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ABSTRACT

Spacecraft data cabling has become an increasingly larger fraction of a spacecraft’s dry mass

due the growing data and power handling requirements. Data cabling can significantly alter the

dynamics of the spacecraft and their effects have been observed during ground-level testing. How-

ever, current models do not accurately predict the effects of cables on the structural dynamics of

the whole system. For built-up aerospace structures, damping often shows very weak frequency-

dependence; current modeling techniques produce highly frequency-dependent damping. Current

models utilize Euler-Bernoulli and shear beam formulations; this work investigates the behavior

of damping terms within a Timoshenko model. Gaining knowledge of these terms aids in the cre-

ation of a frequency-independent viscous damping model which will more accurately predict the

damping effects of spacecraft data cabling.

Damping is an important part of the design of aerospace structures. It is responsible for re-

ducing resonant responses as well as aiding in the control of structures. Ideally, accurate damping

models should be incorporated into the design process; however, for certain structures, damping

models do not accurately predict the system response, and expensive design modifications must

be made after testing. Typical damping models such as structural and viscous damping produce

frequency-dependent and unrealistic damping. Viscous damping is often in the form of a motion-
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or strain-based damping term; more recently, a rotation-based damping term has been added to

Euler-Bernoulli beam models to produce approximately frequency-independent damping.

This work incorporates a combination of damping terms along with variable weighting factors

into the Timoshenko beam equations. Each of the damping terms is characterized as a specific

dissipation mechanism such as motion-, rotation-, and strain-based damping. The damping coeffi-

cients, or weighting factors, depend on both transverse shear and rotational inertia parameters, and

can be tailored to incorporate the properties of the Timoshenko beam model. By combining terms

and investigating damping coefficients, a more realistic frequency-independent damping model

can be achieved.
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CHAPTER 1

INTRODUCTION

Due to both the increasing data handling and power requirements of today’s spacecraft, data

and power cabling are becoming a larger portion of a spacecraft’s dry mass. As spacecraft become

lighter with advancements in structural materials, the increasing amount of data cabling becomes a

larger fraction of the spacecraft’s mass. Because these cables are fixed to the spacecraft at various

tie-down points, they often interact with the spacecraft’s structural dynamics, causing an overes-

timate of the structure’s damping. Current models fail to reproduce this observed effect. Existing

methods only incorporate the effects of cabling after ground testing, as opposed to during the de-

sign phase. To reduce the need for expensive design modifications, it is of interest to develop a

spacecraft structural dynamics model in the time-domain that includes the frequency-independent

damping effects of the data cabling as observed in testing [1]. A more accurate model will as-

sist in the development of a highly predictable and reliable structure while also optimizing system

functionality and accuracy of finite element models.
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1.1 Motivation

Current spacecraft are utilizing more advanced lightweight materials, reducing the mass of the

spacecraft; however, the amount of cabling continues to increase due to the expanding power and

data handling requirements. Because of the increasing quantity of data and power cabling, cables

can account for as much as 30% of the spacecraft’s dry mass. With a high dry mass percentage,

the cabling harnesses can no longer be neglected in spacecraft dynamics models [2]. Ignoring the

effects of the cables can often lead to reduced controller performance, as well as an uncertainty in

the structural dynamics of the system [3].

Within the space industry, the term “cabling” refers to any electrical cable used to transfer

data or power; however, the term “cable” may cause some confusion when considering typical

structural elements. While cables in the traditional sense consist of load bearing elements that only

carry tension, spacecraft cabling behaves as a beam element. Data cabling experiences bending,

shear, and rotational effects, as well as axial compression and tension; therefore, when modeling

spacecraft cabling, beam models are used.

The majority of cable literature focuses on their use as structural elements, such as those in

bridges; in spacecraft, data cables are not typically large load bearing structures. Cable harnesses

are not generally included in modal analysis of spacecraft except as additional non-structural mass.

For non-precision spacecraft, this assumption holds for most frequency ranges; however, for pre-

cision spacecraft, system characteristics are often over-estimated in mid- to high-range frequen-

cies [2–4].
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Damping is often included in the design of aerospace structures to ensure stability as well as re-

duce dynamic response; however, more accurate models are needed in the design process. During

testing phases, built-up aerospace structures often display damping that displays little frequency-

dependence [5–7]. Testing on other structures such as aircraft wings and fuselages has also in-

dicated weak frequency-dependent damping [8]. Viscous damping models are most often used,

which result in highly frequency-dependent damping, making such a model inaccurate.

1.2 New Approach

While current finite element cable models can accurately predict the natural frequencies of the

system, most utilize structural or proportional damping techniques which provide highly unreal-

istic and frequency-dependent damping. A more accurate frequency-independent damping model

including the effects of data and power cabling can be integrated into the design phase, as opposed

to modifying the design after ground testing. These models will result in increased accuracy in

system prediction by improving structural dynamic and finite element models.

Spacecraft cabling harnesses are customized to fit the needs of the mission itself. Wires and

cable harnesses span a wide range of designs and include manufacturing methods such as twisting,

bundling, and pairing [3]. Shear deformation is often observed in cable dynamics; therefore, Euler-

Bernoulli and Rayleigh beam models, which only account for bending stiffness and rotational

effects respectively, prove insufficient. Current finite element cable models include shear beam

theory, which allows for shear deformation. Such models provide accurate frequency analysis
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while also capturing the effects of damping to some extent; however, these models generally over-

predict the system response [9].

Growing data requirements produces an increasing number of cables; as the cables are bundled

and zip-tied together, thick, short segments are formed, much like beams modeled using Tim-

oshenko theory. Timoshenko beam theory allows for both the effects of shear deformation and

rotational inertia. A wide variety of damping models exists for use with Timoshenko beams and

apply to shear beam theory when ignoring rotational inertia effects. The most common approach,

the structural damping model, incorporates both strain- and shear-based damping terms. While

some damping models produced as many as 14 damping terms, the majority of these result in zero

damping [10].

Other model types include viscous damping. Here, a combination of terms proportional to both

the mass and stiffness are often used as damping values, as well as motion- and strain-based terms.

While this method proves to be mathematically convenient, the results usually indicate frequency-

dependent damping. However, some models have successfully produced frequency-independent

damping in an Euler-Bernoulli beam model through the addition of a geometric-based damping

term [5, 6]. This same damping term was extended to both shear and Timoshenko beams [1, 11].

While these models did not show frequency-independence for a broad range, the rotation-based

damping term did provide less frequency-independence in the bending regime for the shear beam.

In addition, the characterization of damping terms as motion-, strain-, or rotation-based is useful

in further time-domain modeling methods.
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1.3 Goal of Current Research

This work will investigate a damping model for spacecraft cables by including viscous damping

terms to the Timoshenko beam equations of motion; the behavior of rotation-based damping and

characterization of additional terms is of most interest. Each damping term will be studied individ-

ually to determine its effects on the system. This work will also investigate an ideal combination of

damping terms, as well as determine damping coefficients, required to produce a more frequency-

independent damping model. Because Timoshenko beams include the effects of both transverse

shear and rotational inertia, it is of importance to define the damping coefficients in terms of these

parameters. Previous work has included motion- and strain-based damping terms to shear and

Timoshenko beam equations. Damping ratios exhibited an increase with mode number, similar to

Figure 1.1; however, when compared with tested values, these models produce unrealistic damping

results [9]. Figure 1.2 displays normalized damping ratios for 100 spacecraft cables. While varia-

tion between cables exists, damping ratios indicate only a slight frequency-dependence, decreasing

by approximately 20%.
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Figure 1.1: Motion- and strain-based damping terms produced frequency-dependent damping in a

shear beam model. Adapted from [11].

Figure 1.2: Experimental data for over 100 spacecraft cables. Modal damping ratios decrease

approximately 20%. Adapted from [11].
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In addition to creating a more realistic time-domain damping model, this work will character-

ize individual damping terms as physical dissipation mechanisms. Viscous damping terms often

include motion- and strain-based damping; these terms are derived from a force proportional to

the velocity and a moment proportional to beam curvature rate of change. The terms correspond

to mass- and stiffness-proportional damping, respectively, but produce modal damping that varies

linearly with frequency. This work will introduce new damping terms, and an understanding of the

dissipation mechanism they represent will be useful to future damping models.

Following the introduction in Chapter 1, the remainder of this thesis is organized into 4 chap-

ters. Chapter 2 provides a survey of available literature on spacecraft data cabling and damping

models. In addition, spacecraft cabling manufacturing techniques and preexisting experimental

data are addressed. Chapter 3 includes model development and methodology. This chapter pro-

vides the necessary framework used in the analysis section. Results and analysis are discussed

in Chapter 4. Various plots and tables representing Timoshenko damping are presented in this

chapter. Final comments, conclusions, and future work are addressed in Chapter 5.
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CHAPTER 2

BACKGROUND

Previous experimental testing and literature has indicated a need for more accurate predictions

of the effects of data cabling on the dynamics of a spacecraft. Before a model can be created, a

brief literature survey of spacecraft wiring is conducted, including uses, fabrication, connection

methods, and testing. Current modeling techniques are also investigated. Pre-existing models

are presented in the following sections and include Euler-Bernoulli beam theory and shear beam

theory with structural and proportional damping terms. Finally, existing Timoshenko beam finite

elements models are explored.

2.1 Spacecraft Data Cabling

With increasing power and data handling requirements on spacecraft, the quantity of electrical

components needed continues to rise. While the total mass of structures such as satellites decreases

with advancements in lightweight materials, data and power cabling has become a larger fraction

of the total spacecraft dry mass [2]. Data and power cabling can account for as much as 4-30% of

a spacecraft’s dry mass for some designs [3, 4, 9, 11, 12]. Because of the higher mass fraction, the

effects of the wiring on inertial properties and structural dynamics of the spacecraft can no longer
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be neglected. System characteristics could be overestimated at mid- to high-range frequencies,

reducing controller performance and leading to uncertainty in the system [2, 3].

Existing literature focuses on cabling as a means of a load-bearing element, for example, cables

used in cable-stay bridges; however, the data and power cabling used in spacecraft often bear very

little load making the information in such literature irrelevant to the problem under investigation.

The effect of cables on structural dynamics is not typically modeled in the design phase; cables are

usually only included as non-structural mass. For non-precision spacecraft, this assumption holds

for most frequency ranges. For light weight, precision spacecraft, low-range frequency system

data can be accurately predicted, but mid- to high-range can be altered by cable damping. In

one particular study, 96 accelerometers were fixed to a wind turbine blade. After modal damping

ratios were calculated, all but 12 of the accelerometers were removed; while the first three mode

shapes were not affected, the modal damping ratios decreased by 36%. The cables had caused an

overestimate in the original damping ratios, indicating the need for a model including the effects

of cable harnesses. For most cases, the influence of cable harnesses are observed during spacecraft

ground-testing; for deployable, precision spacecraft, an accurate structural model becomes even

more important due to the challenges in simulating microgravity environments during systems

testing [2–4].

Because spacecraft are unique, a range of standard cabling fabrication and attachment methods

exist. Guidelines set by the European Space Agency, U.S. Department of Defense, NASA, and the

Society of Automotive Engineers provide some insight into tie-down spacing as well as harness

construction, but no uniform standard exists which addresses the impact of these harnesses on the
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structural dynamics [2,3,13–15]; cable attachment most often depends on personal experience [3].

Much research has been conducted on spacecraft cables at the U.S. Air Force Research Laboratory

(AFRL), Space Vehicles Directorate, in order to characterize different cabling techniques [2, 3].

In a survey conducted by authors Ardelean et al. and Goodding et al., the most common cable

type for space applications was developed from MIL-SPEC, Teflon-coated wire and ranged from

14 to 30 American wire gauge in size. The cabling is formed by twisting, stitching, and braiding

pairs of wires to reduce electromagnetic interference [2, 3]. The cables, between 10-30 twisted

pairs, are often wrapped with Kapton tape and bundled together with zip-tie connections. These

steps are displayed in Figure 2.1. The groups of cables, Figure 2.3, are tied or bonded to a host

or bus structure with a tab or wiring harness [2, 4]. Figure 2.2 shows a spacecraft bus including

wiring harnesses during final integration at the AFRL and represents a typical quantity of cables

on a non-precision spacecraft [2].

Figure 2.1: Typical spacecraft cable manufacturing techniques. Cables begin as individual wires

that are twisted, stitched, and wrapped to create groups of cables.
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Figure 2.2: AFRL XSS-11 spacecraft bus structure during final integration.

(a) Cabling detail with close-up of zip-tie con-

nections.

(b) Data cabling attached to various tie-down

points.

Figure 2.3: Detailed view of spacecraft data cabling. Cables are often zip-tied together and at-

tached to various tie-down points on the bus structure.
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2.2 Current Modeling Methods and Experimental Testing

In order to understand the effects that cables play on the dynamics of a structure, both the cables

and their attachment methods should be modeled [4]. Existing models assume cables to act as

uniform, linear beams. Many beam models exist, as displayed in Table 2.1. The four models

presented are readily available in standard finite element software [9]. In an effort to determine

which model most accurately depicts cable dynamics, experimental modal analysis was used to

extract modal frequencies as well as modal damping ratios and cable material parameters. The

modal frequencies were compared to analytical solutions using Euler-Bernoulli and shear beam

models [2–4, 9, 12, 16, 17].

