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ABSTRACT 

Monitoring intracranial pressure (ICP) is important for patients with increased intracranial 

pressure. Invasive methods of ICP monitoring include lumbar puncture manometry, which requires 

high precision, is costly, and can lead to complications. Non-invasive monitoring of ICP using 

tympanic membrane pulse (TMp) measurement can provide an alternative monitoring method that 

avoids such complications. In the current study, a piezo based sensor was designed, constructed 

and used to acquire TMp signals.  The results showed that tympanic membrane waveform changed 

in morphology and amplitude with increased ICP, which was induced by changing subject position 

using a tilt table. In addition, the results suggest that TMp are affected by breathing, which has 

small effects on ICP. The newly developed piezo based brain stethoscope may be a way to monitor 

patients with increased intracranial pressure thus avoiding invasive ICP monitoring and reducing 

associated risk and cost.  
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CHAPTER 1: INTRODUCTION 

Increased intracranial pressure (ICP) can cause brain injury if left untreated. Elevated intracranial 

pressure is one of the outcomes of severe traumatic brain injury (TBI), hydrocephalus or intra-

cerebral hemorrhage [1]. Hence, monitoring ICP is a useful tool for management of these cases. 

Invasive methods of monitoring the ICP includes lumbar puncture manometry, placing ICP 

transducer at certain locations, e.g., subdural or parenchymal. Although invasive methods of 

monitoring ICP are considered the gold standard, they come with certain risks and may require 

hospital or clinic visits.  They require high clinical skill and can be costly.  Hence, non-invasive 

methods of monitoring ICP can be advantageous for patients at risk of elevated intracranial 

pressure. The objective of this study is to develop a non-invasive way of monitoring ICP using 

tympanic membrane “pulses” (TMp) measurements. These pulses are vibratory movements of the 

membrane that occur naturally without external excitations. 
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1.1 Cerebrospinal Fluid and Intracranial Pressure 

The cerebrospinal fluid (CSF) is a fluid that surrounds the brain ventricles, cranial and spinal  

subarachnoid spaces. 

 

Figure 1-1 CSF System Showing the CSF fluid in cranial subarachnoid space as well as ventricular places. 

[2] 

 Figure 1-1 shows the CSF locations in the cranium. CSF is formed mainly in the choroid plexuses 

which is a network of cells that produces CSF in the ventricles of the brain. The mean CSF volume 

is approximately 150 ml where 25 ml contains in the ventricles and the remaining 125 ml is found 

in the subarachnoid spaces and spinal cord. The balance between CSF secretion and absorption 

and flow resistance determines the CSF pressure, which can be measured invasively by placing a 

pressure transducer in the brain parenchyma or in the CSF spaces via external lumbar drain or 

ventricular drain. The value of the CSF pressure varies between 10 and 15 mm Hg in normal adults 
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and 3 and 4 mm Hg in healthy infants [3]. According to Monro-Kellie hypothesis [4], the cranium 

is a rigid structure surrounding the brain, which is assumed to be incompressible. The volume 

inside the skull is constant. Therefore, the components of the cranium (volume of CSF, brain, 

blood, cerebral perfusion pressure) creates a homeostasis (a stable equilibrium between inter 

dependent elements) such that the increase in volume of one element leads to a decrease in other. 

This process keeps the ICP stable in normal humans. Figure 1-2 shows the typical ICP waveform 

obtained by placing an ICP sensor in the frontal brain parenchyma through dura [5]. 

 

Figure 1-2 ICP waveform acquired by inserting ICP sensor through subdural cavity. (a) the whole duration 

of the signal (b) zoomed in version of 6 second time window. [5] 
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1.2 Inner Ear 

The human inner ear (figure 1-3) consists of two regions: the vestibular system and the cochlea. 

The vestibular system consists of saccule, utricle and semi-circular canals, which are the human 

balance organs [6]. 

 

Figure 1-3 Inner ear showing Cochlea and the vestibular system. The inner ear is filled with Perilymph and 

Endolymph. Both fluid is connected to CSF through cochlear aqueduct and endolymphatic sac respectively. 

[6] 
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The cochlear fluid system consists of perilymph and endolymph and have similar properties 

[7].While the Scala tympani and Scala Vestibuli contains perilymph, the cochlear duct contains 

endolymph.   

 

 

Figure 1-4(a): Cross sectional area of human inner ear [8].(b) Cross sectional area of cochlea. [9] 

Outside of the cochlear wall close to the semi-circular canals is the oval window, which is attached to a 

bone called stapes (figure 1-4(a)) [8]. The cochlea consists of three long tubular chambers: scala vestibuli, 

scala tympani and cochlear duct (Scala media) (figure 1-4b) separated by basilar membrane and Reissner’s 

membrane [9]. The cochlear aqueduct, which is a bony channel between the Scala tympani and 

subarachnoid space establishes communication between the subarachnoid space and perilymphatic space.  
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1.3 Relation Between CSF Pressure and Cochlear Fluid Pressure 

Earlier study [10] suggest that pressure of the perilymph and CSF are equal in the cat. Another 

study [11] examined  the transmission of CSF pressure to middle ear fluid pressure in the cat by 

increasing the CSF pressure quickly. Results showed that both perilymphatic and endolymphatic 

pressure increased accordingly. The study suggested that in the cat the rapid change in CSF 

pressure transmitted to the cochlear fluid through the cochlear aqueduct. Other study [12] varied 

the CSF by changing blood pressure, posture, and blood gas content in the cat. Results showed 

that the change in CSF pressure were comparable to the change in perilymph pressure in all cases. 

The findings of these experimental studies suggest that changes in CSF pressure are transmitted to 

the cochlear fluid. 

1.4 Middle Ear 

The air-filled space between ear drum and the oval window of the cochlea is middle ear cavity or 

tympanic cavity. Within this cavity, there are three small connected bones forming the middle ear 

These are known as stapes, incus and malleus.  The ‘hammer’ shaped malleus is attached to the 

tympanic membrane at one end and the ‘anvil’ shaped incus the other. The third bone is connected 

to the incus and oval window of the cochlea. The vibration of the tympanic membrane pushes the 

malleus which vibrates against incus. This vibration is then transmitted to the stapes through incus. 

The stapes which is attached to the oval window vibrates creating pressure wave in the cochlear 

fluid.  At the base of the tympanic cavity, there is a tube that connects the tympanic cavity to nasal 

cavity called Eustachian tube. The tube allows the pressure in the tympanic cavity to be vented to 

atmosphere. Figure 1-5 shows the middle ear bones along with the tympanic membrane [9].  
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Figure 1-5 Human middle ear. [9] 

1.5 Tympanic Membrane and External Ear 

The tympanic membrane (TM) is a circular membrane that is connected to the malleus of the 

middle ear and separates the middle ear from external ear.  Earlier study [13] showed that the 

average thickness of the tympanic membrane is approximately 0.074 mm. The tympanic 

membrane transmits the vibration caused by the sound energy in the external ear to the middle ear 

ossicles. The tympanic membrane is slightly inclined at an angle of approximately 40 degree with 

the floor of the ear canal [13].  

 

Figure 1-6 Human tympanic membrane along with An: Annulus fibrosus, Lpi: Long process of incus; Um: 

Umbo, the end of malleus; Lr: Light reflex; Lp: Lateral process of the malleus; At: Pars flaccida; Hm-

handle of the malleus. [13] 
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Figure (1-6) showed a photo of tympanic membrane annotating different locations of the 

membrane [13].  

