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ABSTRACT 

The meniscus region of a thin film is known to have high heat transfer properties due to 

high evaporation rates and activation of latent heat. The region known as the thin film meniscus 

(𝛿𝑓𝑖𝑙𝑚 < 2 µm ) can account for more than half of the total heat transfer of a droplet or film. This 

study focuses on the potential elongation and curvature amplification of the thin film meniscus 

region by the implementation of a layer of high hydrogen bonding (hydrogel) film on which the 

liquid meniscus is built. Forced wetting via liquid propagation though this hydrogel layer in the 

radial direction increases the surface area of the film. By analyzing the mass flux of liquid lost 

through evaporation and using both spectroscopic and optical methods to obtain the curvature of 

the film, relationships between hydrogel thickness and the resulting mass flux were made. 

Isothermal and steady state assumptions were used to relate hydrogel thickness layers to meniscus 

curvature, evaporative mass flux, and overall heat transfer coefficients. The experimental results 

demonstrate, that steady state conditions are achievable with small percentage change in film 

profile over time. These results are promising toward the addition of the hydrogel coatings and 

further advancements in heat piping and high heat flux cooling systems for micro electronic 

devices. 
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CHAPTER 1: INTRODUCTION 

Background 

With the advances in computing, micro processing, and lab on a chip devices, the need for cooling 

systems with high heat transfer capacities has been growing exponentially. The steps taken over 

the past 40 years to consolidate decades of advances of separate systems into single 

microelectromechanical systems (MEMS) has created a niche market for high heat flux micro 

cooling systems. As a cheap and effective cooling method, fans along with solid heat sinks were 

used to dissipate this excess heat to prevent part burnout, but as these MEMS devices became more 

powerful and compact, air alone could not provide the convective cooling necessary to support 

sustained operation. Higher heat transfer rates were readily available through liquid convection 

and liquid evaporation (latent heat) and were thus utilized into these systems for low cost, reliable 

excess heat dissipation.  

Heat pipes that utilize two phase flow have been at the fore front of heat transport 

application in cooling micro electronic devices. In these two-phase heat pipes, fluid is introduced 

to a heating section and is converted to vapor, either by boiling or evaporating, and then transported 

to the cold interface where is it condensed back into a fluid, thus releasing the latent heat. In these 

heat pipes, the heating section corresponds to the section of the pipe that is in contact with the 

microelectronic component that requires cooling while the cold section is generally exposed to 

outside conditions of much lower temperatures such as a wall separating the inside of the MEMS 

to the ambient conditions of the room. The limiting factor of these heat pipes is the length of the 

heating section in which the fluid is present in two phases (liquid and vapor). This length, called 
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the working length, is the regime where latent heat is activated through evaporation leading to 

large heat transfer coefficients and high cooling rates. There are multiple areas of research being 

conducted in attempts to increase the efficiency, sizing, cooling power, etc. of these heat pipes.  

The area of interest of this study is in the region of part dry-out. This is the regime where 

the flow transitions from two phase (liquid and vapor) to single phase flow (vapor). In this regime, 

temperature is no longer held constant at the critical temperature of the fluid but unbounded, 

allowing for large temperature increases leading to temperature induced failures and component 

destruction. By elongating the two-phase flow regime, total heat transfer can be increased and, 

under constant power output of the device, the probability of dry-out and subsequent part burnout 

will be decreased.  

As detailed above, dry-out results in part damage and, in some cases, critical system failure, 

therefore a key problem in high heat flux heat piping presents itself, maintaining two phase flow 

in the heating section of the heat pipe. By keeping the walls of the heating section completely 

saturated with fluid, temperature is always bounded by the critical temperature of the fluid. The 

use of highly wetting fluids inside the heat piping were used to ensure higher fluid coverage of 

inner heating surface. These highly wetting fluids were incorporated into heat piping but are not 

completely wetting, meaning that they did not distribute themselves across the surface to maximize 

air displacement (minimize dry locations), and therefore could be improved on by other means.  

Wicking structures, commonly used as pillar arrays, were introduced to these heat pipes to 

drive the condensed fluid toward the heating section without the use of an external driving 

mechanism. The use of high wetting fluids inside the pipe with these wick structures made use of 
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a phenomena called capillary driven flow. This flow is defined as the tendency of a fluid to 

penetrate the wick array using capillary force and is only resisted by viscous forces between the 

fluid and the wicking structures and surface. The wicking structures were found to greatly decrease 

the chance of a region drying out due to fluid motion toward dry regions.  

There comes a location where the heating section will stop and the fluid will keep 

traversing via the wicking structures. This is considered a waste of fluid and thus fluid penetration 

into sections following the heating section should be minimized. Considering all preceding 

remarks, dry sections immediately following the heating section are not only wanted but signal 

complete latent heat release and maximum efficiency of cooling system. Therefore, the goal of 

these micro cooling systems is to present the heating section with one-phase saturated liquid flow 

with quality 0% and after the heating section is complete, be converted to one-phase vapor flow. 

This ensures all energy capable of dissipation is absorbed by the fluid in the phase change 

operation. 

As this flow transitions from one-phase to two-phase via boiling, nucleation occurs on the 

walls leading to bubbles. As these bubbles of vapor coalesce into a vapor column inside the flow, 

concentric to the heat pipe, increasingly more fluid is converted into vapor. These vapor columns 

will become vapor slugs and eventually the vapor slug will present an interface where flow ceases 

to be two phased, and becomes single-phase, superheated vapor. It is imperative that the heating 

of this single phased superheated vapor ceases shortly after formation as to avoid part burnout. 

The critical regime of this interface is the thin film meniscus made by the fluid as it contacts the 

wall. There is a curvature to the vapor slug at the interface of liquid and vapor where fluid will be, 
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at pseudo steady state, converted to vapor. The evaporation rate of such an interface is not constant 

but has a well-defined maximum. The thin film meniscus at which the surface tension forces 

dominate is the area of highest evaporative mass flux and therefore the region of highest heat 

transfer. Vapor slugs with high curvature present an elongated thin film region resulting in higher 

heat transfer rates. This region, approximate maximum thickness of one to two microns [1], is the 

furthest reaching section of the two-phased flow in the x direction and offers the highest heat 

transfer capacity of the entire cooling mechanism. By increasing the curvature of these films and 

extending the thin film region of the meniscus, it is possible to greatly increase the effective 

cooling of these devices without impacting the size, basic function, and cost of the system. 

