
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2004-2019 

2008 

Information Retrieval Performance Enhancement Using The Information Retrieval Performance Enhancement Using The 

Average Standard Estimator And The Multi-criteria Decision Average Standard Estimator And The Multi-criteria Decision 

Weighted Set Weighted Set 

TAREQ Ahram 
University of Central Florida 

 Part of the Industrial Engineering Commons 

Find similar works at: https://stars.library.ucf.edu/etd 

University of Central Florida Libraries http://library.ucf.edu 

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted 

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 

Ahram, TAREQ, "Information Retrieval Performance Enhancement Using The Average Standard Estimator 

And The Multi-criteria Decision Weighted Set" (2008). Electronic Theses and Dissertations, 2004-2019. 

3656. 

https://stars.library.ucf.edu/etd/3656 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/307?utm_source=stars.library.ucf.edu%2Fetd%2F3656&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/3656?utm_source=stars.library.ucf.edu%2Fetd%2F3656&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


 
INFORMATION RETRIEVAL PERFORMANCE ENHANCEMENT USING THE 

AVERAGE STANDARD ESTIMATOR AND THE MULTI-CRITERIA 

DECISION WEIGHTED SET OF PERFORMANCE MEASURES 

 
by 

 
 

TAREQ Z. AHRAM 

B.Sc., Industrial Eng., University of Jordan, Jordan, 2002 
M.Sc., Industrial Engineering and Management, University of Jordan, Jordan, 2004 

M.Sc., Industrial Engineering, University Central Florida, USA, 2007 
 
 
 
 
 

 
A dissertation submitted in partial fulfillment of the requirements 

for the degree of Doctor of Philosophy 
in the Department of Industrial Engineering and Management Systems 

in the College of Engineering and Computer Science 
at the University of Central Florida 

Orlando, Florida 
 

 
 

 
 
 
 
 
 

Fall Term 
2008 

 
 

Major Professor:  Dr. Pamela McCauley-Bush 



ABSTRACT 

 
Information retrieval is much more challenging than traditional small document collection 

retrieval. The main difference is the importance of correlations between related concepts 

in complex data structures. These structures have been studied by several information 

retrieval systems. This research began by performing a comprehensive review and 

comparison of several techniques of matrix dimensionality estimation and their respective 

effects on enhancing retrieval performance using singular value decomposition and latent 

semantic analysis. Two novel techniques have been introduced in this research to enhance 

intrinsic dimensionality estimation, the Multi-criteria Decision Weighted model to 

estimate matrix intrinsic dimensionality for large document collections and the Average 

Standard Estimator (ASE) for estimating data intrinsic dimensionality based on the 

singular value decomposition (SVD). ASE estimates the level of significance for singular 

values resulting from the singular value decomposition. ASE assumes that those variables 

with deep relations have sufficient correlation and that only those relationships with high 

singular values are significant and should be maintained.  Experimental results over all 

possible dimensions indicated that ASE improved matrix intrinsic dimensionality 

estimation by including the effect of both singular values magnitude of decrease and 

random noise distracters. Analysis based on selected performance measures indicates that 

for each document collection there is a region of lower dimensionalities associated with 

improved retrieval performance. However, there was clear disagreement between the 

various performance measures on the model associated with best performance. The 

introduction of the multi-weighted model and Analytical Hierarchy Processing (AHP) 

analysis helped in ranking dimensionality estimation techniques and facilitates satisfying 
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overall model goals by leveraging contradicting constrains and satisfying information 

retrieval priorities. ASE provided the best estimate for MEDLINE intrinsic dimensionality 

among all other dimensionality estimation techniques, and further, ASE improved 

precision and relative relevance by 10.2% and 7.4% respectively.  AHP analysis indicates 

that ASE and the weighted model ranked the best among other methods with 30.3% and 

20.3% in satisfying overall model goals in MEDLINE and 22.6% and 25.1% for 

CRANFIELD. The weighted model improved MEDLINE relative relevance by 4.4%,  

while the scree plot, weighted model, and ASE provided better estimation of data intrinsic 

dimensionality for CRANFIELD collection than Kaiser-Guttman and Percentage of 

variance. ASE dimensionality estimation technique provided a better estimation of CISI 

intrinsic dimensionality than all other tested methods since all methods except ASE tend 

to underestimate CISI document collection intrinsic dimensionality.  ASE improved CISI 

average relative relevance and average search length by 28.4% and 22.0% respectively. 

This research provided evidence supporting a system using a weighted multi-criteria 

performance evaluation technique resulting in better overall performance than a single 

criteria ranking model. Thus, the weighted multi-criteria model with dimensionality 

reduction provides a more efficient implementation for information retrieval than using a 

full rank model. 
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CHAPTER ONE: INTRODUCTION 

1.1 Background 

Internet users continue to rely on search engines as the primary way for finding 

information on the web. Results generated from search engines satisfy all kinds of 

information needs, ranging from scientific research to locating a place of interest to compare 

products and services.  In the current web search engines, the process of identifying relevant 

documents usually involves matching queries with the keyword found in document 

databases located in the system data stores. That is, for a returned result to be considered 

relevant to search queries it has to contain some or all of the query keywords.  This 

approach in searching for information has been successful in satisfying most of the user 

needs. However, there are some queries for which basic keyword matching will not be 

sufficient.  

The purpose of Information Retrieval (IR) systems and search engines is to help 

people locate relevant information when a request it is made. An ambiguous query might be 

encountered because it is associated with more than one interpretation and each 

interpretation might be related to a different field of knowledge. Consequently, web pages 

that have different domains of knowledge, but all shares similar keywords, will be presented 

to users leaving them with the burden of filtering their search results. Resolving such 

problem has been for a long time has been the primary focus of many fields. It was 

estimated that the World Wide Web involved at least 350 million documents of different 

types and formats to nearly 800 million Web pages (Nielsen/Net Rating, 2000) (Lawrence & 

Giles, 1999). These documents were growing at the rate of 20 million per month, while 
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internet traffic volume continues to double about every 100 days (Computer Industry 

Almanac Inc., 2002).  

Although many of the traditional IR techniques are useful, information retrieval from 

the web involves some issues. The estimated size of indexed web collections was at least 

11.5 billion pages by the end of January 2005 (Gulli et al., 2005). To get a better 

understanding about the process of searching on the web, it is vital to have a clear idea about 

the size of the document collections involved in the search process. To facilitate comparison 

between various search engine providers, the document collection sizes in different search 

engines are displayed in Figure 1.  

 

 

Figure 1: Indexed Search Engines Document Collections (millions of pages)  

(Source: Jansen, B. J. 2000) 

Figure 1 clearly indicates that the difference in the size of indexed documents has a great 

impact on web searching. Because of the huge size and dynamic growth of these document 

collections, users can easily be distracted with various returned results (Xu, 1999).  

  2



          Research on Information Retrieval systems is based on small controlled collections of 

scientific data repositories on a particular topic (Brin and Page, 1998). The nature of the 

World Wide Web is also different from traditional Information Retrieval systems. Web IR 

includes digital pictures; video and audio data in addition to text from different languages 

which is found on frequently duplicated web pages (Huang, 2000).   Additionally, web 

search engines and information retrieval systems are frequently affected by external factors 

which try to manipulate search engine responses (Brin and Page, 1998). Further problem is 

the number of queries which a search engine might have to handle, in the case of Google 

search engine this is thousands of queries per second (Brin and Page, 1998). In a recent 

research conducted by Nielsen/Ratings (2006), Google’s searches increased from nearly 2.1 

billion in March 2005 to 2.9 billion in March 2006 this is shown in Table 1. Currently 

several search engines add popularity to link analysis methods and consequently the 

application of link usage to collect information to determine relevance and popularity of 

web pages – thus the more often web pages are entered by users, the higher their relevance 

(Liddy, 2001). 

Table 1: Search Engines Growth for Top Ranking Internet Search Providers  

(Source: Nielsen/NetRatings Mega View Search, April 2006) 

Provider 
Mar‐05 

Searches 

Mar‐06 

Searches 

Year‐over‐Year Percent 

Change 

Google Search  2,057,897,000  2,900,375,000  +41% 

Yahoo! Search  907,751,000  1,330,183,000  +47% 

MSN Search  592,153,000  643,803,000  +9% 

 

  3



           There are three main techniques which have been proposed for IR (Salton, 1989): the 

Boolean model; which consists of separating keywords with Boolean expressions such as 

"AND" and "OR", a Probabilistic model based on relevance of the documents in the Vector 

Space Model (VSM). The Boolean logic has been used for early commercial systems. VSM, 

which will be discussed next, is more precise and is simpler and easier to implement (Baeza-

Yates and Ribeiro-Neto, 1999). Latent Semantic Indexing (LSI) is an extension to the VSM.  

LSI is an attempt to match the meaning of a document to user query by locating documents 

with similar properties closer together in a vector space. Past performance results, which are 

presented in Chapter 2, shows that LSI method is a better indicator of meaning in a 

document than individual terms.  LSI is performed by using a numerical computation 

technique called Singular Value Decomposition (SVD).  