 

1.6 Variation of CSF Pressure and ICP with Respect to Body Posture 

Earlier study [14] suggested that changing body posture by tilting can lead to significant variations 

of CSF pressure. The study was done on a subject with artificial respiration. CSF pressure 

measurement was done by inserting a catheter into lateral ventricle of the brain. Another 

investigation [15] done on a dog showed that the CSF pressure varies with change in body position. 

 

Figure 1-7 Cerebrospinal fluid pressure in dog at different body posture. [14] 
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Results (figure1-7) showed that the CSF pressure increased considerably as the head and body 

tilted downward by 45 degrees while the pressure decreased slightly when the body was tilted by 

45 in the head up direction. 

In addition, the study performed variation of CSF pressure on human with pre-senile dementia and 

dilated ventricles (figure 1-8). Results showed that the CSF pressure decreased considerably as the 

subject’s body posture changed from supine to 90 degrees. 

 

Figure 1-8 CSF pressure in man with varying body posture. [14] 

Another previous study [16] on humans, where a butterfly needle was inserted into Ommya 

reservoir (an intraventricular catheter system used for the delivery of drugs into CSF in brain) and 

connected to a pressure transducer to measure the ICP. Results showed that at microgravity, ICP 

was lower in upright sitting positions than that of supine.  
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Earlier study [17] showed that in sitting position the difference between ICP and lumbar CSF 

pressure is identical to the height of hydrostatic column. When the body position moved from 

recumbent to sitting position, the corresponding change in lumbar CSF pressure is only about 40% 

of that predicted hydrostatic column. In addition, when the body postural position moved vertically 

head down, the change in ICP was about 3-fold higher than that of head up position. The study 

suggested that in addition to hydrostatic pressure, the elasticity of lumbar thecal sac and venous 

collapse influence the change in ICP due to variation in body postures.    

1.7 Effect of Tympanic Membrane Movement on Intracranial Pressure 

Earlier studies [1], [18] suggested that ICP is related to pressure of the cochlear fluid (fluid in the 

cochlea of inner ear). In addition, CSF is connected to the inner ear via perilymphatic duct. Thus, 

ICP can be transmitted to the inner ear via CSF or cochlear fluid and finally, then through the 

middle ear bone structure to the tympanic membrane. Therefore, it may be possible to monitor 

changes in ICP by measuring the changes in the tympanic membrane pulsations (TMp).    A 

previous study [19] investigated the movement of tympanic membrane induced by the stimulation 

of stapedial reflex. The study introduced a 1000 Hz stimulus signal with varying loudness into 

subject’s external ear canal. This induced a controlled stapedial muscle contraction and 

corresponding ossicular and tympanic membrane movement.  
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Figure 1-9 Tympanic membrane displacement for pre-and post-operative condition for a patient with 

elevated ICP with a stimulus signal of 1000 Hz. While the negative volume indicates in-ward going 

movement, the positive volume indicates out-ward going movement of the tympanic membrane. [19] 

Figure 1-9 showing tympanic membrane volume displacement with a 1000 Hz stimulus signal for 

a patient with elevated intracranial pressure before and after placing a ventriculo-peritoneal shunt 

[19]. According to the study the pre-operative tympanic membrane movement showing negative 

volume displacement indicative of elevated intracranial pressure which shifted to positive volume 

after placement of the shunt indicating reduced intracranial pressure. 

1.8 Measurement of Tympanic Membrane movement using volume displacement 

Earlier study [20] described  a technique of measuring variations in volume in the external ear due 

to the movement of tympanic membrane.  
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Figure 1-10 Tympanic membrane displacement system showing the ear canal connected to a cavity using 

a tube. The microphone measures the pressure fluctuations due to tympanic membrane movement. The 

microphone output is then sent to reference diaphragm driver unit to move the diaphragm and keep a 

constant pressure in the cavity. The microphone output is a measure of tympanic membrane movement. 

[20] 

In this system, subject’s ear canal is connected to an external cavity (TMD servo cavity). Inside 

the cavity, there is a microphone which measures the pressure fluctuation within the space between 

tympanic membrane and the cavity. In addition, there is a reference diaphragm at one of the cavity 

wall which is driven by an external driver circuit and can induce a subtle change in the ear canal-

TMD system cavity volume (Approximately 0.04 microliters). The pressure fluctuation due to the 



13 

movement of the tympanic membrane is sensed by the microphone inside the cavity. The 

microphone output is sent to reference diaphragm driver circuit which move the diaphragm to 

cancel out the pressure fluctuation and thus keeping a constant pressure in the cavity. The volume 

displacement of the tympanic membrane is nullified by an equal and opposite volume displacement 

of the reference diaphragm. The microphone output voltage is then used as a measure of the 

tympanic membrane volume displacement. In addition, the input to the reference diaphragm is 

connected to an audiometer which can generate a range of frequencies with varying loudness. This 

is used to stimulate the system and excite the stapedius reflex in the ipsilateral (i.e., same side) 

middle ear. Figure 1-11 shows the tympanic membrane volume displacement due to excitation of 

stapedius reflex. 

 

Figure 1-11Tympanic membrane volume displacement waveform due to stapedius reflex excitation. [20] 

The TMD system is used in several studies [8], [19], [20] to investigate ICP changes in normal 

humans and patients. The system output depends on the movement of reference diaphragm. The 
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property of the reference diaphragm is not the same as tympanic membrane therefore, it cannot 

mimic the exact movement of the tympanic membrane hence, it may not completely nullify the 

pressure changes due to the movement of the tympanic membrane may cause buildup of back 

pressure on the TM itself. Hence a passive approach (without using a stimulus signal to induce 

stapedial reflex) of measuring the TM movement would therefore provide better understanding of 

how the TM moves under different physiological conditions.  

1.9 Relation between CSF Flow and Cerebral Blood Flow 

Earlier study [21] described the relation between blood and CSF volume in the skull. CSF volume 

was obtained by integrating the CSF flow while the blood volume in the cranium was obtained by 

the integration of the summation of the blood flow in the internal carotid artery, the venous and 

vertebral artery. 

 

Figure 1-12 Relation between blood and CSF volume in the brain. As the blood volume increases, the CSF 

volume decreases. The caudal flow indicates CSF flow towards spinal cord while the cranial flow indicates 

cerebral blood flow towards brain. [21] 
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In addition, the study discussed that the peak subarachnoid outflow of CSF (Maximum flow at 

subarachnoid space towards spinal cord) occurs at 15% of the cardiac cycle. Figure 1-13 shows 

the CSF and blood flow in two consecutive cardiac cycles. 

 

Figure 1-13 Blood and CSF flow rate in the cranium. There is a time delay between the peak flow of the 

two systems. [21] 

The vertebral and internal carotid systolic peak flow (ICSPF) happens approximately at 88% of 

the cardiac cycle. This suggests that there is a delay between the peak flow of the two systems. In 

addition, raised ICP changes the intracranial compliance (change in volume (ΔV) per unit change 

in ICP (ΔP) and is the inverse of elastance) of the cranium [17].In normal condition, if  intracranial 

volume (CSF, brain or blood volume) increases, the ICP will rise accordingly. This then trigger 

enhanced CSF absorption which will reduce ICP overtime. If CSF absorption process is obstructed 

due to medical conditions (traumatic brain injury, hydrocephalus), the ICP will rise leading to 

decrement of the compliance as well as the cerebral blood flow [17]. As the intracranial compliance 

changes the time interval between the cerebral blood flow and CSF peak flow may change. This 

may lead to a change in time interval between the CSF pulsations and earlobe pulsations from the 
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external carotid artery which supplies blood to earlobe. Hence a change in the CSF-earlobe 

pulsation time interval may reflect ICP variation in the cranium.  

