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ABSTRACT

Vibration data from mechanical systems carry important information that is useful for characteri-

zation and diagnosis. Standard approaches rely on continually streaming data at a fixed sampling

frequency. For applications involving continuous monitoring, such as Structural Health Monitoring

(SHM), such approaches result in high data volume and require powering sensors for prolonged du-

ration. Furthermore, adequate spatial resolution, typically involves instrumenting structures with

a large array of sensors. This research shows that applying Compressive Sensing (CS) can signifi-

cantly reduce both the volume of data and number of sensors in vibration monitoring applications.

Random sampling and the inherent sparsity of vibration signals in the frequency domain enables

this reduction. Additionally, by exploiting the sparsity of mode shapes, CS can also enable efficient

spatial reconstruction using fewer spatially distributed sensors than a traditional approach. CS can

thereby reduce the cost and power requirement of sensing as well as streamline data storage and

processing in monitoring applications. In well-instrumented structures, CS can enable continuous

monitoring in case of sensor or computational failures.

The scope of this research was to establish CS as a viable method for SHM with application to

beam vibrations. Finite element based simulations demonstrated CS-based frequency recovery

from free vibration response of simply supported, fixed-fixed and cantilever beams. Specifically,

CS was used to detect shift in natural frequencies of vibration due to structural change using con-

siderably less data than required by traditional sampling. Experimental results using a cantilever

beam provided further insight into this approach. In the experimental study, impulse response

of the beam was used to recover natural frequencies of vibration with CS. It was shown that CS

could discern changes in natural frequencies under modified beam parameters. When the basis

functions were modified to accommodate the effect of damping, the performance of CS-based re-

covery further improved. Effect of noise in CS-based frequency recovery was also studied. In
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addition to incorporating damping, formulating noise-handling as a part of the CS algorithm for

beam vibrations facilitated detecting shift in frequencies from even fewer samples. In the spatial

domain, CS was primarily developed to focus on image processing applications, where the signals

and basis functions are very different from those required for mechanical beam vibrations. There-

fore, it mandated reformulation of the CS problem that would handle related challenges and enable

the reconstruction of spatial beam response using very few sensor data. Specifically, this research

addresses CS-based reconstruction of deflection shape of beams with fixed boundary conditions.

Presence of a fixed end makes hyperbolic terms indispensable in the basis, which in turn causes nu-

merical inconsistencies. Two approaches are discussed to mitigate this problem. The first approach

is to restrict the hyperbolic terms in the basis to lower frequencies to ensure well conditioning. The

second, a more systematic approach, is to generate an augmented basis function that will combine

harmonic and hyperbolic terms. At higher frequencies, the combined hyperbolic terms will limit

each other’s magnitude, thus ensuring boundedness. This research thus lays the foundation for

formulating the CS problem for the field of mechanical vibrations. It presents fundamental studies

and discusses open-ended challenges while implementing CS to this field that will pave way for

further research.
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CHAPTER 1: INTRODUCTION

Detecting and locating changes in structures is an important field of research, as it has a direct im-

pact on safety and reliability. During their service lifetime, structural components undergo changes

in their characteristics [1]. Over a period of time, these changes accumulate and may result in dam-

age or failure of the component. The aging infrastructure of the United States, that continues to

experience an ever-increasing demand on performance and reliability is a case in point [2]. Failure

of machinery or their components result in huge monetary losses for industries as well. Early de-

tection and location of these changes is therefore important and it enables prolonged performance

of the components or of the structure. In this regard, the literature is very elaborate and encom-

passes several approaches to addressing the problem. Non- Destructive Evaluation techniques such

as Guided Wave Testing (GWT), eddy current methods, etc. are some common methods that are

used to identify and locate changes in structural characteristics [3,4]. There are 2 basic approaches

to GWT - (i) Pulse echo and (ii) Pulse catch. The pulse echo system consists of an actuator that

generates a narrow bandwidth pulse of guided wave, which propagates through the structure, de-

tects a discontinuity and is reflected back to the sensor. The latter is a simpler approach where

the signal generated by the actuator is detected and analyzed by a sensor on the other end after its

propagation through the structure. Damages are identified based on changes in the features of this

propagated pulse [5]. Vibration-based monitoring is another well-established approach in detect-

ing and locating structural changes [6] and is heavily invested in exploring sensing systems and

damage indicating signatures that are the most accurate and robust. In this quest for accuracy, the

over-burdening of data acquisition systems is ignored, which results in the generation of a large

volume of data that is arguably redundant. The focus of this research is therefore to develop an

elegant vibration - based monitoring scheme that would allow to work with fewer data and min-

imal number of sensors without compromising on accuracy of detecting and locating changes in
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structural characteristics. A brief insight into vibration based techniques is provided in the next

section.

Vibration Based Monitoring

Vibration-based condition monitoring of machines and mechanical structures is an established

method [7,8] and it has found applications in Structural Health Monitoring (SHM) in recent years.

Mechanical components such as shafts, wind turbine blades, etc. inevitably undergo vibrations in

their operating environment. These vibrations inherently carry signatures in temporal and spatial

domains which reflect changes in structural characteristics, thus enabling detection and localization

of these changes [3, 4]. Vibration-based detection methods are also popular in civil engineering

structures such as bridges [9–11], for monitoring their structural health. When excited by some

force, the response of any structure or component can be measured as a function of time as well as

of space. Consequently, based on the domain in which the response is obtained, vibration-based

monitoring approaches are broadly classified into two categories - (i) Temporal and (ii) Spatial.

Temporal methods include analysis of modal parameters such as natural frequencies of vibra-

tion, Frequency Response Function (FRF) and other performance comparison parameters that are

derived from comparing modified vibration responses in the time domain against baseline (un-

damaged) response. Measuring and monitoring the transmissibility function between the DOFs

of a structure, modeled as a multi-DOF system, is another time domain method for vibration

based monitoring. Correlation coefficients between the time histories of strain data is another

useful parameter that can help in this regard. While temporal techniques are effective in detecting

changes in structural characteristics, localizing these changes calls for examination of these vibra-

tion responses in the spatial domain. The problem of identifying and localizing changes therefore

becomes spatio-temporal in nature. Modeshape, quite literally ‘shape of a mode’ is the spatial
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counterpart of a natural frequency. Changes in structural characteristics, in addition to shifting

natural frequencies, may therefore reflect changes in modeshapes which constitute the vibration

response in the spatial domain. To enhance sensitivity to change in structural characteristics, the

first or second derivative of modeshapes may be used as well. Concentration of modal strain energy

to a specific mode as a result of change is called mode localization, which is another damage indi-

cator worth mentioning. Other such indicators in this domain include Modal Assurance Criterion

(MAC) and Coordinate Modal Assurance Criterion (COMAC), both of which are obtained from

measuring modeshapes before and after change. Operation deflection shapes (ODS) is typically a

mixture of several modes and is the physical pattern the structure takes while undergoing vibration.

Hence, it is an important and direct spatial attribute that may indicate and localize damage. For this

reason, this research adopts ODS as a potential candidate for investigating changes in structural

characteristics. A detailed analysis of both temporal and spatial approaches is provided in Section

2. Although vibration based monitoring is widely practiced, for greater reliability and accuracy, it

requires greater amount of data. Hence, the effectiveness of such an approach comes at the expense

of the data acquisition system.

Drawbacks of Vibration Based Monitoring

As mentioned in the previous section, while a plethora of techniques are available for vibration-

based monitoring, they mostly involve instrumenting a given structure with as many sensors as

possible. Thereafter, data extraction follows the traditional approach of Nyquist-Shannon’s sam-

pling theorem, which states that for good frequency recovery and subsequent signal reconstruction,

the sampling rate has to be at least twice the highest frequency content of the signal [12]. In ad-

dition, fourier transform methods such as FFT (Fast Fourier Transform) set a requirement on the

duration of data capture. Further, advancements in sensor systems and the drop in their costs have

led to sensing proliferation as well. The immediate consequence is generation of large volumes of
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data that in turn contributes to computational burden and increased power requirement, [13]. Be-

cause conventional signal reconstruction methods show a better performance with greater amount

of data, in both time and space, spatial distribution of sensors are also dense. In most cases in

literature, these projects are implemented on a research or experimental level, thereby eliminating

the need to consider financial impact. To make a vibration based monitoring system commercially

viable, it would be very important to reduce the amount of data generated as a function of time and

in spatial distribution as well.

A thorough literature-review of existing vibration-based monitoring and diagnostic techniques

used in SHM are discussed in Chapter 2. The problem statement for this research and proposed

solution are explained in Chapter 3. A detailed background of beam vibration and compressive

sensing is provided in Chapter 4, which prepares the reader to understand the problem formula-

tion for this research and presents the rationale for proposing a CS based monitoring scheme for

detection and localization of structural changes. Primary results achieved thus far are presented

in Chapter 5 and this lays the groundwork for future scope of the project presented in Chapter 6.

Finally concluding remarks are made and references are provided.
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CHAPTER 2: LITERATURE REVIEW

Vibration-based SHM employs suitable in-situ active or passive transducers in order to analyze the

characteristics of the structure in time, frequency, and modal domains [14–18]. Earliest approaches

to this type of SHM involved comparison of modal properties of the damaged structure against an

undamaged baseline of the same structure. Areas of application include structures such as bridges

and wind turbines, [4, 9, 10, 19]. All vibration-based SHM methods rely heavily on time-history

response of a structure that can be acquired using sensors such as accelerometers, strain gauges, etc.

Modal parameters are then extracted by transforming the response into frequency domain, [20].

Looking more closely, detecting changes in the natural frequencies of a structure remains important

in vibration-based SHM, [6]. Although theoretically sound, it was shown that with increasing

severity of damage, natural frequencies exhibited a more distributed shift as opposed to localized

shift, [16, 21, 22]. The effect of the geometry of damage on the shift was studied in [23, 24].

Sensitivity of frequency shifts to damage and ambient variations has also been of interest, [25,26].

In addition, experimental validations have been conducted on actual structures, [27–29]. Frequency

Response Functions (FRF) have been utilized to determine natural frequencies and their shifts,

[30–32]. Here, fault localization is suggested by collecting the FRF from multiple sensors at

different locations of the structure. However, as mentioned earlier, FRF accuracy will depend on

the number and location of sensors, [14, 33, 34]. Analyzing transmissibility function between the

degrees of freedom and measuring the transmission coefficient for detecting structural change have

been explored also, [35]. The review indeed confirms that while the shifting of natural frequencies

is an indicator of structural change, it is not an effective means of locating the same. This brings

the topic of spatial characterization in SHM.

As explained in Section 1, the spatial counterpart of natural frequency may help in localization
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of structural change. Therefore, modeshape extraction from the response of structures, for detec-

tion and localization of damage, became popular, [20, 36]. One technique is measuring similarity

between a specific mode shape of a structure in its healthy and damaged states using Modal Assur-

ance Criterion (MAC), [37]. A MAC value of 0 indicates complete dissimilarity and hence severe

damage, while a value of 1 indicates complete similarity between the two compared mode shapes.

Coordinate Modal Assurance Criterion (COMAC), an advancement of MAC, measures the dif-

ference between the two mode shapes point-to-point and hence clearly locates the damage. Like

the MAC, this method again takes values between 0 and 1 to indicate the presence and severity

of damage [38, 39]. A disadvantage of mode shapes based SHM is the large amount of data that

is required in order to make reliable and accurate detection [14]. Additionally, mode shape data

is polluted by noise and measurement errors that affect their sensitivity to damage. A solution to

by-pass this problem can be to measure the first (slope) or second (curvature) derivatives of the

mode shape itself, [40]. Nevertheless, the mode shape based SHM method is widely studied and

applied in experiments as well, [14, 41–51].

Mode localization is a phenomenon in which the modal strain energy is confined to a specific mode

due to damage or change in structural characteristics. This energy concentration is another feature

that can be beneficial to detect as well as locate damage in a structure [15,49,52–54]. Measurement

of correlation coefficients between time histories of strain data of a structure before and after

damage can be a useful tool for damage detection as well its localization [55]. Quite similar to the

MAC and COMAC, the correlation coefficient takes values between +1 and −1, with+1 indicating

highest correlation or no damage and −1 indicating maximum severity of damage. Another related

method of extracting spatial information is by reconstructing the Operational Deflection Shapes

(ODS), [56]. ODS are superposition of mode shapes and provide a physical view of the vibration

of a structure, [14, 57]. Any change in structural characteristics will therefore distort the vibration

pattern of the structure or component, which will be a clear indicator of damage and may help
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in locating the change as well. Other related techniques for structural monitoring include Guided

Wave Testing (GWT) [5], imaging and pattern recognition, [58], and Wavelet transforms, [59–63].

Spatial wavelet analysis for damage detection and localization is a recent approach that has gained

popularity. However, inherent distortions in wavelet transform induces the possibility that dam-

ages near the boundaries of structures may be undetectable. In [64], the authors address this

drawback by employing a novel padding method to the vibration response while using Continuous

Wavelet Transform. Ultimately, all vibration-based monitoring methods necessitate acquiring a

large amount of data which, as previously explained, limits their commercial viability.
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CHAPTER 3: RESEARCH FOCUS AND MOTIVATION

The problem statement for this research work and the significance of addressing the issue are

discussed in this section. In addition, a potential solution is laid out, the details of which are

presented in the rest of the dissertation.

Problem Statement

From literature, it is evident that vibration based monitoring encompasses several approaches,

both in the temporal and spatial domains, all of which share one requirement in common - bulk

amount of data. In the temporal domain, this translates to large time histories of data, while in

the spatial domain, this implies instrumenting a given structure with a large number of sensors.

This is a major setback for vibration based monitoring techniques that needs to be addressed. To

reiterate, it is important to develop a vibration based monitoring system that would operate on

fewer data without compensating on reliability and accuracy of results. This becomes the focus of

this research.

Impacts of Large Data Requirement

Requiring large volume of data has undesirable impacts on many levels. First of all, it increases

the storage and computational burden on data acquisition systems. Greater amount of data requires

greater number of sensors, that contributes to elevation of power requirement thereby adding to

operational cost. Although sensor systems today are well developed and efficient, instrumenting

a structure with a large number of sensors compromises on the ease of installation, maintenance

and repair or modification processes. Owing to these practical constraints, most of the approaches
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discussed in the literature have not progressed beyond laboratory stages.

While considering cutting down on amount of data gathered, the first question to answer would

be ‘How much data is really required?’. Considering that most of the data is redundant and is

only required because of the algorithm for signal recovery and reconstruction, it would be prudent

to examine the literature for a reconstruction scheme that would perform better than conventional

methods and with lesser data. One such sampling technique is Compressive Sensing, that allows

for signal reconstruction from randomly placed reduced number of samples, provided the signal is

sparse, i.e. has very few significant coefficients when expressed in a suitable domain. The details

of this approach and the rationale to employ it for analyzing beam vibrations are discussed in the

sections to come.

Proposed Solution

Simply put, compressively sampled vibration based monitoring is proposed as a potential solution

to the research problem. As mechanical and civil engineering structures become more complicated

and their performance standards are raised, monitoring and diagnostics will increasingly become

more challenging. Hence, in spite of faster computational speeds and superior sensor technologies,

it is imperative that the efficiency of condition monitoring be improved. Higher efficiency of mon-

itoring implies reduced sensing requirement, low computational burden, and a greater flexibility of

sensing.

In [65], the authors recognized the importance of down-sampling and investigated its effect on

damage detection in the spatial domain. In this paper, the application of Compressive Sensing

(CS) to vibration-based monitoring, [66], is proposed in order to achieve reduced sensing. While

this approach is still in its nascent stages, an important related work in literature is [67], where

the authors evaluated the ability of CS to compress vibration data from civil structures. In [68],

9



spatial interpolation of the impulse response of a vibrating plate using sub-Nyquist sampling was

investigated. Spatial sparsity may also be exploited for source localization of acoustic waves [69],

[70].

In vibration- based monitoring, these attributes can be incorporated by applying Compressive Sens-

ing [66]. For data reduction, the combination of vibration-based monitoring and Compressive

Sensing (CS) is optimal, since the former offers sparsity which the latter fundamentally requires.

