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ABSTRACT

Predicting the damping associated with underplatform dampers remains a challenge in tur-

bomachinery blade and friction damper design. Turbomachinery blade forced response analysis

methods usually rely on nonlinear codes and reduced order models to predict vibration characteris-

tics of blades. Two academic blade geometries coupled with underplatform dampers are presented

here for comparison of these model reduction and forced response simulation techniques. The two

blades are representative of free-standing turbine blades and exhibit qualitatively similar behav-

ior as highly-complex industrial blades. This thesis fully describes the proposed academic blade

geometries and models; it further analyzes and predicts the blades forced response characteristics

using the same procedure as industry blades. This analysis classifies the results in terms of res-

onance frequency, vibration amplitude, and damping over a range of aerodynamic excitation to

examine the vibration behavior of the blade/damper system. Additionally, the analysis investigates

the effect variations of the contact parameters (friction coefficient, damper / platform roughness

and damper mass) have on the predicted blade vibration characteristics, with sensitivities to each

parameter. Finally, an investigation of the number of modes retained in the reduced order model

shows convergence behavior as well as providing additional data for comparison with alternative

model reduction and forced response prediction methods. The academic blade models are shown

to behave qualitatively similar to high fidelity industry blade models when the number of retained
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modes in a modal analysis are varied and behave qualitatively similar under sensitives to design

parameters.

iv



I would like to dedicate this thesis to my family and friends for their love and support throughout

and leading up to this experience. To my adviser Dr. Jeffrey L. Kauffman for his guidance and

insightful feedback throughout this research and navigation of my academic career. I would also

like to thank my lab-mates for their comradery during this experience.

v



ACKNOWLEDGMENTS

The author would like to acknowledge Dr. Stefan Schmitt, Mr. Matthias Huels and Mr. Ryan

Villanueva for their support and feedback. The author would also like to acknowledge Siemens for

providing funding for this research and permission to publish.

vi



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

CHAPTER 1 : INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2 : BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Friction Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Model Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

CHAPTER 3 : BLADE/DAMPER SETUP AND CONSTRUCTION . . . . . . . . . . . . . . . . 24

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Setting up blade coordinate systems, constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Underplatform Damper Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Academic Geometry 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

vii



3.3.2 Blade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.3 Underplatform Damper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Academic Blade Geometry 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.1 Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.2 Blade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.3 Underplatform Damper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

CHAPTER 4 : RESULTS/DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Validation of Academic Blade Models with Industry Models . . . . . . . . . . . . . . . . . . 51

4.3 Academic Geometry 1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Academic Geometry 2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Comparisons of Academic Geometries 1 and 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5.1 Nodal Displacements of Blade Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

CHAPTER 5 : CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

APPENDIX A : Academic Blade 1 ANSYS Mechanical APDL Code . . . . . . . . . . . . . . . . 77

viii



APPENDIX B : Academic Blade 2 ANSYS Mechanical APDL Code . . . . . . . . . . . . . . . . 87

LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

ix



LIST OF FIGURES

Figure 1.1 Example of Blade Failure. From ATSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Figure 1.2 Example of Mode Dependent Forced Response. From [1] . . . . . . . . . . . . . . . 3

Figure 2.1 Turbine Blades with Underplatform Damper. From [2] . . . . . . . . . . . . . . . . . 7

Figure 2.2 Turbine Blade with Wedge Damper Model. From [3] . . . . . . . . . . . . . . . . . . . 9

Figure 2.3 Bladed Disk and Wedge Damper. From [4] . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 2.4 Bladed Disk and Damper Model. From [5] . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 2.5 Industrial Compressor Blade Model. From [6] . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 2.6 Shrouded Turbine Blade Finite Element Model. From [7] . . . . . . . . . . . . . . . 16

Figure 2.7 Realisitc Turbine Blade Model. From [8] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 2.8 Forced Response Results with Old and New Method. From [1] . . . . . . . . . . . 21

Figure 3.1 Generalized Blade Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 3.2 Academic Damper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 3.3 Sketch of Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 3.4 Blade Profile Design Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

x



Figure 3.5 Academic Blade Geometry 1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 3.6 Academic Damper 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 3.7 Academic Geometry Platform Constuction . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 3.8 Alternative Method 1 for Platform Construction . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 3.9 Alternative Method 2 for Platform Construction . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 3.10 Academic Geometry 2 Top View of Blade with Broach Frame (Red) . . . . . . . 44

Figure 3.11 Academic Blade Geometry 2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 3.12 Underplatform Damper Model 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 4.1 Example Forced Response Parametric Plot . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 4.2 Forced Response Results Against Modes Retained . . . . . . . . . . . . . . . . . . . . . 52

Figure 4.3 Forced Response Results Comparing Excitation . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 4.4 Academic Geometry 1 Forced Response vs Design Parmater Variations . . . . . 55

Figure 4.5 Academic Geometry 1 Excitation vs Design Parmater Variations . . . . . . . . . . 57

Figure 4.6 Sensitivity of Academic Geometry 1 to Design Parameter Variation . . . . . . . . 59

Figure 4.7 Example of Blade Sensitivity Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 4.8 Comparison of Platform Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 4.9 Academic Geometry 2 Forced Response vs Design Parameter Variation . . . . . 62

Figure 4.10 Academic Geometry 2 Excitation vs Design Parmater Variations . . . . . . . . . . 64

xi



Figure 4.11 Sensitivity of Academic Geometry 2 to Design Parameter Variation . . . . . . . . 66

Figure 4.12 Comparison of Sensitivity of Academic Geometries to Design Parameters . . . 68

Figure 4.13 Initial Forced Response of Blade 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

xii



LIST OF TABLES

Table 3.1 Coordinates of key points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Table 3.2 Academic Geometry 1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Table 3.3 Academic Damper 1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Table 3.4 Academic Geometry 2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Table 3.5 Academic Damper 2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Table 4.1 Academic Geometries Nodal Displacements . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Table 4.2 Academic Geometry 2 Updated Nodal Displacements . . . . . . . . . . . . . . . . . . . . 71

xiii



CHAPTER 1

INTRODUCTION

Figure 1.1: Example of Blade Failure. From ATSB

Turbomachinery blades experience large aerodynamic forces that if left unchecked, can lead

to high vibration, reduced blade life and high-cycle fatigue; figure 1.1 shows one such example

where the failure was attributed to high cycle fatigue. Turbomachinery manufacturers therefore

need to ensure these vibrations remain below a safety limit for safe, reliable and cost effective

power generation. A common method to reduce these vibrations is to couple turbine blades with

underplatform dampers, which are friction dampers positioned beneath the the blade platforms

between adjacent blades. These dampers reduce the vibrations caused by the dynamic loads expe-
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rienced during operation by dissipating energy through friction at contact surfaces. As the blades

vibrate, the underplatform damper slides under friction between two adjacent blades, thus dissi-

pating energy from the blades. Although this idea seems simple, the behavior of these systems is

rather complex and highly nonlinear. This complexity leads to a large computational cost when

applied to the high-fidelity models commonly seen in industry where typical blade models contain

thousands to even millions degrees of freedom. To reduce the size of the problem, reduced order

models and nonlinear codes are used to attain the blade vibration characteristics while maintaining

fidelity in the contact points to simulate blade vibration behavior. There are a multitude of methods

which address model reduction and contact dynamics; however, it remains difficult to compare the

performance of the methods across different blades which the results are presented from. The pre-

dicted forced vibration response of industry blade models are known to be affected by the number

of retained modes in their reduced order models; figure 2.7 demonstrates this. This remains a crit-

ical factor in the analysis of high-fidelity blade models and is a key behavior the academic blade

models presented here should mimic. The idea of the simpler academic blade models requiring

a large number of modes retained in the modal analysis for convergence is intended to provide a

medium for more a more fundamental investigation into the numerical stiffness being introduced

during the model reduction process.
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Figure 1.2: Example of Mode Dependent Forced Response. From [1]

Two academic turbine geometries coupled with underplatform dampers are presented which

qualitatively exhibit similar vibration behavior as industry blade geometries and dampers. With

the continued evolution of model reduction and contact dynamics modeling, these academic blades

and dampers can assist in bridging the gap between academic and industry analyses. The two

academic blades were constructed to cover a range of typical free-standing turbine blade designs

used in gas turbines for power generation. One blade includes a broach angle, while the other

does not and the blades span different length scales as well. The academic blades also utilize

different platform angles. Additionally, each academic blade is accompanied with an asymmetric

underplatform damper which are a widely used damper design in industry. The academic blade

models above the platform area are simplistic in design due to only being interested in the modal

properties of the profile. On the other hand, the blade root and platform region require a more

rigorous physical definition given its importance in friction damping with the incorporation of

underplatform dampers, where the damper makes contact with the blade.
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The academic blade geometries presented here would act as a standard test case for academic

studies, instead of relying on a new blade model or an industry blade. This paper describes the

procedure to create the blades with a complete physical description and associated reduced or-

der models. The blade models presented here were designed to be relatively simple compared

to blades seen in industry so that they may be constructed using software readily available to

academia, while still behaving qualitatively similar to the industry blades. The academic blade

geometries presented here are analyzed using the same procedure as their industrial counterparts

and the results are compared to validate the designs. The analysis procedure involves using a fi-

nite element package (ANSYS Mechanical APDL) to conduct a mode-based harmonic analysis

of finite element models of the blades. The results of the modal analysis are then imported into

a nonlinear damping code used in industry to examine the dynamic characteristics of the blade

system. The forced vibration response results are presented in terms of sensitivities to variations

in the contact interface parameters (such as the damper mass, contact surface roughness and the

friction coefficient). The results are presented to act as a basis of comparison for future methods

of forced response and damping studies.

Each academic blade has several corresponding reduced order models which are examined us-

ing the previously mentioned procedure in order to investigate the effect on the vibration behavior

with respect to variations in the contact parameters . The reduced order models of the academic

blade models are comprised of varying the number of retained modes in the modal analysis. The

academic blade models will be considered successful if the blades require a large number of modes

for convergence due to the poor coupling between the blade and underplatform regions since the
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blade sections are simple cantilever beams. The goal is to demonstrate that the proposed aca-

demic blade models would be useful for further academic analysis techniques as a standard point

of comparison in the forced response prediction of turbine blades.

This thesis is organized as follows. The next chapter provides some background in the field

of friction damping research and contact modeling methods. The following chapter discusses the

blade geometries with an overview on selection of design parameters, with sub sections on the

design of each specific blade. Finally, the results of the forced responses are calculated using a

nonlinear damping approach based on a code commonly used in industry, with the results to be

used as a standard test case and a comparison of contact modeling in both industry and academia.
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CHAPTER 2

BACKGROUND

2.1 Friction Damping

Friction dampers have been widely used in the turbomachinery community to reduce blade vi-

bration for years. Underplatform dampers are one common friction damper which are placed

underneath the blade platforms in between adjacent blades; figure 2.1 shows an example of the

blade-damper system. As the blades vibrate, the relative motion between the damper and blade

results in friction and the damper dissipates the energy of the blade.

