined set of parameters (, ̅ ). These two parameters form a 

stress state plane [4, 43]. Material mechanical properties, for example, yield strength, 

necking and fracture limits, can be represented as the third axis to this plane. For a 

monotonic loading condition, these two stress state parameters ( and ̅ ) remain 

constant, so it corresponds to one point on this plane. For a nonlinear strain/stress path, it 
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gives a curve on this plane. The set of parameters provide a novel way to describe 

arbitrary stress states and strain paths.  

5.4 Design of specimen geometries 

In this study, a number of specimens, with four different shapes, were tested 

under large-strain cyclic loading of tension and compression. The four distinctive shapes 

are a smooth round bar, a round bar with a small external circular notch, a round bar with 

a large external circular notch, and a flat plane strain bar. Three-dimension (3D) sketches 

and real machined parts for these geometries are illustrated in Figure 74. In addition, 

more information about key dimensions are demonstrated in Table 23 in reference to 

Figure 50. These geometries are designed in a way to ensure fractures initiate at desired 

stress states. Also, there are analytical solutions of stress state parameters available for 

these specimens in Ref. [43]. These four types of specimens are usually used to study the 

stress triaxiality and Lode angle effects on the plasticity and fracture of metals. To easily 

distinguish each specimen, Table 23 explains the denotations used hereinafter.  
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Figure 49: A 3D sketch of (a) smooth round bar , (b) small radius notch bar, (c) large 

radius notch bar, and (d) plane strain flat bar, (e) real specimens before testing denoted as 

R0, PE, R2, and R1. from left to right. 

Table 15: Denotation of sample names with their key dimensions (unit: mm) 

Specimen type Denotation 

Notch 

radius, R 

Minimum 

diameter, 

d 

Shoulder 

diameter, D 

(a) Smooth round bar R0 N/A 6.350 12.700 
(b) Small radius notched bar R1 3.175 6.350 12.700 
(c) Large radius notched bar R2 9.525 6.350 12.700 
(d) Plane strain PE N/A 3.048 12.700 
 

(e) 

) 
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Figure 50: Main geometries and dimensions of the round bar (a), and the plain strain bar 

(b).  

5.5 Experiments 

All specimens were fabricated from the same piece of rod to ensure 

microstructure similarity.  Four types of specimens with different shapes were tested at 

room temperature and under extreme large-strain cyclic loading of tension and 

compression. An MTS servohydraulic testing machine with a 100 kN load cell capacity 

was used in our cyclic load tests at a strain rate of 0.003 /sec. The tests data of load-

displacement were simultaneously recorded by the testing machine and an optical 

measurement system. The surface strains were recorded and calculated using a Digital 

Imaging Correlation (DIC) software provided by Correlated Solutions Inc. (Vic2D 2009). 

In order to get an accurate image correlation in DIC, the specimens were spray painted in 

white then speckle patterned in black dots for better image contrast. The DIC results were 

used to obtain the experimental force-displacement curves, and to achieve full filed strain 

measurement. A test series were run until complete fracture of specimens under different 

large-strain amplitudes (as summerized in Table 24). The force-displacement curves of 

the cyclic loading are recorded and illustrated. The reference gauge length, gauge 
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elongation and number of cycles to fail (Nf) are summarized in Table 24. The gauge 

length (Lo) for each specimen is the initial gauge length (before testing) that was used to 

calculate the strain around/at the critical area. The engineering strain is defined as  Ɛ𝐸 =(𝐿 − 𝐿𝑜) 𝐿𝑜⁄  where 𝐿 is the current gauge length reading from the DIC. The gauge length 

is fixed to enable comparing the force-displacement results from the experiment and the 

simulation data. Also, the test elongation is provided in Table 24 to check if all the tests 

failed within the ELCF regime. 

Table 16: Experimental data and measurements of the ELCF tests of IN718. 

Test 

number 
Specimen 

Gauge 

length, mm 

Test 

Elongation  

Number of Cycles to fail, 

Nf 

1 R0 15.2 33% NA* 
2 R1 9.16  33% 4 
3 R1 9.16  16% 9 
4 R2 15.98  33% 10 
5 R2 15.98  16% 41 
6 R2 15.98  5% 51 
7 PE 4.19  33% 10 
8 PE 4.19  16% 21 
9 PE 4.19  5% 43 

* The “R0” specimen significantly buckled after 10 cycles during the compression 
loading and accordingly, the test was stopped. 

As a base line, the experimental measurements of fracture under monotonic 

loading conditions of the same IN718 are reported by the same authors and summarized 

in Table 17. The classical Bridgman solutions [42] was adopted to calculated the stress 

triaxiality and the fracture strain. These data were used to construct the 2D fracture locus 

in the space of stress triaxiality versus the equivalent strain to fracture as illustrated in 

Figure 51. It is seen that the equivalent plastic strain to fracture (Ɛ̅𝑓) of IN718 generally 

decreases as the stress triaxiality increases. 
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Table 17: An experimental data summary of stress triaxiality, Lode angle, and equivalent 

plastic strain to failure for IN718 under monotonic loading, taken from Ref. [225]. 

Specimen 
Gauge 

length 

Gauge 

Elongation 

Displacement 

at fracture 

Theoretical solution 

 ̅ Ɛ̅𝐟 
R0 15.27 mm 27.7% 4.23 mm 0.33 1 0.680 
R1 9.16 mm 7.9% 0.72 mm 0.74 1 0.386 
R2 15.978 mm 10.2% 1.63 mm 0.51 1 0.442 
PE 4.19 mm 26.7% 1.12 mm 0.57 0 0.400 

 

Figure 51: Calibrated MMC 2D ductile fracture locus (setting �̅� = 1) shows the 

relationship theoretical solution of stress triaxiality vs. the theoretical solution of 

equivalent fracture strain for IN718 [225]. 

The experimental results of ELCF are shown in Figure 52, which reveals a strong 

dependency of the fracture strain on the stress triaxiality. This effect can be firstly seen in 

the monotonic loading (¼ cycle to failure) in the strain-life plot. This fact propagates 

evidently into the ELCF regime. The slopes which represent R2 and PE strain–life curves 

are almost identical since the stress triaxiality of both specimens are very close. However, 

the strain–life curve slope of the R1 specimens is much steeper since it has a higher value 
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of stress triaxiality. Hence, we can affirm from the ELCF experimental results that the 

stress triaxiality is inversely proportional to the strain–life curve slope under the 

condition of fully reversed loading. The strain amplitudes were calculated using Eq. 

(131). The changes in the diameter and the axial displacement of the specimens during 

the ELCF tests were accurately recorded and measured by the aid of DIC. 

Δ𝜀̅  =  { 2 ln (𝐷0𝐷 ) , 𝑓𝑜𝑟 𝑟𝑜𝑢𝑛𝑑 𝑏𝑎𝑟 𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛𝑠  √32  ln (𝑡𝑜t ) , 𝑓𝑜𝑟 𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑎𝑖𝑛 𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛𝑠     (131)  

where 𝐷0 , 𝐷, 𝑡0 and 𝑡 are the initial gauge diameter, current gauge diameter,  

initial thickness, and current thickness, respectively. The initial diameter and the initial 

thickness were identified and recorded, by the DIC, before a test started. The current 

diameter and thickness were measured at the peaks of the displacement/strain during the 

cyclic test. 
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Figure 52: The strain–life curves for all specimens under ELCF regimes of IN718. 

The fractured specimens under ELCF are shown in  It is evident from the fracture 

surface morphologies of each specimen that the fracture mechanism is very similar to that 

of the ductile fracture under monotonic loading as shown in Figure 77. 

. It is clear from the fracture surface morphologies of each specimen that the 

fracture mechanism of ELCF is very similar to that of the ductile fracture under 

monotonic loading. Fatigue cracks in ELCF tended to initiate in the gauge center and 

propagate towards the surface. The round bars specimens (R1, R2) exhibits a cup-cone 

fracture mode. The cup-cone fracture mode usually starts with micro cracks in the gauge 

center followed by crack propagation towards the outer radius. Then, a shear lip is 

formed at the circumferential edge of the outer radius (which is close to plane strain 
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condition). On the other hand, the plane strain specimens (PE) show a slant fracture 

mode, which was caused by a shear band generated in the gauge section. 

 

Figure 53: Some examples of fractured surfaces morphologies under ELCF conditions. 

