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ABSTRACT 

In this study, syngas combustion was investigated behind reflected shock waves in order to gain 

insight into the behavior of ignition delay times and effects of the CO2 dilution. Pressure and 

light emissions time-histories measurements were taken at a 2 cm axial location away from the 

end wall. High-speed visualization of the experiments from the end wall was also conducted. 

Oxy-syngas mixtures that were tested in the shock tube were diluted with CO2 fractions ranging 

from 60% - 85% by volume. A 10% fuel concentration was consistently used throughout the 

experiments. This study looked at the effects of changing the equivalence ratios (ϕ), between 

0.33, 0.5, and 1.0 as well as changing the fuel ratio (θ), hydrogen to carbon monoxide, from 0.25, 

1.0 and 4.0. The study was performed at 1.61-1.77 atm and a temperature range of 1006-1162K. 

The high-speed imaging was performed through a quartz end wall with a Phantom V710 camera 

operated at 67,065 frames per second. From the experiments, when increasing the equivalence 

ratio, it resulted in a longer ignition delay time. In addition, when increasing the fuel ratio, a 

lower ignition delay time was observed. These trends are generally expected with this 

combustion reaction system. The high-speed imaging showed non-homogeneous combustion in 

the system, however, most of the light emissions were outside the visible light range where the 

camera is designed for. The results were compared to predictions of two combustion chemical 

kinetic mechanisms: GRI v3.0 and AramcoMech v2.0 mechanisms. In general, both mechanisms 

did not accurately predict the experimental data. The results showed that current models are 

inaccurate in predicting CO2 diluted environments for syngas combustion. 
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CHAPTER ONE: INTRODUCTION 

There is an increasing demand for energy in the industrialized world. Trends have shown 

that people are interested in cleaner energy production. Most of power generation comes from 

burning fuels for energy in power plants across the world. This results in greenhouse gas 

emissions and other undesirable pollutants. There is development in power generation 

technology that looks to improvement on cycle efficiencies. Current technology has stretched the 

efficiencies of supercritical steam cycles and the use of supercritical CO2 in power cycles can 

improve efficiencies even further. However, there is much to be developed before full operations 

with supercritical CO2 power cycles can begin. Another benefit of a supercritical CO2 cycle is 

that it will eliminate NOx emissions that results from combustion in air due to the CO2 cycle 

being closed. This novel design, directly heated combustion in supercritical CO2 with combined 

CCS (carbon capture and storage), is being developed by National Energy Technology 

Laboratory (NETL) and private industry [1, 2]. 

Synthesis gas, or syngas, is a fuel resulting from gasification of coal or biomass that 

offers the potential for cleaner burning in a power plant. A simplified model of syngas is a fuel 

primarily consisting of hydrogen and carbon monoxide. It has been demonstrated [3] that syngas 

composition is widely variable as well, complicating the design of the gas turbines. A need for 

experiments with a change in θ is needed as gasification results in varied fuel composition from 

location and processes [4]. Studies have been done to measure the ignition delay times of various 

compositions of oxy-syngas combustion in air, [4, 5], however, very little has been done to see 

the effects that CO2 has on the combustion process. Some studies [6-8] examined the effects of 

CO2 diluted syngas at a CO2 concentration up to 30% CO2. Furthermore [9, 10] examined the 
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effects of CO2 on oxy-methane combustion at dilution up to 60% and observed an increase in 

ignition delay time. Therefore, it is unknown of the effects of high concentrations of CO2 on 

syngas combustion and experimentation must be done. 

This study examines the ignition delay time of oxy-syngas combustion in a shock tube 

with CO2 dilutions from 60%-85%. This study looked at the effects of changing ϕ, the 

equivalence ratio, from 0.33-1.0 as well as changing θ, the fuel ratio of hydrogen to carbon 

monoxide, from 0.25-4.0. The study was performed at 1.61-1.77 atm and a temperature range of 

1006-1162K. The experimental data was compared with two combustion chemical kinetic 

mechanisms GRI-Mech v3.0 [11] and AramcoMech v2.0 [4]. In addition, high-speed imaging of 

the experiments was taken at the end wall of the shock tube to compare with different methods of 

determining the ignition delay time. 
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CHAPTER TWO: EXPERIMENTAL METHODS 

Shock Tube System 

 

All of the experiments of this study were taken with a stainless-steel shock tube. This shock 

tube has an inner diameter of 14.17 cm. The driver side is filled with helium and separated by a 

polycarbonate Lexan diaphragm. The driven side is filled to a specified pressure with a mixture 

prepared in a separate tank. When this diaphragm ruptures, a shock wave is formed and quickly 

travels down the driven side of the shock tube and heats up the test mixture. Five piezoelectric 

pressure transducers (PCB 113B26) placed along the last 1.4 m of the shock tube were used to 

measure the incident shock wave velocity using four time-interval counters (Agilent 53220A). 

