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ABSTRACT 

An experimental investigation of heat transfer and friction behavior for a fully developed flow in 

a non-rotating square channel was conducted under a wide range of Reynolds numbers from 6,000 

to 180,000. The rig used in this study was a single ribbed wall variant of Ahmed et al.’s [ 1 ] rig 

from which results of this rig were compared. Ahmed et al.’s rig was a replica of Han et al.’s square 

channel [ 2 ] used to validate their work, and expand the Reynolds number range for both heat 

transfer and friction data. The test section was 22 hydraulic diameters (Dh) long, and made of four 

aluminum plates. One rib roughened bottom wall, and three smooth walls bounded the flow. Glued 

brass ribs oriented at 45° to the flow direction, with a ratio of rib height to channel hydraulic 

diameter (e/Dh) and a ratio of pitch to rib height (p/e) of 0.063 and 10, respectively, lined the 

bottom wall. A 20Dh long acrylic channel with a continuation of the test section’s interior was 

attached at the inlet of the test section to confirm the fully developed flow. Heat transfer tests were 

conducted in a Reynolds number range of 20,000 to 150,000. During these tests, the four walls 

were held under isothermal conditions. Wall-averaged, and module-averaged Nusselt values were 

calculated from the log-mean temperature differences between the plate surface temperature and 

calculated, by energy balance, fluid bulk temperature. Streamwise Nusselt values become constant 

at an x/Dh of 8 within the tested Reynolds number range. Wall averaged Nusselt values were 

determined after x/Dh=8, and scaled by the Dittus-Boelter correlation, Nuo, for smooth ducts to 

yield a Nusselt augmentation value (Nu/Nuo). Non-heated friction tests were conducted from a 

Reynolds number range of 6,000 to 180,000. Pressure drop along the channel was recorded, and 

channel-averaged Darcy-Weisbach friction factor was calculated within the range of Reynolds 

number tested. Scaling the friction factor by the smooth-wall Blasius correlation, fo, gave the 
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friction augmentation (f/fo). The thermal performance, a modified ratio of the Nusselt and friction 

augmentation used by Han et al. [ 2 ], was then calculated to evaluate the bottom-line performance 

of the rig. It was found that the Nusselt augmentation approached a constant value of 1.4 after a 

Reynolds number of 60,000 while friction augmentation continued to increase in a linear fashion 

past that point. This caused the overall thermal performance to decline as Reynolds number 

increased up to a certain point. Further studies were conducted in an all acrylic, non-heated variant 

of the rig to study the fluid flow in the streamwise direction on, and between two ribs in the fully 

developed region of the channel. Single-wire hot-wire anemometry characterized velocity 

magnitude profiles with great detail, as well as turbulence intensity for Reynolds numbers ranging 

from 5,000 to 50,000. As the Reynolds number increased the reattachment point between two ribs 

remained about stationary while the turbulence intensity receded to the trailing surface of the 

upstream rib, and dissipated as it traveled. At low Reynolds numbers, between 5,000 and 10,000, 

the velocity and turbulence intensity streamwise profiles seemed to form two distinct flow regions, 

indicating that the flow over the upstream rib never completely attached between the two ribs. 

Integral length-scales were also derived from the autocorrelation function using the most turbulent 

signal acquired at each Reynolds number. It was found that there is a linear trend between 

Reynolds number and the integral length-scale at the most turbulent points in the flow. For 

example, at Re=50,000 the most the length scale found just past the first rib was on the order of 

two times the height of the rib. Rivir et al. [ 30 ] found in a similar case that at Re = 45,000, it was 

1.5 times the rib height. Several factors could influence the value of this integral length-scale, but 

the fact that their scale is on the order of what was obtained in this case gives some level of 

confidence in the value. 
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CHAPTER 1: INTRODUCTION 

To achieve higher power output and greater thermal efficiency, advanced gas turbines run at higher 

inlet temperature (~1600°C), exceeding the metallic airfoils’ material melting temperature within 

the turbine. The airfoils at the greatest risk to failure due to thermal stresses and/or melting is the 

first stage of vanes and blades. In modern advanced gas turbines, both thermal barrier coating 

(TBC) and a variety of blade cooling techniques, including pin fins, crossovers, and impingement 

jet inserts, and advanced trailing edges ensure the airfoil’s survival during its expected life cycle, 

and the successful operation of the engine. In one of such cooling technique, compressor air, bled 

out from one of its final stages before combustion, serpentines in multi-pass flow channels within 

the hollow airfoil which is known as Internal Duct Cooling (IDC). Turbulators, often incorporated 

in these passages, interrupt viscous sublayer formation, and promote mixing of the hotter fluid 

near the metallic surface with the colder fluid at the core, enhancing the heat transfer. 

Unfortunately, turbulators are also responsible for high pressure losses due to friction beyond 

typical surface roughness. To optimize the cooling performance of internal cooling channels, 

maximizing the amount of heat removed while simultaneously minimizing the pressure loss is 

critical. For the past fifty years, researchers have been improving the Heat Transfer Coefficient (h) 

values (both local and overall) and friction factor in a plethora of turbulated internal cooling 

passage variations to further improve the cooling of the IDC airfoil passages. 

Several parameters, including rib pitch, height, and angle, dictate whether an arrangement of rib 

turbulators will perform better than others. They are expressed as non-dimensional ratios such as 

p/e (pitch to height ratio), e/h (blockage ratio) to characterize the various channels studied. Aspect 
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ratio of the channel, number of ribbed walls in cooling channels, and rib arrangement (in line, 

staggered, v- and w- pattern) are all non-rib specific features also explored in this field of study. 

Han et al. [ 3 ][ 4 ] conducted many studies on these aspects of the rib turbulators. Rib angles 

between 45° and 60° show better thermal performance than transverse ribs (90°) during their tests, 

and a p/e of 10 was best for rectangular two-ribbed wall channels [ 5 ][ 6 ]. Park et al. [ 7 ] 

concluded that narrower aspect ratio channels yielded results favorable to that of larger aspect ratio 

channels, and that thermal performance is highly dependent on what aspect ratio the channel is 

and what angle the ribs are oriented in. In one such test, the narrow channel (AR=1/2 or 1/4) 

showed higher thermal performance with 45°/60° ribs, while, the wider channel (AR=4 or 2) 

performs better with 30°/45° ribs. Taslim and Lengkong [ 8 ] [ 9 ] found that transverse ribs show 

better thermal performance than 45° ribs for high blockage ratio (e/Dh=0.25) ribs in a square 

channel, and that rounded-corner ribs show reduction in both heat transfer and friction factor. 

Taslim et al. [ 10 ] even investigated the effect of the number of ribbed walls, and discovered a 

full set of turbulated walls has a lot of potential for increasing the heat transfer performance. Berger 

and Hau [ 11 ], Bailey and Bunker [ 12 ], and Wang et al. [ 13 ] also conducted studies on several 

aspects of rib turbulators. Various rib configurations were also considered, such as continuous and 

broken V shaped, W shaped and wedges [ 14 ][ 15 ][ 16 ], etc. Even different measurement 

techniques were used to study IDC. Rau et al. [ 17 ] used Laser-Doppler Velocimetry (LDV) as 

well as thermochromic liquid crystal (TLC) to investigate the detailed heat transfer and 

aerodynamic behavior of a square channel with transverse ribs (blockage ratio equal to 0.1). With 

these methods, flow near the ribs was discovered to be very complex and three-dimensional, and 

that the average heat transfer data typically resolved in IDC tests may not entirely capture the true 
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thermal performance, due to inaccurate assumptions made for local heat transfer on the wall 

surface near the ribs. 

Because of all these dependencies, and parametrization, no two researchers have rigorously studied 

a single set of rib parameters, especially at high Reynolds numbers. Most experiments found in 

literature focus on Re lower than 70,000. Rallabandi et al. [ 18 ] investigated the heat and pressure 

drop correlations for a square channel with 45° ribs by varying rib height to channel hydraulic 

diameter ratio e/Dh in the range between 0.1 and 0.18. Correlations proposed by Han et al. [ 6 ][ 

19 ], where 0.048<e/Dh<0.078, 10<p/e<20, and Re<70,000, were modified to expand Reynolds 

numbers in the range of 30,000-400,000. This set the stage to investigate the effect of heat and 

pressure drop in the higher Reynolds numbers. Very few studies, however, were conducted on 

single ribbed-wall channels throughout the history of IDC research. Chandra et al.  [ 20 ][ 21 ] 

found that although adding more ribbed walls increases average heat transfer with increasing Re, 

friction factor increases far more. Thus, the overall thermal performance of the channel suffers. 

This thesis intends to shed light on the heat transfer and friction behavior of a fully developed 

turbulent flow in a square channel with 45° ribs and e/Dh=0.0625, with a single wall of ribbed 

turbulators. Except for the single ribbed wall, this set of rib parameters match Ahmed et al.’s 

research [ 1 ], which was conducted to validate the findings of Han et al.’s NASA Contractor 

Report in 1984 [ 2 ], in a wide range of Re from 6,000 to 180,000. In addition to heat transfer and 

friction, constant-temperature hot-wire anemometry will offer information on the turbulence 

behavior of the fluid under a moderate range of Re from 5,000 to 50,000. 
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CHAPTER 2: RIG SETUP 

2.1 Rig Design – Heat Transfer and Friction Analysis 

The experiment divided into three test setups: heat transfer, friction, and turbulence analysis. The 

heat transfer rig was an isothermal heated square channel (AR=1). Square ribs, featuring a pitch to 

height ratio (p/e) of 10 and height to channel diameter (blockage) ratio (e/Dh) of 0.0625 with an 

angle-of-attack of 45 degrees against the flow, lined the bottom wall of the channel only. The total 

length of the rig measured 48Dh with a ribbed unheated acrylic inlet of 20Dh to achieve 

hydrodynamically-developed flow upon entering the 22Dh heated aluminum test section with 

glued brass ribs to continue of the rib geometry from the inlet. The flow then exited through a 6Dh 

unheated acrylic smooth square duct to diminish any back-pressure effects from a dump diffuser 

box further downstream. Eight equally-spaced 1/16in dia. static-pressure tap holes were drilled 

into each aluminum wall from end to end, except the bottom to extract pressure drop data for 

friction analysis. In addition to the pressure taps in the test section, pressure taps line the left and 

right walls of the inlet section with a third of the test section spacing. Refer to Figure 1 below. 

 
Figure 1 Heat Transfer/ Friction Rig Assembly 
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Between each pressure tap hole, two silicone rubber etched-foil heaters, bonded to the backs of 

each aluminum plate with double-sided polyimide tape from Kapton Tape®, totaled fourteen per 

wall. Beneath the center of each of the fourteen heaters per wall, two T-type thermocouples were 

cemented in small potting holes 1mm below the flow surface inside the channel. The cement used 

to secure these thermocouples was OMEGABOND® OB-600 high-temperature cement. All 112 

test section thermocouples, with six more for test section inlet and outlet air temperature 

measurements, were routed to an array of six computer-controlled FLUKE 2640 NetDAQs to 

record, and check all rig temperatures simultaneously to support near-isothermal conditions, 

min/max rig temperature difference < 0.8°C, at any Reynolds number. 1mm thick strip cork 

insulated each heated aluminum wall from each other with their corner, and 0.5in-thick casing of 

Rohacell® foam core board (thermal conductivity ~ 0.03W/m-K) insulated the walls from the 

environment. Beyond the foam insulation, 0.5in-thick acrylic outer walls were bolted together to 

hold the structure of the glued metal interior. See Figure 2. 

 
Figure 2 Cross-section of metal test section. 
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Designing the rig for isothermal wall temperatures, the heaters had to give various thermal loads 

to the rig in the streamwise direction along each wall. The ribbed wall needed the highest amount 

of heating to keep a target temperature because of the added cooling turbulent mixing caused by 

the ribs. The top smooth wall needed the least amount of cooling because it will see a greatly 

dampened effect from the turbulent mixing occurring on the bottom ribbed wall. The side walls 

needed a heat flux somewhere in between the bottom ribbed wall, and the top smooth wall 

requirements because near the ribs, the side walls will be cooled more effectively from the 

turbulent mixing pickup than near the smooth top wall. Between the two side walls, both needed 

about the same amount of heat flux. However, the left wall, where the ribs are directing toward at 

45°, needed a small amount of added flux because the ribs cause a steering of the flow toward it, 

creating a level of impingement. Secondary vortices caused by the ribs add another, more local, 

cooling of the left wall through mixing in the recirculation regions upstream and downstream of 

the rib  [ 22 ]. 

Knowing this, the electrical input to the test section had to be divided into three electrically heated 

zones: the top wall, bottom ribbed wall, and left-right (paired) walls. It was then further divided 

into nine streamwise sections per wall, which will be called modules, hereafter. A single rheostat 

controlled each module on each wall, totaling 36 rheostats. The first four modules on each wall 

were single-heater modules because control of the heat input was crucial in this entrance region. 

As the ambient air entered the test section from the inlet, the plates needed a large amount of heat 

flux at the entrance to maintain isothermal conditions throughout the channel. The large power 

demand from the heaters quickly died out as the plates heated the air to a higher bulk temperature 

compared to ambient downstream of the entrance. After the first four modules on each wall, the 

remaining five modules per wall used two heaters. Total control over each heater was not necessary 
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in the middle of the rig because the air temperature in the channel is high enough to have negligible 

effect on the heat transfer coefficient. However, the final module on each wall needed slightly 

more power than the earlier inner modules. Unlike the earlier modules, the final module does not 

have a heated exit downstream of it. It has the non-heated smooth acrylic outlet section. This 

induces a thermal back-pressure effect, which required the final module to work harder to maintain 

temperature than the ones prior. This final module, named the thermal exit module, was not 

included in the trends of the heat transfer analysis. Fifteen variacs (two controlling the first four 

modules, one for the next four modules, and one for the final module) power the rig’s three heated 

zones (Figure 3).  

 

Figure 3 Electrical Schematic of Heat Transfer Test Section 

 

A FLUKE 2638A Hydra DAQ acquired voltage information from the 36 total modules. A single 

VB110 Spencer® Vortex blower provided the flow through the rig under suction, and mass 

flowrate was measured from in-house, sonic nozzle calibrated Preso® venturi flowmeters just 

upstream of the blowers (Figure 4). 
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Figure 4 Schematic of Heat Transfer Testing Setup 

 

Two OMEGA HHP240 – 5psi range handheld differential manometers measured both the venturi 

upstream pressure, and the venturi pressure differential simultaneously. An external barometer 

measured atmospheric pressure. A single calibrated T-type thermocouple measured the Venturi 

inlet temperatures. A gate value in the blower piping adjusted the flow coming from the rig to 

acquire Reynolds numbers ranging from 6000 to 180,000. A relief valve controlled the rig exhaust 

temperature so the PVC does not sag due to increasing temperatures. 

The friction test setup was the same setup as the heat transfer testing, however, during the friction 

testing, no heaters in the test section were active. It was an ambient temperature test (Figure 5).  
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Figure 5 Schematic of Friction Testing Setup 

 

The pressure taps along the test section and inlet section at known distances apart from each other 

were routed to a computer-controlled Single Scanivalve System (SSS48C Mk4) pressure scanner 

via vinyl tubing. The Scanivalve, and the pressure information from its transducer were controlled 

and recorded via LabView on the computer. Pressures inside the rig were close to that of smooth 

wall rigs given that this rig only has a single ribbed wall. Therefore, a 20inH2O range transducer 

sufficed rather than a usually equipped 5-psi range transducer. Utilizing the smallest range possible 

for a test allows for the acquisition of data with higher accuracy. Since no voltage needed to be 

recorded from the heaters, and no steady state temperature of the rig needed to be reached, the 

friction tests were much faster than heat transfer tests. This allowed more friction tests to be 

conducted, and more confidence in the shape of the correlation curve between friction factor and 

Reynolds number during post-processing. 
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2.2 Rig Design – Turbulence Analysis 

The metal test section was removed after completing the heat transfer and friction analyses, and a 

20Dh acrylic turbulence test section was inserted between the ribbed inlet and smooth exit, Figure 

6. The top wall of the turbulence test section was modified to be broken into three puzzle-piece 

components: a 15.6Dh entrance plate, a 1.56Dh interrogation plate, and a 2.84Dh exit plate. The 

interrogation plate was machined to allow a rectangular piece with a centered hole to slide freely 

inside. Because the rig was under suction from the Vortex blowers, the rectangular slide piece was 

sucked to the interior surface of the interrogation piece, creating a seal. This allowed a single wire 

hot-wire probe to be inserted through the rectangular piece’s hole and traverse freely in the 

streamwise direction without flow leakage through a traditional traverse slot. A traverse slot on 

the bottom of the interrogation piece allowed the single wire hot-wire probe to measure velocity 

magnitudes, and turbulence intensities between and on top of two ribs, rib 57 and 58, out of a total 

of 63 ribs, Figure 7. 

 
 
Figure 6 Overall Rig Design 
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Figure 7 Test Section Rig Design 

 

The hot-wire system comprised of a USB-controlled DANTEC Dynamics StreamLine Pro 

Constant Temperature Anemometer (CTA) with a 55P11 single-sensor miniature wire probe, a 

TSITM 1127 manual flow nozzle calibrator, a VELMEX XSlideTM stepper-motor 2-D traverse 

assembly with NI motion controls, and an NI PXI-e Chassis for the computer to communicate with 

the motion controls through NI MAX software. To make sure that none of the above-mentioned 

instruments interferes with the CTA, the CTA was plugged in to its own electrical outlet, and that 

the BNC cable for the probe was away from any EMF emitter in the immediate area. See Figure 8 

for further details. 

 

Figure 8 Hot-wire Equipment Setup for Turbulence Analysis 



 

12 

 

The same VB110 Spencer® Vortex blower provided the flow through the rig under suction. A pitot 

static probe was inserted into a small 3Dh smooth inlet upstream of the ribbed inlet section to 

measure the flowrate going through the rig. Lastly, a 3mm-square mesh grid was attached to the 

entrance to add turbulence to the flow from the start. The interrogation plane, located on the rig’s 

streamwise midplane, comprised of 15 streamwise locations of interest. Three of the location were 

located on the leading edge, mid-rib, and trailing edge of the first rib, and two locations on the 

leading and mid-rib points on the second rib. The rest of the streamwise location were below-rib. 