5.6 Plasticity Model and Fracture/Fatigue Criterion 

5.6.1 Plasticity behavior model under cyclic loading conditions 

The plasticity behavior of IN718 under tension-compression cyclic loading 

conditions is assumed to involve a combined hardening rule; kinematic hardening and 

isotropic hardening. Chaboche and his co-workers [15, 17] proposed a model of a 

decomposed nonlinear kinematic hardening rule of backstresses, which was adopted in 

this study (Eq. (149)). Essentially, the Chaboche model is a superposition of several 

Armstrong and Frederick kinematic hardening rules [129].  Three nonlinear backstress 
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components (𝜶 =  𝜶𝟏 + 𝜶𝟐 + 𝜶𝟑) were used in this paper to simulate the stable IN718 

hysteresis loop of the smooth round bar specimen (“R0”). The Chaboche model, 

basically, decomposes a stable hysteresis loop into three major parts: (𝛼1) the initial high 

modulus at beginning of yielding that stabilizes rapidly, (𝛼2) the transient nonlinear part 

of a stable hysteresis curve, and (𝛼3) the linear constant modulus region at a higher strain 

extent with 𝐵3 = 0. �̇�𝐢 = CiƐ̇ 𝐩𝐥 − Bi 𝛂𝐢    Ɛ̇̅𝑝𝑙,          𝛂  = ∑ �̇�ini=1    ,            𝑤ℎ𝑒𝑟𝑒 n = 3  (132)  

Ɛ̇̅𝑝𝑙 = √(23) Ɛ̇𝐢𝐣𝐩𝐥: Ɛ̇𝐢𝐣𝐩𝐥      (133)  

where  αi is the backstress tensor, Ci and Bi are positive material constants, and 

Ɛ̇̅𝑝𝑙 is the accumulated equivalent plastic strain rate which is described in Eq. (133). 

Moreover, a plasticity model proposed by Bai and Wierzbicki [4] has been 

adopted in combination with the isotropic strain hardening to describe the effect of 

different stress states (see Eq. (150)). This model incorporates the effects of hydrostatic 

pressure and the Lode angle parameter. The plastic flow potential used in this paper is 

shown in Eq. (135). The first term of Eq. (150),  (Ɛ̅pl), takes the Vocé isotropic strain 

hardening function, as shown explicitly in Eq.(136), where 𝜎𝑦, 𝑄 and 𝑏 are the yield 

stress at zero plastic strain, the maximum strain hardening of the yield surface, and the 

rate at which the size of the yield surface change, respectively [107, 108]. The second 

term of Eq. (150) is the effect of the hydrostatic pressure on yield, where c and o are 

two material parameters that need to be calibrated under monotonic loading conditions. It 

should be noted that the term of [1 − c (− o)] should be bounded within certain 
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limits for the very high or very low stress triaxiality region. For example, 0.5 ≤[1 − c ( − o)] ≤ 2.0 was used in our simulations. The third term in this model is the 

Lode angle dependence, where a correction term, (𝑚+1𝑚 ), was introduced to make it more 

user-friendly [225]. This is slightly different from the original term [4]. The Lode angle 

term consists of four material constants cs, ct , cc, and 𝑚 that need to be calibrated under 

monotonic loading condition as well. The terms cs, ct , cc  are relative and, at least, one of 

them equals one. The parameter  , defined in Eq. (137), is the strength difference 

between von Mises and Tresca in the deviatoric stress plane. After modification and 

normalization of   , it ranges from 0 ≤  ≤ 1. In axial symmetry and plane strain 

conditions, the  is 1 and 0, respectively. The first term of Eq. (135) considers the 

kinematic hardening, which is defined in Eq. (149). 

 (Ɛpl , , ) =  (Ɛ̅pl)[1 − c (− o)] [cs + (cax − cs) (𝑚+1𝑚 ) ( − m+1m+1)]  (134)  

f = √𝟑𝟐  [𝐒 − 𝛂  ] ∶ [𝐒 − 𝛂 ] −   (Ɛ̅pl , , ) = 0    (135)  

 (Ɛ̅pl) = 𝜎𝑦 + 𝑄  ( 1 − 𝑒−𝑏Ɛ̅𝑝𝑙)    (136)  

 = 6.4641 [sec ( −  /6) − 1]    (137)  

 

5.6.2 Ductile fracture criteria with damage accumulation for ELCF 

The modified Mohr-Coulomb criterion (MMC) [25] is used to determine the 

fracture locus of IN718 and to predict crack initiation and growth under different stress 

states (Eq.    
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(151)). The MMC model had shown capable of capturing the coupling effect of stress 

triaxiality and Lode angle. This phenomenological fracture criterion has shown excellent 

prediction capabilities of fracture onset in various applications under monotonic loading 

conditions [49, 50, 57, 173-175]. The six parameters (𝐴, 𝑁, �̃�𝜃𝑠 ,  c̃𝑎𝑥, c1, and c2) in Eq.  

 (151) are material parameters that need to be calibrated using proportional loading 

condition tests.  

Ɛ̅𝑓 (, ̅)  = {  
      𝐴𝑐2  [�̃�𝜃𝑠 + √𝟑𝟐− √𝟑 (�̃�𝒂𝒙 − �̃�𝜃𝑠) (𝒔𝒆𝒄 (̅ 𝟔 )  −  𝟏)]                          [√𝟏+ 𝒄𝟏𝟐𝟑    𝒄𝒐𝒔 (̅ 𝟔 ) + 𝒄𝟏  ( + 𝟏𝟑  𝒔𝒊𝒏 (̅ 𝟔 ))] }  

  −1 𝑁⁄
 (138) 

𝑑𝐷 =    𝑑Ɛ̅𝑝𝑙�̅�𝑓(,̅)     (139) 

 

Under monotonic loading conditions, a linear damage accumulation rule 

(Eq.(139)) is often used, where 𝑑𝐷 is the damage incremental and 𝑑Ɛ̅𝑝𝑙 is the change of 

equivalent plastic strain. The damage indicator 𝐷 ranges within [0, 1], where 𝐷 = 0 

represents a virgin material (flawless) and 𝐷 = 1 represents fracture initiation. 

In this paper, the MMC ductile fracture model is extended to consider ELCF 

regime. Two more weighing functions are introduced in conjunction with the MMC 

fracture locus. They are set as shown in Eq. (140), and explicitly expressed in Eqs. (141), 

and (142). These two functions are presumed to act independently and concurrently 

throughout a loading process. They are essential in this research to consider the complex 

cycling loading condition in order to accurately predict the material’s failure within the 
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ELCF regime. The first extension function, 𝑔(𝐷), takes role in calculating the damage 

indicator evolution ,as the equivalent plastic strain increases, in a nonlinear manner even 

under monotonic or proportional loadings. The effect of this part is seen in Figure 54(a). 

Varying the value of the controlling parameter (𝑐𝑔) from a negative to positive values 

changes the damage accumulation behavior from convex to concave, respectively. The 

damage evolution can be reset to behave linearly by setting 𝑐𝑔 = 0.0001, a very small 

value to avoid mathematical singularity.  𝑑𝐷 =   𝑔(𝐷) .  ℎ(𝐷, 𝜇 ) 𝑑Ɛ̅𝑝𝑙�̅�𝑓(,̅)    (140)  

𝑔(𝐷) = (𝑐𝑔𝐷 + 𝑐𝑔𝑒𝑐𝑔 −1)      (141)  
ℎ(𝐷, 𝜇 ) = (1 + 𝑐ℎ 𝐷𝛽1𝜇𝛽2)𝑘     (142) 

The second extension function, ℎ(𝐷, 𝜇 ), considers the effect of the change in the 

non-proportional loading direction between the current stress and the backstress tensors. 

Hence, the function ℎ(𝐷, 𝜇 )  takes an important role in incorporating the effect of 

cycling loading during ELCF. The effect of this part is seen in Figure 54(b).  

Accordingly, this extension function does not affect the damage evolution during 

proportional loading process. This extension function is based on a new scalar 

parameter (𝜇), which can capture the effect of cycling loading conditions and incorporate 

it in our ductile fracture model. The parameter 𝜇 is expressed explicitly in Eq. (143), 

which considers the accumulated change of another parameter () defined in Eq. (144). 

This scalar parameter  represents the key source of the loading path change. The range 

of    is  0 ≤   ≤ 2. Here, the effect of cyclic loading is detected whenever the 
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parameter  becomes non-zero. Finally, the two weighting functions consist of five 

material parameters 𝑐𝑔 , 𝑐ℎ , 𝛽1 , 𝛽2, and 𝑘 that need to be calibrated under cyclic loading 

condition tests.  