The incident shock wave attenuation was always less than 1%. With the known velocity and a 

measured initial temperature and pressure of the driven side, one dimensional ideal shock 

relations can be used to calculate the reflected shock wave temperatures and pressures  [12]. Data 

was recorded using a NI PCI-6133 Data Acquisition Device at 2MHz per channel. Measurements 

were taken radially at a test section 2 cm from the driven side end wall that contains eight optical 

ports. One of the ports has a piezoelectric pressure transducer (Kistler 603B1) to measure the 

pressure in the driven section. Another port contained a GaP transimpedance amplified detector 

(Thorlabs PDA25K) operating in the wavelength range between 150 and 550 nm. This detector 

is used to measure the emissions of combustion (mostly OH*). No filters were placed in front of 

this detector to achieve a high signal-to-noise ratio. A continuous wave laser detailed in [9, 13-

15] was used only to determine time-zero by the laser schlieren spike of the arrival of the 

reflected shock wave at the measurement location. 
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Mixture Preparation 

 

Before each set of shock tube experiments, a mixture was prepared in a 33-liter Teflon-

coated stainless steel mixing tank. Each mixture was prepared by vacuuming the mixing tank to 

at least 5 x 10-5 Torr using a turbo molecular pump (Agilent model V301) in conjunction with 

rotary vane pumps (Agilent DS102). Vacuum pressures were measured using a convection 

(Lesker KJL275804LL) and ionization (Lesker KJLC354401YF) gauges. Mixtures were made 

from research grade gasses supplied by Praxair, Inc. The pressure was measured using a 100 

Torr (MKS Instruments Baratron E27D) and a 10,000 Torr (MKS Instruments/Baratron 628D) 

full scale range capacitance type manometers. Each gas was introduced into the mixing tank and 

the use of partial pressures were used to determine mole fractions. The mixtures were then mixed 

for at least eight hours using a magnetically driven stirrer to ensure homogeneity.  

 

Ignition Delay Time Measurements 

 

The ignition delay time measurement of the shock tube was defined as the time interval 

between the arrival of the reflected shockwave and the onset of the ignition at the measurement 

location. The arrival, or time zero, was determined by the laser schlieren spike of a continuous 

wave beam cascade laser. The onset of the ignition time was determined by evaluating the time-

history of the emissions, finding the steepest rise, and then extrapolating down to the baseline 

measurement. This method was described in a previous study [16]. This ignition delay time was 

compared with the high-speed imaging of the combustion event. These measurements were also 

compared with the predictions of two different reaction mechanisms, GRIMech 3.0 [11] and 
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AramcoMech 2.0 [4]. The mechanisms were used on CHEMKIN PRO [17] using constant-

volume, internal energy (constant V, U) assumption and results were compiled. Constant V, U 

assumption has been used on similar shock tube combustion studies [4-7] and with CO2 dilution 

[6, 9, 18]. In CHEMKIN PRO, the ignition delay time was calculated with a similar method for 

calculating the ignition delay time as the shock tube experiments by using the OH concentration 

time-history. The steepest rise in this plot was then extrapolated down to the baseline 

measurement to determine the ignition delay time. OH concentration was used due to its major 

importance during ignition. It should be pointed out that the simulations with another ignition 

delay time definition, which is based on the temperature inflection point, matched fairly well 

(within <1%) with the ones obtained from the OH concentrations. 

