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ABSTRACT 

Prediction of flutter in shrouded turbomachinery cascades is difficult due to i) coupling of 

aerodynamic drivers and structural dynamics of the cascade through shrouds, and ii) presence of nonlinear 

dry friction damping as a result of relative motion between adjacent shrouds.  An analytical framework is 

developed in this dissertation to determine flutter stability of shrouded cascades with consideration of 

friction damping.  This framework is an extension to the well-established energy method, and it includes 

all contributing factors affecting stability of the cascade such as aerodynamic excitation and the stabilizing 

effects of dry friction damping caused by nonlinear contact forces between adjacent blades.   

This framework is developed to address a shortcoming in current analytical methods for flutter 

assessment in the industry.  The influence of dry friction damping is typically not included due to 

complexity associated with nonlinearity, leading to uncertainty about exact threshold of flutter occurrence.  

The new analytical framework developed in this dissertation will increase the accuracy of flutter prediction 

method that is used for design and optimization of gas turbines. 

A hybrid time-frequency-time domain solution method is developed to solve aeroelastic equations 

of motion in both fluid and structural domains.  Solution steps and their sequencing are optimized for 

computational efficiency with large scale realistic models and analytical accuracy in determining nonlinear 

friction force.  Information exchange between different domains is used to couple aerodynamic and 

structural solutions together for a comprehensive and accurate analysis of shrouded cascade flutter problem 

in presence of nonlinear friction. 

Example application to a shrouded IGT blade shows that the influence of nonlinear friction 

damping in flutter suppression of an aerodynamically unstable cascade is significant.  This is in line with 

previous research that has found stabilizing effects of friction damping in forced response applications.  

Comparison with limited engine test data shows that at observed vibration amplitudes in operation friction 
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damping is sufficient to overcome aerodynamic excitation of this aerodynamically unstable cascade, 

resulting in overall cascade stability. 

Development of this method is significant because it allows analytical prediction of flutter stability 

in presence of nonlinear friction damping.  This capability will improve design and optimization process of 

gas turbine critical components, leading to more efficient and robust designs that ultimately increase engine 

efficiency and improve durability. 
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CHAPTER ONE: INTRODUCTION  

Gas turbines are used extensively in aerospace and power generation industries to convert large 

amounts of fossil fuels into usable mechanical power to propel airplanes and power electrical generators.  

Due to their extensive use, even a small increase in the rate of conversion efficiency can have large impact 

on overall consumption of fossil fuels. 

Associated technologies such as internally cooled components and advanced materials and coatings 

have developed at an accelerated rate over the past 70 years since the inception of first generation gas 

turbines.  Advances in analytical and design methods have also taken place, made possible by emergence 

of computers and near exponential increase in computational power.  Modern day gas turbines feature much 

higher efficiency and durability compared to their predecessors, made possible by usage of analytical and 

computational methods such as CFD and FEM during design process. 

Despite all advances to date, both aerospace and power generation industries face continuous 

market demand for increased efficiency, higher output, and lower costs.  Recent awareness about the effects 

of greenhouse gases such as CO2 on the earth atmosphere has increased the demand for more efficient gas 

turbines, in an attempt to reduce production of greenhouse gases.  Increased environmental regulations have 

placed strict caps on emissions of harmful byproducts of combustion such and NOx and CO, requiring 

advanced combustion system technologies to meet these regulations. 

With the above considerations, the focus of gas turbine industry is to cost effectively optimize and 

improve current and future designs to achieve even higher efficiency and lower emissions.  Gas turbine 

optimization at cycle level and component level is an ongoing effort, with major OEM’s historically 

offering improved designs in 10-15 year long cycles.  Several strategies are used for increasing engine 

efficiency and output, such as increase in turbine inlet temperature, increase in compressor and turbine 

efficiency, and increase in mass flow through the engine.  Each stage of compressor and turbine is 

comprised of a static and a rotating cascade, and it is optimally designed to achieve highest possible 
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aerodynamic efficiency and flow capacity.  However, design of turbomachinery cascades is a delicate multi-

constrained problem that is often over constrained.  Each parameter affecting aerodynamic efficiency also 

has an impact on structural integrity or other design requirements, therefore making the design function of 

multiple competing considerations.  As an example, stage maximum solidity (maximum metal to air ratio) 

is a well known parameter that impacts both aerodynamic and structural objectives.  Reducing solidity 

provides aerodynamic benefits by reducing flow blockage; however, it also reduces cross sectional area and 

stiffness of a rotating component, adversely affecting multiple structural issues.  Therefore optimization of 

aerodynamic efficiency is directly (and often adversely) related to optimization of structural and durability 

requirements. 

Multiple issues play a prominent role in structural design and durability of turbomachinery 

cascades, such as creep and plasticity, vibration and dynamics, and thermally induced fatigue and crack 

growth.  Most of these phenomena have been researched over many years of gas turbine development and 

are well understood.  By correlating test data from laboratory measurements with analytical models 

simulating the physics of the problem, methods have been developed and are currently available to properly 

design cascades and avoid most of these failure modes.  Vibration and dynamics is one of the more difficult 

issues in design of new cascades, and itself includes two major categories: forced response (or engine order 

vibration), and self-induced vibration also known as flutter.  Cascade instability due to flutter is amongst 

the least understood and most difficult phenomenon to predict, mostly due to coupling and interaction 

between aerodynamic and structural forces and difficulty in reproducing a fully representative environment 

for testing.  It is also a substantially consequential issue in case of an unsuccessful design that can adversely 

affect development cycle of a new product due to cost and schedule impact associated with redesign or an 

engine failure. 

Therefore proper design for (avoidance) of flutter is a high priority design objective in development 

of new turbomachinery cascades.  While many tools have been developed over years with varying levels 
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of sophistication and computational efficiency, there is still a need to increase the accuracy of current flutter 

analysis methods for shrouded cascades. 

In addition to design of new engines, another method to meet market demands of the future is to 

upgrade and optimize existing engines.  This method is less capital intensive due to the large investment 

required for construction of new engines, especially in the IGT field.  A typical path to more power output 

and more efficiency with minimal investment in new casting tooling is to increase engine mass flow and / 

or turbine inlet temperature of an existing engine, without major aerodynamic redesign of the cascades.  

Increase in turbine inlet temperature, however, is contradictory to emissions objectives since increasing 

flame temperature leads to increased NOx production and regression on environmental objectives.  Increase 

in engine air flow remains one viable path to achieving market demands for cleaner and more efficient 

power, but challenges with accurate prediction of flutter and aeroelastic instability of shrouded cascades 

remain.  These challenges relate to destabilizing effect of increased mass flow on flutter boundaries, and 

accurate prediction of these boundaries which is the primary focus of this dissertation. 

1.1 Turbomachinery Flutter 

Aeroelasticity is the science of studying the interaction between aerodynamic forces and elasticity 

of the structure, i.e., deflection due to applied force.  There are three major branches in aeroelasticity that 

have significantly contributed to understanding the underlying physical phenomenon and resolving 

associated design issues in aerospace structures and turbomachinery.  This classification is mainly based 

on the nature of the applied aerodynamic loads. 

i) Static aeroelasticity is the interaction between static (steady state or zero-frequency) 

aerodynamic forces (such as steady state lift and moment on an aircraft wing), and the 

structure’s response (bending, twist, or deflection in general).  In-flight mean deflection of 

an aircraft wing due to lift and moment of a steady air stream is an example of static 
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aeroelasticity problem.  Static aeroelasticity is also concerned with the feedback loop 

between control surfaces, structural deflections, and “as deflected” lift and moment.  These 

issues can cause flight control anomalies such as control reversal of wing ailerons.   

ii) Dynamic aeroelasticity or flutter is the interaction between dynamic (unsteady or time 

variable) aerodynamic, intertia, and elastic forces.  In-flight vibration of an aircraft wing, 

or buffeting, is an example of dynamic aeroelasticity phenomenon.  Since flutter can result 

in catastrophic failure of aerospace structures, significant analytical efforts are spend to 

understand and avoid it.  Due to complexity of flutter, it has been an on-going research 

field in aerospace structures. 

iii) Turbomachinery flutter is a subset of dynamic aeroelasticity that is concerned with flutter 

of compressor and turbine cascades in turbomachines.  Such cascades are typically 

comprised of a number of identical airfoils assembled on a rotating flexible disk.  The 

airfoils maybe cantilevered style supported only at the root as shown in Figure 1 (a), or 

they may feature part span and/or full span shrouds as shown in Figure 1 (b).  The shrouds 

provide additional contact between airfoils at part span or full span.  The nature of 

aerodynamic loads in turbomachinery flutter is harmonic (repeating pattern) due to 

continuous passing of rotating airfoils, known as blades or buckets, in front of repeating 

passages formed by upstream stationary airfoils, known as vanes or nozzles. 
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Figure 1: a) Cantilevered compressor blades b) Shrouded turbine blades 

There are many similarities and differences between aeroelastic characteristics of an isolated 

aircraft wing and a cascade of airfoils.  Therefore the science of turbomachinery flutter has grown in 

parallel, but separate from the science of aircraft wing flutter.   

Similarities include flexible airfoil(s) in a high velocity fluid stream where unsteadiness and 

turbulence associated with the fluid interacts with structural dynamics of the structure by exciting one or 

more of the structure’s natural mode shapes. 

The differences include multiple aspects than mainly relate to repeating passages and annulus 

nature of the flow in turbomachinery applications.  One is the difference between incoming airstream in 

isolated wing versus the flow in cascades.  An isolated wing is typically subjected to a steady airstream as 

an input boundary condition.  This steady air stream may interact with motion of the wing, but it is steady 

before reaching airfoil leading edge.  In a cascade, incoming air stream is inherently unsteady and turbulent 

due to flow passing though upstream passages.  This unsteady flow is in form of repeating waves of velocity 

and pressure profiles that oscillate between minimum and maximum values, associated with trailing edge 

and center of upstream passages as the rotor turns and airfoil moves from one passage to the next. 

Another differences between turbomachinery flutter versus wing flutter is the aerodynamic and 

structural influence of neighboring airfoils in the cascade.  In shrouded cascade, coupling caused by 

contacting shrouds and traveling wave pattern of vibration are a major influencing factor.  Nonlinear friction 
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and contact between adjacent blades introduce additional difficulty in shrouded cascade flutter.  Friction 

related problems are typically researched in forced response applications due to relative simplicity 

compared to flutter. 

While forced response and flutter have many commonalities as aeroelastic instabilities, there are 

also distinctive differences.  Forced response is response of a structure to an external forcing function.  

Therefore, frequency and magnitude of the excitation (forcing function) are external to the structure.  They 

are either known or can be readily calculated.  Accurate prediction of natural frequency is the most 

important aspect of the analysis in a forced response analysis because of sharp slope of response in the 

vicinity of resonance, where the ratio of forcing frequency to natural frequency determines margin to 

resonance.  Flutter is response of a structure due to self-induced excitation.  Therefore it always happens at 

the resonance and margin to resonance is by definition zero (forcing frequency = natural frequency).  In a 

flutter analysis, total system damping is the most important parameter that determines system stability and 

response.  Total system damping is related to imaginary forces in equations of motion, and is associated 

with work interaction within the system.  If a system has a total damping that is negative in value, in a 

mathematical sense it is equivalent to an ever expanding exponential function.  Therefore such a system 

would be mathematically unstable.  In practice, value of damping is not a constant number and it depends 

on instantaneous work interaction within the system.  Total system work interaction can be attributed to 

aerodynamic work interaction caused by energy exchange between the fluid and the structure, and 

mechanical dissipation within the structure as a result of vibrating motion.  Therefore sum of both 

components of total work interaction and not any single one of them alone determines overall cascade 

response and stability. 

 As the primary focus of this dissertation is overall stability of shrouded cascade, both components 

of work interaction are explored in detail to aid in development of a new analytical framework for flutter 

stability.  Aerodynamic work interaction is briefly discussed in section 1.2 and in more details in 2.3 and 
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2.4.  Similarly, mechanical dissipation due to friction is discussed briefly in sections 1.3 and in details in 

2.6 and 2.7. 

1.2 Aerodynamic Work Interaction 

The most prominent indicator of aeroelastic instability in turbomachinery cascades is the work 

interaction between the fluid and the structure.  If the fluid extracts work from the structure, any motion 

resulting from an initial perturbation of the structure will be damped by combination of work extraction by 

the fluid and work dissipation within the structure.  Therefore, there are no concerns regarding self-

excitation and such a cascade is fully stable.   

If the structure extracts work from the fluid, on the other hand, any small perturbation has the 

potential of becoming an uncontrolled catastrophic failure due to the following mechanism.  After a small 

vibrating motion initiates as a result of an initial perturbation, small amount of energy is extracted by the 

structure from the fluid over one full cycle of oscillation.  The fluid has near infinite supply of energy due 

to moving stream of the flow; therefore impact on the fluid from this phenomenon is minimal and 

unnoticeable.  On the structure side, the system has a limited capacity for storing energy in form of vibrating 

motion and associated kinetic and elastic energies.  During each half cycle of vibration, this stored vibratory 

energy in the structure undergoes transformation from kinetic energy (associated with mass and velocity of 

the structure) to elastic energy (associated with spring like elastic deflection of the structure).  When small 

amount of work is extracted from the fluid over a full vibration cycle, this work adds to the existing system 

energy and carries over to the next cycle such that the subsequent cycle will have slightly more energy 

stored in the system.  As a result, velocities and deflections associate with the vibrating motion increase 

slightly in amplitude.  Since aerodynamic work interaction is itself a function of amplitude of motion, 

increase in amplitude over previous cycle results in slightly more energy extraction during each subsequent 

cycle.  This trend continues with each cycle and not only the initial vibrating motion due to perturbation 
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does not die down, its amplitude increases over each cycle as more energy gets extracted from the fluid and 

stored in the structure with increasing vibration amplitude.  If the energy continues to accumulate within 

the structure as the vibration amplitude increases by each cycle, eventually vibratory stresses that are related 

to vibration amplitude will exceed the material HCF capability and result in premature blade failure during 

operation. 

Blade failure in turbomachinery is a catastrophic event and its avoidance is a first tier design 

requirement above and beyond any other design objective.  Any single blade failure is immediately 

accompanied by failure of the entire cascade and any downstream cascades due to restricted spacing 

between components and large inertia associated with the rotor assembly and high operating RPM.  This 

event will likely result in loss of the engine or some of its major components, catastrophic damage to nearby 

components and structures, and loss of propulsion power in case of aerospace engines. 

Therefore significant engineering effort is invested in making flutter free turbomachines.  Accurate 

prediction of the aeroelastic interaction between the fluid and the structure and aerodynamic stability of 

cascade has been the subject of much research and progress, which will be outlined in section 2.2 through 

2.4.  Despite this progress, difficulties still exist in predicting accurate flutter boundaries in shrouded 

cascades due to complexity associated with friction and nonlinearity.  Another difficulty is lack of a fully 

representative test rig that includes all complicated and influencing factors associated with shroud contact 

and vibrating pattern of the rotating cascade during operation.   

1.3 Friction in Turbomachinery Applications 

Underlying physical phenomenon that causes flutter can be summarized as energy (or work) 

extraction by the structure from the fluid.  However, aerodynamic work interaction is not the only 

determining factor in occurrence of flutter.  In practice, some cascades may have a slight amount of negative 
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work interaction with the fluid (aerodynamic excitation), but have enough mechanical damping present to 

overcome the energy extracted from the fluid and dampen the motion associated with an initial perturbation.   

A mechanical system in absence of any fluid interaction is always self-damping.  When fluid 

interaction is introduced in a vibrating airfoil, work on the structure by unsteady pressure and surface 

velocity of the airfoil maybe either negative or positive.  If aerodynamic work interaction is negative (i.e., 

the structure does not extract but dissipates energy into the fluid), net aerodynamic effect over a full cycle 

is dissipative.  In this case, aerodynamic damping is positive and it increases damping effects of the 

mechanical damping.  This condition is obviously the most desirable in a cascade design but due to multiple 

other design objectives it is not always possible.  Such competing objectives may include aerodynamic 

efficiency of the cascade, weight target, or other specific design requirements. 

In the case of such aerodynamically unstable cascade, the outcome of cascade stability in addition 

to aerodynamic work interaction depends on the magnitude of mechanical work dissipation as a result of 

vibrating motion of the structure.  If the magnitude of mechanical dissipation exceeds the magnitude of 

aerodynamic excitation resulting from an initial perturbation, the vibrating motion will be damped and 

eventually die out.  If the magnitude of aerodynamic excitation exceeds the magnitude of mechanical 

dissipation, energy begins to accumulate within the structure and the amplitude of motion increases by each 

cycle.  As energy is stored and vibration amplitude increases, eventually vibratory stresses that are related 

to vibration amplitude will result in blade failure. 

Therefore when a cascade design is aerodynamically unstable, mechanical damping and its 

magnitude is the determining factor in cascade stability.  Two sources of mechanical damping are identified 

in literature.   

i) Internal material damping is known as viscous damping and it is treated as an inherent 

property of material.  This component of mechanical damping is represented by linear 

damping matrix [C] in equations of motion.  In a SDOF system, damping ratio is defined 
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as the ratio of system damping to critical damping where a vibrating system transitions to 

fully damped system. 

ii) Dry friction damping is the result of relative rubbing motion and friction between surfaces 

that are in contact, also known as non-viscous or Coulomb damping.  This component of 

mechanical damping is much more complicated and it is a property of contact interface 

material as well as operating conditions such as loads acting on the contact.  Furthermore, 

due to inherent nonlinearity of friction, dry friction damping is a nonlinear function of 

displacement and amplitude of vibration.  Introducing nonlinearity significantly 

complicates all aspects of already complicated aeroelastic equations of motion, to the point 

that nonlinear friction damping is typically omitted from flutter related analytical work 

flow or approximated by a constant value.  Neither representation is adequate in fully 

predicting cascade stability boundaries, as it will be shown in this dissertation. 

1.4 Motivation 

To meet future market demands, current turbine design trends are towards higher cycle efficiency 

and power output by means of increased mass flow through the engine and more efficient turbine stages.  

These trends are therefore moving towards taller, thinner, and highly loaded blade designs.  All of these 

design trends also have destabilizing effects on cascade flutter stability.  Design challenges are always 

exacerbated on the last stage turbine blade since the expansion path of the primary flow through the turbine 

naturally makes the last stage the tallest blade with the lowest natural frequency.  Last stage also has a high 

pressure ratio, which provides for a highly loaded blade with transonic exit velocity.  Due to low natural 

frequency and high fluid velocity, last stage turbine and first stage compressor blades have historically been 

susceptible to aerodynamic instabilities such as flutter and limit cycle oscillation.  Most significant design 

and operating parameters influencing flutter boundaries are natural frequency of the blade, and fluid 
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velocity.  Therefore, with taller (lower frequency) and highly loaded blades (higher exit velocity), current 

industry trends constantly approach (and sometimes exceed) experimentally established flutter limits. 