𝜇 =  ∫ Ɛ̅̅𝑝𝑙0  𝑑Ɛ̅𝑝𝑙       (143) 

 =  1 − 𝝈𝒊𝒋 ∶ 𝜶𝒊𝒋 ‖𝝈𝒊𝒋‖ ∙ ‖𝜶𝒊𝒋‖     (144)  

where 𝝈𝒊𝒋 , 𝜶𝒊𝒋 are stress tensor and backstress tensor, respectively.  

 

 

Figure 54: Two plots show the effect of two extended functions on the damage evolution 

during the loading process. The left plot (a) shows the effect of 𝑐𝑔 on the nonlinear 

damage evolution. The right plot (b) shows the effect of 𝑐ℎ on the damage accumulation 

under non-proportional loading. 

In the same vein,  simulating the fracture propagation and getting the correct 

crack modes (especially the slant fracture in plane strain conditions and the cup-cone 

failure mode in round bars), a material or element softening after fracture initiation was 

found to be necessary [56, 60, 176, 225]. A general form of the post-fracture softening 

law is introduced and shown in Eq. (145). This is represented by the softening 
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coefficient 𝛽. The symbol �̃�𝑦𝑖𝑒𝑙𝑑  is the softened flow stress, and 𝜎𝑦𝑖𝑒𝑙𝑑 is the strain-

hardening flow stress without damage. The coefficient 𝛽 is assumed to be a nonlinear 

function of damage indicator 𝐷 (see Eq. (146)), where 𝐷𝑐 and 𝑤 are two material 

softening parameters that will be calibrated later. Note that the softening law is effective 

only after the fracture initiates (𝐷 > 1). The fracture initiates when 𝐷 = 1, which 

corresponds to 𝛽 = 1. Accordingly, a complete split of the material points happens when 𝐷 = 𝐷𝑐, after which the material element shows no resistance to load [56]. In other words, 

the parameter 𝐷𝑐  is the value of damage indicator when an integration point of an 

element in the Abaqus/Explicit user defined material subroutines will be deleted. 

�̃�𝑦𝑖𝑒𝑙𝑑 = {    𝜎𝑦𝑖𝑒𝑙𝑑           𝑖𝑓 0 ≤ 𝐷 < 1   𝛽 𝜎𝑦𝑖𝑒𝑙𝑑          𝑖𝑓 1 ≤ 𝐷 ≤ 𝐷𝑐    (145)  
𝛽 =  (𝐷𝑐−𝐷𝐷𝐶−1)𝑤      (146)  

 

5.7 Model Calibration Procedures 

This section will present the calibration procedures of the proposed plasticity and 

fracture model. Model parameters are determined by comparing the numerical simulation 

results (using Abaqus/Explicit) to the experimental results. 

5.7.1 Plasticity model calibration 

The proposed plasticity model was implemented to Abaqus/Explicit as a material 

subroutine (VUMAT) [227]. The calibration of the plasticity model went through two 
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stages to find the optimum parameters set.  Firstly, the decomposed nonlinear kinematic 

hardening rule with three back stress tensors, Eq. (149),  were calibrated by using a 

stable-large strain amplitude hysteresis loop of the smooth round bar (“R0”) specimen, as 

seen in Figure 55. The method used in this research to obtain the initial calibration of the 

kinematic hardening model parameters (𝐶𝑖 and 𝐵𝑖) adopted from Bari & Hassan in Ref. 

[11]. The method, basically, divides a stable hysteresis loop into three critical segments: 

(𝛼1), (𝛼2), and (𝛼3). Secondly, the calibrated parameters (𝐶𝑖 and 𝐵𝑖) were then 

implemented to Abaqus/Explicit and optimized in order to perfectly simulate the 

experimental stable hysteresis loop (Figure 55). The optimized kinematic hardening 

model parameters are listed in Table 18. These parameters were implemented to the 

simulations of all other specimens.  

The remaining material parameters of the plasticity model about the pressure 

dependency and Lode angle dependency have been discussed comprehensively in Ref. 

[225]. However, two slight changes took place in this paper. These two changes were 

related to the parameters (c) and (cs) in Eq. (150). The value of (c) has been increased 

from 0.11 to 0.40 due to the material’s high pressure dependency in the presence of the 

nonlinear kinematic hardening rule. The other change is the parameter (cs) becomes a 

constant instead of a function of the equivalent plastic strain. The remaining plasticity 

model parameters remain the same, as in Ref. [225] and are listed in Table 19.  

Table 18: List of material parameters used in the kinematic hardening model 

𝑪𝟏  (MPa) 𝑩𝟏 𝑪𝟐  (MPa) 𝑩𝟐 𝑪𝟑 (MPa) 𝑩𝟑 

310000 355 240000 1999 900 0 



130 
 

 

 

Table 19: List of material parameters used in the plasticity model 

E,  
(GPa) 

v 
y , 

(MPa) 
Q , 

(MPa) 
b 𝐜 𝐨 𝐜𝐬 𝐜𝐚𝐱 m 

200 0.284 45.1 100.4 35.425 0.40 0.333 0.866 1 0.75 

 

 

Figure 55: Strain-controlled stable hysteresis loops of the smooth round bar (“R0”). The 

comparison between the experiment and numerical force-displacement curves shows 

excellent correlation. 

5.7.2 MMC fracture locus and the damage accumulation rule calibration 

The MMC ductile fracture locus parameters have been calibrated under 

monotonic loading and extensively explained in the parallel paper [225]. These calibrated 
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parameters (see Table 10 and Table 11) well predicted ductile fracture initiation under 

monotonic loading conditions. A 3D geometrical representation of the MMC fracture 

locus is shown in Figure 57.  

The remaining five material parameters (𝑐𝑔 , 𝑐ℎ , 𝛽1 , 𝛽2, and 𝑘) of the extension 

functions for damage accumulation were calibrated by using the cyclic loading tests data. 

Firstly, finite element simulations were conducted up to fracture initiation for each test 

case without involving the fracture option in order to get the histories of stress triaxiality, 

Lode angle parameter, and the accumulation of nonlinearity parameter (𝜇) under the 

cyclic loading conditions. A Matlab code was created to run the damage evolution 

integration, as in Eq. (140), to get a good estimation of the five constants such that the 

calculated damage accumulation (D) for all the cases is as close to unity as possible 

(Figure 56). An optimization code was set to optimize starting from the initial set of 

parameters of the extension functions. The optimized parameters are summarized in 

Table 21. 
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Figure 56: A comparison of damage accumulation for ELCF with (a) linear damage 

evolution law (Eq.(139)) and (b) nonlinear damage evolution law (Eq. (140)). The 

damage accumulation of (b) is close to unity for all tests of ELCF after adopting the 

extension functions of damage evolution law. 

 

Figure 57: The calibrated 3D fracture locus of IN718 superalloy for ductile fracture tests 

[225]. 
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Table 20: List of material ductile fracture parameters used in the MMC criterion 

𝐜𝟏 𝐜𝟐   (MPa) �̃�𝜽𝒔  𝐜𝐚𝐱 A N 𝑫𝒄 𝒘 

0.05896 764.588 MPa 0.86276 1 1480 0.0813 1.03 6 

 

Table 21: List of material non-proportional parameters used for the two extended 

functions. 

𝒄𝒈 𝒄𝒉 𝜷𝟏 𝜷𝟐 𝒌 

-6.0 3 0.05 0.00001 -1 

 

5.8 Experimental and Numerical Simulations Results 

In this section, results from tests and finite element simulations (using 

Abaqus/Explicit with material user subroutine VUMAT) are presented together for a 

direct comparison. The detail constitutive/ductile fracture models and their calibration 

procedures have been described in section 5.6 and 5.7. 