Experimental testing on spacecraft cables has been conducted to determine cable properties

such as Young’s modulus, shear modulus, moment of inertia, estimated cable diameter, and ef-

fective mass. Axial tests as well as lateral tests were conducted. These tests were also used to

determine modal parameters, such as modal frequency and modal damping ratio.

Axial test methods were used to determine the apparent Young’s modulus of a group of cables

[2,3,12,17]. Two studies used test specimens made of MIL-SPEC, Teflon coated wires wrapped in

Kapton. Results indicated a variation in Young’s modulus between 3−10 GPa which the authors

determined was due to variation in manufacturing [2, 3].

Lateral test methods were used primarily to determine properties for a shear beam model. This

test method was also used to extract modal parameters, such as frequency and damping ratios, from

frequency response functions (FRF). FRFs revealed that cables produced natural frequencies that
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followed a quadratic relationship relative to mode number. When compared to analytical solutions,

these natural frequencies were close to those derived with an Euler-Bernoulli beam model for low-

frequency modes [12, 16, 17]. However, the experimental frequencies and analytical solutions

diverged with increasing mode number, indicating Euler-Bernoulli beam models should only be

used for analysis of lower frequency modes [2, 3, 9].

Some studies compared experimental frequencies to analytical solutions using a shear beam

model, as opposed to a simple Euler-Bernoulli beam. Shear beam models can be derived from the

Timoshenko beam equations by ignoring the effects of rotational inertia, but leaving the transverse

shear term [4]. In studies conducted by authors Goodding et al., lateral test methods as well

as parameter estimation algorithms confirmed that cable modal frequencies are more accurately

represented across a broader range using a shear beam model [3, 17]. Other experimental results

indicated a change in cable properties when determined from analysis of the cables only versus

a cabled structure [2]. In this case, a shear beam model was then used. Shear beam analysis

determined that Euler-Bernoulli models are best suited for lower frequency modes and cables with

a high beam slenderness ratio. Figure 2.4 shows modal frequencies from both shear and Euler-

Bernoulli beam models. Because cables often exhibit both bending stiffness and shear stiffness,

Euler-Bernoulli models were insufficient and over-predicted the modal frequencies [9].

In addition to modal frequencies and cable parameters, cable modal damping was also of inter-

est. Most experimental data resulted in an over-prediction of cable modal damping. Goodding et

al. found that cable modal damping was as much as 4% of critical damping; the addition of cable

effects in models would reduce the overall resonant repose of the system [3]. Other modeling ap-
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proaches used an average structural damping value, determined from cable tests [4]. For this case,

constant modal damping was assumed; however, model results often produced a low 1st modal

damping value with increasing error. At higher modal frequencies, the cable acted as a damper,

affecting the overall system frequency. Other works agreed with the dissipative effects of cables,

and observed modal damping an order of magnitude higher for a cabled structure than an un-cabled

base [9]. A lumped-mass model was used, but was unable to capture the effects of damping and

often overestimated the response of the system. Results indicated that a shear beam model could

better capture the apparent damping, but still with some over-prediction.

Table 2.1: Categorization of finite element beam models adapted from [9]. These models are used

in standard commercial finite element programs.

Shear deformation allowed?

Rotational inertia allowed? No Yes

No Euler-Bernoulli Shear

Yes Rayleigh Timoshenko
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Figure 2.4: Experimental spacecraft cable natural frequency test results compared with Euler-

Bernoulli and shear beam model results from [9]. Euler-Bernoulli model errors increase with

mode number. Shear beam models display more accurate frequency predictions.

2.2.1 Damping Models

Two of the most common forms of damping are structural damping and viscous damping. Struc-

tural damping, or hysteretic damping, utilizes a complex modulus, and its calculation is indepen-

dent of frequency [18]. Hysteretic damping is most commonly used for analysis of the steady-state

response of a system. Viscous damping models are usually linear and proportional to the system

state velocities. Created by Rayleigh for mathematical convenience, a viscous damping matrix is

often proportional to both the mass and stiffness matrix [19]. Though mathematically convenient,

viscous damping provides highly frequency-dependent damping. Generally, damping models in

systems are proportional to velocity, and increase with frequency; however, more recently a con-
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cept of frequency-independent damping has been introduced. This is due to the observed damping

results in experimental testing of aircraft wings and fuselages and other lightly-damped aerospace

structures [5, 8].

A variety of damping models exist and have been investigated for use with a large majority of

beam types. For example, a combination of viscous and hysteretic damping terms were consid-

ered in an Euler-Bernoulli beam model and compared to experimental results by authors Banks

et al. [20]. In this particular case an “air damping” model was used in combination with a spa-

tial hysteretic damping mechanism that interprets transverse beam vibration. A similar concept of

combining structural and viscous terms was applied to a Timoshenko beam model [10]. In this

case, as many as 14 viscous and structural damping terms were considered; however, in a more

practical application, only a few would result in nonzero terms. While neither of the two cases

mentioned above produce frequency-independent damping, the results were successful in investi-

gating new damping terms and creating a more convenient computer model.

Frequency-independent damping has been achieved for a simply supported Euler-Bernoulli

beam model through the addition of a viscous “geometric-based” damping term [5]. While a

common approach to viscous damping includes a motion- and strain-based term (a lateral force

and moment, respectively) the additional geometric- or rotation-based damping term is an internal

shear force, proportional to the slope time rate of change. Where motion-based damping decreases

with the square of the mode number, and strain-based damping increases, rotation-based damp-

ing is nominally independent of mode number and natural frequency. A similar study was con-

ducted for other boundary conditions [6]. Clamped-clamped boundary conditions produced strong
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frequency-dependent damping in the first 6 modes, as normalized damping ratios increase by 45%;

however, the difference in damping decreases to less than 10% for the remaining 44 modes. A can-

tilevered beam displays a similar trend, except from modes 1 to 7, the damping ratios increase; the

difference between the remaining modes is again less than 10%.

The concept of a geometric-based damping term has been applied to both shear and Timo-

shenko beams as well with applications to spacecraft data cabling. The shear beam model included

two time-based viscous damping terms dependent on the change in beam shear angles and center-

line bending [11]. Two parameters were determined to represent the damping for both shear and

bending angles. Various ratios of shear to bending parameters were tested, displayed in Figure 2.5.

Two regimes of damping can be seen, one dominated by bending and the other dominated by shear.

When a ratio of 1/2 is used, represented by x′s in the figure, modal damping was approximately

constant in the bending regime. The same model was applied to Timoshenko beams, with the as-

sumption that rotary inertia terms would add some degree of frequency-independence [1]. Results

indicated that when effects of rotary inertia and shear deformation were low, much like in an Euler-

Bernoulli beam model, the rotation-based damping term provided approximately constant modal

damping across the first 50 modes. As the effects of rotary inertia and shear parameters increased,

the rotation-based damping term produced modal damping much like results produced with typ-

ical motion- and strain-based terms; however, the rate at which the modal damping increased or

decreased was much slower. Some modes also produced significantly less damping than others,

approximately zero at times.
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Figure 2.5: Modal damping values for a shear beam geometric-based damping model adapted

from [11]. Modal damping ratios indicate a transition between bending- and shear-dominated

regimes.

2.3 Timoshenko Beam Model

Euler-Bernoulli beam theory is best applied to thin, slender beams while Timoshenko beam theory

most often applies to short, thick beams and composite structures where the cross-sectional area is

larger in comparison to the beam length [21–24]. For lower vibration modes, neglecting the effects

of rotary inertia and shear deformation is a common assumption; however, for higher modes of

vibration, Euler-Bernoulli theory over-predicts frequency responses. Timoshenko beam theory
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includes the effects of both rotary inertia and shear deformation, making it an acceptable model

for higher order modes [25–27].

A common problem experienced in simple Timoshenko beam finite element models is shear-

locking [21, 23, 24]. Shear-locking can occur when the shape functions are created using linear

interpolation functions. A number of Timoshenko beam finite element formulations have been

investigated. Most can be described as using simple or complex elements. A simple element has

two degrees of freedom at two nodes, and a complex element has more than four degrees of free-

dom. Authors Thomas et al. created a 6-DOF and 8-DOF Timoshenko model that incorporated

all possible boundary conditions using cubic polynomial expansions for displacement [25, 26].

Authors Friedman and Kosmatka developed a two-node finite element model that accurately pre-

dicts beam displacement and is absent of the shear-locking problem [23, 24]. The shape functions

were developed from a cubic polynomial for translational displacement and a quadratic polyno-

mial for rotational displacement. The finite element formulation was developed using Hamilton’s

principle. Other works have used a cubic polynomial for displacement and linear expansion for

shear rotation [21]. This particular model also eliminated the problem of shear-locking and lead to

decoupling of the bending and shear deformation.
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CHAPTER 3

METHODOLOGY

To develop a finite element formulation for a Timoshenko beam, the undamped equations of

motion, including both the effects of rotary inertia and first-order transverse shear are considered.

From a weak form of these equations, a finite element model can be derived. The preferred method

in deriving the mass and stiffness matrices is the Galerkin method of weighted residuals combined

with integration by parts. The second method used considers the energy of the system. The damped

equations of motion are considered separately, using only method of weighted residuals to deter-

mine the finite element formulation.

3.1 Undamped Timoshenko Beam

To understand the process of developing and implementing a finite element model, the undamped

Timoshenko beam equations of motion are first examined. In Equation 3.2, w is the beam trans-

verse displacement, ϕ is the beam centerline rotation, and q is a distributed lateral load. The slope

of the beam involves contributions from the centerline rotation and shear deformation β

w′ = β +ϕ (3.1)
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The terms EI and κAG represent the beam flexural stiffness and shear stiffness, respectively. Beam

density is represented by ρ , and I and A are the beam moment of inertia and area. Time derivatives

are indicated by ˙( ) and spatial derivatives are indicated by ( )′. For the initial analysis, the beam

is treated as simply-supported and isotropic, requiring both displacement and bending moment to

be zero at the beam endpoints and constant properties throughout the beam length.

−ρAẅ+κAG(w′′−ϕ ′)+q = 0

−ρIϕ̈ +EIϕ ′′+κAG(w′−ϕ) = 0

(3.2)

3.1.1 Method 1: Galerkin’s Method of Weighted Residuals

The first method used in solving the beam differential equations of motion is Galerkin’s method

of weighted residuals. Beginning with the undamped Timoshenko beam Equations 3.2, and mul-

tiplying the set of equations by weighting functions, w(x) and ϕ(x), leads to a weak form of the

Timoshenko beam. Applying Galerkin’s method, the new set of equations is integrated over the

beam length L, resulting in the following integral and additional integration by parts terms

∫ L

0
(wρAẅ+w′κAGw′−w′κAGϕ −wq)dx+κAG(wϕ −ww′)

∣

∣

L

0
= 0

∫ L

0
(ϕρIϕ̈ +ϕ ′EIϕ ′−ϕκAGw′+ϕκAGϕ)dx−EIϕϕ ′

∣

∣

L

0
= 0

(3.3)
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In matrix form,

∫ L

0



















w

ϕ









T 







ρA 0

0 ρI

















ẅ

ϕ̈









+









ϕ ′

ϕ −w′









T 







EI 0

0 κAG

















ϕ ′

ϕ −w′









+









w

ϕ









T 







q

0



















dx

+



















w

ϕ









T 







0 κAG

0 0

















w

ϕ









−









w

ϕ









T 







κAG 0

0 EI

















w′

ϕ ′



















∣

∣

∣

∣

∣

L

0

= 0

(3.4)

To develop a finite element formulation the coordinates w and ϕ are rewritten with a set of

shape functions. This work uses a pre-existing approach found in an article by Kosmatka et.

al [24], interpolating w using a cubic polynomial and a quadratic for ϕ . Using this solution, the

shear-locking problem is avoided. Now, the coordinates can be written as

w = [Nw]{δ}

ϕ = [Nϕ ]{δ}

(3.5)

where {δ} is a set of nodal displacements and rotations

{δ}=

[

wA ϕA wB ϕB

]T

(3.6)

The shape functions are

[Nw]
T =

























1
1+φ

{

2( x
Lel

)3 −3( x
Lel

)2 −φ x
Lel

+1+φ
}

Lel

1+φ

{

( x
Lel

)3 − (2+ φ
2 )(

x
Lel

)2 +(1+ φ
2 )(

x
Lel

)
}

− 1
1+φ

{

2( x
Lel

)3 −3( x
Lel

)2 −φ x
Lel

}

Lel

1+φ

{

( x
Lel

)3 − (1− φ
2 )(

x
Lel

)2 − (φ
2 )(

x
Lel

)
}

























(3.7)
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[Nϕ ]
T =

























6
(1+φ)Lel

{

( x
Lel

)2 − x
Lel

}

1
1+φ

{

3( x
Lel

)2 − (4+φ)( x
Lel

)+1+φ
}

− 6
(1+φ)Lel

{

( x
Lel

)2 − x
Lel

}

1
1+φ

{

3( x
Lel

)2 − (2−φ)( x
Lel

)
}

























(3.8)

By inserting the shape functions into Equation 3.4, the equations can now be written as

∫ L

0
{δ}



















[Nw]

[Nϕ ]









T 







ρA 0

0 ρI

















[Nw]

[Nϕ ]









{

δ̈
}

+









[N′
ϕ ]

[Nϕ ]− [N′
w]









T 







EI 0

0 κAG

















[N′
ϕ ]

[Nϕ ]− [N′
w]









{δ}

+









[Nw]

[Nϕ ]









T 







q

0



















dx = 0

(3.9)

From this form, the
{

δ̈
}

and {δ} terms together are grouped together to create the mass and

stiffness matrices. The mass matrix is derived from the terms including the second time derivative,

while the stiffness matrix comes from terms with no time derivatives.