Preliminary testing on this rig with a very fine spacing up to 500 points within a 33.63mm x 

19.18mm plane was done to figure out the optimal wall-normal spacing for each grid streamwise 

location. After the data was processed, several points were taken out while keeping the structure 

of the velocity and standard distribution curves at each streamwise location. The optimal spacing 

is shown below in Figure 9, which is comprised of 200 points located at each intersection of the 

black lines. 

 

Figure 9 Optimized Mesh Spacing – Side-View Section 
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The wire does not go all the way down to the surface, but hovers about 0.15mm above at all 

streamwise locations. Sensor wire positions should always face perpendicular with the flow 

direction, so velocities could not be measured flush against the rib walls (Rib 1 trailing wall, and 

Rib 2 leading wall) because the ribs faced 45° to the wire. To make sure the wire does not hit the 

ribs and break, ‘buffer’ regions were calculated to accommodate the 45° angle between the wire 

and the ribs. These buffer regions, measuring 1mm streamwise, were positioned between locations 

3 and 4, and 13 and 14. To verify that the flow was fully developed, locations 1-2, and 14-15 were 

critical because location 1 and 14 should have the same velocity and turbulence intensity profiles, 

as well as location 2 and 15. The grid spacing in region named the valley, between the ribs near 

the wall’s surface, was finer than the gird spacing outside, above the ribs. Studies suggest that the 

flow behavior within this valley region contains rapidly changing velocities and turbulent 

intensities due to the wall’s no-slip conditions, the recirculation zones in front of and behind the 

ribs, and the flow reattachment point at the wall. The vertical, y-direction, grid spacing in the valley 

was 0.63mm, while the grid spacing outside this region was 1.06mm. 

Table 1 below show the distances of each streamwise location with a starting point at the first rib’s 

leading edge (location 1). Additional information of the location’s distance with respect to the 

length of the entire rig is also given in non-dimensional distance (x/Dh). 

 
Table 1: Streamwise Hot-Wire Locations 

Streamwise Location 1 2 3 4 5 6 7 8

Dist. from rib 1-edge (mm) 0.00 2.16 4.32 5.32 8.12 10.91 13.70 16.50

Dist. From rig start (x/Dh) 35.00 35.04 35.09 35.10 35.16 35.21 35.27 35.32

Streamwise Location 9 10 11 12 13 14 15

Dist. from rib 1-edge (mm) 19.29 22.09 24.88 27.67 30.47 31.47 33.63

Dist. From rig start (x/Dh) 35.38 35.43 35.49 35.54 35.60 35.62 35.66
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CHAPTER 3: TESTING 

3.1 Heat Transfer Analysis 

The purpose of conducting this test was to find when the flow inside a heated channel will become 

fully thermally developed, and how the wall-averaged Nusselt number changes as a function of 

Reynolds Number. Due to the mixing mechanic of turbulent flows, heat transfer is enhanced 

beyond the threshold of laminar flow heat transfer. Studies using rib-turbulated channels found a 

higher thermal performance than that of studies conducting with smooth channels. This showed a 

promising future in blade cooling research for more efficient gas turbines engines. With greater 

thermal performance of internal cooling, engines can burn hotter, less combustion cooling, and 

creep closer toward the harnessing true potential of natural gas.  

This section marks the first of three in the chapter dedicated to the testing conducted in this 

research. Here the heat transfer testing approach will be explained from preparatory flow and heat 

leakage testing to the actual heat transfer analysis, in which an energy balance fluids temperature 

marching scheme will be introduced, as well as the use of LMTD for constant temperature walls. 

From there, an elaboration on how both modular-averaged, and wall-average heat transfer 

coefficient and Nusselt values can be calculated from the LMTD. An augmentation of the Nusselt 

results will also be presented using smooth-pipe the Dittus-Boelter correlation for turbulent flow 

as a reference to prove the enhancement this rib geometry delivers to the channel cooling 

effectiveness. 
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3.1.1 Flow Leakage Testing 

Before running a heat transfer test, it was important to make sure that the rig was completely 

sealed. Any cool air from the environment leaking into the heated rig under suction would cause 

temperatures to fall, and require an, otherwise unnecessary, increase in power to maintain the target 

plate temperature. The resulting heat transfer coefficient in the affected area would be predicted 

higher than what it really should be. To make sure the rig was leak-proof, incense was lit with a 

match to produce smoke. The incense stick was taken along the rig, and if the leak was present, 

the smoke will get sucked into the rig, instead of going up into the air. If a leak was discovered, 

silicone caulking was used to cover up the leak and let dry. Downstream of the rig, the piping to 

the blower was also checked for leaks. Any leaks downstream of the rig would cause an inaccurate, 

overprediction in the rig mass flowrate due to an additional source of air to the blower other than 

the rig. Checks were also made downstream of the venturi, but made no difference to the mass 

flow calculation because the calculation was made at the venturi, not downstream of it. The only 

change it would cause was the highest Reynolds number achievable in the rig since the blower has 

a maximum pressure drop of 200inH2O. To make the rig leaks as noticeable as possible, the highest 

Reynolds number the blower allowed was put through the rig.  

3.1.2 Heat Leakage Testing 

Despite there being a 0.5in layer of Rohacell® and another 0.5in thick layer of acrylic, nothing is 

a perfect insulator, and heat loss to the surrounding must be accounted for to obtain accurate heat 

transfer data. Prior to testing, the inlet and exit of the test section was blocked off so that no air 

flow can go in or out (Figure 10). 
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Figure 10 Heat Leakage Test Section Setup (heaters shown exposed) 

 

 The aim of the test was to create a 3-point linear curve-fit correlating the rig-surrounding 

temperature difference, and the required energy input from the silicone heater pads. If the rig was 

truly adiabatic, the energy input needed to maintain a steady rig temperature would be zero. 

Therefore, the nonzero energy input will be equivalent to the heat loss from the rig. These heat 

losses were recorded at rig temperatures of 50°C, 60°C, and 70°C along with the ambient 

temperature, and the difference between rig and ambient temperature was correlated with the 

required heat input. Heater resistances were also measured to account for the temperature 

dependence of electrical resistance, and were also correlated to the rig temperature with a linear 

curve-fit. Because only three points were taken to define the linear trend, these curves usually had 

high uncertainty. This was considered acceptable base on the fact that the magnitude of the heat 

loss compared to the overall heat flux due to convective cooling is very low, typically around 4-

5%. 

3.1.3 Heat Transfer Testing 

A bulk fluid temperature marching scheme base on energy balance, and the log-mean temperature 

difference, LMTD, are used to determine the temperature difference between the isothermal plate 

and the air at each module. A pair of thermocouple are placed midway through the acrylic inlet of 

the rig to measure the inlet air bulk temperature. Since the air velocities are within the 
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incompressible regime (Ma<0.3), the total temperature the thermocouples are reading will match 

the bulk air temperature, and the effect of kinetic energy transfer to thermal energy at the 

thermocouple bead’s stagnation point will be negligible. 

When the first four modules from each wall reaches a steady state temperature, the power input to 

the heaters are added up, and the heat leakage, calculated by the plate-ambient temperature 

difference, is subtracted from that power input to give the conducting heat input through the 

aluminum plates at those four first modules. Knowing the heat capacity of the air is about constant 

(~1.006kJ/kg-K) and the mass flowrate from the venturi flowmeter, the fluid bulk temperature can 

be determined by the equation: 

𝑇𝑎𝑖𝑟𝑏𝑢𝑙𝑘,𝑓 = 𝑇𝑎𝑖𝑟𝑏𝑢𝑙𝑘,𝑖 + 𝑄𝑎𝑐𝑡𝑐𝑝𝑚̇ ( 3.1 ) 

where 𝑇𝑎𝑖𝑟𝑏𝑢𝑙𝑘,𝑖 is the averaged bulk fluid temperature entering the module, 𝑄𝑎𝑐𝑡 is the actual heat 

input to the aluminum plates after subtracting heat leakage, and 𝑇𝑎𝑖𝑟𝑏𝑢𝑙𝑘,𝑓 is the bulk fluid 

temperature exiting the heated module. The next modular bulk fluid temperature would use the 

calculated first modular bulk fluid temperature, and reiterate the process with the next averaged 

wall temperature and heat input, creating a marching scheme. This reiteration of fluid bulk 

temperatures marches all the way to the last module where thermocouples are inserted just 

downstream through an acrylic flange to directly measure the test section exit temperature. Ideally, 

the calculated final module bulk temperature should match exact with the measured exit 

temperature. 
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Figure 11 Calculated Bulk Fluid and Measured Wall Temperature at Re=70,000 

 

The logarithmic mean temperature difference, 𝐿𝑀𝑇𝐷𝑥, method was used to average the difference 

between the calculated fluid temperatures and constant wall temperature at each module: 

𝐿𝑀𝑇𝐷𝑥 = (𝑇𝑤,𝑥−𝑇𝑓,𝑖,𝑥)−(𝑇𝑤,𝑥−𝑇𝑓,𝑜,𝑥)𝑙𝑛( 𝑇𝑤,𝑥−𝑇𝑓,𝑖,𝑥𝑇𝑤,𝑥−𝑇𝑓,𝑜,𝑥) = 𝑇𝑓,𝑜,𝑥−𝑇𝑓,𝑖,𝑥𝑙𝑛( 𝑇𝑤,𝑥−𝑇𝑓,𝑖,𝑥𝑇𝑤,𝑥−𝑇𝑓,𝑜,𝑥) ( 3.2 ) 

where 𝑇𝑤,𝑥, 𝑇𝑓,𝑖,𝑥, and 𝑇𝑓,𝑜,𝑥 are the wall temperature, income bulk fluid temperature and outgoing 

fluid temperature, respectively, of a module at location x (Figure 12). 
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Figure 12 Calculated Bulk LMTD at Re=70,000 

 

The LMTD was then factored into a module based Newton cooling equation to calculate the 

module’s heat transfer coefficient, ℎ̅𝑥. ℎ̅𝑥 = 𝑄𝑥𝐴𝑥(𝐿𝑀𝑇𝐷𝑥) ( 3.3 ) 

 

Figure 13 Calculated Modular Heat Transfer Coefficient at Re=70,000 
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Since each wall was of a single aluminum plate, lateral conduction had to be calculated to 

understand how it affects the energy balance. The lateral conduction in the aluminum plates was 

determined by taking the average recorded temperature from neighboring modules on a wall, and 

calculate the conduction heat transfer driven by the temperature gradient these two averaged 

temperatures create between the two modules. 𝑄𝑙𝑎𝑡.𝑐𝑜𝑛𝑑. = −𝐴𝑐𝑠𝑘𝐴𝑙(𝑇𝑎𝑣𝑔) 𝑇𝑚1−𝑇𝑚21.5𝐷ℎ   ( 3.4 ) 

where 𝐴𝑐𝑠 is the cross section of the aluminum plate, 𝑘𝐴𝑙 is the thermal conductivity of the 

aluminum as a function of the average temperature between the two modules, and 𝑇𝑚1 and 𝑇𝑚2 

are the average temperatures of module 1 and 2, respectively. The distance between the two 

temperature measurements was 1.5𝐷ℎ in this experiment. The lateral conduction through the 

aluminum plates was found negligible, less than 1%, between each module because the 

temperature difference between each module was very small in the isothermal wall testing. 

The module-averaged Nusselt number, the ratio of convective heat transfer to conductive heat 

transfer, was calculated from the heat transfer coefficient at each wall module, the hydraulic 

diameter of the channel as the length scale, and the temperature dependent thermal conductivity 

of the air. Module-averaged Nusselt numbers for each wall were determined for this experiment. 𝑁𝑢𝐷ℎ = ℎ̅𝑥𝐷ℎ𝑘𝑎𝑖𝑟(𝑇) ( 3.5 ) 
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Figure 14 Calculated Modular-Averaged Nusselt Number at Re = 70,000 

 

In internal flows, when a constant temperature surface is the heat source and the air is the cooling 

medium, the heat transfer due to convection is greatest at the entrance of the channel because of 

the high temperature gradient between the air and the hot surface. As the flow moves down the 

channel, it retains the heat it picked up from the walls due to its low specific heat capacity, 

increasing its temperature. If the surface stays a constant temperature and the air is picking up less 

and less energy from the walls as the temperature difference between the wall and air gets smaller 

and smaller. Consequently, the heat input to the plates from the heaters are forced to be smaller 

and smaller as well for constant wall temperature cases. As the temperature difference decreases, 

and the heat input decrease, there comes a point where the two drops become proportional, and 

thus the ratio of the two, the heat transfer coefficient, becomes constant. It is at this point where 
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the flow becomes fully thermally developed. Since Nusselt number is proportional to the heat 

transfer coefficient, it also follows the same behavior. 

If the fully thermally developed Nusselt number is only considered, the wall-averaged Nusselt 

number can be calculated. Mentioned previously, this Nusselt number will not change after the 

point of full development. If the channel was very long, the average Nusselt number across a wall 

would average to this value because the developing region would be comparatively small and 

would not have much effect on the mean. If Prandtl number, the ratio of momentum diffusivity to 

thermal diffusivity, is considered constant for air, the wall-averaged Nusselt number will only be 

a function of Reynolds number. An augmentation of the wall-averaged Nusselt number at each 

wall module can be expressed by the ratio of the rig’s Nusselt number over the Nusselt number 

obtained through Dittus-Boelter’s smooth-wall correlation. 𝑁𝑢𝑜 = 0.023𝑅𝑒0.8𝑃𝑟0.4    (𝐷𝑖𝑡𝑡𝑢𝑠 − 𝐵𝑒𝑜𝑙𝑡𝑒𝑟) ( 3.6 ) 

 

𝑁𝑢𝑁𝑢0 = ℎ̅𝑥(𝑅𝑒)𝐷ℎ𝑘𝑎𝑖𝑟0.023𝑅𝑒0.8𝑃𝑟0.4  ( 3.7 ) 

The Dittus-Boelter correlation is only valid for Reynolds numbers > 10,000, 0.6 < Pr > 160, and 

L/Dh > 10. The lowest Reynolds number studied in this experiment was 20,000, Pr ~ 0.7, and L//Dh 

~ 23. Under these rig conditions, the Dittus-Boelter correlation was valid. 

3.2 Friction Analysis 

The purpose for this test is to figure out what friction cost results from reaching a certain Reynolds 

number in the channel. In real applications, this friction the ribs create is associated with the 



 

23 

 

pressure cost required to cool the first couple of stages in the turbine section in a gas turbine engine. 

The pressure originates from a bleed valve near the final stages of the compressor section. Any 

airflow removed from the compressor exit will be wasted work potential. However, for the turbine 

airfoils’ survival at the combustor exit, this cost of compressor work potential output is necessary. 

Without this mode of internal cooling, the airfoils would surely melt in a short amount of time, 

destroying the engine. Given that the friction is proportional to compressor work potential loss, it 

would be right to seek the least amount of friction possible that would be the least detriment to the 

engine’s overall performance. Therefore, an optimization is in order. In the earlier chapter, the heat 

transfer capabilities of the ribs were discovered. This enhanced heat transfer is largely attributed 

to the turbulent mixing of the ribs. Unfortunately, the turbulent mixing heightens the frictional 

losses. Smooth ducts have much less friction, but also much less heat transfer than ribbed-wall 

channels. 

In this chapter, the approach on how, and which friction factor definition used will be explained. 

Assumptions will be elaborated, and a brief reference back to the rig design will supplement the 

approach. As in the previous chapter, an augmentation value referenced to a perfectly smooth pipe 

wall, the Blasius correlation, will emphasize the friction impact a single ribbed-wall channel will 

cause. 

3.2.1 Friction Factor Testing 

The friction factor of the rig was calculated by using the Fanning equation, which is a quarter of 

the Darcy-Weisbach friction. A total pressure drop was not measured for the friction factor, but 

rather the static pressure drop along the rig through several pressure taps. Using the mass flow rate 



 

24 

 

equation, and understanding that mass flow rate through the rig will be constant, a negligible 

change in density means a negligible change in velocity in a constant cross section duct. For an 

incompressible flow at low Mach number along a streamline, the change in dynamic pressure 

should be negligible. Thus, by Bernoulli’s equation, the change in total pressure drop should be 

directly proportional to the change in rig static pressure. Although negligible as just described, the 

average velocity was considered for the friction factor calculation by the slight change in density 

that occurred in the channel through turbulent dissipation heating. With the spacing of the pressure 

taps known, a pressure drop slope can be calculated 

𝑓𝐹𝑎𝑛𝑛𝑖𝑛𝑔 = 14 𝑓𝐷𝑎𝑟𝑐𝑦 = 14 𝜕𝑃𝜕𝑥𝐷ℎ12 𝜌𝑎𝑣𝑔 𝑢𝑎𝑣𝑔2 = 𝜕𝑃𝜕𝑥𝐷ℎ2 𝜌𝑎𝑣𝑔 𝑢𝑎𝑣𝑔2 ( 3.8 ) 

where  𝜌𝑎𝑣𝑔 is the average density, 𝜕𝑃 𝜕𝑥⁄  is the pressure drop slope, and  𝑢𝑎𝑣𝑔 is the average 

velocity determined by the mass flowrate and the average density. 

A rough indication that the flow is fully developed through the acrylic inlet can be observed 

through the straightness of the pressure drop curves measured by the Scanivalve. If the flow is 

fully developed the velocity profiles should remain constant. The same goes for the drop in static 

pressure. 
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Figure 15 Pressure Drop Across Non-Heated Rig at Re = 70,000 

 

 Like the Nusselt number augmentation, a friction factor augmentation was also formed by the 

ratio of the rig’s friction factor to the smooth-wall Blasius friction factor correlation 𝑓𝑜 = 0.0791𝑅𝑒0.25    (𝐵𝑙𝑎𝑠𝑖𝑢𝑠) ( 3.9 ) 

which is valid for 2100 < Re < 100,000. 