 

5.8.1 Comparison of plasticity and fracture results 

The three round specimens (“R0”, “R1”, and “R2”) were simulated in Abaqus 

using quarter models due to symmetric conditions, and 4-node axisymmetric elements 

(CAX4R) were used. The 2D quarter model simulations help reduce the computational 

time. For the plane strain specimens, pure plane strain condition only exists at the central 
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range of the specimen due to the limitation of specimen size considering the load limit of 

our testing machine for this tough material. The two edge regions are closer to plane 

stress and uni-axial tension. Therefore, an FE model was developed using 8-node solid 

elements with reduced integration (C3D8R). Since the shape of the specimen is 

symmetric, a quarter model of the specimen was created. The density of mesh increases 

in the critical area, as seen in Figure 58. The specimen deformation during the monotonic 

and cyclic loadings is clearly observed during the tests and FE simulations. The smooth 

round bar (“R0”) and the two notched round bars (“R1” and “R2”) exhibit localized 

necking before fracture initiations in their minimum diameter locations. In addition, the 

plane strain specimen displayed lateral deformation during tests and FE simulations. For 

comparison, a set of examples of the specimens’ deformation during the cyclic loading 

are shown in Figure 59 to Figure 62.  

 

Figure 58: Meshes and different element types in Abaqus to conduct finite element 

simulations. The mesh density increases in the critical areas. 
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Figure 59: A comparison of the specimens’ deformation during tension-compression 

cyclic loading for “R0” specimen. (a) Pretesting condition. (b) Specimens’ buckling 

during compression. Note that ELCF of “R0” specimens are not available due to some 

buckling observed in compression. (c) Cross-section of FE simulation under tension. (d) 

Cross-section of FE simulation under compression. The contour plot shows the areas of 

high accumulation damage (D).  

 

 

Figure 60: A comparison of the specimens’ deformation during tension-compression 

cyclic loading for “R1” specimen. (a) Pretesting condition. (b) Post-failure and crack 
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propagation. (c) Cross-section of FE simulation under tension. (d) Cross-section of FE 

simulation under compression. The contour plot shows high accumulation damage within 

the center of the necking area during ELCF. 

 

 

Figure 61: A comparison of the specimens’ deformation during tension-compression 

cyclic loading for “R2” specimen. (a) Pretesting condition. (b) Post-failure and crack 

propagation. (c) Cross-section of FE simulation under tension. (d) Cross-section of FE 

simulation under compression. The contour plot shows high accumulation damage within 

the center of the necking area during ELCF. 
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Figure 62: A comparison of the specimens’ deformation during tension-compression 

cyclic loading for “PE” specimen. (a) Pretesting condition. (b) Post-failure and crack 

propagation. (c) Cross-section of FE simulation under tension. (d) Cross-section of FE 

simulation under compression. The contour plot shows high accumulation damage within 

the center area during ELCF. 

 

The validity of the plasticity and ductile fracture models was assessed by 

comparing the finite element simulations with the experimental results for all tested 

cases. The numerical vs. experimental force-displacement curves for each case of 

monotonic and cyclic loading are illustrated in Figure 63 to Figure 66. Very good 

correlations are achieved for all the monotonic and cyclic loading force-displacement 

curves.  
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Figure 63: A comparison of the numerical and experimental results of the monotonic 

loading along with the fracture occurrence for all four specimens shows good correlation. 

 

Figure 64: A comparison of force-displacement loops for the sharp notch specimens 

(“R1”) which failed after 4 cycles (left) and 9 cycles (right). 

 

Figure 65: A comparison of force-displacement loops for the large notch specimens 

(“R2”) which failed after 10 cycles (left), 41 cycles (middle) and 51 cycles (right). 
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Figure 66:  comparison of force-displacement loops for the plane strain specimens (“PE”) 

which failed after 10 cycles (left), 21 cycles (middle) and 43 cycles (right). 

On the other hand, the behaviors of the damage evolution for all the tests are 

simulated and portrayed in Figure 67. It is seen that the damage accumulation increment 

develops rapidly as the loading process starts and then it decelerates significantly as the 

equivalent plastic strain increases.  The damage accumulation (𝐷) increment decelerates 

dramatically after a few cycles of the loading and reaches a stable minimal increment as  𝐷 approaches unity. The assumption asserts that the experimental fracture initiation 

onsets at D = 1. 

 

Figure 67: The damage evolutions for "R1", "R2", and "PE" specimens, respectively. 

5.8.2 FE simulation of ELCF crack propagation and crack modes 

This section aims to provide a method to predict crack initiation and propagation 

under ELCF based on the proposed fracture model (Eq. (140)). Conventional finite 
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element simulations typically predict a flat fracture surface that is perpendicular to the 

load direction. In contrast, the experimental results show that crack propagated along a 

developed shear band with the least energy dissipation [98, 176]. The numerical 

simulation of crack initiation and propagation in IN718 under monotonic loading has 

been  achieved in the parallel paper [225]. The test results of the monotonic loading show 

that all three round bar specimens (‘‘R0”, ‘‘R1”, and ‘‘R2”) exhibit vivid necking with a 

cup-cone fracture mode. The ductile fracture starts with micro cracks that occurs in the 

necked center and followed by crack propagation towards the outer radius. Then, a shear 

lip was formed at the circumferential edge of the outer radius (which is actually close to 

plane strain condition). This creates a cup-cone fracture mode. On the other hand, the 

plane strain specimen under monotonic loading (‘‘PE”) shows a slant fracture mode, 

which was caused by a shear band generated in the gauge section. 

Similarly to ductile fractures under monotonic loading, ELCF undergoes 

extremely large plastic strain before fracture. However, ELCF involves cycling load as 

well as extremely large plastic strain accumulation. Therefore, two different damage 

mechanisms are involved in the ELCF failure process: ductile fracture and fatigue 

mechanisms. Many researches [36, 183, 185], including this paper, found that the ductile 

fracture mechanism takes the dominant role in ELCF failures. This is evident form the 

tested material’s fracture surface feature where cracks initiated in the gauge center and 

propagated outwards, which was identical to that of the monotonic loading tests. The 

comparison fractographies in Figure 77 between monotonic loading and ELCF are very 

clear to study the underlying fracture mechanism. For the round bar cases, a clear cup-
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cone fracture mode occurs for both loading conditions. Similarly, a slant fracture mode 

appears in the plain strain specimens for both loading conditions. It is potentially 

concluded that the underlying fracture mechanism in ELCF is the ductile fracture, which 

is controlled by the internal crack initiation, propagation and coalescence.  

 

Figure 68: A comparison between the fracture modes of ductile fracture under monotonic 

loading (upper row) and the ELCF (lower row). Similar fracture modes are observed. 

The method of simulating the fracture modes will be described in this paragraph. 

The damage accumulation indicator 𝐷 starts from zero (material assumed virgin) and 

evolves (based on Eq. (140)) as the equivalent plastic strain accumulation increases 

during the cyclic loading. The 𝐷 continues to evolve until it reaches unity. Once the 

damage accumulation indicator 𝐷 equals to unity, which is after fatigue failure initiation, 

the parameter 𝑐𝑔 in Eq. (141) changes its value to 0.001 in order to increase the damage 

accumulation indicator 𝐷 rapidly and linearly to reach the value of  𝐷𝑐. An illustration of 

the 𝐷 evolution throughout the loading process until fracture is shown in Figure 69.  
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Accordingly, a complete deletion of material points happens when 𝐷 = 𝐷𝑐, after which, 

the material element shows no resistance to load. In other words, the parameter 𝐷𝑐  is the 

value of the damage indicator when an integration point of an element in the 

Abaqus/Explicit user defined material subroutines will be deleted and show zero 

resistance to load. It is found that this modification of parameter 𝑐𝑔 in Eq. (141) is 

essential to simulate the fracture modes under ELCF. The sudden fracture initiation and 

propagation for all specimens, caused by the jump of 𝑐𝑔, causes a quick load drop in the 

force–displacement curves. In reality, many local phenomena happened within this short 

increment of displacement.  

 

Figure 69: An illustration of the damage evolution before D = 1 and the sudden jump of 

the damage evolution after D =1. The zoom-in view at the end of the damage evolution 

path shows this change. 

Finally, the predicted fracture modes were closely correlated with test results for 

all specimens as illustrated in Figure 80, Figure 71, and Figure 72. The simulations of the 

round specimen were presented using the sweep feature in Abaqus to render a 2D 

axisymmetric model into a full 3D geometry. It is important to mention that fracture 
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simulations are sensitive to mesh size. The finer mesh size will give clearer fracture 

surface configurations. The used mesh size was 0.05 mm for these simulations. It is 

concluded that the proposed fracture model with the extension functions is capable of 

depicting both the fracture initiation and the fracture propagation modes for all types of 

specimens under large-strain cyclic loading. 

 

Figure 70: Numerical fracture simulation shows a cup-cone fracture pattern for the sharp 

notch bar specimen (‘‘R1”) under ELCF. The left figures show the experimental results. 