Over many years of gas turbine development, tools and methods have been developed and used 

extensively to design for (avoidance) of aerodynamic instabilities.  However, major issues still exist with 

these tools since they are mostly empirical based and cannot definitively predict occurrence of flutter.  

Existing tools are based on linearized structural and aeroelastic equations, and they only consider 

aerodynamic work interaction.  Mechanical damping is a major complicating factor that is not included in 

current flutter analysis methods. Full consideration of mechanical damping requires analysis of cyclic 

symmetrical cascade structure with nonlinear shroud friction force and time varying shroud contact normal 

force, which is not possible for large scale models with methods currently available.  Therefore current 

flutter analysis methods lack fidelity in accurately predicting flutter boundaries with consideration of all 

influencing parameters. 

Due to the catastrophic nature of an engine failure resulting from flutter (with capital loss associated 

with a single event often in tens of millions of dollars, in addition to redesign costs, brand damage, etc.), 

there is an overriding design requirement to avoid any such event.  Since current analytical tools and 

methods cannot fully predict flutter boundaries and the associated risk of high cycle fatigue, validation of 

new designs is typically accomplished in the operating environment of an engine via costly instrumentation 

and testing campaigns.  At this stage of project, when the new design is developed and tested in an engine, 

major expenses associated with engineering and procurement cycle have already been incurred in design 

and manufacturing of the hardware.  If flutter problems are discovered at this stage, major schedule impact 

and redesign expenses are involved.  Therefore, there are strong financial incentives in the industry to detect 

and diagnose any potential flutter issues in design stage of a project (when changes can be made much more 

cost effectively) and not during the validation phase. 
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With cascade design trends approaching and sometimes exceeding experimentally established 

flutter boundaries, there is a need for an accurate analytical tool to achieve the above goal and avoid large 

expenses associated with a non-successful product.  Such tool must be capable of considering all factors 

involved in this complex phenomenon and ensure flutter free operation of the cascade while simultaneously 

allowing for optimization of all other objectives and requirements. 

Despite this need, there is much complexity associated with flutter prediction of shrouded turbine 

blades that has prevented development of a fully inclusive analytical tool.  From aerodynamic perspective, 

there are many challenges associated with accurate prediction of unsteady pressure around the vibrating 

blade and the mutual effects of the structure and the fluid on each other and on the work relationship 

between the two domains.  With most of research in flutter focused on aerodynamic aspects, many of these 

challenges have been overcome over past 20 years and currently there are reliable and computationally 

efficient methods available to determine aerodynamic work interaction. 

In case of shrouded blades (full or part span) another complexity that effects stability of the cascade 

is presence of the shrouds which form a continuous, interlocked ring around the blades during operation.  

The resulting cyclic symmetric structure created by the disk, blades, and the ring of the interlocked shrouds 

is subject to traveling wave phenomenon and vibration in distinct nodal diameter patterns (see Figure 6).  

Aerodynamic and mechanical aspects of the cascade flutter are related to the particular nodal diameter mode 

of vibration and can mutually affect each other through frequency, mode shape, and amplitude of vibration.  

There are also the complexities associated with nonlinear friction forces between neighboring blades in the 

cascade.  Inclusion of nonlinearity in equations of motion presents a great difficulty in solving these 

equations since most available methods for solving vibration and aeroelastic problems are linear. 

In addition to general nonlinearity caused by friction, there are other complexities with shrouded 

cascade flutter that need to be considered for a complete formulation of the physical phenomenon.  These 

factors include the following: 
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- Contact interface loads acting on contact surfaces, their variations during the vibration cycle and 

effects on friction force 

- Stick-slip condition at the contact interface between adjacent shroud tips and its influence on 

cascade mode shape 

- Influence of variations in contact parameters (such as tangential stiffness and coefficient of 

friction) on cascade stability 

While there has been much recent research and progress in the science of flutter prediction, most 

have focused on aerodynamic work interaction.  Mechanical damping is either entirely ignored or 

represented by a constant value in flutter application.  Mechanical damping in turbomachinery has been 

mostly researched in the context of forced response analysis, which is a simpler problem than flutter because 

frequency and amplitude of external drivers are known.  It has been shown in forced response research that 

mechanical damping is not constant and system response varies based on amplitude of drivers.   

Therefore, full consideration of nonlinear mechanical damping in a flutter application will enable 

more accurate prediction of cascade stability, which is not possible with current analytical method.  The 

objective of this dissertation is to create an analytical framework that eliminates this limitation with current 

method, as discussed in details in section 1.5. 

1.5 Objectives 

Considering the shortcomings of current state of the art flutter prediction method for shrouded 

cascades, there is a strong benefit in developing a more advanced method that is capable of including all of 

the complicating factors affecting the overall cascade stability. 

Overall objective of this dissertation is to create a framework of analysis for determining cascade 

stability with consideration of aerodynamic work interaction, shroud coupling, nonlinear friction damping, 
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and related factors.  However, due to enormous complexities associated with this problem, the overall 

objective is divided into four related objectives which collectively enable the above goal. 

Objective 1:  Develop a method to evaluate mechanical work dissipation associated with friction 

forces at the shroud during a single vibration cycle for arbitrary amplitude. This method must take into 

consideration nonlinear stick-slip condition at the interface which is amplitude dependent, in addition to 

time variability of contact forces between the adjacent blades during the vibration cycle.  Development of 

this method enables calculation of work dissipation within the cascade during one cycle and increase in 

kinetic energy of next cycle.  Details of development of this method are discussed in section 3.4.   

Development of this method is also one novelty aspect of this dissertation.  While flutter problem 

with nonlinear friction has been researched before with under-platform dampers and SDOF models, no 

prior research is conducted with effects of friction damping on shrouded cascade flutter and with large scale 

models.  Under-platform damper is a simpler problem because operating loads on the dampers are constant 

(centrifugal loads due to rotation).  Shrouded blade friction is more complicated problem as it will be 

discussed in section 2.7, with variations of contact normal load during the cycle of vibration and contact 

condition effects on the mode shape.  

Objective 2: Develop a framework for calculation of flutter stability based on combined time and 

frequency domain solutions to fluid and structural models, and overall work exchange of the system.  This 

framework considers both aerodynamic work interaction and mechanical damping as calculated in objective 

1 to evaluate amplitude of vibration during multiple cycles based on net energy in or out of the cascade and 

determine cascade stability.   

This objective is another novelty aspect of present dissertation.  While the aeroelastic analysis 

aspect of this method is currently available, the existing method can only consider linearized system 

damping for shrouded cascades.  Novelty aspect in this dissertation is that the additional work flow 
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highlighted in red box in Figure 2 enables consideration of nonlinear frictional damping, which is shown 

to be significant. 

 

Figure 2: Analytical framework for flutter analysis of shrouded cascades 

This objective is discussed in detail in chapter 3.5. 

Objective 3: Apply this method to a large scale, full fidelity analytical model of an actual IGT 

component.  Show information exchange and intermediate steps that are involved to illustrate inputs and 

outputs of each step.   Purpose of this objective is to demonstrate applicability of this method to a real life 

case with reasonable computational time, and it is discussed in detail in section 4.  

Addressing this objective requires use of a blade design for computational domain since all 

analytical steps are numerical and highly dependent on geometry.  A model of an actual last stage IGT 

blade, proprietary of Power Systems Mfg. has been used for this purpose.  Tip timing data of engine 

validation testing of this blade are available, however an organized flutter response was not observed in the 

operating range of the engine during the test.  Therefore the data is of limited use for establishing exact 
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stability limit since cascade was always stable.  Despite limitations, data will be used as much as possible 

to correlate with analytical predictions. 

Objective 4: Conduct trade study of contact interface parameters such as tangential stiffness and 

coefficient of friction to demonstrate impact of each on overall aeroelastic stability of the system.  Prior 

research into contact interface parameters shows that a wide tolerance band can be expected, and its 

influence on the response is often significant.  Purpose of this objective is to allow cascade designers to 

understand contact parameter effects and make adjustments in the design phase as desired by proper 

selection of interface material and coating. 
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CHAPTER TWO: LITERATURE REVIEW  

Flutter is a complex interaction between aerodynamic and structural forces, resulting in excessive 

vibration amplitude and catastrophic failure in some instances.  Much research has been conducted to 

understand this phenomenon in general and in turbomachinery applications in particular.  A major 

complicating factor in flutter research is the unsteady and nonlinear nature of underlying physics.  Another 

factor is the difficulty in producing fully representative conditions in laboratory environment for research.  

Despite difficulties, much progress has been made in developing and expanding the collective 

understanding of this phenomenon within the research community and the turbomachinery industry, which 

is explored in this section. 

2.1 History of Flutter 

An oscillating object in a moving flow field was first studied in details in 1878 when Vincenc 

Strouhal experimented with wires vibrating in the wind [1].  Based on his observations, he developed a 

non-dimensional parameter known as Strouhal number, which is still used today as a trending parameter 

for flutter evaluation [2]. 𝑺𝒕 = 𝒇𝑳𝑽  ( 1 ) 

Where St is the Strouhal number, f is the frequency of oscillation, L is the characteristic length of 

the object such as diameter of a cylinder, and V is the fluid velocity. 

Earliest occurrences of flutter phenomena in modern machinery were observed in early days of 

aviation, where air plane wings or control surfaces would vibrate violently at high air speeds resulting in 

premature failure.  Many experiments and studies were conducted to understand and prevent flutter of 

aerospace structures, which was a major barrier to achieving higher air speeds.  Simplified 1D torsional and 
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2D “pitch and heave” aeroelastic models (Figure 3) were developed to study single mode or coupled 

bending torsion flutter. 

 

Figure 3: 2D pitch and heave flutter model 

Theodorsen developed a general relationship between airfoil motion and unsteady lift and pitching 

moment as a derivation of Bessel function solutions [3].  Resulting equations correlate unsteady lift and 

moment on the airfoil with its pitch and heave motions and their derivatives as follows [4]: 

 

𝑳𝒊𝒇𝒕 = 𝝅 𝝆𝒃𝟐[𝒉 ̈ +  𝑽 �̇�  −  𝒃 𝒂  𝜽 ̈ ]  +  𝟐 𝝅 𝝆 𝑽 𝒃 𝑪(𝒌) [�̇� + 𝑽𝜽 + 𝒃 (𝟏𝟐  −  𝒂 ) �̇�] ( 2 ) 

𝑀𝑜𝑚𝑒𝑛𝑡 = 𝜋 𝜌 𝑏2 [ 𝑏 𝑎 ℎ ̈ −  𝑉 𝑏 (12 − 𝑎  )  �̇�  −  𝑏2 (18 + 𝑎2)  𝜃 ̈ ] 

+ 𝟐 𝝅 𝝆 𝑽 𝒃𝟐 (𝒂 + 𝟏𝟐)  𝑪(𝒌) [�̇� + 𝑽𝜽 + 𝒃 (𝟏𝟐  −  𝒂 ) �̇�] ( 3 ) 

Where  and h are pitch and heave motion and their derivatives,  is fluid density, V is air speed, b 

is half chord, product of b.a is the distance between half chord and shear center of the airfoil, and C(k) is a 

complex function known as Theodorsen’s function.  Development of Theodorsen’s equation was an 

important milestone in flutter research since it created a closed form function of the unsteady forces acting 

on the airfoil for use in future research. 

Flutter was formally defined by Collar [5] as the interaction between aerodynamic, inertial and 

structural forces.  This definition is still widely in use today.  Figure 4 shows this interaction as a triangle 
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where corners represent those forces and its sides represent mechanical disciplines concerning the forces 

on either end of it.  Flutter, also known as dynamic aeroelasticity, is represented by the area of the triangle 

as it involves all three corners and sides. 

 

 

Figure 4: Aeroelasticity triangle 

Turbomachinery flutter is a branch of flutter that involves rotating or static airfoils in a turbine or 

compressor cascade.  This phenomenon is often encountered during testing of tall and slender airfoils such 

as first stage fan blades and last stage turbine blades [6, 7].  While much research has been conducted to 

understand and predict turbomachinery flutter, this research is still an on-going effort due to complexities 

associated with this phenomenon.  There are multiple complicating issues that historically make 

turbomachinery flutter more complex than aircraft wing flutter.   

One issue is the interaction between different airfoils in the cascade that makes determination of 

total unsteady forces much more difficult than an isolated airfoil.  In addition to unsteady lift and moment 

acting on the airfoil as a result of its own vibrating motion, combined effects of motion of all other airfoils 

in the cascade must also be considered for a complete understanding of the system. 

Whitehead [8] developed classical methods for derivation of unsteady loads in a cascade, with the 

influence of each individual airfoil on itself and all others in the cascade.  Isolated airfoil theories were used 

in conjunction with cascade relationships to develop unsteady forces on vibrating blades using potential 
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flow theories.  Influence matrices were developed later on to account for effects of each blade on every 

other blade in the cascade and will be discussed in section 2.7.1. 

Another complexity in turbomachinery flutter is the complicated shape of the blade due to radial 

twist.  This twist is required for proper aerodynamic design of the blade due to radial vortex, and it prevents 

application of simplistic 2D aeroelastic models.  A picture of a turbine blade and its geometric features 

including airfoil twist is shown in Figure 5.  Due to this complexity, simplified models cannot be 

successfully applied and generally numerical methods must be used with sufficient grid density to describe 

complicated geometry and the flow around it. 

 

Figure 5: Shrouded blade geometric features  

Another issue specific to shrouded cascades is the coupling between multiple blades during 

operation and resulting cyclic nature of vibration around the wheel.  This phenomenon was first researched 

by Lane [9] and a mathematical formulation was developed to describe the relationship between nodal 

diameter patterns of the vibrating wheel as shown in Figure 6: 
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Figure 6: Picture of nodal diameter patterns 

Another issue was recognition of stalled vs. unstalled flutter, and understanding the different 

operating conditions where each phenomenon occurred.  Stalled flutter is much more likely to occur in 

cascade designs and operating conditions with high incident angles (higher than stall angle), where much 

more turbulence and vortex shedding is present due to turbulent nature of stalled flow over an airfoil.  

Stalled flutter is not an issue with low to moderate incident angles where flow remains attached to the airfoil 

over the entire suction side.  Cascades with low (or moderate in some cases) incident angle are also preferred 

designs from aerodynamic efficiency standpoint.  With proper design of airfoil aerodynamic shape and 

alleviating off-design conditions with techniques such as start-up bleed, modern cascades are designed to 

avoid operating in stall conditions where stalled flutter is likely to be a concern.  Therefore unstalled flutter 

emerged as the major focus of industry as it remains the flutter mode that could not be avoided by simple 

control of airfoil incident angle. 

A major breakthrough in the field of unstalled flutter research was achieved when Carta [10] 

researched vibrating patterns of coupled blade-disk-shroud assemblies.  He used classical models of 

unsteady lift and moment developed by [8] and evaluated differential work over a small time step done by 

the fluid on the structure as a result of unsteady aerodynamic forces and vibrating motion of the airfoil.  

Integral of this differential work over the full cycle of vibration, or work per cycle, was interpreted as the 

measure of energy exchange between the fluid and the structure.  Flutter initiates when sign of work per 

cycle integral is positive (work is extracted by the structure), or aerodynamic damping is negative.  This 
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theory fit well with experimental observations [11], and it has since been used for flutter prediction in the 

industry as the “energy method”.  Work extracted by the blade over each cycle is assumed to accumulate 

in the structure over many cycles and add to existing cascade energy which exchanges between kinetic and 

elastic energies twice per cycle. 

While the aerodynamic energy exchange is assumed for simplicity to be the only work interaction 

of the cascade in [10], some energy is also dissipated over the cycle of vibration due to mechanical damping.  

Theoretically, the cascade is unstable with any amount of negative aerodynamic damping as the amplitude 

of vibration will continue to build up indefinitely.  In practice, the system may stabilize slight amount of 

negative aerodynamic damping due to positive mechanical damping.  This effect can be demonstrated by 

an example of a car that is accelerating by a constant force.  In absence of friction, all the work done by the 

force would convert to kinetic energy, resulting in perpetual acceleration of the car.  In presence of friction, 

only some of the work will convert to kinetic energy and the rest is converted to heat due to irreversible 

losses associated with dissipative work caused by friction.  If friction force becomes equal to the constant 

force at some velocity, acceleration will stop and the car will reach an equilibrium velocity.  The influence 

of mechanical work dissipation on the threshold of flutter stability is the primary focus of present 

dissertation and it will be fully explored in section 3. 

Another major breakthrough occurred when Bolcs and Fransson [12] developed standardized airfoil 

geometries and test conditions for flutter research.  These standards, known as STCFs, cover various 

cascade geometries and flow regimes (fan, compressor, turbine, subsonic, transonic, supersonic, etc.), and 

allow for various research teams to share and make use of other teams’ experimental and analytical results 

by conducting research on identical geometries and conditions.  Prior to the inception of STCF, it was 

difficult to collaborate and use other research results due to differences in geometries and operating 

conditions used by different teams. 
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With the availability of mathematical models and experimental data, a research mechanism was 

established for flutter studies.  Using energy method and cascade theories, total system work could be 

numerically determined as the sum of each blade’s work due to unsteady pressure from each blade in the 

cascade.  This work could then be compared with experimental data obtained from electro-mechanically 

driven, pitch only motion in a linear or annular test rig.  This research mechanism has enabled great progress 

in improving analytical models to accurately determine aerodynamic work interaction by correlating 

analytical and experimental results.  However, limitations still exist between motion induced in the rig test 

that can only be pitch motion (rotation about an axis) and the actual 3D vibrating motion of a flexible blade 

in the engine.  Additionally, replication of exact flow conditions and traveling wave phenomenon of an 

actual cascade in a test rig is not quite possible.  In an engine, traveling wave has endless number of passages 

around the full wheel and over many rotations to develop and strengthen.  This phenomenon cannot be 

replicated in a sector rig with limited number of passages.  Operating temperature and mass flow of an 

actual turbine stage is also nearly impossible to replicate in laboratory.  Therefore, experimental research 

in the field of flutter is conducted using many simplifications and restrictions. 