Wicking structures provide a means to deliver the fluid to the meniscus region but are 

typically at least an order of magnitude taller than the thin-film region of the meniscus limiting the 

evaporation rates. The degree of wetting (contact angle) of the fluid along the wall of the pipe is 

generally the limiting factor of the meniscus curvature. The angle of the contact line (θ) is always 

less than 90 degrees for these cases because the fluid is always wetting, if not nearly completely 

wetting (θ = 0). There comes a point where, if maximum heat flux is the desired outcome, these 

wicking structures must end and the fluid must be allowed to form this meniscus. 

Research Focus and Motivation 

It has been discussed the importance of the thin-film region to high heat flux capacity 

cooling systems. To increase the thin-film meniscus region for a given fluid would be to increase 

the cooling capacity of the entire system. The implementation of a hydrogen bond promoting film 

(hydrogel film) appears to be a promising step toward increasing the curvature and heat flux 
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capacity of these systems. By depositing a range of these films, it will be possible to characterize 

the effectiveness of the meniscus profile elongation and determine the optimum thickness needed 

to ensure maximum curvature of meniscus. However, as these films swell with liquid imbibition, 

contact line dynamics change which makes analysis more complex. By varying film thickness 

from tens to several hundred nanometers, these contact line dynamics will be able to be studied so 

to provide a complete analysis of hydrogel impact on the curvature of wetting films. 
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CHAPTER 2: LITERATURE REVIEW 

Surface Forces and Wetting Phenomena 

Wetting of fluids on substrates have been receiving great interest in the academic 

community for over 200 years. Dating back to 1805 when Thomas Young wrote his essay detailing 

the relationship between contact angle and interfacial surface forces[2]. To introduce, the measure 

of the ability of a fluid to displace air on a solid substrate/material is defined as the wettability of 

that fluid on said substrate/material. In the case of a liquid deposited on a solid substrate, the 

interface where liquid, vapor, and solid are present is called the “triple-line”. The angle between 

the solid-liquid interface and the liquid-vapor interface extending from the triple line is called the 

contact angle. The fluid can be said to be highly-wetting, partially-wetting, or non-wetting 

depending on Young’s contact angle (θ)[3]. This contact angle, as shown in Fig. 1, will be small 

(θ << 90°) for fluids that are highly wetting on the substrate, less than 90° for partially wetting, 

and greater than 90° for non-wetting films. 

 

Figure 1: Schematic of droplet under wetting (left), partial wetting (center), and non-wetting (right) 

conditions 
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The surface tension forces of the solid-vapor, solid-liquid and liquid-vapor interfaces are denoted 

as γsv, γsl, and γlv, respectively. The relationship between these surface tensions and contact angle, 

described by Young[2], is, 

𝛾𝑙𝑣 cos 𝜃 = 𝛾𝑠𝑣 − 𝛾𝑠𝑙 ( 1 ) 

and can be seen in the left image of Fig. 1. These surface tensions can also be considered surface 

energies. In nature, all systems want to move toward states of least energy such a ball dropping, 

heat dissipating, and pressure induced fluid flowing. The interface of a fluid and solid substrate is 

no different in this regard. For a given system, when the surface energy of the solid-liquid interface 

is lower than the solid-vapor interface (γsl<γsv), wetting of the surface is said to be favorable, and 

the fluid will attempt to cover the solid[3]. By increasing the liquid-solid interface area and 

decreasing the solid-vapor interface area the surface energy of the solid decreases, resulting in a 

highly or partially wetting system (θ<90°) as seen on the left side of Fig. 1. In opposite cases where 

the surface is unfavorable (γsl>γsv), the liquid will attempt to cover as little of the substrate as 

possible resulting in a non-wetting system (θ≥90°) as seen in the center and right side of the image 

in Fig. 1. In cases where the fluid being observed is water, substrates producing contact angles less 

than 90° are said to be hydrophilic and substrates producing contact angles of greater than 90° are 

said to be hydrophobic. Hydrophilic cases are covered moving forward as they are necessary for 

fluid dispersion on substrates. 

Capillary Force 

The phenomena responsible for the small amount of water climbing up the inside of a straw 

in a cup is known as capillary rise. This action is caused by the surface energy properties of the 
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water and the plastic straw. Assuming the straw-air interface has higher surface energy than the 

straw-water interface, the molecules around the triple line will tend to move upward to decrease 

the surface energy as seen in Fig 2. 

 

Figure 2: Example of capillary force pulling water into tube of radius, r, to height, h. Due to the wetting 

nature of the tube, a meniscus is formed with contact angle, θ. 

These water molecules pull their neighboring water molecules along with them due to surface 

tension resulting in bulk fluid movement upward[3]. As the fluid moves upward in the straw, the 

weight of the fluid suspended becomes greater eventually resulting in a force balance between 

gravity and capillary force. This capillary force can be written as, 

𝑓 = 𝛾𝑙𝑣𝑝 cos 𝜃 ( 2 ) 

where 𝛾𝑙𝑣 is the liquid-vapor surface tension, 𝑝 is the contact line perimeter, and 𝜃 is the contact 

angle. In this case of the straw in water, the rise height ℎ of the water inside the straw can be 

written as, 



9 
 

ℎ = 2𝛾𝑙𝑣 cos 𝜃∆𝜌𝑔𝑟  ( 3 ) 

where ∆𝜌 is the difference in density between liquid and vapor,  𝑔 is gravity, and 𝑟 is the capillary 

radius (inner radius of the tube/straw). By decreasing the capillary radius, increases in rise height 

are obtained. There comes a point where the capillary radius is so small that capillary forces 

dominate over exterior forces such as gravity. 