The approach is also less reliant on mathematical modeling and model-based computations. This

research develops the foundation for CS based monitoring for lateral vibration of beams and in-

tends to extend it further to incorporating related issues such as handling noisy data, quantifying

structural changes and damage signatures, compensation for non-synchronized time data and de-

velopment of a combined spatio-temporal framework.
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CHAPTER 4: FUNDAMENTALS OF BEAM VIBRATION AND

COMPRESSIVE SENSING

Background on the fundamentals of lateral beam vibrations and the effect of structural changes are

provided in this section. Using simulations, the use of CS in detecting change in natural frequen-

cies and spatial reconstruction of deflection shape for detecting and locating structural changes

are demonstrated in this chapter. Sparsity of beam vibrations and the rationale for using CS in

vibration-based monitoring are introduced here also.

Beams are continuous mechanical systems that can be used to represent different kinds of structural

components such as shafts, wind turbine blades, building structures, etc. The vibration characteris-

tics of beams in their operating environment change with progression of faults or other introduced

structural changes. In the next two sections, we discuss the basics of beam vibrations and demon-

strate how structural changes in the beam produces changes in vibration characteristics through

simulations.

Lateral Vibration Response as Weighted Sum of Modeshapes

The equation of motion of a uniform Euler-Bernoulli Beam is given by Eq.(4.1), [7]:

EI
∂4y(x, t)

∂x4
+ ρA

∂2y(x, t)

∂t2
= f(x, t) (4.1)

where, y(x, t) is the lateral response of the beam, f(x, t) represents forcing on the beam, E is the

elastic modulus, I is the second moment of area, ρ is the density of the material and A is the area of

cross section in m2, all expressed in appropriate units. The response of the beam can be expressed
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as a weighted sum of its modeshapes as shown below,

y(x, t) =

∞
∑

q=1

Tq(t)Wq(x). (4.2)

Here, the qth mode is represented by its mode shape Wq(x), with principal co-ordinate Tq(t),

attached to it. In its most general form, Tq(t) is influenced by both transient (free) and forced

vibration components and can be expressed as, [7]:

Tq(t) = Aq cos(ωqt) +Bq sin(ωqt) +
1

ρAbωq

t
∫

0

Qq(τ) sin(ωn(t− τ))dτ

b =
L
∫

0

W 2
q (x)dx, Qq(t) =

L
∫

0

f(x, t)Wq(x)dx

(4.3)

In Eq.(4.3), Aq and Bq are constants obtained from initial conditions, L is the length of the beam,

and ωq is the qth natural frequency of vibration. Therefore, in effect, both free as well as forced

vibration responses of a beam can be expressed as a weighted sum of mode shapes. Specifically,

from Eqs.(4.2) and (4.3), the general structure of free vibration response of a beam is

y(x, t) =

∞
∑

q=1

[Aq cos(ωqt) +Bq sin(ωqt)] Wq(x) =

∞
∑

q=1

[

Āq(x) cos(ωqt) + B̄q(x) sin(ωqt)
]

,

(4.4)

where ωq, q = 1, 2, · · · , are the natural frequencies, Wq(x) is the qth mode shape, Āq(x) =

AqWq(x) and B̄q(x) = BqWq(x). As expressed in Eq.(4.4), theoretically, the free vibration re-

sponse of the beam is a combination of all its modes (q = 1, 2...∞). However, given an initial

deflection profile, y(x, 0), the modes present in that profile are manifested in the response. Simi-

larly, the response of a beam to harmonic forcing f = f0 sin(ωf t), applied at location x, takes the

form

y(x, t) =

∞
∑

q=1

[Dq(ωq, ωf)f0 sin(ωf t)]Wq(x) = sin(ωf t)

∞
∑

q=1

D̄q(ωq, ωf , f0)Wq(x). (4.5)
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The expression
∞
∑

q=1

D̄q(ωq, ωf , f0)Wq(x) is the Operational Deflection Shape (ODS). The ODS is

a constant shape that is maintained at any time when the operational forcing frequency remains

unchanged. Furthermore, it is a linear combination of mode shapes Wq(x) and predominantly

contains those modes that lie in close proximity to the forcing frequency. Vibration response of a

beam carries two types of signatures, namely: (i) the natural frequencies ωq in time domain, and (ii)

the mode shapes Wq(x) in the spatial domain. A change in a beam’s characteristics, for instance

due to damage or deterioration, causes these signatures to change. Vibration-based monitoring

of structures rely on detecting and quantifying these changes. The next section illustrates how

structural changes or faults are manifested in natural frequencies of vibration and ODS.

Identifying Structural Change Using Vibrational Signatures

A finite-element (FEM) simulation of a simply supported beam illustrates changes in vibrational

characteristics. The structural parameters for the beam are assumed to be: EI = 1, ρA = 1,

L = 5 in consistent units. The beam is modeled using 100 elements and simulated with boundary

conditions of y(0, t) = y(L, t) = y′′(0, t) = y′′(L, t) = 0. A schematic is shown in Fig.4.1(a).
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Figure 4.1: (a) Uniform simply-supported beam, (b) Shift in natural frequencies due to damage
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To demonstrate the change in characteristics, the value of EI was reduced from 1 to 0.1 in elements

25 − 30, to simulate a damage. Shifts in natural frequencies were extracted from free vibration

response of the point x = 0.75L using Fast Fourier Transform (FFT), and are shown in Fig.4.1(b).

Frequency shifts can be initial indicators of a developing change or damage in a beam. However,

they are not a direct indicator of the location of the damage. The question of localizing a damage

can be addressed by the Operational Deflection Shapes (ODS). To demonstrate this, the response

of the simply-supported beam under a harmonic forcing of f = sin(0.5t) applied at a = L/5, as

shown in Fig.4.2(a), was simulated. Faults were introduced at different segments along the span of

the beam. The resulting ODS, shown in Fig.4.2(b), were generated for each damage scenario. The

figure shows that the distortion in the ODS can be used to determine the location of a damage.
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a

x

y f = f0 sin(ωf t)

Figure 4.2: (a) Uniform simply-supported beam under harmonic forcing, (b) ODS of beam show-

ing distortions

Compressive Sensing

Compressive Sensing (CS) deals with frequency recovery and reconstruction of an under-sampled

signal from random, linear and non-adaptive measurements when the signal is sparsely represented

in a proper basis, [66]. The CS problem refers to finding a sparse solution ŝ ∈ Rn, with sparsity k
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(i.e. with ≤ k nonzero entries), of the equation

Φs = z, (4.6)

given a vector of measurements z ∈ Rm and a measurement matrix Φ ∈ Rm×n with m < n. The

sparsest solution of the aforementioned under-determined set of equations is obtained from the l0

minimization of s, which is NP-Hard to compute, [66]. An alternative that is less computationally

intensive is the ℓ1 minimization of s, which is given as

ŝ = argmin‖s‖ℓ1 : subject to Φs = z, (4.7)

where ‖s‖ℓ1 =
∑n

i=1 |si|. The equivalence of the ℓ1 solution to ℓ0 is guaranteed under an additional

condition on Φ, namely the Restricted Isometry Property (RIP) [71], which will be discussed in

the sections to come. The ℓ1 minimization is a convex optimization problem [72], and therefore

easier to solve computationally. When the number of measurements m is of the order [73],

m ≃ O (k ln(n/k)) , (4.8)

a carefully designed Φ satisfies RIP of order 2k, thus allowing for the sparse solution to be obtained

with overwhelming probability. In Eq.(4.8), k is the number of non-zero entries in s and hence

represents its sparsity. While this result was originally derived for random matrices mostly, CS

maybe extended to recovery of signals that have other types of expansions as well [73]. In the

application to beam vibration, Φ is determined based on the beam response equation in temporal

and spatial domains.

An example of frequency recovery using compressive sampling, from a given signal in time do-

main, is discussed next.
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An Example of Compressive Sensing

Consider a signal y(t) that can be expressed as y(t) =
∑n

i=1 ai sin(ωit). Further, assume that

the vector s = [a1 a2 · · ·an]
T is k-sparse, i.e. only k(< n) entries of s are non-zero. Let the

corresponding frequency range for y be denoted by Ωn ∈ [ω1, ωn]. The CS problem, Eq.(4.6), can

be posed as: find the k-sparse solution ŝ from m measurements of y, i.e. from zj = y(tj), where

j = 1, 2, · · ·m. The vector z = [z1 z2 · · · zm]
T consists of measurements made at random instants,

and Φ ∈ Rm×n is constructed as Φj,i = sin(ωitj). A lower bound on m is obtained from Eq.(4.8).

Thus, Eq.(4.6) takes the form

z = Φs ⇒



















z1

z2
...

zm



















=



















sin(ω1t1) sin(ω2t1) · · · sin(ωnt1)

sin(ω1t2) sin(ω2t2) · · · sin(ωnt2)

...
... · · ·

...

sin(ω1tm) sin(ω2tm) · · · sin(ωntm)





































a1

a2
...

an



















.

For this example, the following signal is considered, y(t) = sin(πt) − 0.5 sin(4πt). In posing the

CS problem, the frequency range considered is Ωn ∈ [0, 2.5]Hz, k = 2, the frequency resolution

chosen is ∆f = 0.1Hz, implying n = 26. Using the lower bound obtained from Eq.(4.8), we

choose m = 7. In Φ shown above, ωi = (2πfi)rads−1, where fi = [0, 0.1, 0.2 ... 2.4, 2.5]Hz.

Figure 4.3 illustrates two trials of frequency recovery using random sampling. The first trial is

shown in Figs.4.3(a) and (b), while the second one is depicted in Figs.4.3(c) and (d). In each trial,

the samples are arbitrarily chosen and the ℓ1 minimization is carried out using the ℓ1-magic code

available as open source from statweb.stanford.edu. It can be observed that the desired frequencies

are recovered at exact amplitudes in both the trials, irrespective of sample distribution.
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Figure 4.3: Frequency recovery using Compressive Sampling from 2 Sets of Random Samples

As mentioned above, the design of Φ is important for CS to be effective. To this end, Φ must

satisfy a Restricted Isometry Property, explained in the next section.

Restricted Isometry Property (RIP)

The reconstruction of an under-sampled signal (without loss of important information) requires

the design of a suitable measurement matrix Φ and that the signal be represented in a proper basis

where it is k-sparse. For a high probability of reconstruction, Φ needs to satisfy the Restricted

Isometry Property (RIP). In addition, as stated earlier, satisfying RIP also guarantees that the ℓ1

minimization solution coincides with that ℓ0. A matrix Φ is said to satisfy RIP of order k if its

Restricted Isometric Constant δk satisfies 0 < δk < 1. The constant δk is defined as the smallest

value satisfying

(1− δk) ≤
‖Φv‖22
‖v‖22

≤ (1 + δk), (4.9)

for all vectors v with sparsity ≤ k, [66]. Satisfying the RIP implies that all the column sub-

matrices of Φ are well conditioned. These attributes lead to high probability of signal recovery by
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CS, [66, 71]. For a given k, δk for a matrix Φ ∈ Rm×n can be determined numerically by applying

the condition

(1− δk) ≤ λmin(Φ
′

TΦT ) ≤ λmax(Φ
′

TΦT ) ≤ (1 + δk) (4.10)

for all sub-matrices ΦT ∈ Rm×p that can be formed from any p columns of Φ, with 1 ≤ p ≤ k.

In practice, however, δk ≥ 1 is not forbidden; it would simply mean that the stability of recovery

under noise and the closeness of the ℓ1 solution to ℓ0 solution may not be well guaranteed, [74].

In order to quantify RIP better, consider the example of Section 4. Since k = 2 in this example,

we need to determine δ2. For the given m × n (7 × 26) Φ matrix, we determined δ2 = 0.95.

Thus δ2 < 1, and frequency recovery was reliable with high probability. Increasing the number of

measurements m to 20 yielded δ2 = 0.63, which is expected. A third scenario, with n = 16 and

m = 7, yielded δ2 = 0.84.

Sparsity in Beam Vibration: The Rationale for Adopting Compressive Sensing

Consider the problem of recovering the natural frequencies and ODS from vibration data of beams.

This is of significance for detecting and locating structural damages. Traditionally, the vibration

characteristics can be reconstructed from data using the Nyquist-Shannon Sampling Theorem, [12].

According to this theorem, for good reconstruction of any given signal, the sampling frequency

(fs) has to be at least twice the highest frequency (fb) contained in the signal, i.e., fs ≥ 2fb. In

practice, usually a much higher sampling rate is chosen, i.e. fs >> 2fb. Traditional reconstruction

algorithms such as the FFT relies on this sampling paradigm and results in high data volume

when high frequencies are involved and high frequency-resolution are needed. On the other hand,

Compressive Sensing can allow signal reconstruction with significantly lower amount of data. It

relies on sparsity of the signal in appropriate domain(s), a feature that is inherent in vibration of

continuous systems.
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Temporal Sparsity

Free vibration of any location on a beam is sparse in the frequency domain, since it only contains

natural frequency harmonics. This is evident from Eq.(4.4). To illustrate sparsity, consider a beam

vibrating with a combination of the first two natural frequencies ωα and ωγ . Their values are

considered unknown but are known to lie in a range Ωr = [0, ωr]. Consider the task of recovering

these frequencies from vibration data zi = y(x̄, ti) collected at a location x̄ on the beam using a

series solution, i.e.

zi =

n
∑

j=1

[aj cos(ωjt) + bj sin(ωjt)] , ωj = ωr(j − 1)/(n− 1). (4.11)

Conventionally, to determine aj , bj , j = 1, 2, · · · , n, we need 2n equations and hence 2n data

points, implying z = [z1 z2 · · · z2n]
T

. Assuming that at indices j = p and j = p′, ωp = ωα and

ωp′ = ωγ , we expect aj = bj = 0 ∀ j 6= p, p′. Thus, the vector s = [a0 a1 · · · an b0 b1 · · · bn]
T

has a sparsity of k = 4. Fundamentally, this sparsity implies that data lesser than 2n should be

sufficient to determine the constants ap, bp, ap′, bp′ . Compressive sensing capitalizes on this general

idea of sparsity. By knowing that a signal is k-sparse, compressive sensing uses randomized and

undersampled data, coupled with an ℓ1 minimization algorithm, to find the sparse solution. This

will be discussed in greater detail in Section 4.

Spatial Sparsity

As discussed in Section 4, ODS can be used to locate a damage/change in a beam. This requires

spatial vibration data. ODS of beams also show sparsity, but in spatial-frequency domain. To

explain this, note that the ODS
∞
∑

q=1

D̄q(ωq, ωf , f0)Wq(x), identified in Eq.(4.5), is a function of the

mode shapes Wq(x) only. The modes shapes in turn are functions of the spatial parameter βq that
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are uniquely related to the natural frequencies ωq. For instance, for uniform beams under lateral

vibration ωq = β2
q

√

EI/ρA, and a general expression of a mode-shape is Wq = Cq sin(βqx) +

Fq cos(βqx)+Gq sinh(βqx)+Hq cosh(βqx), satisfying appropriate boundary conditions. The ODS

thus takes the form

yODS(x) =
∞
∑

q=1

D̄q(ωq, ωf , f0)Wq(x) =
∞
∑

q=1

C̄q sin(βqx)+F̄q cos(βqx)+Ḡq sinh(βqx)+H̄q cosh(βqx),

(4.12)

which has a similar structure as Eq.(4.4), except it is in spatial domain with spatial frequencies

βq. The ODS, Eq.(4.12), is sparse in spatial-frequency since βq = f(ωq) and sparsity exists in

the temporal frequency (i.e. ω) domain. This is the rationale for applying compressive sensing to

ODS reconstruction, which amounts to requiring fewer spatially distributed sensors. In addition

to the ODS, free vibration of beams also shows spatial sparsity. This can be shown from Eq.(4.4).

However, the deflection shape of free vibration varies with time. Thus, ODS is deemed a preferred

candidate for spatial reconstruction, and for comparison with baseline data to locate faults.