The TMp sensor system (will be discussed in the following chapters) can acquire TMp signal and 

the earlobe blood pulsations simultaneously. The ear lobe pulse signal depicts the pulsation of 

external carotid artery due cardiac activity. The earlobe pulse signal will be used to analysis the 

effect of ICP variation on TMp signal induced by postural changes. In addition, the pulse signal 

will be used to investigate changes in time delay between TMp and blood pulse signal due to 

variation of ICP. 
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CHAPTER 2: METHODS 

2.1 Building the Sensor Assembly 

The tympanic membrane pulsation sensor setup has two components: 1. Piezo sensor 2. Ear lobe 

pulse sensor. A Buzzer Element Piezo of resonant frequency 0.6 kHz and 44 mm diameter piezo 

disc (CUI inc, Tualatin, OR 97062, USA) was used to build the piezo sensor. The piezo disc was 

inside a 3-d printed circular chamber. There is a 3.5 mm opening at the center of the top surface 

of the chamber. A 38-mm long tube (inner diameter 3.5 mm) is attached at the opening of the 

chamber. The tube is tapered to allow easy insertion and removal of ear plug. A pressure tap was 

installed at the base of the tube to allow testing the seal (i.e. air tightness) of the connection between 

the tympanic membrane and piezo disc. Figure 2-1shows (a) the photo of piezo element and (b) 

the constructed sensor. 

 

Figure 2-1(a) 0.6 kHz 44 mm piezo disc (b) Piezo sensor along with a side pressure tap and a long tube to 

be put in external ear canal. 
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The ear lobe optical pulse sensor (Sparkfun Electronics, Niwot, CO) was attached to a small 3-d 

printed chamber to cover the electronics of the pulse sensor. An ear clip was attached to back of 

the pulse sensor to attach the sensor to the ear lobe. Both piezo and pulse sensor were placed inside 

the right and left ear muffs (Fnova, 34 dB, Shenzhen, Guangdong, China). The seal testing port at 

the base of the long tube was connected to flexible tube, which was connected to a valve that would 

allow releasing the pressure in the connection between TM and piezo disc to atmosphere. Figure 

2-2 shows (a) the ear lobe pulse sensor along with (b) the TMp sensor assembly. 

 

Figure 2-2 (a) Ear lobe pulse sensor (b) TMp sensor assembly. The piezo sensors and the ear lobe sensors 

are inside the right and left ear muffs. The while valves are used to test air tightness between ear canal and 

piezo disc by connecting the valve outlet to a manometer 

2.2 Data acquisition, Post Processing and Analyzing the Acquired TMp Data 

2.2.1 Data Acquisition, Plotting the Acquired Tympanic Membrane Waveform with Earlobe 

Pulse and Airflow   

The piezo sensor, the ear lobe pulse sensor, and the spirometer outputs were connected to a data 

acquisition system (IX-RA 834, IWORX, Dover, NH, USA) which allowed real time data 
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monitoring while acquiring the data.  Acquired data were saved in CSV files for later analysis. 

During post processing, acquired tympanic membrane data along with earlobe pulsation and 

airflow data are read and plotted (Matlab 2013, Mathworks, Natick, MA). Figure 2-3 shows the 

TMp waveform (top row), earlobe pulse (middle row) and airflow rate (bottom row).  It can be 

seen in the figure that the TMp waveform tended to vary during the respiratory cycle. 

 

Figure 2-3 Tympanic membrane pulse (top), earlobe pulse (middle) and breathing airflow (bottom). The 

tympanic membrane waveform changed with airflow. 

2.2.2 Filtering the acquired signals 

The acquired raw signals are filtered (bandpass: 1-20 Hz) to remove noise (e.g., of environmental, 

electronic, and respiratory origins). 

Figure 2-4 shows the filtered TMp, earlobe pulse and airflow signals corresponding to those shown 

in figure 2-3.  
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Figure 2-4 Filtered TMp, earlobe pulse and airflow data 

2.2.3 Identifying the Peaks of Ear lobe pulse 

Next step in analyzing the data is to find the peak locations of earlobe pulse peaks. The ear lobe 

pulses are relatively repeatable under same condition. Hence ear lobe pulse peak locations are used 

as a reference to mark corresponding TMp waveforms. These peaks were identified using methods 

similar to previous studies [22], [23].This process involved setting a threshold amplitude above 

which peaks of all individual the ear lobe pulse signal are assumed to lie. Matlab “findpeaks” 

function was then used to find all the pulse peaks above mean peak height (threshold amplitude). 

Since the heart rate was typically between 50-90 beats/minute, if there were multiple peaks within 

the corresponding pulse period, only the peak with higher amplitude was chosen and other peaks 

will be defined as false peaks and was removed. Figure 2-5 shows the ear lobe pulse peaks with 

their peaks marked with red circles. 
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Figure 2-5 Ear lobe pulses with their peaks marked with red circles 

2.2.4 Finding the Nadirs (start and end points) of Individual TMp waveforms 

Following the identifications of pulse peak locations, the MATLAB program finds the nadirs (start 

and end points) of corresponding TMp waveforms. Since period of ear lobe pulses are identical 

for each pulse, the TMp cycles are assumed to be similar. The algorithm finds the start and end 

points by going a specified location in the TMp data before and after corresponding ear lobe pulse 

peak locations. This method is similar to the above section (using the findpeaks Matlab function 

after multiplying the signal by “-1”) , which is also similar to previous studies [24], [25].  
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Figure 2-6 TMp and earlobe pulse waveforms are plotted. The peak locations of earlobe pulses are marked 

with black circles. The start and end points of corresponding TMp waveforms are marked with red and 

green circles 

Figure 2-6 shows the TMp nadirs along with pulse peaks. 

2.2.5 Separating the Individual TMp Events 

Once the start and end points of individual TMp waveforms are identified, the TMp waveforms 

are stored in an array. Next, these waveforms are plotted (figure 2-7) on top of each other. This 

help looking at individual TMp waveforms and identify the noise in the stored data.  
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Figure 2-7  Twenty Individual TMp events plotted on top of each other. Although all the events were 

synchronized around their peaks, some of the events had steeper valley than the others. 

2.2.6 Average TMp Waveform and Normalized Deviation from Mean  

The average of the individual TMp waveforms is calculated using methods described in previous 

studies [26].  

The mean waveform is calculated as: 

𝑀𝑒𝑎𝑛𝑇𝑀𝑝 = ∑ 𝑇𝑀𝑝(𝑖)𝑁𝑛𝑖          (1) 

 Here N is the number of TMp waveform. 

Figure 2-8 shows an average TMp waveform of 55 TMp individual waveforms. 
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Figure 2-8 Mean TMp waveform. This waveform is the mean of 55 individual TMp waveforms 

The mean TMp waveform is then used to calculate the “normalized deviation from the mean 

waveform” for each individual wave, which is similar to normalized relative difference described 

in earlier studies [27]. 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑚𝑒𝑎𝑛(𝑖) = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑇𝑀𝑝(𝑖)−𝑀𝑒𝑎𝑛𝑇𝑀𝑝)𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑇𝑀𝑝(𝑖))   (2)  

Figure 2-9 shows the normalized deviation values from the mean TMp waveform. The values 

range from 0.2 and 0.9. The periodic nature of the values indicate that they might be affected by a 

periodic process such as breathing.  
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Figure 2-9 Normalized deviation from mean TMp waveforms are plotted. The values range between 0.25 

and 0.8. The change in TMp waveform with respect to time might be related to breathing 

2.2.7 Effect of Breathing on Tympanic Membrane Pulsations 

The values for normalized deviations from the mean indicated that they have fluctuations which 

are periodic in nature. One possible cause for these fluctuations can be breathing. One way to 

confirm this possibility is to acquire both TMp and breathing simultaneously and check whether 

the fluctuations in normalized deviations correlate with breathing. Hence, TMp data was acquired 

simultaneously with breathing airflow for 5 minutes while the subject rested supine on a tilt table. 