[M] =
∫ L

0









[Nw]

[Nϕ ]









T 







ρA 0

0 ρI

















[Nw]

[Nϕ ]









dx (3.10)
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[Knew] =
∫ L

0









[N′
ϕ ]

[Nϕ ]− [N′
w]









T 







EI 0

0 κAG

















[N′
ϕ ]

[Nϕ ]− [N′
w]









dx

+



















w

ϕ









T 







0 κAG

0 0

















w

ϕ









−









w

ϕ









T 







κAG 0

0 EI

















w′

ϕ ′



















∣

∣

∣

∣

∣

L

0

(3.11)

The integral terms of the mass and stiffness matrices agree with previously accepted matri-

ces. However, the additional integration by parts terms are not negligible for certain boundary

conditions, and are out of scope for this analysis.

3.1.2 Method 2: Energy Method

The second approach to developing a finite element model uses the energy method. The Timo-

shenko beam equations of motion can be derived by substituting the strain, potential, and kinetic

energies, as well as the work of external forces into Hamilton’s principle [24]. Using an isotropic

beam of length L, cross sectional area A, beam transverse displacement w, and beam centerline

slope ϕ , the mass and stiffness matrices are derived.
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Strain components of the beam as well as some important material relations are written as

follows:

εxx =−y
∂ϕ

∂x

γxy =
∂w

∂x
−ϕ

τxy = Gγxy

σx = Eεx

I =
∫

A
y2dA

(3.12)

The stiffness matrix can be derived from the strain energy, given as

U =
1

2

∫ L

0

∫

A
[σ ]T [ε]dAdx (3.13)

Using the beam material equations listed in Equation 3.12 and integrating over the cross-

sectional area A, the strain energy becomes

U =
1

2

∫ L

0









∂ϕ
∂x

∂w
∂x

−ϕ









T 







EI 0

0 κAG

















∂ϕ
∂x

∂w
∂x

−ϕ









dx (3.14)

The beam kinetic energy is written as

T =
1

2

∫ L

0

∫

A
ρ

(

(

∂u

∂ t

)2

+

(

∂v

∂ t

)2

+

(

∂w

∂ t

)2
)

dAdx (3.15)

leading to

T =
1

2

∫ L

0









∂w
∂ t

∂ϕ
∂ t









T 







ρA 0

0 ρI

















∂w
∂ t

∂ϕ
∂ t









dx (3.16)

This method results in previously accepted symmetric Timoshenko mass and stiffness matrices,

without any residual terms.
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3.2 Damped Timoshenko Beam

This work is primarily interested in characterizing damping terms for a Timoshenko beam; under-

standing the physical dissipative mechanisms associated with each damping term will aid in the

creation of a more frequency-independent damping model. Two methods for choosing damping

terms are discussed here.

3.2.1 Method 1: Motion-, Strain-, and Rotation-Based Damping Terms

Method 1 uses motion-, strain-, and rotation-based damping terms associated with the shear angle

β . The coefficients associated with these terms describe the dissipative mechanism. For example,

a term containing αϕ is closely associated with motion of the beam centerline angle; αβ relates

to the shear angle. Using the same method as described in the previous sections, we now use the

damped Timoshenko beam equations multiplied by the same weighting functions and integrate

over the beam length resulting in

∫ L

0
(wρAẅ+wκAGϕ ′+wαMwẇ+wαϕ ϕ̇ ′−wακβ ϕ̇ ′+w′κAGw′+w′ακβ ẇ′)dx = 0

∫ L

0
(ϕρIϕ̈ +ϕ ′EIϕ ′−ϕκAGw′+ϕκAGϕ + ϕ̇ ′ακϕϕ ′+ϕαMwϕ̇ +ϕαβ ϕ̇

−ϕαβ ẇ′−ϕαwẇ′)dx = 0

(3.17)
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In matrix form

∫ L

0



















w

ϕ









T 







0 0

0 −κAG

















w

ϕ









+









w

ϕ









T 







−αMw 0

0 −(αMϕ +αβ )

















ẇ

ϕ̇









+









w

ϕ









T 







−ρA 0

0 −ρI

















ẅ

ϕ̈









+









w

ϕ









T 







0 −κAG

κAG 0

















w′

ϕ ′









+









w

ϕ









T 







κAG 0

0 EI

















w′′

ϕ ′′









+









w

ϕ









T 







0 (αϕ −ακβ )

(αβ +αw) 0

















ẇ′

ϕ̇ ′









+









w

ϕ









T 







ακβ 0

0 ακϕ

















ẇ′′

ϕ̇ ′′



















dx = 0

(3.18)

Again using the same shape functions and displacement vector we arrive at the finite element

formulation. Terms including {δ̇} are grouped together to form the damping matrix

[C] =
∫ L

0

(

αMw [Nw]
T [Nw]− (αϕ −ακβ )

[

Nϕ

]T [
N′

w

]

+ακβ

[

N′
w

]T [
N′

w

]

+αEI

[

N′
ϕ

]T [

N′
ϕ

]

+(αMϕ +αβ )
[

Nϕ

]T [
Nϕ

]

+(αβ +αw) [Nw]
T
[

N′
ϕ

])

dx

(3.19)

Due to the coupling of terms such as
[

Nϕ

]T
[N′

w] and [Nw]
T
[

N′
ϕ

]

from method of weight resid-

uals, the damping matrix is not symmetric. In an effort to create a symmetric damping matrix, the

form .5(A+AT ) is used. The term A represents the non-symmetric matrix of interest. This concept

is investigated further in the damping analysis section.
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3.2.2 Method 2: Additional Damping Terms

Method 2 uses ten terms with variable α parameters. These terms are used to investigate damping

mechanisms that may not be considered in method 1, as well as to force a way to categorize

dissipative mechanisms that may not be easily recognizable. For example, a term containing ẇ can

easily be characterized as motion-based damping, but a term containing ẇ′′′′ is more challenging

to classify at first glance.

Ten damping terms, including both third- and fourth-order spatial derivatives, were added to the

Timoshenko beam equations of motion. Unlike method 1, the damping terms in Equation 3.20 have

variable damping coefficients α and the physical dissipative mechanism that corresponds to each

is not well known. Method of weighted residuals along with shape functions and the displacement

vector were used to determine the mass, stiffness, and damping matrices.

−ρAẅ+κAG(w′′−ϕ ′)+q = α1ẇ−α2ẇ′′+α3ẇ′′′′−α4ϕ̇ ′+α5ϕ̇ ′′′

−ρIϕ̈ +EIϕ ′′+κAG(w′−ϕ) =−α6ẇ′+α7ẇ′′′+α8ϕ̇ −α9ϕ̇ ′′+α10ϕ̇ ′′′′

(3.20)

∫ L

0
(wρAẅ+w′κAGw′−w′κAGϕ −wq+wα1ẇ−wα2ẇ′′+wα3ẇ′′′′−wα4ϕ̇ ′+wα5ϕ̇ ′′′)dx

∫ L

0
(ϕρIϕ̈ +ϕ ′EIϕ ′−ϕκAGw′+ϕκAGϕ −ϕα6ẇ′+ϕα7ẇ′′′+ϕα8ϕ̇ −ϕα9ϕ̇ ′′+ϕα10ϕ̇ ′′′′)dx

(3.21)

The mass matrix agrees with pre-existing Timoshenko beam finite element formulations. The

stiffness matrix, after performing integration by parts and ignoring the residual terms, matches

those in existing literature. The resulting damping matrix can be divided into 10 separate damping
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terms, with 10 different coefficients, before integrating by parts. These terms will be categorized

as motion-, strain-, and rotation-based damping, and their behavior will be analyzed in further

chapters.
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CHAPTER 4

DATA ANALYSIS

A finite element model is implemented into Matlab using the equations derived in Chapter 3.

To characterize the damping terms as physical dissipative mechanisms, each of the ten damping

terms from method 2 were considered separately in the code; by studying the terms individually,

the effects of motion-, strain-, and rotation-based damping can be more easily identified. Under-

standing individual damping terms is a necessary step in developing a more frequency-independent

damping model. The natural frequencies, especially those of higher modes, and modal damping

ratios are calculated for various transverse shear and rotational inertia parameters. To obtain a bet-

ter visual representation of the effects of each damping term, normalized damping ratios, the mode

shapes, beam deformation, and shear deformation are plotted.

4.1 Finite Element Code Implementation

Using the stiffness and mass matrices derived via method of weighted residuals, the model ac-

counts for a user defined number of elements, beam length, ρA, EI, and R and S values. The two

parameters, R and S, are defined as the effect of rotary inertia and effect of transverse shear, respec-

tively, where R = ρI/ρA and S = κAG/EI. The units for R are length squared, while the units for
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S are the inverse length squared. The finite element model supports various boundary conditions,

such as fixed-fixed, fixed-free, fixed-pinned, and pinned-pinned. For the purposes of this analysis,

a simply-supported uniform beam of length 10 meters is examined, with ρA and EI defined as 1

and the number of elements as 50. The length of each element is determined by dividing the beam

length by the total number of elements.

The derivatives of the shape functions are first calculated. First through fourth order spatial

derivatives with respect to x for both [Nw] and [Nϕ ] are stored separately. Because the shape func-

tions are used to calculate the local mass, stiffness, and damping matrices, the length of the element

should be used instead of the entire length of the beam; all instances of L are changed to Lel . As

seen in Equations 3.10 and 3.11, different combinations of shape functions and their derivatives

are multiplied and integrated over the length of the element. For easier naming convention, the

integrals are written as follows:
∫ Lel

0 [Nw]
T [Nw]dx = Nw0w0

,
∫ Lel

0 [Nw]
T [N′

ϕ ]dx = Nw0t1 , etc. Note that

these terms do not include the coefficients such as EI or ρA, but are incorporated into the next

section of the code.

Next, the local mass, stiffness, and damping matrices are initialized and constructed using

Equations 3.10 and 3.11. Through the matrix multiplication and integrals previously defined and

substitution of R and S, the formulas implemented into Matlab are as follows, resulting in a sym-

metric mass and stiffness matrix:

kmat = EI ∗ (Nt1t1 +S∗Nw1w1
+S∗Nt0t0 −S∗Nw1t0 −S∗Nt0w1

)

mmat = ρA∗ (Nw0w0
+R∗Nt0t0)

(4.1)
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For each of the 10 damping terms in Equation 3.20 a separate [ci] local damping matrix is created.

Matrices [c3], [c5], and [c10] are not considered for the remainder of the analysis. These terms

include third- and fourth-order spatial derivatives of [Nϕ ] and [Nw]. Because these matrices reduce

to zero, no damping is achieved. The remaining damping terms are summarized in Table 4.1. The

terms have been categorized as motion-, strain-, or rotation-based damping by the Euler-Bernoulli

damping plots. This is discussed in further detail in a later section.

Table 4.1: Damping terms used within the FE code. Terms were categorized based on Euler-

Bernoulli modal damping results presented in a further section.

Motion Strain Rotation

[c1] = Nw0w0
[c7] = Nt0w3

[c2] = Nw0w2

[c9] = Nt0t2 [c4] = Nw0t1

[c6] = Nt0w1

[c8] = Nt0t0

With the completion of the local element matrices, the global matrices are constructed by run-

ning a for loop n times, where n is defined as the number of elements. Boundary conditions are

applied to the global matrices, which are an initial size of 2n+ 2. For a simply-supported beam,

the first and second to last row and column of each of the mass, stiffness, and damping matrices

should equal zero; this corresponds to the zero displacement condition at x = 0 and x = L due to

the pin connections.
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The beam natural frequencies and damping ratios are calculated using the generalized eigen-

value problem of the form Axi = λiBxi in Matlab where

A =









C K

−I 0









B =









M 0

0 I









(4.2)

and I is the identity matrix. The eigenvalues are sorted in ascending order, and the natural fre-

quencies are calculated as ωi = |λi|. The damping ratio is defined as ζi = Re(λi)/ωi. Because the

eigenvalues occur in complex conjugates, it is only necessary to list every other value.