Quantitative Comparison of CS and Nyquist-Shannon Sampling Theorem

For a quantitative comparison between CS and the traditional sampling, we consider the recon-

struction of the following signal: y(t) = sin(0.3 2πt) + 0.5 sin(1.7 2πt). In posing the CS problem,

the frequency range considered is Ωr ∈ [0, 2.5]Hz, k = 2, and the frequency resolution chosen

is ∆f = 0.1Hz, implying n = 26. Using the lower bound obtained from Eq.(4.8), we choose

m = 10. In Φ shown above, ωi = (2πfi)rads−1, where fi = [0, 0.1, 0.2 ... 2.4, 2.5]Hz. Figure

4.4(a) illustrates the signal and the random samples. The ℓ1 minimization was carried out using

the ℓ1-magic code. Frequency recovery through ℓ1 minimization is shown in Fig.4.4(b). It can be

observed that correct frequencies and amplitudes are recovered from only 10 samples.
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Figure 4.4: (a) Signal and random samples, (b) Sparse solution from ℓ1 optimization, (c) FFT of

the signal with different number of samples, (d) Signal recovery with compressive sensing and

FFT

To compare with traditional sampling, the above signal was sampled at 5Hz, (so that Nyquist Fre-

quency, 2.5Hz, is greater than the highest signal frequency 1.7Hz, [71]). Three sets of data, i.e. 10,

20 and 50 samples, were used to carry-out DFT (using the FFT algorithm). The consequent signal

reconstruction in each of the three cases is achieved using those frequency components whose am-

plitudes are significantly above the noise level. The results are shown in Fig.4.4(c) and (d). While

the ℓ1 minimization gave accurate reconstruction with 10 samples, the reconstruction had signifi-

cant errors when traditional sampling technique was used, even with 20 samples. The accuracy of

ℓ1-based reconstruction with 10 samples is at the same level as that of the reconstruction from FFT

components with 50 samples. The main differences between CS and FFT based (i.e. traditional

sampling) approaches are briefly explained in the following subsection.
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Differences Between CS and Traditional Sampling Approaches

1. Uniform vs. Random Sampling:

The random sampling in CS effectively allows the data to be richer in information with fewer

samples compared to regular sampling in FFT. In FFT this richness is achieved by increasing

frequency and duration of sampling.

2. Exact vs. Probabilistic Solution:

The FFT solution is exact in the sense that the quantity of data and the number of unknowns match.

In contrast, ℓ1 optimization fundamentally relies on sparsity and solves an under-determined sys-

tem iteratively. This, combined with randomness of data, can assure recovery with a certain prob-

ability, albeit a very high one if RIP is satisfied by Φ.

3. Volume of Data:

FFT fundamentally relies on high sampling rate for recovering a wide frequency-band and relies

on high sampling duration for obtaining adequate resolution between neighboring frequencies.

Both individually increase the data requirement proportionally. In CS, the data requirement is

considerably more moderate, since it increases only with sparsity and in a logarithmic manner

with the number of frequency components in Φ, Eq.(4.8).

4. Signal Sparsity:

The ℓ1 optimization relies on sparsity, and hence for sparse signals CS out-performs FFT. If signal

sparsity is weak, the two methods may show comparable performance.
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CHAPTER 5: RESULTS AND DISCUSSION

In chapter 4, free and forced vibration responses of a beam were discussed. Changes in natu-

ral frequencies and distortions in ODS were noted for changes in structural characteristics and the

sparsity of spatio-temporal vibration was discussed also. With that background, this chapter delves

into the formulation of a novel CS-based vibration monitoring system, wherein the fundamentals

characteristics of mechanical beam vibrations are employed to formulate the CS problem. Further-

more, it attempts to address some of the challenges that emerge from exploring the compatibility

between CS and vibration based monitoring.

As a first step, temporal (natural) frequency recovery to detect changes in structural characteris-

tics of standard mechanical beams is demonstrated. Preliminary experimental validation of these

FEM-based simulation results are also presented. Next, the more complicated problem of localiz-

ing structural changes is examined. Spatial frequency recovery, the consequent ODS reconstruc-

tion and related challenges in the spatial domain are explored in detail. Furthermore, the effects of

noise formulation and incorporating boundary conditions while formulating the CS-based vibra-

tion problem is also discussed [75], [76].

Frequency Recovery from Beam Vibration

Drawing background from Chapter 4, this section presents the formulation of the CS-based vi-

bration problem for detecting structural changes in mechanical beams. Initial investigations are

FEM based simulation results, that explore the recovery of distinct (natural) frequencies before

(baseline) and after introducing changes by employing CS to demonstrate the feasibility of using

reduced and random samples for detecting structural changes. The following sections develop this

method for simply supported and cantilever beams.

23



Detecting Natural Frequencies of a Simply Supported Beam using CS

A simply supported (SS) beam has both its ends pinned and is constrained to have no displacement

or bending moment on either ends, as shown in Fig.5.1(a). We show the application of CS in de-

tecting changes in its natural frequencies from free vibration data. A beam of length L is modeled

with Nel finite elements, rigidity modulus EI , and mass density ρAr. The free vibration response

is simulated by providing an initial deflection profile y(x, 0). With the theoretical knowledge of

baseline characteristics, the parameters for compressive sampling problem are set up following

Section 4. The beam response thus obtained is compressively sampled to obtain baseline and mod-

ified natural frequencies ωq, q = 1, 2, · · · , and the shift in these frequencies allow detection of

change in characteristics. From Eq.(4.4), considering that the qth mode shape of an SS beam is

Wq(x) = sin qπx
L

, and referring to Fig.5.1(a), the free vibration response at a specified distance x̄

is given by

y(x̄, t) =
∞
∑

q=1

(Aq cos(ωqt) +Bq sin(ωqt))Wq(x̄) =
∞
∑

q=1

(Aq cos(ωqt) +Bq sin(ωqt)) sin
qπx̄
L

=
∞
∑

q=1

(Āq(x̄) cos(ωqt) + B̄q(x̄) sin(ωqt)),

(5.1)

where Āq(x̄) = Aq sin
qπx̄
L

and B̄q(x̄) = Bq sin
qπx̄
L

. The measurement point, x̄, is chosen such

that it does not fall at the nodal point (zero displacement point) of the response. In a realistic

scenario, since multiple sensors will be spatially distributed, if a sensor location coincides with a

node, alternate sensors can be used for CS based recovery. Consider the goal of recovering the

natural frequencies ωq using CS, within a frequency range of Ωr ∈ [0, ωr]. Further, consider a

frequency recovery resolution ∆ω. The measurement vector z ∈ Rm is generated from m random

measurements zj = y(tj), j = 1, 2, · · ·m, and the matrix Φ is constructed using sine and cosine

basis functions, Eq.(5.1). Since each frequency is represented by two basis functions, we expect

even-sparsity in the solution of s = [A1 A2 · · · An B1 B2 · · · Bn]
T

, n = (ωr/∆ω) + 1, obtained
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from the ℓ1 minimum solution of Eq.(4.6). In this case, Eq.(4.6) takes the form

z = Φs ⇒


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









s

where s = [A1 A2 · · · An B1 B2 · · · Bn]
T .

(5.2)

In Eq.(5.2), ωi, with i = 1, 2, · · · , n, represent the spanning frequencies of the range Ωr, i.e.

ωi = ∆ω(i− 1), ω0 = 0 and ωn = ωr.

To demonstrate CS, an SS beam is considered with the following specifications: L = 1, ρAr = 1,

EI = 1. The natural frequencies ωq are [π2, 4π2, 9π2 · · · ] in rad/s, and the corresponding mode-

shapes are [sin(πx), sin(2πx), sin(3πx), · · · ], [7]. Free vibration is simulated using a discrete

model consisting of Nel = 500 beam elements. It is given an initial deflection profile of y(x, 0) =

0.6 sin(πx/L)+0.4 sin(2πx/L), which is a combination of the first two mode-shapes. This causes

the first two natural frequencies to be manifested in the free vibration response. Typically, the

proposed method can be applied to a wide variety of initial conditions and the corresponding

modes will be manifested in the response. Change is introduced by reducing EI from 1 to 0.1 over

elements 200− 250. The time domain response of the beam, before and after change, is measured

at x̄ = 3L/4. The ℓ1 minimization problem of Eq.(5.2) is setup with ωr = 7Hz = 14πrad/s and

∆ω = 0.01Hz = 0.02πrad/s. This yields n = 701 and we choose m = 15 random measurements.

This is comparable to m = 20 suggested by Eq.(4.8), which is based on a sparsity of four for the

first two natural frequencies. Note that the frequency range Ω ∈ [0, 7] is chosen to cover the first
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two natural frequencies ωq = π/2Hz, 2πHz. The solutions of the two ℓ1 minimization problems,

namely before and after making changes in EI , are shown in Fig.5.1. A schematic of the beam

is shown in Fig.5.1(a). Frequency recovery from data collected at x̄ = 3L/4 = 0.75 is shown in

Fig.5.1(b).
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Figure 5.1: (a) Schematic: Simply supported beam (b) Shift in natural frequencies: Recovery by

CS from 15 random samples for each scenario

The original natural frequencies ωq = π/2Hz, 2πHz are correctly predicted by the ℓ1 minimum

solution. The amplitudes plotted are
√

A2
i +B2

i , since each frequency ωi has a combined basis
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function [Ai sin(ωit) +Bi cos(ωit)], as evident from Eqs.(5.1) and (5.2). Figure 5.1(b) also shows

the shift in frequencies due to the change in EI . They were also determined by solving the same

ℓ1 minimization problem. The reduction in frequencies is expected since change was introduced

in the form of reduction in EI (stiffness/rigidity).

To study the effectiveness of ℓ1 minimization, we plot the accuracy of recovery as a function of the

number of measurements m. The plot is shown in Fig.5.2. The contour k = 2 represents quality of

recovery when only the 1st natural frequency π
2
Hz was present in the free vibration. The contour

k = 4 represents recovery when the 2nd natural frequency 2πHz was superimposed with the 1st.

The contours k = 8 and 16 similarly show the quality of recovery when the first 4 and first 8 natural

frequencies respectively are present.
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Figure 5.2: Error analysis of ℓ1 minimization as a function of measurements m for different signal

sparsity

Nominally n ≈ 6000 and ∆f = 0.01Hz was chosen, thus the frequency range of recovery was

60Hz. This range contains the first six natural frequencies (recall that the nth natural frequency is
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(n2π/2)Hz). For k = 16, the natural frequency ωq = 32π > 60Hz, and hence ∆f was increased to

0.036Hz. For comparison n was increased to n ≈ 22000, to restore ∆f = 0.01Hz. This improved

the quality of recovery, as is evident in Fig.5.2. Also, the number of measurements required to

achieve higher accuracy of reconstruction increases with an increase in the number of frequencies

to be recovered from the response. This is in accordance with Eq.(4.8). Because the number of

measurements m, is affected by the natural logarithm of the original length of the signal n, for

a given value of sparsity k, m remains a modest value for increasing n. In addition, it may be

observed from Fig.5.2 that the recovery error is reduced around this lower bound on m.

Detecting Natural Frequencies of a Cantilever Beam using CS

A cantilever beam has one fixed end and one free end. The fixed end is constrained to have no dis-

placement or slope during vibration. The free end experiences no bending moment or shear force.

Similar to Section 5, here we show the application of CS in recovering the natural frequencies from

vibration data collected from a single location. By detecting shifts in the frequencies, CS is used

to predict changes in structural characteristics, such as damage. In this section, the approach is

demonstrated using simulations. A cantilever beam is illustrated in Fig.5.3(a). Its qth mode-shape

is given by

Wq(x) = [sin(βqx)− sinh(βqx)]− αq [cos(βqx)− cosh(βqx)]

cos(βqL) · cosh(βqL) = −1, αq =
sin(βqL)+sinh(βqL)
cos(βqL)+cosh(βqL)

.
(5.3)

The solutions of βq, from the above equation, are: βqL = [1.875, 4.694, 7.855, · · · ], [7]. The free

vibration response at a distance x̄, as indicated in Fig.5.3(a), is given by

y(x̄, t) =
∞
∑

q=1

(Aq cos(ωqt) +Bq sin(ωqt))Wq(x̄) =
∞
∑

q=1

(Āq(x̄) cos(ωqt) + B̄q(x̄) sin(ωqt)), (5.4)
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where Āq(x̄) = AqWq(x̄) and B̄q(x̄) = BqWq(x̄), and the natural frequencies ωq satisfy ωq =

β2
q

√

EI/ρAr. The structure of Eq.(5.4) is similar to that in Eq.(5.1) and thus Eq.(5.2) is applicable

to setup the ℓ1 minimization problem for CS-based frequency recovery.
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Figure 5.3: (a) Schematic: Cantilever beam (b) Shift in natural frequencies: Recovery by CS from

15 random samples from each scenario

The specifications of the cantilever beam are identical to that of the simply-supported beam in

Section 5, i.e. L = 1, ρAr = 1, EI = 1. The natural frequencies ωq are [3.52, 22.03, 61.7, · · · ]
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in rad/s. Free vibration is simulated using a discrete model consisting of Nel = 500 beam elements.

It is given an initial deflection profile of y(x, 0) = 0.6W1(x)+ 0.4W2(x), i.e. a combination of the

first two mode-shapes. This causes the first two natural frequencies to be manifested in the free

vibration response.

Change is introduced by reducing EI from 1 to 0.1 over elements 200 − 250. The time do-

main response of the beam, before and after change, is measured at x̄ = 3L/4 and random

measurements are made. The ℓ1 minimization problem is setup with ωr = 4Hz = 8πrad/s and

∆ω = 0.01Hz = 0.02πrad/s. This yields n = 401 and we choose m = 15 random measurements.

This is comparable to m = 18 suggested by Eq.(4.8), which is based on k = 4 for recovering two

natural frequencies. Successful recovery of the vibrational frequencies using the CS methodology

can be seen in Fig.5.3(b). Reducing EI led to reduction of natural frequencies from ω1 = 0.56Hz

and ω2 = 3.51Hz to 0.44Hz and 2.45Hz respectively. This was first determined numerically using

the finite-element beam model. Subsequently, it was confirmed that the changes were reflected in

ℓ1 solution, as evident in Fig.5.3(b).

Preliminary Experimental Validation

The previous section laid the foundation for devising a CS-based vibration monitoring system,

specifically to detect changes in structural characteristics of mechanical beams. FEM-based sim-

ulation results were used to demonstrate the feasibility of using reduced and randomly placed

samples to identify when changes are introduced in simply supported and cantilever beams. This

section provides preliminary experimental validation for using reduced random sampling to detect

shift in natural frequencies of vibration of mechanical beams, thereby detecting their structural

changes. It also provides an insight into some practical difficulties in the practical implementation

of such a system. Specifically, the problem is formulated for a cantilever beam setup.
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Experimental Setup for Detecting Structural Change - Cantilever Beam

The experimental setup used for the experimental validation is explained in this section. It is shown

in Fig. 5.4(a), (b) and (c). The DAQ, amplifier and cantilever beam used in the setup are a part of

an educational control systems module from QUANSER, which is used to study control concepts

related to vibration analysis. For this experiment, the setup solely serves to acquire free vibration

impulse response of the cantilever beam.

(a)

(b)

(c)

(d)Cantilever beam

DAQ

Strain gauge

Amplifier
Impulse

Added mass

Figure 5.4: (a) Experimental setup with all components (b) Strain gauge on beam (c) Point of

application of impulse and added mass on beam (d) Acquired data from cantilever setup when no

mass is added

The cantilever beam used is of mass m = 0.065kg, length L = 0.419m, width b = 0.02m and

stiffness Kstiff = 1.66kgm2(rad/s)2. As indicated in Fig.5.4(b), the beam consists of a strain

gauge mounted at one end to measure the deflection when an impulse is experienced near the base
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(see Fig.5.4(c)). The strain gauge used has a measurement range of −5V to +5V. Fig.5.4(c) also

shows an added mass that is used to introduce change in the beam characteristics. The details these

changes will be discussed in the sections to come.