A review article by Griffin provides a good overview of the advances in theoretical development

of friction damping modeling and design of friction dampers, as well as recommendations for fu-

ture work [9]. Griffin discusses recent advances in the numerical methods of analyzing frictionally

damped systems such as the harmonic balance method. The harmonic balance method assumes

excitaion and displacement of the system are harmonic and transforms the nonlinear problem into

a set of nonlinear algebraic equations. This method is shown to need much less computational time

then time inegration techniques and a promising method to caculate the forced vibration response

of blades. Griffin then discusses developments in the modeling of friction, the most popular ones

being a form of Coulomb friction model and the developments on microslip models. Microslip
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Figure 2.1: Turbine Blades with Underplatform Damper. From [2]

refers to the idea that friction occurs over a finite area of the contact and not the entire area as a

whole, part of the area may be slipping while the rest is sticking. Models incorporating microslip

indicate that dampers are effective over a wider range then those indicated with other methods. The

work in damper optimization is discussed and the attempts at creating models to capture the contact

dynamics between the underplatform dampers and blades. Work in the optimization of dampers

demonstrates that when the damper is designed using a tuned blade assumption, this damper should

work well for the mistuned systems which are common in application. Griffin concludes with rec-

ommending that future work be done to improve the modeling of single blade response, where

the behavior between tuned and miss-tuned systems has been shown to correlate well. This would

allow better damper designs and help eliminate need for laboratory tests.
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Slater et al. conducted a review investigating recent advances in the forced response of bladed

disk assemblies [10]. The authors discuss tuned analyses, mistuned analyses, damping and provide

conclusions with recommendations for future work. The authors point out a need for a better

understanding of the sensitivities of bladed disks to mode localization, instead of attempting to

incorporate mistunning into the model.

Menq et al. focused on the modeling of friction between the damper and blade and eventually

developed a model incorporating microslip to help identify the contact status of dampers [11]. The

incorporation of microslip into friction models allowed better insight into the friction behavior ex-

perienced at contact interfaces and helps explain phenomena previously poorly understood. Menq

et al. explore this by comparing the developed model to experiments in turbine blade damping [12].

The authors also develop a general method to calculate the steady-state response of friction con-

tacts in which the contact pressure can vary dynamically with the motion of the system [11].

Greenwood and Williamson describe a theory of elastic contact that accounts for surface rough-

ness and distinguishes between surfaces touching elastically and plastically [13]. The theory intro-

duces a parameter called the plasticity index which is used as a criterion to identify when surfaces

contact elastically or plastically. The authors experimentally measure the topography of many sur-

faces and find that the distribution of peaks can be accurately estimated with a Gaussian distribu-

tion. This leads to an idea that the friction between two surfaces is due to their surface topography

and not material properties and thus pointing out the need to incorporate surface roughness of

contacting interfaces.
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Figure 2.2: Turbine Blade with Wedge Damper Model. From [3]

In a series of paper Yang and Menq apply a friction model with microslip in the design of

wedge dampers to calculate the forced response of a bladed disk to optimize the design and later

compared with experimental results [14, 3]. The first paper discusses the the contact kinematics of

a wedge damper; figure 2.2 shows a drawing of the blade and damper system used. The friction

model utilizes force balance equations at the two coupled contact interfaces to analyze the state

of contact (stick-slip); the criteria predicting this are derived analytically . The resulting friction

and normal loads of the contact interfaces can then be predicted using the relative motion between

the blades; this model was shown to be more accurate in predicting the damping and stiffness

over a single interface model. This demonstrated the importance of using a multi-interface model

to handle the coupling between the contact interfaces on underplatform dampers in the friction

model. This model is then applied to a constrained turbine blade rig used by GE Aircraft Engines.

The results demonstrated the ability of the proposed model to predict the vibration response when

compared with experimental data.
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Tworzydlo et al. discuss a new class of asperity-based models of contact interfaces which are a

combination of finite element analysis of surface asperities and statistical techniques to predict the

behavior of contact interfaces [15]. These new models are able to to produce realistic engineering

contact interface surfaces and have been verified with experiments to predict the normal response

of the interfaces well. The results confirmed previous observations that the contact area is propor-

tional to the normal load, which was tested over a range of loads and surface roughness values.

The models utilize numerical methods such as adaptive meshing and adaptive time-stepping to en-

sure high solution accuracy. These asperity-based models are an alternative to matching models to

experimental results where measuring the surface compliance can be very difficult and the models

only require material and roughness data.

Sextro describes a contact model which incorporates surface roughness and dry friciton in

the calculation of the forced vibration response of a bladed disk with shrouds [16]. The surface

roughness values of the two contacting surfaces are used to calculate an effective contact surface

roughness in the contact model. The contact model is a two point contact model which incorporates

the effective surface roughness in the prediction of the force-displacement behavior of contact. The

predictions are compared with experimental data to verify the contact model and the model was

applied to a bladed disk assembly. The results here demonstrate the importance of incorporating

the effects of the contact surfaces roughness in the prediction of the behavior and resulting force-

displacement relations.

Allara discusses a friction contact model to characterize non-sphereical interfaces following

the Coulomb friction law, assuming a constant friction coefficient as well as normal load [17]. The
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model computes the hysteresis loops of the contact tangential force against the relative displace-

ment. The method presented is aimed at providing an estimate the effect the geometry of contact,

loads, and material properties have on the contact behavior. However this method is only applica-

ble when the contact area is of rectangular shape with the length much longer then the width.

Firrone and Zucca present a refined contact model which couples the static and dynamic equi-

librium equations [4]. The coupling allows the maximum vibration amplitude of the system along

with the stiffening of the structure to be predicted. This contact model is implemented with the

Harmonic Balance Method and used to optimize friction dampers for bladed disks. This method

is then applied to two configurations of turbine blades with friction contacts, one with blade root

joints and the other with underplatform dampers to optimize the dampers; figure 2.3 shows the

turbine blade model with underplatform dampers. The results are compared with classical con-

tact models also discussed by the authors which do not couple the static and dynamic equilibrium

equations. The comparisons revealed that the modeling of the coupling between the static and dy-

namic equilibrium equations is important in predicting the maximum vibration of the system and

stiffening caused by the contact interfaces. The turbine blade models used by Firrone and Zucca

are rather simplistic in design and similar to the blade models described later in this thesis [4]. The

profiles of the blades above the platform are essentially cantilever beams and the platform regions

follow the same profile as the models described in this thesis.
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Figure 2.3: Bladed Disk and Wedge Damper. From [4]

2.2 Numerical Methods

There has been a large push recently in developing numerical methods to handle the simulation and

computation of the contact dynamics associated with friction interfaces in turbomachinery. The

multi-harmonic balance method is the most widely used to solve the nonlinear equations associated

with the forced response of turbomachinery. The analysis of bladed disks with contact interfaces

are usually carried out in the frequency domain for computational efficiency. This is achieved by

representing the displacements as a sum of harmonic terms and transforms the nonlinear set of

equations using the multi-harmonic balance method. Cardona et al. discuss the general procedure

to solve nonlinear problems using the multi-harmonic balance method [18].

An alternative to using the Harmonic Balance Method is through the use of a dynamic la-

grangian method adapted to be used in the frequency domain. Augmented Lagrangians are popular

in the time domain formulation of contact problems. Nacivet et al. describe a dynamic Lagrangian
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frequency-time method (DLFT) which is an adapted version of the augmented Lagrangians method

for the frequency domain [5]. However the Lagrangians in this method are dynamic and based on

the nonlinear contact forces from the equations of motion. The method is compared in three nu-

merical examples to time integration preformed with the finite element software ABAQUS. The

results demonstrated that the DLFT provides fast and accurate calculation of forced response with

the most complex example being a system of beams each with a one dimensional friction damper;

figure 2.4 shows the model. This method allows for the suppression of springs in the definition of

contact elements which allows the method to be readily used with finite element software without

the need for a special contact interface model. Although this model is well demonstrated on sim-

ple numerical examples, this method still needs to be verified with a more complex turbine blade

model closer to those seen in industry.

Figure 2.4: Bladed Disk and Damper Model. From [5]

Recently, researchers have been looking into nonlinear modal analysis which provide an alter-

native to model reduction methods needing to linearize systems [6, 1, 19]. Laxalde et al. presents
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a method of modal analysis to analyze nonlinear systems and demonstrates it on a turbomachinery

blade model [6]. The method described here is based on complex nonlinear modes and the for-

mulation of the eigenvalue problem in the frequency domain to handle the contact. This method

is then applied to an industrial compressor blade with dry friction at the blade root shown in fig-

ure 2.5. This method allows the nonlinear damping to be viewed immediately in addition to the

excitation not being required to be known ahead of time. The use of nonlinear modal analysis al-

lows the representation of systems with dissipative nonlinearities which are unable to be modeled

effectively otherwise.

Figure 2.5: Industrial Compressor Blade Model. From [6]

In a series of papers Panning et al. describe a 3D point contact model which descretizes the

contact area into point contacts and investigates underplatform damper design [20, 21, 22]. The

first paper compares two different damper geometries, while the next paper investigates geometries

and properties of the damper and blade platform. Then in the third paper, the authors demonstrate

the need to treat different damper geometries with different theory, this is verified with experiments
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and the nonlinear damping code DATAR which predicts the forced response of bladed disks with

dampers and aids in friction damper design.

Within industry there have been numerous nonlinear damping codes developed to calculate the

forced response of turbine blades. DATAR is one such example which was developed to aid in

underplatform damper and is capable of handling a range of damper types [22]. DATAR utilizes

contact stiffness terms to enforce contact which are related to the normal and tangential relative

motions between the blade platform and underplatform damper. Siewert et al. describe the contact

stiffness terms in more depth along with their calculation method [23]. DATAR couples physical

parameters associated with the contact between the damper and blade along (such as damper mass,

surface roughness, friction coefficient) with a modal representation of a tuned bladed disk model

reduced order model. DATAR calculates the frequency response function of a tuned bladed disk

with friction contacts (shrouds, underplatform dampers)

More recent research has demonstrated the potential for an augmented Lagrangian approach

for enforcing contact to be more accurate at the same computational cost [7, 24, 25]. Herzog

et al. compare two contact models; one using stiffness with a Coulomb friction law, the other

with a Lagrangian formulation to enforce contact [7]. The contact models are applied to model

a bladed disk with shroud contacts where the predicted damping, convergence and sensitives to

inputs are compared; figure 2.6 shows the finite element model investigated. The blade model used

in this study is rather simple in design compared to those seen in industry and to even the models

presented in this thesis. The platform region of the blade is very simplistic, resembling a plate

while the blade profile does have twist along its length to the shroud. However even the shroud is
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very simplistic in design and 20 modes are retained in the modal analysis to achieve convergence

of the forced response results.The authors reported that the two contact models produced similar

results in the displacement and frequency for the forced response of a bladed disk. Additionally the

Lagrangian formulation was much less sensitive to input parameters then using contact stiffness,

which have a large impact and require careful selection.