Finally, stability criterion with consideration of mechanical damping was researched by Khalak 

[13].   System variables were re-arranged to non-dimensionalized parameter to represent operational and 

design related parameters.  Stability criterion was established as the ratio of mechanical damping to density 

parameter being larger than aerodynamic work input into the system.  Mechanical damping represented in 

[13] is total mechanical damping from all sources, and it is assumed constant in that paper.  In reality, non-

viscous portion of mechanical damping is not constant when considering nonlinear nature of friction force, 

and it will be explored in detail in section 2.6. 
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2.2 Fundamental Influencing Factors 

Historically, a non-dimensional parameter known as reduced frequency (similar to Strouhal 

Number) has been used to quantitatively access turbomachinery airfoils for flutter.   𝒌 = 𝒃.𝝎𝑽   ( 4 ) 

Therefore three major influencing factors in flutter are angular frequency of the cascade 𝜔, semi-

chord of the airfoil 𝑏, and fluid velocity 𝑉.  It is well known that decrease in reduced frequency has a 

destabilizing effect on flutter [14].  However, this dependency is a general trend and the exact threshold 

where flutter occurs depends on many other parameters. 

Operational aspects of the system in reduced frequency are represented by fluid velocity, which 

relates to cascade operating conditions such as mass flow and pressure ratio.  Design aspects are represented 

by semi chord and natural frequency, which is itself a function of mass and stiffness characteristics of the 

cascade.  There are other major influencing factors both operational and design related that influence flutter 

stability.  Therefore limits based on reduced frequency approach are empirically based and are often too 

conservative.  In other words, going over established limits does not necessarily lead to flutter initiation at 

all times because there are many more parameters involved that are not represented in this non-dimensional 

parameter.   

Research by Nowinski [15] carried out at the annular rig facility at EPFL shows that in addition to 

reduced frequency, the location of torsional axis (in a simplified pitch only motion) plays a significant role.  

Three locations of torsional axis were included as a variable in experimental testing, and the results show 

strong correlation of aeroelastic stability with location of the torsion axis.   

Follow up work by Panovsky [16] created a design method to decompose any 2D mode shape into 

three fundamental in-plane motions (axial, flex, and torsion) and calculate aerodynamic damping as a linear 

superposition of individual elements corresponding to the fundamental motions.  In other words, any 2D 

mode shape can be decomposed into a linear combination of axial, flex, and torsional components.  
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Aerodynamic work per cycle can be evaluated for unit axial, flex, and torsional motions and then multiplied 

by corresponding coefficients of the mode shape motion components.  For small magnitudes of motion, 

sum of aerodynamic work corresponding to three components is equal to aerodynamic work of the original 

mode shape.  Follow up work by Kielb et. al [17] expanded this deign method to cyclic symmetric 

applications. 

Based on this work, a plot known as Tie-Dye plot [14] can be created for any particular airfoil 

shape and can be used as a design tool to evaluate the critical value of reduced frequency based on the 

location of torsion axis of the mode shape.  This critical value is the value of reduced frequency below 

which aerodynamic damping becomes negative and flutter may initiate, depending on magnitude of 

mechanical damping.   

Research by Waite et. al [18] shows the effects (independent from reduced frequency) of steady 

state operational conditions such as blade loading on flutter boundaries, which is related to thermodynamic 

flow conditions at the throat.  Reduced frequency is kept constant in that research by artificially 

manipulating cascade natural frequency.   

All of above progress concerns aerodynamic aspects of flutter.  Mechanical aspects are mostly 

studied in structural dynamics and forced response analysis, as discussed in sections 2.5 through 2.7.  As it 

will be shown, for an aerodynamically unstable airfoil mechanical damping is the most important 

influencing factor in determining cascade stability, and will be discussed in details in section 3.4. 

2.3 Computational Approach for Unsteady Pressure and Validation 

Much of flutter related research over the last decades has focused on developing accurate and 

computationally efficient methods to determine unsteady aerodynamic pressure around an oscillating 

airfoil.  While steady flow assumption is often used in static aeroelasticity such as lift and drag on a wing 



26 

 

to simplify governing equation, unsteady flows and associated aerodynamic forces are distinguishing 

characteristics of turbomachinery flutter and must be fully considered for a meaningful analysis. 

The nature of unsteady aerodynamic forces acting on the blade is in the form of pressure waves 

propagating through the fluid domain, and the resulting surface static pressure on the suction side and 

pressure side of the airfoil.  Pressure waves on two sides of the airfoil are not always in-phase, meaning 

maximum magnitude of peaks and valleys on pressure side and suction side may not coincide along the 

chord.  Therefore, at any given time instance there is a net imbalance of aerodynamic forces acting on the 

subject blade [19].  The magnitude and direction of this force and resulting moment about the shear center 

of the airfoil can be determined from magnitude and phase information of unsteady pressure acting on 

pressure side and suction side of the airfoil at any given time instance. 

The source of unsteady aerodynamic pressure may be external to the cascade, such as blade passing 

frequency of an upstream cascade.  In this case, the excitation frequency is predetermined by operating 

conditions of the engine (i.e. rotor speed and number of blades in upstream cascade).  Resulting vibration 

patterns are referred to as “Engine Order” or synchronous vibration.  Unsteady aerodynamic forces may 

also be the result of subject blade’s oscillating motion, or the oscillating motion of a neighboring blade in 

the same cascade.  This type of unsteady aerodynamic load and its interaction with the structure is known 

as self-excitation or asynchronous vibration. 

Regardless of the source, various analytical methods have been used to evaluate unsteady pressure.  

Most of these methods are based on Euler or Navier-Stockes equations, and they are discussed in more 

details in chapters 2.3.1 and 2.3.2 respectively.  Classical methods based on Theodorsen’s derivations were 

used early on for self-excitation type problems, but these methods have many restrictions in transonic 

passages where turbulent flow and shock effects are dominant [20].  Since highly loaded transonic cascades 

are typical in modern day turbomachinery, classical methods are not used extensively in the industry due 

to limitations and will not be discussed here. 
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The time relationship between unsteady pressure and motion is known as unsteady pressure phase.  

While magnitude of unsteady pressure is an important parameter in determining net unsteady aerodynamic 

force, phase angle of unsteady pressure is recognized as an even more important parameter in [21].  The 

reason is that if the phase angle is favorable, even an unsteady pressure wave of large magnitude would 

neutralize itself by acting simultaneously in opposite directions on suction side and pressure side of the 

airfoil.  The phase information is therefore critical in determining the unsteady force, whereas a non-

desirable phase would lead to a large “net” force and aerodynamic excitation of the blade.  Flutter can 

therefore be summarized as a result of unfavorable phase of unsteady pressure acting on the blade.  

Capability of any analytical method in accurately predicting phase angle distribution of unsteady pressure, 

especially in transonic regimes where shock location strongly affects pressure distribution along the airfoil 

suction side, is therefore an important consideration. 

 

2.3.1 Unsteady Euler Based Methods 

The Euler equations are a set of conservation of mass, momentum and energy equations, and they 

are used extensively to describe adiabatic and inviscid flows.  The Euler equations are applied to both 

compressible and incompressible flows; however, since they are inherently inviscid their application is 

limited to flow regimes where viscosity effect does not play an important role. 

Methods based on steady or unsteady Euler method have been developed to calculate unsteady 

pressures and determine aerodynamic loads with computationally efficiency.  One such method is described 

by Marshall and Giles [22] which uses time linearized unsteady Euler equations and assumes unsteady flow 

to be a small perturbation to the steady flow.  Unsteady flow can then be broken into different frequencies 

and computed individually at each frequency with a pseudo time marching algorithm.  Due to its 

computational efficiency, this method is used in industrial applications using the aeroelastic analysis code 

SliQ.  This code has been used to develop, validate, or compare various turbomachinery applications [23].  
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Another method using unsteady Euler equations is described by Ning and He [24], which also decomposes 

the flow into a steady and harmonic unsteady portion.  This method is capable of including some nonlinear 

effects by strong coupling of perturbation equations and time averaged flow equations. 

Despite computational efficiency of the Euler based models, their limitations in accurately 

predicting nonlinear aspects of transonic flow associated with vorticity and shock effects requires use of 

better computational technique to improve accuracy in transonic conditions which are typical in first stage 

compressors and last stage turbine blades. 

2.3.2 Navier Stokes Based Methods 

The Navier-Stokes equations are the most complex and comprehensive governing fluid equations 

available.  They consist of conservation equations of mass, energy, and three components of momentum 

with full viscous and time dependent effects such as turbulence.  Since the flow is too complex to solve 

turbulent problems from first principles even with advanced computational tools, turbulence is modeled 

using one of a number of turbulence models and coupled with a flow solver that assumes laminar flow 

outside a turbulent region.  Viscosity effects can often be neglected in turbomachinery flows, as high 

Reynolds numbers indicate that the inertial forces are more significant than the viscous forces. However, 

even in high Reynolds number regimes, certain problems require that viscosity be included for better 

accuracy. In particular, use of viscous equations is required in problems involving calculation of net forces 

on bodies such as the vibrating airfoils in a cascade.  Additionally, in highly turbulent flows dominated by 

recirculation, eddies, and randomness, viscosity effects become significant and must be included.  

The Navier-Stokes equations are in general too complicated to be solved in a closed form, even for 

simplified airfoil geometry.  Therefore they are solved using numerical methods that require large grid sizes 

and are computationally expensive.  While methods based on Euler equations are more computationally 

effective, the accuracy of Navier-Stokes-based models is superior relative to the former, especially in 
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transonic flow regions where the effects of flow separation and shock related phenomena such as oscillation 

shock and shock boundary layer interaction play an important role.   

Therefore many advanced studies in flutter use the Navier-Stokes equations which despite 

computational costs offer better accuracy.  Research by Thermann and Niehuis [21] uses the Navier-Stokes 

equations along with algebraic transition models on a compressor blade cascade to calculate unsteady 

pressure at transonic near stall conditions.  Research by Srivastava [25] uses unsteady Navier-Stokes 

equations for aeroelasticity analysis of a fan blade. 

2.3.3 Validation with Standard Configurations 

Since multiple solution methods [26] with varying simplification levels can be used for calculation 

of steady and unsteady flow conditions and may yield different results, relative accuracy and applicability 

of each method must be clearly understood to conduct a meaningful analysis.  Validation of analytical 

results with experimental data is also required to determine accuracy and applicable range of each method.  

However, due to unsteady nature of surface pressure and vibrating motion of the airfoil at high frequencies, 

experimental measurements are difficult to obtain. 

In fact, one could argue that creating an exact representative environment for flutter with true 3D 

vibrating motion of the airfoil is nearly impossible in a test set up.  Creating the best possible representative 

environment with simplifications has been one of the primary focus areas of flutter research.  Various 

researchers have used linear sector cascades or scaled annular cascades to measure both steady and unsteady 

conditions with 1D pivoting motion.  Electromagnetic driving mechanisms are used to induce a rigid body 

airfoil motion approximating true vibrating motion of the airfoil [27].   

Initially, different research groups used different set ups, operating conditions, and cascade 

geometries to conduct their work, making comparison of results and data impossible. 



30 

 

Bolcs and Fransson [12] modernized the field of turbomachinery flutter research by compiling 

standardized airfoil geometries and operating conditions for flutter studies.  These STCFs allow for various 

research teams to conduct their work on identical geometries and conditions and make comparison with 

other analytical and experimental results on an equivalent basis.  Prior to the inception of STCF, it was 

difficult to collaborate and use various other research results due to incompatibility. 

Since the implementation of STCFs, there have been many advances in the field of modeling and 

prediction of aerodynamic instability.  With unsteady pressure measurements made possible (with 

simplifications) by rig testing and standard configurations, aerodynamic studies have been conducted to 

predict and validate with experimental data the unsteady pressure distribution on airfoil as a result of airfoil 

motion [28].  Specifically in the field of unsteady pressure prediction, many analytical tools have been 

developed and calibrated with experimental results. 

McBean et al. [29] compared results from multiple analytical methods with experimental 

measurements.  This research shows 3D Navier-Stokes solution has a better capability than 2D and 3D 

Euler methods to predict flow conditions, including unsteady pressure phase angle on airfoil suction side 

which is an important parameter in overall flutter solution.  Also, the importance of flow separation, shock 

waves and 3D modeling effects are discussed in detail which leads to the conclusion that modeling 

technique and grid size requirements of CFD model must be such that high fidelity solution is obtained to 

yield accurate flutter result.   

2.4 Fluid Domain Solution Methods 

 
Various solution methods have been used to solve governing fluid domain equations, which are 

discussed in this section.  Since there is a wide spectrum of blade configurations and flow regimes in 

turbomachinery applications, each method has particular advantages and disadvantages that justify their 

use in a particular application.  For instance, some methods have better accuracy in transonic regions where 
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shock-boundary layer interaction effects are significant, while others have computational time advantages 

where a linearized harmonic flow may be adequate to describe the unsteady flow. 

2.4.1 Time Domain Solution 

Time domain solution has been historically used as the standard solution method for computational 

fluid problems.  It has been used extensively for solving 2D and 3D Euler and Navier-Stokes based solutions 

with explicit and implicit algorithms.  Due to complexity of the transonic flow around moving objects, 

multiple categories of flow such as steady, transitional and turbulent flows must be accurately modeled to 

yield an accurate result.  Historically time linearized methods have been used due to their (relative) 

computational efficiency.  With improvements in computational power over the years, time accurate 

methods are used to better model nonlinear aspects associated with unsteady and turbulent flows. 

Other important considerations are boundary layer effects, flow separation, and shock-boundary 

layer interactions.  Prediction of transitional boundary layer development in a transonic cascade is improved 

in research by [21] using an algebraic transition model, leading to better prediction of aerodynamic 

damping.  While time domain solution offers advantages in accurate prediction of turbulent and viscous 

flows, it is computationally expensive.  Various parallel block and memory distribution techniques can be 

used to decrease computational time to manageable amount. 

2.4.2 Coupled Solutions of Fluid Structure Interaction 

To fully simulate the interaction between the fluid and the structure, coupled solutions have been 

developed which are also referred to as two-way fluid structure interaction (FSI).  Fluid and structural 

governing equations are solved simultaneously in a coupled solution method in time domain.  At each time 

step, structural deflections are accounted for in fluid equations and changes in fluid conditions are 
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accounted for in structural equations.  Multiple problems using this method have been researched in self-

excited vibration [30, 31] and similar work in blade row interaction [32, 33]. 

While a fully coupled, two-way FSI is a highly accurate method, its application in realistic large 

scale models is computationally prohibitive due to small time steps and slow rate of convergence.  Many 

iterations are required before final stability trends can be determined since only small amount of system 

damping is present in turbomachinery applications. 

2.4.3 Mesh Morphing or One-Way Interaction 

Due to great computational expense of fully coupled aeroelastic solutions, a simpler method has 

been used to include only effects of structural displacement on the fluid field.  This method is also known 

as one way FSI, since structural deflection is pre-imposed and it does not include effects of changes in 

surface pressure on the structure.  To implement this method, computational nodes associated with 

geometry of the airfoil are moved at multiple time steps, representing airfoil motion over a full cycle of 

vibration.  In addition to governing equations of fluid motion, various flux equations are also solved for 

each element in the computational domain to account for change in its volume and surfaces at each time 

step. 

Due to (relative) computational efficiency, this method is used extensively to simulate moving 

airfoil in a computational fluid domain with airfoil motion prescribed as harmonic function with a known 

mode shape and amplitude. 

2.4.4 Frequency Domain Solution 

The most common method of solving governing aerodynamic equations is direct integration in time 

domain.  However, due to the computational expense of predicting unsteady flow using time domain 

method, frequency domain solution method has been developed that requires considerably less 
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computational resources.  Method developed by Hall et al. [34] is a frequency domain solution based on 

Fourier Decomposition method and periodicity assumption which are described in sections 2.4.5 and 2.4.6.  

Unsteady flow is assumed to be the sum of harmonically varying components, which can be individually 

calculated in the frequency domain.  

2.4.5 Fourier Decomposition Method 

Various Fourier-based methods have been developed for use in both time and frequency domain 

solutions to take advantage of periodicity of flow in turbomachinery applications.  In a time domain 

solution, the advantage of using Fourier Decomposition method is that only Fourier coefficients of the flow 

field need to be retained therefore substantially reducing memory requirements of the computational grid 

[35].  In a traditional direct integration time marching analysis, flow conditions at all grid locations for 

multiple time steps must be retained in the memory to proceed to the next iteration. The need to retain all 

of this information requires large amounts of memory space and increases computational costs.   

The main advantage of Fourier Decomposition method is that it enables application of frequency 

domain solution method for computation of unsteady pressure, which is much more computationally 

efficient than direct integration time marching method.  Fourier based methods are further reviewed by He 

[36] where various applications of this approach, their assumptions, and effectiveness are discussed. 

2.4.6 Phase Lagged Boundary Condition 

Another major advancement that significantly reduces the required numerical domain size to 

describe a cyclic symmetric flow is the concept of phase lagged boundary condition method [35].  The main 

advantage of this method is that it enables simulation of the entire cascade by modeling only one sector, 

therefore significantly reducing the required domain size and computational costs. 
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This method may be applied in both time and frequency domain solutions and it assumes boundary 

conditions on one side of the cyclic symmetric structure are a time transition from the opposite side.  This 

time transition is the time required for the “wave” to travel from one side of the cyclic sector to the other.  

In effect, the same boundary conditions are applied from one cyclic sector face to the other with a time 

shift, which is determined from natural period of vibration, sector angle, and prevailing nodal diameter of 

the cascade.  Figure 7 shows a sector flow model with phase shift boundary conditions. 

 

Figure 7: Sector model using phase-lagged boundary condition  

2.5 Structural Domain Solution Methods 

Solution methods for structural dynamics problems related to turbomachinery cascades have been 

well established [37].  FEM based methods are commonly used to numerically access complicated turbine 

components.  Steady state problems arising from quasi-static (or steady state) operating loads such as 

centrifugal loads and thermal expansion mismatch loads are typically solved in time domain by various 

matrix inversion methods.  Vibration and dynamics problems arising from intertia-stiffness interactions are 

solved in frequency domain using eignvalue method.  Inclusion of a linearized system damping is possible 

by assuming a proportional damping matrix. 

Introduction of nonlinearities into structural models increases complexity and computational cost 

of such systems depending on the solution method and nature of nonlinearity.  Material nonlinearity such 
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as plasticity and creep can be solved in time domain by modeling the system as a piecewise linear system 

in either amplitude incremental or time marching method.  In a typical analysis of this sort, mechanical 

loads are ramped up in multiple solution steps and material properties are assessed at each step according 

to the strain state.  Element stiffness matrices are subsequently updated and used for the next solution step.  

Material properties and system matrices are iteratively updated based on applied loads until full loads area 

applied and various convergence criteria are met.  Geometrical nonlinearities such as gaps and interferences 

are solved similarly by evaluating system stiffness matrix based on displacements at multiple steps.  With 

nonlinear considerations, multiple solutions must be performed which increases computational time many 

folds compared to a single solution linear problem.  Research by [38, 39] shows significant influence of 

nonlinearity in aeroelastic and vibratory problems. 