 
1.2 Vector Space Modeling (VSM) 

      Salton’s Vector Space Model (VSM) treats documents as vectors in a dimensional space 

with inter-document similarity represented by their corresponding vector cosine (Salton et 

al., 1983).   Documents that are about similar topics lie near each other. Thus information 

retrieval is concerned with navigating this vector space; while attempting to locate regions 

of the vector space that contain documents relevant to specific information needs.  

      Improvements on Salton’s model, known as the generalized vector space model 

(GVSM) (Wong, et al., 1987) have suggested that alternatives to this vector space may be 

beneficial. Due to the non-orthogonality and interdependence of natural language terms, 

such model of the observed term space relations may improve retrieval. 

       Latent Semantic Indexing (LSI) introduce the vector space orthogonal projection of its 

P-dimensional document vectors onto a k-dimensional subspace, where in LSI (k < p). 
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Dimensionality reduction provides a systematic representation of term-document 

associations, similar objects are arranged by eliminating observed data over specification 

error (Deerwester et al., 1990).  My research is concerned with the parameterization of k, the 

number of dimensions retained during the implementation of LSI orthogonal projection 

while satisfying a set of weighted performance measures. This research is aimed at 

discovering a better and more effective means for selecting k in unsupervised environments 

while maintaining a reasonable query response time for information retrieval systems. 

This research will try to answer the following question: Can we get better search results in 

terms of relevance and precision, while reducing search response time through the use of 

selected dimensionality reduction parameter in the truncated singular value decomposition? 

    LSI reflects terms and documents in an orthogonal subspace of the term-document matrix 

A by means of the singular value decomposition (SVD). Matrix dimensionality reduction 

calculates what is called “singular values” of A, which are the positive square roots of the 

eigenvalues of A'A.  

 

1.3 Information Retrieval Aboutness and Relevance 

An information space is the set of concepts and relations between them held by a 

computer system (Newby, 2001). In the field of cognitive science, the philosophical status 

of concepts is a matter of ongoing debate (Laurence et al., 1999) (Rosch, 1999) (Quine, 

1999).   Measuring Aboutness and Relevance in information space in not typically open to 

observations or direct notice, Hutchins (1978) introduced the concept of “Aboutness”. 

Without assurance of Aboutness, the Relevance of a document to a query is hard to check.  

Relevance between documents and queries is closely tied to a third representation in IR 

  5



problem which is Similarity. Documents that are relevant to a query are in some way similar 

to it, and relevant documents are similar to each other. Aboutness, Relevance, and Similarity 

are all important to IR technologies. According to Gardenfors (2000), concepts contain 

variables that measure the properties of objects.  An information space could be described as 

the set of variables observed by a system and the system means of associating them. Thus 

mass, volume, and density might be concepts in an information space related to physical 

measurements. On the other hand radiation and convection might be important concepts in 

the information space of an IR system related to energy transfer. Accordingly, dimensions 

provide the structure of the space and define the form that informs common notions of 

similarity and distance. As Gardenfors writes, "dimensions form the framework used to 

assign properties to objects and to specify relations among them. The coordinates of a point 

within a conceptual space represent particular instances of each dimension..." (Gardenfors, 

2000)   

The assumption of term independence is a major problem in VSM. In Salton's model, 

documents contained in the information space spanned by the system's indexing terms, and 

similarity is defined by the vector cosine. Thus if car and automobile are both present in the 

indexing vocabulary, systems based on the standard vector space model will fail to retrieve 

documents indexed on automobiles for queries about cars. To see why this is the case, 

consider the similarity function of the VSM given an n×p  document-term matrix A and a 

p-dimensional query vector q, VSM  similarity function is given in Equation 1.3.1 . 

(1.3.1)                                                       
'qAs =

In Equation 1.3.1, s is the n-vector of similarity values. Under the standard VSM, 

dimensions of term space are assumed to be orthogonal; the model assumes that terms are 
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statistically independent. Assumption of term independence may be covered by re-writing 

Equation 1.3.1 as shown in Equation 1.3.2 (Jiang et al., 2000).   

(1.3.2)                                                                                                        
'AqIs p=

s

sLSI

In Equation 1.3.2, the identity matrix  covers independence among the indexing 

variables. Wong et al. (1987), suggest that term correlation information should be reflected 

in the model. Wong extended Salton's vector space theory and proposed the generalized 

vector space model (GVSM). In Equation 1.3.3, R is the p x p term correlation matrix for A. 

Thus; according to the GVSM, if “home” and “house” tend to co-occur in an information 

space, an IR system will reflect their relationship in matrix R. 

pI

(1.3.3)                                                                                                        
'qRAGVSM =

This sample correlation matrix R provides a model of the relationships between indexing 

terms. GVSM attempts to improve Salton's model by allowing information space to include 

inter-term correlation. That is, by replacing the identity matrix of Equation 1.3.2 with the 

correlation matrix R in Equation 1.3.3, the GVSM minimize the error introduced to the 

Salton's VSM by assuming term independence. Overall, Salton’s VSM deviates from reality 

by assuming simplicity when VSM suggested statistical independence among terms. 

Generalized Vector Space Model (GVSM) removes error from Salton's Vector Space Model 

(VSM) theory by including the observed term correlations.  Latent Semantic Indexing (LSI) 

removes error from the GVSM through a model based on the observed sample of the 

population correlation matrix. In LSI, we have the similarity function: 

(1.3.4)                                                                                                        
'AqRk=
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In Equation 1.3.4,  is the rank- k approximation of R according to the least-squares 

method, where . Equation 1.3.4 adds to the traditional VSM a reduced linear 

model of the correlational arrangement of the indexing (terms) found in A. Selecting the best 

value of k that returns in a better query results have been till these days a problem of 

statistical model building that was not covered extensively in most IR research with Matrix 

Decomposition and LSI.  

kR

fullrank )(Ak ≤

While Wong GVSM adds to Salton’s model by including a model of term association 

based on the sample correlation matrix. LSI's improvement over Salton's VSM can be 

summarized in two ways: A) If maxkk =  then LSI approaches the GVSM. Thus LSI 

improves Salton's method to IR by representing the data inter-dependence. Instead of 

assuming that the terms of a collection are independent, B) LSI attempts to improve the 

GVSM model of term correlations by dimensionality reduction. Where dimensionality 

reduction is performed by maintaining k dimensions that represent the highest term 

correlation in the term space.  Thus LSI extends Wong GVSM by attempting to improve the 

model by creating a statistical model of the population correlation matrix via dimensionality 

reduction. 

 

1.4 Dimensionality Reduction in Latent Semantic Analysis  

Latent Semantic Indexing is  related to other IR techniques such as multidimensional 

scaling (MDS), which use data visualization for exploring similarities or dissimilarities in 

data (Cox et al.,2001) and principal component analysis (PCA) , which reduce 

multidimensional data sets to lower dimensions for analysis (Jolliffe,2002). LSI is based on 

the singular value decomposition (SVD) of an input matrix, which will be discussed in 
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chapter 2. Given an pn×  matrix A of rank r , the singular value decomposition of A is 

given in Equation 1.4.1: 

(1.4.1)                                             'DTA ∑=                                                     

In Equation 1.4.1, T is an rn×  orthogonal matrix, ∑  is an rr × diagonal matrix, and D is 

an rm×  orthogonal matrix. Where matrices T and D contain the left and right singular 

vectors of A respectively, while the main diagonal of ∑  contains the singular values, which 

are the positive square roots of A'A and AA'. The diagonal elements of    reflects the 

amount of variance of the dimensionally reduced model from the original model (Hastie et 

al., 2001), (Rencher, 1995). Those diagonal elements of  

∑

∑   decrease in magnitude as i  

goes from 1 to rank , this is demonstrated in Equation 1.4.2 where singular values follow a 

power law distribution hence the magnitude of singular values is related inversely and 

exponentially to the specified matrix rank  (Mihail et al.,2002),(Ding,2000). 

k

k

 

(1.4.2)                               rρρρρ ≥≥≥≥ ...........321                             

Singular values decrease in magnitude as their rank increase, because they represent the 

amount of variance indicated by the corresponding dimensions from the full rank model. 

LSI suggests that we can improve information retrieval results by neglecting those singular 

values with small magnitudes (Deerwester et al., 1990). 

Deerwester et al. found improvement over the VSM on several standard data sets. 

This can be achieved by removing dimensions with small corresponding singular values 

(Deerwester et al., 1990). Ding showed improvements in performance of 30% above 

traditional VSM-based systems on the ad hoc special retrieval task (Ding, 1999) (Ding, 

2000). While Dumais applied LSI to several Text Retrieval Conferences (TREC) problems 
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(Dumais, 1992, 1993, 1994). Dumais research indicated a 31% improvement over keyword 

vector methods for the filtering task, and a 16% improvement for ad hoc retrieval (Berry et 

al., 1994).  