Figure 2.6: Shrouded Turbine Blade Finite Element Model. From [7]

Krack et al. describe a criterion to find the optimal design that is robust in regards to the un-

certainty of system parameters of a shrouded bladed disk; the same model shown earlier in fig-

ure 2.6 [24]. The contact is modeled using a point contact model with a Dynamic Lagrangian

method for enforcing contact. The criterion used to find the optimal design with uncertainty in-

16



volved employing statistical decision theory and the expected value of the probability of success,

with respect to not exceeding a certain reference amplitude. It was found that the optimum contact

interface load shifted about 25% compared to the designs without uncertainty modeling even when

minor uncertainties are considered.

Krack et al. present a frequency domain method to compute periodic solutions of nonlinear

ordinary differential equations [25]. The method is primarily for the analysis of systems with

distinct states such as systems with contact interfaces where the contact state evolves over time.

Additionally the derivatives of the solution up to the second order are able to derived analytically

which is helpful for design. The method described is applied to two numerical examples of systems

with dissipative nonlinearities and is shown to be superior in terms of accuracy and computation

time to the commonly used Alternating-Frequency-Time scheme. However this method was only

applied to very simple two degree of freedom and cantilever beam with friction contact at the free-

end. While this method seems to have promise, it has yet to be implemented into a more complex

systems such as turbomachinery.

2.3 Model Reduction

Contact interfaces in which friction occurs are highly nonlinear in behavior and require a certain

amount of fidelity to capture their behavior. Turbomachinery systems usually contain numerous

contact interfaces where friction occurs to dissipate unwanted vibrations during operation. In order

to make the problem more computationally tractable, many researchers have focused on model
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reduction techniques to bring the number of degrees of freedom in the system down to a more

manageable level while maintaining as high accuracy as possible.

Petrov and Ewins describe an approach to analyze harmonic vibrations of systems with friction

interfaces with a developed contact element to evaluate friction forces under a variable normal load

and unilateral interaction on the contact interface [8]. The contact elements are derived analytically

which allows convergence difficulties due to changes in contact conditions to be overcome. The

contact element describes the interaction of surfaces at one node which can be applied to many

nodes and describe complex areas. This contact element is applied to an industrial turbine blade

model with friction dampers; figure 2.7 shows the finite element model. The effectiveness of the

element is demonstrated in the practical application in predicting the contact forces as well as

predicted damping and vibration amplitude. The authors also found significant levels of super-

harmonic resonances caused by friction when the contact surfaces partially separated.
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Figure 2.7: Realisitc Turbine Blade Model. From [8]

Deshmuhk et al. investigate the convergence behavior of a contact element for physical param-

eters such as the system response amplitude and friction state [26]. The contact element used by

the authors is an Iwan-type with a multipoint contact microslip model. The results demonstrate

that the kinematic behavior of the interface converges slower then the system response which is

why contact interfaces need a higher order model to capture the behavior. The results also point out

a magnitude dependence on the number of elements needed to achieve model order independence

in the forced response prediction to assist in model reduction method development. However the

results presented here are using simple linearized models for an academic investigation but still

provide valuable insight into the model development and model reduction strategies.
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While there are numerous methods availible for the nonlinear analysis of turbine blades with

friction dampers they require a good understanding of the input parameters and model generation

for reliable predictions. Petrov discusses a method to calculate the forced response based on the

contact interface parameters such as the friction coefficient and contact stiffnesses [27]. This is

made possible through a derivation of the sensitivities of the harmonic forces with respect to vari-

ations in the contact parameters. This method is then applied to an industrial bladed disk with

friction contacts to analyze the influence of variations in the contact parameters on the predicted

forced response of the system. The full finite element model of the industry blade was reduced

down to one sector through the use of cyclic symmetry to be able to account for the nonlinear vi-

brations. This method allows the optimal contact parameters of the friction dampers to be chosen

for design to provide the minimum forced response levels.

Petrov presents a model reduction method for the analysis of the nonlinear forced response of

structures with contact interfaces [1]. The method creates a modification to the frequency response

function (FRF) matrix to create a more simpler version. This allows a more accurate FRF matrix

and reduces models to much less degrees of freedom then possible by other methods while main-

taining accuracy of the forced response. This method is applied to the nonlinear forced response

of turbine blades with friction contacts such as blade roots and underplatform dampers. For the

case of a bladed disk with underplatform wedge dampers, the proposed method is shown to be

invariant to the number of retained modes in the predicted forced response, whereas conventional

modal models are influenced by the number of retained modes; figure 2.8 shows this comparison.

This method offers a new moddeling technique which provides accurate forced response prediction
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of bladed disks without the need for as many mode shapes in the analysis. This leads to reduced

computation time of the forced response and corresponding modal analysis.

Figure 2.8: Forced Response Results with Old and New Method. From [1]

Schwingshackl et al. investigate the effect of contact interface parameters have on the predicted

vibration characteristics of turbine blade coupled with underplatform dampers [28]. The authors

focus on improving the modeling techniques of the nonlinear behavior associated with friction at

the contact interfaces between blades and dampers. The predicted response of blade and damper

systems are rather sensitive to their input parameters and these parameters themselves have uncer-

tainty with their values. The authors also investigate the influence the number of modes retained

with the damper had little influence on the response to this specific configuration. The results of

the investigation revealed that the tangential contact stiffness, friction coefficient, static normal

load, mesh density and placement have the most influence on the predicted forced response of

this specific system where wedge underplatform dampers were used. Following these results, the

authors investigated the three contact interface parameters mentioned previously to compare mea-

sured and estimated values and their effects on the predicted response [29]. The work compares
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the reliability in measuring the friction coefficient, tangential contact stiffness and normal load

distribution with a comparison between simulated and experimental results of the frequency re-

sponse. The authors describe a test rig developed to measure the friction coefficient and tangential

stiffness between two surfaces. The test rig was demonstrated to reliable and robust in terms of

measuring the contact parameters between two surfaces. Additionally a finite element model of

the test rig was created to validate the measurement and analysis procedure, where the friction and

tangential contact stiffness terms were able to be reliably extracted to replicate the behavior of the

test rig. The results of the investigation revealed that if the contact parameters of the interfaces are

unable to be accurately measured, the average values of the contact parameters with a temperature

dependent friction coefficient can be used for input. This verifies the use of estimated values for

the contact parameters used in the prediction of friction contact.

There are a vast amount of methods that have been developed in order to describe the contact

dynamics and model reduction in the analysis of the forced response of blades. These methods

range from building up from academic examples to building models to match results seen in ex-

periments using industry blades. The academic methods which show promise still need to be

verified and tested using more complex blade models and systems which are common in industrial

application. In addition the results presented within the friction damping/forced vibration response

community are all with respect to a different blade model or system which makes the comparison

of the results difficult. There still remains a relatively large gap between academic and industry

in terms of application in predicting the forced vibration response of blades. The blade models

presented in the following sections aim to be candidates for further academic analysis where the
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numerous methods can be used to compare results with a standard blade geometry. These blade

models also serve as a medium to help bridge the gap between academic and industrial application

because the blades are relatively simple in terms of their physical descriptions but behave qualita-

tively similar to industrial blades with respect to convergence behavior and sensitivities to friction

contact parameters.
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CHAPTER 3

BLADE/DAMPER SETUP AND CONSTRUCTION

3.1 Introduction

The goal is to present two blade geometries coupled with underplatform dampers to act as a basis

of comparison for predicting the forced vibration response of turbine blades. The geometry of the

blades are intended to be as simple, yet complex to capture behavior seen in the forced response

of high-fidelity blade models used in industry. The simple design of the blades is to allow for easy

implementation into alternative methods developed in predicting the forced vibration response of

turbine blades. This section is organized as follows, first the coordinate system and variables

used to describe the geometry of the blade designs along with the mathematical constraints are

discussed. Then the implementation of designing the first blade and its corresponding damper are

discussed followed by the second blade and damper.

3.2 Setting up blade coordinate systems, constraints

First the blades are described in a 2D coordinate system, shown in figure 3.1. The profile of the

blade is then labeled with points used to define the model. These points encompass the boundaries
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of the model and serve as reference points for the following construction of the 3D model. The

coordinate system used in figure 1 is located at the center of rotation, that is, at the center of the

disk assembly the blades attach to with the z-axis being the engine axis. This coordinate system is

later referred to as the global coordinate system of the blade. The blade itself is centered along the

y-axis of this coordinate system. The points which define the boundaries of the blade design here

are labeled 0-4 (where R0−R4 represent the radial dimensions associated with each corresponding

point) and are defined in terms of their coordinates, shown in table 3.1.

Figure 3.1: Generalized Blade Model
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Table 3.1: Coordinates of key points

Point Left (x,y) Right (x,y)

0 (−Troot

2
,

√

R2
0 − (Troot

2
)2) (Troot

2
,

√

R2
0 − (Troot

2
)2)

1 (−Troot

2
,

√

R2
1 − (Troot

2
)2) (Troot

2
,

√

R2
1 − (Troot

2
)2)

2 (−R2 sin(ΨL),R2 cos(ΨL)) (R2 sin(ΨR),R2 cos(ΨR))

3 (−R3 sin(ΨL),R3 cos(ΨL)) (R3 sin(ΨR),R3 cos(ΨR))

3’ (−h
2
,

√

R2
3 − (h

2
)2) (h

2
,

√

R2
3 − (h

2
)2)

4 (−h
2
,

√

R2
4 − (h

2
)2) (h

2
,

√

R2
4 − (h

2
)2)

The constraints on the design of the blade are defined next. The total area which a turbine blade

is constructed in is refereed to as the blade sector. The value of the blade sector is a function of

the number of blades (N), which are evenly spaced around the disk, so each blade may encompass

an arc based on the total arc of a circle (360◦) divided by the number of blades. For example if

there are 45 blades placed evenly around the disk, then each blade may encompass a total arc of

8◦. Referencing figure 3.1, the lines connecting points 1 & 2 are at a constant angle relative to

the horizontal and represent the platform angles (θL,θR). Equation 1 ensures that underplatform

on the left side of the blade is held at an angle of θL. Equation 2 ensures the underplatform on

the right side remains at a constant angle of θR. Equation 3 represents the total sector angle the

blade may encompass with some clearance between adjacent blades (denoted χ). Equation 4 is a

constraint on the distance between points 2 and 3 to ensure the thickness of the platform on either
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side is the same (denoted PT). The constraint equations (equations 3.1-3.4) are written in terms of

the variables from figure 3.1.

tan(θR) =
y2R − y1R

x2R − x1R

(3.1)

tan(θL) =
y2L − y1L

x2L − x1L

(3.2)

ΨL +ΨR =
360◦

N
−χ (3.3)

R3 −R2 = PT (3.4)

Some of the dimensions and constraints mentioned previously were chosen based on experi-

ence with realistic blade designs. The values of R0 and R4 (representing the blade base and blade

tip) are chosen first to constrain the upper and lower bounds of the blade design. Then the platform

angles (θL & θR) were chosen. The blade root thickness (Troot), number of blades and radial heights

of the blade (R0 −R4) were chosen based on the respective realistic blade of interest. For both of

the blades, the gap between adjacent blades (χ) was chosen to be 10◦ and the platform thickness

(PT) as 10 mm these values were chosen base on previous experience with industrial blade models.