Detecting Structural Change in the Cantilever Beam Setup

This section examines the process of detecting structural change by obtaining the natural frequen-

cies of vibration of the cantilever beam that deviate from its baseline characteristics. Therefore,

as a first step, the baseline characteristics of the beam were established. The cantilever beam was

subjected to free vibration as a result of an impact near its base as indicated in Fig. 5.4(c). The free

vibration response of the unmodified cantilever beam at a sampling frequency of 1000Hz is pre-

sented in Fig.5.4(d). Theoretically, this response will consist of all the natural frequencies (modes)

of vibration. In practice, the lower modes are predominantly present in the free vibration response.

This pattern of energy concentration in the lower modes (1st and 2nd) was observed in the exper-

imental results. These frequency components from the free response were recovered using Fast

Fourier Transform that uses traditional sampling approach. The baseline recovery problem was

setup as follows:

• Duration of data capture 0− 37.5s

• Sampling frequency 1kHz

• Number of data points 37500 at regular intervals

The resulting first and second natural frequencies were 3.387Hz and 21.25Hz respectively (The

first natural frequency was also verified against the value specified in the data sheet of the can-

tilever beam setup from the vendor). Thus, the original natural frequencies of vibration, i.e. of the

unmodified beam were identified. Once these were established as a known (baseline) quantity, the

beam characteristics were deliberately changed to investigate a shift in these natural frequencies.
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This change was incorporated by adding mass sets at two locations of the beam, each considered

as an independent configuration as shown in Fig.5.4(c): (i) Tip of the beam (ii) Mid length of the

beam.

In each configuration, 6 cases were investigated, each with a different value of added mass. As

in the case of obtaining baseline natural frequencies, after the mass is added, the beam was again

subjected to impulse force near its base and the free vibration response of the modified beam was

extracted. The frequency components from these responses were extracted using both the tradi-

tional sampling as well as CS methods. Addition of masses introduced shift in natural frequencies

of vibration, an effect similar to that produced when damage develops in a structure. Therefore,

adding different values of masses may be analogous to varying levels of damage. The values of

added mass, modified frequencies and percentage reduction for tip mass and mass at mid-length

are listed in Table 5.1 and Table 5.2 respectively.

Table 5.1: Recovered natural frequencies of the cantilever beam with tip mass

Added mass % m increase ω1 % ω1 drop ω2 % ω2 drop

No mass added (Case 1) - 3.387Hz - 21.25Hz -

2.4g (Case 2) 3.7 3.17Hz 6.3 20.67Hz 2.7

4.9g (Case 3) 7.5 2.99Hz 11.7 20.29Hz 4.5

6g (Case 4) 9.2 2.91Hz 14.2 20.16Hz 5.1

9.8g (Case 5) 15.1 2.72Hz 19.7 19.73Hz 7.1

15.2g (Case 6) 23.4 2.48Hz 26.8 19.25Hz 9.4

30.4g (Case 7) 46.8 2.053Hz 39.4 18.64Hz 12.3

33



Table 5.2: Recovered natural frequencies of the cantilever beam with mass at mid length

Added mass % m increase ω1 % ω1 drop ω2 % ω2 drop

No mass added (Case 1) - 3.387Hz - 21.25Hz -

2.4g (Case 2) 3.7 3.36Hz 0.8 20.29Hz 4.5

4.9g (Case 3) 7.5 3.33Hz 1.7 19.52Hz 8.1

6g (Case 4) 9.2 3.32Hz 1.98 19.31Hz 9.1

9.8g (Case 5) 15.1 3.307Hz 2.4 18.24Hz 14.2

15.2g (Case 6) 23.4 3.2Hz 5.5 17.23Hz 18.9

30.4g (Case 7) 46.8 3.12Hz 7.9 15.09Hz 28.99

In accordance with theory that increase in mass reduces the natural frequency of vibration, in each

scenario, a left-shift was observed in the recovered frequencies (see Fig.5.5 (a),(b)). The specifi-

cations of the problem setup for FFT-based frequency recovery is the same as that for obtaining

baseline characteristics. From the experimental data, it was observed that although addition of

masses did result in a reduction in the natural frequencies, the effect was not uniformly pronounced

in every mode. For instance, as listed in Table 5.2, it may be observed that when mass sets were

added at mid length of the beam, the reduction in second natural frequency was more evident than

the first. Therefore, only the shift in ω2 is shown for this case. When the mass sets were added

near the tip of the beam however, the shift in the first natural frequency was quite evident.
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Figure 5.5: Frequency recovery from experimental data of cantilever beam using FFT (a) Tip mass

(ω1 & ω2) (b) Mass at mid length (ω2)

Fig.5.6 illustrates compressive sensing based frequency recovery from the same free vibration

responses for all the cases listed in Table 5.1 and Table 5.2. The specifications of the CS problem

setup were as follows:

• Duration of data capture 0− 37.5s

• Frequency range in Hz, N = 0 : 0.01 : 30

• Number of data points 200 (randomly spaced in time)
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When mass sets were added at mid length of the beam, recovery of the second natural frequencies

were harder with just 200 data points. In order to ensure recovery of the second natural frequency,

the number of random samples was increased to 400. With that said, we could possibly argue

that higher modes may also be recovered with higher number of samples, which may however

still remain a modest value as compared to the traditional method. However, since change in

beam characteristics are indeed expected to reflect changes in all the modes, it allows for the
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examination of just the lower modes. Tables 5.4 and 5.3 show the comparison between natural

frequencies recovered using FFT and CS approaches. It can be observed that the frequencies

recovered using both approaches coincide, thus indicating that CS-based frequency recovery may

also enable damage detection from reduced number of samples.

Table 5.3: Shift in 1st natural frequency (tip mass) - FFT vs CS

FFT (37500 samples) CS(200 samples) % difference

21.25 Hz 21.33 Hz 0.38

20.29 Hz 20.32 Hz 0.15

19.57 Hz 19.50 0.36

19.31 19.27 0.21

18.27 18.24 0.16

17.23 17.26 0.17

15.09 15.11 0.13

Table 5.4: Shift in 2nd natural frequency (mass at mid-length) - FFT vs CS

FFT (37500 samples) CS(200 samples) % difference

3.39 Hz 3.36 Hz 0.88

3.17 Hz 3.16 Hz 0.32

2.99 Hz 2.97 0.67

2.91 2.86 1.72

2.72 2.67 1.84

2.48 2.51 1.21

2.05 2.03 0.98
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The experimental data contained noise. However, it may be observed from the results that the

signal to noise ratio (SNR) was sufficient to recover the first and second natural frequencies from

reduced number of samples using CS without necessarily having to introduce noise formulation.

Furthermore, these frequency values matched those listed in Table 5.1 and Table 5.2. Hence, it

may be seen that CS promises to be a good candidate for reducing sensing and data requirement

in vibration based monitoring of mechanical structures. As mentioned earlier, this section also

attempts to look at some challenges that will emerge during the implementation of a CS-based

vibration monitoring system. Non-uniform distribution of effects in mode shifts (or natural fre-

quency shifts) is one such indispensable challenge. One way to overcome this would be using

greater number of samples (but, with m << n) for frequency extraction. In addition, during real-

ization of such a system in practice, the effects of noise may not be very subtle as observed during

the experiment. In such situations, the effects of introducing such a noise formulation for CS may

prove beneficial and it will be discussed in detail in next section.

Effects of Noise Formulation

Presence of noise in measurement data is inevitable. In order to evaluate the practical feasibility

of CS-based vibration monitoring, it is therefore, imperative to gain knowledge of its performance

while handling realistic data, i.e. noisy signal. It is common practice to design filters based on

the expected noise features of a given type of signal. This approach of incorporating noise fil-

tering might be straightforward in those applications that involve continuous streaming of data or

continuous measurements. On the other hand, it becomes more complicated when the signal is

measured at random time instants or at random spatial points. CS-based vibration monitoring is a

case in point. Literature on compressive sensing presents an approach to handling noisy signals,

by redefining the l1 minimization problem to account for noise [74], [77], [78]. In this section,

noise formulation is incorporated into the CS-based vibration problem in order to study how it
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alters the performance of CS in detecting frequency shift from the free vibration response of me-

chanical beams. Specifically, this section aims to quantitatively measure the effect of using noise

formulation in CS-based frequency recovery by evaluating the average l2 error. Firstly, the problem

formulation is applied to simple sinusoidal signals with multiple frequencies and later extended to

free vibration response of a simply supported beam. This analysis is based on FEM simulations.

As the next step, experimental data from a cantilever beam obtained in the previous sections is

considered. Here, incorporating noise handling in CS helps to study its effect on the inherent noise

in the experimental data.

Identifying the Regularization Parameter

Traditional approach to filtering out noise requires that data is collected continuously (stream).

However, data acquisition in compressive sensing is random. In fact this ‘randomness’ is the

essence of compressive sensing. Hence, noise reduction is incorporated into the ℓ1 minimization

algorithm itself. To find the sparse solution from the noisy measurements, Eq. (4.7) is modified as

ŝ = argmin||s||1 s.t. ||z − Φs||2 < ǫ, (5.5)

where ǫ depends on the noise variance and can be learned through experimental data. Instead of a

quadratically constrained l1 minimization problem, it is common practice to reformulate Eq.(5.5)

into a LASSO problem (Eq.(5.6)) [74] and that equivalent is used for frequency recovery.

ŝ = argmin||Φs− z||22 + λ||s||1 (5.6)

where λ is the regularization parameter, also tuned depending on the noise level in the signal to be

recovered. An advantage of using Eq.(5.6) for noise handling in CS is that λ promotes sparsity by

imposing penalty on s. The rest of this section uses Eq.(5.6) while considering noise formulation.
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The value of regularization parameter may vary depending on the type of signal and more impor-

tantly, the signal to noise ratio (SNR) [79]. The first step is, therefore, to identify an approximate

value of λ that is most suitable for the type of signals that are dealt with in this application. Figure

5.7 illustrates the variation of average l2 error of reconstruction for varying values of regularization

constant, λ.
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Figure 5.7: Choosing a suitable regularization constant: Variation of average l2 error of reconstruc-

tion over varying values of regularization constant λ

In order to determine an optimal λ, a sinusoidal signal with two frequencies, f1 = 2Hz and f2 =

5Hz was corrupted with a noise signal whose coefficients were derived from a Gaussian distribution

with mean, M1 = 0 and variance, σ2 = 0.1. Frequency components were then recovered using

CS with noise formulation as expressed in Eq.(5.6), with the regularization constant taking a range

of values from λ = 0, 0.1, 0.2, ...5. For each value of λ, the signal was compressively sampled

100 times. From the recovered frequencies at every attempt, the sinusoid was reconstructed and
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the average l2 error was calculated between the original and reconstructed signals. The quality of

reconstruction is dependent on the accuracy of frequency recovery. Hence, a lower reconstruction

error implies higher accuracy of frequency recovery. Following the assumption in Fig.(5.2), the

acceptable maximum recovery error could be at 20%. Scanning the range of λ values for which the

recovery error was below 20%, the optimum value was chosen at λ = 0.7 for CS-based recovery

and reconstruction of vibration signals. The rest of this section will discuss how the frequency

recovery is affected by varying levels of noise and varying number of measurements with and

without noise formulation.

Analyzing Noise Formulation in Sinusoids

In [80], the authors study the effect of noise, sampling rate and signal sparsity in order to evaluate

the performance of CS-based pulse compression. Based on their approach, the following tests were

developed in order to analyze the performance of CS-based frequency recovery from a sinusoidal

signal with multiple frequencies. The CS problem was set up as listed in Table 5.5.

Table 5.5: Problem setup for evaluating CS performance with noise formulation - Sinusoids with

multiple frequencies

Parameters K = 2 K = 4 K = 6

No. of Frequencies 2 4 6

Frequencies (Hz) 2, 5 2, 5, 3.5, 2.5 2, 5, 3.5, 2.5, 4, 4.5

Frequency range (Hz) 0:0.01:10 0:0.01:10 0:0.01:10

Mean (M1) 0 0 0

Variance (σ2) 0:0.01:0.5 0:0.01:0.5 0:0.01:0.5

No. of samples (m) 15 30 40
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Accuracy of CS-based frequency recovery was evaluated as a measure of reconstruction error.

Higher the fidelity of reconstruction, greater is the accuracy of recovered frequencies that were in

fact used in the reconstruction. For each case of sparsity K, the signal reconstruction error and

hence the probability of reconstruction was averaged over 100 attempts. This was done to ensure

that the values obtained maybe close to accurate. Figure 5.8 illustrates the variation of average l2

error of reconstructed sinusoids for increasing noise variance levels.
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The value of regularization parameter used during the frequency recovery was λ = 0.7. Recall

that λ in fact depends on the SNR. In order to obtain a more accurate error value, for each noise

level, λ could be tuned. However, in order to study the influence of noise formulation in the

CS performance and recovery error, it is not an uncommon practice to use a fixed value of λ

over a range of noise level [81]. Each plot in Fig. 5.8 corresponds to a different sparsity level.

Because there are only sine components for each frequency, as listed in Table 5.5, K = 2, 4 and

6 imply two, four and six frequencies to recover in each case respectively. Furthermore, each
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plot indicates, for a given noise variance, the average error of reconstruction from frequencies

recovered by CS with and without noise formulation. At zero noise variance, the average error

of reconstruction is the least. In addition, it can also be observed that the average l2 error values

at zero noise is almost equal whether or not noise formulation was incorporated in the CS-based

recovery and reconstruction. As the noise variance increases, there is a gradual increase in the

error value. However, in the presence of noise formulation, the rate of increase in error is modest

as compared to its rate when noise formulation was not used. Consider Fig.5.8 (a) as an example

for the following discussion. In the presence of noise formulation, the l2 error corresponding to

the highest noise variance of 0.5 is 0.811. This implies a recovery error of about 81%. Although

this error value is significantly lower than that in the absence of noise formulation, recovering only

20% of the signal effectively provides no valuable information about it. From a realistic viewpoint,

a more useful analysis may be drawn by studying the CS based frequency recovery over a lower

range of noise levels, say upto 0.1. Figure 5.9 (a), (b) and (c) illustrate performance of CS-based

frequency recovery over a lower range of noise variance (0 - 0.1) using the variation of average l2

error.

Table 5.6: Average l2 error of reconstruction with and without noise formulation (NF) - Sinusoids

with multiple frequencies

Noise K = 2 K = 4 K = 6

(σ) No NF With NF % drop No NF With NF % drop No NF With NF % drop

0.02 0.502 0.219 56.37 0.458 0.333 27.95 0.654 0.571 12.69

0.04 0.846 0.303 64.18 0.766 0.363 52.61 0.863 0.576 33.26

0.06 0.912 0.365 96 0.825 0.416 49.58 0.941 0.601 56.57

0.08 1.152 0.428 62.85 0.917 0.418 54.42 0.963 0.584 39.36

0.1 1.488 0.451 69.69 1.008 0.428 57.54 1.045 0.592 43.35
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Table 5.6 lists the l2 error values for specific noise variance levels with and without noise formu-

lation. For higher levels of noise, when noise formulation is not incorporated in the CS recovery

algorithm, it can be observed that the average l2 error is greater than unity (see Table 5.6), implying

that the CS reconstruction may have failed at these high noise levels.
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Figure 5.10: Reconstruction of dual frequency sinusoid for different values of average l2 error
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In order to gain understanding of how the reconstruction looks for different values of error, Fig.

5.10 illustrates the CS-based reconstruction of the sinusoid (K = 2) for different levels of recon-

struction error. On the other hand, with noise formulation, the highest average l2 error for k = 2, 4,

and 6 are 0.811, 0.644 and 0.750 respectively. Figure 5.11 illustrates the variation of probability

of success of reconstruction of the sinusoid signal for increasing noise variance. Essentially, it is

an alternative representation of Fig.5.9. This probability reflects a qualitative representation of the

accuracy of CS-based frequency recovery.
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As observed from Fig.5.11, for each case of sparsity K, the reconstructed signal has highest fidelity

in the absence of any noise. As the signal to noise ratio decreases, for a given number of samples,

it becomes increasingly difficult to faithfully reconstruct the signal. This is a direct indication of

poor frequency recovery. Additionally, the probability of success of signal reconstruction tends to

degrade at a lower rate in the presence of noise formulation in the CS problem. It may therefore be

understood that incorporating noise formulation improves the recovery and reconstruction of the

signal.