4.2 Model Validation

To validate the finite element model created in Matlab, natural frequency results were compared to

those developed with an Abaqus model. The Abaqus model uses 500 B21 beam elements; beam

elements account for all deformation types that occur in Timoshenko models. Multiple cases were

studied, with varying R and S values and beam thicknesses. For the purposes of this analysis, two

cases are displayed which represent an approximate Euler-Bernoulli and Timoshenko model.

Percent error for the first five natural frequencies was calculated, using the Matlab code as

the accepted values (%error =
ωAbaqus−ωMatlab

ωMatlab
∗ 100). An aluminum beam with properties E =

68.9E3MPa, ν = .333, L = 10mm, ρ = 2.7E-9 tonne/mm3, G = 26.6E3MPa and w = .2mm was

used for the analysis.

The first case is more representative of an Euler-Bernoulli beam, with t = .1mm, R =

8.33E-4mm2 and S = 3.85E2mm−2. Figure 4.1 displays percent error results for the first five
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modes. Percent error remains on the order of magnitude of 1E-3, indicating high accuracy between

Matlab and Abaqus models.

Figure 4.1: Percent error between Matlab and Abaqus natural frequencies for R = 8.33E-4mm2

and S = 3.85E2mm−2. Very small percent error in Euler-Bernoulli range.

Figure 4.2 displays results for a beam of the same material properties, but differing thickness

and R and S parameters (t = 2mm, R = 3.33E-1mm2, and S = 9.63E-1mm−2). Percent error

remains very small, less than 0.1% for the first five modes, validating the finite element formulation

for larger ranges of R and S.

Figure 4.2: Percent error between Matlab and Abaqus natural frequencies for R = 3.33E-1mm2

and S = 9.63E-1mm−2. Small percent error indicates model validation.
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4.3 Frequency Regimes

This work is primarily interested in viscous damping in Timoshenko beams. Before damping coef-

ficients can be determined, it is necessary to define the set of parameters that define a Timoshenko

beam. Using the previously defined terms R and S, different regions of beam types are shown by

calculating natural frequencies. Using a range of R and S values from 1E-5 to 1E5 on a logarithmic

scale, natural frequencies for a simply supported beam were plotted; because previous models fail

to predict accurate spacecraft dynamics in mid- to high-range frequency modes, the 1st , 5th, 15th,

and 40th were examined. The set of R and S values used in the remainder of this analysis are

taken from the higher mode plots. Four beam models can be represented by the shear and rota-

tional parameters: Euler-Bernoulli, Timoshenko, Rayleigh, and shear. A larger S value indicates a

lower shear effect. Small R, approximately zero, combined with high S define the Euler-Bernoulli

regime. Low S combined with low R define the shear regime, meaning the beam will deform in

shear. High R and S values indicate the Rayleigh regime. Low S and high R indicate Timoshenko.

Each frequency plot displays a transition area between the four beam models.

The R and S values for an Euler-Bernoulli case and multiple Timoshenko cases are used in

further damping calculations. Figure 4.3 displays a clear plateau in the Euler-Bernoulli range with

downward slopes towards the other three beam model regions. The Euler-Bernoulli area decreases

in size with increasing mode number, while the remaining regions increase.
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(a) ω1 (b) ω5

(c) ω15 (d) ω40

Figure 4.3: Surface plots of 1st ,5th,15th and 40th mode natural frequencies with varying R and

S values. Euler-Bernoulli, Timoshenko, Rayleigh, and shear beams are represented by the four

corners.

Figure 4.4 shows a two-dimensional view of Figures 4.3a and 4.3d. Because previous models

failed to accurately predict effects in the mid- to high-range frequencies, the R and S values used for

this analysis are taken from the 40th mode frequency plot, as seen in Figure 4.4b. As mode number

increases from Figure 4.4a to Figure 4.4b, the Euler-Bernoulli range decreases, and a wider range

of R and S values can be used as Timoshenko beam properties.
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(a) ω1 RS view (b) ω40 RS view

Figure 4.4: 2D view of 1st and 40th mode natural frequencies. As mode number increases, the

Euler-Bernoulli range decreases and a larger number of R and S values indicate Timoshenko beams.

4.4 Damping Plots

Different combinations of damping terms in conjunction with varying weighting coefficients are

used to investigate damping in Timoshenko beams as well as the possibility of producing approx-

imately frequency-independent damping. Table 4.2 displays four combinations of R and S values

selected from the 40th mode frequency plot. A visible representation of these cases is displayed in

Figure 4.5. Euler-Bernoulli and Timoshenko cases are represented on opposite ends; as R increases

and S decreases, values become closer to the Timoshenko range.
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Figure 4.5: R and S values selected for the damping case study. As R increases and S decreases,

values become further away from the Euler-Bernoulli case and extend into the Timoshenko region.

Table 4.2: R and S values used in the damping case study. Case 1 represents an Euler-Bernoulli

model. Cases 2-4 are increasingly more in the Timoshenko region. Note the dimensions are given

in meters, represented by m.

Case 1 2 3 4

R, m2 1E-5 1.48 174.3 853.2

S, m−2 1E5 .439 .03728 .1179E-3

Damping terms were previously divided into rotation-, motion-, and strain-based categories in

Table 4.1. Beginning with the original ten damping terms created, the normalized damping ratios

are plotted versus mode number for case 1. For this analysis, only the first 25 modes are studied.
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The normalized damping values for an Euler-Bernoulli beam (R = 1E-5m2, S = 1E5m−2) are used

to categorize the damping terms as motion-, strain-, or rotation-based damping.

(a) [c1] (b) [c2] (c) [c4]

(d) [c6] (e) [c7] (f) [c8]

(g) [c9]

Figure 4.6: Case 1 (EB beam) damping ratios (R = 1E-5m2, S = 1E5m−2). Motion- (1/m2),

strain- (1/m), and rotation-based (≈ 1) damping terms are categorized from the damping ratio

trends, where m is mode number.
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Figure 4.6 shows damping trends for R and S values representing an Euler-Bernoulli model;

this region is defined by a very high shear value and very low rotary inertia parameter. Note that

the scales on the y-axis vary between plots. Figure 4.6a displays normalized modal damping for

[c1]; the damping values are approximately proportional to 1/m2, where m is the mode number.

This trend is typical in motion-based damping terms. Figures 4.6e and 4.6g show damping trends

proportional to m2, typical of strain-based damping. Figures 4.6b to 4.6d and 4.6f display damp-

ing ratios that are approximately frequency-independent; these terms have been categorized as

rotation-based damping terms. Again note the absence of [c3], [c5], and [c10]; these terms produced

zero damping and are not considered for the remaining cases.
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(a) [c1] (b) [c2] (c) [c4]

(d) [c6] (e) [c7] (f) [c8]

(g) [c9]

Figure 4.7: Case 2 damping ratios (R = 1.48m2, S = .439m−2). For Timoshenko regions, two

damping trends emerge. Typical dependence (1/m,1/m2) is no longer observed. Negative damping

ratios also appear.
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(a) [c1] (b) [c2] (c) [c4]

(d) [c6] (e) [c7] (f) [c8]

(g) [c9]

Figure 4.8: Case 3 damping ratios (R = 174.3m2, S = .03728m−2). As R and S values extend

further into the Timoshenko region, larger variation in damping ratios occur. Negative damping

still remains for 5 of the 7 damping terms.
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(a) [c1] (b) [c2] (c) [c4]

(d) [c6] (e) [c7] (f) [c8]

(g) [c9]

Figure 4.9: Case 4 damping ratios (R = 856.2m2, S = .1179E-3m−2). Damping ratios shown here

have the highest shear and rotational effects. Three terms produce approximately zero damping for

all modes, with 1 mode producing an extremely high damping value.

For the Timoshenko R and S values listed in Table 4.2, two separate trend lines appeared in

the damping ratio plots (Figures 4.7 to 4.9). Previous work indicates a transition region between
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bending-dominated and shear-dominated modes for shear beam formulations, where the damping

ratios transition from m2 to m proportional [11]. For the Timoshenko formulation, no clear transi-

tion region exists; instead the two trend lines developed indicated two sets of modes, dominated by

shear, bending, or rotation. While two trends appear for all damping cases, the modes within each

line differ on a case by case basis. Again note the changing scales of the y-axis. Cases 3 and 4 first

mode damping are nominally zero, therefore these damping ratios are normalized by the second

mode. Also note, in cases 1-3, a scaling factor α = .1 was used; in case 4 α = .01.

Damping terms initially categorized as rotation-based, [c2], [c4], [c6], and [c8], produced the

same normalized damping for case 1. For cases 2-4, [c2], [c4], and [c6] produce identical results,

but [c8] shows a unique trend. In the Euler-Bernoulli formulation, these terms produced frequency-

independent damping; for the Timoshenko regions, one trend emerges that is similar to 1/m while

another trend produces negative or approximately zero damping. Strain-based terms, [c7] and

[c9], produced identical results for each case. While the results did not match typical strain-based

damping (m), these terms exhibited less frequency-dependence in higher modes. The motion-based

term [c1] produced a unique damping result, not matching any of the other terms. As the R and

S values approach the “extreme” Timoshenko cases, more damping terms equaling approximately

zero arise. Terms which produce negative damping are also of significant importance and could be

used in future analysis to cancel out the effects of modes with extremely high damping ratios.

Other combinations of damping matrices are considered in addition to the original seven de-

fined above. For example, in proportional damping, the damping matrix is defined as a combination

of the stiffness and mass matrices using the relation [C] = α[M]+β [K]. In this analysis, the mass
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and stiffness terms are considered separately. Terms [c14] = ρANw0w0
and [c15] = ρARNt0t0 are

the individual mass matrix components; [cmmat ] = mmat is the combined mass matrix. The stiff-

ness matrix damping effects are examined as well, [ckmat ] = kmat . Individual stiffness components,

[c12] = Nw1w1
and [c16] = Nt1t1 were considered to further investigate the effects of transverse dis-

placement and slope derivatives. As mentioned in a previous chapter, a symmetric damping matrix

is of interest; using a damping term of the form [c11] = .5 ∗ (Nw1t0 +Nt0w1
) achieves a symmet-

ric matrix. Combinations of terms, such as [c13] = [c11]+ [c12] and [ctot ] = [c1]+ [c2]+ · · ·+[c9]

were used to investigate the possibility of frequency-independent damping. In addition, the total

of all motion-, rotation-, and strain-based terms were examined, [cmot ] = [c1], [cstr] = [c7] + [c9],

[crot ] = [c2]+ [c4]+ [c6]+ [c8]. Figure 4.10 displays the above damping trends.
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(a) [c11] (b) [c12] (c) [c13]

(d) [c14] (e) [c15] (f) [c16]

(g) [crot ] (h) [cstr] (i) [cmot ]

(j) [ctot ] (k) [cmmat ] (l) [ckmat ]

Figure 4.10: Additional damping terms are tested for case 2 values (R = 1.48m2, S = .439m−2).

Components of proportional damping as well as combinations of a motion-, strain-, and rotation-

based damping terms are displayed.
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It is of interest to note that when the rotation- and strain-based damping terms are summed

together (Figures 4.10g and 4.10h), the same results are produced. The motion-based and mass

proportional damping terms produce ratios approximately proportional to 1/m2; strain-based and

stiffness proportional terms produced linear trends. A typical proportional damping term ([C] =

α[M]+β [K]) could be created from summing together [ckmat ] and [cmmat ] and empirically fitting α

and β coefficients. Terms [c11], [c13], [crot ], [cstr], and [ctot ] produced negative damping in certain

modes; in order to use these in a valid model, these terms should be further investigated. Negative

damping terms could be removed through a weighting factor, or with combinations of terms which

cancel out negative trends.

While none of the above terms produced frequency-independent damping on their own, certain

combinations were used to produce some frequency-independence; however, lower modes still dis-

played higher damping ratios, again demonstrating the unpredictability of Timoshenko damping.

Figure 4.11a displays a combination of damping terms that reduced multiple trend lines to one

as well as removed any negative damping terms. This particular combination includes damping

coefficients in terms of R and S. Figure 4.11b shows a closer view of the damping ratios, revealing

the results are between 1/m and 1/m2.

47



(a) Combination of damping terms [c] =

(1+R/S)[c1]+2[c4]+2R[c7]+ [c11].

(b) Zooming in on the y-axis reveals damp-

ing ratios between 1/m and 1/m2.

Figure 4.11: Combination of damping terms to investigate frequency-independent damping. A

closer look reveals damping ratios between 1/m and 1/m2.