The contour plot is the damage accumulation in Abaqus. 
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Figure 71: Numerical fracture simulation shows a cup-cone fracture pattern for the large 

notch bar specimen (‘‘R2”) under ELCF. The left figures show the experimental results. 

The contour plot is the damage accumulation in Abaqus. 
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Figure 72: Numerical fracture simulation shows a slant fracture mode for the plain strain 

specimen (‘‘PE”) under ELCF. The left figures show the experimental results. 

 

5.9 Error Evaluation 

This paper presented studies on both ductile fracture and ELCF of IN718 

superalloy. The current study demonstrates that the combined kinematic and isotropic 

strain hardening along with the effect of the stress triaxiality and Lode angle parameter 

can accurately simulates the metals’ force-displacement curves of different loading 

conditions and different stress states. 

On the other hand, the MMC ductile fracture criterion has been validated and 

proven appropriate to monotonic loading conditions [225].  A suitable extension to the 
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MMC criterion was introduced in this paper by introducing two weighting functions to 

consider the nonlinearity behavior of the damage evolution and to capture the effect of 

the cyclic loading within the ELCF regime. The proposed fracture model considers the 

cyclic loading conditions as well as the monotonic loading conditions.  The two extended 

functions are presumed to act independently and concurrently throughout a loading 

process.  

In order to evaluate the accuracy of the proposed extension, the accumulated 

equivalent plastic strain (Ɛ̅pl) at the fracture instant will be used to assess the proposed 

model. The ELCF initiation prediction based on the proposed model will be denoted by 

“Numerical  Ɛ̅pl”. Similarly, Ɛ̅pl at the instant of the experimental ELCF is denoted by 

“Experimental  Ɛ̅pl”. The Experimental  Ɛ̅pl at the instant of the experimental ELCF 

initiation are obtained by FEA since there is no direct measure method of (Ɛ̅pl) in the 

ELCF tests. The accumulated equivalent plastic strain provides a convenient measure of 

the step for ELCF in FEM [212, 220]. 

A comparison table and a plot of the predicted numerical and experimental 

accumulated equivalent plastic strain (Ɛ̅pl) at fracture is shown in Table 22 and Figure 

73(a). It is seen that the MMC criterion with the extension provides reasonable accuracy 

of the predicted Ɛ̅pl at fracture on IN718 under both monotonic and ELCF. For the 

monotonic loading tests, the comparison results show excellent prediction of the 

accumulated Ɛ̅pl at failure for all different loading and stress state cases. On the other 

hand, good predictions of the accumulated Ɛ̅pl at fracture are also seen for the cyclic 
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loading conditions. The data shown in Figure 73(a) indicates good model predictions 

when the accumulated Ɛ̅pl is moderately low.   

As the accumulated Ɛ̅pl becomes greater, the proposed model predicts failure 

somehow earlier than the tests results.  This can be seen for tests # 7 and # 8 in Table 22, 

and it is clearly off limits in Figure 73(a). These two testing conditions involve large 

number of cycles before failure, with relatively smaller strain amplitude. Thus, the under-

prediction of the proposed model might be caused by a different crack or void 

growth/coalescence behavior in ELCF or different low-cycle fatigue mechanisms took a 

role in these tests. However, it can be concluded that the results of ELCF shown in Figure 

73(a) is promising and capable to predict IN718 ELCF failures in various stress states.  

Table 22: A summary of ductile fracture and ELCF accumulated Ɛ̅pl at fracture test data. 

Test 

# 
Specimen 

Accumulated Ɛ̅𝐩𝐥 at 

fracture by 

FEA 

Accumulated Ɛ̅𝐩𝐥 at 

fracture by 

Equ. (139) 

Error 

% of 

Equ. 

(139)  

Accumulated Ɛ̅𝐩𝐥 at 

fracture by 

Equ. (140) 

Error 

% of 

Equ. 

(140) 

1 R0 0.613 0.515 19.5% 0.515 19.5% 
2 R1 0.292 0.252 17.7% 0.252 17.7% 

3 R1 1.431 0.414 71.1% 1.709 19.4% 

4 R1 1.858 0.469 74.8% 1.510 18.7% 
5 R2 0.512 0.483 11.3% 0.483 11.3% 

6 R2 1.577 0.556 64.8% 1.808 14.6% 

7 R2 10.124 0.776 92.3% 4.759 53.0% 
8 R2 10.518 0.868 91.8% 4.866 53.7% 

9 PE 0.592 0.488 17.6% 0.488 17.6% 
10 PE 3.968 1.155 70.9% 3.549 10.6% 
11 PE 3.542 1.179 66.7% 3.698 4.4% 

12 PE 4.063 1.229 69.7% 3.750 7.7% 
* Monotonic loading. 
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Figure 73: (a) The predicted vs. experimental accumulated equivalent plastic strains (ε̅pl) 
at failure for ductile fracture and ELCF, (b) A comparison between Eq. (139) and Eq. 

(140) on the accumulated Ɛ̅pl  at failure for ductile fracture and ELCF. 

If the extension functions in Eq. (140) are turned off (equal to Eq. (139)), the 

predicted accumulated equivalent plastic strain at fracture Ɛ̅𝑓 is plotted in Figure 73(b). 

The comparison of Eq. (139) verses Eq. (140) clearly shows that the effects of these two 

extension functions. The range of error of the linear damage accumulation model (Eq. 

(139)) is [60%, 90%], while the errors of the nonlinear model (Eq. (140)) significantly 

decreases to [5%, 19%].  

5.10 Conclusion 

This paper presented studies on both ductile fracture and ELCF of IN718 

superalloy. The current study demonstrates that the combined kinematic and isotropic 

strain hardening along with the effect of the stress triaxiality and Lode angle parameter 

can accurately simulate the metals’ force-displacement curves under different loading 

conditions and different stress states. On the other hand, the MMC ductile fracture 



149 
 

criterion has been validated and proven appropriate to monotonic loading conditions 

[225].  A suitable extension to the MMC criterion was introduced in this paper by 

introducing two weighting functions to consider the nonlinearity behavior of the damage 

evolution and to capture the effect of the cyclic loading within the ELCF regime. The 

proposed fracture model considers the cyclic loading conditions as well as the monotonic 

loading conditions.  The two extended functions are presumed to act independently and 

concurrently throughout a loading process.   
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CHAPTER SIX:  

EXTREMELY LOW CYCLE FATIGUE DAMAGE MECHANISM, 

FRACTOGRAPHIC EXAMINATION, AND LIFE PREDICTION  

 

6.1 Abstract 

The extreme high strain cyclic loading, termed extremely low cycle fatigue 

(ELCF), causes metals to fail in a few (less than 100) cycles. ELCF is more likely seen in 

heavy load machines’ startup or shutdown failures and in steel-structured bridges 

subjected to earthquakes. This research summarizes an extensive work of experimental 

and numerical studies of ELCF under different stress states for Inconel 718. The modified 

Mohr–Coulomb (MMC) ductile fracture model, a function of stress triaxiality and Lode 

angle parameter, is adopted with an adequate new extension that aims to capture ELCF.  

A new parameter is introduced to the damage accumulation rule to represent the effect of 

the cyclic loading. The model explores the underlying damage and fracture mechanisms 

through the equivalent plastic strain evolution. The ELCF damage and fracture 

mechanisms are implemented into finite element analysis (FEA). Finally, fractographic 

examinations, analysis, and finite element simulations are presented with good 

correlation.  

6.2 Introduction 

The ELCF regime falls in between the ductile fracture due to monotonic loading 

and the Low cycle fatigue (LCF). The term ELCF describes high strain amplitude cyclic 
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loading that causes metals to fail under 100 cycles of reverse loading (𝑁𝑓 < 100) [226]. 

Failures due to ELCF are seen commonly in real applications, for example, steel 

structures under seismic loading, gas turbine under high-pressure air current, start-up or 

shutdown of power generators and compressors, and offshore platforms and ships under 

wave loading are ELCF real life examples. LCF regime has been extensively studied and 

well described by the strain-based Coffin-Manson law, which is subjected to moderate 

plastic strain amplitudes. However, Coffin-Manson law tends to over-predict the metal’s 

life in ELCF regime due to the considerably very-large strain amplitude cyclic loading 

[35]. Primarily, the classical approaches of the direct strain–based fatigue models cannot 

model ELCF due to the accompanied large-scale yielding physical processes that are 

responsible for this type of fracture. Secondly, large strain amplitude cyclic loading 

histories randomly vary, and so, it is difficult to count the cycles in a real life situation. 