Micro-Capillary Dynamics 

When a capillary with a very small radius (𝑟 ≪ 1 cm) rise height characteristics are 

dominated by capillary forces. In a cylindrical micro capillary, capillary pressure, 𝑃𝑐, drives fluid 

upward. The velocity of the meniscus up the capillary can be written as, 

𝑉 = 𝑟2(𝑃𝑐−𝑃)8𝜂𝑙  ( 4 ) 

where 𝑟 is the capillary radius, 𝑃 is the gas pressure in the capillary, 𝜂 is the dynamic viscosity of 

the fluid, and 𝑙 is the length of the water column[4]. For an open capillary, gas pressure, 𝑃 =𝑐𝑜𝑛𝑠𝑡 < 𝑃𝐶 , shows that the velocity will decay over time but always be greater than 0. This is the 

case for non-evaporating capillary motion as the surface area of the fluid exposed to air is 

extremely small (
𝐴𝑙𝑣𝐴𝑙𝑠 ≈ 0). This is important as we move forward into sections where similar 

phenomena arise but exposed surface areas are vastly different. 

Surface Roughness and Wetting 

With the increases in micro-/nano- structuring technology, high-precision structuring of 

substrates has become more widely used to study spreading, wicking, zippering, and building of 
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thin films. Nanopillar arrays have been amongst the newest additions to the scientific realm of thin 

film studies. Propagation velocity, wicking distance, and wicking force of thin films on hydrophilic 

substrates have been the focus of many scientific articles since the introduction of the micro-/nano-

structuring of substrates. These studies are pioneering a new method for increasing the distance of 

two phased flow conditions needed in heat pipes before single phase, superheated vapor is 

achieved. 

Hemi-Wicking 

In the investigation of textured substrates and their effect on apparent contact angle (θ*), 

the conclusion made by Shibuichi et al.[5] from the Kao Corporation stated that texturizing the 

surface of a substrate can modify the apparent contact angle of the film as seen in Fig. 3.  

 

Figure 3: Apparent contact angle vs. Contact angle 

Observing the difference of the liquid traversing the textured substrates in hydrophobic and 

hydrophilic cases, Bico et al.[6] appropriated the phrase “hemiwicking”. This term was used to 
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describe the cases where a hydrophilic, texturized substrate was to be wetted by a liquid film in 

which the liquid film has an intermediate step between spreading and imbibition (θ = 0 and θ < 

π/2, respectively).  The ability of a textured surface with roughness (r) and fraction of solid/liquid 

interface (φs) to drive a liquid was then found to be directly manipulatable. The studies focused on 

the wetting and contact angle of a drop or film deposited above the textured substrate[6], [7]. By 

using the Wenzel’s relation,  

cos 𝜃∗ = 𝑟 cos 𝜃 ( 5 ) 

Bico et al. looked at the contact angle and found that drops will have an apparent contact angle 

(θ*) less than that of the contact angle of the same liquid on a smooth substrate of the same material 

(θ) when r > 1 and θ < π/2. Hemiwicking is then said to occur if the change in interfacial energy 

as a function of x (dF/dx) is negative. A criterion was then constructed[6] saying the contact angle 

(θ) will be less than the critical contact angle (θc) when  

𝜃𝑐 = 𝑐𝑜𝑠−1 (1−𝜑𝑠𝑟−𝜑𝑠) ( 6 ) 

It can be see that as r → ∞, θc = π/2 which is the classical condition for capillary rise. As such a 

critical angle can be described (0 < θc < π/2) , there are two cases for observed contact angle;  θc < 

θ < π/2 and 0 < θ < θc. When the contact angle is greater than that of the critical contact angle (θ > 

θc), the solid will remain dry beyond the drop. However, when the contact angle is less than that 

of the critical contact angle (θ < θc), the fluid will penetrate outward into the textured substrate and 

the drop will sit upon a mixture of solid and liquid with apparent contact angle of θ* (Fig. 4). This 

case (θ < θc) became the focus of many more studies[8] analyzing the dynamics of this 

hemiwicking process. 
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Figure 4: Fluid Penetration into rough surface with apparent contact angle 

Driving and Resistive Forces 

Capillary forces and viscous forces drive the wicking phenomena. Viscous forces between the 

fluid and substrate restrain the fluid and capillary forces encourage the fluid to penetrate the porous 

substrate. As said before, the substrates under investigation are hydrophilic with roughness 

determined by wicking pillar height and solid/liquid interface by pillar spacing and diameter (Fig. 

5). 

 

Figure 5: Example of micro pillar array on substrate with size, spacing, and orientation 
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The penetration process is the movement of the interface in the porous material that is advancing 

or seen to be in advance of the bulk fluid layer. As fluid moves through the micro structured 

substrate the fluid will wick up the pillars from the base to the height of the pillar (h). This upward 

motion is caused by a surface energy difference between the solid-liquid interface and solid-vapor 

interface. The criteria for upward wicking is when the surface energy (tension) of the solid-liquid 

interface is less than that of the solid vapor interface (γsl < γsv) [9].  If this criterion is met, the fluid 

will continue to propagate up the wick until either the fluid reaches the top of the wick or the fluid 

reaches equilibrium with surface tension and viscous forces. In a case where a substrate is 

completely covered in these micro pillar arrays, the fluid will move through the array with driving 

force of F = γ(r-1), where γ = γlv and r is roughness (r > 1). The roughness factor can be effected 

by the placement and size of the pillars in the array. By denoting the radius, height, and pitch of 

the pillars as b, h, and p respectively, the roughness can be described by the relation: r = 1 + 

2πbh/p2. Driving force can then be deduced to: 

𝐹𝐷 =  2𝛾𝜋𝑏ℎ𝑝2  ( 7 ) 

The fraction of solid/liquid interface (φs) as reviewed earlier can be written as φs=πb2/p2 for pillar 

array cases. The resisting force friction can be calculated and then used to calculate dynamic 

coefficient (D). This dynamic coefficient is used by Washburn’s law which states the film front 

propagates as the square root of time (z ~ (Dt)1/2) where D is dependent on the liquid properties 

and tube radius (D ~ γb/η) [9].  The study[8] went further into this hemiwicking process creating 

scaling laws for film front propagation velocity, wicking force, and resisting force by changing the 

roughness (pillar heights, spacing, and pitch) of the hydrophilic substrate. The use of deep reactive 

ion etching processes have resulted in extremely detailed arrays of micro structured pillars with 
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radii of 10 µm and various spacing configurations.  After manufacturing these substrates, 

measurements of fluid front motion through the pillar array (�̇�) were recorded for several 

roughness specifications. Not only were measurements and theorizations made for �̇�, but also 

calculations of the 2-D fluid velocity (U(y,z)) through the pillared array behind the liquid front 

were implemented. 