4.5 Beam Deformation

To better visualize the effects of R and S on damping, the beam deformations were plotted, includ-

ing the effects of shear deformation, defined as β = w′−ϕ . Comparing the resulting deformation

shapes to the trends observed in the damping ratio plots provides insight into the effect of bending-,

shear-, or rotation-dominated regimes on each vibration mode. Previous work has indicated that

motion- and strain-based damping terms in shear beam models transition from bending-dominated

motion to shear-dominated motion; at this transition region, damping terms change their frequency-

dependence, with damping ratios moving from m2 to m proportional. Rotation-based damping

terms were shown to experience a similar transition region; however, depending on the damping

coefficient selected, rotation-based terms often displayed a steeper slope in the shear-dominated
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regime. As Timoshenko damping displays, there is not a distinct point that can be viewed as a

transition between bending- and shear-dominated regimes. Instead, it appears that two distinct

trend lines occur across a wide range of modes, each within a certain motion type. Figure 4.12

displays [c11] damping values for case 2 R and S values. Trend 1 contains 14 modes, while trend 2

contains 11 modes.

Using a red-blue color map, shear deformation is indicated on the beam by the colored vertical

lines. Red indicates a positive shear deformation, while blue indicates negative. As values fade to

white, shear becomes smaller and reaches zero; darker shades of red and blue represent a larger

shear deformation, while lighter shades represent smaller values. Rotational effects are indicated

by the angle of the vertical lines, or the diplacement of the “X” coordinate; a line perpendicu-

lar to the beam centerline, 90◦, represents zero rotational effects. Bending is determined by the

displacement of the top and bottom nodes, or the “Y” coordinate.

Figure 4.12: Case 2 [c11] damping. Two trend lines are identified in most Timoshenko damping

plots. These trends correspond to deformed beam shapes.
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(a) First 8 modes of trend 1 are shown

in light blue. These modes correspond to

bending-dominated regimes.

(b) First 8 modes of trend 2 are shown

in light blue. These modes correspond to

shear-dominated regimes.

Figure 4.13: Modes in light blue indicate those in the beam deformation plots. Both trend 1 and

trend 2 modes were studied.

In Case 2, two damping trends emerge across all damping terms; the first is associated with

modes 1, 2, 3, 6, 8, 10, 12, 14, 16, 18, 19, 21, 23, 25 and the second with modes 4, 5, 7, 9,

11, 13, 15, 17, 20, 22, 24. When investigating the deformed beam shapes, the exact same trends

appeared in the beam deformation. Modes in trend 1 followed a typical pattern associated with

beam bending. The first eight beam shapes in trend 1 are displayed in Figure 4.14 and are indicated

by light blue circles in Figure 4.13a. Trend 2 modes exhibit more rotation- and shear-dominated

motion, shown in Figure 4.15. The first 8 modes of trend 2 are displayed in Figure 4.13b. Only

case 2 R and S values are shown, but case 3 and 4 trends also correlated to deformation type trends;

however, the mode numbers in trends 1 and 2 differ between each case.
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 6

(e) Mode 8 (f) Mode 10

(g) Mode 12 (h) Mode 14

Figure 4.14: Modes 1, 2, 3, 6, 8, 10, 12, and 14 are the first 8 modes of trend 1. These modes display

more dependence on bending-based deformation. These modes display very weak dependence on

shear and rotation.

51



(a) Mode 4 (b) Mode 5

(c) Mode 7 (d) Mode 9

(e) Mode 11 (f) Mode 13

(g) Mode 15 (h) Mode 17

Figure 4.15: Modes 4, 5, 7, 9, 11, 13, 15, and 17 are the first 8 modes of trend 2. These modes

display more dependence on shear- and rotation-based deformation. As mode number increases,

both red and blue shades are darker, indicating an increase in shear.
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CHAPTER 5

CONCLUSION

The primary goal of this work was to characterize damping in the Timoshenko range; knowl-

edge gained from investigating the behavior of individual damping terms provides insight into the

development of a frequency-independent damping model. Initially, method of weighted residuals

was applied to the Timoshenko beam equations of motion to develop a finite element formulation.

Two parameters R and S were used to quantify rotational inertia and transverse shear effects. Ten

damping terms were created using third- and fourth-order spatial derivatives of the shape functions;

only 7 of these terms produced non-zero damping.

5.1 Damping Results

Using rotational and shear parameters unique to an Euler-Bernoulli beam formulation (high S,

low R), the ten initial damping terms were classified as motion-, strain-, or rotation-based damping

based on the Euler-Bernoulli damping results. Of these terms, three produced no damping and were

disregarded for the remainder of the analysis. Motion-based terms produced modal damping that

was proportional to the inverse square of the mode number; shear-based damping was proportional
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to the mode number squared. Rotation-based damping terms produced approximately frequency-

independent damping.

When tested with parameters in the Timoshenko region (low S, high R), the damping terms

produced results far different from those in the Euler-Bernoulli range, as expected. While Euler-

Bernoulli beams produced a predictable, smooth trend line, the Timoshenko region produced

highly unpredictable damping results. Two separate trend lines emerged for most damping terms;

some modes produced significant damping, while others produced damping that was relatively

small. When compared with the deformed beam shapes, similar trends occurred at the same modes.

One trend was associated with bending deformation while another was related to shear, indicating

the dominant type of deformation associated with a particular mode governed its associated modal

damping value.

In addition to the ten damping terms in the equations of motion, various other terms were

investigated; these terms included mass and stiffness proportional damping, a forced symmetric

damping matrix, and various combinations of the damping terms in the equations of motion. Along

with changing the scaling factors, these results aided in the investigation of frequency-independent

damping across a large range of modes. An original hypothesis suggested that by scaling down

specific damping terms and combining with others, damping trends merge into one approximately

frequency-independent trend. With certain combinations, the first few modes almost always pro-

duced higher damping values and proved difficult to cancel out; however, the remaining modes

exhibited greater frequency-independence.
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5.2 Future Work

This work investigated damping in Timoshenko beams with a simply-supported connection. Fu-

ture work will incorporate the same damping model with different boundary conditions. Previous

work has modeled cables with free-free boundary conditions making it of higher interest in future

analysis. Different boundary conditions may require a new combination of terms or a scaling factor

unique to the connections tested to produce similar damping results. Different boundary conditions

may also result in different Timoshenko trends not seen with the simply-supported case.

In addition, the negative damping terms produced by certain matrices warrant further investi-

gation. These negative terms may be due to the combinations of damping types, as well as the

complex nature of the Timoshenko range. For these negative terms to be used within a damping

code, matrices producing negative damping ratios should be paired with terms that can cancel out

these effects.

It is also of interest to revisit the residual integration by parts terms produced by method of

weighted residuals. For certain boundary conditions, such as fixed-fixed, these terms should equal

zero. However, this might not apply to all boundary conditions. When calculating the residual

terms, it is also important to determine whether they should be applied to each local damping

matrix, or only to the global matrix.

Beam deformation produced trends identical to the damping ratio trends. For the 3 cases pro-

vided, only the first 25 modes were investigated. Each case produced a varying amount of bending-

or shear- and rotation-based modes. Future work will expand beyond mode 25; the patterns of de-
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formation types for each case as well as the number of occurrences of each deformation type per

case will be investigated. In addition, the first shear mode for multiple cases of R and S values

will be recorded. By investigating the first appearance of a shear- or rotation-dominated mode,

Timoshenko damping can be further characterized.
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APPENDIX A

MATLAB CODE FOR BEAM NATURAL FREQUENCIES FEM
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% TIMOSHENKO BEAM FINITE ELEMENT MODEL − FREQUENCY ANALYSIS

% Plots 3D surface plots of natural frequencies for varying R and S values

clc; clear all; close all;

% Some default commands for standardized graphics

set(0,'DefaultAxesFontSize',24,'DefaultTextFontSize',24,...

'DefaultAxesFontName','Helvetica',...

'DefaultTextFontName','Helvetica',...

'DefaultAxesFontWeight','bold','DefaultTextFontWeight','bold',...

'DefaultLineLineWidth',3,'DefaultLineMarkerSize',12,...

'DefaultFigureColor','w','DefaultAxesColorOrder',...

[0 0 1;0 .5 0;1 0 0;0 .75 .75;.75 0 .75;.75 .75 0;.25 .25 .25],...

'DefaultFigurePosition',[5 100 [900 650]*.9],...

'DefaultFigureResize','off')

format shorte

%% Set up for variable number of elements

Nel = 50; % Number of elements

L = 10; % Beam length

rhoA = 1; % Beam density (per length)

EI = 1; % Beam flexural rigidity

R = logspace(−5,5,30); % Inertia parameter (= I/A)

S = logspace(−5,5,30); % Shear parameter (= kAG/EI)

%% TIMOSHENKO

% Begin FE setup −− element length, phi parameter, and local matrices

% built from shape functions

% nw0w0 is integral 0ˆLel [N w]ˆT [N w] dx

% nt1w1 is integral 0ˆLel [N phi']ˆT [N w'] dx

% etc.

Lel = L/Nel;

for j = 1:length(R)

for k = 1:length(S)

phi = 12/S(k)/Lelˆ2; %Timoshenko

nw0w0 = 1/840/(1+phi)ˆ2*Lel*...

[4*(78+147*phi+70*phiˆ2) Lel*(44+77*phi+35*phiˆ2) ...

4*(27+63*phi+35*phiˆ2) −Lel*(26+63*phi+35*phiˆ2);
Lel*(44+77*phi+35*phiˆ2) Lelˆ2*(8+14*phi+7*phiˆ2) ...

Lel*(26+63*phi+35*phiˆ2) −Lelˆ2*(6+14*phi+7*phiˆ2);
4*(27+63*phi+35*phiˆ2) Lel*(26+63*phi+35*phiˆ2) ...

4*(78+147*phi+70*phiˆ2) −Lel*(44+77*phi+35*phiˆ2);
−Lel*(26+63*phi+35*phiˆ2) −Lelˆ2*(6+14*phi+7*phiˆ2) ...

−Lel*(44+77*phi+35*phiˆ2) Lelˆ2*(8+14*phi+7*phiˆ2)];

nw1w1 = 1/60/(1+phi)ˆ2/Lel*...

[12*(6+10*phi+5*phiˆ2) 6*Lel ...

−12*(6+10*phi+5*phiˆ2) 6*Lel;

6*Lel Lelˆ2*(8+10*phi+5*phiˆ2) ...

−6*Lel −Lelˆ2*(2+10*phi+5*phiˆ2);
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−12*(6+10*phi+5*phiˆ2) −6*Lel ...

12*(6+10*phi+5*phiˆ2) −6*Lel;
6*Lel −Lelˆ2*(2+10*phi+5*phiˆ2) ...

−6*Lel Lelˆ2*(8+10*phi+5*phiˆ2)];

nt0t0 = 1/30/(1+phi)ˆ2/Lel*...

[36 −3*Lel*(−1+5*phi) ...

−36 −3*Lel*(−1+5*phi);
−3*Lel*(−1+5*phi) Lelˆ2*(4+5*phi+10*phiˆ2) ...

3*Lel*(−1+5*phi) Lelˆ2*(−1−5*phi+5*phiˆ2);
−36 3*Lel*(−1+5*phi) ...

36 3*Lel*(−1+5*phi);
−3*Lel*(−1+5*phi) Lelˆ2*(−1−5*phi+5*phiˆ2) ...

3*Lel*(−1+5*phi) Lelˆ2*(4+5*phi+10*phiˆ2)];

nt1t1 = 1/(1+phi)ˆ2/Lelˆ3*...

[12 6*Lel −12 6*Lel;

6*Lel Lelˆ2*(4+2*phi+phiˆ2) −6*Lel −Lelˆ2*(−2+2*phi+phiˆ2);
−12 −6*Lel 12 −6*Lel;
6*Lel −Lelˆ2*(−2+2*phi+phiˆ2) −6*Lel Lelˆ2*(4+2*phi+phiˆ2)];

nw0t1 = 1/60/(1+phi)ˆ2/Lel*...

[−72−60*phi −6*Lel*(11+15*phi+5*phiˆ2) ...

72+60*phi 6*Lel*(−1+5*phi+5*phiˆ2);
−6*Lel −Lelˆ2*(8+10*phi+5*phiˆ2) ...

6*Lel Lelˆ2*(2+10*phi+5*phiˆ2);

72+60*phi −6*Lel*(−1+5*phi+5*phiˆ2) ...

−72−60*phi 6*Lel*(11+15*phi+5*phiˆ2);

−6*Lel Lelˆ2*(2+10*phi+5*phiˆ2) ...

6*Lel −Lelˆ2*(8+10*phi+5*phiˆ2)];
nt1w0 = nw0t1';

nw1t0 = 1/60/(1+phi)ˆ2/Lel*...

[72+60*phi −6*Lel*(−1+5*phi+5*phiˆ2) ...

−72−60*phi −6*Lel*(−1+5*phi+5*phiˆ2);
6*Lel Lelˆ2*(8+10*phi+5*phiˆ2) ...

−6*Lel −Lelˆ2*(2+10*phi+5*phiˆ2);
−72−60*phi 6*Lel*(−1+5*phi+5*phiˆ2) ...

72+60*phi 6*Lel*(−1+5*phi+5*phiˆ2);
6*Lel −Lelˆ2*(2+10*phi+5*phiˆ2) ...