The dimensions used to design the blades were picked from a family of industrial turbine blades

and modified as needed to produce the desired behavior in the academic blades.
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The equations constraining the design of the blade defined earlier (equations 3.1-3.4) are now

rewritten in terms of the coordinates in table 3.1, with all the terms on one side of the equations for

input in a non-linear equation solver. The rewritten equations are shown below (equations 3.5-3.8).

From these equations there are four unknowns (R2, R3, ΨL, ΨR) with four equations. The solution

of this system of nonlinear equations will generate the rest of the dimensions needed to generate

the blade model based on geometrical constraints outline earlier. The equations were solved using

MATLAB’s fsolve command which employs a trust-region-dogleg algorithm.

R2[sin(ΨR) tan(θR)− cos(ΨR)]−
h

2
tan(θR)+

√

R2
1 − (

h

2
)2 = 0 (3.5)

R2[sin(ΨL) tan(θL)− cos(ΨL)]−
h

2
tan(θL)+

√

R2
1 − (

h

2
)2 = 0 (3.6)

ΨL +ΨR +0.05◦−
360◦

N
= 0 (3.7)

R3 −R2 −10 = 0 (3.8)

The blade models used in predicting the forced vibration response use cyclic expansion, which

assumes that the blade model is symmetric for the N bladed disk assembly and therefore only one

blade section of the system needs to be modeled. The bladed disk assembly is assumed to be tuned,

this assumes that the blades are all identical with respect to their geometry, and dynamic properties

such as natural frequencies and mode shapes. However, only the blade is of interest and the mass-
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less disk is merely used for the cyclic expansion of the model during the forced response prediction.

The root of the blade is assumed to be fixed where the blade would attach to the disk. The blades

are excited using a point load on the leading edge blade tip, which is the force later varied in the

forced response calculation. Whereas the industrial blades are excited with a full pressure load;

this simplification of using a point load was tested on industry blades. Both the point load and full

pressure loads produced similar forced response results, at least when the magnitude of the point

load was scaled to an appropriate level, this is shown and discussed further in the results section.

The material for the blades and associated underplatform dampers were chosen to be steel, which

is representative of materials used in gas turbines. Each of the blades presented here is coupled

with an associated underplatform damper, with a general overview given next.

3.2.1 Underplatform Damper Setup

Figure 3.2: Academic Damper

The underplatform dampers are asymmetrical type, with a flat contact on one side and a curved

contact surface on the other. Figure 3.2 displays a general drawing of an asymmetrical damper with

dimensions used to define the damper design. The force from the damper on the blade platforms
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is assumed to be constant and due to centrifugal force. It should be noted that the orientation of

the damper during operation is not necessarily matched with what is shown in the figures. During

operation, the damper will rotate such that the entire flat face will be in contact with the under-

platform of the blade. The dimensions for the dampers were scaled from dimensions of realistic

dampers. The ratio of the length of the flat face of the damper (denoted C) to the radius (R) was

used as a parameter in the design of the academic dampers, constraining the relationship between

C and R is equivalent to constraining the angle subtended by the chord length (C). To be clear the

chord length C and chord angle θ refer to the chord of the circle in the damper cross-section; they

are different then the airfoil chord. This ratio was maintained in the designed dimensions of the

academic dampers with their respective realistic counterparts.

The formulation of the area of the academic dampers is described next. To maintain the ratio

between the radius and chord lengths, the new values must both be scaled by the same amount.

The area of the asymmetrical damper can be thought of as the area of a full circle ( given by πR2),

minus a sector area (given by πR2 θ
360◦

), plus the area of the triangular shape (given by 1
2
CRcos(θ

2
)),

which is shown below in equation 3.9. The value of θ is kept constant.

A = πR2 −πR2 θ

360◦
+

1

2
CRcos(

θ

2
) (3.9)

To maintain the ratio between the radius and chord lengths, the new values must both be scaled

by the same amount. This value written in terms of a variable γ . This variable represents the

value the radius and chord dimensions of the academic damper will be scaled, represented below

in equation 3.10, where R represents the original radius and R is the scaled up radius.
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R = γR,C = γC (3.10)

The value of of the scaling parameter (γ) was chosen based off a damper mass parameter study

and examining the resulting damping-amplitude response curves of the system. Based on the

results of the damper mass variation using DATAR, a scaling factor for the mass is chosen when

the response of the damping curves begin to display diminishing returns. Since the scaling factor

affects the mass of the damper, the volume of the damper needs to be scaled the same amount to

keep the ratio, in order to maintain the density value the same (that of steel). Using the relations

in equation 3.10 and equation 3.9, the relationship between the original damper cross-sectional

area and scaled up area is derived below. The length of the damper is fixed and based off of the

respective industry counterpart.

A = πR
2
−πR

2 θ

360◦
+

1

2
CRcos(

θ

2
) (3.11)

Using the relation above in equation 3.10.

A = πR2γ2 −πR2γ2 θ

360◦
+

1

2
CγRγ cos(

θ

2
) (3.12)

A = γ2(πR2 −πR2 θ

360◦
+

1

2
CRcos(

θ

2
)) (3.13)

A = γ2A (3.14)
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From the relation above in equation 3.14, the value of γ2 is set equal to the scale factor which

the academic damper will be when compared to its industry counterpart. The mass of the damper

was chosen by conducting a damper mass variation in DATAR using a generic damper. The result-

ing forced response curves were examined and the value of the scaled mass was chosen based on

when diminishing returns were visible in the damping-amplitude response curves. With the mate-

rial of the damper already chosen (steel), the scale factor was calculated to mach material density

and representative mass.

The underplatform dampers discussed in the following sections are representative of physical

specimens, however the forced vibration response results and models are purely numerical. The

academic dampers discussed in the models are rather large in size and mass compared to dampers

seen in industry. One reason for this is that the academic blades geometries are rather large them-

selves due to the blades being solid. Industry blades are commonly hollow which would alleviate

the issue of need a larger damper, but a solid blade was kept in interest of academic simplicity.

Additionally, industry blades have more complex shapes in the blade design which allows more

vibration of the blade to be transmitted to the underplatform region of the blade, leading to more

relative motion between the damper and platform, causing more friction and energy dissipation. A

better coupling of the blade motion to the underplatform region of the academic geometries would

also alleviate the need for a large underplatform damper as well.

The friction contact model used by DATAR incorporates the surface roughness of the contact

interface to model the contact dynamics. DATAR allows inputs of the surface roughness of the

blade platform and damper surfaces and calculates an effective surface roughness based on these
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values. In the parametric studies conducted later, the platform surface roughness is kept constant

while the damper surface roughness is varied. The baseline values used for the damper roughness

are provided in their respective tables which are discussed later.

3.3 Academic Geometry 1

This section describes in detail the procedure followed in the design of the first academic blade

geometry and its associated damper. First, values for R0,R4,θL,θR,N, and Troot were chosen to

be representative of a realistic turbine blade. The other dimensions of the blade (R2,R3,ψL,ψR)

were generated by solving the four nonlinear system of equations (equations 3.5-3.8) discussed

previously. The 3D blade models were generated using ANSYS Mechanical APDL, there is an

input file included in the appendix which can be run in ANSYS APDL to generate the blade model

shown here. However, the methodology described here should be able to be implemented in any

available CAD software. This section is organized into three parts, the first describes the blade

platform, the second describes the design of the blade section above the platform and the last

describes the underplatform damper design.

3.3.1 Platform

The driving factor in the geometry of the platform region of the blade model is the underplatform

angles (θL,θR) and the distance from the platform base (R0) to the underplatform neck (R1). When
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the underplatform angles are not equal (θL 6= θR) as in this case, there are a multitude of approaches

to construct the platform area. In this instance, based on realistic blade designs, the radial heights

of the blade were kept constant on both sides of the platform. The result creates different platform

lengths on either side of the blade; figure 3.3 demonstrates this. Using the coordinates described

earlier in table 3.1, the key point command in ANSYS was used to create the points (0-4) by sub-

stituting the dimensions for the first blade using the Cartesian coordinate system shown earlier in

figure 3.1. These points were then connected with lines and arcs to create a closed 2D geometrical

sketch; figure 3.3 shows the result. The lines connecting points 0-1, 1-2, and 3-2 are straight lines

while the lines connecting 0-0, and 3-3’ are arcs centered about the Cartesian (global) coordinate

system. This area was then extruded by the length of the blade model noted in table 3.2 or 300 mm

in this case; figure 3.5 shows the resulting 3D blade model. The design of the blade model above

the platform is discussed next.

Figure 3.3: Sketch of Platform
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3.3.2 Blade

The blade profile (section of blade model from points 3’ to 4 in figure 3.1) design (region above

the platform) was conducted by implementing a modal analysis of the blade model and comparing

with the results from a realistic blade. Initially the blade thickness (h) and root thickness (Troot)

were set equal and varied to find a value that would allow the first bending mode frequency to

match that of the realistic blade. The results demonstrated that the required thickness was too large

to hit the desired frequency and a more complex blade profile was needed; figure 3.4a shows an

example of the blade thickness required to reach the targeted frequency.

(a) Thick Blade (b) Taper

Figure 3.4: Blade Profile Design Iterations
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Figure 3.5: Academic Blade Geometry 1 Model

To keep the design as simple as possible a linear taper was added to the blade profile to hit

the targeted first bending frequency. The linear taper along the blade allowed the blade thickness

to remain close to realistic blades and hit the targeted frequency while keeping the design simple.