After data acquisition, the deviation from the mean TMp waveform was determined. The 

normalized deviation from the mean was plotted along with breathing. 
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Figure 2-10 Normalized deviation from the settled TMp for all TMp waveform (blue line) is plotted along 

with subject's respiration airflow data (green line). It is evident that the variation in TMp waveform 

synchronize with subject breathing 

Figure 2-10 shows the variation of TMp waveforms from the mean TMp waveforms.  The 

waveform deviation was found to synchronize with the respiratory cycle. This suggests that TMp 

waveform is affected by breathing, which may cause small changes to the ICP. 

 

2.2.8 Separating the TMp Events Based on Lung Volume 

The previous section showed that the TMp waveforms can be affected by breathing. Therefore, to 

get a better understanding, the individual TMp waveforms are separated based on airflow data and 

lung volume. Lung volume was obtained by integrating the airflow data. The normalized deviation 

from mean was plotted with respect to airflow and lung volume (figure 2-11 and 2-12 respectively). 



27 

 

Figure 2-11 Normalized deviation from mean and airflow was plotted together. The red line indicates the 

regions of inspiration and expiration. The upper flat lines are inspiration region while the lower flat line 

indicates expiration. 

 

Figure 2-12 Normalized deviation from mean and lung volume data are showed. Red line indicates 

separation of high and low lung volume event. The regions of upper flat line indicate high lung volume 

effects while the lower flat line indicates low lung volume events 
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Figure 2-11 and 2-12 show the variation of TMp events based on airflow and lung volume. While 

both airflow and lung volume show changes with normalized deviation, lung volume was chosen 

as it has less noise than airflow (random breathing fluctuations which may create false inspiration 

or expiration events in the airflow data).  More importantly, separation of TMp into two groups 

was such that similarity of the events in each group was maximized.  

The TMp waveform were separated in two groups of high lung volume events or low lung volume 

events comparable to what has been described in similar studies [27], [28]. To achieve this, the 

pulse peak locations were used. More specifically, if a pulse peak was during high lung volume, 

the corresponding TMp waveform was identified as a high lung volume event. Similarly, if the 

pulse peak was during the low lung volume period, the corresponding TMp waveform was 

identified as a low lung volume event.  Figure 2-13 showed the separation of pulse peaks based on 

lung volume. 



29 

 

Figure 2-13 Identifying the pulse peaks based on high and low lung volume. The green circle indicates high 

lung volume event while the red circle indicates low lung volume event. 

2.2.9 Mean TMp for High and Low Lung Volume 

Once the TMp waveforms are separated based on lung volume, the steps from section 2.2.4 to 

section 2.2.6 were repeated to obtain mean TMp waveforms for high and low lung volume. 
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Figure 2-14 Mean TMp waveforms for high and low lung volume events. Normalized deviation between 

the two mean waveforms was 0.5102  

Figure 2-14 shows the mean TMp for high and low lung volume event. The normalized deviation 

between the two was 0.5102. The peak of the high lung volume mean TMp waveform is about 2-

3 mV higher than that of low lung volume event.  But at the beginning of the waveform the 

difference between the waveforms are about 5 mV. The signal peak-peak amplitude was about 25 

mV. 

2.3 Testing the TMp Sensor Output Using Mechanical Setup 

2.3.1 Experimental Setup 

To test the sensor output independent of human factors (i.e., intra and inter subject variability), the 

sensor was connected to a mechanical setup that has a membrane movement comparable to 

tympanic membrane movement.  
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Figure 2-15 Mechanical setup for testing the TMp sensor output independent of human factor 

The setup consists of a 5-mm cylinder (close to the dimensions of human external ear canal). A 

latex membrane is attached at the end of the cylinder length.  A piston inside the cylinder can move 

back and forth to induce a movement of the membrane. The piston is attached to a mechanical 

shaker. A DC amplifier amplifies the input signal and send the output signal to drive the shaker. 

A Laser Doppler Vibrometer (LDV 100, Polytec Inc, Hudson, MA, USA) was pointed to the 

membrane to capture the membrane movement. A pressure port at the side of the cylinder close to 

membrane allows connection to TMp sensor. Another Laser Doppler Vibrometer (OFV 503, 

Polytec Inc, Hudson, MA, USA) was pointed towards the back of the piezo disc of the sensor. A 

computer sends a 1, 2, 5, 10 and 20 Hz cosine signal (with frequency of repetition of 1 Hz) 

respectively to the amplifier, which moves the shaker like the input signal. The input, both Laser 
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Doppler Vibrometer (LDV) outputs, and TMp sensor output are acquired using IWORX data 

acquisition system.  

2.3.2 Testing the sensor output with multiple input signals 

The LDV output voltages were converted into velocities using calibration data provided by the 

manufactures. The velocity values were integrated to get the displacement of the membrane and 

the piezo disc of the sensor. The membrane displacement, piezo disc displacements were plotted 

along with piezo output for input signal of 1, 2, 5, 10 and 20 Hz respectively. Sensitivity of the 

sensor was calculated by the following formula 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑃𝑖𝑒𝑧𝑜 𝑂𝑢𝑡𝑝𝑢𝑡 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑖𝑛 𝑉𝑃𝑖𝑒𝑧𝑜 𝑑𝑖𝑠𝑐 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑚𝑚       (3) 

 

Figure 2-16 Piezo output plotted against piezo disc displacement and membrane displacement at 1Hz cosine 

input signal.  The normalized deviation from mean of piezo displacement was 0.883 and the sensitivity was 

found to be 0.2117 V/mm  

Figure 2-16 shows the piezo output with respect to a 1 Hz cosine input that drives the shaker.  
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Figure 2-17 Piezo output plotted against piezo disc displacement and membrane displacement at 2Hz cosine 

input signal.  The normalized deviation from mean of piezo displacement was 0.8421 and the sensitivity 

was 0.2274 V/mm 

 

Figure 2-18 Piezo output plotted against piezo disc displacement and membrane displacement at 5Hz cosine 

input signal. The normalized deviation from mean of piezo displacement was 0.7865 and sensitivity was 

0.3358 V/mm 
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Figure 2-19 Piezo output plotted against piezo disc displacement and membrane displacement at 10Hz 

cosine input signal.  The normalized deviation from mean of piezo displacement was 0.7858 and the 

sensitivity was 0.3228 V/mm 

 

Figure 2-20 Piezo output plotted against piezo disc displacement and membrane displacement at 20Hz 

cosine input signal.  The normalized deviation from mean of piezo displacement was 0.8273 and the 

sensitivity was 0.3166 V/mm 
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The sensor output test at varying input frequencies showed that the sensor sensitivity were 0.21, 

0.22, 0.33, 0.32, 0.31 V/mm for input signal of 1, 2, 5, 10, 20 Hz respectively. Since the sensitivity 

had small changes as the input frequency increased (in the 1-20 Hz range), this suggests that the 

piezo output is representative of a displacement measurement.  Testing the sensor with sinusoidal 

waves will be performed in the future to further confirm this finding. 

2.3.3 Testing Repeatability of the Piezo based TMp Sensor Output 

The 5 Hz cosine pulse signal ran continuously from the computer at a repetition rate of 1 Hz. The 

piezo sensor output was acquired for one minute. The output data was acquired again after 5 

minutes and 10 minutes after the first test.  