 

Figure 6: Schematic of region 1 and 11 for velocity profile calculations 

By breaking the fluid flow region into two separate cases, u(y, z) and u’(y, z), where u and u’ were 

velocity in region I (before encountering pillars) and velocity in region II (between pillars) (Fig. 

6). It was found that that for regions I and II the velocity surface plot could be calculated using 

𝑢(𝑦, 𝑧) =  𝑈𝑚 (2 𝑧ℎ − 𝑧ℎ2) ( 8 ) 𝑢′(𝑦, 𝑧) =  𝑈𝑚′ (2 𝑧ℎ − 𝑧ℎ2) (1 − 4 𝑦𝑠𝑤2) ( 9 ) 

respectively, where Um is maximum velocity in region, h is the height of the pillars, and sw (�̅�) is 

the average wall to wall spacing of pillars throughout region II. These 2-D velocity profiles were 

then used to calculate flowrates in regions I and II that very nicely result in 𝑞1 = 23 𝑈𝑚𝑠𝑦ℎ and 
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𝑞1 = 49 𝑈′𝑚�̅�ℎ repectively. These flow rates were used to get average fluid velocity values (U, U’) 

for regions I and II. Shear forces from the unimpeded flow (region I) as well as the shear forces 

for the base and sides of the impeded flow (region II) were calculated (F1, F2,B, and F2,S). The total 

force acting on a unit cell with dimensions sy (spacing normal to flow) and sx (spacing along flow 

direction) was scaled using, 

�̂�𝑟 = 𝐹1 + 𝐹2,𝐵 + 𝐹2,𝑆 ( 10 ) 

When simplified, the scale of the resisting force per unit width on a film of L propagation distance 

away from the source is found to be  

𝐹𝑟 =  𝐿𝑠𝑥𝑠𝑦 �̂�𝑟~µ𝑈𝐿 (1ℎ + 𝑓−1𝑠 ) ( 11 ) 

Where 𝑓 is roughness (f ≡ r) and is found using 𝑓 = 1 + 𝜋𝑑ℎ𝑠𝑥𝑠𝑦, and µ fluid viscosity. Then with the 

use of relation for driving force, 𝐹𝑑~ 𝜋𝛾𝑑ℎ𝑠𝑥𝑠𝑦 , and using the previous definition of 𝑓, driving force 

becomes  

𝐹𝑑~(𝑓 − 1)𝛾 ( 12 ) 

which is consistent with Ishino et al.[9]. Balancing these two forces yields the scaling law of the 

microscopic distance and velocity, 

𝐿~ (𝛾𝜂ℎµ )1/2 √𝑡 ( 13 ) �̇�~ 𝛾µ 𝜂ℎ𝐿  ( 14 ) 

respectively, where η is a dimensionless structural coefficient that is solely specified by the 

dimensions of the pillar array: 𝜂 = 𝑓−11+ℎ(𝑓−1)𝑠 . When L was plotted vs the square root of time and 
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pillar width (s = sy – d) (L vs. t1/2s1/2) for several cases of pillar spacing and pitch, it showed that L 

increased linearly with √𝑡 but with varying slopes. When the L was plotted with the scaling law 

(𝐿~ (𝛾𝜂ℎµ )1/2 √𝑡) and then scaled with the capillary length, 𝑙𝑐 = [ 𝛾𝜌𝑔]1/2
, these lines all collapse 

down to one straight line, validating the theory made by Kim et al [8]. 

Liquid Meniscus 

Curvature of the meniscus is one of the most important characteristics of the film profile 

as this controls, indirectly, the evaporation rate. The evaporation process is the most important 

function of a thin film used in micro electronic device cooling as it activates the latent heat of the 

fluid allowing for very high heat transport rates. In a film extending from height (h >> 1 µm), there 

are three regions; a bulk/intrinsic region where capillary forces dominate, a thin-film region where 

long-range molecular forces are felt, and a non-evaporating region where the liquid is adsorbed on 

the substrate (Fig. 7). 

 

Figure 7: Schematic of Meniscus detailing adsorbed film, thin-film, and intrinsic meniscus (bulk fluid) region. 

The region of interest, and of highest evaporative mass flux and heat transfer, is the thin-film 

region. This region of the meniscus is defined as the region supported by disjoining pressure and 
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is measured from contact line of the adsorbed film (pseudo-triple line) to the location where the 

film is approximately one micron thick (where capillary forces begin to dominate) [10]. As the 

length of this region is purely based on the gradient of the thickness profile, high interfacial 

curvatures lead to higher heat flux for a defined fluid. 

Meniscus Extension from Wicking Structures 

For cases where there are extending meniscus, the liquid wet front location on the base 

relative to the pillar of which the liquid has reached the top is denoted by 𝑥0.  If the distance to the 

next row of pillars is shorter than this distance, the liquid will begin to climb the next hydrophilic 

pillar. If the pillars cease to exist after row n, the meniscus will extend out to a distance 𝑥0. To 

calculate 𝑥0, we must consider the meniscus hanging on the pillars at the wet front. The capillary 

force along the pillar perimeter 𝐹𝑐 = 𝜋𝑑𝛾 is balanced with by the force due to the pressure drop 

(Δp) across the interface of the meniscus covering the area 𝑠𝑦𝑥0. This pressure drop gives 𝛥𝑝 ≈
𝜋𝑑𝛾𝑠𝑦𝑥0 which can be related to the meniscus curvature via the Young- Laplace equation, 

𝛥𝑝 ≈ 𝛾 𝜕2𝑧𝜕𝑥2 ~ 𝛾ℎ𝑥02 ( 15 ) 

which, when equated, yields 𝑥0~ ℎ𝑠𝑦𝜋𝑑  [8]. This is very interesting because the meniscus in the case 

is extending out normal from row n of pillars, making the profile quasi-two dimensional, where 

the meniscus volume per longitudinal pillar spacing (𝑠𝑦) can be solved with integration of the 

profile over 𝑥0:  

𝑉𝑚 = 𝑠𝑦 ∫ 𝛿(𝑥)𝑑𝑥𝑥00  ( 16 ) 
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which will be used later in the study. 