The decision to implement a taper on the blade profile over more realistic complexity (such as

curvature along the blade and a hollow blade) was to keep the blade model simplistic for academic

implementation while still reaching the desired first bending frequency. The linear taper was im-

plemented on the blade profile by only adjusting the blade tip thickness; figure 3.4b shows the

resulting taper implemented. The thickness of the blade profile (h) at the platform or base of the

blade profile is equal to the root thickness (Troot), while the blade profile thickness at the tip of the

blade was set to the value of 8.33 shown in table 3.2. The blade model was then extruded into 3D

a distance of 300 mm; figure 3.5 shows the resulting 3D model of the blade design, table 3.2 lists

the dimensions and properties of the blade model.

36



Table 3.2: Academic Geometry 1 Properties

Number of Blades (N) 45

Broach Angle [◦] 0

Underplatform Surface Angles (θL/θR) [◦] 25/50

Disk Radius (R0) [mm] 850

Underplatform Neck Height (R1) [mm] 905

Underplatform Height (R2) [mm] 928

Platform Height (R3) [mm] 938

Blade Tip Height (R4) [mm] 1600

Blade Root Thickness Troot [mm] 50

Blade Section Depth [mm] 300

Blade Base Thickness (h at R1) [mm] 50

Blade Tip Thickness (h at R4) [mm] 8.33

Blade Density [kg/m2] 8000

Blade Modulus [GPa] 200

Blade Poisson Ratio 0.25

First Bending Natural Frequency [Hz] 110

Point Load on LE Tip Transverse to Blade [N] 100
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3.3.3 Underplatform Damper

The underplatform damper associated with the first academic blade geometry is of the asymmet-

rical type with dimensions based off of dampers used in industry. The damper dimensions (R, θ ,

C, Length) were chosen using the procedure mentioned previously in the underplatform damper

setup section and will be briefly mentioned here. First a generic damper was used to conduct a

damper mass sensitivity study with respect to damping on the forced response using the academic

blade geometry. The results of the study indicated the scale factor to be used on the dimensions

of the realistic damper to generate the academic damper. The finite element model of the damper

was then created in ANSYS Mechanical APDL; table 3.3 lists the dimensions and properties of

the first academic underplatform damper, figure 3.6 shows the finite element model of the damper.

Figure 3.6: Academic Damper 1
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Table 3.3: Academic Damper 1 Properties

Radius (R) [mm] 17.5

Chord Length (C) [mm] 30.31

Chord Angle (θ ) [◦] 120

Damper Length [mm] 300

Density [kg/m2] 8000

Mass [kg] 1.89

Damper Roughness [nm] 15

Friction Coefficient 0.33

3.4 Academic Blade Geometry 2

This section describes the procedure followed in the design of the second blade geometry and

associated underplatform damper. The blade geometry described here has many differences from

the first blade geometry. The blade profile above the platform is much smaller then the first (about

700 mm vs 400 mm). A broach angle is incorporated into the design and the platform angles are

symmetric, whereas the first blade had no broach angle and non-symmetric platform angles.

First, the values for R0,R4,θL,θR,N, and Troot were chosen to be representative of a real turbine

blade. The rest of the dimensions (R2,R3,ψL,ψR) were generated by solving the nonlinear system
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of equations (equations 3.5-3.8) defined previously. As with the first geometry, this blade was

modeled using ANSYS Mechanical APDL and an input file is included in the appendix which can

be used in ANSYS to generate the blade model.

The second blade geometry adds another layer of complexity with the incorporation of a broach

angle. To keep the design relatively simple, the construction of the blade model was separated into

two parts (platform and blade profile) and later merged together. The procedure in which the

platform was constructed in ANSYS is discussed next, followed by the blade profile and then the

underplatform damper.

3.4.1 Platform

The platform design is more involved with the incorporation of a broach angle in the blade model.

This is because the disk section which the blade attaches to can be thought of as a cylinder. The

blade model in 3D needs to conform to the profile of the disk, with virtually no gap between the

base of the blade root and the disk section. The design of the platform needs to maintain conformity

with the disk during the extrusion of the model into 3D. That is, the platform is extruded along the

edge of a cylinder which is representative of the disk. First the key points of the platform profile

were created in the global x-y coordinate frame using the dimensions for R0 −R3; which are given

in table 3.4. These key points were then connected with lines and an area was generated from the

lines;3.7a shows this resulting platform.
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The platform was then extruded into 3D using a cylindrical coordinate system with the VEXT

command. The VEXT command allows control of an extrusion in all coordinate directions inde-

pendently (r, θ , z). The value of the extrusion in the radial direction (r) is zero because the radial

dimensions of the platform are not changing during the extrusion. The value of θ , or the amount of

rotation the extrusion will experience being extruded along the disk is governed by equation 3.15

and has a value of 3.8◦. Where L represents the length of the extrusion in the rotated frame. The

length of the extrusion (L) in the global frame (z) is defined in equation 3.16 and has a value of

193.2 mm.

θ =
L tan(15◦)

R0
(3.15)

z = Lcos(15◦) (3.16)

This is done to ensure conformity with the outside edge of the disk section; figure 3.7b shows

the cylindrical coordinate system used in the extrusion and the result. Figure 3.7c shows the plat-

form using the VEXT extrusion on the disk section which is on the bottom of the picture. This

approach ensures that when the blade model is expanded into N blades, the platform will form a

shell, minus the gap of 0.05◦.
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(a) Platform Area (b) Platform Extrusion with Coordi-

nate System

(c) Platform Extrusion with Disk

Figure 3.7: Academic Geometry Platform Constuction

During the design of the platform region, multiple methods were investigated to construct the

model such that the blade root would properly conform to the disk. The chosen method discussed

previously is a hybrid of two other methods investigated in the construction of the blade platform.

The first alternative method involved sketching the entire blade model (platform and blade profile)

in the rotated broach frame and then conducting a linear extrusion; figure 3.8a shows the resulting

extrusion with the disk modeled. This method leaves some space between the blade root and disk

which can be seen in figure 3.8a and would need to be filled in. Additionally, there is extra blade

material which would need to be cut from this extrusion in order to make the leading edge and

trailing edge of the blade parallel to the global x-axis. The other method involved extruding the

entire blade sketch along a curve representing the outside edge of the disk; figure 3.9a shows the

result of this. While this method does produce good conformity with the disk, there is an associated
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twist with the blade section that is unwanted which figure 3.9b shows. From these methods a hybrid

of these two methods was created using the VEXT command that was described earlier; figure 3.7c

shows the result.

(a) Platform View with Disk (b) Blade View

Figure 3.8: Alternative Method 1 for Platform Construction

(a) Platform Extrusion with Disk from (b) Blade View

Figure 3.9: Alternative Method 2 for Platform Construction
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3.4.2 Blade

The construction of the blade profile is not as involved as the platform section. The initial sketch

of the blade profile was done in the rotated broach frame (15◦ rotated from the global coordinate

system about y) using the coordinates of points 3’ and 4 in table 3.1. The global coordinate system

is referring the the coordinate system shown in 3.1, the broach frame is rotated about the y-axis

from the global; figure 3.10 shows the broach frame (red) in relation to the global (black). To be

clear the coordinate system shown in black here is the same as the global system described in figure

3.1. However, since the blade is sketched and extruded in the broach frame, and the platform was

created in the global coordinate system, the blade profile extrusion into 3D needs to be offset from

the origin to ensure the blade profile remains on the platform; figure 3.10 shows a top view of the

blade model with the offset of the blade profile.

Figure 3.10: Academic Geometry 2 Top View of Blade with Broach Frame (Red)
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A modal analysis was conducted on the blade model to determine the thickness and profile of

the blade to reach the desired first bending frequency. First only the thickness of the blade profile

itself was varied to achieve the desired bending frequency. It was found that with this geometry,

there was no need of a linear taper to achieve the frequency of interest. Figure 3.11 shows the finite

element model of the full blade model and table 3.4 lists the dimensions and properties of the blade

model.

Figure 3.11: Academic Blade Geometry 2 Model
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Table 3.4: Academic Geometry 2 Properties

Number of Blades (N) 60

Broach Angle [◦] 15

Underplatform Surface Angles (θL/θR) [◦] 45/45

Disk Radius (R0) [mm] 800

Underplatform Neck Height (R1) [mm] 825

Underplatform Height (R2) [mm] 842

Platform Height (R3) [mm] 852

Blade Tip Height (R4) [mm] 1200

Blade Root Thickness Troot [mm] 50

Blade Section Depth [mm] 200

Blade Base Thickness (h at R1) [mm] 50

Blade Tip Thickness (h at R4) [mm] 50

Blade Density [kg/m2] 8000

Blade Modulus [GPa] 200

Blade Poisson Ratio 0.25

First Bending Natural Frequency [Hz] 260

Point Load on LE Tip Transverse to Blade [N] 100

46



3.4.3 Underplatform Damper

The associated underplatform damper was designed in the same procedure as the first academic

damper are is briefly outlined here. The dimensions (R, θ , C, Length) were chosen to be scaled

representative values from realistic dampers. First a generic damper was used to conduct a damper

mass sensitivity study to see where the maximum experienced damping began to see diminishing

returns. The scaling factor was chosen based on where variations in the damper mass began to

experience diminishing returns with a generic damper; figure 3.12 shows the finite element model

with dimensions and table 3.5 lists the dimensions and properties of the damper.

Figure 3.12: Underplatform Damper Model 2
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Table 3.5: Academic Damper 2 Properties

Radius (R) [mm] 20

Chord Length (C) [mm] 20

Chord Angle (θ ) [◦] 60

Damper Length [mm] 200

Density [kg/mm2] 8000

Mass [kg] 1.94

Damper Roughness [nm] 15

Friction Coefficient 0.33
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CHAPTER 4

RESULTS/DISCUSSION

4.1 Introduction

The forced response of the academic blade models were obtained in a process that is outlined as

follows. First, a mode-based harmonic analysis of the blade models were conducted using ANSYS

Mechanical APDL. The analysis takes a truncated number of modes from the blade finite element

model and calculates the eigenvalues, eigenvectors and modal parameters. This was done for only

one harmonic index for each respective academic blade models, which was based on the harmonic

of interest with respect to the industry blades. The results of the modal analysis were then imported

into the nonlinear damping code DATAR.

DATAR calculates the frequency response function of a simulated tuned bladed disk assem-

bly through cyclic expansion of the blade model and combines the modal description of the blade

with physical parameters of the contact such as the combined surface roughness (referred to as

the damper roughness here) and the friction coefficient. At each value of excitation the frequency

response function of the bladed disk assembly using the Harmonic Balance Method across a pre-

scribed frequency range that crosses the first bending frequency of the blade in these cases. The

contact force between the blade and underplatform damper is assumed constant and wholly due to
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centrifugal force. The friction model used by DATAR is based on Coulomb’s dry friction law and

assumes a constant coefficient with no influence of temperature and slip velocity.