Analyzing Noise Formulation in Simply Supported Beam

This is a preliminary examination of the effect of formulating noise handling in the CS-based re-

covery of natural frequencies from beam vibrations. In this respect, the results of this study are

important because higher accuracy in frequency recovery implies more accurate detectability of

shift in natural frequencies. In turn, it improves the ability to detect small structural changes. In

the previous section, performance of CS-based frequency recovery was studied for sinusoidal sig-

nals with multiple frequencies. This was accomplished by evaluating the variation of average l2

error and probability of success of reconstruction for increasing noise variance. It served as a pre-

liminary step in understanding the effect of incorporating noise formulation in CS-based frequency

recovery. The analysis of results thus obtained, offered a convincing claim that for any given spar-

sity and suitable number of samples, the frequency recovery and subsequent signal reconstruction

improved considerably in the presence of noise formulation in the CS algorithm. In this section,

the performance of CS-based recovery is evaluated for the time domain free vibration response of

a simply supported beam with three different initial conditions.

The details of the CS problem are listed in Table 5.7. As explained in chapter 4, the response of

the beam in each case, is expected to predominantly contain only those modes that are present
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in the corresponding initial condition. From Eq.(4.4), each modal frequency contains both the

sine and cosine components in the beam response. It follows that the measurement matrix is

also a combination of these individual components. Each modal frequency, therefore contains

representation in both sine and cosine domains, which in turn implies that for one mode, there are

two non-zero coefficients to recover. Therefore, the sparsity values are K = 4, 8, 12 for recovering

2, 4, and 6 frequencies respectively.

Table 5.7: Problem setup for evaluating CS performance with noise formulation - Simply Sup-

ported Beam

Parameters K = 4 K = 8 K = 12

No. of Frequencies 2 4 6

Frequencies (Hz) 1.5, 6.28 1.5, 6.28, 14.13, 25.13 1.5, 6.28, 14.13, 25.13, 39.27, 56.55

Frequency range (Hz) 0:0.01:10 0:0.01:30 0:0.01:60

Mean (M1) 0 0 0

Variance (σ2) 0:0.01:0.5 0:0.01:0.5 0:0.01:0.5

No. of samples (m) 30 50 80

Figure 5.12 illustrates variation of average l2 error of reconstruction of the free vibration response

of the SS beam for increasing noise variance in the signal. In turn, it indicates the effect of noise

formulation in CS-based recovery of natural frequencies. Figure 5.13, presents the l2 error varia-

tion over a lower range of noise variance. It can be observed that the plot follows a trend similar

to that of Fig. 5.8. Again, in order to minimize inconsistencies, for each case of sparsity K, the

signal reconstruction error and the probability of success of reconstruction were averaged over 100

attempts.
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Noise Variance Vs Average Error - SS Beam
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Figure 5.12: Effect of noise formulation in CS-based frequency recovery: Variation of average l2
error for increasing noise variance - SS Beam (a) K = 4 (b) K = 8 (c) K = 12

When the signal is not corrupted with any noise, the l2 error was the least (almost zero). Also,

due to this negligible noise level, there is no discernible difference in reconstruction error values

between using CS-based recovery with and without noise formulation. This behavior was already

observed in Fig. 5.8. Similarly, there is an increase in the reconstruction error with increasing

noise variance in the signal (i.e. decreasing SNR), the rate of which is significantly lowered by

incorporating the noise formulation in the CS problem. As explained in the previous section, error

values greater than unity indicate that the reconstructed signal is incomparable to the original.
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Figure 5.13: Effect of noise formulation in CS-based frequency recovery using average l2 error

over a lower range of noise variance (0 - 0.1) - SS Beam

The average l2 error values for specific noise variance levels are listed in Table 5.8. From these

results, it may be reiterated that incorporating noise handling in the CS-based frequency recovery

improves its performance. Furthermore, higher accuracy in recovery guarantees improved reliabil-

ity and enables detection of smaller shift in natural frequencies, i.e. smaller structural changes.
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Table 5.8: Average l2 error of reconstruction with & without noise formulation (NF) - SS Beam

Noise K = 4 K = 8 K = 12

(σ) No NF With NF % drop No NF With NF % drop No NF With NF % drop

0.02 1.78 0.776 56.40 1.712 0.821 52.04 0.717 0.554 22.43

0.04 3.23 0.949 70.62 2.26 1.035 54.20 1.097 0.647 41.02

0.06 3.59 1.027 71.39 3.01 1.181 60.76 1.162 0.715 38.47

0.08 3.73 1.098 70.56 3.383 1.260 62.75 1.227 0.750 38.88

0.1 4.39 1.166 73.44 3.383 1.345 60.24 1.289 0.786 39.02

Figure 5.14 illustrates the decrease in probability of success of response reconstruction for in-

creasing levels of noise variance with respect to the signal amplitude. Because increase in noise

effectively degrades the signal, the quality of reconstruction is expected to decrease, which is

captured by the trend of the plots in Fig.5.14. The probability of success of reconstruction with

respect to increasing noise level, maybe seen as the qualitative representation of the performance

of CS-based reconstruction. As mentioned in the previous section, this is essentially, an alternative

illustration of Fig. 5.12. It is important to note that the probability of success of reconstruction

may not be a well defined or quantitative indicator of the performance of CS-based recovery and

reconstruction. But, it can still be observed that the performance of CS is enhanced in the presence

of noise formulation. In fact, on comparing Figs. 5.12 and 5.14, it is indisputable that the average

l2 error is a better and clearer indicator of the performance of CS in the presence and absence of

noise formulation. For instance, consider the trend of the plot for K = 4 in both the figures. While

Fig. 5.12 shows the gradual increase in reconstruction error for increasing noise variance in the

signal, in Fig. 5.14, the probability falls to almost zero and remains indiscernible beyond a noise

variance of 0.2 in the absence of noise formulation and 0.1 in the presence of noise formulation.
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Noise Variance Vs Probability of Reconstruction − SS Beam Time Domain Response
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Figure 5.14: Variation of probability of reconstruction success for increasing noise variance - SS

Beam

Analyzing Noise Formulation in Cantilever Beam (Experimental)

The previous two sections provided a detailed insight into how the incorporation of noise formu-

lation in CS can help enhance its performance in frequency recovery and more importantly, in

detecting smaller shift in natural frequencies. In this section, a more realistic case is examined -

frequency recovery from the impulse response of a cantilever beam obtained through experiments.

The free vibration response of the cantilever beam setup obtained in the preliminary experimen-
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tal validation (Section 5) is used here. As explained previously, the experimental data contained

noise. Although the SNR was sufficient enough to recover the first and second modes from the

free vibration response using CS without explicit noise formulation, in this section, the effect

of incorporating noise formulation for the same problem is studied. Furthermore, as opposed to

changing noise variance in the signal, here, the number of measurements are varied to illustrate the

enhancement of performance of CS in frequency recovery and ultimately, detection of structural

change.

Section 5 describes the CS problem setup for detecting changes in the cantilever beam by extract-

ing the first and second natural frequencies from its free vibration response. While the frequency

recovery is a fairly straightforward process, in contrast, obtaining a quantitative measure of en-

hancement of this CS-based frequency recovery requires calculation of the average l2 error. In

turn, this requires the reconstruction of the beam response and its comparison to original data.

This mandates certain modification in the CS problem setup, because, as opposed to simulation

data (Section 5), the realistic (experimental) data includes damping. The effect of damping has to

therefore be accounted for, in order to get a reconstruction that may facilitate comparison to the

original response. Furthermore, successful formulation of a suitable basis that includes damping

will enable reliable reconstruction of the spatial beam vibrations using CS.

Relative Decay of First and Second Modes of Vibration

In this section, the basis for formulating a modified CS problem setup for reconstructing the

damped vibration response of a cantilever beam is presented. Specifically, the relative rate of de-

cay of the first and second modes of vibration (natural frequencies) of a 2DOF system is discussed.

Consider a discrete 2 DOF mass-spring-damper system shown in Fig.(5.15).
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Figure 5.15: Discrete 2 - Degree of Freedom (DOF) System

The equation of motion of the above 2DOF system is expressed as,

Mẍ+ Cẋ+Kx = 0 (5.7)

where, M , C and K are the mass, damping and stiffness matrices. Assuming that m1 = m2 = m,

c1 = c2 = c and k1 = k2 = k these matrices take the form as shown in Eq.(5.8) below.

M =







m 0

0 m






C =







2c −c

−c 2c






K =







2k −k

−k 2k






(5.8)

From Eq.(5.15), the relationship between K and C matrices may be drawn as,

(C) = (K)
c

k
(5.9)

From Eq.(5.9), we can assume that the system is proportionally damped, i.e., the damping is pro-

portional to the stiffness of the system. Therefore, the damping coefficients (ζ1 and ζ2) may be

expressed by the following set of equations.

ζ1 =
α + βω1

2

2ω1
ζ2 =

α + βω2
2

2ω2
(5.10)

Because the damping is only proportional to the stiffness (Eq.(5.9)), α = 0 in Eq.(5.10). Therefore,
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the damping coefficients can be re-written as follows.

ζ1 =
βω1

2
ζ2 =

βω2

2
=⇒ ζ1 =

c

2k
ω1 ζ2 =

c

2k
ω2 (5.11)

Since natural frequencies increase in the order of mode number, the following set of relations hold

true.

ω2 > ω1 =⇒ ζ2 > ζ1 (5.12)

Further, since the damping ratios are dependent on ζ1 and ζ2,

σ1 = ζ1ω1 σ2 = ζ2ω2 =⇒ σ2 > σ1 (5.13)

We know that, the response of the 2DOF system can be expressed by Eq.(5.14).

xn(t) = Ae−σntsin(ωdnt+ φ) where, n = 1, 2 (5.14)

From Eqs.(5.13) and (5.14), we can conclude that x2(t) decays faster relative to x1(t). Therefore,

the first mode is dominant over the second mode and therefore tends to persist longer in the free

vibration response of the system. Based on the understanding of the response of this 2DOF system,

the CS problem formulation to recover the first and second modes of vibration and subsequently

reconstruct the response of the cantilever beam is modified. These details are presented in the

sections to come.

Recovering the First Mode of Vibration from Experimental Data

This section describes the CS problem formulation for recovering the first mode of vibration and re-

constructing the response with and without noise formulation. In addition, in the presence of noise

formulation, it examines the difference in performance when the basis function for the CS problem
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include damping. Table 5.9 lists the CS problem formulation. In the free vibration response with

initial deflection, each mode/natural frequency has a sine and cosine component associated with it.

Therefore, for recovering the first mode (one frequency), the sparsity K = 2.

Table 5.9: Problem Setup for Evaluating CS performance with Noise Formulation - Cantilever

Beam (Experimental - 1st mode)

Parameters K = 2

No. of Frequencies 1

Frequencies (Hz) 3.41

Frequency range (Hz) 0:0.01:10

Duration of data capture (s) 27 - 37

No. of samples (m) 20 - 100

From previous discussion on relative decay of the first and second modes, it was understood that

the second mode decays faster than the first mode. Hence, in order to extract only the first nat-

ural frequency, the relatively steady state portion of the signal was used, where the second mode

and other transients are expected to be negligible (t1 = 27s to t2 = 37s, while the total duration

of the signal was 37s). In order to study the effect of introducing noise formulation, the number

of measurements is varied and the corresponding variation in average l2 error of reconstruction

is analyzed. Figure 5.16 illustrates the change in l2 reconstruction error for varying number of

measurements. It can be observed that for all the plots, the l2 error decreases with an increase

in the number of measurements. This is because, with increasing number of measurements, the

probabilistic (CS) solution tends towards a more definitive solution. When noise formulation is

incorporated in the CS problem, the average l2 error is reduced for a given number of measure-

ments. This implies that using such a formulation has the ability to further reduce the number of

samples used for reconstruction. This analysis, as extended to the spatial domain then implies that
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the number of sensors (spatial samples) could also potentially be reduced.
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Without accounting for the damping in response, the average error calculated may not reflect a true

comparison between the original and reconstructed responses of the cantilever beam. Therefore,

an approximation of the damping ratio for the first mode was calculated using the following set of

equations, considering the part of the beam response from 27s to 37s.

Approximate calculation of ζ1:

δ =
1

n
log(

P1

Pn

) =
2πζ

√

1− ζ2
(5.15)

where, P1 and P2 are the amplitudes to the first and nth peaks of the signal respectively and n is

the number of peaks/periods considered. Here, P1 = 0.2734, P2 = 0.1709 and n = 52. Therefore,

zeta1 = 0.0014. It is also important to understand how the measurement matrix was modified to

accommodate for damping. The exponential component (that represents damping) is included as a

part of the matrix, and is as expressed below.



















e−ζ1ω1t1 cos(ω1t1) · · · e−ζ1ωnt1 cos(ωnt1) e−ζ1ω1t1 sin(ω1t1) · · · e−ζ1ωnt1 sin(ωnt1)

e−ζ1ω1t2 cos(ω1t2) · · · e−ζ1ωnt2 cos(ωnt2) e−ζ1ω1t2 sin(ω1t2) · · · e−ζ1ωnt2 sin(ωnt2)

...
...

...
...

...
...

e−ζ1ω1tm cos(ω1tm) · · · e−ζ1ωntm cos(ωntm) e−ζ1ω1tm sin(ω1tm) · · · e−ζ1ωntm sin(ωntm)



















(5.16)

After including the damping component in the reconstruction of the response, the average l2 error

was again calculated. From Fig.5.16, it can observed that for a given number of measurements,

when damping is accounted for, in addition to noise formulation, there is a significant drop in

error. This result is especially important for reconstruction of the spatial response of a realistic

beam where damping will be inevitable. This is however outside the scope of this dissertation, but

will be addressed as a part of further work. Table 5.10 lists the percentage drop in l2 reconstruction

error for each measurement case.
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Table 5.10: Drop in Average l2 Reconstruction Error With Noise Formulation (NF) and Damping

No. of Measurements No NF With NF and Damping % Drop in l2 error

20 0.322 0.106 67.19

30 0.178 0.064 64.09

40 0.120 0.052 56.48

50 0.119 0.045 62.14

60 0.117 0.040 65.98

70 0.110 0.037 66.39

80 0.110 0.033 70.17

90 0.110 0.033 70.17

100 0.110 0.031 71.87

Recovering the First and Second Modes of Vibration from Experimental Data

The section on preliminary experimental validation, explained in detail, the process of detecting

structural change in a cantilever beam by recovering the first two natural frequencies of vibration

and identifying a shift in their values. Furthermore, the experimental validation suggested that

change in structural characteristics may not be uniformly reflected in all the modes/natural fre-

quencies. For instance, it was observed that when mass sets were added at mid-length of the beam,

the shift in second mode was more pronounced than in the first. Therefore, depending upon the

nature of change, it may mandate the recovery of frequencies higher than the first mode. This

question leads into a new avenue of research - localization of energy in specific modes. Although

it is beyond the scope of this dissertation, it is nevertheless, a problem that we intend to address as

a part of the future work of this project.
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Recovering the second natural frequency was feasible by suitably adjusting the number of mea-

surements and frequency range. However, as discussed for the first mode in the previous section,

evaluating the performance of CS in recovering the second mode will also require reconstruction

of the response that should account for not only this mode, but its damping as well. Given that

the second mode decays rather quickly, it dictates that the initial part of the response be used for

frequency recovery and reconstruction. Table 5.11 lists the CS problem formulation. Here, the CS

problem attempts to recover the first two natural frequencies from the free vibration response of the

cantilever beam. Since each frequency has two (sine and cosine) components associated with it,

the sparsity k = 4. In order to extract the second natural frequency, the initial duration of response

was utilized (t1 = 5.2s to t2 = 10.2s, while the total duration of the signal was 37s). As mentioned

earlier, the number of measurements is varied and the corresponding variation in average l2 error

of reconstruction is analyzed.