Thirdly, classical strain-based fatigue damage models (i.e. Δ𝐾 type) presume the 

existence of sharp crack or defect, which is missing in most real application details [212]. 

These limitations make the need of studying ELCF by a new approach be essential to 

understand and improve the metal’s performance and life span in engineering structures 

and components. As a result, the similarities between the ductile fracture under 

monotonic loading and ELCF regarding very large accumulated plastic strain, very short 

life, and crack topologies reveal that extending ductile fracture models to the case of 

ELCF, under different stress states, merits extensive consideration.  
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6.3 Characterization of Stress States 

This section describes the approach of investigating metals’ sensitivity to arbitrary 

stress states by using two dimensionless parameters: stress triaxiality () and Lode angle 

(). These parameters are used to study the metal’s plasticity and ductile fracture 

dependency on stress states. The three principle stresses are denoted by 𝟏,𝟐 , and 𝟑 . 
Stress triaxiality () is a dimensionless hydrostatic pressure defined by Eq. (147). The 

Lode angle () is defined on the deviatoric plane (or 𝜋-plane), and it is known as the 

angle between the stress tensor that passes through the deviatoric plane and the axis of 

the principal stresses. The range of the Lode angle is 0 ≤  ≤ /3 and consequently, the 

range of  (defined in Eq. (148)) is -1 ≤  ≤ 1. Thus, the Lode angle can also be 

normalized and known as the normalized Lode angle or Lode angle parameter (̅), as 

seen in Eq. (148) [225]. 

 = m
̅

,   q =  ̅ =  √3𝐽2 = √12 [(1 − 2)2 + (2 − 3)2 + (3 − 1)2]  (147) 

 = ( rq )3 = cos(3) , r = [272 (1 − m)(2 − m)(3 − m)]1 3⁄ ,̅ = 1 − 6


  (148) 

6.4 Design of Specimen Geometries 

In this study, a number of specimens, having four different shapes, were tested 

under high strain cyclic loading of tension and compression. The four distinctive shapes 

are a smooth round bar, a round bar with a small external circular notch, a round bar with 

a large external circular notch, and a flat plane strain bar. Three-dimension (3D) sketches 

and information about detailed dimensions are demonstrated in Figure 74. These different 
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geometries are designed in a way to ensure fracture initiation at desired stress states. To 

easily distinguish each specimen, Table 23 explains the denotation used from now on. 

 

Figure 74: A 3D sketch of (a) smooth round bar, (b) small radius notch bar, (c) large 

radius notch bar, and (d) plane strain flat bar, (e) & (f) express main dimensions of the 

tested specimens. 

Table 23: Denotation of sample names with their key dimensions (units: mm) 

Specimen type Denotation 

Notch 

radius, (R) 

Minimum diameter, 

(d) or thickness (t) 

Shoulder 

diameter, D 

(a) Smooth round bar R0 ∞ 6.350 12.700 

(b) Small radius notched bar R1 3.175 6.350 12.700 

(c) Large radius notched bar R2 9.525 6.350 12.700 

(d) Plane strain PE ∞ t = 3.048 12.700 

 

6.5 Experiments 

The tested metal was Inconel 718 (Nickel-base superalloy), which is widely used 

in hot section parts of gas turbine engines due to its superb high strength, ductility and 

fatigue properties at high and cryogenic temperatures. ELCF test series were run until 

complete fracture of the specimen under different high strain amplitudes, and numbers of 
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cycles to failure (Nf) are shown in Table 24. Some of the specimen’s fractured surfaces 

morphologies are shown in Figure 75. The experimental strain-life results in ELCF 

domain (Figure 75) reveal a strong dependency of the fracture strain on stress triaxiality. 

Hence, we can affirm from the ELCF experimental results that the strain–life curve slope 

is inversely proportional to the stress triaxiality. The measured force-displacement curves 

of the cyclic loading are recorded and illustrated in Figure 76.  

Table 24: Experimental data and measurements of the ELCF tests of IN718. 

Test number Specimen Nf Test number Specimen Nf 

1 R1 4 5 PE 43 

2 R1 9 6 R2 10 

3 PE 10 7 R2 41 

4 PE 21 8 R2 51 
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Figure 75: Strain–life curves for all specimens under ELCF with some examples of the 

specimens’ fractured surfaces morphologies.  

6.6 Constitutive Plasticity Modeling and Calibration 

6.6.1 Plasticity Model with a Combined Hardening Rule 

The plasticity behavior of IN718 under pull-push cyclic loading paths is assumed to 

involve a combined hardening rule: kinematic hardening and isotropic hardening. The 

Bauschinger effect was expressed by Chaboche’s nonlinear model and the isotropic 

hardening model was described by Voce model in Eqs. (149). Moreover, the Bai-

Wierzbicki plasticity model (Eq. (150)) was adopted to incorporate the effects of 

different stress states. . It should be noted that the term of [1 − c (− o)] should be 

bounded within certain limits for the very high or very low stress triaxiality region. For 

example, 0.5 ≤ [1 − c (− o)] ≤ 2.0 was used in our simulations. Readers are 

advised to Refs. [4, 219, 225] for more model details.  α̇i = CiƐ̇ pl − Bi αi ṗ   ;  α  = ∑ α̇i3i=1    ,   (Ɛ̅pl) = 𝜎𝑦 + 𝑄  ( 1 − 𝑒−𝑏Ɛ̅𝑝𝑙)   (149) 

 (Ɛpl , , ) =  (Ɛ̅pl) [1 − c (− o)] [cs + (cax − cs) (𝑚+1𝑚 ) ( − m+1m+1)] (150) 

6.6.2 Ductile Fracture Criterion 

The modified Mohr-Coulomb (MMC) ductile fracture locus (Eq.(151)) was applied in 

this study. This model was extended with post-failure behaviors to predict crack initiation 

and growth under different stress states of IN718 [225]. The MMC model was also 

extended in this paper to consider ELCF regime by introducing two independent and 
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concurrent functions, 𝑔(𝐷) and ℎ(𝐷, 𝜇 ) in the damage evolution rule (Eq. (152)). The 

first function,  𝑔(𝐷) = (𝑐𝑔𝐷 + 𝑐𝑔𝑒𝑐𝑔 −1), controls the nonlinearity of the damage evolution 

under monotonic loadings. The second function, ℎ(𝐷, 𝜇 ) = (1 + 𝑐ℎ 𝐷𝛽1𝜇𝛽2)𝑘, 

incorporates the effect of the cyclic loading in ELCF through considering by the loading 

direction change between the current stress and the backstress tensors. Readers are 

advised to read Refs. [25, 219] for more descriptive model details. The damage indicator 𝐷 range is [0, 1], where 𝐷 = 0 represents a virgin metal (flawless) and 𝐷 = 1 represents 

fracture initiation.  

Ɛ̅f (, ̅)
  

= {  
      Ac2  [c̃θs + √𝟑𝟐− √𝟑 (�̃�𝐚𝐱 − c̃θs) (𝐬𝐞𝐜 (̅ 𝟔 )  −  𝟏)]                 [√𝟏+ 𝐜𝟏𝟐𝟑    𝐜𝐨𝐬 (̅ 𝟔 ) + 𝐜𝟏  ( +  𝟏𝟑  𝐬𝐢𝐧 (̅ 𝟔 ))] }  

  −1 N⁄
  (151) 

D =  D (Ɛ̅pl) =  ∫ g(D).  h(D, μ ) dƐ̅plε̅f(,̅)Ɛ̅pl0    (152) 

6.6.3 Model Calibration and Finite Element Simulation 

The proposed plasticity and fracture model for ELCF are validated by comparing 

the numerical simulation results (using Abaqus/Explicit) to the experimental results. Very 

well correlations are achieved for all loading cases in terms of force-displacement curves 

(Figure 76). The same MMC ductile fracture model parameters have been calibrated 

under monotonic loading and extensively explained in a parallel paper [225]. The 

extension functions were calibrated under cyclic loading conditions. A Matlab code was 

created to run the damage evolution integration, as in Eq. (152), to get the best estimation 



157 
 

of the five model parameters so that the calculated damage accumulation (D) for all the 

cases is close to unity, where the ELCF is predicted. 