3.3 Hot-Wire Analysis 

The purpose of this study was to determine how the flow of air changes over a specific rib geometry 

at a low Reynolds number range. It was of particular interest to investigate how the separation and 

reattachment points move, and evolve, as Reynolds number changes from low to moderate values. 

Because the sensor is only a single wire, the direction of the velocity cannot be determined, only 

the magnitude. Calculations of Reynold’s shear stress, and turbulent kinetic energy (TKE) cannot 
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be accurately measured. Only time-averaged velocity profiles, and turbulence intensities will be 

presented in this study. 

3.3.1 Understanding the Bridge 

Mechanically, a constant temperature hot-wire anemometer is a Wheatstone bridge where the 

bridge error, the voltage difference between the left and right ‘arms’ of the bridge top is fed to a 

shaping servo amplifier’s non-inverting (+) pin and inverting (-) pin as a differential input. There 

are two types of bridge sets available in the DANTEC StreamLine Pro CTA: a 1:20 bridge, and a 

1:1 bridge. The set resistors located on the bridge top are each 20ohms in the 1:1 arrangement. 

However, the set resistor located on the right arm is adjustable to 20x20Ω (400Ω) in the 1:20 

arrangement (Figure 16).  

 

Figure 16 Anatomy of a CTA Wheatstone Bridge Amplifier Loop 
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For this experiment, the 1:20 bridge was selected (1) because the 1:1 setting is only used for very 

high frequency responses ~1MHz, and (2) the 1:1 settings requires an external overheat resistor 

put into the sensor’s BNC cable to compensate the bridge impedance, which was not included in 

the CTA package. As the sensor resistance rises, the voltage input to the non-inverting (+) pin of 

the amplifier becomes less than the voltage input to the inverting (-) pin of the amplifier since the 

resistance of the voltage divider circuit of the right arm is fixed by the high precision decade 

resistor. The inverse response occurs if the sensor resistance drops. This is how the feedback loop 

of the amplifier works to bring the error voltage back to zero, where the voltage drop across each 

of the two set resistors in the 1:20 bridge become equal. 

3.3.2 Sensor Heat Transfer Theory 

The sensor itself operates under the simple principle of a heated infinitely long pin-fin from two 

sides cooled by convective air, Figure 17. The objective of the anemometer is to keep the sensor 

at a constant resistance by controlling the current through the servo amplifier so that the sensor 

temperature, and therefore resistance, remains constant under varying convective flow velocities.  
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Figure 17 Energy Balance of a Hot-Wire Sensor 

 

The equation below describes the energy balance that occurs in a control volume around the sensor 

with convective flow. 𝑘𝑠𝐴𝑠 𝜕2𝑇𝑠𝜕𝑥2 + 𝐼2𝑑𝑅𝑠 − 𝜋𝐷ℎ(𝑇𝑠 − 𝑇∞)𝑑𝑥 − 𝜋𝐷𝜎𝜀(𝑇𝑠4 − 𝑇∞4)𝑑𝑥 = 𝜌𝑠𝑐𝑠𝐴𝑠 𝜕𝑇𝑠𝜕𝑡 𝑑𝑥 ( 3.10 ) 

Because the sensor operates under this heat transfer principle, there are regions near the prongs of 

the sensor where the temperature is colder than its operating temperature. The aspect ratio (2ls/ds), 

where ls is the sensor length and ds is the diameter of the sensor, needs to be very large to minimize 

this heat loss (Figure 18). 
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Figure 18 Sensor Temperature Profile – Error Zones 

 

The DANTEC 55P11 Single-sensor Miniature Wire Probe has a sensor length of 1.25mm, and a 

sensor diameter of 5μm. This yields an aspect ratio of 500. Champagne et al [ 27 ] recommends an 

aspect ratio greater than 200 to make the heat loss error negligible. 

In the region of the wire where the difference in temperature of the sensor becomes infinitesimally 

small, the effective length, the heat conduction terms of the above energy balance become 

negligible. Assuming the measurements are taken during a time where the sensor stabilizes, at or 

below the cut-off frequency, temporal dependencies can be considered negligible. Lastly, if 

radiation is neglected, the energy balance then becomes: 𝐼2𝑅𝑠 = 𝜋𝐷𝐿𝑒𝑓𝑓ℎ(𝑇𝑠 − 𝑇∞) = 𝜋𝐷𝐿𝑒𝑓𝑓 (𝑁𝑢𝑘𝐷 ) (𝑇𝑠 − 𝑇∞) ( 3.11 ) 

It can be shown that Nusselt number, the ratio of convective heat transfer vs conductive, is a 

dependent on many non-dimensional parameters: Reynolds number, Prandtl number, Knudsen 

number, several geometric factors, etc. However, in 1914, L.V. King discovered a fundamental 
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relation between the heat transfer from an infinite cylinder and Reynold’s number with his thermal 

dispersion mass flowmeter, which he later named “hot-wire anemometer”. This relationship, 

shown below, was published as King’s Law. 𝑁𝑢 = 𝐴1 + 𝐵1𝑅𝑒𝑛 = 𝐴2 + 𝐵2𝑈𝑛 ( 3.12 ) 

Therefore, the expression for the reduced energy balance equation can be equated with King’s law 

with the minor adjustment to the energy balance equation by adding a length scale (sensor length), 

and fluid thermal conductivity. 𝐼2𝑅𝑠 = 𝜋𝐷𝐿𝑒𝑓𝑓 (𝑁𝑢𝑘𝐷 ) (𝑇𝑠 − 𝑇∞) = (𝐴 + 𝐵𝑈𝑛)(𝑇𝑠 − 𝑇∞) = 𝐸2 ( 3.13 ) 

3.3.3 Limitations 

Before the servo-amplifier electronics, hot-wire studies relied on the thermal response, purely on 

the sensor itself. 

(𝑚𝑐ℎ𝐴) 𝑑𝑇𝑑𝑡 + 𝑇 = 𝑇∞      →      𝑇(𝑡) = 𝑇∞ (1 − 𝑒−𝑡/(𝑚𝑐ℎ𝐴)) = 𝑇(𝑡)−𝑇∞𝑇0−𝑇∞ = 𝑒−𝑡/(𝑚𝑐ℎ𝐴)
 ( 3.14 ) 

This first-order response only resolved frequencies in several hundred hertz, where the time 

constant is 
𝑚𝑐ℎ𝐴, Figure 19. 
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Figure 19 First-order Response to Temperature Step Change 

 

When more advance anemometers were built in the 70’s, the frequency resolution increased by 

three orders of magnitude to several hundred kilohertz thanks to the servo amplifier loop. 

Hot-wires have been designed to give very accurate flow data up to several hundred meters per 

second, but there is a lower velocity limit at which the convective flow over the sensor is overcome 

by flow created by the heated sensor itself through natural convection. The sensor is typically 

heated to about 240°C, and when convective flow is so low, natural convection takes over, and the 

flow velocity cannot be accurately resolved. DANTEC has estimated the influence of natural 

convection holds for their probes up until a velocity of 0.20m/s. They also specify a maximum 

velocity of 500m/s for wire structural reasons. 

Another limitation comes from the steady-state assumption made earlier in the energy balance 

equation (3.10). This limitation is the cut-off frequency, the smallest time-scale the sensor can 

observe. The DANTEC StreamLine Pro CTA is equipped with a square-wave generator that is 

used to test its overall system response limitations. The CTA sends a square-wave signal through 

the sensor while exposed to an expected maximum flow velocity. The signal throws the sensor off 
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balance, and the time it takes for the servo-amplifier loop to balance out the error in the bridge 

gives the CTA’s overall response time lag, Figure 20.  

 

Figure 20 Square-Wave Response to DANTEC Sensor 

 

This response lag can then be converted to a frequency by the equation below for turbulent flows 

DANTEC provides based on the work of Freymuth et al. [ 29 ]. The ∆𝑡 is determined by the time 

it takes for the bridge to recover from 97% of its peak voltage disturbance “height” from the 

square-wave generated within the anemometer. 𝑓𝑐𝑢𝑡−𝑜𝑓𝑓 = 11.3∆𝑡 ( 3.15 ) 
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3.3.4 Temperature Corrections 

Because the sensor must maintain a constant temperature to work, there are several environmental 

factors that can make the measurement less accurate. Changes in local temperature can impact the 

accuracy of the sensor. DANTEC warns that each unaccounted 1°C change in temperature can 

induce a 2% error in the velocity measurement. StreamLine Pro has a few options to help avoid 

this issue. The first option is to maintain a fixed decade resistance and overheat ratio, a non-

dimensional measure the increase in temperature with sensor resistance, but correct the voltage 

output with a modification of an equation proposed by Brunn et al. [ 28 ], shown below, 

𝐸𝑠,𝑟𝑒𝑓 = 𝐸𝑠 [ 𝑇𝑠−𝑇𝑟𝑒𝑓𝑇𝑠−𝑇𝑎𝑚𝑏]1/2(1±𝑚)
 ( 3.16 ) 

where m is a thermal loading factor (typically 0.2 for air on wire sensors with an overheat ratio of 

0.8). Es is the measured voltage, Ts is the temperature of the sensor, Tref is the temperature of the 

fluid at the time the measurement was taken, and Tamb is the ambient temperature that was recorded 

just prior to calibrating, or testing. For this process, a reference temperature must be taken before 

each measurement with the use of a temperature probe near the wire. Since turbulence temperature 

fluctuations were not an objective in this experiment, primarily because this is experiment is purely 

aerodynamic, and has no noticeable thermal gradients, a probe would not be needed direct by the 

sensor to disrupt the flow. However, a temperature probe was not available for the experiment, so 

corrections by other means had to be taken. 

The second option, the option that does not require a reference temperature adjustment is the 

automatic overheat adjust operation. In this scenario, the overheat ratio is fixed, and the decade 
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resistance is adjusted to maintain the overheat resistance at a constant value. Therefore, there was 

need to retake a reference temperature. 

3.3.5 Filtering 

After obtaining the raw analog signal, the CTA puts the signal through conditioning. While taking 

measurements with the CTA, the Butterworth lowpass filter StreamLine Pro possesses should be 

set to the cut-off frequency as closely as possible. The cut-off frequency will be treated as the 

Nyquist frequency, the highest resolvable frequency in a signal. Through the StreamWare 

software, the user can define the square-wave frequency, and is required to adjusted the amplifier 

gain and filter settings up until the point where the response starts to ‘ring,’ indicating that the 

bridge has become unstable and cannot recover. The highest flow velocity expected in this 

experiment was 100m/s, and after tuning the amplifier, the square-wave test yielded a 126kHz 

frequency limit. The lowpass filter was thus set to 130kHz. The Nyquist equation states that the 

sampling frequency should by at least twice that of the highest resolvable frequency in a signal, so 

the sampling frequency was set to 262kHz for hot-wire measurements in this experiment. 

3.3.6 Sample Convergence 

In order ensure that a stochastic signal will yield a constant mean and standard deviation, the 

duration of the sampling must be determined. Sample convergence analysis tracks the mean and 

standard deviation of a signal in time from t=0 to t=T (the duration of the signal). How it works is 

that for every sample collected, it will be ‘added’ into the cumulated mean and standard deviation. 

Convergence is reach when the ‘addition’ of the next point fails to change the overall mean and 
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standard deviation. Since the standard deviation is a higher order equation than the mean, it will 

take longer than the mean to converge. Shown below are partial expansions of the sequences for 

mean and standard deviation convergence. 

Mean Convergence Sequence: 𝜇1 = 𝑥0, 𝜇2 =  𝑥0+𝑥12 , 𝜇3 =  𝑥0+𝑥1+𝑥23 ,   𝜇4 = 𝑥0+𝑥1+𝑥2+𝑥34 , ⋯ ( 3.17 ) 

Standard Deviation Convergence Sequence: 

𝜎1 = 0,   𝜎2 = √12 ∑ (𝑥𝑖 − 𝜇1)22𝑖=1 ,   𝜎3 = √13 ∑ (𝑥𝑖 − 𝜇2)23𝑖=1 ,   𝜎4 = √14 ∑ (𝑥𝑖 − 𝜇3)24𝑖=1 , ⋯
 ( 3.18 ) 

The convergence test was conducted in the most turbulent region found at the highest Reynolds 

number tested, 50,000. The most turbulent region was found to be a few locations downstream of 

the first rib where the shear layer coming from the rib due to flow separation interacts with the 

recirculation zone just behind the rib’s trailing edge. This location was chosen because it is where 

the signal will be least willing to converge due to its high turbulence. The convergence of the mean 

for the above sampling frequency was about 1 second worth of signal (Figure 21), and the standard 

deviation of the signal converged after about 1.5 seconds (Figure 22).  
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Figure 21 Convergence of the Sample Mean 

 

 

Figure 22 Convergence of the Sample Standard Deviation 
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To ensure the signal will converge for any Reynolds number, the chosen sampling duration was 4 

seconds, a little more than twice the convergence time of the standard deviation. This gave a 

sample count of just over a million data points. 

3.3.7 Calibration 

A TSITM 1127 manual velocity calibrator’s three nozzle sets were used to calibrate the sensor for 

various velocity ranges. Contrary to common hot-wire calibration practices, a 4th-order polynomial 

curve fit was used to correlate the voltage the anemometer was outputting and the velocity of the 

air from the nozzle set. Since the 16-bit A/D board’s voltage input range of 10V, -5 to +5 volts, 

the calibration voltage output was offset and amplified to -5 to +5 volts, or however close to the 

A/D converter’s limit the CTA would allow without overshooting. When converting the analog 

signal to a digital signal, increasing the usage of the A/D board’s range will maximize the number 

of ‘bins’ the analog voltage can be placed in during the digitization process. 20 equally-spaced 

points are taken within the voltage range the CTA’s amplifier gain will allow for a given 

calibration. 

To ensure the sensor is accurate while taking measurements, a calibration of the sensor was done 

before, and after each test to account for any voltage drift caused by contaminate accumulation on 

the sensor during testing, and internal errors that might occur when the CTA is switched between 

Standby and Operate mode.  

Prior to introducing flow to the sensor, and voltage offset and amplification, an initial (0m/s) 

voltage measurement is taken for later use when creating King’s Law curve fits. 
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The velocity of the flow at the nozzle exit was calculated by using high-order polynomial 

correlations TSI provides with their calibrator units that link the nozzle set’s venturi pressure 

differential to nozzle exit velocity. With the velocity known at each point as well as the sensor’s 

voltage, fitting a correlation between the two was possible. 

3.3.8 Uncertainty Considerations 

DANTEC provides a list of velocity uncertainty equations used to calculate errors from a multitude 

of physical phenomena including local temperature variation effects, ambient pressure 

fluctuations, and density changes due to temperature and pressure. These errors as well as 

systematic errors such as sensor yaw angle and curve-fit biases were considered during the analysis 

and for all Reynolds number case, most of the errors amounted to about 5-6% of the velocity 

measurement. DANTEC gave a rough estimate of 3% on the total uncertainty of the velocity 

measurement. Given that their estimate was based on the use of their automated calibrator and that 

the curve-fit error was responsible for most of the uncertainty, 5% with the use of a manual 

calibrator is reasonable. The equations for these uncertainties are listed in the Appendix D. 
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Heat Transfer Analysis Results 

The heat transfer experiments were tested at seven Reynolds numbers ranging from 25,000 to 

125,000. The module-averaged Nusselt distribution (Figure 23) showed that the highest heat 

transfer coefficient occurs at the entrance of the test section due to thermal development as the 

flow just begins to be heated. At the entrance, the largest temperature gradient between the plate 

and fluid temperature exists. 

 

Figure 23 Modular Nusselt Number distribution, Re = 70,000 

 

Tests conducted by Ahmed et al.[ 1 ] for the two ribbed-wall case conclude that the heat transfer 

coefficient became constant after around eight hydraulic diameters in all Re cases. Figure 23 shows 

that the same holds true for the single ribbed wall case. x/Dh begins at zero at the test section 
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entrance in this figure. Since the bulk air temperature increases along the test section, local Re 

decreases along the streamwise direction.  

For the remainder of this paper, averaged wall-based Nu values, calculated by fully turbulent heat 

transfer coefficients will be discussed. These Nusselt values will be plotted against test section 

averaged Re calculated by averaged test section bulk temperature properties, and mass flowrate 

derived average flow velocity. The averaged wall-based Nu was decomposed into three curves: 

averaged smooth top walls, averaged smooth left and right walls, and averaged ribbed bottom wall 

for each Re, and can be seen in Figure 24. It is seen that the bottom ribbed wall had the most 

effective heat transfer, and that the top smooth wall had the least effectiveness. The smooth side 

walls had a higher Nu than the top walls due to turbulence which is generated by the bottom ribbed 

wall, weakening toward the top wall. 

 

Figure 24 Wall-Averaged Nusselt number at various Re ranging from 25,000 to 125,000 
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In Ahmed et al.’s two ribbed wall study [ 1 ], the top and bottom ribbed walls had nearly identical 

Nu values since boundary conditions in the channel were about the same, and thus could be 

appropriately averaged together to get an averaged rough wall Nu for both walls. Figure 25 

presents the channel-averaged heat transfer augmentation (Nu/Nu0) at various Re for both one 

ribbed wall and two ribbed wall cases.  

 

Figure 25 Channel-Averaged Nusselt Augmentation for Re ranging from 25,000 to 125,000 

 

The channel-averaged Nusselt numbers were normalized with a smooth channel Nu0 value, based 

on Dittus Boelter correlations for smooth circular tubes, just as Han et al. [ 3 ] [ 5 ] [ 6 ], and 

Ahmed et al. [ 1 ] had done, to properly compare results. It should be noted that the Dittus Boelter 

equation is valid for 0.6 < Pr < 160, L/D > 10, and ReD > 10,000 for turbulent flows. All tests in 

this experiment were conducted within this range. 𝑁𝑢0𝐷ℎ = 0.023𝑅𝑒𝐷ℎ0.8𝑃𝑟0.4
 (𝐷𝑖𝑡𝑡𝑢𝑠 𝐵𝑜𝑒𝑙𝑡𝑒𝑟)  ( 4.19 ) 
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The results show a nearly constant augmentation of around 1.4 for all Re after 90,000 for the one-

wall case. The two-wall case revealed an augmentation of about 1.3 to 1.5 times higher than the 

one wall case as it settles at around 1.9 for Re greater than 50,000 [ 1 ]. This was to be expected 

since the two-wall case had much more turbulent mixing than the single-wall channel. 