 

Figure 2-21 Left: Filtered piezo output with 5 Hz cosine input. Right Mean Piezo output waveform at 

different time. The acquired TMp sensor output is comparable to the input signal. The normalized deviation 

from mean is about 0.0736. 
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Figure 2-21 shows that the TMp sensor output is comparable to the input signal. The maximum 

peak to peak amplitude difference is about 1.5% of the peak to peak amplitude of the mean TMp 

waveform at the beginning. The normalized deviation from mean is about 0.0736. 

2.3.4 Testing the Repeatability of LASER Doppler Vibrometer Output 

The output from the LDV is plotted along with the input signal. In addition, the mean waveform 

for three different time (beginning, after 5 minutes, after 10 minutes from the beginning) was 

plotted 

 

Figure 2-22 Left: Filtered piezo output with 5 Hz cosine input. Right: Mean LDV waveform at different 

time. The normalized deviation from mean is 0.0135 

Figure 2-22 shows that the LDV output measured the velocity of the membrane since the output 

is showing a sin wave for a cosine wave input. The variability of the mean waveforms for three 

different time was within 0.9% of the mean waveform at the beginning. The normalized deviation 

from mean is 0.0135 
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2.3.5 Testing the Effect of External Pressure on TMp Sensor Output 

The TMp sensor was tested connected to cylinder of the mechanical setup. The space between 

cylinder and the sensor cavity was connected to a manometer. External pressure was applied using 

manometer to test the sensor response at subtle change in pressure. Data acquired for zero, positive 

4 cm, positive 8 cm, negative 4 cm and negative 8 cm of water.  

 

Figure 2-23 TMp sensor output at different external pressure. The normalized deviation relative to zero 

pressure for +8, +4, -8 and -4 cm of water were 0.144, 0.102, 0.165, 0.118 respectively. 

Figure 2-23 shows that at different external pressure the sensor output didn’t change significantly 

and the maximum peak to peak amplitude difference was found to about 8% of the peak to peak 

amplitude of TMp at zero pressure  
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2.4 Testing the Effect of Dead Space in the System on TMp Signal Output 

If the system is sealed, then the space between the piezo disc and the tympanic membrane will be 

small. The addition of leak testing the valve will increase this dead space. To test the effect of dead 

space, the sensor assembly was connected to a manometer to test the system leakage. The valve 

port for manometer connection can be plugged using an occluded hose. Also, the valve can be 

closed completely to provide complete sealing. Subject is in sitting position while wearing the 

TMp headset.  Left and Right TMP and pulse sensors was connected.  Both leak testing valves (of 

TMp sensors) was gently closed. The left valve remains closed and plugged throughout the 

experiments. Data was recorded for 1 min. Right valve outlet was plugged, and the valve was 

opened. Data was recorded for 1 minute. Manometer was connected to right sensor and data was 

recorded.  We measured the dead space that was added to the system when keeping the valve 

plugged and open when the manometer was connected.  The first space consisted of a 1.3 mm 

diameter and 100 mm long tubing along with 3.5 mm valve internal diameter and 30 mm valve 

length (total volume= 394.81 mm3), while the second connection consisted of 1.3 mm diameter 

and 780 mm long tubing plus the 4.7 mm manometer internal diameter and 150 mm height from 

the piping connection to the fluid level at zero pressure (Total volume= 4032.548 mm3). This is 

about 10 times higher than the first space. 
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Figure 2-24 TMp data when both leak testing valve closed and plugged to provide complete seal from the 

environment. Both left and right TMp waveform have similarity in shape compared left and right ear lobe 

pulse. 
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Figure 2-25 TMp data when left valve is closed and right valve opened and plugged to provide a little dead 

space. Results show that adding a little dead space didn’t significantly change the waveform. 

 

Figure 2-26 TMp data when right valve is opened and connected to manometer. Although the system is 

sealed, results show that adding a lot of dead space changed the right TMp waveform. 
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Figure 2-27 Mean waveform showing significant change in waveform when there is considerable dead 

space between the sensor and tympanic membrane, the amplitude of the waveform decreased and the shape 

of TMp waveform changed. The normalized deviation relative to mean for closed and plugged case for 

open and plugged was 0.0780 and for open and connected to manometer was 0.8825. 

The results of the experiment showed that adding a little dead space (the space up to the valve 

outlet) didn’t change the shape and amplitude of the TMp. But when we added a lot of dead space 

(tube space from piezo disc to manometer inlet), even though the system is sealed, the waveform 

changed its shape and amplitude reduced. The normalized deviation for a system with a lot of dead 

space was significantly higher (0.88) than small dead space (0.07).  This suggests that small dead 

spaces (about 400 mm3) should be used to avoid waveform distortion.  

2.5 Testing the effect of leakage on TMp Signals 

To test the effect of leakage, the manometer connection with the valve outlet was removed. The 

right valve exit was plugged, and the valve was closed gently and completely. Data was recorded 

for 1 minute. The plug was removed, and the right valve was opened slowly (half a turn) to induce 
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leakage. Data was recorded for 1 minute. The valve was again repeatedly opened (by half a turn) 

and the corresponding data recorded to see the effects of leakage of varying degree. 

 

Figure 2-28 TMp data when both valves are closed. Results show that both TMp waveform showing 

similarity in comparison to left and right ear pulse. This waveform with sharp single peak may be an 

indicator of a sealed system. 

 

Figure 2-29 TMp data when the right valve is opened by half way. These results show that the right TMp 

waveform started to lose its original shape and amplitude due to leakage of the system. 
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Figure 2-30 TMp data when the right valve is opened completely to provide a leakage to the right side. The 

waveform lost in terms of shape and magnitude. This can be an indicator of leakage in the system. 

 

Figure 2-31 Mean TMp waveform showing the amplitude of the TMp waveform significantly reduced as 

the valve position changed from closed to open. The shape of the waveform also changed as leakage 

introduced to the system.  The normalized deviation relative to the mean of completely sealed system for 

half open and fully open condition was found to be 0.93 and 1.11 respectively.  
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2.6 Testing the repeatability of the TMp signal 

To investigate intra-subject variability of the TMp signal over a period of time, the subject was in 

the sitting position wearing the TMp sensor. The sealing (the airtightness between the sensor and 

external ear canal) was then confirmed and data was acquired for one minute. After the data 

acquisition, the subject removed the TMp sensor from the ear canal. This was repeated after 

waiting for 5 and 10 minutes. 

 

 

Figure 2-32 Repeatability testing of the TMp signal for left and right ear for same subject over a period. 

The normalized deviation from mean TMp for left and right 0.216 and 0.194 respectively 

Figure 2-32 shows the intra-subject variability of the TMp sensor signal at different times. The 

normalized deviation was 0.216 for left ear and 0.194 for right ear. This shows that both sensor 

could acquire repeatable waveforms under same condition. The normalized deviation from mean 

values were about 3 times higher than what found in mechanical setup (figure 2-19) in section 

2.3.3 
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2.7 Investigating the difference between contralateral ears 

To investigate the effect of tympanic membrane pulsation variation between right and left ears, 

both sensor was switched to the contralateral ear (right sensor placed in the left ear and left sensor 

in the right ear). Data were acquired for 1 minute following the same procedure as section 2.6 

 

Figure 2-33 TMp waveform at contralateral ear canal (right sensor in left ear and left sensor in right ear) 

and inpsilateral (left sensor left ear and right sensor right ear) at different time period. The normalized 

deviation for left sensor at contralateral and ipsilateral was 0.08 and 0.22 while for right sensor in 

contralaeteral and ipsilateral ear was  0.19 and 0.19 respectively. 



46 

Figure 2-33 showed that the left sensor normalized deviation from mean increased about three 

times as sensor was placed from contralateral to ipsilateral ear. While the right sensor normalized 

deviation from mean didn’t change for contralateral and ipsilateral locations. 