Table 25: List of material parameters of the combined hardening rule and the plasticity 

model.  𝑪𝟏 (MPa) 𝑩𝟏 𝑪𝟐 (MPa) 𝑩𝟐 𝑪𝟑 (MPa) 𝑩𝟑 𝐜𝐚𝐱 
310000 355 240000 1999 900 0 1 

y  (MPa) Q (MPa) b 𝐜 𝐨 𝐜𝐬 m 

45.1 100.4 35.425 0.40 0.333 0.866 0.75 

 

Table 26: List of material ductile fracture parameters used in the MMC criterion 

𝐜𝟏 𝐜𝟐 (MPa) �̃�𝜽𝒔  𝐜𝐚𝐱 A N 𝒄𝒈 𝒄𝒉 𝜷𝟏 𝜷𝟐 𝒌 

0.05896 764.588  0.86276 1 1480 0.0813 -6.0 3 0.05 0.00001 -1 

 

6.7 ELCF Damage Mechanism and Fractography 

The short fatigue life in ELCF is a result of the “fracture mode transition” from 

LCF to ELCF, where the damage evolution mechanism varies. The fracture mode 

transition is due to the crack initiation transition from the specimen’s surface in LCF 

regime to the inside of the specimen in ELCF regime. The ELCF regime exhibits large 

plastic strain accumulation while LCF regime exhibits considerably lesser plastic strain 

accumulation. The fatigue damage in ELCF is dominated by the enormously high level of 

plastic strain that causes huge ductility exhaustion within the metal. This huge ductility 

exhaustion leads the metal to fail in a very short time during the cyclic loading process. 
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This is mainly presumed as the reason for the short fatigue life in ELCF. On the other 

hand, the low levels of plastic strain in LCF causes the fatigue damage to be dominated 

by crack propagation resulting in higher fatigue life.  

 

Figure 76: A comparison of force-displacement hysteresis loops for all tests. The blue 

solid curves are the experimental results, and the red dashed curves are the FE 

simulations.  

Some experimentally fractured specimens under ELCF are shown earlier in 

Figure 75. Fatigue cracks in ELCF tended to initiate in the gauge center and then 

propagate towards the surface. The round bars specimens (R1, R2) exhibits cup-cone 

fracture mode. The cup-cone fracture mode starts with micro cracks in the gauge center 

followed by crack propagation towards the outer radius. Then, a shear lip is formed at the 

circumferential edge of the outer radius (which is close to plane strain condition). On the 

other hand, the plane strain specimens (PE) show a slant fracture mode, which was 

caused by a shear band generated in the gauge section. It is evident from the fracture 
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surface morphologies of each specimen that the fracture mechanism is very similar to that 

of the ductile fracture under monotonic loading as shown in Figure 77. 

 

Figure 77: A comparison between the fracture modes of ductile fracture under monotonic 

loading (upper row) and the ELCF (lower row). The comparison shows similar fracture 

modes. 

Similar to ductile fractures under monotonic loading, ELCF undergoes extremely 

large plastic strain before fracture. However, ELCF involves cycling loads as well as 

extremely large plastic strain accumulation. Therefore, two different damage mechanisms 

are involved in the ELCF failure process: ductile fracture mechanism and fatigue 

mechanisms. Many researches [36, 183, 185, 220], including this paper, found that the 

ductile fracture mechanism takes the dominant role in ELCF failure. This is evident form 

the tested material’s fracture surface feature where cracks initiated in the gauge center 

and propagated outwards, which was identical to that of the monotonic loading tests. The 

comparison fractographic in Figure 77 between monotonic loading and ELCF are very 

helpful to study the underlying fracture mechanisms. It is potentially concluded that the 
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underlying fracture mechanism in ELCF is dominated by the ductile fracture. Finally, the 

behaviors of the damage evolution for all the tests series are simulated and tracked in 

Figure 78 using Eqs. (151) & (152). It is seen that the damage accumulation increment 

develops rapidly as the loading process starts. Then, the damage accumulation increment 

decelerates dramatically after few cycles of the loading. The increment of damage 

accumulation indicator, D, reaches a stable minimal around D equals unity, which is 

when the fracture initiates. This damage accumulation describes the huge microstructure 

evolution, ductility exhaustion, cyclic hardening/softening, and fracture mechanism 

during ELCF.  

 

Figure 78: The damage accumulation for "R1", "R2", and "PE" specimens under ELCF. 

Finally, the predicted fracture modes in FEA were closely correlated with test 

results for all specimens as illustrated in Figure 80. It is noteworthy that fracture 

simulation is very mesh-sensitive. It is concluded that the MMC fracture criterion, along 

with the proposed damage accumulation functions, is capable of depicting both the 

fracture initiation and the fracture propagation modes for all types of specimens in the 

ELCF domain. 
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6.8 ELCF Life Prediction  

The previous comparison between ductile fracture due to monotonic loading and 

ELCF shows various similarities in the fracture modes. However, fatigue studies indicate 

that complicated underlying fracture mechanisms occur under fatigue failures. The MMC 

model with the suitable extension identifies the complicated underlying fracture 

mechanisms within ELCF. It also quantifies the ELCF phenomena based on crack 

initiation, growth, and coalescence along with damage accumulation. Such a model will 

promote the understanding of ELCF fracture mechanisms and will simulate the 

complicated mixed fracture phenomena by FEA. The MMC model with the cyclic effect 

extension simulates the ELCF using four parameters (Ɛ̅𝑝𝑙 ,, ̅, 𝜇 )  to describe the 

complicated underlying fracture mechanisms. All these parameters are obtained from 

FEA at the central element of the bar specimens during reverse loadings. The 

accumulated equivalent plastic strain (EQPS), Ɛ̅𝑝𝑙 , is the key quantity parameter in 

predicting ELCF life, yet it cannot solely predict ELCF life.  Thus, the reverse cycles of 

positive and negative stress triaxiality, , and Lode angle, ̅, in Figure 79(b) during ELCF 

take an important role in tracking the right accumulated EQPS in FEA. The cyclic 

parameter,  𝜇, incorporates the cyclic loading effect on the damage accumulation. During 

the cycling loading, the damage accumulates until it equals to unity, where ELCF is 

predicted by fracture initiation. The accuracy assessment of the MMC model with 

extension is quantified by the accumulated EQPS at the failure instants. For comparison 

purposes, the ELCF initiation prediction based on the MMC criterion with extension will 

be denoted by Numerical EQPS. Likewise, EQPS at the instant of the experimental ELCF 
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(obtained by FEA) is denoted by Experimental EQPS. This approach provides a 

convenient measure that can be seen in Figure 79 for all different stress states, different 

strain amplitudes, and different loading conditions. Overall, the results of the ELCF 

prediction by MMC model with extension shows good accuracy, within the range of 

20%. The MMC model with extension is shown capable of predicting failures due to both 

monotonic loading and ELCF. However, two data points of “R2” specimen in (test data 7 

& 8) are clearly off the ELCF prediction range. The ELCF prediction for these two tests 

is fairly sooner than the experimental results. This discrepancy is seen when the EQPS is 

somewhat large. Moreover, these data points correspond to a relatively larger number of 

cycles with smaller strain amplitudes. This might affect the damage accumulation process 

of ELCF or might enroll another fatigue mechanism that the MMC model with extension 

did not capture. However, in the field of ELCF prediction research, this study has a 

potential to many applications.  
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Figure 79: (a) The predicted vs. experimental accumulated EQPS at the instant of the 

failure. The prediction results are for ductile fracture of monotonic loading and ELCF, (b) 

Stress triaxiality and Lode angle versus EQPS (at the center of the specimen) during 

some cyclic loadings. 

 

 

Figure 80: Numerical fracture simulations show cup-cone fracture patterns on the sharp 

notch bar (a), the large notch bar (b), and slant fracture mode for the plain strain 

specimen (c). The contour plot is the damage accumulation (D) in Abaqus. 

6.9 Model Validation 

The proposed MMC model with extension was also validated by test data series 

designed and performed by (Bao and Treitler, 2004) in Ref. [218] and calibrated by (Bai 



164 
 

and Wierzbicki, 2010) in Ref. [25]. The round specimen’s materials were Al 2024-T351 

(Aluminum alloy) and designed with three different notch external radius (Figure 81 and 

Table 27). A total of 11 test condition cases of different pre-compression strain (Table 

27) followed by tension to fracture. Using a similar approach of Ref. [218], the force vs. 

displacement curves for all cases were simulated by developing the specimens’ models in 

FEA using Abaqus . The curves results show excellent correlations to the experimental 

data (Figure 82).  The MMC model for ductile fracture under monotonic loading was 

calibrated for Al 2024-T351 in Ref. [25]. The 3D fracture locus for Al 2024-T351 is 

constructed and shown in (Figure 83). The results of the MMC model ductile fracture 

prediction are in excellent agreement with the experimental results.  