Friction is another major source of nonlinearity that significantly affects system’s response. 

Presence of friction in turbomachinery applications is a major influencing factor which is discussed in detail 

in section 2.6. 

Nonlinear systems present much more challenge in frequency domain solutions.  The eignvalue 

problem can only be solved with linear matrices; therefore direct modeling of nonlinearity in frequency 

domain is not possible.  Hybrid and iterative solutions have been developed using numerical FFT methods 

where some level of nonlinearity can be taken into account by iteratively solving frequency domain and 

time domain solutions and exchanging information between domains at each iteration.  Highlight of hybrid 

type solutions are presented in chapter 2.8. 

Researchers also use reduced order or simplified mass-spring models to solve many iterations in 

time domain and include a very simplified representation of nonlinearities [40, 41].  These models are an 

excellent source for identifying overall response trends, but they are overly simplistic to be used for detailed 

studies.  Large scale models are required to fully define various geometric features and SDOF or reduced 

order models do not have the necessary accuracy for detailed studies due to limitations with resolution. 
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2.6 Friction and Nonlinear damping 

Friction plays an important role in reducing resonant stresses in gas turbine components by 

providing energy dissipation and additional mechanical damping (in addition to material dependent viscous 

damping) during vibration motion. This type of dry friction damping provided by rubbing motion of 

contacting parts is also referred to as non-viscous or Coulomb damping in literature.  Most of the research 

in nonlinear friction effects and dry friction damping applications in turbomachinery has been conducted 

in the context of forced response analysis because of relative simplicity of experimental set up in forced 

response compared to flutter.  While force response and flutter have many commonalities as aeroelastic 

instabilities, there are also distinctive differences. 

Forced response is the response of a structure to an external forcing function.  Therefore, frequency 

and magnitude of the excitation forces are external to the structure, and they are typically known in this 

type of problem.  Furthermore, external source is not affected by the response of the system, so frequency 

and magnitude of the excitation are constants regardless of magnitude and phase shift of the response.  

Therefore, equations of motion can be solved with frequency and magnitude of the driver as constants and 

structure’s response as the only variable.  Accurate prediction of natural frequencies of the structure is of 

primary importance for a forced response analysis because of sharp nonlinearity when frequency ratio is 

close to unity.  Damping is typically a secondary factor because cascades are designed to operate at a margin 

with resonance conditions. 

In case of flutter, the magnitude and phase shift of unsteady aerodynamic forces are not known in 

advance because they both depend on the aeroelastic coefficients of the equations of motion.  Flutter is the 

result of imbalance and fluctuations of internal inertial and structural forces with the unsteady pressure field 

caused by the motion of subject cascade itself.  Therefore calculation of magnitude and phase of unsteady 

pressure is a major complexity in flutter and self-excitation problems.  Frequency of vibration is typically 

close to one of fundamental “in-vacuum” natural frequencies of the structure.  However, in case of shrouded 
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turbine blades, frequency and mode shape of the system response depends on shroud contact condition due 

to nonlinearity in friction force and transition from stick to slip condition.   

Therefore in a flutter-friction problem there are multiple interdependencies of relevant variables. 

Response of the structure, frequency of the vibration, magnitude of the drivers, contact conditions at the 

shroud, and prevailing nodal diameter all influence each other and overall stability of the cascade.  

Furthermore, creating fully representative test condition for this type of problem is nearly impossible.  Only 

engine testing or large scale rotating rig can be used to fully capture all aspects of structural dynamics and 

self-induced aerodynamics of the cascade with representative shroud damping. 

By comparison, research of nonlinear friction is much simpler in forced response type studies. It 

requires a shaker table set up that allows conducting frequency sweep at multiple amplitudes, which is 

significantly less burdensome than an engine test or a rotating rig.  Therefore most of friction related 

research in various aspects of blade vibration has been conducted to forced response and is outlined in 

section 2.6.1. 

2.6.1 Friction Models in Turbomachinery Applications 

Generic dry friction has been researched extensively in many engineering applications and there 

are many models available with varying levels of complexity.  Most commonly used model is Coulomb 

model [42], which is nonlinear but relatively simple.  Other friction models are available such as Dahl 

model [43] which offers more accuracy but is also more complicated.  A nonlinear but continuous model 

is developed by Petrov et al. [44] that uses a trigonometric function to approximate nonlinearity in friction 

force with a continuous function.  This formulation is especially attractive for use in time integration 

methods where the derivative of the friction force is calculated based on contact parameters and is then 

integrated in time domain to determine friction force at any desired time due to an arbitrary 1D or 2D 

motion. 
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While multiple methods are available for simulation of friction, Coulomb based models are mostly 

used in turbomachinery research due to their (relative) simplicity.  These friction models have been 

combined with contact models to represent a “flexible contact” by including normal stiffness and tangential 

stiffness values in a contact interface.   

One example of a generic contact friction model is model by Petrov et al. [45] that calculates contact 

forces at interfacing surfaces while taking into account influence of tangential and normal stiffness as well 

as variable normal load. This model is capable of considering initial gaps and interferences.  Various other 

penalty based or Lagrange based algorithms are utilized in commercial FEM software to solve the contact-

friction problem [46, 47].   

Research is also conducted to characterize generic contact parameters such as tangential stiffness, 

coefficient of friction, and influence of their scatter in vibration response of the system.  Research by 

Schwingshackl et al. [48] uses a high temperature friction rig to evaluate friction parameters for various 

material combinations at various operating temperatures.  Influence of operating temperature on contact 

parameters is noteworthy in this research as the wide range of data scatter at room temperature converges 

to a narrower band at elevated temperatures.  Other research by Petrov et al. [49, 50, 51] evaluate the 

influence of variability of contact parameters on system response, and illustrate that due to the large scatter 

inherent to friction parameters there could be significant difference in system response.   

2.6.2 Friction Damping Applications 

There are multiple sources of contact between adjacent components in a typical bladed disk 

assembly that provide mechanical damping or work dissipation.  Blade root is in contact with the disk and 

any relative motion results in work dissipation and damping.  Research in blade root damping conducted 

by Allara [52] develops a model to evaluate the oscillating contact force versus relative tangential 

displacement for various geometries and calculated Hertzian contact stress.  Dissipated work at the contact 
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is subsequently calculated for various amplitudes of forced response drivers.  This model uses contact 

interface geometry and related parameters to evaluate the characteristic hysteresis curves and associated 

energy dissipation.  However, in most applications the amount of damping in the blade root is small 

compared to other sources of friction damping because the root is where the blade is attached to the disk 

and there is little relative motion in the mode shapes of the cascade between blade root and disk. 

Another source of mechanical work dissipation is under-platform dampers that are placed under 

platforms of adjacent blades and sometimes referred to as Coulomb dampers.  Griffin [53] researched 

resonance response of a turbine airfoil with under-platform damper, demonstrating experimentally that the 

damper can substantially influence the blade response.  This research concluded that an optimal normal 

load at the contact interface can minimize the response of the entire blade.  Sinha et al. [54] studied effects 

of static friction on forced response as a function of ratio of static to dynamic friction coefficients.  System 

response was found to be essentially harmonic, but at some transition point it turned into more complex 

periodic wave forms. 

Research by Breard et al. [55] outlines an integrated analytical method that includes effects of 

nonlinear friction forces in the FEM solution.  Nonlinear friction force is solved in a time domain solution 

and represented as a harmonic correction term to the linear modal equations.  Modal forcing function 

consists of an aerodynamic load vector and an additional friction damping vector, which are both nonlinear 

in nature.  System equations are integrated in time domain where at each time step a new modal forcing 

vector is generated based on the state of variables in previous time step.  A similar integrated method was 

developed by [56, 57] for forced response applications. 

Other research by Petrov et al. [58] implements advanced modeling of damper pins where contact 

stick-slip transition, inertia force acting on the dampers, and the effects of normal load variations during 

the vibration cycle are taken into account.  In this method the equations of motion are solved in frequency 

domain using multi harmonic balance method to obtain a steady state solution to the nonlinear bladed disk 
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system.  Similar research is conducted in under platform [59] and internal damping of hollow blades [60, 

61] and influence of friction damping on mistuning [62]. 

Work by Sinha et al. [63] examined influence of under-platform friction dampers on torsional blade 

flutter using classical cascade aerodynamic theory [8] for calculation of unsteady aerodynamic loads.   

Rotor stage was represented by mass spring damper elements for this study, as well as nonlinear friction 

elements between adjacent blades.  This research identified margin to flutter condition by calculating 

allowable increase in fluid velocity before flutter condition is mathematically predicted.  While the classical 

aerodynamic model used in this study has many restrictions (especially in compressible and transonic 

regions [20]), this study concluded that flutter margin can be substantially increased by incorporating 

friction dampers.  Similar research by [64] on under-platform dampers also indicates stabilizing effects of 

mechanical damping in flutter, and it corroborates with similar findings from forced response research. 

While damping provided by blade root and under-platform are substantial in some applications, 

their overall influence is a strong function of geometry and mode shape of the blade.  In short and 

cantilevered front stage turbine blades, where root shank is an appreciable portion of the overall blade 

height and platform motion in the mode shape is substantial, damping effects from root and under platform 

dampers are important sources of frictional damping.  In case of tall last stage shrouded blades, where the 

mode shape is dominated by motion of slender airfoil and the shroud tip, negligible amount of relative 

motion exists in platform and root resulting in minimal damping contribution from these sources.  Majority 

of friction damping in shrouded cascades is related to shroud relative motion, which is discussed in section 

2.7.2. 

Limitation of existing research in friction damping is that it mainly focuses on forced response 

applications.  Few flutter related research are related to application of under platform dampers with constant 

normal load, and use simplified SDOF model which are not sufficient for accurately representing complex 

geometry and mode shape of a typical blade. 
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2.7 Cyclic Symmetric Influence 

The interlocking shrouds in a shrouded cascade form a continuous outer ring around the bladed 

disk assembly during operation.  This ring, along with the disk and the airfoils, creates a flexible cyclic 

symmetrical structure that vibrates in certain nodal diameter patterns (see Figure 6) and is subject to both 

standing wave and traveling wave phenomena (also referred to as synchronous and non-synchronous 

vibration respectively).   

The significance of cyclic symmetric configuration of shrouded cascade is that the prevailing nodal 

diameter of the cascade and corresponding mode shape influences both aerodynamic and mechanical work 

interaction and associated damping.  Aerodynamic damping is a nonlinear function of IBPA, which is 

related to the nodal diameter of vibration by the following expression [65]: 𝑰𝑩𝑷𝑨 =   𝟑𝟔𝟎°∗𝑵𝒅𝑵𝒃  ( 5 ) 

Where 𝑁𝑑 is the nodal diameter pattern of vibration and 𝑁𝑏 is the number of blades in the disk.  

Mechanical damping is function of mode shape, as relative motion between adjacent shroud tips depends 

on the specific mode shape of vibration in addition to overall amplitude.  Since each nodal diameter has 

unique fundamental mode shapes, mechanical damping is also function of the prevailing nodal diameter.   

Therefore aerodynamic damping and mechanical damping are coupled to each other in a shrouded cascade 

through the nodal diameter pattern of vibration.   

Concepts of nodal diameter, traveling wave and standing wave are major influencing factors in 

forced response and flutter studies and have been used by researchers to formulate various phenomena.  

Research by Lee et al. [66] represents vibration of mistuned bladed disk using standing wave formulation 

and a two dimensional unsteady vortex lattice method to simulate higher engine order aerodynamic 

excitation sources.  Another research that outlines the concept of aerodynamic damping versus nodal 

diameter pattern of vibration is by Rice et al. [19].  This research was conducted to experimentally measure 
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combined system damping of a bladed disk assembly using magnetic excitation sources and measurement 

of the response decay. 

2.7.1 Aerodynamic Coupling 

A major complicating factor in determining aerodynamic interactions in a cascade as opposed to 

isolated wing is the influence of neighboring blades on each other.  In case of shrouded cascades, the phase 

relationship between adjacent blades is constant due to shroud coupling.  Therefore an aerodynamic 

influence matrix can be formulated using the repeating pattern of the IBPA to account for aerodynamic 

influence of each blade on every other blade in the cascade [18]. 

Experimental research by [16] measured response of a blade in a cascade to vibration of 

neighboring blades, which led to experimental evaluation of an influence matrix.    Aerodynamic work 

interaction is sum of the work interaction of each blade in the wheel assembly, accounting for the influence 

of unsteady pressure caused by its own motion and the motion of all other blades on it.  This research 

experimentally demonstrates that the aerodynamic influence of neighboring blade is most significant for 

the first adjacent blades on pressure side and suction sides, and this influence dies out rapidly for the blades 

farther out as the distance with subject blade increases. 

2.7.2 Shrouded Blade Vibration 

An important aspect of shroud coupling around the wheel is the organization and patterns of 

aerodynamic and structural forces.  Since flutter is sustained by self-excitation as opposed to engine order 

excitation, the structural response and aerodynamic drivers must be synchronized with each other and 

organize into a traveling wave pattern.  This traveling wave pattern is the primary coupling factor between 

aerodynamic drivers and structural dynamics of the cascade by relating IBPA (aerodynamic influencing 

factor) to nodal diameter (structural influencing factor). 
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In case of shrouded blades, mode shapes and natural frequencies of a rotating cascade (with locked 

shrouds) depend on nodal diameter as each nodal diameter has a unique stiffness matrix associated with it.  

Figure 8 shows normalized natural frequencies of second family modes (first torsion) for a particular blade 

design as a function of nodal diameter.  Motions of the airfoil and the shroud in each mode shape are 

different for each nodal diameter as each nodal diameter has a unique mode shape associated with it. 

 

Figure 8: Frequency of first and second family modes 

Another influencing factor in vibration characteristics of the cascade is stick or slip condition at the 

shroud tip contact.  This influence is due to difference in contact tangential stiffness between stick and slip 

conditions.  In addition to contact condition, contact normal load has a substantial effect on mechanical 

work dissipation and associated damping due to rubbing motion between adjacent blades.  The effects of 

shroud contact and associated parameters have been researched mostly in forced response studies.  

Srinavasan [67] conducted experimental and analytical studies using macro slip model and frequency sweep 

induced forced response on a shrouded fan blade.  He observed slip resonance responses at low sweep rates 

that had distinct flat tops, indicating sliding energy dissipation due to slip prevented higher response 

amplitudes.  He also noted that critical shank vibratory stress at resonance is related to normal load at the 
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contact interface.  This is an important observation as it confirms the critical role that operating contact 

normal load has on life critical alternating stress on the Goodman diagram. 

Another consideration in system response is the complex vibrating mode shape of a shrouded blade, 

and its effects on the contact surfaces.  Contact load and by derivation slip load varies during the cycle of 

vibration as a result of this complex motion, affecting the system response.  Menq et al. [68] researched 

variable contact normal load and its influence on forced vibration response.  He concluded that to minimize 

response an optimal preload exists which can be achieved by selecting appropriate design parameters.  Yang 

et al. [69, 70, 71] researched variable normal load in shrouded blade forced response vibration that is also 

out of phase with the cycle of vibration due to the cascade IBPA.  This research demonstrated that complex 

hysteresis curves in multi-dimensional space result from out of phase normal load and transition between 

stick and slip motion of the friction interface. 

Above studies were in forced response applications.  Research in flutter related friction damping is 

much more limited due to complexity associated with determining driver strength and simultaneously 

solving for the nonlinear system response.  There are also limitations on experimental testing of shrouded 

cascade under realistic flutter conditions where both aerodynamic and mechanical parameters are 

sufficiently represented.   

Martel [41] studied shrouded cascades using a mass-spring blade / disk model with combined 

effects of aerodynamic excitation and friction damping.  While the model is simplistic due to limited 

number of DOF, two aspects of this work are significant.  First, the study concluded that only the most 

unstable traveling wave (with most negative aerodynamic damping) is susceptible to being excited and all 

other traveling waves die out faster than the most unstable one.  Second significant aspect of [41] is the 

conclusion that system response can be recognized as a large time scale exponential response imposed on 

a small time scale harmonic motion.  These findings will be leveraged in present dissertation to enable 

computationally efficient solutions to this complex problem. 
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Limitation of work by [41] is that time domain solution method it used with a simplistic mass-

spring model to enable many iterations.  This level of model fidelity is sufficient to understand general 

response trends, but it cannot be applied to realistic applications and large scale models.   

2.8 Hybrid Solution Methods 

A major consideration in solving aeroelastic system equations is computational efficiency of the 

solution, which is an issue with large scale models required to fully describe complicated geometry of a 

blade.  Time domain solution can predict nonlinear friction effectively but small time steps and many 

iterations are required for convergence.  Most of forced response studies of friction damping mainly use 

simplified SDOF models to enable time domain solutions.  For flutter applications, coupled aeroelastic time 

marching methods [30, 31] are available for direct time integration.  However, direct time domain methods 

are computationally cost prohibitive with large models since many iterations are required for convergence 

due to small amount of overall damping in turbomachinery applications.   

HBM method can be used in frequency domain analysis to approximate nonlinear friction by an 

equivalent harmonic term.  Research by [72] develops a simple method based on a single harmonic 

assumption which assumes only the first Fourier term in equations of motion is significant.  HBM method 

was applied by Wang et al. [73] to a SDOF model of blade with under platform damper.  This work shows 

that multiple harmonic terms are required to accurately represent nonlinearity in frequency domain.  With 

additional terms, computational cost with large models approach time marching methods. 

 Alternating frequency/time (AFT) method was developed by Cameron, et al. [74] to address 

shortcomings of both time and frequency domain solution methods by iterating between domains and 

exchanging information at each iteration.  A similar hybrid method was developed by Guillen et al. [75] 

based on variations to the alternating method. 
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While computationally efficient, existing hybrid and HBM methods are based on approximation in 

deriving equivalent forcing function with FFT analysis and require multiple harmonic terms to accurately 

describe non-sinusoidal friction force.  This is the main source of error in traditional HBM and hybrid 

methods that is especially problematic with single harmonic problem such as flutter, where a single 

harmonic term is insufficient to accurately include net effects of a non-sinusoidal force at an arbitrary phase 

angle relative to motion.  Energy method, on the other hand, can include the full effects of damping 

associated with friction because it is based on total work dissipation over the full cycle.  There is no 

approximation in this respect and the phase angle of friction force does not adversely affect accuracy as it 

does with the single harmonic FFT analysis. 

Existing HBM and hybrid methods also do not consider influence of cascade static response and 

contact preload due to operational loads, which is an essential consideration for flutter analysis of shrouded 

cascades due to its effects on exponential damping term and overall stability of the response. 