High-Speed Imaging 

 

High-speed imaging of the shock tube was taken using a Phantom V710 camera. This 

camera has a 1280x800 CMOS sensor that is adjustable with the computer program Phantom 

Camera Control Application (PCC) to 256x256 resolution at 67,065 frames per second. The 

camera is then able to take an image every 14.91 μs with an exposure time of 14.467 μs. The 

output of the camera is in greyscale. The camera program is turned on during the experiment and 

uses a triggering mechanism by a wired input into the Kistler pressure trace voltage. Using the 

camera capturing program, the trigger waits until a rising edge of at least 2 volts for 5 μs is 

detected to determine time-zero for the camera. Samples before and after the triggering event are 

then saved and evaluated. The camera is placed 2.13 meters perpendicular from the end wall in 

order to view the entire diameter of the shock tube and is focused at the 2cm location of the other 

measurements. A Fused Quartz end wall replaced the original stainless-steel end wall to allow 
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transparency. The camera is then able to observe ignition events down the entire length of the 

shock tube. The shock tube was cleaned frequently to avoid diaphragm particles from impacting 

images significantly.  The images are post-processed on Matlab and the emissions are indexed in 

a matrix, normalized to the brightest image. A false-color heat map is applied to each image and 

an artificial circle is placed on the images to note the shock tube diameter. A camera emissions 

plot is then evaluated using the peak of the GaP transimpedance amplified detector and included 

in the plots of the data collection. Further details of this setup and details of the plot being 

normalized to the emissions detector can be found in [18].  

Replication Setup 

In order to validate our shock tube for syngas experiments, a study was done to replicate 

a set of experiments performed in [4]. The measurement for ignition delay time were described 

as the time between the initiation of the system by the reflected shock wave and the occurrence 

of the [OH] maximum. The replicated tests were the data points at 1 atm. 
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CHAPTER THREE: RESULTS AND DISCUSSION 

 

Table 1. The mixtures that were experimented with and presented in this paper. 

Table 1: Reactant Mixtures Investigated 

Mixture ϕ θ % H2 % CO % O2 % CO2 % Ar 

1 0.5 1.02 1.75 1.72 3.47 0 93.06 

2 0.5 1.00 5 5 10 60 20 

3 0.5 1.00 5 5 10 80 0 

4 0.33 1.00 5 5 15 75 0 

5 1.00 1.00 5 5 5 85 0 

6 0.5 4.00 8 2 10 80 0 

7 0.5 0.25 2 8 10 80 0 

 

All of the mixtures of experiments presented can be found in Table 1. It begins with the 

replication study mixture. The rest of the mixtures capture the change of ϕ from 0.33-1.0. It also 

covers a change of θ from 0.25-4.0.  

Replication Study 

Ignition delay time measurements were taken to replicate a study in [4]. The mixture that 

was created was slightly different from that study. The study had a θ value of 1.0, while the 

mixture I made was 1.02.  In both mixtures, a ϕ of 0.5 was consistent.  



8 

 

CHAPTER FOUR: OBSERVATIONS 

High-Speed Image Processing 

 

The high-speed imaging provides insight into the homogeneity of combustion in the 

shock tube to compare to standard methods (e.g. pressure, emissions) which assume homogenous 

ignition. The light sources from this reaction are from the oxy-hydrogen flame and the carbon 

monoxide oxidation flame. The oxy-hydrogen flame emits light primarily from 200 nm to 400 

nm range, mainly due to strong OH band emissions at 306.36nm, 306.76nm and 309.04nm [19]. 

The carbon monoxide oxidation flame primarily is in the 350nm to 450 nm range, due to forming 

CO2 emissions at 402.6 nm [19], however, is heavily driven by OH formation. The camera used, 

the Phantom V710, was designed to operate in the visible light range, 390 nm - 700 nm. The 

quantum efficiency (ie: the effectiveness of the camera to see light at a specific wavelength) 

quickly declines at lower wavelengths and is reported to be 15% at 350 nm [20]. Below this 

value, the efficiency was not recorded by the manufacturer. Even considering the broadening of 

emissions due to increases in temperature and pressure, the emissions are in wavelengths below 

the camera’s design parameter. The emissions detector is designed to see light emissions from 

150 nm to 550 nm. Signal intensity was very low when a bandpass filter was placed in front of 

the detector because CO2 dilution makes emission intensity significantly go down. Therefore, no 

filter was used. When ignition starts, the concentrations of the radicals (eg. OH) make a peak. 

The intensity of the emission is directly proportional to the number density of the OH molecules, 

which is not captured by the camera operating in the visible light. After the radical concentration 

makes a peak, there is a dramatic decrease in fuel concentration due to the reactions between 

those radicals and other molecules. Since the camera cannot detect light in the UV range, the 
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images recorded correspond to a time slightly later than onset of ignition. Therefore, only images 

at the onset of combustion until the peak of emissions determined from the emissions detector 

are considered.  

 

Ignition Delay Times of Replication Study 
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FIGURE 1. Pressure trace of replication study including emissions detector and camera emissions. 