Landauer and Dumais applied LSI to vocabulary learning problem. Their study 

results indicated that retaining approximately 300 dimensions yields the best accuracy for 

the vocabulary problem. They found that an LSI system is able to learn new vocabulary with 

accuracy over 50% (Landauer et al., 1997). Of particular interest about this study is the 

relationship between their system's dimensionality and its performance.  Landauer and 

Dumais research indicates that when the number of dimensions (k) becomes much larger 

than 300, performance declines, this decline was interpreted as an evidence that the factors 

corresponding to small singular values contain essentially random noise distracters 

(Landauer et al., 1997), research results given by Ding (1999, 2000) and Story (1996) align 

with this hypothesis.  

 

Research suggests that selecting the value of  (dimensions retained) is very important for 

good LSI performance. This indicates that a better LSI model should include factors whose 

corresponding singular values are large while discarding those that are small (Deerwester, et 

al., 1990). 

k

Deerwester et al., called for the selection of an appropriate dimension as a very important 

factor for good information retrieval under LSI. However, moving from a low 

dimensionality of k = 1 to a moderately high dimensionality of k = 100 yields a 30% 

improvement in overall performance.  Deerwester et al. says “we are guided only by what 
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appears to work best. What we mean by 'works best' is what will give the best retrieval 

effectiveness" (Deerwester, et al., 1990).  

Additional interesting research question arise here which will be investigated in this 

research: What if we can’t decide on the best dimensionality reduction parameter or 

technique in the unsupervised learning web environments, where noise and distracters 

effects cannot be neglected.  In large information repositories a small change in the selected 

dimensionality might have a huge impact on overall system performance.   Deerwester et 

al., method in selecting the reduced matrix dimension is common in many applications of 

LSI. However, the problem arises in practice where it is difficult to judge what does work 

best. In the case of Deerwester et al. or Landauer and Dumais, selection of k was performed 

by recourse to pre-classified data. All of these experiments make use of training data and 

test data that have been pre-classified, thus allowing the researchers to judge a given 

parameterization retrospectively by observing its accuracy on the test data. This approach is 

partly satisfying since most of the current IR systems do not have access to the relevance 

judgments that guide performance analysis used by Deerwester et al.  In general, Deerwester 

et al. approach lacks a theoretical understanding for dimensionality reduction in IR systems 

implementation. 

 

1.5 Effective Reduced Dimensionality Parameter 

In studying dimensionality reduction parameters in LSI we encounter difficult 

questions on whether there is an existing optimal value for .  Jain et al., introduced the 

term of data set’s intrinsic dimensionality which is also known as effective dimensionality 

(Jain et. al.1980). This term is also common in most literature that cover principal 

k
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component analysis where the intrinsic dimensionality is defined as a function of the 

multivariate probability density function responsible for the pn×  matrix , the intrinsic 

dimensionality of  is defined as the number of statistically uncorrelated variables in the 

probability density function of , or the number of non-zero singular values (variances) in 

the population covariance matrix, the main observation in most studies is that those singular 

values for dimensions that exceed the matrix intrinsic dimensionality will tend to be small  

(Jobson,1991) ( Rencher, 1995) (Jolliffe, 2002).  

A

A

A

In general, intrinsic dimensionality is the minimum number of parameters that is necessary 

in order to account for all information in the data. Several techniques have been proposed in 

order to estimate the intrinsic dimensionality of a matrix.  Major techniques will be 

discussed in chapter two. 

 

1.6 Open Areas and Research Opportunities 

Search engine results allow the user to view a document, navigate back to the search 

engine page and then based on the relevance judgment the user click on another relevant 

result, we conclude that this is not an ideal method, since hidden semantics of documents 

does not match user’s level of knowledge to main concepts reflected by relevancy of results.  

Information retrieval techniques with latent semantic indexing try to limit the number of 

results returned to a user by reducing noise through dimensionality reduction. This can help 

accelerating relevancy process and direct users to relevant results. This activity supports 

user’s cognitive model because domain knowledge is only contained at an abstract level.   

In cognitive load theory, domain knowledge is critical in order to make an accurate 

relevancy judgment. The concept of cognitive load was presented by Miller (1956) where a 
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human’s cognitive capacity for processing information was studied. Miller mentioned that 

“The amount of information is exactly the same concept that we have talked about for years 

under the name of variance. The equations are different, but if we hold tight to the idea that 

anything that increases the variance also increases the amount of information we cannot go 

far astray” Miller (1956).   

It was concluded that working memory has a limited retention while other studies try 

to minimize cognitive load through interface design by recognizing human’s working 

memory limitations. Studies in IR recognized that studying working memory limitations and 

capabilities may not be the only method of minimizing cognitive load. Beaulieu (1997) 

indicated that there is a need to study cognitive load to take account of the integration and 

interaction between the number and presentation of options, to add to this, I would like to 

refer to my research objective in finding a better structure of data collection to uncover 

concepts associations which are hidden as semantic properties, this will help answering 

questions such as: How much in the ranked list will users need to filter, to find all relevant 

documents? 

Latent semantic analysis provides a measure for the similarity of meaning between words 

from text which are a close match to those of humans. Latent semantic analysis rate of 

absorption of knowledge from documents is similar to that of humans, and those results 

depend on the retained dimensionality of the representation. Latent semantic analysis 

performs similar to human-comparison. LSA performs well using representations that 

simulate multiple cognitive aspects that rely on word and passage meaning. 

The similarity estimates obtained by latent semantic indexing are not simple 

correlations in usage, but depend on a powerful mathematical model capable of inferring 
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deep and strong relations (Latent Semantics), which are better approximates of human 

meaning-based reasoning and performance (Landauer,Foltz, and Laham, 1998). Latent 

semantic analysis reflects human knowledge since its scores overlap those of humans on 

standard vocabulary tests. Additionally latent semantic analysis simulate human word 

sorting and category judgments and accurately estimates passage coherence, learnability of 

passages by individual students, and the quality and quantity of knowledge contained in an 

essay (Landauer,Foltz, and Laham, 1998). LSI can be used as a practical method for the 

specification of word meaning that provides measures of word-word, word-document and 

word-concept relations that are similar to several human cognitive aspects involving 

association or semantic similarity. 

 Intrinsic cognitive load is related to task difficulty, while extraneous cognitive load 

corresponds to task presentation.  If intrinsic cognitive load is high, and extraneous 

cognitive load is also high, then problem solving may fail to provide correct solutions. 

When intrinsic load is low, then mental resources may remain to enable problem solving, 

even if a high level of extraneous cognitive load is required. Modifying the task presentation 

to a lower level of extraneous cognitive load will help maintain problem solving tasks if the 

resulting total cognitive load decreases to a level within the bounds of cognitive resources. 

    Literature review of research in dimensionality reduction indicted that no one to date has 

researched the effect of various information retrieval performance measures on overall 

retrieval performance when implementing a reduced matrix decomposition using LSA. As 

the dimensionality of data increases, query performance decrease and this is usually 

reflected and measured by the average system precision. This problem have been long 
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known as the “curse of dimensionality” was associated with much research in an effort to 

find better and more accurate techniques that process queries in large databases.  

There is no consensus about the most effective method for estimating the best 

number of dimensions in LSI which results in better overall retrieval performance and that 

there is a need for research to be conducted on selecting the proper reduced matrix 

parameter in SVD which will yield improved overall performance. While this issue remains 

a challenging task, researchers have found that dimensionality reduction provides a better 

solution to information retrieval problems, which generally results in more relevant results 

and faster computational time, while giving reasonable accuracy and precision. An ideal 

dimensionality reduction technique has the ability of efficiently reducing data into a lower-

dimensional representation, while maintaining the properties of the original data. Therefore 

it is desirable to find a technique that reduces dimensionality, while maintaining important 

information from the original model.  

This research is going to contribute to reducing overall cognitive load through enhancing 

retrieval performance in terms of relevancy and better concept matching by finding the a 

better dimension that will yield improved overall search results in terms of relevancy, 

average search precision and recall while reducing the time it takes the user to find specific 

information, thus reducing the user level of uncertainty associated with the search process 

since the cognitive load will be reduced as users feels more confident that their information 

need can be answered. 

Previous research performed on information retrieval systems using LSI has generally found 

improvements in search results, however, there are no studies which detail and evaluate the 

effect of selecting the reduced dimension on multiple performance measures.  Studies in the 
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literature review indicated that LSI queries performance improve as the number of 

dimensions  k  increases, but this performance will decrease past a certain value of . The 

value of  that enhances LSI performance is an open research issue, which will be studied 

in this research. One of the main objectives of my proposed research is to develop a new and 

improved model to investigate the effect of various dimensionality estimation techniques on 

overall search performance.  This research will try to answer the following open questions 

in the implementation of LSI: What is the best method that enhances rank k approximation 

for the term-document matrix? Does a system using a weighted performance measures result 

in better overall performance? Does the weighted performance measures implementation 

provide an efficient LSI information retrieval technique than what we get by using full rank 

SVD? 

k

k
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CHAPTER TWO: LITERATURE REVIEW 

 

2.1 Information Retrieval Systems 

Information retrieval techniques search data repositories for documents that are 

relevant to users stated need via queries (Baeza-Yates et al., 1999) (Van Rijsbergen , 1979). 