 

2.8 Testing the Effect of External Pressures on TMp Signals 

The manometer was connected to the valve outlet. The right valve exit was plugged, and the valve 

was closed gently and completely. Data was recorded at zero external pressure for 1 minute. The 

right valve was opened and a positive pressure of 8 cm of water was applied by a syringe in the 

manometer tubing circuit. Data was recorded for 1 minute. Thirty seconds of wait time was 

observed after each data acquisition. Data was then acquired for pressures of +4 cm, - 8 cm and - 

4 cm of water. 

 

Figure 2-34 Mean Right TMp waveforms at varying external pressure applied in right external ear canal-

TMp sensor cavity. The maximum peak to peak amplitude difference was about 3 mV found between zero 

pressure and positive 8 cm of water. This was about 20 % of the peak-to-peak amplitude at zero pressure. 

The normalized deviations from zero pressure were, 0.3039, 0.1693, 0.2513 and 0.1296 for pressures of 8, 

4, -8, and -4 of water, respectively. 
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Figure 2-34 shows that while the normalized deviation relative to zero pressure was higher at 

positive 8 cm and negative 8 cm of water, for positive 4 cm and negative 4 cm water the deviation 

was lower than the values found in the repeatability test (section 2.6). This suggests that changing 

small external pressures in the ear canal doesn’t significantly affect the TMp signal. This result 

may need to be confirmed in a larger number of subjects.  

 

Figure 2-35 Mean TMp waveforms at different external pressures. The maximum peak to peak amplitude 

difference was about .3 mV found between zero pressure and positive 4 cm of water. This was about 9 % 

of the peak to peak amplitude at zero pressure.  The normalized deviations from zero pressure were, 0.1743, 

0.2047, 0.1454, 0.1471 for pressures of 8, 4, -8, and -4 of water, respectively. 

Figure 2-35 shows that the normalized deviation relative to zero pressure were found to be similar 

or lower than the values found in the repeatability test. This suggest changing external pressure 

caused no significant change in the waveforms for contralateral TMp signal.   
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CHAPTER 3: TYMPANIC MEMBRANE PULSATIONS AT VARYING 

TILT ANGLE 

3.1 Experimental Procedure 

Experimental protocol was approved by IRB of our institution. The subject rested on a tilt table 

for five minutes. The subject was gently secured by shoulder and waist strap on tilt table to avoid 

slipping on table while in the downward tilt position. Ear lobe pulse sensors were attached to the 

subject’s both ear lobes. Next, new ear plugs were inserted at the tips of the long pipe of the piezo 

sensors. The long pipes along with the ear plug were inserted into subject’s external ear canals.  

The air-tightness test valves were connected to the manometer to test the sealing of the ear canal. 

Once both the ear canal sealing were confirmed, the subject was tilted from 45 degrees upward to 

supine position. The subject rested for 5 minutes to allow the equalization of cranium pressure to 

supine position and as well as allowing the subject to be in relaxed state.  

Before acquiring the data, a spirometer was put into subject’s mouth to measure flow rates. The 

system was then ready for data acquisition. The subjects were gradually tilted from supine to 45 

degrees downward with increments of 15 degree. At each tilt position, there was a 30 second 

settling time to accommodate equalization of ICP followed by 60 seconds of data acquisition.  
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Figure 3-1 Experimental setup showing: the data acquisition system, the Piezo sensor assembly, and 

spirometer assembly (top row). The bottom picture shows the subject wearing piezo sensor headset while 

the spirometer is put into subject's mouth to acquire the breathing data. 

3.2 Results 

The acquired TMp signal was plotted along with ear pulse. The time delay between peaks of both 

signals was calculated using cross correlation function.  
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Figure 3-2 TMp waveform (black continuous line) along with ear lobe pulse (red dotted line) at different 

tilt positions. Starting at left top figure showing TMp and Pulse waveform for Supine position followed by 

15 degrees, 30 degrees, 45 degrees, after hyper-ventilation at 45 degrees, 30 degrees, 15 degrees, supine 

again. As ICP increased (by increasing tilt angle) a detectable effect on TMp waveform was seen.  

Hyperventilation (which is known to reduce ICP) also affects the TMp waveform. TMp appeared to return 

its supine morphology as the subject was returned to the supine position. (Subject 1) 

Figure 3-2 shows that the TMp waveform changed shape and amplitude as the tilt angle increased 

gradually from supine to 45-degree downward direction indicating the rise of ICP. The time delay 

between the signals also increased as ICP increased.  To further investigate this phenomenon, both 

the signals were filtered, and time delay was calculated at the fundamental frequency. 
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Figure 3-3 TMp and Ear pulse signal was filtered (bandpass: 1-2 Hz) to calculate the time delay at 

fundamental frequency. As the tilt angle increased the amplitude of the TMp waveform increased and the 

corresponding time delay increased as well. 

Figure 3-3 showed that as tilt angle increased, the amplitude of the filtered waveform increased. 

After hyperventilation, the amplitude of the waveform decreased. In addition, the time delay 

decreased significantly. This suggests that the CSF pressure dropped after hyperventilation. The 

waveform amplitude decreased gradually as the tilt angle decreased from downward 45 degrees to 

supine again. 

The time interval between the TMp and reference ear lobe pulse signal at different tilt angle also 

plotted.  
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Figure 3-4 Time delay between TMp signal and earlobe pulse signal at different angle. Time delay changed 

with tilt angle. 

Figure 3-4 shows that the time delay changed with tilt angle, which may be useful in detecting ICP 

changes. Similar analysis (figure 3-5 to 10) were done from the data acquired from 2 more subjects 

(subject 2 and 3). 
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Figure 3-5 TMp along with earlobe pulse at different tilt angle. The amplitude of the TMp increased as the 

tilt angle increased. (Subject 2) 

 

 

Figure 3-6 TMp and earlobe pulse filtered at fundamental frequency for different tilt angle (subject 2) 
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Figure 3-7 Time delay at different tilt angle (subject 2) 

 

 

Figure 3-8 TMp along with earlobe pulse at different tilt angle. The amplitude of the TMp increased as the 

tilt angle increased. (Subject 3) 
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Figure 3-9 TMp and earlobe pulse filtered at fundamental frequency for different tilt angle (subject 3) 

 

Figure 3-10 Time delay at different tilt angle (subject 3) 
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3.3 TMp changes with title angle for shorter acquisition and settling times  

In the above section, some hysteresis was seen when the subject posture returned to the supine and 

other positions. Earlier studies used shorter acquisition and settling times and suggest smaller 

hysteresis effects. To investigate this issue, TMp was acquisition time was shortened to 15 seconds, 

and the settling time (waiting time between end of posture change and start of acquisition) was 

kept close to zero. The tilt angle was changed at every 15 seconds from supine to 45 degrees with 

an increment of 15 degree and back to supine again.  Figure 3-11 to 3-19 show the unfiltered, 

filtered data (band-pass filtered at fundamental frequency) and calculated time delay at the 

fundamental frequency for different tilt angles.  The results suggested that hysteresis was higher 

in subject 3. The TMp amplitude increased consistently with tilt angle in the 3 subjects. The time 

delay increased in 2 of the three subjects while time delay changes in the third subject were 

relatively small. 
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Figure 3-11 TMp along with ear lobe pulse at different tilt angle, when the latter changed rapidly. The 

amplitude of the TMp increased as the tilt angle increased. (Subject 1) 

 

Figure 3-12 Filtered TMp waveform along with pulse as the tilt angle increased quickly the amplitude of 

the waveform increased. (Subject 1) 
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Figure 3-13 Time delay between TMp and Pulse signal at different tilt angle (subject 1). The tilt angle was 

changed rapidly with a 15 second data acquisition at each angle. 