Table 5.11: Problem Setup for Evaluating CS performance with Noise Formulation - Cantilever

Beam (Experimental - 1st and 2nd modes)

Parameters K = 4

No. of Frequencies 2

Frequencies (Hz) 3.41, 21.23

Frequency range (Hz) 0:0.01:30

Duration of data capture (s) 5.2 - 10.2

No. of samples (m) 20 - 100

Figure 5.18 illustrates the change in l2 reconstruction error for varying number of measurements.

Similar to Fig.5.16, the l2 error decreases with an increase in the number of measurements.
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Figure 5.19: Impulse response of the cantilever beam in the experimental setup: Zoomed in view

of the transient portion of response

As explained in Section 5, in order to draw a better comparison of the performance of CS without
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and with the incorporation of noise formulation, it is necessary to account for damping. Figure

5.19 illustrates the portion of the response used in calculating the approximate damping ratio and

subsequent signal reconstruction. Using Eq.(5.15), the approximate damping coefficient was cal-

culated using the following values: n = 25 P1 = 1.533 P2 = 0.6787 =⇒ ζ1,2 = 0.0052.

The measurement matrix used here is as described in Eq.(5.16). Because the initial duration of

the vibration response is a combination of the first and the second modes as well as any transients,

the approximate ζ calculated above is not purely associated with the second mode. It is there-

fore denoted by ζ1,2. Furthermore, because the amplitude of the second mode is comparable to

other undesirable transients or noise, incorporation of noise formulation in the CS problem tends

to eliminate or lower the effect of the second mode during reconstruction. As a result, although the

average l2 error exhibits an appreciable drop in the presence of noise formulation and damping, the

value of the error is higher in comparison to that in Fig.5.16. The decrease in l2 error values for

varying number of measurements in this case is listed in Table 5.12.

Table 5.12: Drop in Average l2 Reconstruction Error With Noise Formulation (NF) and Damping

No. of Measurements No NF With NF and Damping % Drop in l2 error

20 0.308 0.288 6.41

30 0.258 0.232 10.15

40 0.259 0.160 38.33

50 0.244 0.120 50.79

60 0.255 0.090 64.68

70 0.229 0.050 78.16

80 0.216 0.035 83.82

90 0.286 0.010 96.50

100 0.207 0.010 95.17
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Reconstruction of Deflection-Shapes using Compressive Sensing

Section 4 illustrates that changes in beam characteristics produce distortions in its Operational

Deflection Shape (ODS). Determining the spatial response or the ODS is key to locating these

changes. This section investigates reconstruction of the ODS of a beam using compressive sensing

by applying it spatially. The deflection shape of a beam under free-vibration, at an instant t̄, can be

expressed in terms of the normal modes q = 1, 2, · · ·∞ as

y(x, t̄) =
∞
∑

q=1

[Aq cos(ωq t̄) +Bq sin(ωq t̄)]Wq(x)

=
∞
∑

q=1

Cq(t̄)Wq(x),
(5.17)

where, Cq(t̄) = [Aq cos(ωq t̄) + Bq sin(ωq t̄)] and Wq is the qth mode-shape. On the other hand,

the instantaneous deflection shape in response to a steady harmonic forcing F =
p
∑

i=1

f0,i sin(ωf,it)

takes the form

y(x, t̄) =
p
∑

i=1

∞
∑

q=1

Dq(ωq, ωf,i)f0,i sin(ωf,it̄)Wq(x)

=
∞
∑

q=1

D̄q(t̄)Wq(x),

D̄q(t̄) ,
p
∑

i=1

Dq(ωq, ωf,i)f0,i sin(ωf,it̄)

(5.18)

From Eqs.(5.17) and (5.18), one distinction of the two deflection shapes is that the former is depen-

dent on t̄, while the other is not, provided the forcing has steady amplitudes and frequencies. Thus,

deflection shapes generated by steady forced vibration are time-invariant. The rationale for for-

mulating the deflection-shape reconstruction using compressive-sensing is that mode-shapes Wq

are sparse in βq, since βq and ωq are related by ωq = β2
q

√

EI/ρAr. For instance for a simply-

supported beam, Wq = sin βqx = sin qπx
L

and that for a cantilever beam are given by Eq.(5.3). The

following sections explain and illustrate ℓ1 minimum solutions for reconstructing deflection shapes

for simply-supported, fixed-fixed and cantilever beams. The emphasis will be on reconstruction

from forced vibration response.
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Deflection Shape Reconstruction for Simply Supported Beam

Spatial recovery remains similar to that of time-domain. However, sampling of the beam response

is performed at one time instant from different spatial points along the length of the beam, i.e.

the length axis becomes analogous to time axis. The parameters used to define the beam, L, EI

and ρAr, are the same as those in Section 5. Results of CS based recovery are validated against

a finite-element model of the beam of Nel elements. Figure 5.20(a) illustrates the beam. From

Eq.(5.18), the deflection equation for a simply supported beam can be expressed as

y(x, t̄) =

∞
∑

q=1

D̄q(t̄)Wq, Wq = sin(βqx) = sin
qπx

L
. (5.19)

Thus, the basis functions are sinusoids of wavelengths λq = 2L/q, i.e. of spatial frequency ξq =

q/2L. Consider the problem of reconstructing the deflection shape of the beam under a harmonic

force with frequency ωq < ωf < ωq+1. The deflection shape will be dominated by the qth and

(q + 1)th mode-shapes, i.e. by ξq and ξq+1. Consider a spatial frequency range Ξr = [ξl, ξh], such

that (ξq, ξq+1) ∈ [ξl, ξh], and a measurement vector z ∈ Rm generated by measurements y taken at

m random locations along the length of the beam at an instant t̄, zj = y(xj, t̄), j = 1, 2, · · ·m.

zj =

n
∑

i

Hi sin(2πξixj), ξi = ξl + (i− 1)
(ξh − ξl)

n− 1
, i = 1, 2, · · ·n, (5.20)

The deflection shape can be reconstructed by determining the ℓ1 minimum solution of

z = Φs, Φ =



















sin(2πξ1x1) sin(2πξ2x1) · · · sin(2πξnx1)

sin(2πξ1x2) sin(2πξ2x2) · · · sin(2πξnx2)

...
...

...
...

sin(2πξ1xm) sin(2πξ2xm) · · · sin(2πξnxm)



















,

s = [H1H2 · · ·Hn]
T .

(5.21)
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In Eq.(5.21), Ξr forms a searching frequency-range and we expect to obtain a sparse solutions

with non-zero Hi if Hi ≈ D̄q. We note that although the deflection shape will have the presence

of other mode-shapes, such as (q − 1)th and (q + 2)th, but their influence will be minor. When the

characteristics of the beam changes locally, such as due to damage, the mode-shapes Wq cease to

have the analytic form of Eq.(5.19). Hence in a damaged or modified beam, the ℓ1 solution will

show a lower sparsity. However, an indicator of the location of a damage will be the reconstructed

deflection shape itself rather than the non-zero coefficients of the sparse solution.
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Figure 5.20: (a) Schematic: SS beam with harmonic excitation (b) Spatial frequencies recovered

before and after modification of elements
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To illustrate the observations made above, we simulate forced vibration of a beam with the fol-

lowing parameters: L = 1, ρAr = 1, EI = 1. For the simulation, a finite element model of the

beam is used with Nel = 1000. It is subject to a harmonic excitation force F = 5 sin(5t), which is

applied at a distance a = 0.2 from the left, as shown in Fig.5.20(a).

0 0.2 0.4 0.6 0.8 1

−0.1

0

0.1

Excitation below 1st natural frequency

y(
x)

Modified Beam (numerical solution and reconstruction superimposed)

Original Beam (numerical solution and reconstruction superimposed)
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Modified Beam (numerical solution and reconstruction superimposed)

Original Beam
−0.1

0
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y(
x)

Figure 5.21: Deflections of original and modified beam, with numerical solutions and recon-

structed deflections superimposed: (a) ωf below, and (b) ωf above the 1st natural frequency

In the original beam, the spatial frequencies ξq are 0.5, 1, 1.5, · · · , and the corresponding natural

frequencies ωq are π2, 4π2, 9π2, · · · rad/s. Since ωf = 5 < π2, the deflection shape is expected to

be mostly dominated by its first mode. To reconstruct the deflection shape, m = 25 random dis-
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placement samples were collected at a specific time-instant along the beam-span. The ℓ1 minimum

solution of Eq.(5.21) was determined with n = 2500, ξl = 0 and ξh = 25, implying a frequency

resolution of ≈ 0.01, see Eq.(5.21).

The sparse solution for the original beam is shown in Fig.5.20(b), showing the dominant spatial

frequency to be at the first mode-shape ξ = 0.5, as expected. Next, a fault is introduced by

reducing EI from 1 to 0.1, locally in the region x ∈ [0.3, 0.35], and the ℓ1 minimum solution was

recalculated. The solution is indicated in Fig.5.20(b) as modified beam. The ℓ1 minimum solutions

show shifts in spatial frequencies between the original and modified beam. However, they do not

reflect the location of modification (or damage). To determine the location of the damage, the

frequencies recovered are used to reconstruct the deflection shape. The reconstruction is shown in

Fig.5.21(a) for both the original beam and the modified beam. The accuracy of reconstruction is

verified by superimposing the numerical solutions obtained from the finite element model.

For further illustration of shape reconstruction, the forcing frequency was increased ωf = 11rad/s,

which is above the 1st natural frequency of the original beam. The compressive sensing prob-

lem was solved to determine the sparse solution in spatial domain and the deflection-shape was

reconstructed using the same procedure as above. The results are shown in Fig.5.21(b). In both

Figs.5.21(a) and(b), we notice that the region of the defect (or modification) is visually identifi-

able, and are indicated by the gray squares. In Fig.5.21(a), it was better identifiable due to higher

amplitude of oscillation resulting from lower excitation frequency. We clarify that the deflection

directions are flipped in Fig.5.21(a) and (b) simply because at the instants at which data were taken,

the beams were undergoing positive and negative displacements respectively.
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Deflection Shape Reconstruction for Fixed-Fixed Beam

In this section, deflection shape reconstruction, using the idea of compressive sampling, is demon-

strated for fixed-fixed beam. The process closely follows the one in Section 5. Both ends of a

fixed-fixed beam are constrained to have neither displacement nor slope. The beam-parameters,

L, EI and ρAr, carry their usual meaning. As before, CS based recovery are validated against a

finite-element model of the beam of Nel elements. Figure 5.22(a) illustrates the beam.
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From Eq.(5.18) and [7], the deflection equation for a fixed-fixed beam, at an instant t̄ can be

expressed as

y(x, t̄) =
∞
∑

q=1

D̄q(t̄)Wq, Wq = (sinh βqx− sin βqx) + αq(cosh βqx− cosβqx),

αq =
sinhβqL−sinβqL
cos βqL−cosh βqL

, cos βqL. cosh βqL = 1.

(5.22)

Here the basis is formed by sinusoids and hyperbolic functions. The sinusoids have wavelengths

λq = 2π/βq, i.e. spatial frequency ξq = βq/2π. For fixed-fixed beams, Eq.(5.22) yields [β1L, β2L,

β3L, β4L, · · · ] = [4.73, 7.85, 11, 14.14, · · · ]. Spatial reconstruction was formulated on similar

lines as in Section 5. The following specifications were chosen for the beam: L = 1, ρAr = 1,

EI = 1 and Nel = 1000. The beam is harmonically excited at ωf = 20rad/s which is lower than

the first natural frequency of the undamaged beam, ω1 = β2
1 = 22.37rad/s. The force, of ampli-

tude 5, is applied at a distance a = 0.2 from the left, as indicated in Fig.5.22(a). The resulting

ODS is expected to resemble a sinusoid of wavelength 2, i.e. ξ = 0.5, but with zero deflection

and slope near the fixed ends. Structural change is introduced by a reduction in EI from 1 to 0.1

over elements 300 − 340. The ℓ1 minimization problem for deflection reconstruction requires a

spatial frequency range, as done in Section 5. The range chosen for both the original and modified

cases are Ξr = [ξl, ξh] = [0, 40], with a resolution of 0.01. The measurement vector z ∈ Rm is

generated by taking m = 25 measurements y taken at random locations along the length of the

beam at an instant t̄, zj = y(xj, t̄), j = 1, 2, · · ·m. Based on Eq.(5.22), zj can be expressed as a

function of the basis functions as follows:

zj =
n
∑

i

[

Hi,1 sin(2πξixj) +Hi,2 sinh(2πξixj) +Hi,3 cos(2πξixj) +Hi,4 cosh(2πξixj)
]

,

ξi = ξl + (i− 1) (ξh−ξl)
n−1

, i = 1, 2, · · ·n,

(5.23)
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or in a more condensed form, based on Eq.(5.22) as,

zj =
n
∑

i

Hi

[

(sinh(2πξixj)− sin(2πξixj)) + αi(cosh(2πξixj)− cos(2πξixj))
]

αi =
sinh(2πξiL)−sin(2πξiL)
cos(2πξiL)−cosh(2πξiL)

.

(5.24)

However, trial runs showed poor reconstruction when either of the above sets were used. In con-

trast, upon using the sine and cosine functions only

zj =

n
∑

i

[

Hi,1 sin(2πξixj) +Hi,2 cos(2πξixj)
]

, (5.25)

resulted in significantly better reconstruction. Specifically, the deflection shape was reconstructed

by determining the ℓ1 minimum solution of

z = Φs, Φ =



















sin(2πξ1x1) · · · sin(2πξnx1) cos(2πξ1x1) · · · cos(2πξnx1)

sin(2πξ1x2) · · · sin(2πξnx2) cos(2πξ1x2) · · · cos(2πξnx2)

...
...

...
...

...
...

sin(2πξ1xm) · · · sin(2πξnxm) cos(2πξ1xm) · · · cos(2πξnxm)



















,

z ∈ Rm, s = [H1,1 H2,1 · · ·Hn,1 H1,2 H2,2 · · ·Hn,2]
T .

(5.26)

The reason the formulations of Eqs.(5.25) and (5.26) perform better than those in Eqs.(5.23) and

(5.24) is better understood by comparing the Restricted Isometry Constant for each case for sim-

ilar sparsity. As explained in Section 4, this constant is a measure of how well-conditioned the

corresponding Φ matrix is. A numerical comparison of the constant, calculated for different sets of

basis functions, will be discussed in Section 5. Figure 5.22(b) shows the sparse solution obtained

by ℓ1 minimization. For each frequency, the amplitude is calculated as
√

H2
i,1 +H2

i,1. Because the

deflection shape is similar to a sinusoid but with zero slopes at the ends, zero frequency component

is also recovered. Furthermore, the fundamental spatial frequency ξ = 0.5 is prominent.
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Figure 5.23: Deflections of original and modified beam with superimposed reconstruction

Locating a change/damage requires comparison of the deflection shape before and after introducing

structural change in the beam. The reconstructed deflection shape of the modified beam (with EI

reduced from 1 to 0.1) is superimposed with the numerical solution in Fig.5.23. Numerical solution

of the original deflection is shown on the same plot.

Recall Fig.5.2, where the effectiveness of ℓ1 minimization was studied by plotting the accuracy

of signal recovery in the temporal domain against the number of measurements m. Figure 5.24

illustrates the same, but signal recovery is in the spatial domain for the unmodified fixed-fixed

beam described above. In this domain, recovery of spatial frequencies is considered and the signal

sparsity is determined by the number of spatial frequencies present in it. Nominally, n ≈ 4000

and ∆ξ = 0.01 was chosen, thus the frequency range of recovery was Ξr = [0, 40]. Although the

highest spatial frequency expected to be recovered is less than 2, this extended frequency range is

important for inducing sparsity in the signal, thereby ensuring good deflection reconstruction.
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Figure 5.24: Error analysis of ℓ1 minimization as a function of measurements m for different

spatial signal sparsity

The contour k = 2 represents the normalized error norm ‖s − ŝ‖2 when the forced vibration re-

sponse of the fixed-fixed beam was dominated by the 1st mode, ξ ≈ 0.5. The contour k = 4

represents accuracy of recovery when the first two modes were predominantly present in the

response(ξ ≈ 0.5, 1). Similarly, k = 6 represents the case when the first 3 modes are predom-

inantly present in the forced response of the beam. Contours in Fig.5.24 match the trend of the

contours in Fig.5.2, thus reinforcing the following about ℓ1 minimization in the spatial domain

also: (i) Signal recovery is enhanced with increase in the number of measurements (ii) Higher

sparsity benefits signal recovery and reconstruction.