Present dissertation utilizes a novel three step hybrid time-frequency-time domain solution 

sequence based on energy method to address these shortcomings of existing methods and provide a 

comprehensive solution method for flutter-friction and cyclic symmetric type problems.  Details and 

development of this method are discussed in section 3. 
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CHAPTER THREE: METHODOLOGY 

A flexible cascade commonly used in turbomachinery applications includes a flexible disk, multiple 

blades assembled on the disk, and associated sealing and assembly hardware.  Unshrouded or cantilevered 

cascades have free standing blades that only interface with the disk at the root (see Figure 1 a).  Shrouded 

cascades feature blades that interface with the disk and are also in contact with each other at the shroud (see 

Figure 1 b).  Extremely precise manufacturing methods are utilized to ensure proper fit of shrouded blades 

due to complexity in design and assembly of shroud interfaces.  Parameters influencing assembly gaps and 

shroud to shroud contact in such design have substantial influence on response and structural integrity of 

the entire cascade, as do engine operating parameters and boundary conditions.  Therefore proper 

consideration of all of aerodynamic and structural parameters is required for a comprehensive analytical 

solution to flutter, and this solution has to be computationally efficient to enable application to real life 

components.   

The overall objective of present dissertation is to develop a comprehensive analytical framework 

for flutter analysis of shrouded cascades that considers both aerodynamic work interaction and friction 

related work dissipation within the cascade, while considering all influencing factors.  A hybrid, three-step 

solution method is developed to utilize best aspects of time and frequency domain solutions while 

accounting for all of the influencing factors. Various steps of the framework utilize geometrical and 

operational parameters that have aerodynamic and structural impact and create detailed information 

regarding contact load, motion, frequency, and overall response characteristics of the cascade.  Exchange 

of this information between multiple domains is used to couple all equations and solve iteratively based on 

an efficient, energy based method and converge on a global flutter condition that satisfies all constraints 

and requirements.  This global flutter condition includes prevailing mode shape and nodal diameter of the 

cascade, corresponding frequency and amplitude of the motion, and amplitude trends over many cycles of 

vibration which determine cascade stability.   
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This framework is an energy-based method that includes the influence of both aerodynamic 

excitation and mechanical dissipation in determining system response as a function of many variables such 

as aerodynamic and flow conditions, geometric features of the cascade, and shroud contact parameters.  

Mechanical and aerodynamic work per cycle calculations are used to determine gross accumulation or 

dissipation of energy in the system starting from an initial condition.  Nonlinearity associated with change 

in contact conditions at the shroud and its effect on system mode shapes is included in the analytical scope. 

Development and rational of the analytical framework for flutter is divided in multiple sections for 

clarity, and it is described in detail in sections 3.1 through 3.6. 

3.1 Aeroelastic Formulation 

Equations of motion for a flexible blade-disk-shroud system in Finite Element domain with the 

consideration of aerodynamic and nonlinear contact loads are represented as: [𝑴]{�̈�} + [𝑪]{�̇�} + [𝑲]{𝜼} = {𝑭𝑨𝑫} + {𝑭𝑪𝒐𝒏} ( 6 ) 

Here, [𝑀] is the mass matrix, [𝐶] is the viscous damping matrix, [𝐾] is the stiffness matrix, {𝐹𝐴𝐷} 

is the complex aerodynamic load vector, and {𝐹𝐶𝑜𝑛} is the nonlinear shroud force vector.  There are multiple 

issues that prevent a direct solution to this system such as dependence of aerodynamic loads on motion and 

its derivatives, nonlinear nature of shroud contact loads, and dependence of system stiffness matrix on 

contact stick / slip condition.   Despite complexity with analytical solution of equations of motion, 

experimental observations show that flutter in physical sense is similar to free (unforced) vibration.  

Therefore simplifications have been used in previous research and in the industry to reduce complexity of 

the analytical models and enable approximate solutions.  Current flutter prediction work flow in the industry 

(Figure 9) is based on analysis of aerodynamic work interaction using in-vacuum (or structure-only) mode 

shapes.  This work flow is based on many aspects of the research and progress discussed in section 2. 
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This work flow consists of a static solution to calculate pre-stressed stiffness matrix and account 

for shroud contact and structural stiffening under significant operational loads, followed by modal analysis 

of the cascade in frequency domain to take advantage of computational efficiency.  After mode shapes are 

determined from the structure-only modal analysis, a time domain or frequency domain aero-elastic 

analysis of a single passage is conducted, where periodic boundary conditions are used to impose flow 

periodicity condition corresponding to cascade nodal diameter.  This process is repeated for all nodal 

diameters of the cascade to obtain a map of unsteady pressure distribution around the oscillating airfoil for 

each nodal diameter of the cascade.  Energy method similar to [10] is subsequently used to determine 

resulting fluid-structure work interaction and aerodynamic stability vs nodal diameter.  Due to repetition of 

large scale CFD solution with fine grid to sufficiently resolve transonic flow features, this step of the 

analysis is computationally expensive.  A comparison of several available methods and their relative 

computational efficiency is discussed in [76].  While this analytical work flow is complicated and 

computationally expensive, it is necessary for proper design of highly loaded cascades and is performed as 

standard design practice. 

 

Figure 9: Typical analytical work flow for flutter analysis 

The current work flow does not include stabilizing effects of mechanical damping or uses a constant 

value for mechanical damping as an approximation, which is not sufficient to describe the highly nonlinear 

friction damping.   

The analytical framework developed in present dissertation expands the current energy based 

methodology to include frictional work dissipation associated with vibrating motion of flutter.  Effects of 

contact nonlinearity and transition from stick to slip condition are included in the analytical method as this 

nonlinear transition affects system mode shapes and friction damping.  Shroud contact load variations 
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during cycle of vibration are included in this framework by evaluating relative motion of contact surfaces 

associated with mode shape and using this information in a subsequent contact force analysis through the 

cycle. 

 

Figure 10: Analytical framework expanded with friction damping 

This analytical framework is shown in Figure 10 and is discussed in detail in the following sections.  

For illustration, the analysis method is first demonstrated on a cascade with linear damping in section 3.3.  

It is then expanded to a nonlinear cascade is section 3.4. 

3.1.1 Solution Methodology 

Known characteristics of flutter have been used in previous research and in the industry to develop 

solutions for this complex phenomenon based on simplifications.  Similar simplifications will be used in 

present work, while still maintaining effects of nonlinear friction that is not currently considered.  First 

simplification similar with current analytical method in the industry is the use of a single harmonic natural 

mode shape and frequency of the system for periodic response of the system.  This is based on observations 

[10] that system response is in agreement with structural dynamics prediction, indicating that one of natural 

mode shapes of the cascade is the primary system response.  It is also noted in previous research that second 
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family mode shape (first torsion) is typically associated with flutter issues due to interaction with passage 

throat and shock wave [18, 14]. 

Another simplification is related to traveling wave phenomenon associated with flutter.  Research 

by [41] shows that while multiple traveling waves may initiate as a result of a perturbation, an organized 

response that continuous and may build strength is associated with a single traveling wave pattern with the 

most negative aerodynamic damping. 

Therefore a single harmonic, single nodal diameter motion associated with the most negative 

aerodynamic damping is the most susceptible to an organized flutter response in shrouded cascades and is 

studied in present dissertation.  It is also known that flutter response can be recognized as a large time scale 

exponential response imposed on a small time scale harmonic motion [41].  This is associated with high 

frequency (100-1000 Hz range) free vibrating motion that is similar to natural resonance, and exponential 

increase of amplitude over many cycles due to energy exchange with the fluid.   

These characteristics of flutter response will be utilized in present work along with the energy 

method to develop a flutter analysis framework that is comprehensive and computationally efficient, while 

using large scale, full fidelity analytical models that are required to fully describe complex geometry of a 

shrouded blade. 

3.1.2 Separation of Structural and Aerodynamic Drivers 

Classical methods for airplane wing flutter have been well developed.  Using a classical pitch-

heave method and unsteady lift and moment equations, influence of airspeed on natural frequency and mode 

shape of the wing can be determined [4].  Typical mechanism for wing flutter is known as the mode-

coalescence flutter, where first and second modes of natural vibration coalesce together and create a self-

induced instability at a frequency that is different from in-vacuum (or zero air speed) frequencies of both 
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elastic mode shapes.  It is also well known in aeroelastic methods that the level of aeroelastic mode coupling 

is a strong function of mass ratio. 

Therefore for a flexible light weight airplane wing the influence of aeroelastic coupling is strong, 

and aerodynamic mass and stiffness matrices are important factors in calculations of system frequencies 

and mode shapes.  For a rigid turbomachinery blade, aeroelastic coupling is not a dominant factor due to 

much higher mass ratio, and it is a common practice in the industry to neglect effects of aeroelastic coupling 

and assume harmonic motion comprised of “in-vacuum” or “structure-only” as the systems frequencies and 

mode shapes [20].  Furthermore, it is known that in shrouded cascades, typically first torsional mode of the 

system (typically 2nd family mode) is of most concern due to strong interaction with throat area and shock 

wave in a choked passage [18, 20].    

While a combination of nodal diameters may be present in a system’s response to an initial 

perturbation, it is known that for flutter to occur all nodal diameters coalesce and form a coherent, fully 

organized, single traveling wave pattern that is prone to extracting energy from the fluid as it travels 

endlessly through the cascade.  Therefore to analytically predict occurrence of flutter, a single mode, single 

nodal diameter in-vacuum mode shape of the system is evaluated aerodynamically in a moving flow field 

to evaluate aerodynamic work interaction and damping. 

Following the method of separation of structural versus aerodynamic forces that is used in the 

industry, it is assumed in this dissertation that natural frequency of the system is only a function of structural 

and steady state contact forces.  Influence of aerodynamic forces and unsteady (or alternating) contact forces 

is assumed to be negligible on natural frequency.  Despite this simplification, nonlinear effect of shroud 

contact transition on mode shape is included as it will be discussed in section 3.4.  While not influencing 

natural frequency, aerodynamic forces and unsteady contact forces play an essential role in cascade stability 

by adding (or dissipating) small amount of energy over each cycle of vibration, which will be included in 

formulation of the problem.  



53 

 

3.1.3 Mass / Stiffness vs. Damping Terms 

With the assumptions described in section 3.1.2, small time scale flutter motion in general can be 

described as a sinusoidal vibratory motion.  Force diagram representation of this sinusoidal vibratory 

motion in real-imaginary plane is shown in Figure 11 to examine fundamental influencing forces and 

determine large time scale exponential component.  Motion is represented as a rotation set of vectors with 

influencing interial, stiffness and damping forces.  Two groups of forces are identified in the instantaneous 

angle of rotational frame which are perpendicular to each other and therefore mutually exclusive.  Third 

group is the static force which is shown as an offset on the real axis relative to the origin. 

 

Figure 11: Force diagram of sinusoidal vibrating motion on real-imaginary plane 

First group are the real forces consisting of inertia and stiffness forces, and they are at an angle of 𝜔𝑛𝑡 relative to the real axis.  These forces primarily determine frequency of vibration, and they are in phase 

(or 180° out of phase) with motion.  Energies associated with real forces are kinetic and elastic energies, 

which convert from one form to another twice over the full cycle of vibration. 

Second group consist of imaginary forces and are at angle of 𝜔𝑛𝑡  ±90° relative to the origin.  

Amplitude of imaginary forces is typically much smaller than real forces for systems with large mass ratio.  

While their influence on natural resonance characteristics is negligible, they do play a critical role in 

stability of the system by adding or dissipating small amount of energy over each cycle.  While the amount 
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of energy associated with imaginary forces is much smaller than either kinetic or elastic energies, its net 

effect is essential over many cycles of vibration as it leads to either dissipation or accumulation of energy 

in the cascade. 

Structural damping terms are always dissipating because the direction of friction force is always 

opposite of the motion.  Therefore imaginary force associated with structural damping is always at a 90° 

lag of the motion.  Aerodynamic damping may be dissipative or exciting depending on phase angle of 

aerodynamic force relative to the motion.  If the resultant aerodynamic force lags the motion (similar to 

structural damping force) then aerodynamic damping is dissipative similar to structural damping.  On the 

other hand, if aerodynamic force leads the motion then it is exciting and its net effect is addition of small 

amount of energy during each cycle of vibration.  Source of this energy is the moving fluid, which offers 

unlimited kinetic energy.  The energy associated with aerodynamic excitation over one cycle is very small 

compared to cascade kinetic and elastic energies, but its accumulation over many cycles can cause 

instability. 

For the system, net effects or the resultant damping force determines stability.  Resultant damping 

force is the algebraic sum of mechanical and aerodynamic forces projected on the rotating imaginary axis.  

Mechanical damping force is always dissipative.  However, with consideration of nonlinear frictional 

damping, total value of mechanical damping is amplitude dependent as it will be discussed in section 3.4.   

Static forces are the third group and act as an offset in non-rotating real coordinate.  While static 

forces typically do not affect vibratory response, they play a substantial role in shrouded cascade stability 

by indirectly influencing system imaginary forces through contact friction load as it will be discussed. 

A proper response form should therefore account for the influence of all three groups of forces, and 

it is developed in section 3.2.  
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3.2 Solution Form 

A constitutive displacement model is utilized for total cascade response to properly account for the 

influence of each group of forces.  This response is assumed to contain three major terms corresponding to 

each force group: a static (zero frequency or mean) term, an exponential term, and a periodic (or alternating) 

term as shown in equation 7. {𝜼} =   {𝜼𝒔𝒕𝒂} + �̅�𝒆𝒙𝒑 . {𝜼𝒑𝒆𝒓} ( 7 ) 

A solution sequence is developed next to determine each term of the response, taking into account 

computational efficiency and the ability of solution method to accurately determine nonlinear forces.  For 

the purpose of clarity in demonstration, this method is first applied to a system with only aerodynamic 

damping in present section and expanded to a fully nonlinear mechanical damping of the system in section 

3.4. 

Static component of the response is obtained using a time domain solution from application of 

centrifugal and steady state gas and thermal loads on the structure.  Due to presence of contact interface 

which has no stiffness for gaps but only allows penetration of surfaces with contact normal stiffness, this is 

a nonlinear problem and therefore must be solved in time domain.  This solution step is presented in matrix 

format as:  [𝑲]{𝜼𝒔𝒕𝒂} = {𝑭𝑺𝒕𝑺𝒕} ( 8 ) 

Shroud contact parameters are included in this step as inputs that influence cascade stiffness matrix.  

Shroud tips of adjacent blades come into contact as a result of deflection associated with substantial 

operational loads, and a significant normal load develops between the contact surfaces.  While this force is 

variable during the vibrating motion, its static (zero frequency or mean) value can be determined from static 

component of the response.  Iterative methods are used to solve this problem by various matrix inversion 

methods and determine the static displacement vector according to equation 9. {𝜼𝒔𝒕𝒂} =  [𝑲]−𝟏 {𝑭𝑺𝒕𝑺𝒕} ( 9 ) 
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System periodic response is generally harmonic because real forces are much larger in magnitude 

than imaginary forces.  Therefore a homogenous companion equation can be solved to closely approximate 

periodic characteristics of the response, regardless of its instantaneous peak amplitude. [𝑴]{�̈�𝒑𝒆𝒓} + [𝑲]{𝜼𝒑𝒆𝒓} = {𝟎} ( 10 ) 

Viscous damping matrix [𝐶] is omitted here for simplicity, however a linearized representation of [𝐶] may be included as linear combination of [𝑀] and [𝐾] matrices and considered in the modal analysis.  

In case of shrouded blades, the boundary condition provided by the shroud at the end (or upper 

span) of a slender airfoil is fundamentally important in determining cascade vibration characteristics.  

Therefore a pre-stressed stiffness matrix is used in equation 11 to account for these influencing factors.  

Pre-stress stiffness matrix is calculated during the static solution and does not require an additional solution.  

This pre-stressed analysis concept is very similar to vibration analysis of a guitar string, where string tension 

influences frequency. [𝑴]{�̈�𝒑𝒆𝒓} + [𝑲𝒑𝒓𝒆]{𝜼𝒑𝒆𝒓} = {𝟎} ( 11 ) 

Periodic response of the system is represented by a single harmonic period function that is the 

eigenvalue solution to equation 11. {𝜼𝒑𝒆𝒓} = {𝝋}𝒆𝒊𝝎𝒏𝒕 ( 12 ) 

Where {𝜑} and 𝜔𝑛 are eigenvector and frequency of vibration and can be obtained using FEM 

software.  Any of the fundamental modes of Equation 11 may be analyzed for susceptibility to flutter.  In 

modern shrouded cascades with transonic or supersonic flow regimes, first torsional mode shape is often 

reported as the most likely mode to be excited due to its interaction with passage throat and shock wave 

[18] and is considered in present dissertation.  

After determining mode shape and frequency of periodic response, the next step is to determine the 

effects of imaginary forces on the response.  While imaginary forces do not significantly affect the periodic 

response due to their small magnitude, by the virtue of their ±90° phase angle they influence total energy 
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input into the system and slow build up or die down of amplitude over many cycles.  Imaginary forces can 

be evaluated by substituting the assumed periodic motion into fluid and structural domains with known 

amplitude. 

 

3.2.1 Aerodynamic Work Interaction 

Aerodynamic study of the mode shape of interest involves evaluating unsteady pressure distribution 

that is caused by motion of the airfoil and motion of all other airfoils in the cascade.  Multiple methods are 

available as detailed in section 2.4, and typically the most accurate and computationally efficient method 

used in the industry is frequency domain 3D Navier-Stokes based solver [29].  Using the unsteady pressure 

field and the energy method, aerodynamic work interaction with the fluid is determined by integrating the 

incremental work done by unsteady pressure field and airfoil motion over the full cycle. 