DATAR is used to vary the excitation force (point load on LE tip for the academic blades which

is a modal excitation) of the bladed disk system and calculates the damping, and resonance am-

plitude given a frequency sweep range. DATAR has the capability to conduct parameter variation

studies of a tuned bladed disk assembly as well, the results shown here are parametric plots of the

system response based on increasing excitation. In the results presented in the following sections,

the inputs into DATAR such as the damper mass, damper surface roughness and friction coefficient

are varied to investigate the sensitivities to changes in the forced response of the blade system.

Figure 4.1: Example Forced Response Parametric Plot

The following plots show the calculated damping, vibration amplitude and frequency as a func-

tion of increasing excitation. Starting from the bottom left of the plots each point on the curve,

moving left to right and up represents an increasing excitation value. At each point of excita-

tion, the damping, amplitude and frequency are calculated with one example shown in figure 4.1.
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Figure 4.1 provides a visual representation of the resulting vibration amplitude and damping with

increasing excitation as well as pointing out the maximum damping point which is of main interest

and will be discussed more later in the results. The vibration characteristics of the blade mod-

els are characterized primarily around the point of maximum damping or where the parametric

curve begins to turn over on itself. This parametric curve also provides some insight into where

the underplatform damper is predicted to be effective and lose effectiveness which is based on the

excitation location along the curve. In other words the damper is predicted to be most effective

around the point of maximum damping at the turn-over point.

4.2 Validation of Academic Blade Models with Industry Models

This section compares the predicted response of the presented academic blade models with full

order realistic blade models, of which the academic blades are representative of. To validate the

use of the academic geometries, a behavior observed in the predicted forced response of industry

blades known to occur is compared with results using the academic geometries. This behavior

occurs when the number of modes in the modal analysis is varied, causing the resulting predicted

forced response to change. When the number of retained modes in the modal analysis is increased,

the predicted damping decreases, shown in figure 4.2. Figure 4.2 shows the predicted damping and

vibration amplitude as a function of increasing forcing excitation when the number of modes are

varied in the modal analysis; comparing the industrial and academic blade models.
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(a) Industry Blade 1 (b) Academic Geometry 1

(c) Industry Blade 2 (d) Academic Geometry 2

Figure 4.2: Forced Response Results Against Modes Retained

From the results in figure 4.2, the predicted forced response of the academic blades match up

well with that of the industrial blades. That is, the academic blades behave qualitatively similar

to the industrial blades in the forced response prediction when the number of retained modes

varies. This is a key behavior seen in the forced response prediction of industrial blade models

and was important to replicate with the academic blade models to validate their design. The fact

that the simple academic blade models presented here require a large number of retained modes
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for convergence is desired since this remains a critical factor in the analysis of high-fidelity blades

with reduced order models. The truncated modes in the reduced order models likely introduces an

associated numerical stiffness and still remains a question of interest.

The academic blades discussed here are excited using a point load located on the leading edge

blade tip, while the industrial blade models are excited using a full pressure load along the entire

blade profile. It was mentioned previously that this simplification of using a point load versus a

full pressure load produces the same forced response curve when the point load is scaled to an

appropriate magnitude. Figure 4.3 compares the response when a full pressure load is used versus

a point load and demonstrates that the resulting curve is the same; the same maximum damping

and resonance amplitude are reached using both excitation method (the point load however, needs

to scaled to the appropriate magnitude to match the excitation caused by the full pressure load).

This results demonstrates that the excitation on the blade does not need to be known ahead of time

in order to predict the forced vibration response.

(a) Point Load (b) Full Pressure Load

Figure 4.3: Forced Response Results Comparing Excitation
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The results presented in the next section are from the academic blade models and not intended

for design purposes; the academic geometries were constructed only to qualitatively match the

behavior of the industry blades. The significance of the results is that the proposed academic

blades behave qualitatively similar to their industrial counterparts under sensitivities to design

parameters; furthermore, they function to provide a point of comparison for alternative forced

response prediction methods and candidates for further academic analysis to help bridge the gap

between academic and industry application in the forced vibration response community.

4.3 Academic Geometry 1 Results

The nonlinear damping code DATAR was used to vary the excitation force (point load defined

in table 3.2) of the blade and conduct variations of design parameters. Figure 4.4 shows how

the predicted damping, vibration amplitude and frequency change with respect to changes in the

underplatform damper mass, damper surface roughness and friction coefficient as the excitation

increases (explained earlier in figure 4.1). The data in figure 4.4 was generated using 40 retained

modes in the modal analysis and the trends match behavior seen in industry blades. Figures 4.4a-b

show that the predicted damping and amplitude increase with an increase in damper mass. Fig-

ures 4.4c-d demonstrate that increasing the surface roughness decreases the predicted damping.

Figures 4.4e-f show that increasing the friction coefficient increases the amplitude and slightly

decreases the maximum damping.
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(a) Damp. vs Amp. w.r.t. Damper Mass (b) Damp. vs Freq. w.r.t. Damper Mass

(c) Damp. vs Amp. w.r.t. Roughness (d) Damp. vs Freq. w.r.t. Roughness

(e) Damp. vs Amp. w.r.t. Friction (f) Damp. vs Freq. w.r.t. Friction

Figure 4.4: Academic Geometry 1 Forced Response vs Design Parmater Variations
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In addition to the predicted damping and amplitude changing with respect to variations in the

design parameters, the excitation (referred to as stimulus) required to reach the maximum point of

damping and turn over point also changes. Stimulus refers to the amount the excitation force is

increased in percent from its original value (100 N force for the academic blades) which is found in

each blades respective property table in chapter 3. The following plots in figure 4.5 show how the

excitation changes for the predicted damping and amplitude with respect to variations in the design

parameters. The plots show how the variation in the design parameters impact the excitation needed

to generate the forced vibration response. Figures 4.5a-b show that as the damper mass increases,

the excitation needed to generate the same predicted forced response increases. Figures 4.5c-d

show that as the damper roughness has very little effect on the stimulus location of the maximum

damping point. Figures 4.5e-f show that the stimulus of the maximum damping point increases

with an increase in the friction coefficient in addition to the amplitude increasing.
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(a) Damping vs Stimulus w.r.t. Damper Mass (b) Stimulus vs Amplitude w.r.t. Damper Mass

(c) Damp. vs Stim. w.r.t. Damper Roughness (d) Stim. vs Amp. w.r.t. Damper Roughness

(e) Damping vs Stimulus w.r.t. Friction (f) Stimulus vs Amplitude w.r.t. Friction

Figure 4.5: Academic Geometry 1 Excitation vs Design Parmater Variations
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The sensitivity of the first academic blade model to the design parameters (damper mass, sur-

face roughness, and friction coefficient) is shown next and is compared between models using a

different number of retained modes in the modal analysis. Figure 4.6 shows the sensitivity of the

maximum damping, amplitude at maximum damping, frequency at maximum damping to varia-

tions in the design parameters. The results are normalized with respect to the nominal parameter

value of the calculated damping, amplitude and frequency of the 160 mode reduced order model.

Figures 4.6a-c shows that as the damper mass increases, the maximum damping, amplitude at

maximum damping increase, while frequency at maximum damping remains relatively constant.

Figures 4.6d-f shows that as the damper surface roughness increases, the maximum damping de-

creases, while the amplitude at maximum damping increases, and frequency at maximum damping

remains relatively unchanged. Figures 4.6g-i shows that as the friction coefficient increases, the

maximum damping and frequency at maximum damping remain relatively unchanged, while the

amplitude at maximum damping increases.
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(a) Damping w.r.t. Damper Mass (b) Amp. w.r.t. Damper Mass (c) Freq. w.r.t. Damper Mass

(d) Damping w.r.t. Roughness (e) Amplitude w.r.t. Roughness (f) Frequency w.r.t. Roughness

(g) Damping w.r.t. Friction (h) Amplitude w.r.t. Friction (i) Frequency w.r.t. Friction

Figure 4.6: Sensitivity of Academic Geometry 1 to Design Parameter Variation
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(a) Oscillatory Convergece (b) Monotonic Convergence

Figure 4.7: Example of Blade Sensitivity Behavior

Early in the vibration response characterization of academic blade geometry 1, the sensitivities

of the blade to design parameters did not display monotonic convergence as shown in figure 4.6 but

instead oscillatory convergence between the reduced order models; figure 4.7 shows the oscillatory

behavior seen and the monotonic convergence after the solution was found. It was thought and later

confirmed that this was due to the coarse meshing of the platform region of the blade, particularly

the underplatform area where the dampers would make contact with the blade. The mesh of the

platform region was therefore increased roughly by an order of magnitude; figure 4.8 shows the

initial mesh and more dense mesh of the platform region. The original mesh of the platform region

had an element size of approximately 20 mm with the nodes every 10 mm, where the updated

mesh has an element size of approximately 10 mm with nodes every 5 mm. The sensitivity studies

were then conducted again and the resulting data behaved as expected with monotonic convergence

between the reduced order models; figure 4.6 shows these results.
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(a) Orignial Platform Mesh (b) Refined Platform Mesh

Figure 4.8: Comparison of Platform Mesh

4.4 Academic Geometry 2 Results

The results for the second academic blade model are provided next; the blade model was analyzed

in the same procedure as the first. Figure 4.9 shows how the predicted response of the blade

changes to variations in the damper mass, damper surface roughness and friction coefficient. The

results presented here were generated using a 40 mode reduced order model. Figures 4.9a-b shows

that as the damper mass increases, the predicted damping, and amplitude increase. Figures 4.9c-d

shows that the as the damper surface roughness increases, the predicted damping decrease and

the amplitude remains unchanged. Figures 4.9 shows that as the friction coefficient increases,

the damping slightly decreases while the amplitude increases. It is worth pointing out that the

non-smooth portion in figure 4.9b is due to a rather flat response in the frequency domain where

numerical errors can push one frequency higher then another.
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(a) Damp. vs Amp. w.r.t. Damper Mass (b) Damp. vs Freq. w.r.t. Damper Mass

(c) Damp. vs Amp. w.r.t. Damper Roughness (d) Damp. vs Freq. w.r.t. Damper Roughness

(e) Damp. vs Amp. w.r.t. Friction (f) Damp. vs Freq. w.r.t. Friction

Figure 4.9: Academic Geometry 2 Forced Response vs Design Parameter Variation
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As with the first academic blade model, the impact the design parameters have on the excitation

needed to generate the predicted forced response is shown next. The following plots in figure

4.10 show how the excitation changes for the predicted damping and amplitude with respect to

variations in the design parameters. The plots show how the variation in the design parameters

impact the excitation needed to generate the forced vibration response. Figures 4.10a-b show that

as the damper mass increases, the excitation needed to generate the same predicted forced response

increases. Figures 4.10c-d show that as the damper roughness has very little effect on the stimulus

location of the maximum damping point. Figures 4.10e-f show that the stimulus of the maximum

damping point increases with an increase in the friction coefficient in addition to the amplitude

increasing.
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(a) Damping vs Stimulus w.r.t. Damper Mass (b) Stimulus vs Amplitude w.r.t. Damper Mass

(c) Damp. vs Stim. w.r.t. Damper Roughness (d) Stim. vs Amp. w.r.t. Damper Roughness

(e) Damping vs Stimulus w.r.t. Friction (f) Stimulus vs Amplitude w.r.t. Friction

Figure 4.10: Academic Geometry 2 Excitation vs Design Parmater Variations
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The sensitivity of the second academic geometry to the design parameters across a range of

reduced order models is compared next. The plots shown in figure 4.11 demonstrate how the pre-

dicted maximum damping, amplitude at maximum damping and frequency at maximum damping

are affected by variations in the design parameters. The results in figure 4.11 are normalized with

respect to the predicted damping, amplitude and frequency at the nominal design parameter value

with respect to the 160 mode model, represented as one.