Meniscus Curvature 

 Curvature of the thin film meniscus region is maybe the most important characteristic of a 

film as curvature is directly related to evaporation. By increasing the curvature of the thin film 

region, higher evaporation rates and heat transfer coefficients can be achieved. With a known 

thickness profile of the thin film meniscus region, the curvature of the film, K, can be calculated 

using the following equation, 

𝐾 =  𝑑2𝛿𝑑𝑥2(1+(𝑑𝛿𝑑𝑥)2)3/2  ( 17 ) 

where δ is film thickness and x is displacement from the contact line [11]. This curvature is a result 

in surface tension gradients along the surface of the film resulting in a un equal force balance 

causing flow to move toward the triple line. The tendency of flow to move toward the triple line 

is called the Marangoni effect and be seen in everyday life [12], [13]. This effect if responsible for 

coffee rings, rings on a wine glass that has been left out and allowed to partially evaporate.  

Hydrogels 

A hydrophilic polymer network that is swollen with water is called a hydrogel or colloid 

gel [14]. In general, the term ‘gel’ indicates that over 50% of the total mass of the hydrated film is 

water. The dehydrated (dry) film is considered to be a solid on a macroscopic level, having definite 

shape and not able to flow, but on the microscopic scale it behaves as a solution, allowing water 

soluble molecules to diffuse into the hydrogel[15]. Due to their lack of mechanical strength[16]–
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[18], the application of these hydrogels as a mechanical device are limited and therefore are 

primarily used in the medical field but have also been used in disposable diapers for their strong 

liquid absorptivity.  Studies of these hydrogels and their effects on capillary force, contact line 

dynamics, and heat transfer are on the forefront of the newest efforts on utilizing them for 

mechanical uses. When a thin layer of hydrogel, poly(N-isopropylacrylamide) (PNIPAM), was 

applied to the inside of a tube like in Figure 2 and the filling time of the tube was recorded to be 

three orders of magnitude larger than an uncoated tube (Fig 8) [19]. 

 

Figure 8: Meniscus position vs. time for glycerol in a bare, uncoated glass capillary with 750 mm ID (open 

diamonds) and PNIPAM coated glass capillary with 750 mm ID (filled circles). The thin lines are lines of 

slope 2 (corresponding to inertial filling behavior), the dashed lines have slope 1 (corresponding to the 

convective loss regime), and the thick lines have slope 1/2 (corresponding to the Washburn regime). The shift 

to longer times is due to higher contact angle for glycerol on PNIPAM than on glass [19] 

However, they present a more complex problem along the contact line. These films act almost as 

the wicking structures with contact angle less than critical contact angle (fluid extending outward 

from the droplet. The fluid imbibes the hydrogel and penetrates outward from the film.  As the 

fluid completely saturates the hydrogel film, the film swells. The dry and hydrated thickness of 
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the coatings were measured in this study [19] and curve fit line was used to predict the values of 

fully hydrated film thickness using varying initially dry film thickness (Fig 9). 

 

Figure 9: Relationship between dry and hydrated hydrogel (PNIPAM) coatings. Results taken from tabulated 

results of measured thicknesses of four samples with PNIPAM hydrogel coatings. A polynomial curve fit was 

used to predict the nature of swelling ratios.  

The intermediate step and section of film between the completely dry hydrogel film and fully 

hydrated film is designated as the partially hydrated film, resulting in a gradient in film thickness 

[19], [20] (Fig 10).   
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Figure 10: Schematic of meniscus on hydrogel. Three section of the hydrogel can be observed and labeled as 

Fully hydrated, partially hydrated, and dry region. This transition creates a gradient in thickness with angle 

θf effecting contact angle, θ. 

This phenomenon is responsible for very complex contact angle and line dynamics. These contact 

line dynamics are strongly influenced by the rheology of the gel [21]. Generally, hydrophilic 

hydrogels promote contact line motion in the form of a series of stick-slip actions (Fig. 11) [19]–

[21], and in cases of high velocity and very low velocity movement it can be seen to move 

continuously [20], [21].  

 

 

Figure 11: Hydrogel Wetting and spreading dynamics. Liquid builds meniscus on partially hydrated hydrogel 

(1), a pressure point is made and the hydrogel begins to swell at the contact point (2), fluid continues to 

imbibe hydrogel and produces swelling (3), full hydration is achieved at pinned contact line (4), fluid then 

wets down the surface and re-pins (1).   

 

For cases where the contact line movement is slow so that the rate of swelling approaches the rate 

of motion, meaning θf → θ  (Fig 10 (right)), the contact line motion will cease and reverse upon 
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the condition of θf  = θ [20]. At this point, the fluid will continue imbibing the fluid thus decreasing 

the hydrogel swelling angle and resuming the stick slip conditions. The rate of imbibition, �̇�𝑖𝑚𝑏, 

will slow down as the fluid approaches steady state until complete film hydration is obtained or 

evaporative mass flow, �̇�𝑒𝑣𝑎𝑝, reaches the fluid feed rate, �̇�𝑠𝑦𝑟 , as seen by, 

�̇�𝑠𝑦𝑟 = 𝜌𝑓 𝑑𝑉𝑚𝑑𝑡 + �̇�𝑒𝑣𝑎𝑝 + �̇�𝑖𝑚𝑏 = 0  ( 18 ) 

where  𝜌𝑓 is the density of the fluid, and 𝑉𝑚 is the volume of the meniscus.  
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CHAPTER 3: EXPERIEMENTAL SET UP AND PROCEDURE 

A combination of reflectometer and optical interferometer allow film thickness and 

curvature measurements of the thin-film meniscus. A series of mirrors and lenses allow both 

systems to make simultaneous measurement of the film characteristics (Fig. 12) at any location. 