Methods to evaluate aerodynamic energy exchange are well established and will not be discussed 

in details here.  Aerodynamic Work per cycle is typically normalized to kinetic energy to obtain log-

decrement aerodynamic damping which is assumed constant (amplitude independent) for small amplitudes. 𝜹𝒂𝒆𝒓 = − 𝑾𝒑𝒄_𝒂𝒆𝒓𝟒.𝑲𝒆  ( 13 ) 

3.2.2 System Response with Aerodynamic Damping Only 

System response with energy based solution approach is first demonstrated for simplicity for a 

system with consideration of aerodynamic damping only.  Total energy into the cascade during one cycle 

of vibration is the work interchange between the fluid and the structure: ∆𝑬𝒑𝒄 =  𝑾𝒑𝒄_𝒂𝒆𝒓 ( 14 ) 

Assuming system energy during a flutter response is predominantly associated with the 

corresponding flutter mode shape, this total work per cycle can be normalized to system kinetic energy 
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using equation 13 to determine log-decrement damping coefficient.  From definition of log-decrement 

function: 𝜹𝒂𝒆𝒓 =   𝒍𝒏 𝒙𝒄𝒏𝒙𝒄𝒏+𝟏  ( 15 ) 

Or: 𝒙𝒄𝒏+𝟏 =  𝒙𝒄𝒏 𝒆 − 𝜹𝒂𝒆𝒓 ( 16 ) 

Therefore the influence of linearized aerodynamic work input into the system is exponential 

increase in each cycle’s peak amplitudes.  For a system with circular frequency of 𝜔𝑛 the corresponding 

exponential component can be expressed as:   �̅�𝒆𝒙𝒑 _𝒂𝒆𝒓 = 𝒆−𝜹𝒂𝒆𝒓 𝝎𝒏𝟐𝝅𝒕
 ( 17 ) 

Total system response for a system with only aerodynamic damping, starting from initial 

amplitude 𝛼0, is therefore as follows: {𝜼} = {𝜼𝒔𝒕𝒂} + 𝜶𝟎 {𝝋}   𝒆(− 𝜹𝒂𝒆𝒓𝟐𝝅 +𝒊)𝝎𝒏𝒕    ( 18 ) 

Where {𝜂𝑠𝑡𝑎} is the static response to operational loads at corresponding engine speed and 

operating condition, 𝛼0 is the amplitude of initial perturbation, {𝜑} and 𝜔𝑛 are mode shape and frequency 

of the system with consideration of pre-stress effects, and 𝛿𝑎𝑒𝑟  is aerodynamic log-decrement damping.  

Figure 12 shows time domain representation of both periodic and exponentially growing response for a 

system with negative aerodynamic damping.  Hypothetical value of -5% aerodynamic damping is used in 

this graph for clear illustration of the response. 
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Figure 12: Time domain response of cascade with periodic and exponential 

components with only aerodynamic damping (-5% aerodynamic damping, 𝝎𝒏 = 400Hz) 

3.3 Mechanical Work Dissipation 

Inclusion of mechanical work dissipation and associated damping in cascade stability calculations 

is a major contribution of present dissertation to the science of turbomachinery flutter.  Current energy 

method  based on positive aerodynamic damping criteria assumes all of the energy extracted by the structure 

from the fluid is accumulated in the structure during each cycle, leading to flutter instability.  Therefore 

energy input over each cycle is calculated from equation 14, with consideration of aerodynamic work 

interaction only. 

Present dissertation adds consideration of energy dissipation within the structure as a result of 

vibrating motion, in addition to aerodynamic work interaction.  To accurately determine energy dissipation 

within the cascade, both viscous (linear) and non-viscous (nonlinear) portions of mechanical damping are 

included.  Energy accumulated in the structure during each cycle is therefore the energy extracted by the 

structure from the fluid plus energy dissipated within the structure (which is always a negative work value) 

due to viscous and frictional effects. 
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∆𝑬𝒑𝒄 =  𝑾𝒑𝒄_𝒂𝒆𝒓 +  𝑾𝒑𝒄_𝒗𝒊𝒔 +  𝑾𝒑𝒄_𝒇𝒓𝒊 ( 19 ) 

3.3.1 Viscous Damping 

Viscous damping is characteristic of blade material and can be measured experimentally in a ping 

test.  It is typically assumed constant (not a function of amplitude) and is represented in a SDOF system as 

critical damping ratio 𝜉, or log-decrement damping 𝛿𝑣𝑖𝑠. 𝝃 =  𝒄𝒄𝒄𝒓𝒊  ≈  𝜹𝒗𝒊𝒔𝟐𝝅  ( 20 ) 

Energy dissipation due to viscous damping can be calculated using linear SDOF vibration equations 𝑾𝒑𝒄_𝒗𝒊𝒔 =  𝝅 𝒄 𝝎 𝒙𝟐 ( 21 ) 

It can be shown that: 𝜹𝒗𝒊𝒔 =  − 𝑾𝒑𝒄_𝒗𝒊𝒔𝟒.𝑲𝒆  ( 22 ) 

Non-viscous damping is much more difficult to determine due to nonlinearity, and it is further 

discussed in section 3.3.2. 

3.3.2 Non Viscous (Frictional) Damping 

Non viscous damping, also referred to as dry friction damping in literature, is the result of relative 

slipping motion between adjacent shrouds and associated dissipative work.  Due to nonlinearity this type 

of damping is typically researched in forced response studies [53, 67], where frequency sweep method is 

used along with known excitation amplitude to experimentally study system response.  In a self-excited 

problem, excitation amplitude is itself an unknown.  With the additional unknown, study of flutter problems 

with friction becomes much more difficult than forced response friction problem. 

While there are multiple sources of work dissipation due to friction, shroud tip contact contributes 

the most to non-viscous damping in shrouded cascades and is considered in present research.  Dominant 

influence of shroud tip work dissipation compared to other contributors such as root and under platform 
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dampers is due to large relative displacement between adjacent shrouds and significant contact normal load 

at the tip.  Relative displacement is a function of contact tangential stiffness and mode shape, which are in 

turn functions of shroud contact condition and prevailing nodal diameter.  Contact condition and friction 

force are themselves functions of contact normal load which is caused by multiple factors such as blade 

untwist due to centrifugal load, thermal growth of the shrouds, and difference in operating temperature of 

the disk and the blade.  

Contact normal load is itself an unknown in this problem and can only be determined analytically 

since experimental measurement of this force under operating condition is not practical due to compact 

nature of the shroud tip geometry and extreme centrifugal load and temperature during operation (often 

exceeding 1.0e+5 g and 1000˚F).  Further complexity is time variability of this force during a vibration 

cycle.  Yang [69] researched dynamics of shrouded fan blade vibration, demonstrating that as a result of 

3D motion of adjacent blades contact normal load between part-span shrouds is not constant during the 

cycle of vibration.  This consideration adds further complexity in determining contact status transition from 

stick to slip condition and non-viscous mechanical damping in general. 

To address these complexities and determine non-viscous mechanical damping with consideration 

of all relevant parameters, an analytical method is developed by de-coupling system damping from 

amplitude of response.  This method is discussed in full details in section 3.4. 

 

3.4 Nonlinear Damping Due to Dry Friction 

Work dissipation associated with nonlinear friction force is known as dry friction or Coulomb 

damping.  Due to inherent nonlinearity of friction, this type of damping is amplitude dependent.  This causes 

a coupling between nonlinear friction and aeroelastic equations of motion in a flutter problem, which cannot 

be readily solved.  To enable a solution, de-coupling technique is used in this dissertation where friction 

damping is first evaluated as function of amplitude over one cycle of vibration and amplitude is then 
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determined based on total energy into the system over many cycles.  In this section, work dissipation 

associated with friction damping is determined as function of amplitude.  This is effectively a structural 

problem without any consideration of aerodynamic loads, with assumed values for amplitude to determine 

motion of the structure, friction forces acting on contact surfaces, and resulting incremental work 

dissipation.  Work dissipation is then evaluated for a single cycle of periodic motion by integrating 

incremental values over the full cycle.  Details of this method and consideration of nonlinear effects on 

mode shape are described in sections 3.4.1 through 3.4.6.  Development of this method satisfies the first 

objective of this dissertation. 

Work per cycle dissipation associated with friction damping can be calculated for multiple values 

for amplitude and expressed as a function of amplitude from this exercise.  With this function available, 

aeroelastic equations can be solved with consideration of both aerodynamic work interaction and 

mechanical dissipation to determine total energy input and system response, as it will be discussed in section 

3.5.   

 3.4.1 General Friction Law 

Multiple friction models have been proposed [42, 43, 44], with trade-off between accuracy and 

simplicity.  Coulomb friction law and contact stiffness model similar to [47] are used in present dissertation 

due to relative simplicity.  According to this model, nonlinear friction force at the contact interface can be 

expressed as: 

𝑭𝑭𝒓𝒊(𝒔) = {  𝒔. 𝑲𝑻𝒂𝒏  , 𝒔 < 𝝁.𝑭𝑵𝒐𝒓𝑲𝑻𝒂𝒏𝝁. 𝑭𝑵𝒐𝒓𝒎 , 𝒔 ≥ 𝝁.𝑭𝑵𝒐𝒓𝑲𝑻𝒂𝒏      ( 23 ) 

It must be noted that  𝐹𝑁𝑜𝑟𝑚  is a not constant in this application involving shrouded blades, with 

implications that are discussed in [68].  Figure 13 shows nonlinear behavior of friction interface with 
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constant and oscillating normal load.  Contact tangential stiffness and slip threshold force are shown for 

reference as they will be referred to throughout this section. 

 

Figure 13: Nonlinear friction with variable normal load 

3.4.2 Three Step Time-Frequency-Time Domain Solution Sequence 

A solution sequence is developed next using computationally efficient solution techniques to solve 

system equations in multiple domains and evaluate work dissipation for known amplitude.  The solution 

sequence and information exchange flow chart for this hybrid time-frequency-time domain method is 

shown in Figure 14 and discussed in detail in this section. 
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Figure 14: Solution sequence and information exchange flow chart 

The first solution step is a time domain solution to determine contact normal load which is a 

nonlinear function of many design and operational parameters.   This step is performed using equation 8 

with all steady state centrifugal, thermal, and pressure loads to determine airfoil untwist and resulting 

contact normal load under steady state operating condition.  This solution step also calculates stiffness terms 

associated with steady state components of {𝐹𝐴𝐷} and {𝐹𝐶𝑜𝑛} that will be used in prestressed stiffness 

matrix.   

To account for nonlinearity associated with contact stick-slip condition, equation 8 is initially 

solved with both conditions according to equations 24 and 25, resulting in two sets of displacement fields 

and prestressed stiffness matrices to be used in subsequent analyses. {𝜼𝒔𝒕𝒂_𝒔𝒕𝒌} =  [𝑲𝒔𝒕𝒌]−𝟏 {𝑭𝑺𝒕𝑺𝒕} ( 24 ) {𝜼𝒔𝒕𝒂_𝒔𝒍𝒑} =  [𝑲𝒔𝒍𝒑]−𝟏 {𝑭𝑺𝒕𝑺𝒕} ( 25 ) 

The second solution step is a frequency domain modal solution to determine cascade natural 

frequencies and mode shapes of vibration.  A common assumption is made here that is typical in energy 
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based flutter analysis.  It is assumed that frequencies and mode shapes of the system are dominated by 

oscillating inertial and structural forces.  Oscillating aerodynamic and contact forces do not significantly 

influence mode shapes and frequencies, and they only dissipate small amounts of energy over each cycle. 

Note that the influence of steady state portion of contact forces is still accounted for in the analysis by using 

prestressed stiffness matrix.  To incorporate this assumption, a companion equation representing a linear 

homogenous representation of the system is solved in frequency domain using equation 10 and prestressed 

stiffness matrix from the first solution step. 

As noted, stick-slip condition at the shroud tip influences mode shapes and frequencies of the 

system due to difference in contact tangential stiffness.  To account for this influence, two companion 

models are initially solved with 𝐾𝑝𝑟𝑒_𝑠𝑡𝑘  and 𝐾𝑝𝑟𝑒_𝑠𝑙𝑝   as system prestressed stiffness matrices 

corresponding to shroud contact in stick and slip condition respectively.   

Assuming a response in form of equation 11, corresponding frequencies and mode shapes of each 

contact condition are obtained such that the following equations are satisfied:  (−𝝎𝒏_𝒔𝒕𝒌𝟐 )[𝑴]{𝝋𝒔𝒕𝒌} + [𝑲𝒑𝒓𝒆_𝒔𝒕𝒌]{𝝋𝒔𝒕𝒌} = {𝟎} ( 26 )  (−𝝎𝒏_𝒔𝒍𝒑𝟐 )[𝑴]{𝝋𝒔𝒍𝒑} + [𝑲𝒑𝒓𝒆_𝒔𝒍𝒑]{𝝋𝒔𝒍𝒑} = {𝟎} ( 27 ) 

Any of the system’s mode shapes may be analyzed to determine mechanical damping associated 

with them.  Focus of present dissertation is the first torsional mode which is typically associated with flutter 

issues in shrouded blades.  Similarly, any nodal diameter of the cascade for that mode family can be 

analyzed.  Least stable nodal diameter as determined from aerodynamic damping calculations is used in 

present dissertation since it is known that this is the nodal diameter most susceptible to flutter and will be 

excited before any other nodal diameter. 

To determine non viscous work dissipation, relative in-plane displacement and friction force at the 

contact interface must be known.  Due to nonlinearity and amplitude dependence, friction force must be 

determined in time domain as a function of amplitude of vibration.  Implementing this rational requires the 
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addition of another solution step after the modal solution to evaluate friction force at the tip in time domain 

and as a function of known vibration amplitude.  This can be done over a single cycle of vibration since all 

parameters are only functions of amplitude for a given mode shape and nodal diameter. 

For the third solution step, full period of vibration is divided into N equal time steps to be used for 

the time domain expansion of the response.   ∆𝒕 = 𝑻𝑵 ( 28 ) 

Time domain division scheme of one full period is shown in Figure 15.  The number of time steps 

along the cycle is arbitrary, although using more time steps will better capture details of the contact behavior 

along the peaks and valleys of the harmonic motion.   

 

Figure 15: Full cycle of vibration and time step division 

Next a value of  �̅� is assumed as the instantaneous amplitude of vibration and system response is 

expanded in time domain at all time steps using equation 29:  {𝜼𝒍} = {𝜼𝒔𝒕𝒂} +  �̅�{𝝋}𝒆𝒊𝝎𝒏𝒍∆𝒕     𝒍 = 𝟎, 𝟏, 𝟐, … 𝑵 ( 29 ) 

This results in N sets of displacement fields {𝜂𝑙} representing incremental motion of the blade 

through one full cycle of vibration.  This is essentially the time domain representation of vibrating motion 

for given input amplitude �̅�.  This vibrating motion visually exhibits a phenomenon that is known as 

traveling wave, caused by regular phase angle between adjacent blades in the cascade.  This phenomenon 
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is shown in Figure 16 over a half cycle of periodic motion.  As each blade vibrates in the prescribed nodal 

diameter pattern, peaks and valleys of the outer ring appear to move gradually to the right even though 

individual blades are stationary in this picture.  When rotation at operating RPM is considered, observed 

traveling wave is the sum of actual traveling wave plus rotational speed of the cascade. 

 

Figure 16: Vibrating motion of cascade 

This traveling wave vibrating pattern results in relative motion between adjacent shroud tip 

surfaces, which is related to initial assumptions made for contact parameters such as tangential stiffness 

and coefficient of friction.  To fully study the effects of this relative motion on contact forces, a subsequent 

time domain problem is solved at each time step of the cycle to determine solution to contact surfaces as a 

result of the imposed displacements. To minimize computational time, small subset of the original system 



68 

 

containing only shroud tip region and associated contact elements is used in this solution step since 

displacement is already known and values of contact loads are of interest.   

This solution is repeated for each time step in a series of time domain solutions using Eq. 30.   {𝑭𝒄𝒐𝒏 ,𝒍} =   [𝑲𝒄𝒐𝒏]{𝜼𝒍}      𝒍 = 𝟎, 𝟏, 𝟐, … 𝑵 ( 30 ) 

Purpose of this solution step is to utilize detailed motion of contact surfaces at each time step 

through one full cycle of vibration and evaluate parameters affecting work dissipation.  These parameters 

include relative in-plane displacement, contact normal load, and friction load.  Contact relative 

displacements are used in both normal to contact surface and parallel to contact surface directions to 

determine the contact force vector acting on the shroud.  This step of the solution also takes into 

consideration changes in the relative angle between adjacent contact surfaces and resulting cubic stiffening 

effects that may occur.  It must be noted that all of these parameters are functions of amplitude, and they 

are calculated at this point for a given value of  𝛾 ̅.   
 Solution step 3 is repeated similar to steps 1 and 2 for both stick and slip conditions.  Starting from 

small values of  𝛾 ̅, in plane friction force is evaluated using the stick response and corresponding contact 

normal force.  A validity check is performed next to determine contact condition based on calculated 

relative displacement and friction force.  For stick condition to be valid: 𝒔 . 𝑲𝒕𝒂𝒏 <  𝝁 . 𝑭𝒏𝒐𝒓𝒎    ( 31 ) 

If the condition is not valid, smaller value of  𝛾 ̅ is used to find a response that satisfies stick 

condition. 

Once a valid solution for stick condition is established next step is to determine transition from 

stick to slip condition as discussed in section 3.4.3. 
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3.4.3 Contact Condition Transitions from Stick to Slip 

To study mechanics of shroud contact, amplitude of motion is assumed to gradually increase from 

small amplitudes associated with stick mode shape to larger amplitudes associated with slip mode shape.  

Assuming motion initiates from an original equilibrium position (relative displacement corresponding to 

static solution), vibrating motion of the cascade results in relative motion between adjacent shroud contact 

surfaces.  For a given amplitude, trajectory of this relative motion in plane of contact with stick condition 

is in form of a tilted ellipse comprised of two in plane components that may be out of phase with each other.  

Figure 17 shows series of these trajectories with multiple small and increasing values of 𝛾 ̅. 

 

Figure 17: In plane trajectory of relative motion with stick mode shape 

Distance 𝑠 along the trajectory relative to static position is used in equation 23 to calculate in plane 

friction force during contact stick condition with corresponding mode shape.  As long as in plane friction 

force remains smaller than slip threshold value 𝜇. 𝐹𝑁𝑜𝑟𝑚 as shown in Figure 18, its value is the product of 

the distance from steady state position and contact tangential stiffness.  Friction force in this amplitude 
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range is linear and there is no hysteresis loop, so no work dissipation is taking place (according to the 

simplified Coulomb friction model).  

 

Figure 18: Friction force vs. distance from steady state position 

The mechanics of transition to slip condition are illustrated in Figure 19.  Values of in plane friction 

force and slip threshold are shown over the full cycle of oscillation for two increasing values of  𝛾 ̅.   

 

Figure 19: Transition from stick to slip condition 
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Top plot in this figure corresponds to a value of �̅� that equation 31 remains valid throughout the 

cycle.  In plane friction force oscillates between the bounds of slip threshold but never reaches them.  In 

this case, work dissipation is zero and all energy is stored and released elastically due to contact tangential 

stiffness. Bottom plot corresponds to a value of  𝛾 ̅ that in plane friction force becomes equal to the threshold 

force at a particular phase angle.  It must be noted that threshold force itself varies through the cycle due to 

change in contact normal load but variations are not appreciable at this amplitude.  The variation in 

threshold force is the reason intersection point at 130° phase angle in Figure 19 appears farther than 

intersection point at 310° phase angle. 