 

Figure 1 is a single experiment pressure trace of the replication study done. The main 

combustion event does not provide a large change in the pressure of the system.  Also, included 

with the pressure are the normalized emissions detector trace as well as the normalized camera 

emissions. The camera emissions are slightly behind the emissions detector due to it being 

unable to see OH emissions. The same method for calculating the ignition delay time using the 

peak of emissions was used as described in the study. 
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FIGURE 2. The data points with 20% uncertainty in our study compared to the provided data 

points in [4]. 

 

As seen in Figure 2, the data points of our study were at slightly higher ignition delay times 

compared with the data points of the previous study, however, the trends are similar and the 

differences are within the limits of the uncertainties of the measurements. There were a few 

differences in the mixture that were noted previously. 

Increased CO2 Dilution in Syngas Mixtures 

 

 Mixtures 2 and 3 have similar fuel and oxygen compositions, however; mixture 2 has 

60% CO2 dilution compared to the 80% CO2 dilution in mixture 3. Bifurcation of the shock wave 

due to the CO2 dilution is noticeable in the pressure traces in between the incident and reflected 

shocks of the experiment as well the other mixtures of this paper. This phenomenon is properly 

documented for these dilutions [9, 18]. 
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FIGURE 3. Pressure trace of an experiment using mixture 2 including emissions detector and 

camera emissions. 

 

 Figure 3 is a pressure trace of 60% CO2 experiment. A clear pressure rise is seen in the 

experiment that matches the emissions detector. The high-speed camera was able to capture the 

ignition event as well. The end wall emissions from the camera are slightly behind compared to 

the emissions detector, however, it eventually observes more light (down the length of the shock 

tube) than the detector as evident of the steeper rise of the slope compared to the camera 

emissions.  
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FIGURE 4. These images were from the experiment plotted in Figure 3. Image (A) refers to the 

end wall emissions at 943.92 μs. The slope method determined ignition at 947 μs. Image (B) refers 

to the end wall emissions at 1286.85 μs. The peak method determined ignition at 1288 μs. An 

artificial ring was placed to show the circumference of the shock tube. 

 

Using two methods for determining ignition delay time Figure 4 shows images of the flame 

using both the slope method (A) and a bright image at the peak of emissions (B). At the peak of 

emissions, a completely homogenous combustion event is observed throughout the entire shock 

tube cross section. 
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FIGURE 5. Mixture 2 experimental data points with 20% uncertainty are compared with two 

combustion kinetic models. 

The data points collected using the slope method are compared with two combustion 

chemical kinetic mechanisms in Figure 5. The data does not match up well with these 

predictions, however, follow a similar trend.  
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FIGURE 6. Pressure trace of an experiment using mixture 3 including emissions detector. 
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Figure 6 is a pressure trace of an 80% CO2 experiment where ϕ =0.5. A pressure rise is 

visible at the same time as the emissions detector. No camera data was taken of this mixture for 

comparison. The chemical kinetic mechanisms were compared to these experiments of mixture 3 

and are presented at a later part in this paper. 
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FIGURE 7. Ignition delay time comparison between mixture 2 and mixture 3 experiments.  

 

It is expected that with an increase in CO2 amount, from mixture 3, an increase in the 

ignition delay time was observed. The primary reactions that are impacted are as followed: 

CO + OH ⇌ CO2 + H         (R1) 

H + O2 ⇌ O + OH              (R2) 

It has been observed that CO2 is not an inert bath gas in the ignition of syngas 

combustion. CO2 competes for the H radicals through the reverse reaction of R1, which results in 

a decrease in the concentration of the H radicals that participates in the chain branching reaction 

given by R2. This is consistent with previous observations [21]  of the chemical effect of CO2 on 
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methane and hydrogen flames.  In the same shock tube facility, similar observations were 

confirmed utilizing methane as the fuel instead of syngas [9, 18]. 

Although within the uncertainty of the experiments from figure 7 that compares the 

ignition delay time for mixtures 2 and 3, it is expected that an increase in CO2 concentration 

increases the ignition delay time for the same oxy-syngas composition at these test conditions. 

The purpose was to study syngas combustion in CO2 dilution and compare these with current 

chemical kinetic models. It will be shown throughout this publication that the ignition delay 

times are lower than the models predictions, due to the CO2 interaction. 