The assembly responsible for producing a uniform, repeatable meniscus was designed and 

manufactured in house at the University of Central Florida (UCF). The samples used in this 

experiment, were purchased through GM Associates Inc. and the depositions of titanium, silicon 

dioxide (SiO2), and hydrogel were then implemented.   

 

Figure 12: Schematic of Spectrometer/Optical Interferometer setup. Components include; (1) camera, (2a) 

656 nm bandpass filter, (2b) 450 nm bandpass filter, (3) achromat [f = 120mm], (4) planoconvex lens [f 

=20mm], (5) pinhole Ag mirror, (6) 50-50 beam splitter [th=1mm], (7) 15x reflective objective, (8) off-axis 

parabolic mirror [f2=15mm], (9) optical fiber from light source, (10) optical fiber to spectrometer, (11) 

substrate. 
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Samples 

Titanium and SiO2 were deposited in house at UCF’s Center for Research and Education 

in Optics and Lasers (CREOL) using evaporative metal deposition and Plasma Enhanced Chemical 

Vapor Deposition (PECVD), respectively. The nominal thickness of deposited titanium was 60 ± 

10 nm and was verified using time domain thermo-reflectance (TDTR). The thickness of SiO2 was 

measured by reflectometry. 

 The hydrogel thicknesses being deposited range for 30 nm to 1 μm and were deposited by 

Ali Kosar and his team at Sabanci University in Istanbul, Turkey. The minimum value of 30 nm 

was chosen to measure the effect of a hydrogel coating with thickness less than that of the adsorbed 

film [22]. The maximum thickness of 1 μm, relating to the approximate maximum thickness of the 

thin film region. The incremental dry hydrogel thicknesses of Sample 1-5, beginning with 

minimum thickness and ending with maximum thickness as discussed, are 100 μm, 250 μm, and 

500 μm. For a control sample, to measure the curvature characteristics of a film before the 

implementation of a hydrogel coating, a sample was made with only titanium and SiO2. The final 

product for said samples can been seen in Fig. 13 and Table 1. 

Table 1: Deposition thicknesses for sample 1-6. 

Sample 
Titanium Thickness 

(nm) 

SiO2 Thickness 

(nm) 

Hydrogel thickness 

(nm) 

1 57.1 10 500 

2 65.3 20 30 
3 61.8 20 100 

4 55.75 5 250 

5 63.3 10 1000 

6 65.4 10 0 
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Figure 13: Schematic for substrate layer profile. Materials deposited on Fused Silica for samples 1-5 include 

Titanium [Ti], Silicon Dioxide [SiO2], and Hydrogel. 

Liquid Film Rig 

To build a reliable, uniform liquid meniscus on a substrate, the substrate must be held 

steady, level, and clean. These were the criteria used in designing and manufacturing the setup that 

would be responsible for building consistent liquid films on test samples. The structure, inside 

which the fluid is pumped, is made of Teflon due to its low surface energy (non-wetting nature) 

and chemical resistivity. A Viton O-ring of high chemical resistivity, is used on the inside of this 

structure to ensure a correct and complete seal. The fluid builds radially inward and therefore the 

O-ring is on the inside wall of the Teflon structure and support materials can be implemented on 

the outside of the structure. When pressing the Teflon structure down to achieve O-ring sealing, 

the load must be uniform to ensure minimal local deflection. An aluminum load distributor was 

manufactured to provide the necessary pressure to force a proper seal. Any leaks in the system will 

render the evaporation rates useless as the evaporation rate is measured according to pump feed 

rate. At steady state conditions, the feed rate is equal to the evaporation rate as the film volume is 

held constant. The fluid is fed into the structure using a stepper motor driven syringe pump 

controlled by LabVIEW. The whole assembly (Fig. 14), with substrate, is bolted to a support plate. 

This support plate can be moved in two dimensions by X and Y axis stepper motors that are also 

controlled in LabVIEW. 
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Figure 14: Drawing of meniscus building structure fed by LabVIEW controlled syringe. a) complete 3-D view 

of full assembly, b) Cross sectional 3-D view, c) isometric view of components including substrate (1), O-ring 

(2), Teflon structure (3), load distributor (4), and syringe (5). 

Spectrometer 

The implementation of a spectrometer allows for reflectance measurements of the films. 

By using a variety of light sources ranging ultraviolet (UV), visible light (VIS), and infrared (IR), 

it was possible to get high fidelity measurements of reflectivity of films under investigation. Four 

light sources were used including deuterium, halogen, a cold white diode, and an infrared diode. 

The wavelengths and intensity of light sources can be seen in Fig. 15, respectively.  
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Figure 15: Light source intensity distribution per light source with total. Deuterium (blue) ranges from 100 

nm to 800 nm, halogen (yellow) ranges from 300 nm to 1100 nm, cold white LED (MCWHD3) (pink) ranges 

from 400 nm to 750 nm, and the IR LED (TL-M940D2) (red) ranging from 800 nm to 1000 nm, giving a 

complete light source range (black-dashed) of 190 nm to 1100 nm. Signal was calibrated using Si. 

These lights are not directly applied to the substrates and films as they are reflected and focused 

through several optical components in the setup as seen in Figure 12. Due to imperfect reflection, 

transmission, and absorption of mirrors and optics, loss of intensity of light though the setup is 

guaranteed. To accurately calculate the intensity of the light being emitted to the substrate, a series 

of calibrations were conducted using silicon (Si), silicon dioxide (SiO2), gold (Au), and germanium 

(Ge) mirrors.  
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Figure 16: Light source (I0) calibration by sample; silicon (pink circle), silicon dioxide (red triangle), gold 

(green square), and germanium (blue star). 