 

Figure 81: Main geometries and dimensions of the round bar (D = 22mm) 

Table 27: A summary of the specimen’s dimensions and tests 

Loading 

case 

Compression 

degree, % 

Notch 

radius, R 

Cross 

section 

diameter, d 

Denotion 

1 0 12 12 A1 
2 1 12 12 A2 
3 2 12 12 A3 
4 3.5 12 12 A4 
5 5 12 12 A5 
6 2 12 9 B1 
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Loading 

case 

Compression 

degree, % 

Notch 

radius, R 

Cross 

section 

diameter, d 

Denotion 

7 3 12 9 B2 
8 5 12 9 B3 
9 2 8 14 C1 
10 3 8 14 C2 
11 5 8 14 C3 

 

 



166 
 

 

 

Figure 82: Comparison of load-displacement curves and predicted fracture displacements 

for Al 20204-T351: (a) Type A specimens; (b) Type B specimens; (c) Type C specimens. 
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Figure 83: 3D MMC fracture locus for Al 2024-T351 

Using a Matlab code, the calibration of the proposed MMC model with the 

extension is performed based on the literature results in Refs. [25, 218]. For comparison 

purposes, the ELCF initiation prediction based on the MMC criterion with extension will 

be denoted by “Numerical EQPS”. Likewise, EQPS at the instant of the experimental 

ELCF (obtained by FEA) is denoted by “Experimental EQPS”. The results for specimens 

A, B, and C validate the MMC model with the extension and indicate excellent ELCF 

predictions as shown in Figure 84.  
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Figure 84: Experimental vs. predicted accumulated equivalent plastic strain at failure. 

 

6.10 Discussion and Conclusion  

Steel structures under seismic loading, gas turbine under high-pressure air current 

are ELCF life examples. ELCF is characterized by large strain amplitudes of cyclic 

loading that fails within few cycles (Nf < 100 cycles). The force vs. displacement 

behavior of IN718 for all tests under different stress states, different strain amplitudes, 

and different loading conditions were simulated with good accuracy. The MMC model 

was extended to consider ELCF regime by introducing two functions to the damage 

evolution rule. The first function controls the nonlinearity of the damage evolution. The 

second function incorporates the effect of the cyclic loading in ELCF by the loading 

direction change between the current stress and the backstress tensors. The fatigue 
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damage in ELCF is seen dominated by the enormous high level of plastic strain that 

causes huge ductility exhaustion within the metal. This huge ductility exhaustion leads 

the metal to fail in a very short time during the cyclic loading process. This is mainly 

presumed as the reason for the short fatigue life and the damage mechanism in ELCF. 

Also, it is clear from the fracture surface morphologies of each specimen that the fracture 

mechanism is very similar to that of the ductile fracture under monotonic loadings. The 

accuracy assessment of the MMC model with extension life prediction is quantified by 

the accumulated EQPS at the failure instant. The predicted EQPS at failure by the MMC 

criterion vs. the experimental EQPS at failure, obtained by FEA, show good agreement 

within the range of 20%. Finally, it can be concluded that the MMC model with the 

extension is applicable for ELCF and merits extensive consideration. 
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CHAPTER SEVEN:  

CONCLUSION AND FUTURE WORK 

 Summary of Conclusion 

An extensive amount of research outcome has been accomplished since the 

beginning of this study. Here is the summary of the research conclusions: 

 Ductile fracture of IN718 under multi-axial loading conditions was achieved by 

novel designs of different specimen geometry. Four types of specimens (one 

smooth round bar, two notched round bars, and one plane strain specimen) were 

used to calibrate the fracture of IN718. It was found that ductile fracture strain of 

IN718 is strongly dependent on the stress states, especially the stress triaxiality. 

This phenomenon is usually contributed to the effect of hydrostatic pressure on the 

micro void growth and nucleation rate. The ELCF tests on IN718 on the same group 

of specimens indicate that the similar pressure dependent mechanism applies to 

ELCF. A novel method using stress triaxiality was proposed to describe the notch 

effect on material fatigue. The current tests were conducted under room 

temperature, quasi-static loading and fully reverse loading conditions.  

 It was found that the stress state parameters (stress triaxiality and Lode angle 

parameter) have noteworthy effects on the plasticity and fracture of IN718.  The 

plasticity model with pressure and Lode angle dependence proposed by Bai and 

Wierzbicki (BW) [4] was extended to describe the material’s plasticity behavior, 

and the MMC fracture model [25]  with a new post failure softening [60] was used 

to successfully predict both ductile fracture initiation and propagation. Finally, both 
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the fracture initiation and crack propagation in the finite element simulations show 

satisfactory agreement with test results for all four specimens. 

 The current thesis has also demonstrated the combined kinematic and isotropic 

strain hardening along with the effect of the stress triaxiality and Lode angle 

parameter. It can accurately simulate the metals’ force-displacement curves of 

different loading conditions and different stress states. A suitable damage 

accumulation rule was proposed by introducing two weighting functions to consider 

the nonlinearity behavior of the damage evolution and to capture the effect of the 

cyclic loading within the ELCF regime. The first function controls the nonlinearity 

of the damage evolution. The second function incorporates the effect of the cyclic 

loading in ELCF by the loading direction change between the current stress and the 

backstress tensors. The two extended functions are presumed to act independently 

and concurrently throughout a loading process. The proposed fracture model 

considers the cyclic loading conditions as well as the monotonic loading conditions. 

The range of error of the linear damage accumulation model is [60%, 90%], while 

the errors of the proposed nonlinear model significantly decreases to [5%, 19%].  

 It has been found that the fatigue damage in ELCF is seen dominated by the 

enormous high level of plastic strain that causes huge ductility exhaustion within 

the metal. This huge ductility exhaustion leads the metal to fail in a very short time 

during the cyclic loading process. This is mainly presumed as the reason for the 

short fatigue life and the damage mechanism in ELCF. Also, it is clear from the 

fracture surface morphologies of each specimen that the fracture mechanism is very 
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similar to that of the ductile fracture under monotonic loadings. The accuracy 

assessment of the MMC model with extension life prediction is quantified by the 

accumulated EQPS at the failure instant. The predicted EQPS at failure by the 

MMC criterion vs. the experimental EQPS at failure, obtained by FEA, show good 

agreement within the range of 20%. Finally, it can be concluded that the extended 

MMC model is applicable for ELCF and merits extensive consideration. 

 Recommended Future Work 

In the current thesis, a comprehensive set of experiments and simulations has been 

conducted and developed for predicting material plasticity, hardening, and fracture behaviors 

for IN718. Nevertheless, there are several more research aspects recommended for the future 

research. Here are some suggested topics: 

1. Wider applications. The BW plasticity model was capable of simulating the 

IN718 plastic flow under ELCF. However, this model needs to be further tested to 

simulate a wide range of other materials under ELCF with different stress states.  

2. LCF Extension. The BW plasticity model shown capable of predicting the metals’ 

plasticity behavior under monotonic loading and ELCF. However, it has never 

been tested for Low Cycle Fatigue under multiaxial stresses states.  

3. Mean stress effect in ELCF. The MMC model in this research shows good results 

in predicting ELCF for IN718. However, our experimental study did not include 

positive nor negative mean stress effect during the fatigue tests. It is recommended 

to verify the MMC model capabilities in predicting ELCF with positive and 

negative mean stress. 
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4. Crack propagation. The crack initiation, growth, and coalescence for monotonic 

loading cases were flawlessly simulated in FEM by element deletion. However, for 

cyclic loading, crack closure during compression loading might unstable the crack 

propagation phase. This strategy might lead to inappropriate simulation when 

simulating real structure configuration. Therefore, appropriate fatigue crack 

simulation can be simulated by using element split technique in the future research. 

5. Environmental effect. In real applications, the materials of engineering structures 

and components are subjected to different environmental effects that will impact 

the materials behavior and life span. The suggested environmental effects are: 

high-temperature effects, corrosion environment effects, and high strain rates 

effects. Thus, it is vital to apply the current theoretical framework to include these 

environmental effects in future studies. 
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APPENDIX: RESEARCH PAPERS AND PRESENTATIONS 
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