4.2 Friction Factor Analysis Results 

To guarantee the accuracy of the friction testing, an extensive investigation was conducted with 

several data points at repeated Reynolds numbers. The friction calculation is affected by channel 

geometry, flow rate measurements, pressure measurements. Error in any of these measurements 

can lead to erroneous friction results. Because of this, all error sources in these measurements were 

checked rigorously. Flow rate measurement was confirmed by checking venturi calibrations and 

recalibrating when needed. Flow leakage tests through the inlet, test section, and downstream 

plumbing were all checked with incense. Venturi upstream pressure and pressure drop were 

compared with flow data taken from the heat transfer tests with valid energy balances. Tests were 

repeated two or three times for each Reynolds number, and plotted to ensure that these 

measurements matched every time. Any geometric inconsistencies in the alignment of the acrylic 

inlet and test section were checked, and realigned if needed prior to testing. 

From the friction results, one can observe that the friction factors for both the one-wall and Ahmed 

et al.’s [ 1 ]  two-wall cases are relatively high at Reynolds numbers below 22,000. Above Re = 

120,000, friction factor holds constant at 0.012 for the single-wall case. Ahmed et al.’s [ 1 ] two 

ribbed-wall study described an effect where high e+ values at higher Re show that ribs can no 
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longer be treated as roughness, but physical obstacles, and friction factor start to increase. 

 

Figure 26 Fanning Friction Factor for Both Single-Wall and Two-Wall Cases 

 

Friction factor augmentation, Fanning friction factor normalized by the Blasius correlation for 

turbulent flows, at different Re for the one-wall and two-wall cases are presented in Figure 27.  

 

Figure 27 Friction Augmentation for Both Single-Wall and Two-Wall Cases 
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These curves exhibit an approximately linear relationship with Reynolds Number. The two ribbed-

wall study showed about a 2.2 times higher friction augmentation than the one-wall case. The 

Blasius correlation is only valid between Reynolds numbers of 5,000 to 100,000, so although the 

friction factor is calculated up to Re = 125,000, the Augmentation is only valid when the Blasius 

correlation is valid. Once again, the Blasius correlation is used in this study because both Han et 

al. [ 3 ] [ 5 ] [ 6 ], and Ahmed et al. [ 1 ] determined their augmentations with this correlation. 

4.3 Thermal Performance Analysis Results 

Heat transfer tests have been conducted for seven Re in the range of 25,000 to 125,000 for the one-

wall case. The pressure drop/friction experiments were conducted at a wider range. A linear curve 

fit, generated from the friction augmentation against Re, allowed the prediction of a friction 

augmentation at the same Re used during heat transfer testing. This made possible the calculation 

of the thermal performance. Han et al.  [ 22 ] used an equation to define thermal efficiency: 

𝜂 = 𝑁𝑢 𝑁𝑢𝑜⁄(𝑓 𝑓𝑜⁄ )1/3 ( 4.20 ) 

Ahmed et. al [ 1 ] incorporated the same equation in their validation case of Han’s square channel. 

To make one-to-one comparisons between these results, the same equation was used in this case. 

Due to lower friction augmentation, the thermal efficiency was higher at low Reynolds numbers. 

With the increasing Re, however, the friction augmentation took a toll on the Nusselt 

augmentation.  
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Thermal performance decreased until about Re = 70,000, where it holds constant around unity for 

the single ribbed-wall case, Figure 28. Within the Reynolds number range studied, the two-wall 

case continually decreases. 

 

Figure 28 Thermal Performance for Both Single, and Two-Wall Cases 

4.4 Heat Transfer and Friction Experimental Uncertainty Results  

Uncertainties in the experimental results have been quantified by the methods described by Kline 

and McClintock [ 25 ] and Moffat [ 26 ]. Refer to Appendix A-D for further detail on the 

uncertainty analysis. The uncertainty for Reynolds number was estimated to be less than 6% in all 

cases, Noting that the mass flow rate measurement contributes the most to this uncertainty. The 

highest uncertainty estimated for Nu was less than 5%. Uncertainties in values such as voltages, 

resistances, temperatures, and flow rate measurements were the main contributors to Nu 

uncertainty. Pressure and flow rate measurements contributed to the uncertainty estimation in the 
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friction factor which was estimated to be less than 12% for Re > 20,000. The mass flow rate 

uncertainty took over in friction factor uncertainty for Re < 20,000. The uncertainty in friction 

factor jumped to 21%-73% for 10,000 < Re < 20,000 due to the minute pressure drop across the 

rig at this Reynolds number range. Pressure drop uncertainty became comparable to the physical 

measurement. 

4.5 Hot-wire Analysis Results 

Single-wire hot-wire anemometry was used to characterize velocity magnitude profiles in great 

detail, as well as turbulence intensity for Reynolds numbers ranging from 5,000 to 50,000. It was 

seen that as Reynolds number increased, the reattachment point between two ribs remained 

relatively stationary while the turbulence intensity receded to the trailing surface of the upstream 

rib, and dissipated as it traveled. At low Reynolds numbers between 5,000 and 10,000 the velocity 

and turbulence intensity streamwise profiles seemed to form two distinct flow regions, indicating 

that the flow over the upstream rib never completely attached between the two ribs. 

The following figures will be presented in this fashion: 

 

Figure 29 Sample Contour Plot 
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Figure 29 depicts a normalized velocity contour plot taken at Reynolds number of 50000. The 

black rectangles seen in the figure represent the physical, to scale, ribs in a midspan cross section 

of the flow. The white spaces represent the areas the sensor midpoint could not get to because the 

sensor had to be faced perpendicularly to the flow direction. Unfortunately, this meant that the 

sensor could not be mounted flush with the ribs, and had to have a 45° angle between them. The 

thickness of the white spaces aft and forward of the upstream and downstream rib, respectively, 

indicates the distance between the sensor midpoint and rib edge as they have a 45° misalignment. 

The contour plots are mapped to each of the intersections in Figure 9. The scale to the right of the 

contour plots indicates what numeric values are assigned to each color in the plot. To observe the 

evolution of the flow, the scales are kept the same between all tested Reynolds numbers and 

measurement type. 

To make sure the hot-wire measurement was stable and repeatable, a repeatability test was 

conducted at Re = 50000. Shown below is a contour of turbulence intensity and its associated 

uncertainty percentage for this Reynolds number. 

 

Figure 30 Re = 50,000 TI Repeatability Test 
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In Figure 30, the two top plots are nearly identical, indicating that the testing is repeatable. 

However, the uncertainty plots beneath are quite different in magnitude. This was due to the 

systematic uncertainty of the velocity calibration curve fit error. Further details on the uncertainty 

is shown in Appendix D. 

 

Figure 31 Local Velocity Normalized by the Channel Bulk Velocity 

 

In Figure 31, it is seen that the scaled velocity increased dramatically in the free stream, above the 

rib until Re = 30,000, where the freestream velocities between Re = 30,000 and 50,000 appear to 

be about the same. Another observation can be made near the wall at x/Dh ~0.48 to 0.55. This is 

where the reattachment point was located in the Reynolds number range tested. Although not clear 

if the flow is reattaching at Re = 5,000 at x/Dh = 0.55, it can be seen in the other Reynolds numbers 

tested. The reattachment point location seems to have a weak, but existent, correlation with flow 

increase. As Re increase, the reattachment point slow moves back toward the aft of the upstream 



 

49 

 

rib. Further Reynolds number data need to be obtained to determine if the position stops after Re 

= 50,000 because it does not appear to change between this flow rate, and that of Re = 30,000. 

 

Figure 32 Uncertainty of Normalized Velocity 

 

Figure 32 shows that, except for the repeated case of Re = 50,000, the uncertainty of the normalized 

velocity peaks about 6.5% near the bottom aft corner if the upstream rib where the flow velocity 

is very small and difficult to resolve. 
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Figure 33 RMS Velocity Fluctuations Normalized by Local Velocity (TI) 

 

Figure 33 depicts the turbulence intensity of the flow at the tested Reynolds numbers. It was 

observed that as Reynolds number increased, the peak in intensity dramatically moves upstream 

toward the aft of upstream rib, and maintained peak intensity within the Reynolds numbers tested. 

Unfortunately, after Re = 30,000, the peak in turbulence intensity was not located on the bottom 

wall surface. This shows that potential turbulent mixing is being “wasted” just above the 

recirculation zone, as it is not interacting much with the bottom wall surface. 
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Figure 34 Uncertainty in Turbulence Intensity 

 

Turbulence data was taken at ambient temperature flow conditions, but heat transfer data was 

obviously taken at heated flow conditions. A check to make sure that the turbulence data is still 

applicable for the heat transfer environment can be accomplished using Richardson number (Ri), 

the ratio of buoyant, natural convective forces over forced convection. In heated flow, the effect 

of density changes due to local air thermal gradients on the forced convection from the channel’s 

driving pressure drop is scrutinized. A general rule of thumb for Richardson number is as follows: 

if Ri < 0.1, then natural convective forces are dominated by forced convection, and if Ri > 10, then 

natural convection dominates the forced convection. An Ri in between these limits implies that 

neither of these forces can be ignored in the overall flow behavior of the fluid. 

𝑅𝑖 = 𝑔𝛽(𝑇ℎ𝑜𝑡−𝑇𝑟𝑒𝑓)𝐿𝑉2      {𝑅𝑖 < 0.1 (𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑖𝑔𝑛𝑜𝑟𝑒𝑑)𝑅𝑖 > 10 (𝑓𝑜𝑟𝑐𝑒𝑑 𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑖𝑔𝑛𝑜𝑟𝑒𝑑)0.1 < 𝑅𝑖 < 10 (𝑛𝑖𝑒𝑡ℎ𝑒𝑟 𝑐𝑎𝑛 𝑏𝑒 𝑖𝑔𝑛𝑜𝑟𝑒𝑑)  ( 4.21 ) 
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Since local fluid temperature variations could not be calculated in the heat transfer experiments 

extreme values of temperature difference and local velocity will be used to estimate an upper and 

lower bound of this number to determine if density change would play a role in the turbulence 

calculations during a heat transfer run. Because the plate temperature is assumed to be isothermal 

at the target temperature of 70°C, the following table will show various scenarios of temperature 

differences, and velocities while holding the plate temperature constant. The length-scale of the 

Richardson number will be that of the hydraulic diameter of the channel, Dh = 0.0508m, and g will 

be the gravitational constant, 9.81m/s2. 

 

Table 2 Hot-wire Data Validation in Heat Transfer Testing 

High ΔT, high V Low ΔT, high V High ΔT, low V Low ΔT, low V
Tplate (K) 343.15 343.15 343.15 343.15

Tfluid (K) 298.15 323.15 298.15 323.15

β, (1/K) 3.40E-03 3.10E-03 3.40E-03 3.10E-03

V (m/s) 100 100 1 1

Ri 7.62472E-06 3.08976E-06 0.076247244 0.030897576  

 

In Table 2, even with a very high predictable temperature difference and a low velocity of 1 m/s, 

which has been observed within the recirculation regions in low Re, Richardson number remains 

below 0.1. This means that the flow should not be influenced by thermal effects even under the 

worst conceivable circumstance of column three in the above table. 

 

Integral length-scale calculations were also made within the Reynolds number range of 5,000 to 

50,000. At each Reynolds number, the most turbulent, highest standard deviation in velocity, point 

was located using a search algorithm in MATLAB. Below in Table 3, is a summary of these 
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locations, and what time-averaged velocity and standard deviation occurs at these locations. The 

majority of highest turbulence locations fall between x/Dh = 0.27, and y/Dh = 0.04 to 0.053. 

 
Table 3 Location of Most Turbulent Points at Various Re 

Re x/Dh y/Dh uavg (m/s) urms (m/s)

5000 0.435 0.053 1.126 0.261

10000 0.270 0.053 2.123 0.676

30000 0.270 0.040 6.432 2.037

50000 0.270 0.053 11.434 2.964  

 

The autocorrelation function, ACF, was utilized on the velocity fluctuations recorded at these 

locations.  𝑅(𝜏) = 〈𝑢′(𝑡)𝑢′(𝑡+𝜏)〉〈𝑢′2〉  ( 4.22 ) 

Data was collected for four seconds at a sampling frequency of 262kHz, with a lowpass filter of 

less than half the sampling frequency, 130kHz. A sample autocorrelation plotted against lags in 

seconds is shown below at Re = 50,000. 

 
Figure 35 Autocorrelation Taken at Most Turbulent Point in Re =50,000 
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The integral length-scale was calculated using the ACF and the Taylor Frozen Hypothesis. The 

area under the curve of ACF yields the eddy integral time-scale,  𝑇 = ∫ 𝑟(𝜏)∞0 𝑑𝜏 ( 4.23 ) 

and the Taylor Frozen Hypothesis (which states that the local disturbances in a turbulent eddy as 

it passes a sensor are considered negligible, and the eddy velocity can be estimated as the local 

convective velocity) gives the eddy velocity. These terms can be multiplied together to get an eddy 

integral length scale. Below, in Table 4, integral time, and length-scales at each Reynolds number 

are tabulated. 

 

Table 4 Integral Time and Length-Scales at Various Re 

T  (s) Λ (mm) Λ/e
5000 0.00390 4.151 1.307

10000 0.00094 2.427 0.764

30000 0.00040 3.371 1.062

50000 0.00048 6.588 2.075  

 
 

Table 4 shows that Λ/e, the ratio of integral length-scale to rib height has a generally increasing 

trend as a function of Reynolds number. At a Reynolds number of 45,000, Rivir et al. [ 30 ] 

calculated an integral length-scale of 1.5 times the rib height of a two-wall transverse rib case just 

downstream of the rib (very close to where this case’s point was taken). 
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CHAPTER 5: FINDINGS 

In curiosity of how a replication, and extension of Han et al.’s [ 2 ] work with 45° ribs with a p/e 

of 10, and e/Dh of 0.0625 conducted by Ahmed et al. [ 1 ] would compare to a slight modification 

to Ahmed et al.’s original channel (converting a two-ribbed wall channel to single-ribbed wall 

channel), heat transfer, friction, and turbulence testing were carried out. Under nearly the same 

Reynolds number range of Ahmed et al.’s case, the single ribbed-wall case yielded ~1.4 times less 

channel-averaged heat transfer capability than the two-wall case, but also half the friction than the 

two ribbed-wall case. Overall, the channel thermal performance as a function of Reynolds number 

between the two cases were about the same, the two ribbed-wall case having slightly better 

performance in the mid-range Reynolds numbers. Chandra et al. [ 20 ] concluded that overall 

performance declines as more ribbed walls are added, but this case and the two ribbed-wall case 

comparatively suggest that there are nearly no differences in thermal performance. 

On a wall-based scale, the heat transfer of the two ribbed-wall case had nearly identical Nusselt 

curves for the top and bottom, and left and right walls, consecutively. This being explained by the 

channel’s symmetric boundary conditions on the inner walls. The single ribbed-wall case, 

however, had asymmetric boundary conditions on the inner walls since only one wall (bottom) had 

ribs. The bottom ribbed-wall, by no surprise, yielded the highest heat transfer of the four walls in 

the single ribbed-wall case, the top smooth wall had the least, and the left and right walls having 

some heat transfer in between the top and bottom walls.  

This lead to the idea of testing fully developed turbulence intensity within the channel, because 

there was a turbulent mixing gradient between the top and bottom walls as the heat transfer results 

hinted. The turbulent testing results shown that the mixing intensity, at least midspan of the 
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channel, did not have that much of a noticeable TI gradient, as conjectured. Turbulence intensity 

invoked by the ribs, nearly diminished only 10% of the channel height above the bottom wall 

surface. Velocity contours indicated that, although no directional information can be determined 

from a single wire hot-wire sensor, the location of a reattachment point of the flow after deflecting 

off an upstream rib can be roughly identified. As Reynolds number increase, the reattachment 

point appears hold position, but the velocities around the reattachment point increase, “filling in” 

the space between the ribs with faster and faster flow. The TI starts about midstream between two 

ribs, and retracts toward the upstream rib as Reynolds number increases. It was seen that the 

highest TI zones at each Reynolds number was not located on, or near the flow surface, where heat 

transfer would take place. This is unfortunate, to “waste” the mixing potential, but by modifying 

the IDC parameters, the high TI zone might be brought down closer to the surface to increase 

mixing heat transfer. 

To ensure that the flow is under fully turbulent conditions, both the velocity of the flow at Re = 

50,000 and the standard deviation of the fluctuations were compared at the upstream rib center and 

the downstream rib center. 

 

Figure 36 Velocity and Fluctuation Plots at Re = 50,000 
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Figure 36 shows that at the same geographic locations in the rig, the center points of two ribs, the 

velocity and fluctuation profiles nearly match and are well within uncertainty of the velocity 

measurement. The flow is indeed fully turbulent at between the two ribs tested in the turbulence 

analysis. 

Integral length-scale calculations predict an increasing trend between the Reynolds number, and 

length-scale located at the most turbulent point in the flow at each Re. Because there isn’t a lot of 

length-scale as a function of Reynolds number data existing in literature for IDC, it is difficult to 

assert that the results obtained in this study are accurate. However, Rivir et al.’s [ 30 ] results show 

that at about the same location tested with respect to the ribs they used, the integral length-scale 

was approximately 1.5 times the rib height at a Reynolds number of 45,000. In this case the length-

scale at Re = 50,000 was twice the height. Several factors mentioned in the beginning of this thesis 

could influence the value of this integral length-scale, such as rib pitch, number of ribbed walls, 

rib angle (in his case transverse, 90deg). The fact that their scale is on the order of what was 

obtained in this case gives some level of confidence in the value. 