−6*Lel Lelˆ2*(8+10*phi+5*phiˆ2)];

nt0w1 = nw1t0';

% Initialize mass, stiffness, & damping matrices; calculate in \
%terms of shape function matrices above

%Variable R/S values

mmat = zeros(4,4); kmat = mmat;

mmat = nw0w0 + R(j)*nt0t0;

kmat = nt1t1 + S(k)*nw1w1 + S(k)*nt0t0 − S(k)*nw1t0 − S(k)*nt0w1;
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% Initialize & construct global mass, stiffness, and damping

% matrices

K = zeros(2*Nel+2);

M = K;

for n=1:Nel

i1 = 2*n−1; i2 = 2*n+2;

K(i1:i2,i1:i2) = K(i1:i2,i1:i2) + EI*kmat;

M(i1:i2,i1:i2) = M(i1:i2,i1:i2) + rhoA*mmat;

end

% Apply boundary conditions (un−comment the one of interest and

% comment out the rest)

% Pinned−Pinned
K(1,:) = []; K(:,1) = []; K(end−1,:) = []; K(:,end−1) = [];

M(1,:) = []; M(:,1) = []; M(end−1,:) = []; M(:,end−1) = [];

% % Clamped−Clamped
% K(1:2,:) = []; K(:,1:2) = []; K(end−1:end,:) = [];

%K(:,end−1:end) = [];

% M(1:2,:) = []; M(:,1:2) = []; M(end−1:end,:) = [];

%M(:,end−1:end) = [];

% % Clamped−Free
% K(1:2,:) = []; K(:,1:2) = []; % M(1:2,:) = []; M(:,1:2) = [];

% % Clamped−Pinned
% K(1:2,:) = []; K(:,1:2) = []; K(end−1,:) = []; K(:,end−1) = [];

% M(1:2,:) = []; M(:,1:2) = []; M(end−1,:) = []; M(:,end−1) = [];

% Solve eigenvalue problem in first−order form; sort modes and

% compute natural frequencies and damping ratios

[v,d] = eig(K,M); % solve eigenvalue problem

[omgr,ind] = sort(sqrt(diag(d))); % find omega n and sort modes

freqs(:,j,k) = omgr;

end

end

freqs1 = squeeze(freqs(1,:,:));

freqs5 = squeeze(freqs(5,:,:));

freqs15 = squeeze(freqs(15,:,:));

freqs40 = squeeze(freqs(40,:,:));

figure; surf(S,R,freqs1);

xlabel('S'); ylabel('R'); zlabel('\omega {1}')
set(gca,'XScale','log','YScale','log');

shading faceted; colorbar('northoutside');

figure; surf(S,R,freqs5);
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xlabel('S'); ylabel('R'); zlabel('\omega {5}')
set(gca,'XScale','log','YScale','log');

shading faceted; colorbar('northoutside')

figure; surf(S,R,freqs15);

xlabel('S'); ylabel('R'); zlabel('\omega {15}')
set(gca,'XScale','log','YScale','log');

shading faceted; colorbar('northoutside')

figure; hold on; surf(R,S,freqs40); grid on

xlabel('S'); ylabel('R'); zlabel('\omega {40}')
set(gca,'XScale','log','YScale','log');

shading faceted; colorbar('northoutside')
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APPENDIX B

MATLAB CODE FOR BEAM DAMPING FEM
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% TIMOSHENKO BEAM FINITE ELEMENT MODEL

% Written by Jeffrey L. Kauffman & Brandi McPherson

clc; clear all; close all;

% Some default commands for standardized graphics

set(0,'DefaultAxesFontSize',24,'DefaultTextFontSize',24,...

'DefaultAxesFontName','Helvetica',...

'DefaultTextFontName','Helvetica',...

'DefaultAxesFontWeight','bold','DefaultTextFontWeight','bold',...

'DefaultLineLineWidth',3,'DefaultLineMarkerSize',12,...

'DefaultFigureColor','w','DefaultAxesColorOrder',...

[0 0 1;0 .5 0;1 0 0;0 .75 .75;.75 0 .75;.75 .75 0;.25 .25 .25],...

'DefaultFigurePosition',[5 100 [900 650]*.9],...

'DefaultFigureResize','off')

format short

%% Set up for variable number of elements

Nel = 50; % Number of elements

L = 10; % Beam length

rhoA = 1; % Beam density (per length)

EI = 1; % Beam flexural rigidity

R = 1.48; % R = rhoI/rhoA

S = .439; % S = kAG/EI

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for ie = 1:length(Nel)

% Begin FE setup −− element length, phi parameter, and local matrices

% built from shape functions

% nw0w0 is integral 0ˆLel [N w]ˆT [N w] dx

% nt1w1 is integral 0ˆLel [N phi']ˆT [N w'] dx

% etc.

Lel = L/Nel(ie);

phi = 12/S/Lelˆ2; %Timoshenko

nw0w0 = 1/840/(1+phi)ˆ2*Lel*...

[4*(78+147*phi+70*phiˆ2) Lel*(44+77*phi+35*phiˆ2) ...

4*(27+63*phi+35*phiˆ2) −Lel*(26+63*phi+35*phiˆ2);
Lel*(44+77*phi+35*phiˆ2) Lelˆ2*(8+14*phi+7*phiˆ2) ...

Lel*(26+63*phi+35*phiˆ2) −Lelˆ2*(6+14*phi+7*phiˆ2);
4*(27+63*phi+35*phiˆ2) Lel*(26+63*phi+35*phiˆ2) ...

4*(78+147*phi+70*phiˆ2) −Lel*(44+77*phi+35*phiˆ2);
−Lel*(26+63*phi+35*phiˆ2) −Lelˆ2*(6+14*phi+7*phiˆ2) ...

−Lel*(44+77*phi+35*phiˆ2) Lelˆ2*(8+14*phi+7*phiˆ2)];

nw1w1 = 1/60/(1+phi)ˆ2/Lel*...

[12*(6+10*phi+5*phiˆ2) 6*Lel ...

−12*(6+10*phi+5*phiˆ2) 6*Lel;

6*Lel Lelˆ2*(8+10*phi+5*phiˆ2) ...

−6*Lel −Lelˆ2*(2+10*phi+5*phiˆ2);
−12*(6+10*phi+5*phiˆ2) −6*Lel ...
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12*(6+10*phi+5*phiˆ2) −6*Lel;
6*Lel −Lelˆ2*(2+10*phi+5*phiˆ2) ...

−6*Lel Lelˆ2*(8+10*phi+5*phiˆ2)];

nt0t0 = 1/30/(1+phi)ˆ2/Lel*...

[36 −3*Lel*(−1+5*phi) ...

−36 −3*Lel*(−1+5*phi);
−3*Lel*(−1+5*phi) Lelˆ2*(4+5*phi+10*phiˆ2) ...

3*Lel*(−1+5*phi) Lelˆ2*(−1−5*phi+5*phiˆ2);
−36 3*Lel*(−1+5*phi) ...

36 3*Lel*(−1+5*phi);
−3*Lel*(−1+5*phi) Lelˆ2*(−1−5*phi+5*phiˆ2) ...

3*Lel*(−1+5*phi) Lelˆ2*(4+5*phi+10*phiˆ2)];

nt1t1 = 1/(1+phi)ˆ2/Lelˆ3*...

[12 6*Lel −12 6*Lel ;

6*Lel Lelˆ2*(4+2*phi+phiˆ2) −6*Lel −Lelˆ2*(−2+2*phi+phiˆ2);
−12 −6*Lel 12 −6*Lel ;

6*Lel −Lelˆ2*(−2+2*phi+phiˆ2) −6*Lel Lelˆ2*(4+2*phi+phiˆ2) ];

nw0t1 = 1/60/(1+phi)ˆ2/Lel*...

[−72−60*phi −6*Lel*(11+15*phi+5*phiˆ2) ...

72+60*phi 6*Lel*(−1+5*phi+5*phiˆ2);
−6*Lel −Lelˆ2*(8+10*phi+5*phiˆ2) ...

6*Lel Lelˆ2*(2+10*phi+5*phiˆ2);

72+60*phi −6*Lel*(−1+5*phi+5*phiˆ2) ...

−72−60*phi 6*Lel*(11+15*phi+5*phiˆ2);

−6*Lel Lelˆ2*(2+10*phi+5*phiˆ2) ...

6*Lel −Lelˆ2*(8+10*phi+5*phiˆ2)];

nt1w0 = nw0t1';

nw1t0 = 1/60/(1+phi)ˆ2/Lel*...

[72+60*phi −6*Lel*(−1+5*phi+5*phiˆ2) ...

−72−60*phi −6*Lel*(−1+5*phi+5*phiˆ2);
6*Lel Lelˆ2*(8+10*phi+5*phiˆ2) ...

−6*Lel −Lelˆ2*(2+10*phi+5*phiˆ2);
−72−60*phi 6*Lel*(−1+5*phi+5*phiˆ2) ...

72+60*phi 6*Lel*(−1+5*phi+5*phiˆ2);
6*Lel −Lelˆ2*(2+10*phi+5*phiˆ2) ...

−6*Lel Lelˆ2*(8+10*phi+5*phiˆ2)];

nt0w1 = nw1t0';

nw0w2 = [ −(phi + 6/5)/(Lel*(phi + 1)ˆ2),...

− (phi/2 + 3/5)/(phi + 1)ˆ2 − 1/2, ...

(phi + 6/5)/(Lel*(phi + 1)ˆ2), 1/2 − (phi/2 + 3/5)/(phi + 1)ˆ2;

−1/(10*(phi + 1)ˆ2), ...

− Lel/12 − Lel/(20*(phi + 1)ˆ2), ...

1/(10*(phi + 1)ˆ2), Lel/12 − Lel/(20*(phi + 1)ˆ2);

(phi + 6/5)/(Lel*(phi + 1)ˆ2),...
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(phi/2 + 3/5)/(phi + 1)ˆ2 − 1/2,...

−(phi + 6/5)/(Lel*(phi + 1)ˆ2), (phi/2 + 3/5)/(phi + 1)ˆ2 + 1/2;

−1/(10*(phi + 1)ˆ2), Lel/12 − Lel/(20*(phi + 1)ˆ2),...

1/(10*(phi + 1)ˆ2), − Lel/12 − Lel/(20*(phi + 1)ˆ2)];

nw0w4 = [ 0, 0, 0, 0;

0, 0, 0, 0;

0, 0, 0, 0;

0, 0, 0, 0];

nt0w3 = [−12/(Lelˆ3*(phi + 1)ˆ2), −6/(Lelˆ2*(phi + 1)ˆ2), ...

12/(Lelˆ3*(phi + 1)ˆ2), −6/(Lelˆ2*(phi + 1)ˆ2);

(6*phi)/(Lelˆ2*(phi + 1)ˆ2), (3*phi)/(Lel*(phi + 1)ˆ2), ...

−(6*phi)/(Lelˆ2*(phi + 1)ˆ2), (3*phi)/(Lel*(phi + 1)ˆ2);

12/(Lelˆ3*(phi + 1)ˆ2), 6/(Lelˆ2*(phi + 1)ˆ2), ...

−12/(Lelˆ3*(phi + 1)ˆ2), 6/(Lelˆ2*(phi + 1)ˆ2);

(6*phi)/(Lelˆ2*(phi + 1)ˆ2), (3*phi)/(Lel*(phi + 1)ˆ2), ...

−(6*phi)/(Lelˆ2*(phi + 1)ˆ2), (3*phi)/(Lel*(phi + 1)ˆ2)];

nw0t3 = [ 0, 0, 0, 0;

0, 0, 0, 0;

0, 0, 0, 0;

0, 0, 0, 0];

nt0t2 = [ −12/(Lelˆ3*(phi + 1)ˆ2), −6/(Lelˆ2*(phi + 1)ˆ2),...

12/(Lelˆ3*(phi + 1)ˆ2), −6/(Lelˆ2*(phi + 1)ˆ2);

(6*phi)/(Lelˆ2*(phi + 1)ˆ2), (3*phi)/(Lel*(phi + 1)ˆ2),...

−(6*phi)/(Lelˆ2*(phi + 1)ˆ2), (3*phi)/(Lel*(phi + 1)ˆ2);

12/(Lelˆ3*(phi + 1)ˆ2), 6/(Lelˆ2*(phi + 1)ˆ2), ...

−12/(Lelˆ3*(phi + 1)ˆ2), 6/(Lelˆ2*(phi + 1)ˆ2);

(6*phi)/(Lelˆ2*(phi + 1)ˆ2), (3*phi)/(Lel*(phi + 1)ˆ2), ...

−(6*phi)/(Lelˆ2*(phi + 1)ˆ2), (3*phi)/(Lel*(phi + 1)ˆ2)];

nt0t3 = [ 0, 0, 0, 0;

0, 0, 0, 0;

0, 0, 0, 0;

0, 0, 0, 0];

nw2w2 = [ 12/(Lelˆ3*(phi + 1)ˆ2), 6/(Lelˆ2*(phi + 1)ˆ2),...

−12/(Lelˆ3*(phi + 1)ˆ2), 6/(Lelˆ2*(phi + 1)ˆ2);

6/(Lelˆ2*(phi + 1)ˆ2), 3/(Lel*(phi + 1)ˆ2) + 1/Lel,...