Figures 4.11a-c show the as the damper mass increases, the maximum damping and amplitude

at maximum damping increase, while the frequency at maximum damping remains unchanged.

Figures 4.11d-f indicate that as the damper surface roughness increases, the maximum damping

decreases, the amplitude at maximum damping increases and the frequency at maximum damping

remains relatively constant. Figures 4.11g-i demonstrate that as the friction coefficient increases,

the maximum damping decreases, the amplitude at maximum damping increases and the frequency

remains relatively unchanged.
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(a) Damping w.r.t. Damper Mass (b) Amp. w.r.t. Damper Mass (c) Freq. w.r.t. Damper Mass

(d) Damping w.r.t. Roughness (e) Amplitude w.r.t. Roughness (f) Frequency w.r.t. Roughness

(g) Damping w.r.t. Friction (h) Amplitude w.r.t. Friction (i) Frequency w.r.t. Friction

Figure 4.11: Sensitivity of Academic Geometry 2 to Design Parameter Variation

4.5 Comparisons of Academic Geometries 1 and 2

This section discusses the geometrical differences between the two academic geometries and com-

pares the sensitivities of the blades responses to changes in the design parameters. The main
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difference between the two blade models are the size of the blade sections and the broach angle.

The first blade model has a blade section length of approximately 660 mm, while the second blade

model has a blade section length of roughly 350 mm. Additionally the first blade model has no

broach angle while the second blade geometry has a broach angle of 15◦. Figure 4.12 compares

the sensitivities of the two blade models to variations in the design parameters. The response of the

blade models are normalized with respect to the value of the maximum damping, and amplitude at

maximum damping at the nominal value of the design parameters. Based on the results in figure

4.12, variation in the damper mass has the largest impact on the predicted maximum damping and

amplitude at maximum damping for both of the academic blades. The second academic blade is

sensitive to changes in the friction coefficient, while the first geometry is insensitive. The first

geometry is more sensitive to changes in the damper surface roughness then the second geometry.
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(a) Amplitude w.r.t. Damper Mass (b) Damping w.r.t. Damper Mass

(c) Amplitude w.r.t. Friction (d) Damping w.r.t. Damper Mass

(e) Damping w.r.t. Damper Roughness (f) Damping w.r.t. Friction

Figure 4.12: Comparison of Sensitivity of Academic Geometries to Design Parameters
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Overall, the two blades display a qualitatively similar behavior when the damper mass, damper

surface roughness, and the friction coefficient are varied. Figures 4.12a-b show that as the damper

mass increases, the predicted maximum damping and amplitude at maximum damping increase.

Figures 4.12c-d demonstrate that as the damper surface roughness increases, the maximum damp-

ing decreases, while the amplitude at maximum damping increases. Figures 4.12e-f show that as

the friction coefficient increase, the maximum damping decreases, while the amplitude at maxi-

mum damping increases.

4.5.1 Nodal Displacements of Blade Models

During the development of the second academic blade geometry, the blade and damper system

was not reaching a suitable damping level in the forced response; figure 4.13 shows the initial

damping and amplitude response. To investigate the possible cause of this the nodal displacements

of the blade leading edge and underplatform region were compared; table 4.1 shows the nodal

displacements of the damper contact regions and blade leading edge tips. The ratio of the blade

tip divided by the damper contact areas (found in table 4.1) was used to determine how coupled

the motion is between the blade and platform. The lower this ratio is the more coupled the blade

is to the platform. Typical blades in industry have a coupling ratio ranging from 20 to 40. It was

found that the platform region of the second academic geometry was very stiff compared to the

blade region; i.e. there was very little coupling between the blade tip motion and platform during

vibration, leading to a low predicted damping response shown in figure 4.13.
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Figure 4.13: Initial Forced Response of Blade 2

Table 4.1: Academic Geometries Nodal Displacements

Blade 1 Displacement (mm) Blade 2 Displacement (mm)

Left Underplatform 0.169 0.069

Right Underplatform 0.197 0.054

Blade Leading Edge Tip 12.4 16.9

Blade Tip/Damper Contact 67.69 275

To solve this problem, the platform region of the blade needed to be less stiff, such that more

motion from the blade profile would be transferred to the platform. The solution implented was to

increase the the radial dimension of the platform region (R1, R2, and R3) along the blade to make the

blade root region less stiff. In other words the entire platform region was moved up along the blade.

This leads to more relative motion between the blade and damper, which creates more friction and

therefore more damping. Therefore there was more coupling between the blade and platform
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regions of the second academic geometry; table 4.2 shows the updated nodal displacements using

the new dimensions.

Table 4.2: Academic Geometry 2 Updated Nodal Displacements

Blade 2 Displacement (mm)

Left Underplatform 0.333

Right Underplatform 0.263

Blade Leading Edge Tip 11.5

Blade Tip/Damper Contact 38.7
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CHAPTER 5

CONCLUSIONS

Two academic turbine blade models coupled with underplatform dampers have been presented

which are representative of industrial turbine blades. The academic models display qualitatively

similar behavior to industrial counterparts when the number of modes in a modal analysis is varied.

The academic models also have been demonstrated to show similar behavior under sensitivities to

design parameters.

The comparison of the academic blade models revealed that the first academic blade is more

sensitive to variations in the design parameters. The behavior of the blade models to variations in

the design parameters are summarized as follows. When the damper mass increases, the predicted

maximum damping increases, and the amplitude at maximum damping increases. Increasing the

damper surface roughness decreases the predicted maximum damping, and increases the amplitude

at maximum damping. As the friction coefficient increases, the predicted maximum damping

decreases while the amplitude at maximum damping increases.

Additionally, the variations in the design parameters also influenced the required excitation

needed to reach the maximum damping point of the system and are summarized as follows. In-

creasing the damper mass and friction coefficient increases the excitation point of the maximum

damping. On the other hand, varying the surface roughness of the contact between the damper and
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blade platform has almost no influence on the excitation needed to reach the maximum damping

point of the system.

The main goal of the presented academic blade models is for them to be used for further aca-

demic analysis to act as a standard for comparison of forced response within the turbomachinery

community. The presented blade models and accompanying underplatform dampers have demon-

strated qualitatively similar behavior to complex industrial blade models. As new model reduc-

tion, nonlinear damping and forced response algorithms and forced response algorithms, these

blade models provide an academic test case which can help bridge the gap to industry with highly

complex blades.

5.1 Lessons Learned

During the course of the development of the blade and damper geometries there were a numer-

ous speed bumps along the way, where problems came up and investigations into the solutions

developed an increased insight into the design of the academic turbine blade models. This section

discusses those speed bumps and the insights that were gained upon reaching solutions to those

problems.

During the initial characterization of the blade models it was difficult to get forced response

results in the nonlinear code DATAR. It was later found to be due to low forcing since point loads

were used to excite the academic blade models; these point loads needed to be drastically scaled up

( 100% - 1000%) within DATAR in order to get a response whereas the full pressure loads used on
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the industry models require very little scaling for a response ( 1% - 3%). Essentially the point load

simplification of the excitation needs to be drastically scaled in magnitude when compared with

the full pressure loads used in the industry blade models. However, the forced vibration response

results are not dependent on the excitation itself, just the magnitude.

The mesh density of the platform regions of the blade models where the contact interface

between the blade and damper occurs was found to be important in the forced vibration response

prediction. As was mentioned in the results section for the first academic blade model, the initial

characterization of the blade displayed oscillatory convergence behavior between the reduced order

models with respect to the sensitivities to the design parameters which was unexpected behavior

based. However, once the mesh of the platform region was increased, the reduced order models of

the blade model with respect to sensitivities to design parameters displayed monotonic convergence

which was expected. This result reinforces the idea that any contact interfaces within the model

need to maintain a certain fidelity in order to accurately capture the behavior, even with the simple

academic blade models presented in this thesis.

Due to the simplicity in design of the academic blade models there is poor coupling between

the motion of the blade profile above the platform and the platform regions of the blade. While this

was expected and known before hand, it was not until investigating and comparing the nodal dis-

placements of the blade tip and underplatform nodes in the finite element model that the extent of

the poor coupling was discovered. This investigation provided insight into designing the platform

and blade root regions of the academic blade models to allow for more vibration to be transferred

from the vibration of the blade tip to platform region. This occurred during the design of the sec-
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ond academic geometry, the blade root region was too stiff leading to essentially no damping in the

forced response results because the platform was not vibrating and the damper unable to dissipate

energy. The update to the geometry involved increasing the length of the blade root section in

the radial direction as well as increasing where the platform region was on the blade model. This

change in geometry lead to an increased coupling between the blade tip and platform regions to

allow for sufficient predicted damping in the forced vibration results.

5.2 Future Work

The academic geometries presented here are good candidates as a first point of comparison for

methods in model reduction and forced vibration response of turbine blades coupled with under-

platform dampers. The academic geometries have been shown to behave qualitatively similar to

respective industrial counterparts and could act as test cases for new developments in the forced

vibration response community, to compare with the results presented in this paper. However, the

blade and damper geometries themselves are not physically realistic to those seen industry. The

blade profiles of the academic geometries are essentially solid cantilever beams, which is why the

underplatform dampers are relatively large. A second generation blade could incorporate more

complexity into the blade profile portion to be more in line with blade designs seen in industry

and therefore lead to more realistic underplatform damper models. One large disparity between

these presented blade models and industry blades are the complex blade profiles used in industry.