Heat transfer testing was obviously conducted under hot wall condition, but the turbulent testing 

was done all at ambient temperature. If one were to try to compare, or extend the turbulence data 

to the heat transfer testing, could it be done? The Richard number, the ratio of natural vs. forced 

convection suggest that under the Reynolds numbers test, temperature gradients off the walls 

should not affect the flow with adverse air density gradients. The flow is too fast for natural 

convection to make any contribution to the flow mixing, or direction. 
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APPENDIX A: 

UNCERTAINTIES OF MASS FLOWRATE 
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𝑃𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 = 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 +𝑃𝑎𝑡𝑚 

 (𝑈𝑃_𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚)𝑃_𝑠𝑡𝑎𝑡𝑖𝑐 = 𝜕𝑃_𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚𝜕𝑃_𝑠𝑡𝑎𝑡𝑖𝑐 ∙ 𝑈𝑃𝑠𝑡𝑎𝑡𝑖𝑐 = 𝑈𝑃𝑠𝑡𝑎𝑡𝑖𝑐  

 (𝑈𝑃_𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚)𝑃_𝑎𝑡𝑚 = 𝜕𝑃_𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚𝜕𝑃_𝑎𝑡𝑚 ∙ 𝑈𝑃𝑎𝑡𝑚 = 𝑈𝑃𝑎𝑡𝑚  

 𝑈𝑃_𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 = 𝑅𝑆𝑆 [(𝑈𝑃_𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚)𝑃_𝑠𝑡𝑎𝑡𝑖𝑐  , (𝑈𝑃_𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚)𝑃_𝑎𝑡𝑚] 

𝑇(𝐾) = 59 (𝑇(℉) − 32) + 273.15 

 (𝑈𝑇(𝐾))𝑇(℉) = 𝜕𝑇(𝐾)𝜕𝑇(℉) ∙ 𝑈𝑇(℉) = 59 ∙ 𝑈𝑇(℉) 
𝜌𝑓𝑙𝑢𝑖𝑑 = 𝑃_𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚𝑅 𝑇𝑓𝑙𝑢𝑖𝑑  

 (𝑈𝜌𝑓𝑙𝑢𝑖𝑑)𝑃_𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 = 𝜕𝜌𝑓𝑙𝑢𝑖𝑑𝜕𝑃_𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 ∙ 𝑈𝑃𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 = 𝑈𝑃𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚𝑅 𝑇𝑓𝑙𝑢𝑖𝑑  

 (𝑈𝜌𝑓𝑙𝑢𝑖𝑑)𝑇𝑓𝑙𝑢𝑖𝑑 = 𝜕𝜌𝑓𝑙𝑢𝑖𝑑𝜕𝑇𝑓𝑙𝑢𝑖𝑑 ∙ 𝑈𝑇𝑓𝑙𝑢𝑖𝑑 = 𝑃_𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚𝑅𝑇𝑓𝑙𝑢𝑖𝑑2 ∙ 𝑈𝑇𝑓𝑙𝑢𝑖𝑑,   𝐾 

 𝑈𝜌𝑓𝑙𝑢𝑖𝑑 = 𝑅𝑆𝑆 [(𝑈𝜌𝑓𝑙𝑢𝑖𝑑)𝑃_𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 , (𝑈𝜌𝑓𝑙𝑢𝑖𝑑)𝑇𝑓𝑙𝑢𝑖𝑑] 

𝑚̇ = 𝜌𝑓𝑙𝑢𝑖𝑑 𝑄 

 (𝑈𝑚̇)𝜌 = 𝜕𝑚̇𝜕𝜌 ∙ 𝑈𝜌 = 𝑄 ∙ 𝑈𝜌 

(𝑈𝑚̇)𝑄 = 𝜕𝑚̇𝜕𝑄 ∙ 𝑈𝑄 = 𝜌 ∙ 𝑈𝑄 

𝑈𝑚̇ = 𝑅𝑆𝑆[(𝑈𝑚̇)𝜌 , (𝑈𝑚̇)𝑄] 
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APPENDIX B: 

SYSTEMATIC UNCERTAINTIES OF NUSSELT NUMBER 
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𝑄𝑖𝑛𝑝𝑢𝑡 = 𝑉2𝑅  

 𝑈(𝑄𝑖𝑛𝑝𝑢𝑡)𝑉 = 2𝑉𝑅  

 𝑈(𝑄𝑖𝑛𝑝𝑢𝑡)𝑅 = (𝑉𝑅)2
 𝑄𝑎𝑐𝑡 = 𝑄𝑖𝑛𝑝𝑢𝑡 − 𝑄𝑙𝑒𝑎𝑘𝑎𝑔𝑒 

 𝑈(𝑄𝑎𝑐𝑡)𝑄𝑖𝑛𝑝𝑢𝑡 = 𝑈(𝑄𝑖𝑛𝑝𝑢𝑡) 

 𝑈(𝑄𝑎𝑐𝑡)𝑄𝑙𝑒𝑎𝑘𝑎𝑔𝑒 = 𝑈(𝑄𝑙𝑒𝑎𝑘𝑎𝑔𝑒) 

𝑇𝑓𝑙𝑢𝑖𝑑,𝑓 = 𝑄𝑎𝑐𝑡𝑚̇𝑐𝑝 + 𝑇𝑓𝑙𝑢𝑖𝑑,𝑖 
 𝑈(𝑇𝑓𝑙𝑢𝑖𝑑,𝑓)𝑄𝑎𝑐𝑡 = 𝑈(𝑄𝑎𝑐𝑡)𝑚̇𝑐𝑝  

 𝑈(𝑇𝑓𝑙𝑢𝑖𝑑,𝑓)𝑚̇ = 𝑈(𝑚̇)𝑄𝑎𝑐𝑡𝑚̇2𝑐𝑝  

 𝑈(𝑇𝑓𝑙𝑢𝑖𝑑,𝑓)𝑇𝑓𝑙𝑢𝑖𝑑,𝑖 = 𝑈(𝑇𝑓𝑙𝑢𝑖𝑑,𝑖) 

∆𝑇𝑖𝑛,𝑥 = 𝑇𝑤𝑎𝑙𝑙,𝑥 − 𝑇𝑓𝑙𝑢𝑖𝑑,𝑖_𝑥 

 𝑈(∆𝑇𝑖𝑛,𝑥)𝑇𝑤𝑎𝑙𝑙,𝑥 = 𝑈(𝑇𝑤𝑎𝑙𝑙,𝑥) 

 𝑈(∆𝑇𝑖𝑛,𝑥)𝑇𝑓𝑙𝑢𝑖𝑑,𝑖_𝑥 = 𝑈(𝑇𝑓𝑙𝑢𝑖𝑑,𝑖_𝑥) 

∆𝑇𝑜𝑢𝑡,𝑥 = 𝑇𝑤𝑎𝑙𝑙,𝑥 − 𝑇𝑓𝑙𝑢𝑖𝑑,𝑓_𝑥 

 𝑈(∆𝑇𝑜𝑢𝑡,𝑥)𝑇𝑤𝑎𝑙𝑙,𝑥 = 𝑈(𝑇𝑤𝑎𝑙𝑙,𝑥) 

 𝑈(∆𝑇𝑜𝑢𝑡,𝑥)𝑇𝑓𝑙𝑢𝑖𝑑,𝑓_𝑥 = 𝑈(𝑇𝑓𝑙𝑢𝑖𝑑,𝑓_𝑥) 

𝐿𝑀𝑇𝐷𝑥 = ∆𝑇𝑖𝑛,𝑥 − ∆𝑇𝑜𝑢𝑡,𝑥𝑙𝑛 ( ∆𝑇𝑖𝑛,𝑥∆𝑇𝑜𝑢𝑡,𝑥)  
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 𝑈(𝐿𝑀𝑇𝐷𝑥)∆𝑇𝑖𝑛,𝑥 = 𝑈(∆𝑇𝑖𝑛,𝑥) ∆𝑇𝑖𝑛,𝑥𝑙𝑛( ∆𝑇𝑖𝑛,𝑥∆𝑇𝑜𝑢𝑡,𝑥)+∆𝑇𝑜𝑢𝑡,𝑥−∆𝑇𝑖𝑛,𝑥∆𝑇𝑖𝑛,𝑥𝑙𝑛( ∆𝑇𝑖𝑛,𝑥∆𝑇𝑜𝑢𝑡,𝑥)2  

 𝑈(𝐿𝑀𝑇𝐷𝑥)∆𝑇𝑜𝑢𝑡,𝑥 = 𝑈(∆𝑇𝑜𝑢𝑡,𝑥) ∆𝑇𝑜𝑢𝑡,𝑥𝑙𝑛( ∆𝑇𝑖𝑛,𝑥∆𝑇𝑜𝑢𝑡,𝑥)+∆𝑇𝑖𝑛,𝑥−∆𝑇𝑜𝑢𝑡,𝑥∆𝑇𝑜𝑢𝑡,𝑥𝑙𝑛( ∆𝑇𝑖𝑛,𝑥∆𝑇𝑜𝑢𝑡,𝑥)2  

ℎ̅𝑥 = 𝑄𝑎𝑐𝑡𝐴𝑇𝑤𝑎𝑙𝑙𝑥 − 𝑇𝑓𝑙𝑢𝑖𝑑,𝑓𝑥 

 𝑈(ℎ̅𝑥)𝑄𝑎𝑐𝑡 = 𝑈(𝑄𝑎𝑐𝑡)𝐴𝑇𝑤𝑎𝑙𝑙𝑥−𝑇𝑓𝑙𝑢𝑖𝑑,𝑓𝑥 

 𝑈(ℎ̅𝑥)𝑇𝑤𝑎𝑙𝑙𝑥 = 𝑈(𝑇𝑤𝑎𝑙𝑙𝑥)𝑄𝑎𝑐𝑡𝐴(𝑇𝑤𝑎𝑙𝑙𝑥−𝑇𝑓𝑙𝑢𝑖𝑑,𝑓𝑥)2 

 𝑈(ℎ̅𝑥)𝑇𝑓𝑙𝑢𝑖𝑑,𝑓𝑥 = 𝑈(𝑇𝑓𝑙𝑢𝑖𝑑,𝑓𝑥)𝑄𝑎𝑐𝑡𝐴(𝑇𝑤𝑎𝑙𝑙𝑥−𝑇𝑓𝑙𝑢𝑖𝑑,𝑓𝑥)2 

𝑁𝑢𝐷,𝑥 = ℎ̅𝑥𝐷ℎ𝑘  

 𝑈(𝑁𝑢𝐷,𝑥) = 𝑈(ℎ̅𝑥)𝐷ℎ𝑘  
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APPENDIX C: 

SYSTEMATIC UNCERTAINTIES OF FRICTION FACTOR 
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𝑃𝑖𝑛,𝑎𝑏𝑠 = 𝑃𝑖𝑛,𝑔 + 𝑃𝑎𝑡𝑚 

 𝑈(𝑃𝑖𝑛) = 𝑅𝑆𝑆 [𝑈(𝑃𝑖𝑛)𝑃𝑖𝑛,𝑔 , 𝑈(𝑃𝑖𝑛)𝑃𝑎𝑡𝑚] 𝑃𝑜𝑢𝑡,𝑎𝑏𝑠 = 𝑃𝑜𝑢𝑡,𝑔 + 𝑃𝑎𝑡𝑚 

 𝑈(𝑃𝑜𝑢𝑡) = 𝑅𝑆𝑆 [𝑈(𝑃𝑜𝑢𝑡)𝑃𝑜𝑢𝑡,𝑔 , 𝑈(𝑃𝑜𝑢𝑡)𝑃𝑎𝑡𝑚] 

𝑃𝑎𝑣𝑔,𝑎𝑏𝑠 = 𝑃𝑖𝑛,𝑎𝑡𝑚 + 𝑃𝑜𝑢𝑡,𝑎𝑡𝑚2  

 𝑈(𝑃𝑎𝑣𝑔,𝑎𝑏𝑠) = 𝑅𝑆𝑆 [12 𝑈(𝑃𝑎𝑣𝑔,𝑎𝑏𝑠)𝑃𝑖𝑛,𝑎𝑡𝑚 , 12 𝑈(𝑃𝑎𝑣𝑔,𝑎𝑏𝑠)𝑃𝑜𝑢𝑡,𝑎𝑡𝑚 ] 

𝜌𝑎𝑣𝑔 = 𝑃𝑎𝑣𝑔,𝑎𝑏𝑠𝑅𝑎𝑖𝑟𝑇𝑎𝑚𝑏 

 𝑈(𝜌𝑎𝑣𝑔)𝑃𝑎𝑣𝑔,𝑎𝑏𝑠 = 𝑈(𝑃𝑎𝑣𝑔,𝑎𝑏𝑠)𝑅𝑎𝑖𝑟𝑇𝑎𝑚𝑏  

 𝑈(𝜌𝑎𝑣𝑔)𝑇𝑎𝑚𝑏 = 𝑈(𝑇𝑎𝑚𝑏) 𝑃𝑎𝑣𝑔,𝑎𝑏𝑠𝑅𝑎𝑖𝑟𝑇𝑎𝑚𝑏2 

𝑢𝑎𝑣𝑔 = 𝑚̇𝜌𝑎𝑣𝑔𝐴 

 𝑈(𝑢𝑎𝑣𝑔)𝑚̇ = 𝑈(𝑚̇)𝜌𝑎𝑣𝑔𝐴 

 𝑈(𝑢𝑎𝑣𝑔)𝜌𝑎𝑣𝑔 = 𝑈(𝜌𝑎𝑣𝑔) 𝑚̇𝜌𝑎𝑣𝑔2𝐴 

𝑓𝐹𝑎𝑛𝑛𝑖𝑛𝑔,𝑎𝑣𝑔 = 𝑑𝑃𝑑𝑥 𝐷ℎ2𝜌𝑎𝑣𝑔𝑢𝑎𝑣𝑔2 

 𝑈(𝑓𝐹𝑎𝑛𝑛𝑖𝑛𝑔,𝑎𝑣𝑔)𝜌𝑎𝑣𝑔 = 𝑈(𝜌𝑎𝑣𝑔) 𝑑𝑃𝑑𝑥𝐷ℎ2𝜌𝑎𝑣𝑔2𝑢𝑎𝑣𝑔2 

 𝑈(𝑓𝐹𝑎𝑛𝑛𝑖𝑛𝑔,𝑎𝑣𝑔)𝑈𝑎𝑣𝑔 = 𝑈(𝑢𝑎𝑣𝑔) 𝑑𝑃𝑑𝑥𝐷ℎ𝜌𝑎𝑣𝑔𝑢𝑎𝑣𝑔3 
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APPENDIX D: 

SYSTEMATIC UNCERTAINTIES OF TURBULENCE 
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APPENDIX E: 

MATLAB CODE FOR TURBULENCE ANALYSIS 
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Converting Voltage Files to Velocity Files: 

b=input('New hotwire Calibration? (y/n) ','s'); 

if b=='y' 

    %Open calibration M-file, and retrieve velocity coeffs 

    disp('Select calibration correlation MATLAB file'); 

    [filename, pathname]=uigetfile({'*.m'},'File Selector'); 

    run(strcat(pathname,filename)); 

 

    %Steps: 

    %Load calibration M-file 

    %Select calibration text file 

    %Enter recorded calibration ambient pressure [mbar] 

    clc; 

    clearvars htwcal v b 

else 

end 

disp('Locate Hotwire Voltage Data Folder'); 

directory=uigetdir; 

cd(directory) 

files=dir(directory); 

fileindex=find(~[files.isdir]); 

filelist=cell(length(fileindex),1); 

for i=1:length(fileindex) 

    filelist{i}=files(fileindex(i)).name; 

end 

clearvars i 

clc 

VEL=zeros(length(getfield(importdata(filelist{1},'\t',23),'data')),1); 

 

disp('Locate Hotwire Velocity Data Folder'); 

directory2=uigetdir; 

 

for i=1:length(fileindex) 

    B=getfield(importdata(strcat(directory,'\',filelist{i}),'\t',23),'data'); 

    Bin=B(:,2); 

    VEL=calibcoeff(1,1).*Bin.^4+... % VEL = matrix of (data points,y-locations,x-locations) 

        calibcoeff(1,2).*Bin.^3+... % Using Calibrator Venturi Nozzle 

        calibcoeff(1,3).*Bin.^2+... 

        calibcoeff(1,4).*Bin+... 

        calibcoeff(1,5); 

 

    fileID=fopen(strcat(directory2,'\',strrep(filelist{i},'.lvm','.txt')),'w'); 

    fprintf(fileID,'%10.6f\r\n',VEL); 

    Bin(:)=0; 

    VEL(:)=0; 

    clc 

    disp(strcat('progress:  ',num2str(i),'/',num2str(length(fileindex)))) 
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end 

clearvars i 

Published with MATLAB® R2014a 

Velocity, Turbulence Intensity, Spectral, and Length Scale Analysis: 

% Hotwire Analysis for Ribbed Channels (2D Region) 

% streamwise traversing was done backwards (upstream direction) 

Defining Zonal Layout in Topographic 2-D Region 

disp('Locate main hotwire folder') 

maindir=uigetdir; 

cd(maindir) 

 

disp('Locate Relevant Velocity Data File for Sample Size Determination') 

sizedir=uigetdir; 

cd(sizedir) 

NS=size(load('z1x1y1.txt'),1); %Number of samples collected 

cd(maindir) 

 

x_matr = [1,2;1,10;1,3]; % x-locations per section 

xmax=sum(x_matr(:,2)); 

 

y_matr = [6,10;6,9;6,10]; % y-locations per section 

ymax=max(sum(y_matr,2)); 

 

z_matr = [0,1;2,3;0,4]; % zones (zones with solids should be valued "0") 

sects=size(z_matr,1); 

 

zero_pts=6; % number of y-points that will be within a solid per zone) 

 

q1=input('Adding another test? (y/n) ','s'); 

if q1=='y' 

    ZBin=zeros(NS,ymax,max(z_matr(:))); 

    XBin=zeros(NS,ymax); 

    VEL=zeros(NS,ymax,xmax); 

    clc 

    disp('Navigate to section:') 

    disp('Velocity Binning') 

else 

    clc 

    disp('Navigate to section:') 

    disp('Mesh Gridding & Re/Bulk Velocity Test Matrix Setup') 
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    clearvars x_matr ymax zmax 

end 

Velocity Binning 

cd(sizedir) 

pos=0; 

for i=1:sects % i = 1 to number of streamwise sections - (1 to 3 for IDC) 

 

    % Scanning each x-location 

    m=x_matr(i,:); % m-vector is defined as the (i)th row of x_matr 

    for x=min(m(m>0),[],2): max(m) 

        % max/min non-zero values in m - (number of x-pts in (z)th zone) 

 

        % Creating Zone matrices per x-location 

        n=z_matr(i,:); % n-array is defined as the (i)th row of z_matr 

        for z=min(n(n>0),[],2): max(n) 

            % max/min non-zero values in n - (zone numbers per section) 

 

            % Filling in z(th) Zone matrix 

            p=y_matr(i,:); 

            % p-array is defined as the (i)th row of y_matr 

            % - (number of y-pts in (z)th zone) 

            for y=1:p(find(n==z)) %#ok<FNDSB> 

                disp('streamwise position') 

                disp(pos+1) 

                disp('streamwise location') 

                disp(x) 

                disp('zone') 

                disp(z) 

                disp('vertical location') 

                disp(y) 

                ZBin(:,y,z)=load(strcat('z',num2str(z),'x',num2str(x),... 