Baeza-Yates, adopted a definition of basic IR vocabulary, by the use of the term document 

to denote a single unit of information and to describe text in digital form (Baeza-Yates et al., 

1999). Queries are considered similar to documents, both mathematically and conceptually; 

or simply called "pseudo-documents". In older IR systems, documents contained only a few 

keywords, titles, or summaries of longer works (Cleverdon, 1967) (Luhn, 1961). 

  However due to the  improved computing resources and the growth of electronic 

corpora such as the World Wide Web, documents in many newer IR systems contain a full 

reproduction of electronic texts. W. S. Cooper recommends intelligent information retrieval 

systems to borrow from machine learning, artificial intelligence, and linguistic research 

(Cooper, 1988).   The volume and complexity of research into intelligent IR limits a general 

coverage of the subject. Instead, discussion will be limited to research in IR systems that 

build upon the vector space model. 
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2.2 The Vector Space Model (VSM) 

Salton's vector space model (VSM) of IR characterizes retrieval in linear algebraic terms 

(Salton et al., 1975) (Salton et al., 1983). Under Salton's model, each document represents a 

vector in a p-dimensional vector space, where p is the number of indexing terms used. The 

location of the  document along the  axis corresponds to the presence or absence of 

the  term in the   document. The simplest expression of the vector space model treats 

terms as binary data. Thus  if the  term appears in the document. Otherwise, 

(Salton, 1989).  Table 2 contains a very small document collection about home cats 

and birds; Figure 2 depicts this data as points in a vector space. In this model, four 

documents are represented by two terms, cats and birds. 

thi id

≥ij

thj

thj

thj

0=

thi
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ijd
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Bird 

Cat 

Figure 2: Home Cats and Birds data as vectors 
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Table 2: Home Cats and Birds Data 

Document  Contents 

1  Mans Best Friends 

2  Feeding a Bird 

3  Home Cats and Birds 

4  Cat’s lovers 

 

The vector space shown in Figure 2 is defined as the space spanned by the rows of matrix A: 

(2.2.1)                                                                                                        
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Matrix A  shown in 2.2.1 is known as the term-document matrix; where the  column of thi A  

represents the  indexing term in document space. While the  row represents document thi thj

j  as a vector in term-space. Document number 1 contains neither indexing terms, and thus 

the model locates it at vector (0, 0) in A . Document 3 contains both birds and Cats, thus 

becomes (1, 1) in . In vector space model, similarity between two documents i  and A j  is 

defined as the inner product between the and  document vectors, this is shown in 

Equation 2.2.2: 

thi thj
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Normalizing the document vector to unit length gives the vector cosine shown in Equation 

2.2.3. 
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A more common measure of similarity between document and query vectors is the cosine 

coefficient (Chowdhury, 1999), in which the similarity between a document in a collection 

 and query q  is described by Equation 2.2.4 jd

(2.2.4)                                 
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If we want to calculate the similarity between document 1 and 4 shown in matrix A  (2.2.1) 

then 0
10

00
)4,1( =

+
+

=sim , and 71.0
12

10
)4,3( =

+
+

=sim , notice that under Salton’s 

vector space model, documents 1 and 4 have no terms in common, while documents 3 and 4 

share only one term, so we can say that documents 3 and 4 are closer together than 

documents 1 and 4. The query in Salton’s vector space model is represented as a pseudo-

document often denoted as . Translating a query  into vector space model involves 

calculating then the model will try to presents results to the queerer ranked 

according to their similarity to  . 

iq

iq

iq

),( ii dqsim

If we return to our birds and cats example, a query about birds or birds and cats will 

be transformed into a vector space representation in  as query vector q shown below: A
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VSM will then rank each document according to their similarity criteria shown in Equation 

2.2.3 

Vector space models have been of much importance due to its inter-document similarity 

representation. Salton’s vector space model assumes that similarity is represented by 

geometric proximity (Salton, 1989). Salton assume that similarity is linear on the 

collection's indexing items. That is, vector space IR assumes that indexing terms are 

statistically independent. This assumption is proven to be false (Manning et al., 1999) 

(Oakes, 1998) (Cooper, 1988) (Cooper, 1991). Although it is unclear exactly how the 

assumption of term independence degrades the performance of IR systems (Losee, 1994).   

Salton suggested the use of distinctions between individual terms based on their values to 

describe documents, where terms weight tend to be different based on several factors 

(Salton et al., 1988), Salton identifies two descriptors: term frequency (tf) for how many 

times the term appears in the document and inverse document frequency (idf) for how often 

the term appears in the information collection (Luhn, 1957). Luhn research suggested that 

most important terms in a document were those that are found with middling frequency 

(Luhn, 1955). Common terms such as “the”, “in”, “to” and “it” are over-represented in 

almost all English information repositories; their presence or absence provide little or no 

information about document relevance and aboutness discussed earlier.  Many terms in a 

corpus will occur once or twice. These so-called terms provide too little information for 

useful text processing.  Luhn (1955) suggests that terms that occur with mid-range 

frequency should be weighted when computing inter-document similarity. From this point 

Salton argues that any term weighting model should account for term frequency. 
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The notion of inverse document frequency (idf) was introduced by Karen Sparck Jones. 

According to Sparck Jones it is not sufficient to consider a term's global frequency (tf) when 

estimating its usefulness for discrimination. Analysis of a term's distribution across 

documents should supplement idf analysis (Sparck Jones, 1972). This consideration stems 

from the possibility that a term could be quite common, but present in only a small subset of 

a corpus' documents. A purely tf-based model would degrade such terms due to its common 

appearance, although its concentrated distribution suggests that it could serve as a useful 

marker for a subclass of document (Sparck Jones, 1979). Thus the idf factor as Salton 

mentioned, "Varies inversely with the number of documents n to which a term is assigned in 

a collection of N documents. A typical idf factor may be computed as
n

N
Log ” (Salton et al., 

1975), thus Salton was able to develop an IR weighing scheme for term discrimination 

which assumes that best terms should have high term frequencies but low overall collection 

frequencies. To estimate terms discrimination value, Salton used the product of (tf) and (idf) 

(Salton et al., 1988). Although this term weighing criteria have been criticized because of 

insufficient theoretical foundations (Bookstein et al., 1975) (Cooper et al., 1978), this term 

weighing criteria was popular in many IR research (Bollacker at al., 1998) (Joachirns, 1998) 

(Prey, et al., 2001). In general Salton’s vector space model imagines that all terms are 

equally important, and that their presence or absence with the frequency of their repetition 

determines the conceptual content of a document. So that, for the term discrimination 

model, not only does it matter how many times a term appears in a document, but it is also 

important to know how many documents contain the term. In this case we are reducing the 

model from a space vector in p-space to a vector in k-space, where  .  p<k
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While analyzing each term's distribution (idf) across documents, the suggested model 

accounts for documents inherent features, suggesting that those terms that are largely used 

in a small group of documents will be strong indicators for retrieval purposes. 

Many words in data repositories are only slightly useful for information retrieval 

systems. Stop-lists (Baeza-Yates et al., 1999) (Salton et al., 1983) (Salton et al., 1989) were 

created for removing high-frequency terms (Noise) which adds no useful information. 

Likewise, the use of stemming (Porter, 1980) can reduce the number of indexed terms by 

mapping variants of a stem down to a single root. Researchers would benefit from stemming 

by eliminating these document features that adds noise into the document ranking process.  

Salton suggested that if our weighting model is up to the task, we may derive the k most 

important features in a collection by ranking the terms by idf weight and keeping top k 

ranks. 

Influenced by Cooper’s results (Cooper,1991), Salton included the effect of term 

dependencies and correlations to the Vector Space Model in a number of ways, of them: (A) 

Generating sets of related terms by observing co-occurrence in data from online corpora 

(Lesk, 1969),(Van Rijsbergen, 1977),(Church et al., 1990).  (B) Identifying common word 

phrases and considering them indexing features similar to individual words (Sparck Jones et 

al., 1984). (C) Use of online thesauri (Amsler, 1984) (Sparck Jones et al., 1984) (Fox, 

1980), (Fellbaum, 1998). (D) Development of knowledge bases and logical relations among 

indexing terms (Croft, 1986) (Croft, 1987). 

The main objective of relevance feedback adopted by Rocchio technique (Rocchio, 

1971) is to construct an optimal query  by studying retrieved documents in the 

collection  for a given query q . 

optq

rC
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Rocchio method start by assuming that we have a complete knowledge of the relevance 

values for a query q for every document in our collection. This is given in Rocchio 

Equation 2.2.5, where the optimal query is a weighted sum of relevant and non-relevant 

document vectors, with the weights depend on the size of  in relation to the size of the 

collection. Symbols used in Rocchio relevance feedback is shown in Table 3. 

rC
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                               Table 3: Symbols used in Rocchio Relevance Feedback 

Symbol  Meaning 

  Set of relevant documents among retrieved documents 
rD

  Set of non-relevant documents among retrieved documents 
nD

  Set of all retrieved documents 
rC

rD , nD rC,   Number of elements in each set of documents 

α β γ,,   Constant Parameters 

 

 Because we do not have access to the requisite sets of relevant and non-relevant documents, 

the final query vector under Rocchio technique is formed by Equation 2.2.6. The objective 

of relevance is to manifest the relationships between terms (Ide, 1971). 
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Rocchio relevance feedback constructs an ideal solution vector as shown in Equation 

2.2.6, which is the best linear approximation of  as which maximizes the similarity 

mq

optq mq
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(minimize distance) between the query and the center of the set of relevant documents while 

maximizing its distance from the center of the set of non-relevant documents, this will 

guarantee an optimal query generation.  Salton (1989) describes three main advantages to 

using similarity coefficients between query and document vectors:  

1) Documents can be arranged in descending order of similarity. 