Deflection Shape Reconstruction for Cantilever Beam

In this section, structural changes introduced in a cantilever beam are located by compressive

sampling. The process closely follows that explained in the Sections 5 and 5. A schematic repre-

sentation of a cantilever beam, with its boundary conditions, is shown in Fig.5.25(a).
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Beam parameters retain the same value as prior sections, i.e. L = 1, ρAr = 1, EI = 1 and

the number of elements in the simulation model is Nel = 1000. The harmonic force, applied at

a = 0.5, has a frequency of ωf = 20rad/s. From Eq.(5.18) and [7], the deflection equation for a
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cantilever beam, at any instant t̄ can be expressed as

y(x, t̄) =
∞
∑

q=1

D̄q(t̄)Wq, Wq = (sin βqx− sinh βqx)− αq(cosβqx− cosh βqx),

αq =
sinhβqL+sinβqL
cos βqL+coshβqL

, cosβqL. cosh βqL = −1.

(5.27)

For cantilever beams, Eq.(5.27) yields [β1L, β2L, β3L, · · · ] = [1.88, 4.69, 7.85, · · · ]. Thus,

ωf is between the first two natural frequencies, ω1 = β2
1 = 3.53rad/s and ω2 = β2

2 = 22rad/s. It

is also noted that the spatial frequency ξ2 = β2/(2π) = 0.75. Based on Eq.(5.27), measurements

zj were expressed as in Eq.(5.23). The spatial frequency range for reconstruction was chosen as

Ξr = [ξl, ξh] = [0, 25], with a resolution of 0.01.
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Figure 5.26: Deflection shape reconstruction of original and modified cantilever beam

Unlike fixed-fixed beams where only sinusoids were used for the reconstruction, Eqs.(5.25) and

(5.26), for cantilever beams consistent reconstruction required inclusion of the hyperbolic func-

tions for lower frequencies. For a sub-set Ξr,h = [0, 2.5] of Ξr, hyperbolics were included in the

basis functions and for the remainder of Ξr, only sinusoids were used. The need of hyperbolics is

expected for a cantilever beam since its deflections are neither perfectly sinusoidal (e.g. simply-
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supported beam), nor approximately sinusoidal (e.g. fixed-fixed beam). To simulate change, the

rigidity modulus (EI) was reduced from 1 to 0.1 over elements 300−340. The sparse solutions of

the original and modified beam are shown in Fig.5.25(b) and Fig.5.26 illustrates reconstruction of

the original and modified cantilever from the sparse solution. In solving the ℓ1 minimum solution,

the number of samples chosen was m = 25 for the original beam and m = 35 for the modified

beam. Also, the amplitudes plotted in Fig.5.25(b) are

√

∑4
j=1H

2
i,j .

Design of Measurement Matrices in the Presence of Hyperbolics

As explained in section 4, the suitability of a measurement matrix Φ, for a given CS problem can

be evaluated using the Restricted Isometry Property (RIP). This mathematical aspect of Φ will be

discussed in detail in section 5. This section, on the other hand, explores plausible approaches for

designing a suitable Φ in the presence of hyperbolic components. Compressive sensing is essen-

tially an ℓ1 minimization problem that solves an under-determined system of equations to recon-

struct the required signal. The measurement matrix Φ, is designed prior to making measurements

and is based on the characteristics of the signal to be recovered. One of the most important stages

in formulating a CS problem is designing a suitable Φ, with the following characteristics [82]:

1. Well conditioned

2. Enables recovery of sparse coefficients with relative ease and accuracy

Localizing structural changes in a beam makes use of its spatial domain response or operational

deflection shape (ODS) that may be expressed as a weighted sum of its modeshapes (Eq.(4.2).

Therefore, based on boundary conditions, when hyperbolic components are present in the mode-

shape of a beam, they appear in the ODS as well as the measurement matrix, which represents

the basis for ODS reconstruction. The cantilever beam is a case in point. Fundamental under-

standing of the nature of mechanical vibrations of standard beams is therefore used as the basis for
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formulating Φ when hyperbolic components become inevitable in the response.

Understanding the Behavior of Hyperbolic Components

Depending upon boundary conditions, hyperbolic components such as sinh and cosh appear in the

spatial vibration response (ODS) of certain mechanical beams. In certain cases, such as a cantilever

beam, these components are indispensable in reconstructing the ODS. It is therefore important to

understand the behavior of these components. Figure 5.27 illustrates the variation of sinh(x) and

cosh(x) for increasing x.
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From the figure, it can be observed that values of the hyperbolic components grow almost expo-

nentially with increasing x. Therefore, when such elements are present in the measurement matrix

as given below, Φ becomes ill conditioned.

Φ =



















sin(2πξ1x1) · · · sin(2πξnx1) cos(2πξ1x1) · · · cos(2πξnx1)

sin(2πξ1x2) · · · sin(2πξnx2) cos(2πξ1x2) · · · cos(2πξnx2)

...
...

...
...

...
...

sin(2πξ1xm) · · · sin(2πξnxm) cos(2πξ1xm) · · · cos(2πξnxm)

· · ·

· · ·

sinh(2πξ1x1) · · · sinh(2πξnx1) cosh(2πξ1x1) · · · cosh(2πξnx1)

sinh(2πξ1x2) · · · sinh(2πξnx2) cosh(2πξ1x2) · · · cosh(2πξnx2)

...
...

...
...

...
...

sinh(2πξ1xm) · · · sinh(2πξnxm) cosh(2πξ1xm) · · · cosh(2πξnxm)



















.

(5.28)

While solving the inverse problem using l1 minimization, such an unbounded Φ poses numerical

inconsistencies and difficulties in obtaining a solution and the CS recovery/reconstruction fails.

Hence, it is important to devise approaches to design suitable measurement matrices for such cases.

In fact, this problem of Φ design presents a wide and viable area for research as an offshoot of this

work. Since the use of CS in the field of mechanical vibrations is still in its nascent stages, there

isn’t very elaborate literature on this topic, thus making it, an important investigation. To avoid

numerical inconsistencies, in [83], the authors explain the use of approximate modeshapes for

mechanical beams that contain hyperbolic functions. Following this, in our work, two approaches

for designing Φ with hyperbolic components are examined:

1. Hyperbolics with restricted spatial frequency range

2. Combined hyperbolic components
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Hyperbolic Components Over a Restricted Frequency Range

The modeshape function of a cantilever beam (Wq(x)) is expressed by Eq.(5.27). It follows that

the corresponding Φ in the CS problem formulation for spatial response reconstruction will be a

combination of these four trigonometric components for each frequency. An approach of restrict-

ing the sinh and cosh components over a lower frequency range is discussed here. This idea of

restricting the frequency range was already introduced in section 5, where, by trial and error, sinh

and cosh terms in the measurement matrix were ranging from 0 − 2.5m−1, while the sin and cos

terms were ranging from 0 − 25m−1. A more systematic approach to this restriction is explored

here.

In section 5, reconstruction of the cantilever beam ODS is obtained from the recovered spatial

frequencies and the reconstruction equation takes the following form:

y(x) = aisin2πfx+ bicos2πfx+ cisinh2πfx+ dicosh2πfx (5.29)

where, ai, bi, ci and di are the coefficients recovered using el1 minimization. In this approach,

where the hyperbolic and non-hyperbolic components are considered individually in Φ, the diffi-

culty in reconstruction stems from the unbounded nature of sinh and cosh terms. Therefore, one

rationale in restricting the frequency range of hyperbolic terms in Φ could be dependent on the

relative magnitude between the hyperbolic and non-hyperbolic terms. The ratio of the magnitude

of hyperbolic terms to that of the non-hyperbolic terms can be obtained from Eq.(5.30).

m1 = sinx+ cosx, m2 = sinhx+ coshx,

mratio =
m2
m1

(5.30)
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Figure 5.28 shows the relative magnitude, mratio, as a function of increasing frequency (0 −

0.35Hz). It can be observed that as the frequency increases, the relative magnitude increases al-

most exponentially. This is attributed to the exponentially increasing magnitudes of the hyperbolic

components. Therefore, restricting the hyperbolic terms to lower frequencies in turn improves the

conditioning of the measurement matrix.
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Figure 5.28: Relative magnitude as a function of spatial frequency

Reconstruction of the cantilever ODS with relative magnitude of 5 is illustrated in Fig.5.29(a). It

represents relative magnitude of 5, which corresponds to the setup when the complete frequency

range of operation is 0 − 25m−1 with restricted range 0 − 0.25m−1, i,e, scaling factor of 0.01.

Case (b) represents a much higher relative magnitude which corresponds a scaling factor of 0.1.

Through visual inspection, it can be seen that case (a) and (b) have comparable fidelity. However,

the average error reduced from 0.0365 in case (b) to 0.0157 in case (a). In addition, it was observed

that the probability of failed reconstruction was reduced with a scaling of 0.01. The performance

of such a Φ is examined in sections that follow.
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Figure 5.29: Reconstruction of cantilever beam ODS for different cases of frequency restriction

(a) 0 - 0.25 (b) 0 - 2.5

While this investigation provided a rationale for restricting the hyperbolic terms to lower frequen-

cies and a potential approach to choosing a suitable scaling factor, it did not help converge on a

clear range of spatial frequencies that are to be included in the measurement matrix in the presence

of hyperbolic terms. An alternative approach is explored in the following section.

Combined Hyperbolic Components

This section discusses an alternative approach to designing a suitable Φ with hyperbolic terms,

without restricting their frequency range. This investigation is important because, although re-

stricting hyperbolic components to lower frequencies did help bypass the numerical inconsisten-

cies in the measurement matrix, it was still difficult to establish a systematic approach. Consider
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the modeshape function of a cantilever beam.

Wq(x) = (sinβq(x)− sinhβq(x))− αq(cosβq(x)− coshβq(x))

=⇒ Wq(x) = [sinβq(x)− αqcosβq(x)]− [sinhβq(x)− αqcoshβq(x)]
(5.31)

Considering Eq.(5.31) and the nature of sinh and cosh from Fig.5.27, it can be understood that

for a given frequency, the two hyperbolic terms may reduce the magnitude of each other. In

addition, it is evident that for higher values of x, the magnitudes of sinh(x) and cosh(x) are

almost equal to each other, thus possibly eliminating the effect of these hyperbolic functions in the

modeshape. This presents an interesting case, because, formulating the measurement matrix, Φ,

with these terms combined may therefore help eliminate the numerical inconsistencies encountered

earlier with basis functions that contain hyperbolic components. There are several approaches to

combining the terms. However, for investigation in this work, such a Φ is formulated as given

below. The performance of CS-based ODS reconstruction using this Φ is examined in section 5.

Φ =



















sin(2πξ1x1)− sinh(2πξ1x1)− α1 cos(2πξ1x1) + α1 cosh(2πξ1x1) · · ·

sin(2πξ1x2)− sinh(2πξ1x2)− α1 cos(2πξ1x2) + α1 cosh(2πξ1x2) · · ·

...
...

sin(2πξ1xm)− sinh(2πξ1xm)− α1 cos(2πξ1xm) + α1 cosh(2πξ1xm) · · ·

· · ·

· · ·

· · · sin(2πξnx1)− sinh(2πξnx1)− αn cos(2πξnx1) + αn cosh(2πξnx1)

· · · sin(2πξnx2)− sinh(2πξnx2)− αn cos(2πξnx2) + αn cosh(2πξnx2)

...

· · · sin(2πξnxm)− sinh(2πξnxm)− αn cos(2πξnxm) + αn cosh(2πξnxm)



















.

(5.32)
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Performance of CS-Based ODS Reconstruction

Sections 5 and 5 discussed two different approaches of designing a potentially suitable (well con-

ditioned) measurement matrix Φ in the presence of hyperbolic components. To recall, these two

approaches are: (i) Restricted hyperbolics (ii) Combined hyperbolics. This section evaluates and

compares the performance of both the approaches by varying the number of measurements m, and

calculating the average l2 error and probability of successful reconstruction of the cantilever ODS.

Performance evaluation for an undamaged beam

The cantilever beam used for analysis in this section is considered to be undamaged, i.e. the

specifications are that of the original beam without any structural changes. The specifications of

such a beam and the CS problem setup are as follows:

Beam Specifications:

L = 1, ρA = 1, EI = 1, Nel = 1000

CS Problem Setup:

f(t) = f0sinωf t, ωf = 20rads−1, f0 = 5

a = 0.2, Ξr = [ξl, ξh] = [0, 25], Scaling = 0.01

Figure 5.30 (a) and (b) illustrate the variation of probability of success (PS) and average l2 error

of the cantilever beam ODS reconstruction using two different measurement matrices designed

using combined and restricted hyperbolic components respectively. Recall that while the restricted

frequency approach has a scaling factor of 0.01 for hyperbolic terms, the combined hyperbolic

approach was formulated to eliminate the need for restriction of sinh and cosh terms to lower fre-

quencies. An increase in the number of measurements is accompanied by decreasing reconstruc-
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tion error and increasing PS. This behavior is consistent with the results observed in the previous

sections. Because the reconstruction error provides a quantitative measure of the performance of

Φ, the rest of the discussion will be based on Fig.5.30 (b).
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Figure 5.30: Comparing restricted and combined hyperbolics (a) Variation of probability of suc-

cessful reconstruction with number of measurements (b) Variation of average l2 error with number

of measurements

It can be seen that the average l2 error of reconstruction using either Φ falls within below 10% error
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for a modest number of measurements. However, in comparison to using restricted frequency range

for hyperbolic components, the combined hyperbolic approach exhibits better performance. For

instance, while the average reconstruction error falls below 10% for about m = 15 for Φ with

combined hyperbolic terms, m = 20 (approximately) for achieving less than 10% error for Φ with

restricted hyperbolic terms. Fig.5.31 compares the ODS reconstruction for m = 10 and 20 for

both cases of Φ. Table 5.13 lists the % drop in reconstruction error for Φ designed using both

approaches.
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Figure 5.31: Reconstructed ODS of cantilever beam for different l2 errors (a) Φ with combined

hyperbolics (b) Φ with restricted hyperbolics

Table 5.13: l2 Reconstruction Error for Φ with Combined and Restricted hyperbolics

No. of Measurements Combined Hyperbolics Restricted Hyperbolics % Drop in l2 error

15 0.08 0.17 9

30 0.01 0.05 4
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Performance evaluation for damaged beam

The real importance of ODS reconstruction lies in localization of structural change. This section

therefore examines the CS performance using both types of measurement matrices in the presence

of damage in the cantilever beam. Specifically, the CS-based reconstruction is evaluated under

three levels of damage: (i) Low severity (EI’ = 0.9) (ii) Medium severity (EI’ = 0.5) (iii) High

severity (EI’ = 0.1). Figure 5.32 illustrates the variation of reconstruction error for increasing

number of measurements.
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Figure 5.32: Reconstruction error vs no. of measurements: (a) Low severity damage (b) Medium

severity damage (c) High severity damage

Consistent with the performance results in section 5, it can be observed that the CS-based ODS

reconstruction using Φ with combined hyperbolic components has lower reconstruction error for
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a given number of measurements when compared to using Φ with restricted hyperbolic terms.