                    'y',num2str(y),'.txt')); 

                clc 

            end 

        end 

 

        col=1; 

        for j=min(n(n>0),[],2): max(n) 

            for k=1:sum(ZBin(1,:,j)~=0) 

                XBin(:,col)=ZBin(:,k,j); 

                col=col+1; 

            end 

        end 

 

        pos=pos+1; 

        VEL(:,:,pos)=circshift(XBin,sum(XBin(1,:)==0),2); 

        XBin=zeros(NS,ymax); 

    end 
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end 

clc 

cd(maindir) 

clearvars i j k x y z col m n p pos sizedir XBin ZBin 

 

disp('Navigate to section:') 

disp('Gridded Velocities/STDEVs') 

Gridded Velocities/STDEVs 

clc 

avgvel=zeros(1,ymax,xmax); % Average velocities initial matrix building 

for i=1:xmax 

    for j=1:ymax 

        avgvel(1,j,i)=mean(VEL(:,j,i)); 

    end 

end 

avgvel=reshape(avgvel,ymax,xmax); 

avgvel=fliplr(avgvel); 

avgvel(1:zero_pts,1:max(x_matr(3,:)))=NaN; 

avgvel(1:zero_pts,sum(x_matr(2:3,2))+1:sum(x_matr(2:3,2))+x_matr(1,2))=NaN; 

avgvel(1,:)=[]; 

 

 

stdev=zeros(1,ymax,xmax); % Standard deviations initial matrix building 

for i=1:xmax 

    for j=1:ymax 

        stdev(1,j,i)=std(VEL(:,j,i)); 

    end 

end 

stdev=reshape(stdev,ymax,xmax); 

stdev=fliplr(stdev); 

stdev(1:zero_pts,1:max(x_matr(3,:)))=NaN; 

stdev(1:zero_pts,sum(x_matr(2:3,2))+1:sum(x_matr(2:3,2))+x_matr(1,2))=NaN; 

stdev(1,:)=[]; 

clearvars i j 

 

% Saving avgvel and stdev matrices to defined directory 

q2=input('What Reynolds Number did you test? '); 

save(strcat(maindir,'\avgvel\',num2str(q2),'_avgvel.mat'),'avgvel'); 

save(strcat(maindir,'\stdev\',num2str(q2),'_stdev.mat'),'stdev'); 

clearvars q2 

clc 

 

disp('Navigate to section:') 

disp('Mesh Gridding & Re/Bulk Velocity Test Matrix Setup') 

disp('You will need:') 

disp({'Tested Reynolds number';'Bulk velocity at that Reynolds number'}) 

Mesh Gridding & Re/Bulk Velocity Test Matrix Setup 
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clc 

% Load x, and y arrays (x=[1:N], y=[N:1]) 

load(strcat(maindir,'\parameters\probecoord')); 

x_Dh=x./0.0508; 

y_Dh=y./0.0508; 

[X,Y]=meshgrid(x_Dh,y_Dh); 

 

% Test Velocities 

% Load bulk velocity array, and Reynolds number array w/ new entries [N:1] 

 

q3=input('First hot-wire test? (y/n) ','s'); 

if q3=='y' 

Re=input('Input Reynolds number tested -> '); 

velb=input('Input bulk (mass flow) velocity tested -> '); 

elseif q1=='y' 

       load(strcat(maindir,'\parameters\flowparam')); 

       m=length(Re); 

       a=input('Input Reynolds Number -> '); 

       b=input('Input bulk (mass flow) velocity -> '); 

       if a>max(Re) % new entries added from the right 

          Re(m+1)=a; 

          velb(m+1)=b; 

          clearvars a b 

       elseif a<min(Re) % new entries added from the left 

              Re(m+1)=0; 

              Re=circshift(Re,1,2); 

              Re(1)=a; 

              clearvars a 

              velb(m+1)=0; 

              velb=circshift(velb,1,2); 

              velb(1)=b; 

              clearvars b 

       else % new entries added in between existing entries 

            for i=1:m 

                if and(Re(i)<a,Re(i+1)>a); 

                   Re=[Re(1:i) a Re(i+1:end)]; 

                   velb=[velb(1:i) b velb(i+1:end)]; 

                end 

            end 

            clearvars a b i 

       end 

else 

load(strcat(maindir,'\parameters\flowparam')); 

end 

clearvars q3 

m=find(Re==max(Re)); 

save(strcat(maindir,'\parameters\flowparam.mat'),'Re','velb'); 

clc 

 

qunc=input('Uncertainty Calculations for your plots? (y/n) ','s'); 

if qunc=='y' 
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    cd(maindir) 

    run('Kings_law.m') 

    run('Calibration_Uncertainty.m') 

    q4='n'; 

    disp('Navigate to section:') 

    disp('Obstacle Image Preparation') 

else 

    q4=input('Just plotting integral length scale and spectra? (y/n) ','s'); 

    disp('Navigate to section:') 

    disp('Obstacle Image Preparation') 

end 

Obstacle Image Preparation 

clc 

 

r1=input('Number of streamwise locations on first streamwise rib (3)-> '); 

r2=input('Number of streamwise locations on second streamwise rib (2)-> '); 

probe1xo=min(x_Dh);                      % Probe boundary image cut (/Dh) 

probe1yo=min(y_Dh);                      % 

probe1w=x_Dh(r1+1)-min(x_Dh);            % 

probe1h=y_Dh(zero_pts);                  % 

probe2xo=x_Dh(length(x_Dh)-r2);          % 

probe2yo=probe1yo;                       % 

probe2w=max(x_Dh)-x_Dh(length(x_Dh)-r2); % 

probe2h=probe1h;                         % 

 

load(strcat(maindir,'\parameters\rib_spec.mat')) 

 

 

delay=0.75;    % Set time delay (seconds) for animated GIF images 

disp('Navigate to section:') 

disp('MAX/MIN Scaling Control') 

MAX/MIN Scaling Control 

clc 

AVGL=zeros(length(y),length(x),m); 

NONAVGL=zeros(length(y),length(x),m); 

STDV=zeros(length(y),length(x),m); 

NONSTDV=zeros(length(y),length(x),m); 

TI=zeros(length(y),length(x),m); 

 

NONVELUNCRTPRCNT=zeros(length(y),length(x),m); 

TIUNCRTPRCNT=zeros(length(y),length(x),m); 

 

for i=1:m 

    load(strcat(maindir,'\avgvel\',num2str(Re(i)),'_avgvel.mat')); 

    load(strcat(maindir,'\stdev\',num2str(Re(i)),'_stdev.mat')); 
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    AVGL(:,:,i)=avgvel; 

    STDV(:,:,i)=stdev; 

    if q4=='n' 

        NONAVGL(:,:,i)=avgvel./velb(i); 

        NONSTDV(:,:,i)=stdev./velb(i); 

        TI(:,:,i)=stdev./avgvel; 

        if qunc=='y' 

%             load(strcat(maindir,'\hotwire calibrations\UVELB.mat')) 

            NONVELUNCRTPRCNT(:,:,i)=100.*sqrt((mean(... 

                UPRCNT.(strcat('Re',num2str(Re(i))))(:,6))./velb(i)).^2+... 

                (1./velb(i).^2.*UVELB(i).*avgvel).^2)./NONAVGL(:,:,i); 

            TIUNCRTPRCNT(:,:,i)=100.*mean(UPRCNT.(strcat('Re',num2str(Re(i))))... 

                (:,6))./avgvel.^2.*stdev./TI(:,:,i); 

        end 

    else 

    end 

end 

clearvars i 

 

if q4=='n' 

    nonavgl_max=max(NONAVGL(:)); 

    nonavgl_min=min(NONAVGL(:)); 

    ti_max=max(TI(:)); %------------------ user control!! 

    ti_min=min(TI(:)); 

    stdev_max=max(STDV(:)); %------------------ user control!! 

    stdev_min=min(STDV(:)); 

    nonstdv_max=max(NONSTDV(:)); %------------------ user control!! 

    nonstdv_min=min(NONSTDV(:)); 

    nonveluncrtprcnt_min=min(NONVELUNCRTPRCNT(:)); 

    nonveluncrtprcnt_max=max(NONVELUNCRTPRCNT(:)); 

    tiuncrtprcnt_min=min(TIUNCRTPRCNT(:)); 

    tiuncrtprcnt_max=max(TIUNCRTPRCNT(:)); 

    contlyr=15; %------------- user control!! (number of contour layers) 

    disp('Navigate to section:') 

    disp('Interpolated Suface Plots (Non-D Velocity, TI, STDEV, Non-D STDEV)') 

else 

    disp('Navigate to section:') 

    disp('Locating Most Turbulent Grid Points on Rib for All Re Cases') 

end 

% clearvars q4 

Locating Most Turbulent Grid Points for All Re Cases in Rib Valley 

stdevloc=zeros(m,2); 

VelFluctBin=zeros(NS,m); 

 

cd autocorrelations 

b=struct2cell(dir('*autocorr*')); 

c=sort(str2double(strrep(b(1,:),'_autocorr.mat',''))); 

cd(maindir) 
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clearvars b 

 

valoc=input('Number of points taken in rib valley (5) -> '); 

r1=input('Number of streamwise locations on first streamwise rib (3)-> '); 

r2=input('Number of streamwise locations on second streamwise rib (2)-> '); 

 

% Locating relevant velocity data files (in Zone 2 -rib valley) 

for a=1:m 

    clc 

    if any(c==Re(a)) 

        VelFluctBin(:,a)=0; 

        disp(strcat(sprintf('%.0f%%',100*(a/m)),' - VelFluctBin complete')) 

    else 

    STDV_sub=STDV(:,:,a); 

    % [y's from bottom surface, downstream x's] 

    [i,j]=ind2sub(size(STDV_sub(1:valoc,(r1+1):(length(x_Dh)-r2))),... 

        find(STDV_sub(1:valoc,(r1+1):(length(x_Dh)-r2))==... 

        max(max(STDV_sub(1:valoc,(r1+1):(length(x_Dh)-r2)))))); 

    stdevloc(a,:)=[i,j]; 

    filename=strcat(maindir,'\hotwire tests\',strcat(num2str(Re(a)),... 

        ' Raw\Velocities\z2x',num2str(stdevloc(a,2)),'y',num2str(stdevloc(a,1)),... 

        '.txt')); 

%     d(a,1)={filename}; % to check which files are being pulled 

    B=load(filename); 

    VelFluctBin(:,a)=B(1:NS,1); 

    clearvars B filename STDV_sub 

    disp(strcat(sprintf('%.0f%%',100*(a/m)),' - VelFluctBin complete')) 

    end 

end 

clearvars a i j 

 

for i=1:m 

    clc 

    if std(VelFluctBin(:,i))==0 

        disp(strcat(sprintf('%.0f%%',100*(i/m)),' - U-file complete (already done)')) 

    else 

        U=VelFluctBin(:,i); 

        U_bar=mean(VelFluctBin(:,i)); 

        u=U-U_bar; 

        save(strcat(maindir,'\autocorrelations\turb velocity fluct\',... 

            num2str(Re(i)),'_U.mat'),'U'); 

        save(strcat(maindir,'\autocorrelations\turb velocity fluct\',... 

            num2str(Re(i)),'_U_bar.mat'),'U_bar'); 

        save(strcat(maindir,'\autocorrelations\turb velocity fluct\',... 

            num2str(Re(i)),'_u_fluct.mat'),'u'); 

        clearvars U 

        disp(strcat(sprintf('%.0f%%',100*(i/m)),' - U-file complete')) 

    end 

end 

clc 

 

clearvars VelFluctBin vel U_bar u U i 
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disp('Navigate to section:') 

disp('Length Scales - Autocorrelation') 

Length Scales - Autocorrelation 

% Autocorrelation Parameter Setup 

f_s=262000;      % sampling frequenzy (Hz) 

f_s_new=262000; 

fr=f_s/f_s_new; 

dt = 1/f_s_new;     % time step (s) 

maxlag=10000;   % autocorrelation lags 

lags=0:maxlag; 

tau=lags.*dt; 

clearvars f_s 

 

%Autocorrelation 

cor=zeros(m,maxlag+1); 

lgnd=cell(1,m); 

%     % Autocorrelation function; u = U - <U> 

% 

%       rho(tau)= <u(t)*u(t+tau)> 

%               --------------- 

%                  <u^2(t)> 

 

for i=1:m 

    if any(c==Re(i)) 

    disp(strcat(sprintf('%.0f%%',100*(i/m)),' - autocorr-file complete')) 

    else 

    disp(strcat(sprintf('%.0f%%',100*(i/m)),' - autocorr-file complete')) 

    lgnd{i}=strcat('Re = ',num2str(Re(i))); 

    load(strcat(maindir,'\autocorrelations\turb velocity fluct\',... 

        num2str(Re(i)),'_u_fluct.mat')); 

    u_new=u(1:fr:NS); 

%     sumacorr=zeros(maxlag,1); 

%         for k=0:maxlag 

%             u_new_tau=circshift(u_new,[-k,0]); 

%             prod=u_new.*u_new_tau; 

%             sumacorr(k+1)=sum(prod(1:(length(prod)-k))); 

%         end 

%      acorr=1/(length(u_new)-1).*sumacorr./var(u_new); 

    rho=xcorr(u_new,maxlag)./((length(u_new)-1).*var(u_new)); 

 

    save(strcat(maindir,'\autocorrelations\',num2str(Re(i)),'_autocorr.mat'),... 

        'rho'); 

    cor(i,:)=rho(maxlag+1:2*maxlag+1); 

    clearvars u U 

    clc 

    end 

end 
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figure 

hold on 

atcr=plot(tau,cor); 

lclr={get(atcr,'color')}; 

lnclr=lclr{1,1}; 

legend(lgnd); 

legend('boxoff'); 

plot([0 max(tau)],[0 0],'Color','k') 

xlim([0 max(tau)]) 

xlabel('\tau (s)'); 

ylim([-0.1 1]) 

ylabel('ACF'); 

title('ACF for all Re'); 

hold off 

saveas(gcf,strcat(maindir,'\figures\acf'),'png'); 

set(gcf,'visible','off'); 

 

for i=1:m 

    figure 

    hold on 

    plot(tau,cor(i,:),'Color',lnclr{i}); 

    plot([0 max(tau)],[0 0],'Color','k') 

    xlim([0 max(tau)]) 

    xlabel('\tau (s)'); 

    ylim([-0.1 1]) 

    ylabel('ACF'); 

    lgnd(i)={strcat('Re=',num2str(Re(i)))}; 

    legend(strcat('Re=',num2str(Re(i)))); 

    legend('boxoff'); 

    title(strcat('ACF at Re = ',num2str(Re(i)))); 

    hold off 

    saveas(gcf,strcat(maindir,'\figures\',num2str(Re(i)),'_acf'),'png'); 

    set(gcf,'visible','off'); 

end 

 

% clearvars lclr i j u 

% Taylor Microscales 

cd autocorrelations 

lag_tylr=3; 

max_tylr_tau=lag_tylr.*dt; 

tau_tylr=0:dt:dt*(lag_tylr-1); 

tylr_tscale=zeros(1,m); 

tylr_autocorr_fit=zeros(m:3); 

 

for i=1:m 

    load(strcat(maindir,'\autocorrelations\turb velocity fluct\',... 

        num2str(Re(i)),'_U_bar.mat')); 

    ubar(i)=U_bar; %#ok<SAGROW> 

end 

 

figure 
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for i=1:m 

    tylr_autocorr_fit(i,:)=polyfit(tau(1:lag_tylr),cor(i,1:lag_tylr),2); 

    rts=roots(tylr_autocorr_fit(i,:)); 

    tylr_tscale(i)=rts(rts>0); 

    hold on 

    atcr=plot(tau,cor); 

    tau_tylr_parab=linspace(0,tylr_tscale(i),lag_tylr); 

    tylr_para=tylr_autocorr_fit(i,1).*tau_tylr_parab.^2+... 

              tylr_autocorr_fit(i,2).*tau_tylr_parab+... 

              tylr_autocorr_fit(i,3); 

    para=plot(tau_tylr_parab,tylr_para,'Color',lnclr{i},'LineStyle','--'); 

    clc 

end 

 

tylr_lscale=tylr_tscale.*ubar; % Taylor Frozen Field Hypothesis 

 

save(strcat(maindir,'\autocorrelations\Taylor scales\tylr_tscale.mat'),... 

    'tylr_tscale'); 

save(strcat(maindir,'\autocorrelations\Taylor scales\tylr_lscale.mat'),... 