Change of the Equivalence Ratio ϕ 

 

ϕ was changed between 0.33, 0.5, and 1 (mixtures 4, 3, and 5, respectively). 
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FIGURE 8. Pressure trace of an experiment using mixture 4 including emissions detector and 

camera emissions. 
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 Figure 8 is a pressure trace of an experiment with a ϕ of 0.33 in mixture 4. The fuel lean 

mixture 4 did not exhibit a pressure rise typically seen with combustion. A similar observation 

was seen for CO2 diluted mixtures in methane and [10, 18]. The measurement results quantified 

using the camera images initially fell behind those of the emissions detector. However, more 

light was observed from the camera measurements downstream of the tube, resulting in a higher 

maximum intensity. This was seen since the normalized camera emissions were greater than 

unity at a time before the peak of the emissions detector at the 2 cm location. 

 

 

FIGURE 9. These images were from the experiment plotted in Figure 8. Image (A) refers to the 

end wall emissions at 72.23 μs. The slope method determined ignition at 78 μs. Image (B) refers 

to the end wall emissions at 176.6 μs. The peak method determined ignition at 176 μs. An artificial 

ring was placed to show the circumference of the shock tube. 

 

The images of combustion in Figure 9 show non-homogenous combustion with a very 

weak flame event. Compared to Figure 4B, where the combustion event consumes the entire 

cross section of the shock tube, this was not observed for this mixture at important ignition times. 

Bifurcation of the shock due to the CO2 dilution has been previously observed with high-speed 
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imaging to disrupt the homogeneity of the shock wave during ignition [18, 22]. This effect is 

increased with higher CO2 dilutions. In Figure 9, the camera failed to detect light at the time of 

ignition determined by the slope method (A), but observed light at the time of the peak of 

emissions (B).  
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FIGURE 10. Pressure trace of an experiment using mixture 5 including emissions detector and 

camera emissions. 

Figure 10 is a pressure trace of an experiment with a ϕ of 1.0 in mixture 5. A similar 

temperature from Figure 8 was chosen for Figure 10 to distinguish the difference in the ignition 

delay time. There was not a noticeable rise in the pressure from combustion in this mixture.  The 

camera emissions were slightly behind the emissions detector in this mixture, however, provided 

insight into the flame characteristics. 
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FIGURE 11. These images were from the experiment plotted in Figure 10. Image (A) refers to 

the end wall emissions at 239.24 μs. The slope method determined ignition at 245 μs. Image (B) 

refers to the end wall emissions at 343.61 μs. The peak method determined ignition at 340.5 μs. 

An artificial ring was placed to show the circumference of the shock tube. 

 

In Figure 11, a flame is visible in the ϕ = 1.0 mixture 5 experiments correlating to the 

slope method (A) for determining the ignition delay time as well as the peak method (B). The 

flame is non-homogenous, similarly to the fuel lean mixture in Figure 9. The effect of CO2 

addition on the homogeneity of both the fuel lean (Figure 9) and ϕ = 1.0 (Figure 11) mixtures are 

apparent when compared to a lower CO2 dilution (Figure 4). 
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FIGURE 12. A plot of mixtures 3, 4 and 5 experiments. A change of ϕ resulted in differences in 

ignition delay time. These plots are compared to GRIMech v3.0 and AramcoMech V2.0. 

 

Figure 12 compares the predictions of the two combustion chemical kinetic mechanisms 

with measurement results obtained using the mixtures of 3, 4 and 5. Neither models accurately 

predicted the ignition delay times considering a 20% uncertainty in the ignition delay time 

measurements. The fuel lean mixture had a shorter ignition delay time. This was primarily 

because of a higher concentration of free radicals including OH, which is the radical involved in 

the primary reaction mechanism of both hydrogen and carbon monoxide combustion (i.e. R1 and 

R2).  Although incorrect in estimation for all three mixtures, the models did, however, have 

accurate trends. These trends in the temperature match previous findings [4, 5, 7], for a change in 

ϕ in syngas mixtures.  
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Change of the Hydrogen-to-Carbon Monoxide Ratio, θ 

 

A change of the fuel ratio was also performed at a fixed equivalence ratio of ϕ = 0.5. This allows 

better insight on the contributions of each fuel to combustion. 

Figure 13 is a pressure trace of an experiment with a change of θ from 1.0 to 4.0 in 

mixture 6 compared to mixture 3. A large pressure rise was not seen during combustion with this 

mixture. Camera emissions matched well with the emissions detector, but with some initial 

delayed response.  