2) The number of documents retrieved can be limited to the most similar documents. 

3) Documents located early in the list of retrieved documents might be the most useful 

documents according to their relevance to the query. 

 

2.3 Latent Semantic Indexing (LSI) 

Research on term-based information retrieval shows the side effects of undue 

cognitive burden placed upon end-users interested only in abstract concepts rather than in 

specific and accurate technical words (Furnas, Get al., 1987) (Newby, 2001).  Information 

retrieval cognitive research suggests that development in IR should account for 

psychological developments in the cognitive sciences, Newby suggests a "computerized 

representations of data sets as found in document collections which are compatible with 

human perception of the data sets" (Newby, 2001).  Newby mentioned two useful 

statements, which will be followed in this research. The first statement is that information 

space domain is the set of concepts and relations between them held by a computer system. 

And the second statement is that information spaces are comprised of words, documents, 

and the relations among them. Based on this, cognitive space is defined as the set of 

concepts and relations between them held by human knowledge. Although it is difficult to 

identify the fundamental components of cognitive spaces in human’s knowledge and 
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experience, psychological research finds a high degree of similarity among psychometric 

analyses of individual linguistic association (Wittgenstein,1953), (Rosch,1975),(Rosch, et 

al.,1976). 

 The basic assumption behind latent semantic indexing (LSI) is that term      

correlation in information retrieval reduces searchers cognitive burden. LSI was created to 

address the gap between information spaces and cognitive spaces so as to improve VSM 

representation to accommodate for the error of term independence (Landauer et al., 1997), 

(Landauer et al., 1998), (Foltz et al., 1998),(Gardenfors, 2000),(Landauer, 2002),  

 
LSI addresses two main problems in IR: Polysemy, or the problem that many words have 

more than one meaning, and that those meanings are obtained from the context in the 

documents collection. And Synonymy, or the problem that there are sometimes more than 

one way of describing the same object. Synonyms tends to decrease the recall retrieval 

performance of IR systems (Deerwester et al., 1990).  

LSI implements dimensionality reduction, hence the latent semantic space which is 

created in LSI has fewer dimensions than the original space (Manning et al., 1999). LSI 

based systems are able to match and find terms which do not appear in a document. Thus 

documents located in a similar space of meaning will be retrieved. Latent semantic indexing 

use statistical modeling to improve the representation of terms and documents by deriving a 

low-rank approximation,  of the term-document matrix,  where  provides the best 

least-squares rank-k of A. In projecting the information space onto a low rank  , LSI 

achieves two main benefits over the standard vector space model: The inclusion of terms 

dependence, and dimensionality reduction. (Deerwester, et al., 1990), (Berry et al., 1994), 

(Husbands et al., 2000).   

kA A kA

kA
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Deerwester et al. referred to the points of weaknesses in information retrieval methods in 

that the words searchers use are not always similar to those by which the information they 

seek has been indexed, Deerwester et al. referred to the problem of synonymy and polysemy 

(Deerwester, et al., 1990).  

Synonymy affects searchers when searching with different terms in a query than what an 

author or indexer used in a relevant document. Thus retrieval systems might fail to deliver 

documents about homes when presented with a query about houses or queries about cars 

when presented with queries about automobiles. Information retrieval performance is also 

downgraded due to polysemy because natural language terms tend to have multiple different 

meanings, the term can imply quite different topics in different contexts. LSI relies on 

statistical modeling which approximates the dynamics of a variable and stochastic system. 

Neter et al. mentioned that statistical models contain two components (Neter, et al., 1996): 

(A) Functional Element, with which the model expresses the relations among system 

variables as a mathematical function. And (B) Stochastic element, which assume that the 

behavior of the system is non-deterministic, but rather that its dynamics is in part governed 

by a set of probability distributions.   

According to Neter, et al. (1996), a mathematical model describes a system 

deterministically, thus we may construct as an example a model to calculate a family 

monthly payments based on the number of services or purchases that they have in a specific 

month. Such a model defines two kinds of variables, a dependent (response) variables based 

on given information of other variables in the system and an independent variables 

(predictors) that provide information by which we predict the value of a dependent variable. 
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However statistical models are different than mathematical models due to their semi-

deterministic nature (Bhattacharyya et al., 1977).  

Statistical models are constructed empirically by following three general steps 

(Jobson, 1991) (Neter, et al., 1996): (1) choosing the family of functional relations which 

describe the system behavior. Mainly the family of linear functions is widely used in 

information retrieval due to their mathematical descriptive power (McCullagh, et al. 1989), 

(Cherkassky, et al., 1998), (Hastie. et al., 2001). (2) Identifying the probability distribution 

that governs the variability of the system. (3) Parameterizing the model function. 

LSI apply linear regression as one of its main modeling techniques, Story (1996) provided a 

detailed discussion of the relation between information retrieval and linear regression 

(Story, 1996).  A simple linear regression model is shown in Equation 2.3.1, where  is the 

 response, 

iy

thi oβ  and 1β  are fitted parameters,  is the observation, and ix thi iε  is the  

error term. 

thi

(2.3.1)                                      iixiy εββ ++= 1o     

        

Least-squares method is used to solve the regression model. In solving for this we choose 

those regression coefficients that minimize the squared error between the observed data, and 

the predictions at each observation, thus we find a fitted value for the response, 

ii xy 1ββ += °  , where the sum of squared errors (SSE) is shown in Equation 2.3.2  

(Forsythe, et al., 1977) (Neter, et al., 1996)  

                                       

(2.3.2)                                          
2)ˆ( ii yySSE −∑=
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In fitting the least squares estimate of the model we find the parameters that minimize SSE, 

oβ  and 1β  or the parameters that minimize the residual deviance of the model. (Fisher, 

1974) (Jobson, 1991) (Neter, et al., 1996). Additionally, least-squares estimate of the 

regression coefficients is shown Equation 2.3.3 where the covariance is given 

by XX ′ (Jobson, 1991), (Rencher,1995).: 

(2.3.3)                                            
yXXX ′′= −1)(β̂

 

To measure the variance that is captured by the regression model we calculate the 

coefficient of determination 2R  which is a measure of the descriptive power of the model as 

shown in Equation 2.3.4 (Burnham et al., 1998). 
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The main objective of LSI is to generalize from observations, this is the result we get from 

implementing linear models approximations, according to this we can simulate LSI process 

as a series or linear regression processes. In this sense LSI tries to build relations that were 

neglected in VSM that accounts for term independence.  

Rencher (1995) described principal component analysis as a method that tries to 

maximize the variance of a linear combination of a variables by searching for the optimal 

dimension that maximize data spread, this is meant to organize information according to the 

main topic, a problem described as an eigenvalues-eigenvector problem (Rencher,1995), 

(Strang, 1998), (Jobson, 1991).  PCA assumes that dimensionality reduction helps overcome 
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sampling error.  According to Rencher, PCA align the principal components or variances 

from the largest (sample) variance to the smallest sample variance (Rencher, 1995). Thus by 

retaining only the first principal components we achieve the best rank-k 

approximation of the covariance matrix, in the least squares sense. 

pk <

 

 

2.4 Singular Value Decomposition (SVD) 

     Latent semantic indexing use a low rank approximation of the original data matrix by 

adopting the use of singular value decomposition (SVD), a least-squares matrix factorization 

method from linear algebra (Golub, et al., 1989), (Forsythe, et al., 1977), (Berry et al., 

1994), (Strang, 1998) .The singular value decomposition of matrix  (

A

A pn× ) of rank r is 

shown in Equation 2.4.1 

(2.4.1)                                                ][][][ nrrrrm DT ×××A ∑=       

In Equation 2.4.1  T  and  are orthogonal matrices, where T is D rm× , with columns  

containing the left singular vectors of 

it

A .  is an D nr × matrix with columns ; referred to 

as the right singular vectors of . Matrix 

id

A ∑ is an rr ×  diagonal matrix, with the diagonal 

elements 0321 ≥≥≥ ......≥≥ rρρρρ  called the singular values (Deerwester, 1990) (Berry 

et al., 1994) (Hastie et al., 2001). 