−6/(Lelˆ2*(phi + 1)ˆ2), 3/(Lel*(phi + 1)ˆ2) − 1/Lel;

−12/(Lelˆ3*(phi + 1)ˆ2), −6/(Lelˆ2*(phi + 1)ˆ2),...

12/(Lelˆ3*(phi + 1)ˆ2), −6/(Lelˆ2*(phi + 1)ˆ2);

6/(Lelˆ2*(phi + 1)ˆ2), 3/(Lel*(phi + 1)ˆ2) − 1/Lel, ...
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−6/(Lelˆ2*(phi + 1)ˆ2), 3/(Lel*(phi + 1)ˆ2) + 1/Lel];

nt2t2 = [ 144/(Lelˆ5*(phi + 1)ˆ2), 72/(Lelˆ4*(phi + 1)ˆ2), ...

−144/(Lelˆ5*(phi + 1)ˆ2), 72/(Lelˆ4*(phi + 1)ˆ2);

72/(Lelˆ4*(phi + 1)ˆ2), 36/(Lelˆ3*(phi + 1)ˆ2), ...

−72/(Lelˆ4*(phi + 1)ˆ2), 36/(Lelˆ3*(phi + 1)ˆ2);

−144/(Lelˆ5*(phi + 1)ˆ2), −72/(Lelˆ4*(phi + 1)ˆ2), ...

144/(Lelˆ5*(phi + 1)ˆ2), −72/(Lelˆ4*(phi + 1)ˆ2);

72/(Lelˆ4*(phi + 1)ˆ2), 36/(Lelˆ3*(phi + 1)ˆ2), ...

−72/(Lelˆ4*(phi + 1)ˆ2), 36/(Lelˆ3*(phi + 1)ˆ2)];

nt1w2 = [ 12/(Lelˆ3*(phi + 1)ˆ2), 6/(Lelˆ2*(phi + 1)ˆ2),...

−12/(Lelˆ3*(phi + 1)ˆ2), 6/(Lelˆ2*(phi + 1)ˆ2);

6/(Lelˆ2*(phi + 1)ˆ2), 3/(Lel*(phi + 1)ˆ2) + 1/Lel, ...

−6/(Lelˆ2*(phi + 1)ˆ2), 3/(Lel*(phi + 1)ˆ2) − 1/Lel;

−12/(Lelˆ3*(phi + 1)ˆ2), −6/(Lelˆ2*(phi + 1)ˆ2), ...

12/(Lelˆ3*(phi + 1)ˆ2), −6/(Lelˆ2*(phi + 1)ˆ2);

6/(Lelˆ2*(phi + 1)ˆ2), 3/(Lel*(phi + 1)ˆ2) − 1/Lel, ...

−6/(Lelˆ2*(phi + 1)ˆ2), 3/(Lel*(phi + 1)ˆ2) + 1/Lel];

nw1t2 = [ −12/(Lelˆ3*(phi + 1)), −6/(Lelˆ2*(phi + 1)), ...

12/(Lelˆ3*(phi + 1)), −6/(Lelˆ2*(phi + 1));

0, 0, ...

0, 0;

12/(Lelˆ3*(phi + 1)), 6/(Lelˆ2*(phi + 1)),...

−12/(Lelˆ3*(phi + 1)), 6/(Lelˆ2*(phi + 1));

0, 0, ...

0, 0];

nt0t4 = [ 0, 0, 0, 0;

0, 0, 0, 0;

0, 0, 0, 0;

0, 0, 0, 0];

nw0w1 = [− 3*phi − 3, (Lel*(5*phi + 6))/10, 3*phi + 3,...

−(Lel*(5*phi + 6))/10;

−(Lel*(5*phi + 6))/10, 0, (Lel*(5*phi + 6))/10, −Lelˆ2/10;
− 3*phi − 3, −(Lel*(5*phi + 6))/10, 3*phi + 3,...

(Lel*(5*phi + 6))/10;

(Lel*(5*phi + 6))/10, Lelˆ2/10, −(Lel*(5*phi + 6))/10, 0];

nw0w3 =[ 6/(Lelˆ2*(phi + 1)), 3/(Lel*(phi + 1)),...

−6/(Lelˆ2*(phi + 1)), 3/(Lel*(phi + 1));

1/(Lel*(phi + 1)), 1/(2*(phi + 1)), ...

−1/(Lel*(phi + 1)), 1/(2*(phi + 1));

6/(Lelˆ2*(phi + 1)), 3/(Lel*(phi + 1)),...

−6/(Lelˆ2*(phi + 1)), 3/(Lel*(phi + 1));

−1/(Lel*(phi + 1)), −1/(2*(phi + 1)), ...
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1/(Lel*(phi + 1)), −1/(2*(phi + 1))];

nt0t1 =[ 0, 1/(Lel*(phi + 1)), 0, −1/(Lel*(phi + 1));

−1/(Lel*(phi + 1)), −1/2, 1/(Lel*(phi + 1)), 1/2 − 1/(phi + 1);

0, −1/(Lel*(phi + 1)), 0, 1/(Lel*(phi + 1));

1/(Lel*(phi + 1)), 1/(phi + 1) − 1/2, −1/(Lel*(phi + 1)), 1/2];

% Initialize mass, stiffness, & damping matrices; calculate in terms of

% shape function matrices above

mmat = zeros(4,4); kmat = mmat;

mmat = nw0w0 + R*nt0t0;

mrhoI = R*nt0t0; mrhoA = nw0w0;

kmat = nt1t1 + S*nw1w1 + S*nt0t0 −S*nw1t0 − S*nt0w1;

cmat1 = nw0w0;

cmat2 = nw0w2;

cmat3 = nw0w4;

cmat4 = nw0t1;

cmat5 = nw0t3;

cmat6 = nt0w1;

cmat7 = nt0w3;

cmat8 = nt0t0;

cmat9 = nt0t2;

cmat10 = nt0t4;

cmat11 = .5*(nw1t0 + nt0w1);

cmat12 = nw1w1;

cmat13 = cmat11 + cmat12;

cmat14 = rhoA*nw0w0;

cmat15 = rhoA*R*nt0t0;

cmat16 = nt1t1;

crot = cmat2 + cmat4 + cmat6 + cmat8;

cmot = cmat1;

cstr = cmat7 + cmat9;

ctot = cmat1+cmat2+cmat3+cmat4+cmat5+cmat6+cmat7+cmat8+cmat9+cmat10;

cind1 = cmat1*(1+R/S) + 2*cmat4 + 2*R*cmat7 + cmat11

cind2 = cmat1*(1+R/S) + 2*cmat4 + 2*R*cmat7 + S*cmat11

% Initialize & construct global mass, stiffness, and damping matrices

K = zeros(2*Nel(ie)+2); Cind = zeros(2*Nel(ie)+2,2*Nel(ie)+2,25);

M = K; MrhoA = K; MrhoI = K;

for n=1:Nel(ie)

i1 = 2*n−1; i2 = 2*n+2;

%Stiffness Matrix

K(i1:i2,i1:i2) = K(i1:i2,i1:i2) + EI*kmat;

%Effect of individual damping terms

Cind(i1:i2,i1:i2,1) = Cind(i1:i2,i1:i2,1) + cmat1;

Cind(i1:i2,i1:i2,2) = Cind(i1:i2,i1:i2,2) + cmat2;

Cind(i1:i2,i1:i2,3) = Cind(i1:i2,i1:i2,3) + cmat3; %0

Cind(i1:i2,i1:i2,4) = Cind(i1:i2,i1:i2,4) + cmat4;

Cind(i1:i2,i1:i2,5) = Cind(i1:i2,i1:i2,5) + cmat5; %0

Cind(i1:i2,i1:i2,6) = Cind(i1:i2,i1:i2,6) + cmat6;
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Cind(i1:i2,i1:i2,7) = Cind(i1:i2,i1:i2,7) + cmat7;

Cind(i1:i2,i1:i2,8) = Cind(i1:i2,i1:i2,8) + cmat8;

Cind(i1:i2,i1:i2,9) = Cind(i1:i2,i1:i2,9) + cmat9;

Cind(i1:i2,i1:i2,10) = Cind(i1:i2,i1:i2,10) + cmat10; %0

Cind(i1:i2,i1:i2,11) = Cind(i1:i2,i1:i2,11) + cmat11;

Cind(i1:i2,i1:i2,12) = Cind(i1:i2,i1:i2,12) + cmat12;

Cind(i1:i2,i1:i2,13) = Cind(i1:i2,i1:i2,13) + cmat13;

Cind(i1:i2,i1:i2,14) = Cind(i1:i2,i1:i2,14) + cmat14;

Cind(i1:i2,i1:i2,15) = Cind(i1:i2,i1:i2,15) + cmat15;

%Using stiffness and mass as damping

Cind(i1:i2,i1:i2,16) = Cind(i1:i2,i1:i2,16) + crot;

Cind(i1:i2,i1:i2,17) = Cind(i1:i2,i1:i2,17) + cstr;

Cind(i1:i2,i1:i2,18) = Cind(i1:i2,i1:i2,18) + cmot;

Cind(i1:i2,i1:i2,19) = Cind(i1:i2,i1:i2,19) + ctot;

Cind(i1:i2,i1:i2,20) = Cind(i1:i2,i1:i2,20) + cind1;

%Additional Damping Terms

Cind(i1:i2,i1:i2,21) = Cind(i1:i2,i1:i2,21) + rhoA*mmat;

Cind(i1:i2,i1:i2,22) = Cind(i1:i2,i1:i2,22) + kmat;

Cind(i1:i2,i1:i2,23) = Cind(i1:i2,i1:i2,23) + cmat16;

Cind(i1:i2,i1:i2,24) = Cind(i1:i2,i1:i2,24) + cind2;

Cind(i1:i2,i1:i2,25) = Cind(i1:i2,i1:i2,25) + S*kmat+ rhoA*mmat;

%Mass Matrix

M(i1:i2,i1:i2) = M(i1:i2,i1:i2) + rhoA*mmat;

MrhoA(i1:i2,i1:i2) = MrhoA(i1:i2,i1:i2) + rhoA*mrhoA;

MrhoI(i1:i2,i1:i2) = MrhoI(i1:i2,i1:i2) + rhoA*mrhoI;

end

% Apply boundary conditions (un−comment the one of interest and comment

% out the rest)

% Pinned−Pinned
K(1,:) = []; K(:,1) = []; K(end−1,:) = []; K(:,end−1) = [];

Cind(1,:,:) = []; Cind(:,1,:) = []; Cind(end−1,:,:) = [];

Cind(:,end−1,:) = [];

M(1,:) = []; M(:,1) = []; M(end−1,:) = []; M(:,end−1) = [];

% % Clamped−Clamped
% K(1:2,:) = []; K(:,1:2) = []; K(end−1:end,:) = []; K(:,end−1:end)=[];
% C(1:2,:) = []; C(:,1:2) = []; C(end−1:end,:) = []; C(:,end−1:end)=[];
% M(1:2,:) = []; M(:,1:2) = []; M(end−1:end,:) = []; M(:,end−1:end)=[];

% % Clamped−Free
% K(1:2,:) = []; K(:,1:2) = [];

% C(1:2,:) = []; C(:,1:2) = [];

% M(1:2,:) = []; M(:,1:2) = [];

% % Clamped−Pinned
% K(1:2,:) = []; K(:,1:2) = []; K(end−1,:) = []; K(:,end−1) = [];

% C(1:2,:) = []; C(:,1:2) = []; C(end−1,:) = []; C(:,end−1) = [];

% M(1:2,:) = []; M(:,1:2) = []; M(end−1,:) = []; M(:,end−1) = [];
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% Solve eigenvalue problem in first−order form; sort modes and compute

% natural frequencies and damping ratios

%To observe effects of individual damping terms...

for i = [1:10]

clearvars damps freqs

C(:,:,i) = Cind(:,:,i)*.01;

val damp = eig([C(:,:,i) K;−eye(size(K)) zeros(size(K))],...

[M zeros(size(K));zeros(size(K)) eye(size(K))]);

val damp sort = sort(val damp);

freqs = abs(val damp sort);

damps = real(val damp sort)./abs(val damp sort);

damps = damps(1:2:end)

damps = damps/damps(1); %normalize

%Plot modal damping ratios versus mode number

figure(i);

plot(damps(1:25),'bo'); hold on;

xl = xlabel('Mode Number');

yl = ylabel('Normalized Modal Damping \zeta n/\zeta 1');

set(xl, 'fontsize',30)

set(yl,'fontsize',22)

end

end
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APPENDIX C

MATLAB CODE FOR BEAM DEFORMATION
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%% Timoshenko Beam Deformation

% updated: May 23, 2017

clc; clear all; close all;

% Some default commands for standardized graphics

set(0,'DefaultAxesFontSize',24,'DefaultTextFontSize',24,...

'DefaultAxesFontName','Helvetica',...

'DefaultTextFontName','Helvetica',...

'DefaultAxesFontWeight','bold','DefaultTextFontWeight','bold',...