Examining the reconstruction errors and performance results obtained in the current and previous

sections (cantilever beam with and without structural changes), it may be understood that for CS-

based recovery and reconstruction in the presence of hyperbolic terms, employing a Φ where the

these terms are combined is potentially effective. To reiterate, reconstruction of cantilever-type

ODS (free end), hyperbolic terms play an indispensable role. Therefore, combining these terms in

such a way that their overall magnitude is reduced helps to overcome the numerical inconsistencies

(ill-conditioning of Φ) while still drawing required contribution from these terms. As an alternate

representation, variation of probability of successful reconstruction with increasing number of

measurements is shown in Fig.5.33.
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Comparison of Measurement Matrices for RIP

Section 5 in this chapter, described the formulation and reconstruction results for locating changes

in the ODS of simply-supported, fixed-fixed and cantilever beams using compressive sampling.

Formulation of the CS-based vibration problem in the spatial domain may be considered as a novel

and important extension of the capability of CS from the temporal domain. The fundamental vi-

bration characteristics of mechanical beams, i.e. their modeshapes, are used as the foundation

for developing the corresponding measurement matrices. The boundary conditions of simply-

supported, fixed-fixed and cantilever beams and hence their mode shape functions of these beams

become increasingly complicated in that order [7]. The simply-supported beam only contains si-

nusoidal components in its mode shapes. Its measurement matrix Φ, shown in Eq.(5.21), therefore

is composed of only sine components of those frequencies considered in the CS problem setup.

Consequently, it produces consistent reconstruction in terms of fidelity and probability. However,

it was observed that presence of hyperbolic functions in the measurement matrix attributed to its

ill-conditioning. In fact, as hyperbolic functions become more prominent in mode shapes, the spa-

tial data requirement increases for high quality reconstruction. As seen in Section 5, for the ODS

of a fixed-fixed beam, Φ (see Eq.(5.26)) could be manipulated to containing only non-hyperbolic

components. This is due to the nature of its ODS, which may be approximated to that of a simply-

supported beam.

On the other hand, for a cantilever beam, these hyperbolic functions became indispensable in

the measurement matrix. This dependency may stem from the free-end boundary condition of the

beam that has both zero deflection and slope. For improving the condition of such a Φ that contains

hyperbolic components, it was important to either eliminate them or reduce the frequency range

over which hyperbolic basis functions were used. Evidently, the non-periodic and unbounded na-

ture of the hyperbolic functions makes the Φ matrix ill-conditioned. As a result, when these com-

87



ponents are included in the Φ matrix without any restrictions, ℓ1 minimization fails to produce an

acceptable frequency recovery and signal reconstruction. This can be linked to the requirement of

Restricted Isometry Property (RIP) discussed in Section 4. Using Eq.(4.10), the Restricted Isome-

try Constant δk is calculated for Φ matrices with and without hyperbolic components. In addition,

it is calculated for the Φ matrix of the cantilever beam, that is developed from a combination of the

non-hyperbolic and hyperbolic terms.

It is important to note that the standard results on l1 recovery usually involve 2K−RIC. From [66]

and [74], it may be understood that these bounds on RIP help to guarantee signal recovery and

reconstruction with overwhelming probability. Hence, while 2K − RIC is the standard bound,

K −RIC is not forbidden. In addition, the results involving 2K −RIC were derived for random

matrices. In our application, the measurement matrix Φ is determined based on the response of

the beam in temporal and spatial domains. Hence, the K − RIC result is used as a guiding factor

in analyzing the probability of reconstruction and not as a strict matrix deciding factor. From

Eq.(4.10), it is understood that calculating δk for any m × n matrix is a combinatorial task that

becomes computationally intensive when n is large. However, to get an understanding of how the

Φ matrices compare to one another with respect to probability of reconstruction (spatial domain),

n is kept small and δk is numerically calculated for k = 1, · · ·4. Specifically, Ξ = [0, 5]m−1 is

chosen as the frequency range with a resolution of 0.01m−1. The individual spatial frequencies are

therefore, ξi = 5 (i − 1)/(n − 1), n = 51, i = 1, 2, · · ·n. The measurement matrices are: Φ1 ∈

Rm×n containing only sine functions, Φ2 ∈ Rm×2n containing both sine and cosine functions,

and (Φ3 and Φ4) ∈ Rm×4n containing sine, cosine, sinh and cosh functions. The Φ3 and Φ4
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matrices are constructed as follows:

Φ3 =



















sin(2πξ1x1) · · · sin(2πξnx1) cos(2πξ1x1) · · · cos(2πξnx1)

sin(2πξ1x2) · · · sin(2πξnx2) cos(2πξ1x2) · · · cos(2πξnx2)

...
...

...
...

...
...

sin(2πξ1xm) · · · sin(2πξnxm) cos(2πξ1xm) · · · cos(2πξnxm)

· · ·

· · ·

sinh(2πξ1x1) · · · sinh(2πξnx1) cosh(2πξ1x1) · · · cosh(2πξnx1)

sinh(2πξ1x2) · · · sinh(2πξnx2) cosh(2πξ1x2) · · · cosh(2πξnx2)

...
...

...
...

...
...

sinh(2πξ1xm) · · · sinh(2πξnxm) cosh(2πξ1xm) · · · cosh(2πξnxm)



















.

(5.33)

Φ4 =



















sin(2πξ1x1)− sinh(2πξ1x1)− cos(2πξ1x1) + cosh(2πξ1x1) · · ·

sin(2πξ1x2)− sinh(2πξ1x2)− cos(2πξ1x2) + cosh(2πξ1x2) · · ·

...
...

sin(2πξ1xm)− sinh(2πξ1xm)− cos(2πξ1xm) + cosh(2πξ1xm) · · ·

· · ·

· · ·

· · · sin(2πξnx1)− sinh(2πξnx1)− cos(2πξnx1) + cosh(2πξnx1)

· · · sin(2πξnx2)− sinh(2πξnx2)− cos(2πξnx2) + cosh(2πξnx2)

...

· · · sin(2πξnxm)− sinh(2πξnxm)− cos(2πξnxm) + cosh(2πξnxm)



















.

(5.34)

The results of δk for k ranging from 1 to 4, i.e. sparse vectors that have from 1 to 4 non-zero entries

are illustrated in Fig.(5.34). In each case, although the number of frequencies remains the same,

the size of Φ varies. In the first case, Φ1 contains only sine components of all the frequencies.

The matrix is well conditioned with δk showing steady reduction as the number of random samples

m increases. This led to high probability of accurate ODS reconstruction for a simply-supported
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beam with few data points. The performance of Φ2 is very similar to that of Φ1. This is expected

since sine and cosine functions are bounded and periodic with similar magnitudes.
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Figure 5.34: Variation of δk with m for different measurement matrix Φ

The matrix Φ3 presents a more complicated case. It can be observed that in contrast to Φ1 and Φ2,

all the calculated δk’s are integer values and non-decreasing, indicating a computational shortcom-

ing. This can be attributed to the presence of hyperbolic components in Φ3. These unbounded and

non-periodic functions contribute to the ill-conditioning of the matrix, thus leading to inexact or

failure of reconstruction in the ODS reconstruction of a cantilever beam. Recall from Section 5

90



that for the cantilever beam, the frequency range of the hyperbolic functions was reduced and this

helped in improving the probability of accurate reconstruction.

Effects of Incorporating Boundary Conditions in CS-Based Vibration Problem

This section explores the use of boundary conditions to potentially reduce the number of data

points in reconstructing the ODS of a given beam. Consider a fixed-fixed (FF) beam as shown in

Fig.5.35. It is harmonically excited at a = 0.2 by a harmonic forcing, f(t) = 5sin20t.

0)0(

0)0(

=′

=

y

y

0)(

0)(

=′

=

Ly

Ly

L = 1x = 0

a = 0.2

x = L

EI modified in this region

f = 5sin(ωf t)

Figure 5.35: FF Beam schematic representation

Any given beam has four boundary conditions that govern its characteristic equation. For the

FF beam represented above, the boundary conditions (BCs) are listed on the schematic itself.

These BCs imply that either end of the FF beam have zero displacement and zero slope. When

incorporated into the standard beam equation, the BCs give rise to a set of four equations. These

are listed below:

Wn(x) = C1sinβnx+ C2cosβnx+ C3sinhβnx+ C4coshβnx (5.35)
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At x = 0 of the beam,

Wn(0) = C1sinβn0 + C2cosβn0 + C3sinhβn0 + C4coshβn0 = 0 (5.36)

W ′

n(0) = C1βncosβn0− C2βnsinβn0 + C3βncoshβn0 + C4βnsinhβn0 = 0 (5.37)

At x = L of the beam,

Wn(L) = C1sinβnL+ C2cosβnL+ C3sinhβnL+ C4coshβnL = 0 (5.38)

W ′

n(L) = C1βncosβnL− C2βnsinβnL+ C3βncoshβnL+ C4βnsinhβnL = 0 (5.39)

Recall that the CS problem is essentially the l1 minimization of an under-sampled signal from

random, linear and non-adaptive measurements. In other words, for a system represented by an

under-determined set of equations (where the number of equations are less than the number of

unknowns), the solution to CS problem is one that has the least l1 norm. As seen previously on nu-

merous occasions, as the number of measurements increase, the reconstruction error drops, owing

to the probabilistic solution tending toward a more definitive one. In this context, the information

from boundary conditions may be treated as four measurements in addition to those taken at ran-

dom points along the length of the beam. In the spatial domain, each measurement corresponds

to a sensor placed on the beam. Hence, this investigation is important because it allows for four

additional measurements without the use of four more sensors. The corresponding measurement

matrix Φ and measurement vector z are as given below:
s

z =

[

0(y(0)) z1 z2 · · · zm 0(y(L)) 0(y′(0)) 0(y′(L))

]

(5.40)
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Φ =

































sin(2πξ1x1) · · · sin(2πξnx1) cos(2πξ1x1) · · · cos(2πξnx1)

sin(2πξ1x2) · · · sin(2πξnx2) cos(2πξ1x2) · · · cos(2πξnx2)

...
...

...
...

...
...

sin(2πξ1xm) · · · sin(2πξnxm) cos(2πξ1xm) · · · cos(2πξnxm)

0 · · · 0 2πξ1 · · · 2πξn

−2πξ1sin(2πξ1L) · · · −2πξnsin(2πξnL) 2πξ1cos(2πξ1L) · · · 2πξncos(2πξnL)

































(5.41)

Figure 5.36 shows four plots, each illustrating the effect of incorporating boundary conditions of

the FF beam while solving the CS problem. Four cases of ODS reconstruction were examined - FF

beam without structural changes and FF beam with three degrees of severity of structural change.

Recall that structural change in the FF beam is introduced by simulating change in stiffness co-

efficient (EI) over certain number of elements of the finite element model. For each of the four

cases, the ODS was reconstructed for varying number of measurements and the average l2 error

was calculated over 100 trials. It is important to note that the CS problem (ODS reconstruction)

with BCs included always had four more measurements. For instance, for the CS problem without

BCs, when m = 10, the same problem with BCs was solved using m = 10 + 4 measurements.

From Fig.5.36, it can be observed that incorporating BCs did not greatly influence in bringing

down the reconstruction error. In fact, while setting up this exploration, it was expected that the

BCs may not play a significant role when the number of measurements was already sufficient or

sufficiently high to solve the CS problem. The region of focus was, therefore, when the number

of measurements was lower than optimal, i.e. when m < kln(n
k
). Specifically, with respect to

the FF beam considered here, the minimum number of measurements is approximated at m ≈ 15.

And, for m < 15, including BCs for solving the CS problem does help in reducing the reconstruc-

tion error, because it essentially increases the number of measurements without actually having to

”measure” the amplitude at those points. However, this reduction in error is not significant enough

to noticeably improve the ODS reconstruction.
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CHAPTER 6: CONCLUSION

This research shows the application of CS in vibration-based monitoring of mechanical structures.

To demonstrate its viability, this study focuses on lateral vibration of fundamental beams such as

simply-supported, fixed-fixed and cantilever beams. Recovery of natural frequencies from free

vibration data using CS is demonstrated, which enables detecting structural changes in the corre-

sponding beam. The inherent sparsity in frequency domain is exploited by CS to enable accurate

recovery from random and under-sampled data. Subsequently, CS is extended to spatial domain

and used to reconstruct ODS from random spatially distributed vibration data. This step can po-

tentially help localize any structural change. Here again, sparsity of mode shapes is utilized by CS

to deliver accurate reconstruction with limited sensing.

In addition to simulation results that demonstrated the feasibility of CS-based detection and lo-

calization of structural changes, preliminary experimental validation for detecting shift in natural

frequencies of a cantilever beam is presented. CS-based recovery was tested for two configurations

of structural change (tip and mid-length), each with six different values of added mass. The shift in

natural frequencies thus produced, followed a trend similar to that expected due to varying levels of

damage/structural change. In these experiments, CS based recovery was feasible without explicit

formulation for handling of noise in the ℓ1 minimization problem. Also, filtering of noise was

not required. However, more complex structures may have amplitudes of vibration comparable to

noise, which might warrant explicit formulation of noise in the ℓ1 minimization problem.

With this in view, the performance of CS-based recovery and reconstruction with a formulation for

handling noise was examined for three cases - sinusoidal signal with multiple frequencies (simula-

tion), SS beam temporal domain free vibration response (simulation) and cantilever beam temporal

free vibration response (experimental). In simulation, the effect of noise formulation was evalu-
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ated by varying the SNR, while in the experimental result, the effect was evaluated by varying the

number of measurements. This provided a quantitative understanding of including noise handling.

Boundary conditions of a beam provide valuable information about its configuration and play a de-

cisive role in its characteristic equation. The effect of incorporating this information while solving

the CS problem is also explored, using a FF beam.

Designing a suitable measurement matrix is an important part of successfully solving any CS prob-

lem. When extended to the spatial domain or ODS reconstruction, the measurement matrix will

depend on the boundary conditions of the beam under consideration. In the presence of hyperbolic

components in the spatial domain response, the measurement matrix Φ has to be modified to han-

dle numerical inconsistencies that stem from the unboundedness of such terms. Following this,

two approaches for designing a suitable Φ for reconstructing the ODS of a cantilever beam was

investigated.

Future Scope of this Research

Formulation of compressive sensing for mechanical vibrations is in its nascent stages. In fact,

during this research, it was quite evident that the literature on this topic and related challenges was

scarce. This work provides a fundamental and initial effort in formulation of CS-based vibration

monitoring and diagnostics, and further research is needed in many fronts. Listed below are some

aspects of CS and CS-based vibration monitoring problems that will be examined as an extension

of this work. Some of this work was derived from an NSF proposal that was submitted as a result

of this research.

Improving the Restricted Isometry Property (RIP) of measurement matrix in the presence of

hyperbolic components: In section 5, two approaches to designing a suitable measurement matrix

Φ were discussed in detail. However, investigation into these approaches opened a wider avenue
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of research. Further exploration of different ways of combining the hyperbolic terms in formu-

lating the Φ will be discussed and their performance evaluated. Approximation of the modeshape

equation for a cantilever beam will also be looked into.

Extension to complicated structures: The work in this dissertation was focused on developing

the fundamental framework for CS-based vibration monitoring and diagnostics for mechanical

structures. While this work entailed standard beams (simply supported, fixed-fixed and cantilever),

realization of this work outside laboratory environment mandates its extension to more complicated

structures. This will be an important aspect of future work.

Quantifying the location of structural change: A standard procedure for locating fault from

deflection must be established. One way is to numerically compute the absolute curvature along

the beam-span, κ = |y′′|/(1 + y′2)3/2, from the reconstructed deflection and identify peaks in its

distribution.

Synchronization of sensor-data by using data-packets: As mentioned before, spatial data will

inevitably be staggered in time, at least to a small extent. This will be a source of reconstruction

error. One way to address this, without significantly increasing the volume of data, is for sensors

to transmit a small packet of equispaced data instead of a single value. Then, by finding the

overlapped interval [t1, t2] from all data-packets, the deflection at each sensor-location at t̄ ∈ [t1, t2]

can be found by averaging.

A Unified Spatio-temporal Compressive Sensing Framework: The goal of this task is to address

the temporal (frequency recovery) and spatial (deflection reconstruction) problems within a unified

framework. The approach will allow a greater flexibility in the use of data from sensors that

are spatially distributed along a structure. The framework will be particularly useful when data

obtained are simultaneously randomized in space and time.
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