The matrix of singular values ∑  acts as a reference of the amount of variance 

described by each factor k in the derived factor space (Jobson, 1991). This property is useful 

when selecting singular values (variances) to retain during dimensionality reduction. SVD is 

used to derive a least-squares approximation of A, as shown in Equation 2.4.2, where all 
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term-document similarities are approximated by the results of this model with reduced 

dimensions (Deerwester, 1990): 

(2.4.2)                                                      kkkk DTA ∑=ˆ

In Equation 2.4.2 contains the fist k columns of kT T , k∑ contains the first k rows and 

columns of , and contains the first k columns of . Thus the similarity between two 

documents represented as vectors and  is the inner product between the  and  

rows of .  A query is added as an ad hoc document and projected as shown in Equation 

2.4.3 (Berry et al., 1994). 

∑ kD D

id jd thi thj

kD q

(2.4.3)                                                kkqTkq ∑=       

 

We calculate similarity between queries and each document in the corpus by applying 

Equation 2.2.3 to find  where is the i  row of  .  ),( kk dqsim kd th Dk

One of the major strengths of LSI is its ability to identify topical clusters of terms 

and documents. LSI is considered an extension to Wong generalized vector space model, 

since it augments standard vector space model to include an analysis of the correlational 

structure of data (Wong et al., 1987), (Jiang et al., 2000), an example of SVD term 

document structure of rank five is shown in Figure 3.  

Deerwester et al. stated that choosing a dimensionality that indicates the correlational 

structure of the population from which a data sample is drawn is an open problem in the 

literature (Deerwester et al., 1990). Deerwester et al., indicated that the representation of 

large document collections will require more than a collection of underlying independent 
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concepts which manifest the importance of the amount of dimensionality reduction or 

selected dimensions  to effective implementation of LSI (Deerwester et al., 1990).  k
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Figure 3: Example of SVD term-document structure or rank five 

 

In order to process a query with multiple keywords in latent semantic indexing we need to 

represent each term and document as a vector in k dimensional space (we would like to use 

the reduced matrix dimension or intrinsic dimensionality) that will improve overall 
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performance.  A query will be treated just as a document which appears as a set of 

keywords. Thus a query or "pseudo-document" will be represented as the weighted sum of 

component term vectors.  

To get a set of potential relevant documents, the pseudo-document (query) formed from 

multiple keywords is compared against all documents using the euclidian distances or vector 

cosines by multiplying the corresponding values of each query terms by the documents 

weighted term frequency values, we select those values with the highest cosines, that is the 

nearest vectors with high corresponding documents similarities, to be returned as relevant 

documents. Generally a limit or threshold is set for the closeness of documents and all those 

documents above the threshold or within the n closest are returned.  This cosine measure is 

an indicator of similarity to predict human relevance judgment regarding similar concepts in 

a text collection; in addition to the effects of dimensionality reduction to improve 

information retrieval relevancy measure and reducing overall user cognitive load. To 

illustrate this, the following example is provided for two imaginary groups of documents 

from a collection in Computer Science (CS) and Human Factors (HF). This collection is 

summarized in table 4 and 5 
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Table 4: Example for two groups of documents from an imaginary collection in computer 

science (CS) and human factors 

Type 

Terms 

Data Information Retrieval Cognitive Overload 

Document 

CS Doc-CS-1 1 1 1 0 0 

CS Doc-CS-2 2 2 2 0 0 

CS Doc-CS-3 1 1 1 0 0 

CS Doc-CS-4 5 5 5 0 0 

HF Doc-HF-1 0 0 0 2 2 

HF Doc-HF-2 0 0 0 3 3 

HF Doc-HF-3 0 0 0 1 1 

 

Term document matrix A will be decomposed into: 

                                      A[n x m] = T[n x r] ∑   [ r x r] (D[m x r])
T   

 

Table 5: Term document matrix decomposition details 

A:  n x m matrix (n documents, m terms) 

T: n x r matrix, document-to-concept similarity matrix (n documents, r concepts) 

∑ : r x r diagonal matrix with  diagonal elements representing ‘strength’ of each concept 

(positive singular values representing the variances), and sorted in descending order (

 

∑ i: 

strength of each ‘concept’) (r: rank of the matrix) 

D: m x r matrix, term-to-concept similarity matrix (m terms, r concepts) 
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     (Data  Inf.    Ret.  Cog. Overload)   

 

 

 

 

 

 

 

                                                                   

To search for queries we need to represent query vectors into ‘concept space’ as an example 

consider Query 1 with two keywords which searches for “Information Retrieval” 

                                                        (Data , Inf. , Ret., Cog. ,Overload)   

                      

 

Query (similarity to concepts) = (Query1) x D (Term to Concept matrix) 
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We notice that documents with keywords of (‘information’, ‘retrieval’) will be retrieved by 

query (‘data’), although it does not contain ‘data’!! This highlight the importance and 

benefit of dimensionality reduction for  retrieving relevant documents, when we have large 

document collections with thousands of terms from different concepts, using similarity 

generalizations to queries will add great value to relevancy measure and reduce noise which 

will distract users.  

 

2.5 Term Weighting 

   Terms weighting assign terms which are more important a higher value than less 

important terms. Summing the number of times each term appears in a document is the most 

used and simplest term weighing technique. The use of term weighting usually results in 

better ranking (Frakes et al., 1992). Equation 2.5.1 is a weighting scheme that consists of 

three components, where  is the ijija th−  element of term document matrix : A

ija(2.5.1)                                                jiji dtg=       
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In Equation 2.5.1,  is a global weight which is applied to all non-zero occurrences of term 

 (all values of row ). is the local weight for term i  in document 

ig

ii ijt j  (Kolda, 1997).  is 

a normalization factor which may be required as larger documents will tend to receive a 

higher similarity coefficient, due to higher term frequencies. Kolda (1997), Salton and 

Buckley (1997b) provided a more comprehensive list of weighting formulas.  

jd

 

2.6 Stop Lists  

Candidate terms are usually compared against a stop list during the automatic 

indexing of documents. Stop list is a list of very common words (e.g. “the”, “an”.., etc.). 

Those terms appear in most documents and will be removed when they show up frequently. 

The advantages of using a stop list is that less storage space is required and that high 

frequency terms are removed from both the query and the term matrix which means faster 

retrieval . The disadvantage of using a stop list is that search phrases might require words 

from the stop list. The standard Stop list used in many IR studies is the list used by SMART 

program, which contains 429 terms. This list is shown in Appendix A. 

 

2.7 Stemming 

Stemming is a morphological collapsing of word variants into a single root. For 

example, `Simulate', `Simulation' and `Simulated' will all have the same root `Simulate'.  

Jurafsky et al. indicated that stemming needs to be applied to the keyword matrix and to the 

query in order to be effective. The advantage of stemming is that a query on the keyword 

`Simulation' will be stemmed to `Simulate' before start searching for it in a document 

collection and will retrieve documents which also use the keyword ‘Simulated’ and 
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`Simulating' (Jurafsky et al., 2000).  Frakes (1992) found that there was little difference in 

IR system performance between stemming methods. The disadvantage of stemming is that it 

can return terms which have stemmed to the same root, but are not related to the query.  

Research on the benefits of stemming is inconclusive, although stemming generally doesn't 

degrade retrieval effectiveness (Frakes, 1992). The Porter stemmer (Porter, 1997) is the 

most commonly used stemming algorithm, due to its simplicity.  

 

2.8 Reduced Dimension of the Singular Value Decomposition  

Research in LSI suggests that dimensionality reduction removes the noise from the 

term document matrix representation. Dimensionality reduction projects the term document 

matrix r into an orthogonal subspace or a lower rank  where .  However, the 

reduced dimensionality  is not fully understood in applications of LSI, and the source and 

character of the noise is difficult to understand and verify. Additionally the actual error 

distribution of these models is not clear (Manning et al., 1999) (Husbands et al., 2000). 

Results indicate that without a complete understanding of these models, ignoring remaining 

dimensions ( ) introduce risk on inaccurate models (Ding, 2000). 

k rk <<

k

kr −

After Deerwester et al. proposed their approach in information retrieval using LSI; 

researchers noticed that properly parameterizing the representational dimensionality of the 

model is a vital for information retrieval accuracy and precision. Deerwester et al. 

mentioned that the reduced dimensionality parameter is crucial to successful application of 

LSI (Deerwester et al., 1990), noting a 30% improvement in average precision as they 

changed  from 1 to 100 on the Medline data collection. Setting the model dimension to 

very low values will deprives the model from important descriptive power to perform 

k
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consistent information retrieval, Deerwester et al. indicated that setting the model 

dimensions to low number of factors,  = 100, yields good overall performance. k

Landauer and Dumais write, "Using too many factors (for LSI representations) also 

resulted in very poor performance" (Landauer et al., 1997). It was indicated that setting  

 leads to accuracy slightly below  on a synonym learning test. In the region 

of , Landauer and Dumais report accuracy above 50%. As they increase , letting it 

approach the full matrix dimensionality of their data collection, accuracy dips back to the 

15% level Landauer and Dumais test the validity of this strong non-monotonic relation 

between the number of dimensions and the accuracy of simulation, by recourse to a 

statistical hypothesis test, noting a p-value below 0.0002 (Landauer et al., 1997).  