At amplitudes larger than slip threshold, slip mode shape is used for evaluation of relative motion, 

contact force and work dissipation.  Relative motion with slip mode shape features much larger in plane 

motion and slightly different tilt in axis of elliptical trajectory as shown in Figure 20 (a).  Distance s in 

equation 23 is now (with slip motion) calculated to each end of the elliptical orbit, which corresponds to 

the outer corners of hysteresis loop shown in Figure 20 (b). 
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Figure 20: (a) In plane trajectory with slip mode shape, (b) Hysteresis loop 

With cascade operating in slip mode shape and formation of hysteresis loop with positive enclosed 

area, energy dissipation due to friction damping initiates as discussed in section 3.4.4.   

3.4.4 Work Dissipation Due To Friction 

Next step in the algorithm shown in Figure 14 is to determine work dissipation over one full cycle 

of vibration.  Work dissipation for a given value of  𝛾 ̅ is calculated by using the corresponding contact 

friction force and relative displacement between adjacent shroud tips.  In a numerical scheme and with 

consideration of variable forces, incremental work dissipation at each time step is computed using the 

friction force at current time step and incremental displacement relative to previous time step.   ∆𝑾𝒍 =  𝑭𝑭𝒓𝒊 .  𝜹𝒔 ( 32 ) 
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Note that only incremental work during slip portion of the cycle results in net work dissipation 

since incremental energy stored elastically during stick portion of the cycle will be released on the reverse 

(unload) side of the hysteresis loop.  This is because prior to slip initiation relative contact tangential 

displacement is assumed to be fully elastic (according to simplified Coulomb friction model).  Total per 

cycle work dissipation is calculated by integrating (or summing up in a discrete numerical domain) the 

incremental work dissipation during slip condition over the full cycle. This summation can be shown to be 

equivalent to the area enclosed within the hysteresis loop. 

  𝑾𝒑𝒄_𝒇𝒓𝒊 =  𝚺𝒍=𝟎𝑵 { 𝝈. ∆𝑾𝒍} ( 33 ) 

Parameter σ is used as slip indicator where: 𝝈 = {  𝟎  , 𝒔.  𝑲𝑻𝒂𝒏 < 𝝁. 𝑭𝑵𝒐𝒓𝒎𝟏  , 𝒔.  𝑲𝑻𝒂𝒏 ≥ 𝝁. 𝑭𝑵𝒐𝒓𝒎     ( 34 ) 

 

The above process is repeated for multiple values of  𝛾 ̅ to numerically determine work dissipation 

versus amplitude function, as further discussed in section 4.2.   

3.4.5 Equivalent Log-Decrement Damping 

Work exchange in flutter analysis is typically normalized to kinetic energy of the system associated 

with the mode shape of interest to evaluate resulting log-decrement damping.  It is assumed in this process 

that all of system kinetic energy is associated with the dominant single mode motion associated with flutter.  

This assumption is only valid during a flutter event when the associated flutter mode shape becomes the 

dominant response of the system. 

With non-viscous damping, log decrement damping is amplitude dependent and cannot be assumed 

constant as with linearized damping.  However work exchange and kinetic energy of the system over one 

cycle of vibration can be approximated using average cycle amplitude with reasonable accuracy if change 

in amplitude between multiple cycles is relatively small (i.e., systems with low damping such as 
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turbomahcinery cascades).  Therefore while log-decrement damping is amplitude dependent and can change 

over multiple cycles, it is assumed constant over one cycle in this dissertation.  Symbol 𝛽 is used to express 

amplitude dependent log-decrement damping exponent which is differentiated from constant log-decrement 

damping represented by symbol 𝛿.  

Non-viscous damping over one cycle is therefore obtained by normalizing frictional work 

dissipation during a single cycle by kinetic energy associated with the same cycle.   

 𝜷𝒇𝒓𝒊 =  − 𝑾𝒑𝒄_𝒇𝒓𝒊𝟒 𝑲𝒆     ( 35 ) 

Kinetic energy is associated with mass matrix and modal velocity vector, and for period motion it 

can be expressed as: 𝑲𝒆 = 𝟏𝟐  {�̇�}[𝑴]{�̇�}𝑻 = 𝟏𝟐  (�̅�)(𝝎𝒏){𝝋}[𝑴](�̅�)(𝝎𝒏){𝝋}𝑻 ( 36 ) 

Since mass normalized mode shapes are used in all work per cycle calculations, kinetic energy 

associated with the mode shape by itself (without a scale factor) is equal to: {𝝋}[𝑴]{𝝋}𝑻 =  𝟏 ( 37 ) 

Therefore log-decrement damping corresponding to a single cycle is: 𝜷𝒇𝒓𝒊 = −  𝑾𝒑𝒄_𝒇𝒓𝒊𝟐 ( �̅� 𝝎𝒏)𝟐   ( 38 ) 

3.5 System Response with Nonlinear Damping 

With consideration of mechanical work dissipation within the system, net energy exchange of the 

system is calculated using three major contributors according to equation 19: aerodynamic, viscous, and 

non-viscous (friction related) work exchange or dissipation.  Aerodynamic and viscous component of work 

per cycle can be determined using currently available methods.  Friction work dissipation is evaluated 

numerically as a function of amplitude using the method developed in section 3.4 𝑾𝒑𝒄_𝒇𝒓𝒊 = 𝒇 (�̅� ) ( 39 ) 
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Equation 19 can be normalized by system kinetic energy to obtain total system log decrement 

damping, noting that total system damping is non-constant and amplitude dependent similar to friction 

damping.   𝜷𝒕𝒐𝒕 =   𝜹𝒂𝒆𝒓 + 𝜹𝒗𝒊𝒔 +  𝜷𝒇𝒓𝒊 = − 𝑾𝒑𝒄_𝒕𝒐𝒕𝟒.𝑲𝒆  ( 40 ) 

To obtain the exponential component of the system response with amplitude dependent damping, 

a numerical solution method is developed by creating a number of time series arrays for time dependent 

response variables.  Time is scaled to natural period of oscillation so each entry in the time series 

corresponds to one cycle.  Starting from the time of initial perturbation (t=0), number of vibration cycles of 

the cascade 𝑐𝑛 can be expressed as: 𝒄𝒏 = 𝒊𝒏𝒕𝒆𝒈𝒆𝒓 (𝝎𝒏𝟐𝝅 𝒕)                𝒄𝒏 = 𝟏, … 𝑵𝒄𝒚𝒄 ( 41 ) 

In this pseudo-time domain, values of  𝛽𝑓𝑟𝑖  and 𝛽𝑡𝑜𝑡 are considered constant over one cycle as 

discussed in section 3.4.6.  Starting from an initial condition of amplitude 𝛼0, average amplitude of each 

cycle is designated as �̅�[𝑐𝑛].  Total work exchange of the system, kinetic energy, and total system damping 

are evaluated for present cycle based on its average amplitude, and values are collected in numerical series 

where each entry corresponds to a single cycle.   𝜷𝒕𝒐𝒕 [𝒄𝒏] =  − (𝑾𝒑𝒄−𝒕𝒐𝒕𝟒.𝑲𝒆 ) [𝒄𝒏] ( 42 ) 

Here, 𝛽𝑡𝑜𝑡[𝑐𝑛] is total system log decrement exponent that is valid only for cycle 𝑐𝑛  and its 

instantaneous sign is a measure of increase or decrease in kinetic energy and amplitude of next cycle.  It is 

normalized values of all work input into the system and dissipation within the system based on the 

amplitude of current cycle. 

Amplitude of next cycle is calculated using definition of log-decrement exponential function: �̅�[𝒄𝒏 + 𝟏]  =  �̅�[𝒄𝒏] .  𝒆 𝜷𝒕𝒐𝒕 [𝒄𝒏]    ( 43 ) 
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With the amplitude of next cycle known, this process of evaluating work exchange, kinetic energy 

and amplitude of next cycle can be repeated until a converged value of amplitude is reached, or until 

irreversible divergence is observed indicating cascade instability.  Stability evaluations are further discussed 

in section 4.3 with results of case study. 

Figure 21 shows the flow diagram for determining cyclic amplitude numerical series, using HCF 

limit as an upper bound for a viable design.  If total system damping becomes zero at some amplitude, 

cascade is stabilized and the amplitude will converge to a constant value which is known as LCO. 

 

 

Figure 21: Algorithm for determining system response and stability  

Since  �̅�[𝑐𝑛]  , 𝛽𝑡𝑜𝑡 [𝑐𝑛]  and 𝛽𝑡𝑜𝑡 [𝑐𝑛]  are single dimension arrays, their calculations are 

computationally efficient.  Amplitude of many cycles can be calculated efficiently and with consideration 

of all relevant contributors to determine system stability starting from an initial condition.  

Total system response for a system with nonlinear friction damping is therefore as follows: {𝜼} = {𝜼𝒔𝒕𝒂} +  �̅�[𝒊𝒏𝒕𝒆𝒈𝒆𝒓 (𝝎𝒏𝟐𝝅 𝒕)]  {𝝋}   𝒆𝒊𝝎𝒏𝒕      ( 44 ) 
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Figure 22 shows response of the cascade with only linear damping (-1.4% aerodynamic plus 0.6% 

viscous) and total damping (-0.8% linear plus frictional values from case study in section 4).  It can be seen 

that while linear damping shows unstable response (sum of aerodynamic and viscous damping is slightly 

negative), friction damping can stabilize the system when amplitude becomes large enough for contact to 

transition to slip and initiate work dissipation.   

 

Figure 22: System response with linear damping and total damping 

3.6 Cascade Stability 

For a system with negative aerodynamic damping, the most unstable nodal diameter of vibration is 

the one with least (most negative) aerodynamic damping [41].  Therefore stability calculation with total 

system damping can be limited to this one nodal diameter with most negative aerodynamic damping.  This 

nodal diameter is identified in aerodynamic work analysis, and it is of most concern because it will be 

excited before all others.  Total work into the system (or normalized work represented by log-decrement 

damping) associated with this nodal diameter determines cascade stability.  Sign of total system damping 

can be used to determine stability.  However, since log-decrement damping is itself a variable based on 
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amplitude and time in a nonlinear system, change in its sign must also be considered when determining 

overall stability.  This concept will be demonstrated in section 4.3 with the case study.   
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CHAPTER FOUR: FINDINGS 

Practical application of this analytical framework is demonstrated in this section by conducting 

case study of a last stage turbine blade of an IGT engine.  This blade (see Figure 5) was recently redesigned 

for an upgrade package [77] and is used for the computational domain in present dissertation.   

Findings and results of the analysis are shown in sections 4.1 through 4.5.  Due to proprietary 

nature of the case study, design information is considered confidential.  Therefore arbitrary or scaled units 

are shown in all graphs, except for calculated values of nonlinear mechanical damping which is the primary 

contribution of present dissertation to science of flutter prediction.  These values are actual damping values 

that are calculated for this particular blade design, and they can be used in peer review studies to compare 

with other blade designs. 

4.1 Application to IGT Blade 

A cyclic sector of the disk and the blade with periodic boundary condition is used in this case study 

to minimize computational cost while enforcing conditions of cascade nodal diameter.   

Despite the need for computational efficiency, a large scale and detailed FE model of the blade is 

created to accurately simulate mode shape of the complex geometry and contact pattern with available 

computational tools.  The sector model consists of about 1.1M DOF and 120 contact elements along the 

contact face to properly evaluate contact pressure distribution and force. 
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Figure 23: FEM model of one blade/disk sector 

Three step solution process in section 3.4.2 is used to obtain three components of the response: 

static response under operational loads, modal response from frequency domain analysis, and contact force 

response from a post-modal contact solution in time domain.  Numerical values of contact parameters ( 𝜇  
and   𝐾𝑇𝑎𝑛) are used consistently among all solution steps to properly simulate contact force and condition.  

Exact determination of these values, especially at high temperature, is often a challenge and is 

recommended for future research.  Values measured in high temperature rig tests in [48] are used in present 

dissertation in absence of direct laboratory measurements. 

For the first solution step, time domain static solution is obtained under operational condition with 

steady state loads such as centrifugal and thermal loads.  Nonlinear effects of gaps are analyzed in this step, 

as an iterative matrix inversion method is used to ramp loads and converge on a solution after multiple 

iterations.  Due to influence of contact normal load on work dissipation, this is a necessary step in any 

meaningful analysis. 

Second solution step consists of modal analysis to determine natural frequencies and mode shapes 

of the rotating cascade with prestressed stiffness matrix from first solution step.  Using a duplicate sector, 

real and imaginary natural mode shapes are obtained for the sector model.  Real and imaginary mode shapes 
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are then combined together with periodic boundary condition corresponding to the nodal diameter of 

interest to expand a time domain representation of frequency domain solution.  Expanded mode shape for 

second family (first torsion) sixth nodal diameter mode is shown in Figure 24.  While only a sector model 

is solved, full cascade representation is shown for visualization purpose using graphical methods.  

Displacement scaling is used in this figure to show excessive deformation, as the amplitude of vibration is 

arbitrary at this point.   

            

Figure 24: First torsional sixth nodal diameter mode shape of the coupled cascade 

with shrouds interlocked under operating loads 

Aerodynamic work per cycle calculations are performed next using commercially available CFD 

solver with HBM and flutter analysis capability.  Despite advances in analytics and computational power, 

this step is still the bulk of computational time associated with flutter analysis.  This step is part of current 

analytical work flow so computational expense is expected and tolerated.  Work per cycle is calculated with 

known amplitude, and log-decrement damping is determined from equation 13.  This aerodynamic log-

decrement is assumed to be constant (amplitude independent).  Exact values of calculated aerodynamic 
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damping are not disclosed due to confidential nature of this information.  General pattern of variations with 

nodal diameter are shown in Figure 25. 

 

Figure 25: Typical aerodynamic log-decrement damping vs. nodal diameter 

Viscous damping is material dependent and can be measured from ping testing results using half 

power width or other common methods.  However such measurements are usually at room temperature and 

high temperature values are not available at this time.  An estimated value of 0.6% log-decrement damping 

is used in present dissertation as an example of a realistic value. 

Nonlinear friction damping is calculated according to section 3.4.4.  In plane components of relative 

motion with multiple values and with two mode shapes corresponding to stick and slip conditions are shown 

in Figure 26 .   
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Figure 26: In plane relative motion for multiple values of  𝜸 ̅ 
Out of plane component of motion and contact normal force over full interface area are shown in 

Figure 27.  Highly nonlinear geometric effects such as cubic stiffening can be seen in contact normal force 

with increasing amplitudes.   

 

 

Figure 27: Out of plane motion and contact normal load for multiple values of  𝜸 ̅ 
 



84 

 

Normal load is varying during the cycle which is included in the calculation of slip threshold force.  

Transition from stick to slip occurs when in plane friction force exceeds slip threshold force at any phase 

angle of the cycle.  For friction damping to be present, the amplitude must raise to a large enough value to 

exceed slip threshold of the friction joint.  Trajectory of relative motion changes as mode shape switches 

from fully stick condition to slip motion with larger amplitudes.  Contact relative displacement is calculated 

relative to static position with stick condition and relative to end of each orbit in slip condition as shown in 

Figure 17 and Figure 20. 

After slip threshold is exceeded, hysteresis loop forms and energy is dissipated by friction work 

during the slip portion of the cycle.  Mode shape is switched to slip mode shape for further calculations. 

4.2 Nonlinear Damping Results 

Incremental work dissipation during each sub step of solution step 3 is evaluated next according to 

equation 32.  Figure 28 (a) shows friction force and slip threshold force during the full cycle of vibration 

for a given amplitude.  Figure 28 (b) shows the incremental in-plane distance 𝛿𝑠 relative to previous time 

step.  Net work dissipation occurs only during the slip potion of the cycle as discussed in 3.4.5.  Incremental 

work shown in Figure 28 (c) is the product of friction force  𝐹𝐹𝑟𝑖 , incremental distance 𝛿𝑠 , and slip 

condition indicator σ.  This plot shows that incremental work is highly nonlinear over the cycle as numerical 

values of parameters change at each time step increment. 
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Figure 28: (a) Friction force (b) Incremental distance (c) Incremental work dissipation 

with small amplitude 

 

With larger amplitude, influence of variable normal load becomes more pronounced, and slip 

portion of the cycle becomes larger time span of the full cycle.  With work dissipation occurring over larger 

time span of the cycle, slope of work dissipation increases in addition to its value (see Figure 31).  However, 

increase in slope due to this effect is limited to a certain amplitude range.  With even larger amplitudes 

when work dissipation occurs over most of the cycle, no further slope increase is observed related to this 

effect. 
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Figure 29: (a) Friction force (b) Incremental distance (c) Incremental work dissipation 

with large amplitude 

To further illustrate the increase in enclosed area of hysteresis loop and work dissipation as the 

amplitude increases, Figure 30 shown the hysteresis loop for three increasing values of �̅� on the same axis 

of abscissas.  Figure 30(a) corresponds to an amplitude post but near slip initiation condition, where 

hysteresis loop is narrow and slip only occurs on a limited portion of the cycle.   Figure 30(b) corresponds 

to medium amplitude, where slip occurs on most of the cycle but variations in normal load are still 

insignificant.  Figure 30(c) corresponds to relatively large amplitude within the range of study where 

variations in normal load start to influence the shape and enclosed area of the hysteresis loop. 
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Figure 30: Hysteresis loop for (a) Small (b) Medium (c) large amplitudes 

Work dissipation associated with friction is calculated by integrating (or summing up in a discrete 

computational domain) incremental work dissipation over the full cycle.  This process is repeated for 

multiple amplitudes to obtain work dissipation as a function of amplitude, as shown in Figure 31 for the 

particular blade design studied here.  Units are scaled in this graph due to confidential nature of design 

information. 

 

Figure 31: Non-viscous or frictional work per cycle as a function of amplitude 
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Change in work dissipation slope can be seen in the above figure.  With increase in amplitude and 

slip occurring over larger time span of the cycle, slope of work dissipation increases gradually.  However, 

increase in the slope due to this effect is limited to a certain amplitude range.  With even larger amplitudes 

when slip occurs over most of the cycle, no further slope increase is observed related to this effect. 

Work per cycle is normalize to kinetic energy (assumed to be primarily associated with flutter mode 

shape) to obtain log-decrement damping as a function of amplitude.  This graph is shown in Figure 32.  

Transition from stick to slip condition and mode shape is shown in this graph as the amplitude where friction 

dissipation begins after friction force exceeds threshold.  In reality, there is some frictional damping prior 

to this transition amplitude due to micro-slip effects which are not considered in this dissertation.  Therefore 

damping through transition region will have a shallower slope in reality than shown here.  This plot also 

shows that frictional damping after slip initiation is a nonlinear function of amplitude, and it declines with 

higher amplitude as kinetic energy of the cascade increases at a faster rate than work dissipation. 