The calibration of the Light source intensity, 𝐼0(𝜆), was measured and calculated from 

spectrometer readings and well know reflectance literature data of the four different substances 

(Fig. 16) using; 

𝐼0(𝜆) = 𝐼𝑖(𝜆)𝑅𝑖(𝜆)  ( 19 )  

where 𝐼𝑖(𝜆) is the measured intensity spectrum for each substance (i = Si, SiO2, Au, Ge) over 

wavelength range λ = [200, 1050] nm, and 𝑅𝑖(𝜆) is the literature reflection data using a numerical 

method incorporated with a variety of data bases by Fredrik Hansteen. The results were used to 

compare calculated reflectance using the calibrated light source spectrum to the literature 

reflectance data from each of the calibration substances as: 
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𝑅𝑖(𝜆) = 𝐼𝑖(𝜆)[𝐼0(𝜆)]𝑗  for cases i ≠ j ( 20 ) 

where [𝐼0(𝜆)]𝑗 is the calculated light source intensity for substance, j. To correctly display that the 

spectrometer has been calibrated, reflectance measurements of each substance using the light 

source intensity spectrum calibrated from other materials can be shown. For example, by observing 

the measured reflectance of silicon dioxide using the light source intensity spectrum calculated 

using Germanium, and comparing the result with literature reflectance data for silicon dioxide, an 

idea of how accurate the germanium reflection data, SiO2 reflectance data, and spectrometer data 

can be obtained. The results confirm the accuracy of all data and spectrometer readings (Fig. 17). 

 

Figure 17: Reflectance measurements using calibration samples for comparison with literature data. (Top 

Left) Si measured using calibrated light source from SiO2, Au, and Ge, (Top Right) silicon dioxide measured 

using calibrated light source from Si, Au, and Ge, (Bottom Left) Ge measured using calibrated light source 

from Si, SiO2, and Au, (Bottom Right) Au measured using calibrated light source from Si, SiO2, and Ge. 
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Reflectometer 

When measuring films with thicknesses on the order of nanometers, typical measuring 

devices such as calipers and rulers are of no use. To measure the thickness of these ultrathin films, 

light and its reflectance are measured and analyzed. The thickness of the film is then fit to literature 

values and numerical methods using a variety of databases.  

After calibrating the spectrometer to acquire the light source intensity, the focus was moved 

to being able to calculate thin film thicknesses. These films must be constant in thickness for the 

reflectometer to work. A sample of SiO2 on Si was used to measure and predict the value of the 

SiO2 thickness. It was seen that the thickness of the SiO2 layer was 545 nm by comparing the result 

to that of a numerical model (Fig. 18). 

 

Figure 18: Reflectance data for a thin film of SiO2 compared with literature data for films of thickness 520 

nm, 545, nm, and 570 nm. 



31 
 

Optical Interferometer 

To calculate thickness profiles of non-uniform films on a substrate, a slightly different 

method of reflectometry, called interferometry, is used. This method involves observing 

monochromatic light passing through a film at multiple areas and measuring the intensity as a 

function of displacement, Iλ(x). The oscillatory nature of the light intensity and the spacing of 

peaks and troughs (light and dark bands) give an accurate calculation of the angle of the fluid-

vapor interface, θ. By calculating this angle across a given displacement, θ(x), a film profile can 

be achieved. The equation used in this experiment to calculate the thickness profile of a film is, 

𝛿𝑖+1 = 𝛿𝑖 + tan 𝜃𝑖 𝑑𝑥 

 For this setup, two different wavelengths of light can be used to measure thickness profiles, 

450 nm and 656 nm light, corresponding to the bandpass filters used (2a and 2b in Figure 12). For 

a film of constant thickness profile slope (linear increase), the theta can be observed as uniform. 

Films of exponentially increasing thickness will have linear or exponentially increasing theta 

terms. A calibration of the set up was conducted using three cylindrical lenses and a measurement 

of the vapor meniscus was made. The results can be seen in Figure 19. 
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Figure 19: Calibration measurements of films created by cylindrical lenses with focal lengths (FL) of 20 mm, 

44 mm, and 100 mm on a substrate using 450 nm and 656 nm light. 

From the calibration results, the interferometer can be said to be accurate and reliable. The 

curve fit of the interferometer can achieve profile calculations using polynomial curve fitting for 

fringe frequency, f, up to 5th order polynomials.   



33 
 

CHAPTER 4: RESULTS AND DISCUSSIONS 

Film Measurements and Analysis 

To correctly measure the thickness profile of liquid films, many variables must be known 

and considered.  First, the structure of these films must be known and each must be able to be 

measured. As previously discussed, the film has three distinct sections, the adsorbed film, the thin 

film region, and the bulk fluid region. The adsorbed film is uniform in thickness and, therefore, 

will be measured using the reflectometer. This will give us the starting thickness for the zeroth 

fringe thickness (𝜹0) which is incorporated into the interferometer measurements as the film 

starting thickness. The thin film region and bulk fluid region are varying in height and will be 

measured using the interferometer (Fig 20).   

 

Figure 20: Schematic of thin film and measurement technique used. Reflectometry was used to measure the 

adsorbed film of constant thickness to obtain zeroth fringe, 𝜹0, which is used as the starting point for the thin 

film region using interferometry. 

The maximum height of the bulk region is 1 mm, constrained by the clearance between the 

substrate and the Teflon structure. This constraint will be used when viewing the film in the 

vicinity near the structure as the structure disrupts the light from the camera distorting the image.  
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Steady state conditions are difficult to achieve in real life situations. Before tests can be 

done with hydrogels, the steady state assumption for this experiment must be proven to be possible. 