1=k

=k

%16

300 k

In practical implementation, researchers tried to approximate . Deerwester et al. 

indicated a region with a corresponding optimal dimensionality, where  was selected by 

approximation. Deerwester et al. wrote "We have reason to avoid both very low and 

extremely high numbers of dimensions, In between we are guided only by what appears to 

work best. What we mean by 'works best' is ... what will give the best retrieval effectiveness" 

(Deerwester et al., 1990). Landauer and Dumais indicated that identifying  for a given 

corpus is a complex issue that must be addressed in future research (Landauer et al., 1997). 

optk

optk

optk

Landauer and Dumais work formalizes a pattern that is encountered often in applied LSI 

research: for data collections there is a region of optimal dimensionality less than the full 

rank of the dataset. Reducing the matrix dimension and setting  a value below this region 

deprives the system of important descriptive power, while setting a value of  that is too 

high appears to over-fit the model (Landauer et al., 1997), this means that the model will 

k

k
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learn additional term-document relations, which reduce LSI ability to predict correct term-

document associations.  

Manning et al. mentioned a region of optimality with regard to parameterizing  in LSI 

models. These observations suggest that observing the performance of an LSI system at 

various levels of  gives an indication about the intrinsic dimensionality of a data collection 

(Manning et al., 1999). Ding mentioned that adding factors to an LSI model quickly 

improves performance until a certain threshold is reached. After this region of optimality, 

performance decreases as one adds more singular vectors (Ding, 1999) (Ding, 2000).  

k

k

Dumais indicated the need for more dimensionality representational details than 

what a 100 dimension can afford to be able to represent a 742,331 document by 104,533 

term matrix, Dumais derived a smaller matrices by document sampling. Analyzing these 

sampled matrices by SVD, Dumais choose values of  ranging from 200 to 300 (Dumais, 

1993). These results suggest that while larger corpora demand more factors, this increase is 

not linear. On the other hand, small collections might perform well under k  = 5% of the 

number of documents, while representing a large corpus may only require k  =0.005% of the 

number of documents (Dumais, 1993). 

k

Previous approaches which estimate matrix intrinsic dimensionality relies on pre-

classified test data to define a well-constructed model, this is common in IR evaluation, 

however, an open research question is to find a model goodness of-fit that is applicable to 

the unsupervised learning environment such as large data collections and the World Wide 

Web information collections. Hofmann (2001) criticized the normality assumption which is 

introduced by least-square method. The method of least-squares minimizes the model's 
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squared error shown in Equation 2.8.1.1. This will provide a solution based on the 

assumption of normality. 

2)( μ−x

(2.8.1.1)                                 ))(
2

1
exp(

2

1
),,( 2

σ
μ

πσ
σμ −

−=
x

xn                                               

Information retrieval research indicated that term-document matrices are non-normal in their 

distribution. A well-known research holds that term count data tend to follow a Zipf-like 

distribution (Manning et al., 1999) (Jurafsky et al., 1999) (Zipf, 1929) (Mihail et al.,2002) 

(Efron, 2003). The Zipf distribution is called the power law model, which suggests that the 

rank and frequency of terms in a data collection will be inversely and exponentially related. 

Thus many terms occur once or twice; while only a few terms occur often. 

 

         In order to help solving the problem of dimensionality reduction in IR, Hofmann 

proposed a probabilistic latent semantic analysis (PLSA) model (Papadimitriou et al., 1998), 

(Hofmann, 1999) (Hofmann, 2000). In PLSA model, the k  factors derived by LSI are 

noticed to correspond to the mixture of various components. As such, “the mixing 

proportions in PLSA substitute for the singular values of the SVD in LSA" (P.184, Hofmann, 

2001), this model finds the best retrieval performance by using a linear combination of 

models, each fitted with a different -value. Thus while LSI may violate certain 

assumptions considered in the least-squares model, its mathematical simplicity (as a least-

squares method) and its good performance, contribute to its advantages. Ding proposed a 

"dual probabilistic model" similar to the maximal likelihood model, findings were that LSI 

is the optimal solution of the model. Equation 2.8.1.2 demonstrates the maximum likelihood 

for a -dimensional model in LSI (Ding, 2000) (Efron, 2003): 

k

k
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(2.8.1.2)                                                                                     
222 ... kkk σσσ +++=kl

In Equation 2.8.1.2 , kσ is the singular value of A. Adding weak singular vectors 

increases the model likelihood by a small amount. Through using Ding's model we can 

acquire a precise conclusion of the contribution of each singular vector to the overall 

representation. Ding indicates that the contribution, or the statistical significance, of each 

LSI dimension is nearly the square of its singular value (Ding, 2000). Thus, each factor's 

statistical significance is represented by a quadratic relation to the magnitude of the 

corresponding singular value, where small singular values correspond to very small 

contribution, and this means negligible improvements in model likelihood. Overall, Ding's 

model does not provide a solution to the problem of selecting k  for an LSI model. 

thk

Rencher (1995) indicated the importance of inter-variable correlation among data 

collections. In this study, Rencher concluded that the degree of dimensionality reduction 

required for best performance is proportional to the degree of correlation among the matrix 

variables. This indicates that the highest few singular values will capture the system 

variance. According to Rencher, if the variables are highly correlated, then the reduced 

dimension is much smaller than the original matrix rank; only the first few singular values 

will have large values that affect the predictability of the LSI model, while on the other side 

there is no need for dimensionality reduction if the correlations among the variables are 

small, since matrix intrinsic dimensionality is close to the original matrix size (Rencher, 

1995) (Efron, 2003). 

One of the suggested methods to calculate the value of dimensionality reduction was 

based on a hypothesis testing to find if the kp − smallest singular values are equal, this 

methods is called Bartlett’s test of isotropy for dimensionality reduction. In this method we 
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test the null hypothesis that pkkkOH λλλλ ==== +++ ....: 321 , thus if the null hypothesis is 

true, we conclude that there exist no dimensional subspace in the  singular values, 

while if any of the  singular values is significantly less that 

kp −

kp − λ  then there exist a 

reduced dimensionality at this point. Based on this assumption we either reduce the matrix 

dimension or don’t reduce dimensionality at all (Krzanowski, 1988). Bartlett’s test of 

isotropy starts by calculating the average of the last kp −  singular values as shown in 

Equation 2.8.1.3  

∑
+= −

=
p

ki

i
k

kp1 )(

λλ(2.8.1.3)                                                                                     

To find Bartlett’s test statistic we use Equation 2.8.1.4 where n  is the number of data 

observations, and the test statistic u is approximately -distributed. 2χ

∑
+=

−
p

ki
 (2.8.1.4)                       

+
− ikk

p
n

1

)lnln)(
6

112
( λλ=u                                                     

Thus according to equation 2.9.1.4 we reject  if  

where

OH
2

,vu αχ≥

)2)(1 −− p(2
1 +−= kkpv . Bartlett test of isotropy continue to find  by testing optk

ppH λλ == −102 , then if  gives high confidence level we test 02H H ppp λλλ ==−2= −103  

and we continue until we stop at  at which no sufficient confidence level that the last 

 singular values are equal (Anderson, 1984) (Jobson,1991). 

optk

kp −

Kaiser-Guttman technique or Eigenvalue-one criterion is the most popular method 

for dimensionality reduction and for identifying significant principal components (Guttman, 

1954). Kaiser-Guttman technique retains those factors with corresponding singular values 
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greater than the average of all the singular values, where the singular value is the amount 

of variance described by the  principal component. Thus we need to include all singular 

values greater than the average or include all correlation matrix singular values which are 

greater than

thk

thk

λ .  

Retaining all singular vectors whose corresponding singular values are greater than 

λ , means keeping those factors that describe more variance than the average observed 

variable in the original data set. However, if documents are orthogonal, indicating 

independence, then all singular values will be similar and Kaiser-Guttman technique returns 

a full dimensionality model. One of the drawbacks of Kaiser-Guttman technique is the 

assumption that population parameters are used, and not sample statistics (Guttman, 1954). 

However, in common practice we work with samples, not population parameters. Problems 

in applications of Kaiser-Guttman rule arise, because Guttman's procedure does not 

recognize the distinction between the observed correlation matrix and the population 

correlation matrix. 

       A re-sampling procedure called Parallel Analysis (PA) was introduced to help 

include the effect of the sample correlation matrices (Horn, 1965) (Subhash, 1996). PA 

generates many pn×  data sets  from the normal distribution with a mean vector of the 

original matrix 

*A

A  and the identity matrix for the covariance matrix, in this way Horn 

(1965) introduced sampling error to the model. We proceed by averaging the singular values 

of across all samples to get

pI

*,... pλ
*

3

*

2

*

1 ,, λλλ *

pλ , a vector of the singular values generated 

from the independent variables, those values are compared to observed data to find . 