A more complex blade design in a second generation academic model (i.e. not solid blades as one
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option) could alleviate the need for a relatively large underplatform damper. The academic blade

models have the majority of their mass in the blade sections, whereas the industrial counterparts

have their mass more equally distributed between the blade profile and platform regions.

Recently researchers have been using a Lagrangian method to enforce contact at friction in-

terfaces, whereas previous methods and the one used here used contact stiffness terms to enforce

contact. Methods using contact stiffness terms are highly sensitive to values input for them and

these stiffness terms themselves are poorly understood, however they due produce similar results

to the Lagrangian methods. The proposed academic blades presented here are great candidates

for conducting forced vibration response method utilizing Lagrangian methods for enforcing con-

tact and comparing with the results presented here. Comparing the results presented here with an

alternative Lagrangian method is of interest to the author.

Ultimately the long term goal of the presented academic turbine blade models is for the use as

a point of comparison in the predicted forced vibration response community. These blade models

have been shown to behave qualitatively similar to that of industrial turbine blades, however the

academic blade models are not intended to be used to aid in the design of blade/damper systems.

The presented models have a relatively simple design in terms of academia while still requiring a

relatively large amount of modes for convergence. This simple geometry allows for a more funda-

mental investigation into the model reduction process and forced response technique to investigate

the convergence behavior that is still a critical factor in the analysis of high-fidelity blades with

reduced order models.
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APPENDIX A

ACADEMIC BLADE 1 ANSYS MECHANICAL APDL CODE
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!! Academic blade 1 ANSYS Macro UCF

/PREP7

!! Material Properties of Blade

ED_B = 200000 !! E-DYN. Platform

NU_B = 0.250

MU = 0.33 !! Friction Coeff.

dens = 8E-09

mp, ex,1,ED_B !! Define Material Models and Properties

mp,nuxy,1,NU_B

mp,dens,1,DENS

mp, ex,2,ED_B !! Define Material Models and Properties

mp,nuxy,2,NU_B

ET,1,SOLID187,,,,,,,

!! Blade dimensions

N = 45

R0 = 850

R1 = 905

R4 = 1600
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!! h defined as blade thickness (constant if no taper used)

h = 50

!! Blade root thickness

Troot = 50

!! Variable x here used to define half the length of the blade taper since

!! blade symmetric about y-axis

x=h/12

pi=asin(1)*2

Adisk = 2*pi/N

! Calculated from non-linear equations defining model

psi_r = 0.0527

psi_l = 0.0860

R2 = 928

R3 = 938

!! Equations which define key points of blade from cylindrical to cartesian
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R0y = R0*R0-Troot*Troot*0.25

R1y = R1*R1-Troot*Troot*0.25

R2yl = R2*cos(psi_l)

R2xl = R2*sin(psi_l)

R2yr = R2*cos(psi_r)

R2xr = R2*sin(psi_r)

R3yl = R3*cos(psi_l)

R3xl = R3*sin(psi_l)

R3yr = R3*cos(psi_r)

R3xr = R3*sin(psi_r)

R3b = R3*R3-h*h*0.25

R4b = R4*R4-x*x

!! Local coordinate systems defined to orientate the blade
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LOCAL,11,1, 0, 0, 0, 1.8E+02, 0, 2.7E+02

!! Begining construction of blade

csys,0

k,,,-Troot/2,sqrt(R0y)

k,,,Troot/2,sqrt(R0y)

k,,,-Troot/2,sqrt(R1y)

k,,,Troot/2,sqrt(R1y)

k,,,R2xr,R2yr

k,,,-R2xl,R2yl

k,,,-R3xl,R3yl

k,,,R3xr,R3yr

k,,,h/2,sqrt(R3b)

k,,,-h/2,sqrt(R3b)

k,,,x,sqrt(R4b)
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k,,,-x,sqrt(R4b)

csys,11

l,1,2

csys,0

l,7,10

l,9,8

l,1,3

l,3,6

l,7,6

l,2,4

l,4,5

l,5,8

csys,0

l,10,12

l,12,11

l,11,9
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!! Creating an area on underplatform to goup nodes later

KL,8,1-0.4, ,

KL,8,1-0.6, ,

ldel,8

l,4,14

l,14,13

l,13,5

!! Creating an area on underplatform to grab nodes for grouping

KL,5,1-0.69, ,

KL,5,1-0.4, ,

ldel,5

l,3,15

l,15,16

l,16,6

!! Selecting lines making up blade and platform

lsel,s,line,,all

al,all

!! Extruding blade and platform, then setting the mesh attributes
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VOFFST,1,-300, ,

VATT,1,,1, 0

MSHAPE,1,3D

MSHKEY,0

!! Creating Massless disk for cyclic symmetry generation

k,,,200*sin(Adisk/2),200*cos(Adisk/2)

k,,,-200*sin(Adisk/2),200*cos(Adisk/2)

k,,,R0*sin(Adisk/2),R0*cos(Adisk/2)

k,,,-R0*sin(Adisk/2),R0*cos(Adisk/2)

csys,11

l,34,33

l,36,35

csys,0

l,34,36

l,33,35

!! Sellecting lines making up disk for extrusion
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lsel,s,line,,49,52

al,all

VOFFST,19,-300, ,

!! Selecting disk volume to set mesh attributes and mesh the volume

vsel,,,,2

VATT,2,,1,0

VMESH,2

allsel

!! Meshing the blade and platform

VMESH,1

!! Selecting the platform areas for mesh refinement

asel,s,area,,1,2

asel,a,area,,4,9

asel,a,area,,13,18

AREFINE,all,,3

allsel
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dsys,0

csys,0

!! Applying boundary conditions to blade, fixing the root and applying point load

!! to LE tip transverse to blade for modal excitation

DA,3,ALL

DA,21,all

F,21415,FY,100
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APPENDIX B

ACADEMIC BLADE 2 ANSYS MECHANICAL APDL CODE
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!Academic Blade 2 ANSYS APDL Macro UCF

/PREP7

! Number of blades

N = 60

!! Define Material Models and Properties

ED_B = 200000 !! E-DYN. Platform

NU_B = 0.250

MU = 0.33 !! Friction Coeff.

dens = 8E-09

mp, ex,1,ED_B

mp,nuxy,1,NU_B

mp,dens,1,DENS

mp, ex,2,ED_B !! Define Material Models and Properties

mp,nuxy,2,NU_B

ET,1,SOLID187,,,,,,,

!! Define Geometrical variables of blade and platform

R0 = 800
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R1 = 825

R4 = 1200

*afun,rad

pi=asin(1)*2

broach=15*pi/180

h=50

Troot = 50

!! x-value determines the taper 2*x = value of span of blade tip

!! no taper used here

x=h/2

!! Calculated Inputs

! Value in radians of disk sector

Adisk = 2*pi/N

! Calculated from Matlab non-linear equations
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psi_r = 0.0519

psi_l = 0.0519

R2 = 842

R3 = 852

!! Defining broach angle csys 11 (-15 degrees about global y in this case)

csys,0

k,,0,0

k,,cos(broach),-sin(broach),0

k,,0,1,0

CSKP,13,0,1,2,3

LOCAL,11,1,0,0, 0,1.8E+02,0,2.7E+02

LOCAL,12,0, 0, 0, 0, 1.80E+02, 0, 2.7E+02

! Creating parameters which are used to define blade profile keypoints

R0y = R0*R0-Troot*Troot*0.25

R1y = R1*R1-Troot*Troot*0.25
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R2yl = R2*cos(psi_l)

R2xl = R2*sin(psi_l)

R2yr = R2*cos(psi_r)

R2xr = R2*sin(psi_r)

R3yl = R3*cos(psi_l)

R3xl = R3*sin(psi_l)

R3yr = R3*cos(psi_r)

R3xr = R3*sin(psi_r)

R3b = R3*R3-h*h*0.25

R4b = R4*R4-x*x

!! Begin defining keypoints of platform

csys,0

k,,,-Troot/2,sqrt(R0y)
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k,,,Troot/2,sqrt(R0y)

k,,,-Troot/2,sqrt(R1y)

k,,,Troot/2,sqrt(R1y)

k,,,R2xr,R2yr

k,,,-R2xl,R2yl

k,,,-R3xl,R3yl

k,,,R3xr,R3yr

!! Connect keypoints with lines/arcs

csys,11

l,4,5

csys,12

l,4,6

l,6,9

l,10,9

l,5,7

l,7,8

l,8,11

l,10,11
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!! Creating lines to define damper contact node

KL,3,1-0.6, ,

KL,3,1-0.4, ,

ldel,3

l,6,12

l,12,13

l,13,9

KL,6,1-0.6, ,

KL,6,1-0.4, ,

ldel,6

l,7,14

l,14,15

l,15,8

!! Extrude platform area in local cylindrical using VEXT, allows platform

!! to conform to disk profile best

csys,11

lsel,s,line,,all

al,all
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VEXT,1,,,0,-3.8,-193.2,1,1,1

VATT, 1, , 1, 0

!! Define blade profile keypoints in broach frame

csys,13

!! Blade base points defined a little below to be inside platform

!! to add the blade volume to platform later since they were built separately

k,,-7,h/2,sqrt(R3b)-10

k,,-7,-h/2,sqrt(R3b)-10

k,,-7,x,sqrt(R4b)

k,,-7,-x,sqrt(R4b)

!! Connect blade keypoints with lines

l,28,29

l,29,31

l,31,30

l,30,28
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lsel,s,line,,37,40

al,all

VATT, 1, , 1, 0

VOFFST,15,186.2,,

!! Add volumes of extruded platform and blade

VADD,1,2

VATT, 1, , 1, 0

VMESH,3

!! Creating massless disk for expansion

csys,0

k,,,200*sin(Adisk/2),200*cos(Adisk/2)

k,,,-200*sin(Adisk/2),200*cos(Adisk/2)

k,,,R0*sin(Adisk/2),R0*cos(Adisk/2)

k,,,-R0*sin(Adisk/2),R0*cos(Adisk/2)

csys,11
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l,29,28

l,33,32

csys,0

l,29,33

l,28,32

csys,11

lsel,s,line,,37,38

lsel,a,line,,40,41

al,all

! Extruding massless disk section

VEXT,9,,,0,-3.8,-193.2,1,1,1

vsel,s,volu,,1

VATT, 2, , 1, 0

VMESH,1
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allsel

dsys,0

csys,0

!! Applying fixed blade root boundary condition and point force

!! transverse to LE blade tip for modal excitation

DA,3,ALL

DA,16,ALL

F,2394,FY,100
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