 
 

Figure 32: non-viscous mechanical damping as a function of amplitude 

This nonlinear function of non-viscous mechanical damping versus amplitude is used for system 

stability analysis, as discussed in section 4.3. 
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4.3 Stability Prediction 

For a system with negative aerodynamic damping, the most unstable nodal diameter of vibration is 

the one with least (most negative) aerodynamic damping [41] and it can be identified in aero-elastic 

damping versus nodal diameter plot.  Stability calculation can be limited to this one nodal diameter with 

the least negative aerodynamic damping because this is the nodal diameter that will be excited before all 

others.  Total work (sum of aerodynamic and mechanical work) into the system associated with this nodal 

diameter (represented by log-decrement damping) determines cascade stability.  If the sign of total work 

into the system changes with increase in amplitude, it must also be considered.   

To fully visualize total system damping as a function of amplitude, all components of total log-

decrement damping for the most unstable nodal diameter are shown in Figure 33.  Hypothetical values of -

1.4% and 0.6% are used respectively for aerodynamic and viscous damping, along with non-viscous 

damping curve from Figure 32. 

 

Figure 33: Total system damping as a function of amplitude 
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Based on visual examination of total damping curve, cascade stability can be divided into three 

distinct cases depending on aerodynamic damping: 

A) For an aerodynamically stable cascade (with positive aerodynamic damping): total system 

damping is always positive therefore such cascade is always stable. 

B) For an aerodynamically unstable cascade with high level of negative aerodynamic damping 

where total system damping is negative at all amplitudes (i.e., -5% or more negative in this example): total 

system damping is always negative therefore such cascade is always unstable. 

C) For an aerodynamically unstable and frictionally damped system: Aerodynamic damping is 

slightly negative so total system damping is initially negative but changes sign with increasing amplitude.  

In this case, a small perturbation can be stabilized after it reaches certain amplitude to maintain a balance 

between aerodynamic excitation and mechanical dissipation. 

Stability characteristics of shrouded cascades with case C are further illustrated in Figure 34.  Based 

on the amplitude of initial excitation, the stability map is divided into three regions.   HCF limit on vibratory 

stress (which is proportional to amplitude) is shown in this figure as the maximum amplitude of practical 

interest.  
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Figure 34: Cascade stability map for case C 

Cascade stability in each region is determined from both sign of log-decrement damping associated 

with initial perturbation, and potential future change in sign of log-decrement damping associated with time 

history of system response and increase in amplitude.  Each region is discussed below, depending on the 

amplitude of initial perturbation. 

C1) this region represents a small initial perturbation, where shroud contact with the initial 

amplitude remains in stick condition.  Since all relative motion between in-contact shroud tips is linear and 

proportional to tangential stiffness, area under hysteresis loop is zero which indicates no frictional work 

dissipation.  Total system damping is negative; therefore amplitude increases with each cycle while the 

cascade remains in this region.  However this region is not interpreted as globally unstable because it is 

bound by a stable region as amplitude increases and friction joint begins to slip. 

C2) this region represents post slip region where negative aerodynamic damping is stabilized by 

combination of viscous and non-viscous mechanical damping.  This region is stable and any perturbation 

initiating in this amplitude range will die out progressively over multiple cycles until it reaches lower bound 

amplitude immediately after slip initiation, where friction damping is at its peak.  This is where the steady 
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state response maybe expected as a LCO.  However if sources of perturbations are continuous (as a result 

of random vortex shedding of upstream components for example) system response may be higher than the 

stable LCO due to constant excitation.  System is fully damped and stable with any amplitude in this region. 

C3) this region is post slip and with larger perturbation amplitude where combination of viscous 

and friction damping due to decrease in the latter is not sufficient to overcome aerodynamic excitation.  

This region is unstable therefore if any initial perturbation is large enough to cause such amplitude it will 

lead to exponentially growing motion  and immediate cascade failure. 

Time domain system response for each region is shown in Figure 35.  It is noted that for the range 

of variables used in this study (-1.4% aerodynamic, 0.6% viscous, non-viscous from Figure 32, 𝜔𝑛 ≈400 

Hz) system response can be determined in as few as 500-1000 cycles or 1-2 seconds. 

 

Figure 35: Cascade response with perturbation amplitude in C1, C2 and C3 sub-cases 

4.4 Trade Studies 

Results of parametric studies are presented in this chapter to demonstrate change in stability map 

as a function of most significant parameters which are aerodynamic damping, tangential stiffness of the 

contact surfaces, and coefficient of friction.  This information is useful in evaluating stability margin with 

range of observed or calculated parameters. 

System stability region for three different aerodynamic damping values are shown in Figure 36.  

These values are hypothetical and in the upper range of values of interest in the industry.  Viscous log-
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decrement damping value of 0.6% and non-viscous friction damping values from Figure 32 are used for 

this graph.  It can be seen that stability region shrinks with decreasing aerodynamic damping as expected.  

Therefore, as aerodynamic excitation increases, progressively smaller perturbations have the potential to 

cause global instability and cascade failure.  If aerodynamic damping becomes more negative than sum of 

viscous and non-viscous damping at any amplitude, such cascade is fully unstable and any perturbation will 

lead to immediate build-up of amplitude and cascade failure (case B). 

 

 

Figure 36: Total system damping with three aerodynamic damping values 

Another influencing factor that effects friction damping and therefore total system damping is 

tangential stiffness of contact surfaces.  System stability map for three different values of tangential stiffness 

is shown in Figure 37.  Contact tangential stiffness influences slip threshold distance and therefore the 

boundary between C1 and C2 regions.  It also influences mode shape and relative motion between adjacent 

shroud tips.  Friction damping curves at constant amplitude increase as tangential stiffness decreases 

because relative contact displacement in the mode shape increases with softer constraint, resulting in more 

work dissipation.  Natural frequencies are also slightly affected by change in tangential stiffness. 
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Figure 37: Total system damping with three tangential stiffness values 

Finally, system stability map with varying values of friction coefficient is shown in Figure 38.  

Friction coefficient affects both transition to slip and friction damping therefore its increase has a stabilizing 

effect by shifting the boundary between regions C2 and C3 to higher amplitudes.  This will increase the 

limits of initial perturbation that can be stabilized. 
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Figure 38: Total system damping with three coefficient of friction values 

 

4.5 Engine Test and Data Analysis 

The blade utilized in present case study was recently designed as part of an upgrade program to 

allow increase in turbine mass flow, and it exhibited negative aerodynamic damping for some nodal 

diameters.  To ensure flutter free operation, tip timing data was obtained for the purpose of design validation 

after installation of subject blades in a commercially operating IGT [77].  Multiple probes around the 

cascade were used as shown in Figure 39 for identification of mode shape and traveling wave of response. 
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Figure 39: Tip timing instrumentation with multiple probes around the cascade 

Observed response was mostly composed of low engine order rotor umbrella modes and engine 

order response of multiple upstream and downstream counts and differences in counts.  An example of 

response of various traveling waves over time is shown in Figure 40.  Flutter response of significant 

amplitude was not observed in the operating envelop of the engine for any nodal diameter, therefore cascade 

design proved successful.  However, no affirmative data to establish boundary between stable and unstable 

operation was obtained due to lack of an organized, flutter related response. 

 

Figure 40: Cascade response at maximum power 

It must also be noted that in an engine test only combined effects of aerodynamic and mechanical 

damping can be evaluated as the total energy in (or out) of the cascade.  Neither aerodynamic nor 
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mechanical damping can be measured independently due to lack of detailed surface pressure 

instrumentation.  Therefore to determine mechanical damping at flutter condition following information is 

required: 

i) Aerodynamic damping must be calculated through analysis at the operating condition 

where flutter becomes an issue, which is typically associated with maximum mass flow 

through the cascade which occurs during steady state operation at full load and fully 

open IGV angle.   

ii) Total system damping must be known at the same operating condition.  Total system 

damping during steady state operation is only known when it becomes zero at the onset 

of flutter initiation.  This condition was not observed during the validation testing 

campaign of the case study due to lack of flutter instability within the designated 

operating envelope of the engine. 

With these limitations in mind, results of present study were compared to engine measurements as 

described below.  Transition amplitude to slip condition was calculated using normal contact force predicted 

by analytical models and baseline contact parameters from [48].  This transition amplitude is shown as a 

red dotted line in Figure 41 along with time domain response of the cascade operating at the highest mass 

flow rate and output power of the engine. 



98 

 

 

Figure 41: Cascade time domain response  

Observed amplitude at this operating condition is higher than boundary line between C1 and C2 

regions as predicted by the model using baseline contact parameters, indicating cascade is vibrating in slip 

condition and energy dissipation due to friction is taking place.  However, majority of the observed vibration 

amplitude was due to other factors such as engine order excitation which may be present independent of 

flutter response.   

Frictional damping of the cascade is determined using observed amplitudes from engine test as 

shown in Figure 42.  While exact values of engine amplitudes and aerodynamic damping of the cascade are 

confidential, it can be stated that total system damping (aerodynamic plus mechanical) always remained 

positive with margin for any observed amplitude within the operating envelop.  This is consistent with 

stable operation of the cascade under maximum mass flow condition which is evident in cascade time 

domain response shown in Figure 41. 
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Figure 42: Frictional damping with observed engine amplitude 

Operating in slip condition with small relative movement is consistent with physical condition of 

the contact surfaces after removal from engine, as shown in Figure 43. 

 

Figure 43: Contact surface condition after removal from engine 

Further validation of the damping calculations was conducted according to a reviewer’s suggestion 

on engine data during start up transients.  Since transients which occur during rotor spool up are not 

associated with high mass flow through the engine, they are not considered flutter prone operating points.  

However cascade damping can be calculated from observed displacement data and frequency response 

spectrum of blades.  Calculated damping can be compared with measured damping to validate the analytical 
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method for damping calculation, provided all analytical steps are conducted in operational conditions 

corresponding to engine operation at the time of crossing. 

Three distinct crossings were observed during testing, and the method is applied to all three to 

compare with experimental data.  For each crossing, blade operating conditions are different resulting in 

specific contact normal load and mode shape.  First, nodal diameter and frequency of resonance are 

identified from engine data.  A quasi-static condition is assumed based on engine RPM, estimated engine 

mass flow and blade operating temperature.  Solution step 1 is performed at this quasi-static condition and 

contact normal load is calculated based on nonlinear contact solution.   

Solution step 2 is performed next using pre-stressed stiffness matrix to obtain frequency and mode 

shape corresponding to observed nodal diameter in engine data.  Contact tangential stiffness value is 

adjusted to match predicted frequencies of all crossings to observed data with reasonable accuracy.  

Remaining steps in the analytical method are repeated to calculate damping values at observed engine 

amplitudes.  A viscous damping log-decrement value of 0.6% (approximately 0.1% c/ccr) is added to 

calculated friction damping values to obtain total system damping.  These damping values are compared to 

log-decrement damping values in observed data, which are calculated from best fit of tip timing data for 

each blade to a SDOF model.  Mean damping values as well as min-max values are shown in Figure 44, 

along with calculated values with two different tangential stiffness assumptions.   
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Figure 44: Comparison of numerical results with experimental data 

Calculated results show good correlation with mean observed values, and are within range of 

observed values although there is large variation in data due to packet type response and localized 

excitations.  Table 1 shows the error between calculated and observed mean damping values for both 

tangential stiffness assumptions. 

Table 1: Percentage difference between numerical results and mean engine data 

Crossing

1st

2nd

3rd

Results with k1 Results with k2

0.21%

0.36%

0.19%

0.08%

-0.13%

0.12%  

 

Further comparison with engine data using case study of an actual flutter event in engine or large 

scale rotating rig can be used to further access the damping method in a flutter application.  This objective 

is not in alignment with the scope of a cascade design for a commercial program as the design and analytical 

efforts are typically intended to prevent flutter not cause it.  However, previous cascade designs that have 
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encountered flutter in an engine can be analyzed using this method in case of availability of design 

configuration and operating condition corresponding to flutter event. 
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CHAPTER FIVE: CONCLUSION 

 In this dissertation an analytical framework for flutter analysis of shrouded cascade has been 

developed by extending the energy method to include work dissipation as a result of relative motion and 

nonlinear friction force at shroud tip contacts.  This framework combines existing methods of flutter 

analysis with additional novel methods summarized in section 5.1 to determine nonlinear frictional damping 

in a self-excited application and overall stability characteristics of shrouded cascade. 

Implementation of this framework is demonstrated on a large scale model of an actual IGT blade, 

and it indicates significant but amplitude dependent stabilizing effect of friction damping.  Parametric 

studies are conducted to evaluate influence of various parameters.  Comparison with limited engine data 

shows that total system damping remained positive for all observed amplitudes, and cascade remained 

stable as expected and observed.  Due to lack of flutter related response of the test bed, however, transition 

between stable to unstable operation could not be established.  Recommendations for future research in 

flutter prediction of shrouded cascade are presented in section 5.2 including high temperature measurements 

of contact parameters. 

5.1 Dissertation Contributions 

Underlying physical phenomenon that causes flutter can be summarized as the energy (or work) 

extraction by the structure from the fluid, and its accumulation in the structure in form of kinetic energy.  

In case of the undesirable condition of aerodynamically unstable cascade (with negative aerodynamic 

damping for at least one nodal diameter), the balance between aerodynamic excitation and dissipation 

through mechanical damping determines cascade stability.  In current state of art flutter analysis, there is 

no method available to evaluate mechanical damping due to complications associated with nonlinear 

friction force. 
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A major contribution of present dissertation to the science of flutter is that it provides a novel 

method for quantifying the amount of mechanical damping and associated work dissipation in a flutter 

application with shrouded cascades.  A hybrid, three-step solution method is developed to use best aspects 

of time and frequency-domain solutions for computational efficiency and capability to accurately determine 

nonlinearity and other shrouded cascade complexities.  Prior hybrid and HBM solution methods are not 

adequate for this application because they do not account for the influence of static forces due to operational 

conditions, which plays a substantial role in flutter response of shrouded cascades.  Prior time domain only 

methods are not practical with large scale models due to lack of computational efficiency. 

Each solution method in proposed framework is selected optimally for computational efficiency 

and accurately predicting nonlinear friction related parameters.  This framework utilizes all influencing 

parameters that have aerodynamic and structural impact and creates detailed information regarding motion, 

frequency, and contact load information over the full cycle of vibration.  Effects of contact nonlinearity and 

transition from stick to slip condition are included as this nonlinear transition affects system mode shapes 

and friction damping.  Shroud contact load variations during cycle of vibration are also included in the 

analysis by utilizing full motion of contact surfaces associated with mode shape. 

Another contribution of this dissertation is to recognize the influence of the static component of 

response on mechanical damping and overall stability of the cascade.  Cascade response is formulated as 

the product of a small time scale periodic component and a large time scale exponential component, in 

addition to a static (zero frequency) component which has a critical role in determining the exponential 

component as it impacts contact normal load and work dissipation.   

Another contribution of present dissertation is to expand energy based methodology to include 

frictional work dissipation associated with vibrating motion of flutter and determine overall response 

characteristics of the cascade.  Exchange of information between multiple domains is used to couple all 

equations and solve iteratively based on an efficient, energy based method and converge on a global flutter 
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condition that satisfies all constraints and requirements.  This global flutter condition includes prevailing 

mode shape and nodal diameter of the cascade, corresponding frequency and amplitude of the motion, and 

amplitude trends which determine cascade stability. 

Contributions from present dissertation are combined with existing methods to create analytical 

framework shown in Figure 45 for comprehensive solution to flutter problem in shrouded cascade 

applications.  The new components of the framework are an addition to the existing structural dynamics 

and aerodynamic work interaction analyses that are routinely performed in the industry.  Implementation 

of the new components enables evaluation of nonlinear friction damping and cascade stability with 

inclusion of amplitude dependent mechanical damping.  New computational steps are computationally 

efficient and only add a small computational cost since they are performed only on one nodal diameter of 

the cascade (the most unstable). 

 

Figure 45: Novel aspects of flutter analysis framework  

This framework enables prediction of cascade stability with better accuracy than currently possible 

with present state of the art analytical tools.  For an aerodynamically unstable cascade, mechanical damping 
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has stabilizing effects.  Stability map can be established based on calculated values of total system damping 

(both aerodynamic and mechanical) versus amplitude.  Stability characteristics of cascade can be 

determined from the stability map and amplitude of initial perturbation.  System response may comprise a 

logarithmically declining, logarithmically increasing, or steady limit cycle oscillations based on amplitude 

of initial perturbation.   

Finally, trade studies are conducted to illustrate the effects of various influencing parameters.  

These studies show that variations in contact parameters can have important implications on cascade 

response and stability, and they must be considered in calculation of stability margin. 

5.2 Future Research 

Further experimental testing and comparison of data with analytical models is required for shrouded 

cascade although obtaining meaningful experimental data is often the most difficult aspects of flutter 

research.  Full recreation of flutter condition in a rig remains a challenge and only engine operation provides 

true representative environment, considering that centrifugal loads, thermal conditions, steady and unsteady 

aerodynamic loads, and nonlinear friction forces all contribute to and influence this complex aero-elastic 

phenomenon.  It can be argued that no rig can be so sophisticated as to mimic all aspects of an actual 

rotating cascade under full operational loads (centrifugal, thermal and steady state aerodynamic loads with 

maximum mass flow), therefore an actual engine remains the only fully representative environment for 

validation.  Major obstacle in using engine as a test bed is that almost without exception engine hardware 

is designed NOT to flutter, therefore if design is successful goal of research is not satisfied and vice versa.  

Instrumentation data of future designs and engine tests can be used to further compare with stability 

prediction of analytical framework for aerodynamically unstable cascades that are stabilized by mechanical 

damping.  Prior instrumentation data of cascades that have encountered flutter failure in the past can also 
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be used to further populate stability prediction map by re-analyzing these cascades using present analytical 

framework and comparing with engine data. 

Further recommendation for research in flutter stability of shrouded cascades is experimental 

measurement of high temperature values for contact parameters.  As demonstrated by trade studies, these 

parameters are highly influential in determining overall cascade stability yet only limited data is available 

in public domain.   

Using experimentally measured values of contact parameters and response amplitude in the engine 

during a flutter event, the value of transition amplitude from stable to unstable operation can be established.  

This is the exact instance when total system damping becomes zero and aerodynamic damping and 

mechanical damping become equal.  By evaluating aerodynamic damping with analysis, mechanical 

damping can be determined.  This is practically the only way to validate a fully representative shrouded 

cascade flutter model, since neither aerodynamic excitation nor friction work dissipation are directly 

measurable and only their combined effect can be observed through cascade response in a fully 

representative environment. 

Another item of interest for future research is study of sensitivities of the non-viscous mechanical 

damping to shroud design parameters such as contact angle and cold assembly gap that influence blade 

untwist and contact normal load.  
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