 

Figure 3-14 TMp along with ear lobe pulse at different tilt angle changed rapidly. The amplitude of the 

TMp increased as the tilt angle increased. (Subject 2) 
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Figure 3-15 Variation of filtered TMp waveform with change in tilt angle (Subject 2). The amplitude and 

time delay increased with tilt angle 

 

Figure 3-16 Time delay between TMp and Pulse signal at different tilt angle (subject 2). The tilt angle was 

changed rapidly with a 15 second data acquisition at each angle. 
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Figure 3-17 TMp along with earlobe pulse at different tilt angle changed rapidly. The amplitude of the TMp 

increased as the tilt angle increased (Subject 3) 

 

Figure 3-18 Variation of filtered TMp waveform with change in tilt angle (Subject 3). The amplitude and 

time delay increased with tilt angle 
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Figure 3-19 Time delay between TMp and Pulse signal at different tilt angle (subject 3). The tilt angle was 

changed rapidly with a 15 second data acquisition at each angle. 
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CHAPTER 4: SIMPLIFIED MODEL OF TYMPANIC MEMBRANE 

PULSATIONS 

4.1 Model Geometry 

A simplified model (figure 4-1) of CSF-inner ear-tympanic membrane model was developed. The 

CSF space was assumed to be 140 mL [7] To simplify the model, the CSF space was assumed to 

be cylinder. Since the cranium is rigid, the other interface of CSF is brain tissue. Hence the CSF 

wall was assumed to soft tissue with a Young’s modulus 60 kPa and a density of 1041 kg/m^-3. 

After the CSF cylinder, the cochlear aqueduct was modeled as a cylinder concentric to the CSF 

cylinder. The channel width was assumed to be 90*10^-6 m[7]. The wall of the cochlear aqueduct 

was assumed to be rigid bone and the young’s modulus was assumed to be 10 GPa with a density 

1900 kg/m^-3. Next to cochlear aqueduct, is a hollow cylinder with soft tissue wall mimicking 

cochlea.  

The tympanic membrane is assumed to be thin disc with a thickness of 0.2 mm and a Young’s 

modulus 0.1 GPa with a density assumed to be 1000 kg/m^-3. 
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Figure 4-1 Schematic diagram of simplified model of CSF-Cochlea-Middle Ear-Tympanic Membrane. The 

red color showing the Soft tissue wall mimicking brain tissue, blue color corresponds to CSF fluid. The 

long bony channel represented by yellow is cochlear aqueduct. After cochlear aqueduct is cochlea 

surrounded by soft tissue. The green rectangle at the right end is the tympanic membrane. The yellow area 

between tympanic membrane and the cochlea is middle ear bones. The input is applied at left wall of CSF 

fluid 

The tympanic membrane is fixed at the edge. The cochlear aqueduct and the left CSF wall is 

assumed to be fixed.  An input of 1 Hz half cosine pressure wave with an amplitude of 0.1 Pa was 

initially applied on the left CSF wall. 
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4.2 Results 

 

Figure 4-2 The maximum input deformation of the left CSF wall. The other boundaries of the fluid wall 

also deformed as the pressure travel towards cochlear aqueduct. 

Figure 4-2 shows the maximum displacement of the left CSF wall due to the applied input pressure  

 

Figure 4-3 Deformation of CSF wall due to pressure input 

Figure 4-3 showed that the deformation of CSF wall due to applied pressure wave. In addition, the 

pressure wave seemed to induce an elastic wave in vessel wall as the wall material was assumed 

to be soft tissue. Since the cochlear aqueduct is considered a bony rigid channel, the elastic wave 
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cannot travel through the cochlear aqueduct. Pressure at the end of the CSF cylinder is transmitted 

to the entrance of the cochlea without any delay.  

 

Figure 4-4 Maximum deformation of the TM. Since the edge of the TM is fixed, maximum deformation 

happened at the center. 

The cochlear wall assumed to be soft tissue, hence will undergo deformation due applied pressure. 

This pressure is transmitted to the tympanic membrane via middle ear bone. 

Figure 4-4 showed the maximum displacement of the tympanic membrane. Since the membrane 

is fixed at the edge, at the peak input pressure, the membrane will not have any deformation at the 

edge. Maximum deformation of the tympanic membrane happened at the center. As soon as the 

tympanic membrane moved to the direction of applied pressure, the elastic behavior of the 

membrane will pull back the sharply to its equilibrium position.  
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Figure 4-5 Output deformation of tympanic membrane is plotted with input deformation. The output 

deformation is scaled. Results shows a delay of 250 millisecond between the input deformation and output 

deformation 

Figure 4-5 showed the deformation of the tympanic membrane along with input deformation at the 

CSF wall due to applied pressure. As the input deformation hits maximum, the membrane 

deformation remains zero. The membrane deformation builds up as the input deformation 

decreases. The membrane returns sharply to equilibrium position after the deformation reaches 

maximum. The delay between input and output deformation is about 250 milliseconds. 
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CHAPTER 5: DISCUSSION AND CONCLUSION 

5.1 Discussion 

5.1.1 Other Approaches of TMp Measurement 

The current study attempted to utilizes various sensors to effectively and reliably capture tympanic 

membrane pulsations. These included: a LED-photo resistor sensor assembly, a probe microphone, 

a LDV system, and a piezo disc sensor. The LED-photo resistor sensor consisted of a small white 

LED light that shine on the tympanic membrane and a photo resistor situated next to the LED to 

detect changes in reflected light due to the movement of the membrane.  

 

Figure 5-1 Tympanic membrane pulsations using LED & photo resistor assembly. The top figure indicates 

the raw data from photo resistor output. The middle figure indicates the filtered data (bandpass: 1-95 Hz). 

The bottom plot corresponds to optical pulse sensor at right hand thumb 
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Figure 5-1 shows a TMp signal detected by the photo resistor placed at external ear canal. There 

were a few advantages of using photo resistor over other approaches. The photo resistor setup 

doesn’t require the external ear canal to be sealed. It is small and convenient to use. The drawback 

of using LED-Photo resistor assembly was to ensure shining the LED light on the tympanic 

membrane due to the tortuous nature of external ear canal. In addition, presence of ear hair and 

wax made the LED-Photo resistor sensor output inconsistent. Any change in the environment light 

also may affect the output. 

Shining a Laser beam directly on the tympanic membrane using a Laser Doppler Vibrometer 

(LDV) was another approach to capture the membrane movement.  

 

Figure 5-2 Tympanic membrane pulsation using LDV. The top figure shows the raw LDV output. Second 

from the top figure showing the filtered TMp data. Third from the top figure showing blood pulsations 

using mechanical pulse sensor and bottom figure shows blood pulsation using optical pulse sensor. 
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Advantages of using LDV to acquire TMp signal is that it is a direct measurement of tympanic 

membrane movement with a calibrated device. But the presence of ear hair and wax makes it 

difficult to shine the Laser directly on the membrane. Also, changing Laser direction at different 

tilt angle was another challenge since it requires time and precision. In addition, the points at the 

surface of the TM move differently, and aiming the Laser beam at the same point while the subject 

changes position is difficult to reproduce. These drawbacks made the system unfavorable for 

measuring TMp signal at different tilt angles 

Another approach was inserting a probe microphone in the external ear canal close to tympanic 

membrane. 