Water on SiO2 is observed over the span of several hours to determine the capability of this rig to 

produce films considered to be at steady state. The meniscus was first built by pumping fluid at 

1000 nL/s until a symmetrical film was made around the inner annulus of the structure with 

xo=5mm. The flow rate was then turned to 25 nL/s and the meniscus was allowed to evaporate 

freely. After three hours, the meniscus was observed to be constant and measurements were then 

conducted every 90 minutes for three hours. Measurements were taken at times; T1 = 0, T2 = 90 

minutes, and finally T3 = 180 minutes. Water was pumped into the meniscus at 25 nL/s (�̇�𝑠𝑦𝑟 =�̇�𝑒𝑣𝑎𝑝 = 25 𝑛𝐿/𝑠) and the room temperature was measured to have a nominal value Tamb = 21 ± 

2°C.  The results of the experiment can be seen below in Figures 21-23. 
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Figure 21: Measurement of meniscus profile at time t = 0 (Fluid is H2O, Tamb = 21°C). Meniscus was 

measured using interferometry with two separate wavelengths of light (blue triangle denotes 450nm, red 

triangle denotes 656nm) and the average of the two measurments have been added (black line). 
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Figure 22: Measurement of meniscus profile at time t = 90 min (Fluid is H2O, Tamb = 19°C). Meniscus was 

measured using interferometry with two separate wavelengths of light (blue triangle denotes 450nm, red 

triangle denotes 656nm) and the average of the two measurments have been added (black line). 
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Figure 23: Measurement of meniscus profile at time t = 180 min (Fluid is H2O, Tamb = 21°C). Meniscus was 

measured using interferometry with two separate wavelengths of light (blue triangle denotes 450nm, red 

triangle denotes 656nm) and the average of the two measurments have been added (black line). 

The difference between the 450 nm measurements and the 656 nm were extremely close along the 

entire meniscus measurement process. The average errors between the two measurements were 

calculated according to the 656 nm measurement and were found to be equal to or less than 10% 

(Errt=0 = -2.85%, Errt=90min = -2.83%, Errt=180min = -10.21%). The errors by positon were then plotted 

together to show that the maximum error never exceeds 15% which would deem the steady state 

condition questionable (Fig. 24). 
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Figure 24: Percent error vs. position. Error plot represents the difference between the 450 nm measurement 

at 656 nm measurement for individual test times (Time 1 = 0, Time 2 = 90 min, Time 3 = 180 min).  

By plotting the averages of each film together (Fig 25), the steady state assumption can be proved. 

During the 90 minutes between measurements 1-2, the ambient air was cooled by the building air 

conditioning unit and this increased the meniscus volume as the evaporative mass flux decreased. 

After the second measurement was taken the room was allowed to warm up to the initial state of 

21°C which resulted in higher evaporation and a decrease in film volume.  
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Figure 25: Meniscus thickness (𝜹) vs. position for H2O film at flow rate 25 nL/s 

Steady state can be said to be achieved and the results for the meniscus profile are confirmed as 

the position of the contact line was 3.25 mm from the inner corner of the meniscus. The plot shows 

the film reaching the wall at approximately 3.25 mm confirming the value of xo = 3.25 mm. As 

the calculated value of the xo matches the known constraints of the problem (𝜹(xo) = 1 mm). 

 For a film with a small thin film region, such as this one, where water is evaporating 

extremely slow, large curvatures in the thin film region are unlikely to naturally exist. After 

calculating the curvature as a function of position, curvatures were observed to decrease over 
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distance as the film transitions from disjoining pressure dominate conditions to capillary force 

dominate conditions (Fig. 26). 

 

Figure 26: Curvature (K) vs. Position for a steady state H2O film at flow rate 25nL/s 

The curvature for all three films vary slightly but the overall structure and rate of change of the 

curvatures are very consistent so it can be concluded that the films are very steady in their structure 

and curvature even with the small temperature change experienced by the room.   

Conclusion 

  As previously discuss, steady state conditions are incredibly hard to achieve and take 

considerable amount of time to build. The unsteady nature of a thin film is still under investigation 
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and results of this experiment can be considered a great new addition to this ongoing investigation. 

As films decrease in volume, combining with other effects of contact line with draw or pinning, 

the thin film region can be stretched, therefore further increasing the evaporative mass flux and 

volume of the film. This can result in runaway evaporation leading to complete dry out of part. To 

ensure this did not happen measures were taken to control the recession of the contact line until 

contact line rescission was seen to be naturally halted. As the film was seen to be unmoving for 3 

hours (constrained by syringe volume), steady state conditions can be said to be almost achieved 

if not for the temperature fluctuations during the measurement process. All values of thickness, 

curvature, and errors were within realistic and expected values meaning the experiment itself is a 

great step toward new exciting investigations in which a steady state film is desired. The next step 

of this experiment entails the addition of a hydrogel layer, extensively discussed previously, to 

potentially elongate the thin film meniscus region and therefore increase the overall evaporative 

mass flux. 

  



42 
 

CHAPTER 5: FUTURE WORK AND MODIFICATIONS 

 The work detailed in this thesis is only the beginning to a very extensive study of the thin 

film meniscus and its associated heat transfer properties. In future experiments using this set up, 

Hydrogel coatings and their effects on meniscus curvature and evaporation rates can be studied. 

Also, a heating plate will be used to observe the film at several different temperatures ranging from 

25ºC to 70ºC. This will give a more complete view of the heat transfer and evaporation rates as 

this experiment only deals with evaporation at 20ºC. By increasing the temperature, the surface 

tension dependency on temperature can be studied along with associate temperature dependencies 

on curvature.  By varying the temperature of the heating plate additional global reactions of the 

thin film regime will be captured and thus providing an even deeper analysis into this nanoscale 

region. 

 To get a local view of heat transfer coefficient of the thin film meniscus, a method of 

pumping heat into a very small area beneath the film and using a laser to measure the temperature 

of the region moments after the heat addition process can be used. The use of anisotropic time 

domain thermos-reflectance (TDTR) [23], discussed earlier, will give a localized analysis of the 

heat transfer coefficient of the thin film region at various points along the meniscus.  

With the use of numerical models, computational fluid dynamics, and experimental data, 

an accurate depiction of the physical phenomena taking place in this ultrathin region will be 

constructed. The combination of these two processes, heating plate and TDTR, will provide an 

extension to this work and as complete of an experimental data set as possible to be used in the 

search for the understanding of this small, yet very important, heat transfer regime.  
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