In the experiments of mixture 7, where θ was decreased from 1.0 to 0.25, there were 

noticeable changes. Camera imaging was not taken for mixture 7. In Figure 14, a pressure trace 

is given as well as the emissions detector trace. This mixture, with a larger carbon monoxide 

percentage, had a slower energy release as compared to other mixtures as seen in the emissions 

detector. This is to be expected as carbon monoxide combustion is a much slower reaction as 

compared to the hydrogen combustion reaction and was previously observed [4]. 
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FIGURE 13. Pressure trace of an experiment using mixture 6 including emissions detector and 

camera emissions. 
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FIGURE 14. Pressure trance of an experiment using mixture 7 including the emissions detector. 

  

For mixture 6, θ = 4.0, the models did not accurately predict the trend at colder 

temperatures. Both models predict an increased ignition delay time at lower temperatures, 
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however the observed ignition delay time does not substantially change from 1000 K to 1050 K. 

This was observed with a θ greater than 1.0 [4, 7]. It is explained that at low temperatures 

competition between the chain branching reaction (R3) and chain termination reaction (R4) 

occur: 

H + O2 = OH + H                 (R3) 

H + O2 (+M) = HO2 (+M)    (R4) 

The former dominates the ignition chemistry at high temperature while the latter dominates at 

intermediate to low temperatures [7]. 
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FIGURE 15. A plot of mixtures 3, 6 and 7 experiments. A change of θ resulted in differences in 

ignition delay time under similar conditions. 

 

Figure 15 compares the two combustion chemical kinetic mechanisms with mixtures of 3, 

6, and 7. Neither model accurately predicted the ignition delay times for the mixtures tested. The 
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trends in mixtures 6 and 7 are expected and match what was observed by [5, 7] for a change in θ, 

with a minor exception to low temperatures in the mixture with θ = 4.0. 

Mixtures with a larger value of θ had a shorter ignition delay time due to the presence of 

more hydrogen. Hydrogen has a much faster ignition chemistry relative to those of carbon 

monoxide combustion (which relies on hydroxyl formation). There was a little difference in the 

ignition delay time of mixtures 3 and 6, where θ changes from 1.0 to 4.0. The free radical 

formation for both mixtures satisfied the CO reaction to form CO2. Whereas in mixture 7, with θ 

= 0.25, much less hydrogen existed to be able to form necessary free radicals for the same 

reaction to occur, resulting in the noticeable increase in the ignition delay time. Similar 

observations were made in previous studies [4, 5, 7, 8, 18]. 

Present work highlights the importance of collecting experimental data in syngas 

mixtures so that kinetic mechanisms can be validated in mixtures with high CO2 dilution. Effort 

is currently underway in our laboratory to expand the range of T, P, and concentrations for 

experiments. 

 

 

 

 

 

  



24 

 

CHAPTER FIVE: CONCLUSIONS 

 

This is first comprehensive experiments on the effects of adding high levels of CO2 to 

syngas ignition delay times in a shock tube. This work measured the ignition delay time of oxy-

syngas combustion in a shock tube with CO2 dilutions from 60%-85% between 1006-1162K. 

Different mixtures of H2/CO were used to see the effects of changing ϕ as well as θ. The ignition 

delay times had a positive correlation with ϕ showing that as the equivalence ratio decreased, the 

ignition delay times became shorter. Shorter ignition delay times were seen with an increase in 

changing θ. The mixture variations are necessary to observe trends in the ignition behavior under 

real world conditions where combustor could be operating over wide ranges of settings. The 

experimental data was compared with two combustion chemical kinetic mechanisms GRI-Mech 

v3.0 and AramcoMech v2.0. In general, these models did not accurately predict the ignition 

delay time, but generally predicted the trends seen in parametric variations in T, ϕ, etc. In 

addition, high-speed imaging of the experiments was taken at the end wall of the shock tube to 

compare with different methods of determining the ignition delay time. The high-speed camera 

images revealed insights into the non-homogeneity of the combustion events within the shock 

tube for large CO2 dilutions, but had some shortcomings to be addressed in future work. 

 The data suggests that there is a significant limit to the models at predicting the ignition 

delay time of syngas with variations in compositions with high dilutions of CO2. Current 

experiments were performed around 1.7 atm. More analysis must be done at higher pressures to 

evaluate the effects of CO2 within the entire range of operating conditions of a sCO2 combustor. 

In addition, modifications for the camera must be added in order to observe light at a lower 
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wavelength. Present data would serve as crucial validation steps needed for the development and 

refinement of future combustion kinetic models.  
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