    'tylr_lscale'); 

 

legend(lgnd); 

legend('boxoff'); 

str={'ACF - solid';'Taylor - dashed'}; 

dim=[0.4 0.6 0.3 0.3]; 

annotation('textbox',dim,'String',str,'FitBoxToText','on','FontSize',9); 

title('ACF for all Tested Re - Taylor Parabolas'); 

xlabel('\tau (s)'); 

ylabel('ACF'); 

ylim([0,1]) 

xlim([0,2*max(tylr_tscale)]) 

hold off 

saveas(gcf,strcat(maindir,'\figures\acf_taylor_tscales'),'png'); 

set(gcf,'visible','off'); 

cd(maindir) 

 

 

% Integral Scales - Trapezoidal Integral Approximation 

cd autocorrelations 

int_tscale=zeros(1,m); 

int_lscale=zeros(1,m); 

for i=1:m 

    int_tscale(i)=trapz(tau,cor(i,:)); 

    int_lscale(i)=int_tscale(i)*ubar(i); 

    save(strcat(maindir,'\autocorrelations\integral scales\int_tscale.mat'),... 

        'int_tscale'); 

    save(strcat(maindir,'\autocorrelations\integral scales\int_lscale.mat'),... 

        'int_lscale'); 

end 

cd(maindir) 

clearvars i 
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Energy Spectrum - Autocovariance to Fourier Transform 

% Autocovariance 

cov=zeros(m,maxlag+1); 

for i=1:m 

%     if any(c==Re(i)) 

%     disp(strcat(sprintf('%.0f%%',100*(i/m)),' - autocorr-file complete')) 

%     else 

    tic 

    disp(i) 

    lgnd{i}=strcat('Re = ',num2str(Re(i))); 

    load(strcat(maindir,'\autocorrelations\turb velocity fluct\',num2str(Re(i)),... 

        '_u_fluct.mat')); 

    R=xcov(u,maxlag)./(NS-1); 

    save(strcat(maindir,'\autocorrelations\',num2str(Re(i)),'_autocov.mat'),'R'); 

    disp(strcat(sprintf('%.0f%%',100*(i/m)),' - autocov-file complete')) 

    cov(i,:)=R(maxlag+1:2*maxlag+1); 

    toc 

    clearvars U 

    clc 

% end 

end 

Fourier Transform 

E2=zeros(1,maxlag+1); 

E=zeros(1,maxlag/2+1); 

for i=1:m 

    E2(i,:)=abs(fft(cov(i,:))/maxlag); %Two-sided spectrum 

    E(i,:)=2.*E2(i,1:maxlag/2+1); %Two-sided -> Single-sided spectrum 

    f=1/dt*(0:(maxlag/2))/maxlag; 

    hold on 

    figure 

    loglog(f,E(i,:)); 

    title('Energy Spectra for all Tested Re'); 

    legend(num2str(Re(i))); 

    legend('boxoff'); 

    xlabel('Frequency'); 

    ylabel('Energy'); 

    hold off 

    save(strcat(maindir,'\autocorrelations\',num2str(Re(i)),'_energy.mat'),'E'); 

    saveas(gcf,strcat(maindir,'\figures\energy_spectra_Re=',num2str(Re(i))),'png'); 

    set(gcf,'visible','off'); 

end 

figure 

loglog(f,E); 

title('Energy Spectra for all Tested Re'); 

legend(lgnd); 
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legend('boxoff'); 

xlabel('Frequency'); 

ylabel('Energy'); 

saveas(gcf,strcat(maindir,'\figures\energy_spectra'),'png'); 

Interpolated Surface Plots (Non-D Velocity, TI, STDEV, Non-D STDEV) 

aspect=max(x)/max(y); 

 

filename=strcat(maindir,'\gifs\surf_vel.gif'); 

for i=1:m % Non-Dimensional Average Velocity "u_{avg}/u_{bulk}" 

    figure('Name','NonDim Velocity - SurfPlot','NumberTitle','off') 

    hold on 

    surfc(X,Y,AVGL(:,:,i)./velb(i),'FaceColor','interp'); 

    title(strcat('Re= ',num2str(Re(i)),' (u_{avg}/u_b)')); 

    xlabel('x/D_h'); 

    ylabel('y/D_h'); 

    view(0,90); 

    rectangle('position',[rib1xo,rib1yo,rib1w,rib1h],'Facecolor',[0,0,0],... 

        'EdgeColor','k'); 

    rectangle('position',[rib2xo,rib2yo,rib2w,rib2h],'Facecolor',[0,0,0],... 

        'EdgeColor','k'); 

    axis('tight'); 

    pbaspect([aspect 1 1]) 

    grid('on'); 

    colorbar; 

    caxis([nonavgl_min nonavgl_max]); 

    pause(1/2); 

    [A,map] = rgb2ind(frame2im(getframe(gcf)),256); 

    if i == 1 

        imwrite(A,map,filename,'gif','LoopCount',Inf,'DelayTime',delay); 

    else 

        imwrite(A,map,filename,'gif','WriteMode','append','DelayTime',delay); 

    end 

    saveas(gcf,strcat(maindir,'\figures\surf_vel\',num2str(Re(i)),'_surf_vel'),... 

        'png'); 

    set(gcf,'visible','off'); 

end 

 

filename=strcat(maindir,'\gifs\surf_uvel.gif'); 

for i=1:m % Non-Dimensional Average Velocity Uncertainty "%U(u_{avg}/u_{bulk})" 

    figure('Name','NonDim Velocity %Uncertainty - SurfPlot','NumberTitle','off') 

    hold on 

    rectangle('position',[rib1xo,rib1yo,rib1w,rib1h],'Facecolor',[0,0,0],... 

        'EdgeColor','k'); 

    rectangle('position',[rib2xo,rib2yo,rib2w,rib2h],'Facecolor',[0,0,0],... 

        'EdgeColor','k'); 

    surfc(X,Y,NONVELUNCRTPRCNT(:,:,i),'FaceColor','interp'); 

    title(strcat('Re= ',num2str(Re(i)),' (%U(u_{avg}/u_b))')); 

    xlabel('x/D_h'); 
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    ylabel('y/D_h'); 

    view(0,90); 

    axis('tight'); 

    pbaspect([aspect 1 1]) 

    grid('on'); 

    colorbar; 

    caxis([nonveluncrtprcnt_min nonveluncrtprcnt_max]); 

    pause(1/2); 

    [A,map] = rgb2ind(frame2im(getframe(gcf)),256); 

    if i == 1 

        imwrite(A,map,filename,'gif','LoopCount',Inf,'DelayTime',delay); 

    else 

        imwrite(A,map,filename,'gif','WriteMode','append','DelayTime',delay); 

    end 

    saveas(gcf,strcat(maindir,'\figures\surf_uvel\',num2str(Re(i)),'_surf_uvel'),... 

        'png'); 

    set(gcf,'visible','off'); 

end 

 

filename=strcat(maindir,'\gifs\surf_ti.gif'); 

for i=1:m % Turbulence Intensities "u_{rms}/u_{avg}" 

    figure('Name','TI - SurfPlot','NumberTitle','off') 

    hold on 

    surfc(X,Y,STDV(:,:,i)./AVGL(:,:,i),'FaceColor','interp'); 

    title(strcat('Re= ',num2str(Re(i)),' (TI)')); 

    xlabel('x/D_h'); 

    ylabel('y/D_h'); 

    view(0,90); 

    rectangle('position',[rib1xo,rib1yo,rib1w,rib1h],'Facecolor',[0,0,0],... 

        'EdgeColor','k'); 

    rectangle('position',[rib2xo,rib2yo,rib2w,rib2h],'Facecolor',[0,0,0],... 

        'EdgeColor','k'); 

    axis('tight'); 

    pbaspect([aspect 1 1]) 

    grid on; 

    colorbar; 

    caxis([ti_min ti_max]); 

    pause(1/2); 

    [A,map] = rgb2ind(frame2im(getframe(gcf)),256); 

    if i == 1 

        imwrite(A,map,filename,'gif','LoopCount',Inf,'DelayTime',delay); 

    else 

        imwrite(A,map,filename,'gif','WriteMode','append','DelayTime',delay); 

    end 

    saveas(gcf,strcat(maindir,'\figures\surf_ti\',num2str(Re(i)),'_surf_ti'),... 

        'png'); 

    set(gcf,'visible','off'); 

end 

 

filename=strcat(maindir,'\gifs\surf_uti.gif'); 

for i=1:m % Turbulence Intensity Uncertainties "%U(u_{rms}/u_{avg})" 

    figure('Name','TI Uncertainty - SurfPlot','NumberTitle','off') 
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    hold on 

    surfc(X,Y,TIUNCRTPRCNT(:,:,i),'FaceColor','interp'); 

    title(strcat('Re= ',num2str(Re(i)),' (%U(TI))')); 

    xlabel('x/D_h'); 

    ylabel('y/D_h'); 

    view(0,90); 

    rectangle('position',[rib1xo,rib1yo,rib1w,rib1h],'Facecolor',[0,0,0],... 

        'EdgeColor','k'); 

    rectangle('position',[rib2xo,rib2yo,rib2w,rib2h],'Facecolor',[0,0,0],... 

        'EdgeColor','k'); 

    axis('tight'); 

    pbaspect([aspect 1 1]) 

    grid on; 

    colorbar; 

    caxis([tiuncrtprcnt_min tiuncrtprcnt_max]); 

    pause(1/2); 

    [A,map] = rgb2ind(frame2im(getframe(gcf)),256); 

    if i == 1 

        imwrite(A,map,filename,'gif','LoopCount',Inf,'DelayTime',delay); 

    else 

        imwrite(A,map,filename,'gif','WriteMode','append','DelayTime',delay); 

    end 

    saveas(gcf,strcat(maindir,'\figures\surf_uti\',num2str(Re(i)),'_surf_uti'),... 

        'png'); 

    set(gcf,'visible','off'); 

end 

 

filename=strcat(maindir,'\gifs\surf_stdev.gif'); 

for i=1:m % Standard Deviation "u_{rms}" 

    figure('Name','Stdev - SurfPlot','NumberTitle','off') 

    hold on 

    surfc(X,Y,STDV(:,:,i),'FaceColor','interp'); 

    title(strcat('Re= ',num2str(Re(i)),' (u_{rms})')); 

    xlabel('x/D_h'); 

    ylabel('y/D_h'); 

    view(0,90); 

    rectangle('position',[rib1xo,rib1yo,rib1w,rib1h],'Facecolor',[0,0,0],... 

        'EdgeColor','k'); 

    rectangle('position',[rib2xo,rib2yo,rib2w,rib2h],'Facecolor',[0,0,0],... 

        'EdgeColor','k'); 

    axis('tight'); 

    pbaspect([aspect 1 1]) 

    grid on; 

    colorbar; 

    caxis([stdev_min stdev_max]); 

    pause(1/2); 

    [A,map] = rgb2ind(frame2im(getframe(gcf)),256); 

    if i == 1 

        imwrite(A,map,filename,'gif','LoopCount',Inf,'DelayTime',delay); 

    else 

        imwrite(A,map,filename,'gif','WriteMode','append','DelayTime',delay); 

    end 
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    saveas(gcf,strcat(maindir,'\figures\surf_stdev\',num2str(Re(i)),'_surf_stdev'),... 

        'png'); 

    set(gcf,'visible','off'); 

end 

 

filename=strcat(maindir,'\gifs\surf_stdev_ub.gif'); 

for i=1:m % Standard Deviation / Bulk Velocity "u_{rms}/u_{bulk}" 

    figure('Name','NonDim Stdev - SurfPlot','NumberTitle','off') 

    hold on 

    surfc(X,Y,STDV(:,:,i)./velb(i),'FaceColor','interp'); 

    title(strcat('Re= ',num2str(Re(i)),' (u_{rms}/u_b)')); 

    xlabel('x/D_h'); 

    ylabel('y/D_h'); 

    view(0,90); 

    rectangle('position',[rib1xo,rib1yo,rib1w,rib1h],'Facecolor',[0,0,0],... 

        'EdgeColor','k'); 

    rectangle('position',[rib2xo,rib2yo,rib2w,rib2h],'Facecolor',[0,0,0],... 

        'EdgeColor','k'); 

    axis('tight'); 

    pbaspect([aspect 1 1]) 

    grid on; 

    colorbar; 

    caxis([nonstdv_min nonstdv_max]); 

    pause(1/2); 

    [A,map] = rgb2ind(frame2im(getframe(gcf)),256); 

    if i == 1 

        imwrite(A,map,filename,'gif','LoopCount',Inf,'DelayTime',delay); 

    else 

        imwrite(A,map,filename,'gif','WriteMode','append','DelayTime',delay); 

    end 

    saveas(gcf,strcat(maindir,'\figures\surf_stdev_ub\',num2str(Re(i)),... 

        '_surf_stdev_ub'),'png'); 

    set(gcf,'visible','off'); 

end 

clc 

disp('Navigate to section:') 

disp('Contour Plots (Non-D Velocity, TI, STDEV, Non-D STDEV)') 

Contour Plots (Non-D Velocity, TI, STDEV, Non-D STDEV) 

clc 

filename=strcat(maindir,'\gifs\cont_vel.gif'); 

for i=1:m % Non-Dimensional Average Velocity "u_{avg}/u_{bulk}" 

    figure('Name','NonDim Velocity - ContPlot','NumberTitle','off') 

    contourf(X,Y,AVGL(:,:,i)./velb(i),contlyr); 

    title(strcat('Re= ',num2str(Re(i)),' (u_{avg}/u_b)')); 

    xlabel('x/D_h'); 

    ylabel('y/D_h'); 

    caxis([nonavgl_min nonavgl_max]); 

    axis('tight'); 
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    pbaspect([aspect 1 1]) 

    colorbar; 

    rectangle('position',[probe1xo,probe1yo,probe1w,probe1h],'Facecolor',... 

        [1,1,1],'EdgeColor','w'); 

    rectangle('position',[rib1xo,rib1yo,rib1w,rib1h],'Facecolor',[0,0,0],... 

        'EdgeColor','k'); 

    rectangle('position',[probe2xo,probe2yo,probe2w,probe2h],'Facecolor',... 

        [1,1,1],'EdgeColor','w'); 

    rectangle('position',[rib2xo,rib2yo,rib2w,rib2h],'Facecolor',[0,0,0],... 

        'EdgeColor','k'); 

    [A,map] = rgb2ind(frame2im(getframe(gcf)),256); 

    if i == 1 

        imwrite(A,map,filename,'gif','LoopCount',Inf,'DelayTime',delay); 

    else 

        imwrite(A,map,filename,'gif','WriteMode','append','DelayTime',delay); 

    end 

    saveas(gcf,strcat(maindir,'\figures\cont_vel\',num2str(Re(i)),'_cont_vel'),... 

        'png'); 

    set(gcf,'visible','off'); 

end 

 

filename=strcat(maindir,'\gifs\cont_uvel.gif'); 

for i=1:m % Non-Dimensional Average Velocity Uncertainty "%U(u_{avg}/u_{bulk})" 

    figure('Name','NonDim Velocity Uncertainty - ContPlot','NumberTitle','off') 

    contourf(X,Y,NONVELUNCRTPRCNT(:,:,i),contlyr); 

    title(strcat('Re= ',num2str(Re(i)),' (%U(u_{avg}/u_b))')); 

    xlabel('x/D_h'); 

    ylabel('y/D_h'); 

    caxis([nonveluncrtprcnt_min nonveluncrtprcnt_max]); 

    axis('tight'); 

    pbaspect([aspect 1 1]) 

    colorbar; 

    rectangle('position',[probe1xo,probe1yo,probe1w,probe1h],'Facecolor',... 

        [1,1,1],'EdgeColor','w'); 

    rectangle('position',[rib1xo,rib1yo,rib1w,rib1h],'Facecolor',[0,0,0],... 

        'EdgeColor','k'); 

    rectangle('position',[probe2xo,probe2yo,probe2w,probe2h],'Facecolor',... 

        [1,1,1],'EdgeColor','w'); 

    rectangle('position',[rib2xo,rib2yo,rib2w,rib2h],'Facecolor',[0,0,0],... 

        'EdgeColor','k'); 

    [A,map] = rgb2ind(frame2im(getframe(gcf)),256); 

    if i == 1 

        imwrite(A,map,filename,'gif','LoopCount',Inf,'DelayTime',delay); 

    else 

        imwrite(A,map,filename,'gif','WriteMode','append','DelayTime',delay); 

    end 

    saveas(gcf,strcat(maindir,'\figures\cont_uvel\',num2str(Re(i)),'_cont_uvel'),... 

        'png'); 

    set(gcf,'visible','off'); 

end 

 

filename=strcat(maindir,'\gifs\cont_ti.gif'); 
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for i=1:m % Turbulence Intensities "u_{rms}/u_{avg}" 

    figure('Name','TI - ContPlot','NumberTitle','off') 

    contourf(X,Y,TI(:,:,i),contlyr); 

    title(strcat('Re= ',num2str(Re(i)),' (TI_b)')); 

    xlabel('x/D_h'); 

    ylabel('y/D_h'); 

    caxis([ti_min ti_max]); 

    axis('tight'); 

    pbaspect([aspect 1 1]) 

    colorbar; 

    rectangle('position',[probe1xo,probe1yo,probe1w,probe1h],'Facecolor',[1,1,1],... 

        'EdgeColor','w'); 

    rectangle('position',[rib1xo,rib1yo,rib1w,rib1h],'Facecolor',[0,0,0],... 

        'EdgeColor','k'); 

    rectangle('position',[probe2xo,probe2yo,probe2w,probe2h],'Facecolor',... 

        [1,1,1],'EdgeColor','w'); 

    rectangle('position',[rib2xo,rib2yo,rib2w,rib2h],'Facecolor',[0,0,0],... 

        'EdgeColor','k'); 

    [A,map] = rgb2ind(frame2im(getframe(gcf)),256); 

    if i == 1 

        imwrite(A,map,filename,'gif','LoopCount',Inf,'DelayTime',delay); 

    else 

        imwrite(A,map,filename,'gif','WriteMode','append','DelayTime',delay); 

    end 

    saveas(gcf,strcat(maindir,'\figures\cont_ti\',num2str(Re(i)),'_cont_ti'),... 