'DefaultLineLineWidth',3,'DefaultLineMarkerSize',12,...

'DefaultFigureColor','w','DefaultAxesColorOrder',...

[0 0 1;0 .5 0;1 0 0;0 .75 .75;.75 0 .75;.75 .75 0;.25 .25 .25],...

'DefaultFigurePosition',[5 100 [900 420]*.9],'DefaultFigureResize',...

'off')

% User Inputs Below

Nel = 50; % Number of elements

L = 10; % Beam length

h = 1; % beam height

rhoA = 1; % Beam density (per length)

EI = 1 ; % Beam flexural rigidity

R = 174.3; % R = rhoI/rhoA

S = .03728; % S = kAG/EI

% Begin FE setup −− element length, phi parameter, and local matrices

% built from shape functions

% nw0w0 is integral 0ˆLel [N w]ˆT [N w] dx

% nt1w1 is integral 0ˆLel [N phi']ˆT [N w'] dx

% etc.

Lel = L/Nel;

phi = 12/S/Lelˆ2;

nw0w0 = 1/840/(1+phi)ˆ2*Lel*...

[4*(78+147*phi+70*phiˆ2) Lel*(44+77*phi+35*phiˆ2) ...

4*(27+63*phi+35*phiˆ2) −Lel*(26+63*phi+35*phiˆ2);
Lel*(44+77*phi+35*phiˆ2) Lelˆ2*(8+14*phi+7*phiˆ2) ...

Lel*(26+63*phi+35*phiˆ2) −Lelˆ2*(6+14*phi+7*phiˆ2);
4*(27+63*phi+35*phiˆ2) Lel*(26+63*phi+35*phiˆ2) ...

4*(78+147*phi+70*phiˆ2) −Lel*(44+77*phi+35*phiˆ2);
−Lel*(26+63*phi+35*phiˆ2) −Lelˆ2*(6+14*phi+7*phiˆ2) ...

−Lel*(44+77*phi+35*phiˆ2) Lelˆ2*(8+14*phi+7*phiˆ2)];

nw1w1 = 1/60/(1+phi)ˆ2/Lel*...

[12*(6+10*phi+5*phiˆ2) 6*Lel ...

−12*(6+10*phi+5*phiˆ2) 6*Lel;

6*Lel Lelˆ2*(8+10*phi+5*phiˆ2) ...

−6*Lel −Lelˆ2*(2+10*phi+5*phiˆ2);
−12*(6+10*phi+5*phiˆ2) −6*Lel ...

12*(6+10*phi+5*phiˆ2) −6*Lel;
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6*Lel −Lelˆ2*(2+10*phi+5*phiˆ2) ...

−6*Lel Lelˆ2*(8+10*phi+5*phiˆ2)];

nt0t0 = 1/30/(1+phi)ˆ2/Lel*...

[36 −3*Lel*(−1+5*phi) ...

−36 −3*Lel*(−1+5*phi);
−3*Lel*(−1+5*phi) Lelˆ2*(4+5*phi+10*phiˆ2) ...

3*Lel*(−1+5*phi) Lelˆ2*(−1−5*phi+5*phiˆ2);
−36 3*Lel*(−1+5*phi) ...

36 3*Lel*(−1+5*phi);
−3*Lel*(−1+5*phi) Lelˆ2*(−1−5*phi+5*phiˆ2) ...

3*Lel*(−1+5*phi) Lelˆ2*(4+5*phi+10*phiˆ2)];

nt1t1 = 1/(1+phi)ˆ2/Lelˆ3*...

[12 6*Lel −12 6*Lel ;

6*Lel Lelˆ2*(4+2*phi+phiˆ2) −6*Lel −Lelˆ2*(−2+2*phi+phiˆ2);
−12 −6*Lel 12 −6*Lel ;

6*Lel −Lelˆ2*(−2+2*phi+phiˆ2) −6*Lel Lelˆ2*(4+2*phi+phiˆ2) ];

nw0t1 = 1/60/(1+phi)ˆ2/Lel*...

[−72−60*phi −6*Lel*(11+15*phi+5*phiˆ2) ...

72+60*phi 6*Lel*(−1+5*phi+5*phiˆ2);
−6*Lel −Lelˆ2*(8+10*phi+5*phiˆ2) ...

6*Lel Lelˆ2*(2+10*phi+5*phiˆ2);

72+60*phi −6*Lel*(−1+5*phi+5*phiˆ2) ...

−72−60*phi 6*Lel*(11+15*phi+5*phiˆ2);

−6*Lel Lelˆ2*(2+10*phi+5*phiˆ2) ...

6*Lel −Lelˆ2*(8+10*phi+5*phiˆ2)];
nt1w0 = nw0t1';

nw1t0 = 1/60/(1+phi)ˆ2/Lel*...

[72+60*phi −6*Lel*(−1+5*phi+5*phiˆ2) ...

−72−60*phi −6*Lel*(−1+5*phi+5*phiˆ2);
6*Lel Lelˆ2*(8+10*phi+5*phiˆ2) ...

−6*Lel −Lelˆ2*(2+10*phi+5*phiˆ2);
−72−60*phi 6*Lel*(−1+5*phi+5*phiˆ2) ...

72+60*phi 6*Lel*(−1+5*phi+5*phiˆ2);
6*Lel −Lelˆ2*(2+10*phi+5*phiˆ2) ...

−6*Lel Lelˆ2*(8+10*phi+5*phiˆ2)];

nt0w1 = 1/60/(1+phi)ˆ2/Lel*...

[72+60*phi 6*Lel ...

−72−60*phi 6*Lel;

−6*Lel*(−1+5*phi+5*phiˆ2) Lelˆ2*(8+10*phi+5*phiˆ2) ...

6*Lel*(−1+5*phi+5*phiˆ2) −Lelˆ2*(2+10*phi+5*phiˆ2);
−72−60*phi −6*Lel ...

72+60*phi −6*Lel;
−6*Lel*(−1+5*phi+5*phiˆ2) −Lelˆ2*(2+10*phi+5*phiˆ2) ...

6*Lel*(−1+5*phi+5*phiˆ2) Lelˆ2*(8+10*phi+5*phiˆ2)];
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% Initialize mass, stiffenss, & damping matrices; calculate in terms of

% shape function matrices above

mmat = zeros(4,4); kmat = mmat;

mmat = nw0w0 + R*nt0t0;

kmat = nt1t1 + S*nw1w1 + S*nt0t0 −S*nw1t0 − S*nt0w1;

% Initialize & construct global mass, stiffness, and damping matrices

K = zeros(2*Nel+2); C = K; M = K;

for n=1:Nel

i1 = 2*n−1; i2 = 2*n+2;

K(i1:i2,i1:i2) = K(i1:i2,i1:i2) + EI*kmat;

M(i1:i2,i1:i2) = M(i1:i2,i1:i2) + rhoA*mmat;

end

% Apply boundary conditions (un−comment the one of interest and comment

% out the rest)

% Pinned−Pinned
K(1,:) = []; K(:,1) = []; K(end−1,:) = []; K(:,end−1) = [];

M(1,:) = []; M(:,1) = []; M(end−1,:) = []; M(:,end−1) = [];

% % Clamped−Clamped
% K(1:2,:) = []; K(:,1:2) = []; K(end−1:end,:) = []; K(:,end−1:end) = [];

% M(1:2,:) = []; M(:,1:2) = []; M(end−1:end,:) = []; M(:,end−1:end) = [];

% % Clamped−Free
% K(1:2,:) = []; K(:,1:2) = [];

% M(1:2,:) = []; M(:,1:2) = [];

% % Clamped−Pinned
% K(1:2,:) = []; K(:,1:2) = []; K(end−1,:) = []; K(:,end−1) = [];

% M(1:2,:) = []; M(:,1:2) = []; M(end−1,:) = []; M(:,end−1) = [];

% Solve eigenvalue problem in first−order form; sort modes and compute

% natural frequencies and damping ratios

Nc = size(K,1);

[v,d] = eig(K,M); % solve eigenvalue problem

[omgr,ind] = sort(sqrt(diag(d))); % find omega n and sort modes

for r =1:Nc % sorted & normalized using mass

Phic(:,r) = v(:,ind(r))/sqrt(v(:,ind(r))'*M*v(:,ind(r)));

% constrained e'vecs, column−wise
end

%Restore zeros

% Pinned−Pinned
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Phi = [zeros(1,Nc); Phic(1:end−1,:); zeros(1,Nc); Phic(end,:)];

% Clamped−Clamped
% Phi = [zeros(2,Nc); Phic; zeros(2,Nc)];

% Clamped−Free
% Phi = [zeros(2,Nc); Phic];

% Clamped−Pinned
% Phi = [zeros(2,Nc); Phic(1:end−1,:); zeros(1,Nc); Phic(end,:)];

% plotting deformed beam

mode = [1:25];

Nw p = [−(phi*Lelˆ2 + 6*Lel*0 − 6*0ˆ2)/(Lelˆ3*(phi + 1)), ...

(Lel*((phi/2 + 1)/Lel + (3*0ˆ2)/Lelˆ3 − ...

(2*0*(phi/2 + 2))/Lelˆ2))/(phi + 1),...

(phi*Lelˆ2 + 6*Lel*0 − 6*0ˆ2)/(Lelˆ3*(phi + 1)), ...

−(4*Lel*0 + Lelˆ2*phi − 6*0ˆ2 − ...

2*Lel*phi*0)/(2*Lelˆ2*(phi + 1))];

Nphi = [(6/(Lel*(1+phi)))*((0/Lel)ˆ2 − (0/Lel)), ...

(1/(1+phi))*(3*(0/Lel)ˆ2−(4 + phi)*(0/Lel)+(1+phi)),...

−(6/(Lel*(1+phi)))*((0/Lel)ˆ2−(0/Lel)),...
(1/(1+phi))*(3*(0/Lel)ˆ2−(2−phi)*(0/Lel))];

xnode = linspace(0,L,Nel+1); % array of x at the nodes, or x original

%Shape function derivatives to solve for w'

for j = 1:length(xnode)−1
w p(j,:) = Nw p*Phi((2*j−1):(2*j−1)+3,:);
rot(j,:) = Nphi*Phi((2*j−1):(2*j−1)+3,:);

end

w p(length(xnode),:) = [−(phi*Lelˆ2 + 6*Lel*Lel − ...

6*Lelˆ2)/(Lelˆ3*(phi + 1)), ...

(Lel*((phi/2 + 1)/Lel + (3*Lelˆ2)/Lelˆ3 − ...

(2*Lel*(phi/2 + 2))/Lelˆ2))/(phi + 1),...

(phi*Lelˆ2 + 6*Lel*Lel − 6*Lelˆ2)/(Lelˆ3*(phi + 1)), ...

−(4*Lel*Lel + Lelˆ2*phi − 6*Lelˆ2 − ...

2*Lel*phi*Lel)/(2*Lelˆ2*(phi + 1))]*Phi((end−3:end),:);
rot(length(xnode),:) = [(6/(Lel*(1+phi)))*((Lel/Lel)ˆ2 − (Lel/Lel)), ...

(1/(1+phi))*(3*(Lel/Lel)ˆ2−(4 + phi)*(Lel/Lel)+(1+phi)),...

−(6/(Lel*(1+phi)))*((Lel/Lel)ˆ2−(Lel/Lel)),...
(1/(1+phi))*(3*(Lel/Lel)ˆ2−(2−phi)*(Lel/Lel))]*Phi((end−3:end),:);

beta = w p − rot;

N colorstep = 50;

color scale = redbluemap(N colorstep);

for count = 1:length(mode)

for i = 1:count

beta = beta(:,mode); %to use for max beta in modes in mode vector

beta scale(i) = max(abs(beta(:)))*1.000001;
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%scaled by max beta at all modes

for n = 1:length(xnode)

colorbin(n,i) = round((N colorstep/2/beta scale(i))*...

(beta(n,i)) +(N colorstep/2+.5));

end

end

for i = 1:length(count)

zdef = Phi(1:2:end,count(i))−h/2*(1−cos(Phi(1:2:end,count(i))));
xdef = h/2*sin(Phi(2:2:end,count(i)));

%plot deformed

figure(count); hold on;

plot(xnode − xdef', h/2 + zdef, '−ok', ...

xnode + xdef', −h/2 + zdef,'−ok')

%plot vertical lines

for j = 1:length(xnode)

hold on; axis equal;

x = [xnode(j) − xdef(j)',xnode(j) + xdef(j)'];

y = [h/2 + zdef(j),−h/2 + zdef(j)];

plot(x,y,'color',color scale(colorbin(j,count),:));

%plot centerline

if j < length(xnode)

x = [xnode(j), xnode(j+1)];

y = [zdef(j),zdef(j+1)] ;

plot(x,y,'k−−');
else

end

end

end

axis([0−.2 L+.2 −1−.7 1+.7]);

xlabel('Length'); ylabel('Height')

set(gca,'FontSize',30);

set(gca,'LooseInset',get(gca,'TightInset'))

end
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