 

Figure 5-3 TMp signal using probe microphone along with blood pulse at right thumb. The top figure shows 

the raw microphone data. The second from the top shows the filtered data. The third figure from the top 

shows the envelope of the signal using Hilbert transform. The bottom plot shows the blood pulsations at 

ear lobe.  
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Probe microphone measured the pressure fluctuations due to the movement of the tympanic 

membrane. However, maintaining the constant location of the probe for different subject inside 

the ear canal was a challenge. The signal to noise ratio in some subject was not high. Air tightness 

(of the space between the probe mic and TM) was needed to improve signal to noise ratio. The 

sensitivity of this microphone significantly decreased at low frequencies (e.g., <10Hz). The 

microphone probe also can be clogged by ear wax. These disadvantages made the sensor 

unfavorable for further use in TMp acquisition at different tilt angle. 

5.1.2 Repeatability of the Piezo Sensor Output 

The piezo sensor was tested for its ability to produce repeatable waveform under same conditions 

using the mechanical setup. The piezo sensor reliably captured the movement of the membrane 

induced by a shaker. The variability of the sensor output acquired at different time under same 

condition found to be small (0.02 mV and about 1.5 % of the peak to peak amplitude) compared 

to the peak-to-peak amplitude of the TMp signal (Figure 2-21). The corresponding LDV output 

data suggested that the acquired TMp signal from piezo sensor corresponds to displacement of the 

membrane (Section 2.3.2). Since the cylinder cavity in the mechanical setup was comparable to 

human external ear canal, the ability of the piezo sensor to produce repeatable waveform suggested 

that the sensor can be a good candidate for acquiring TMp signal in human subjects.  In addition, 

investigation on the effect of small external pressure inside the sensor-cylinder cavity 

demonstrated that, changes in external pressure didn’t change the sensor output significantly.  
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5.1.3 Repeatability of TMp signals in Human Subjects 

The repeatability tests of TMp signals on several subjects under similar condition showed that 

although there is a wide inter subject variability in the shape and amplitude of the TMp waveform, 

intra-subject variability was within (4-8 % of peak to peak amplitude) at the peak of the waveform. 

The test on switching the sensor to contralateral ear showed that the sensor output remained the 

same ( 4-8% in the same ear ) in terms of shape and amplitude. The dead space test on the sensor 

showed that sensor output significantly affected by the amount of dead space in the system. In 

addition, the leak testing proved that the signal amplitude dropped sharply if there is leakage in 

the sensor-ear canal cavity. The inclusion of leak testing valve helped greatly to ensure sealed 

sensor ear canal cavity. The leaked system also induced change in TMp waveform shape. Hence, 

a sealed system is essential to quantify change in TMp waveform shape and amplitude due to 

change in ICP. Effect of applying external pressure in the ear canal showed that the TMp waveform 

amplitude increased when slightly negative pressure was applied. One possible reason may be the 

compliance of the ear canal which can maximum in slightly negative pressure. The effect of 

applying external pressure in the contralateral ear didn’t show significant change in the TMp 

waveform shape and amplitude. This suggests that changing pressure in the external ear canal 

didn’t induce any change in ICP and therefore was not detected by the sensor. 

5.1.4 Effect of Body Posture on TMp 

Studies [14], [16], [17] showed that ICP changes with body posture, where the ICP amplitude 

increased as the body was tilted in the head down direction. The decrease in ICP waveform 

amplitude as the body posture moved in head up direction was observed in human and animal 



72 

experiments [14].  An earlier study suggested that tympanic membrane movement changed with 

ICP [19]. Current study showed that as the body tilted downward, the TMp signal amplitude 

increased gradually. In another experiment, the ICP was changed quickly and each tilt angle 

duration was approximately 15 seconds with 5 seconds of wait time in between angles. The 

corresponding TMp waveform showed that the amplitude and shape of the waveform changed as 

soon as the subject moved to a new tilt angle. Hence it can be said that the TMp sensor assembly 

can effectively monitor changes in ICP by tracking the changes in TMp waveforms. This can be 

an effective way of monitoring ICP non-invasively. Another observation was that at fundamental 

frequency, the time delay between the TMp and reference pulse signal tended to increase as the 

ICP increased (in 2 of the 3 subjects). After hyper-ventilation, which is expected to cause 

significant drop in ICP [17], the corresponding time delay between pulse and TMp decreased 

accordingly. This can be another useful parameter for monitoring ICP non-invasively.  Cross 

correlation function was also used to calculate the time delay between the two signals. This 

calculation requires signals with better signal to noise ratio. Hence it is paramount to filter the 

signal at intended frequency. In this case, both signals were filtered using bandpass (1-2 Hz) to 

keep the fundamental frequency only.  

5.1.5 Simplified Numerical Model  

Numerical model used in the study was simplified significantly help understand the basic principle 

of the movement of the tympanic membrane. The soft tissue walls in the model (wall of CSF and 

cochlea) was assumed to be linearly elastic. In response to an input pressure, the deformation at 

the simulated ear drum showed a 250 millisecond of delay with respect to deformation at the wall 

where the input pressure was applied (figure 4-5). This value is comparable with the time delay 
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values calculated in the experiments. The CSF volume in the cranium is assumed to be constant in 

the numerical model while the CSF volume in the cranium changes inversely with cerebral blood 

volume (i.e., as CSF increases the cerebral blood volume decreases) [3], [17]. CSF is assumed to 

be identical to cochlear fluid in the numerical model. Although the CSF fluid has similar 

composition as perilymph and endolymph (cochlear fluid), they are separated from CSF. Both 

perilymph and endolymph also circulate within cochlea. When the stiffness of the CSF wall 

(Assumed to be brain tissue) was increased in the model didn’t yield any change in time delay. 

Possible reason may be that the brain tissue has hyper viscoelastic properties while the numerical 

model assumed linear elastic material properties. In addition, the CSF is not in motion in the 

numerical model while the CSF circulates around the subarachnoid spaces and spinal cord. The 

entire CSF volume is replaced about four times a day [17]. Therefore, any change in pressure 

inside CSF in the model would readily transmit to the cochlear wall. Hence changing the wall 

stiffness didn’t change the time delay between input and output. The time step in the numerical 

modeling was set 5 milliseconds to save computational expense, hence any change in time delay 

lower than 5 milliseconds would not be detected by the modeling. A lower time step preferably 1 

millisecond and a finer mesh may be able to capture the change in time delay due to change in wall 

stiffness. 

5.2 Future Work 

Future work includes acquiring TMp data on patients with raised ICP and comparing the data with 

normal subjects. In addition, acquiring TMp data from patients with ventricular shunt would 

further illustrate the relation between ICP and TMp. Furthermore, a realistic numerical model with 

pulsatile blood flow in the blood vessel similar to previous studies [29], [30] along with CSF, 
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cranium, brain tissue, inner ear, middle ear and tympanic membrane would allow more insight on 

the movement of tympanic membrane under varying ICP. Also, time-frequency methods [31], [32] 

of the individual and mean TMp waveforms might be used to identifying new features that would 

help separate normal ICP from increased ICP.  

5.3 Conclusion 

The current study investigated the relation between ICP changes and TMp.  A sensor system that 

can reliably acquire tympanic membrane pulse was designed and tested. Results showed that the 

variation of ICP by changing body posture caused change in the shape of TMp waveforms. 

Furthermore, as the tilt angle increased the time delay between the TMp waveform and ear lobe 

pulse waveform increased. After hyper ventilation, the increase in ICP was decreased, which 

reduced the time delay between TMp and Pulse. After hyperventilation, as the subject gradually 

returned to supine position the time delay reduced in a similar pattern and was found to be 

comparable to the time delay values of the supine position at the beginning of the experiment. In 

addition, the TMp waveform was found to be affected by breathing which is known to affect ICP. 
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