        'png'); 

    set(gcf,'visible','off'); 

end 

 

filename=strcat(maindir,'\gifs\cont_uti.gif'); 

for i=1:m % Turbulence Intensity Uncertainties "%U(u_{rms}/u_{avg})" 

    figure('Name','TI Uncertainties - ContPlot','NumberTitle','off') 

    contourf(X,Y,TIUNCRTPRCNT(:,:,i),contlyr); 

    title(strcat('Re= ',num2str(Re(i)),' (TI_b)')); 

    xlabel('x/D_h'); 

    ylabel('y/D_h'); 

    caxis([tiuncrtprcnt_min tiuncrtprcnt_max]); 

    axis('tight'); 

    pbaspect([aspect 1 1]) 

    colorbar; 

    rectangle('position',[probe1xo,probe1yo,probe1w,probe1h],'Facecolor',[1,1,1],... 

        'EdgeColor','w'); 

    rectangle('position',[rib1xo,rib1yo,rib1w,rib1h],'Facecolor',[0,0,0],... 

        'EdgeColor','k'); 

    rectangle('position',[probe2xo,probe2yo,probe2w,probe2h],'Facecolor',... 

        [1,1,1],'EdgeColor','w'); 

    rectangle('position',[rib2xo,rib2yo,rib2w,rib2h],'Facecolor',[0,0,0],... 

        'EdgeColor','k'); 

    [A,map] = rgb2ind(frame2im(getframe(gcf)),256); 

    if i == 1 

        imwrite(A,map,filename,'gif','LoopCount',Inf,'DelayTime',delay); 

    else 
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        imwrite(A,map,filename,'gif','WriteMode','append','DelayTime',delay); 

    end 

    saveas(gcf,strcat(maindir,'\figures\cont_uti\',num2str(Re(i)),'_cont_uti'),... 

        'png'); 

    set(gcf,'visible','off'); 

end 

 

filename=strcat(maindir,'\gifs\cont_stdev.gif'); 

for i=1:m % Standard Deviation "u_{rms}" 

    figure('Name','Stdev - ContPlot','NumberTitle','off') 

    load(strcat(maindir,'\stdev\',num2str(Re(i)),'_stdev.mat')); 

    contourf(X,Y,STDV(:,:,i),contlyr); 

    title(strcat('Re= ',num2str(Re(i)),' (u_{rms})')); 

    xlabel('x/D_h'); 

    ylabel('y/D_h'); 

    caxis([stdev_min stdev_max]); 

    axis('tight'); 

    pbaspect([aspect 1 1]) 

    colorbar; 

    rectangle('position',[probe1xo,probe1yo,probe1w,probe1h],'Facecolor',... 

        [1,1,1],'EdgeColor','w'); 

    rectangle('position',[rib1xo,rib1yo,rib1w,rib1h],'Facecolor',[0,0,0],... 

        'EdgeColor','k'); 

    rectangle('position',[probe2xo,probe2yo,probe2w,probe2h],'Facecolor',... 

        [1,1,1],'EdgeColor','w'); 

    rectangle('position',[rib2xo,rib2yo,rib2w,rib2h],'Facecolor',[0,0,0],... 

        'EdgeColor','k'); 

    [A,map] = rgb2ind(frame2im(getframe(gcf)),256); 

    if i == 1 

        imwrite(A,map,filename,'gif','LoopCount',Inf,'DelayTime',delay); 

    else 

        imwrite(A,map,filename,'gif','WriteMode','append','DelayTime',delay); 

    end 

    saveas(gcf,strcat(maindir,'\figures\cont_stdev\',num2str(Re(i)),... 

        '_cont_stdev'),'png'); 

    set(gcf,'visible','off'); 

end 

 

filename=strcat(maindir,'\gifs\cont_stdev_ub.gif'); 

for i=1:m % Standard Deviation "u_{rms} /u_{bulk}" 

    figure('Name','NonDim Stdev - ContPlot','NumberTitle','off') 

    load(strcat(maindir,'\stdev\',num2str(Re(i)),'_stdev.mat')); 

    contourf(X,Y,STDV(:,:,i)./velb(i),contlyr); 

    title(strcat('Re= ',num2str(Re(i)),' (u_{rms}/u_b)')); 

    xlabel('x/D_h'); 

    ylabel('y/D_h'); 

    caxis([nonstdv_min nonstdv_max]); 

    axis('tight'); 

    pbaspect([aspect 1 1]) 

    colorbar; 

    rectangle('position',[probe1xo,probe1yo,probe1w,probe1h],'Facecolor',... 

        [1,1,1],'EdgeColor','w'); 



 

87 

 

    rectangle('position',[rib1xo,rib1yo,rib1w,rib1h],'Facecolor',[0,0,0],... 

        'EdgeColor','k'); 

    rectangle('position',[probe2xo,probe2yo,probe2w,probe2h],'Facecolor',... 

        [1,1,1],'EdgeColor','w'); 

    rectangle('position',[rib2xo,rib2yo,rib2w,rib2h],'Facecolor',[0,0,0],... 

        'EdgeColor','k'); 

    [A,map] = rgb2ind(frame2im(getframe(gcf)),256); 

    if i == 1 

        imwrite(A,map,filename,'gif','LoopCount',Inf,'DelayTime',delay); 

    else 

        imwrite(A,map,filename,'gif','WriteMode','append','DelayTime',delay); 

    end 

    saveas(gcf,strcat(maindir,'\figures\cont_stdev_ub\',num2str(Re(i)),... 

        '_cont_stdev_ub'),'png'); 

    set(gcf,'visible','off'); 

end 

 

% clearvars -except avgvel n Re stdev velb X x x_Dh y Y y_Dh zero_pts xmax ymax 

disp('Navigate to section:') 

disp('Scatter Plots (Non-D Velocity, TI, STDEV, Non-D STDEV)') 

Scatter Plots (Non-D Velocity, TI, STDEV, Non-D STDEV) 

clc 

% U/Ub "Velocity Scaled Plot" 

for i=1:m 

    a=AVGL(:,:,i)./velb(i); 

    figure('Name','NonDim Velocity - ScatPlot','NumberTitle','off') 

    hold on 

    for j=1:xmax 

        subplot(2,ceil(xmax/2),j) 

        hold on 

        plot(a(:,j),y_Dh,'.','MarkerSize',6,'Color','k') 

        set(gca,'FontSize',6) 

        xlabel('u/u_b') 

        ylabel('y/Dh') 

        ylim([0 ceil(max(y_Dh*10))/10]) 

        xlim([0 ceil(10*nonavgl_max)/10]) 

        text(0.3,ceil(max(y_Dh*10))/10,strcat('Loc.',num2str(j)),'FontSize',8) 

        hold off 

    end 

    if mod(j/2,2)==0 

        b=subplot(2,ceil(xmax/2),ceil(m/2)); 

    else 

        b=subplot(2,ceil(xmax/2),ceil((m+1)/2)); 

    title(b,strcat('Re= ',num2str(Re(i)),' (u/u_b)'),'FontSize',10); 

    saveas(gcf,strcat(maindir,'\figures\scat_vel\',num2str(Re(i)),'_scat_vel'),... 

        'png'); 

    set(gcf,'visible','off'); 

    end 
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end 

hold off 

clearvars a b i j 

 

% %U(U/Ub) "Non-dimensional Velocity Uncertainty Plot" 

for i=1:m 

    a=NONVELUNCRTPRCNT(:,:,i); 

    figure('Name','NonDim Velocity Uncertainty- ScatPlot','NumberTitle','off') 

    hold on 

    for j=1:xmax 

        subplot(2,ceil(xmax/2),j) 

        hold on 

        plot(a(:,j),y_Dh,'.','MarkerSize',6,'Color','k') 

        set(gca,'FontSize',6) 

        xlabel('%U(u/u_b)') 

        ylabel('y/Dh') 

        ylim([0 ceil(max(y_Dh*10))/10]) 

        xlim([0 ceil(10*nonveluncrtprcnt_max)/10]) 

        text(0.3,ceil(max(y_Dh*10))/10,strcat('Loc.',num2str(j)),'FontSize',8) 

        hold off 

    end 

    if mod(j/2,2)==0 

        b=subplot(2,ceil(xmax/2),ceil(m/2)); 

    else 

        b=subplot(2,ceil(xmax/2),ceil((m+1)/2)); 

    title(b,strcat('Re= ',num2str(Re(i)),' (%U(u/u_b))'),'FontSize',10); 

    saveas(gcf,strcat(maindir,'\figures\scat_uvel\',num2str(Re(i)),'_scat_uvel'),... 

        'png'); 

    set(gcf,'visible','off'); 

    end 

end 

hold off 

clearvars a b i j 

 

% U_RMS /Ub "Tubulence Intensity, TI, Scaled by Bulk Velocity" Plot 

for i=1:m 

    a=STDV(:,:,i)./AVGL(:,:,i); 

    figure('Name','TI - ScatPlot','NumberTitle','off') 

    hold on 

    for j=1:xmax 

        subplot(2,ceil(xmax/2),j) 

        hold on 

        plot(a(:,j),y_Dh,'.','MarkerSize',6,'Color','k') 

        set(gca,'FontSize',6) 

        xlabel('TI') 

        ylabel('y/Dh') 

        ylim([0 ceil(max(y_Dh*10))/10]) 

        xlim([0 ceil(10*ti_max)/10]) 

        text(0.3,ceil(max(y_Dh*10))/10,strcat('Loc.',num2str(j)),'FontSize',8) 

        hold off 

    end 

    if mod(j/2,2)==0 
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        b=subplot(2,ceil(xmax/2),ceil(m/2)); 

    else 

        b=subplot(2,ceil(xmax/2),ceil((m+1)/2)); 

    title(b,strcat('Re= ',num2str(Re(i)),' (TI)'),'FontSize',10); 

    saveas(gcf,strcat(maindir,'\figures\scat_ti\',num2str(Re(i)),'_scat_ti'),... 

        'png'); 

    set(gcf,'visible','off'); 

    end 

end 

hold off 

clearvars a b i j 

 

% %U(TI) "Tubulence Intensity Uncertainty" Plot 

for i=1:m 

    a=TIUNCRTPRCNT(:,:,i); 

    figure('Name','%U(TI) - ScatPlot','NumberTitle','off') 

    hold on 

    for j=1:xmax 

        subplot(2,ceil(xmax/2),j) 

        hold on 

        plot(a(:,j),y_Dh,'.','MarkerSize',6,'Color','k') 

        set(gca,'FontSize',6) 

        xlabel('%U(TI)') 

        ylabel('y/Dh') 

        ylim([0 ceil(max(y_Dh*10))/10]) 

        xlim([0 ceil(10*tiuncrtprcnt_max)/10]) 

        text(0.3,ceil(max(y_Dh*10))/10,strcat('Loc.',num2str(j)),'FontSize',8) 

        hold off 

    end 

    if mod(j/2,2)==0 

        b=subplot(2,ceil(xmax/2),ceil(m/2)); 

    else 

        b=subplot(2,ceil(xmax/2),ceil((m+1)/2)); 

    title(b,strcat('Re= ',num2str(Re(i)),' %U(TI)'),'FontSize',10); 

    saveas(gcf,strcat(maindir,'\figures\scat_uti\',num2str(Re(i)),'_scat_uti'),... 

        'png'); 

    set(gcf,'visible','off'); 

    end 

end 

hold off 

clearvars a b i j 

 

% Standard Deviation "u_{rms}" 

for i=1:m 

    a=STDV(:,:,i); 

    figure('Name','u_{rms} - ScatPlot','NumberTitle','off') 

    hold on 

    for j=1:xmax 

        subplot(2,ceil(xmax/2),j) 

        hold on 

        plot(a(:,j),y_Dh,'.','MarkerSize',6,'Color','k') 

        set(gca,'FontSize',6) 
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        xlabel('u_{rms}','FontSize',7) 

        ylabel('y/Dh') 

        ylim([0 ceil(max(y_Dh*10))/10]) 

        xlim([0 ceil(10*stdev_max)/10]) 

        text(0.3,ceil(max(y_Dh*10))/10,strcat('Loc.',num2str(j)),'FontSize',8) 

        hold off 

    end 

    if mod(j/2,2)==0 

        b=subplot(2,ceil(xmax/2),ceil(m/2)); 

    else 

        b=subplot(2,ceil(xmax/2),ceil((m+1)/2)); 

    title(b,strcat('Re= ',num2str(Re(i)),' (u_{rms})'),'FontSize',10); 

    saveas(gcf,strcat(maindir,'\figures\scat_stdev\',num2str(Re(i)),... 

        '_scat_stdev'),'png'); 

    set(gcf,'visible','off'); 

    end 

end 

hold off 

clearvars a b i j 

 

% Non-dimensional Standard Deviation "u_{rms}/u_{bulk}" 

for i=1:m 

    a=STDV(:,:,i)/velb(i); 

    figure('Name','NonDim Stdev - ScatPlot','NumberTitle','off') 

    hold on 

    for j=1:xmax 

        subplot(2,ceil(xmax/2),j) 

        hold on 

        plot(a(:,j),y_Dh,'.','MarkerSize',6,'Color','k') 

        set(gca,'FontSize',6) 

        xlabel('u_{rms}/u_b','FontSize',7) 

        ylabel('y/Dh') 

        ylim([0 ceil(max(y_Dh*10))/10]) 

        xlim([0 ceil(10*nonstdv_max)/10]) 

        text(0.3,ceil(max(y_Dh*10))/10,strcat('Loc.',num2str(j)),'FontSize',8) 

        hold off 

    end 

    if mod(j/2,2)==0 

        b=subplot(2,ceil(xmax/2),ceil(m/2)); 

    else 

        b=subplot(2,ceil(xmax/2),ceil((m+1)/2)); 

    title(b,strcat('Re= ',num2str(Re(i)),' (u_{rms}/u_b)'),'FontSize',10); 

    saveas(gcf,strcat(maindir,'\figures\scat_stdev_ub\',num2str(Re(i)),... 

        '_scat_stdev_ub'),'png'); 

    set(gcf,'visible','off'); 

    end 

end 

hold off 

clearvars a b i j 

Published with MATLAB® R2014a 
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Sample Convergence Testing: 

disp('Locate Sample Convergence Velocity Data Folder'); 

directory=uigetdir; 

cd(directory) 

files=dir(directory); 

fileindex=find(~[files.isdir]); 

filelist=cell(length(fileindex),1); 

for i=1:length(fileindex) 

    filelist{i}=files(fileindex(i)).name; 

end 

clearvars i 

clc 

 

% Structuring Velocity Data 

abclist=('a':'z').'; 

 

for i=1:length(filelist) 

    s.(char(abclist(i)))=load(filelist{i}); 

end 

Sample Mean Convergence 

% load sample from cell 

for i=1:length(filelist) 

    N=length(s.(char(abclist(i)))); 

    mu.(char(abclist(i)))=zeros(N,1); 

    mu.(char(abclist(i)))(1)=s.(char(abclist(i)))(1); 

    for j=2:N 

        mu.(char(abclist(i)))(j)=((j-1)*mu.(char(abclist(i)))(j-1)+s.(char(abclist(i)))(j))/(j); 

    end 

end 

Sample Standard Deviation Convergence 

% load sample from cell 

% N=length(sample) 

% for i=1:N(of each test) 

   % diff=zeros(i,1) 

   % diff=sample(1:i)-mu(i) 

   % sumsq=sum(diff.^2) 

   %stdev(i)=sqrt(1/(i-1)*sumsq) 

 

% we have mean 

for i=1:length(filelist) 

    N=length(s.(char(abclist(i)))); 

    for j=1:N 
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        x=s.(char(abclist(i)))(1:j); 

        diff=x-mu.(char(abclist(i)))(j); 

        sqrdiff=diff.^2; 

        ss=sum(sqrdiff); 

        stdv.(char(abclist(i)))(j,1)=sqrt((1/(j-1)*ss)); 

    end 

end 

tic 

for i=1:l 

    for j=1:N % takes about 3.5 hours per test 

        m(j,i)=mean(U(1:j,i)); % requires about an hour and ten minutes for 1000000 samples 

        s(j,i)=std(U(1:j,i)); % takes about two hours for 1000000 samples 

    end 

end 

toc 

clearvars i 

% save(strcat(maindir,'\hotwire convergence test\Re=15000_Convergence_Results.mat'),'s','U','m'); 

 

m_fluct=zeros(N,3); 

s_fluct=zeros(N,3); 

mbar=mean(m); 

sbar=mean(s); 

for i=1:3 

    for j=1:N 

        m_fluct(j,i)=m(j,i)-m(N,i); 

        s_fluct(j,i)=s(j,i)-s(N,i); 

    end 

end 

Published with MATLAB® R2014a 

 

King’s Law Analysis: 

% King's Law 

disp('Locate Hotwire Calibration Folder'); 

directory=uigetdir; 

cd(directory) 

files=dir('*txt*'); 

filelist={files.name}'; 

clc 

Kinglaw=zeros(4,length(filelist)); 

 

for i=1:length(filelist) 
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    disp(filelist{i}) 

    Re=input('What Reynolds number was this calibration for? '); 

    A=input('Wire voltage at 0m/s '); 

    G=input('Calibration wire gain '); 

    Offset=input('Calibration wire offset '); 

 

    Bin=load(filelist{i}); 

    load(strcat('Calib_',strrep(filelist{i},'_Calib.txt',''),'.mat'),... 

        'calibcoeff','nv') 

    volt=Bin(:,2); 

    % Calibration velocities 

    King.(strcat('Re',num2str(Re)))=nv; 

 

    % Calibration unamplified voltages squared (E^2) 

    King.(strcat('Re',num2str(Re)))(:,2)=(volt./G+Offset).^2; 

 

    % Natural log of calibration velocities 

    King.(strcat('Re',num2str(Re)))(:,3)=... 

        log(King.(strcat('Re',num2str(Re)))(:,1)); 

 

    % Natural log of calibration unamplified voltages 

    King.(strcat('Re',num2str(Re)))(:,4)=... 

        log(King.(strcat('Re',num2str(Re)))(:,2)-A); 

 

    coeff=polyfit(King.(strcat('Re',num2str(Re)))(3:end,3),... 

        King.(strcat('Re',num2str(Re)))(3:end,4),1); 

 

    B=exp(coeff(2)); 

 

    Kinglaw(1,i)=Re; 

    Kinglaw(2:4,i)=[A;B;coeff(1)]; 

    clc 

end 

save('kings_law','King','Kinglaw') 

Published with MATLAB® R2014a 
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