Parallel analysis is considered as an improvement to Kaiser-Guttman because it considers 

optk
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that we are analyzing data with a sample size of ∞<n . Efron (2003) introduced Amended 

Parallel Analysis (APA) technique based on parallel analysis and conducted several 

simulated tests on APA with good results. The number of resampling iterations required to 

get  is an open research question, setting the number of samples to 100  have been a 

common approach in many studies (Efron, 1993). 

optk

The percentage of variance technique was introduced by Dillon (Dillon, et al., 1984), 

in order to chooses a limiting point, m  , that represent the proportion of observed variance 

that the final model have to introduce; in this technique the fewest singular values sufficient 

to account for m percentage of the variation among the original data is considered, 

commonly 90~95% (Rencher, 1995) (Jackson, 1993). Thus we calculate the percent of 

variance captured by the first k singular values through Equation 2.8.1.5. 

(2.8.1.5)                                 
p

k
k λ

m
λλ

λ + λ + λλ ++
λ +++ +

=
...

...

21

21

3

3
                                                    

Some studies indicated the suitability of m around 85% for large and complex datasets 

which requires more dimensionality reduction. It have been indicated that both Kaiser-

Guttman and the percent of variance techniques have been used extensively in applied 

statistics and had much popularity in dimensionality estimation for various software 

packages (Jolliffe, 2002). 

Maaten et. al. (2007) described a collection of various dimensionality estimation techniques 

and included implementations of 27 techniques for dimensionality reduction. Additionally, 

there is a description of 6 intrinsic dimensionality estimators and functions for out-of-

sample extension and data generation (Maaten, 2007).  
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  As discussed earlier in chapter one, there are two groups of intrinsic dimensionality 

estimation techniques, (A) estimators based on the analysis of  local characteristics of the 

data and (B) estimators based on the analysis of global properties of the data. (Maaten et. al. 

2007). Local intrinsic dimensionality estimators are based on the observation that the 

number of data points covered by a hyper-sphere around a data point with radius r  grows 

proportional to the matrix dimensionality dr , where  is the intrinsic dimensionality of the 

data around that data point. The intrinsic dimensionality  can be estimated by measuring 

the number of data points covered by a hyper-sphere with a growing radius

d

d

r . There are 

three local intrinsic dimensionality measures, the correlation dimension estimator, the 

nearest neighbor dimension estimator, and the maximum likelihood estimator (Levina, et. 

al., 2004). The correlation dimension estimator uses the intuition that the number of data 

points in a hyper-sphere with radius r  is proportional to 
dr  by computing the relative 

amount of data points that lie within a hyper-sphere with radius r . The nearest neighbor 

estimator is similar to the correlation dimension estimator; however, it computes the 

minimum radius r  of the hyper-sphere that is necessary to cover  nearest neighbors. The 

maximum likelihood estimator estimates the number of data points covered by a hyper-

sphere with a growing radius by modeling the number of data points inside the hyper-sphere 

as a Poisson process (Levina, et. al., 2004) (Burges, 2004) (Maaten et. al. , 2007).  

k

Global intrinsic dimensionality estimators consider the data as a whole when estimating the 

intrinsic dimensionality. There are three global intrinsic dimensionality measures; the 

Eigenvalue-based estimator, the packing number estimator, and the geodesic minimum 

spanning tree estimator. The Eigenvalue-based intrinsic dimensionality estimator performs 

PCA on the high-dimensional dataset and evaluates the Eigenvalue corresponding to the 
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principal components (Fukunaga, et. al., 1971). (Maaten et. al. 2007). The packing numbers 

intrinsic dimensionality estimator is based on the intuition that the number of hyper-spheres 

with radius r that are necessary to cover all data points with radius r  is proportional to dr − , 

in other words, the packing numbers intrinsic dimensionality estimator is the maximum 

number of data points that can be covered by a single hyper-sphere with radius r . The 

geodesic minimum spanning tree (GMST) is the minimum spanning tree of the 

neighborhood graph defined on the dataset. The length function of GMST is considered to 

be the sum of the Euclidean distances corresponding to all edges in the geodesic minimum 

spanning tree (Maaten et. al. 2007).  Burges (2004) analyzed several geometric methods for 

feature selection and dimensional reduction by dividing the methods into projective methods 

(e.g. PCA) and methods that model the manifold on which the data lies (e.g. MDS). Figure 4 

demonstrate the taxonomy of intrinsic dimensionality estimation techniques described in 

previous dimensionality reduction research. Table 6 provides a summary of published works 

that consider dimensionality reduction techniques in information retrieval.  

Literature review indicates that there is no consensus on the most effective method for 

estimating  in LSI and that there is no research conducted on finding the parameter of 

the reduced matrix dimensionality that will satisfy multiple performance measures.  

optk

The matter of dimensionality selection remains an open research area and important 

problem. Hofmann mentioned in the context of fitting LSI models, “deriving conditions 

under which generalization on unseen data can be guaranteed is actually the fundamental 

problem of statistical learning theory" (Hofmann, 1999). Additionally, Ding indicated that 

dimensionality reduction is a central and unsolved question in LSI research (Ding, 1999) 

(Ding, 2000). 
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Figure 4: Taxonomy of Intrinsic dimensionality reduction techniques (Maaten et. al. 2007) 
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Table 6: Summary of published works in dimensionality reduction. 
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Jackson , 1991 X                        

Jolliffe,1986 X                           
HyvÄarinen,1999     X                       

Ritter et. al.,1989       X  X                   

Karhunen et. al. 
1998. 

X                         

Kaski,1998       X                   
Cox  et. al. 2001         X                
Mardia, et. al., 1995         X                
Carreira-Perpina, 
1997 

          X               

Raymer et al. 2000            X             
Fukunaga, et. 
al.,1971 

              X       

Jobson,1991            X        
Manning et al., 
1999 

X              X      

Borg, I. and 
Groenen, P. ,1997 

       X            

Muknahallipatna et. 
al, 1996 

        X          

Raymer et. al ,2000          X         
Kohonen,2001       X            
Jolliffe, 2002              X    
Efron, 2003            X      
Levina, et. al., 2004  X                
Burges, 2004 X X     X          
Maaten et. al. 2007  X X   X       X X
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2.9 Information Retrieval Systems Performance Evaluation  

This research will highlight the importance of matrix dimensionality estimation 

technique, which will lead to the best retrieval performance. Previous research in 

information retrieval performance evaluation relies on a set of performance measures called 

Cranfield type of IR performance evaluation.  Cooper (1973) stated that the goal of 

information retrieval evaluation is to study the performance of systems and trying to 

quantify their benefits. Cooper writes, "An ideal evaluation methodology must somehow 

measure the ultimate worth of a retrieval system to its users in terms of an appropriate unit 

of utility" (Cooper, 1973). Cranfield type of IR performance evaluation consists of a 

collection of experiments conducted by Cleverdon on test collections shown in table 7 

(Cleverdon and Mills, 1963). Cranfield techniques are considered the most important 

performance evaluation techniques in IR (Salton et al., 1983), (Baeza-Yates and Ribeiro-

Neto, 1999).  Research on information retrieval performance evaluation includes three main 

components (Baeza-Yates and Ribeiro-Neto, 1999):  

1) Collection of documents  

2) A number of queries and  

3) Group of relevance statements based on subject matter experts judgments 

Table 7 : Cranfield information retrieval test collections, (Baeza-Yates and Ribeiro-Neto,   
1999) 

Test Collection Subject Matter Abbreviation 

Medline Medicine MED 

Cranfield Aeronautics CRAN 
Communications of the ACM Computer Science CACM 

Cystic Fibrosis (full text version) 

Institute of Scientific Information 

Cystic Fibrosis (medicine) 
Information Science 

CF FULL 
CISI 

Cystic Fibrosis Cystic Fibrosis (medicine) CF 
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 Each test collection contains a collection of documents that have been grouped by their 

subject of study, a collection of queries; which are statements of information needs 

generated by subject matter experts in the field and finally relevance judgments which are a 

list of all documents relevant to each query set by the panel of experts and reviewers. 

Statistics for each test collection in Cranfield evaluation is shown in table 8.     

Cranfield type of IR performance evaluation concentrates on relevancy, since 

relevancy relates to the system ability to deliver related information to differentiate between 

relevant and non relevant documents (Harter and Hert, 1997), this problem of relevancy 

have been of great importance in many studies (Saracevie, 1975), (Sperber and Wilson, 

1995), (Harter and Hert, 1997). 

Table 8: TREC information retrieval test collections 

(Baeza-Yates and Ribeiro-Neto, 1999) 

Test Collection Abbreviation 

# of 

Doc. 

# of 

Terms 

# of 

Queries 

Medline MED 1033 5831 30 

Cranfield CRAN 1400 4612 225 

Communications of the 

ACM 

CACM 3200 4867 64 

Cystic Fibrosis (full text 

version) 

CF FULL 379 9549  
100 

Cystic Fibrosis CF 1239 5116 100 

Cystic Fibrosis  

Institute of Scientific 

Information 

CISI 
 

1460 5615 112 

 

Cleverdon, considers relevance a function and states that for a given query  and a given 

corpus  consists of documents

iq

D n jd nj ....1, = , there exists a function  such that )( jqR ,i d
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1),( =ji dqR  if document j  is relevant to , and iq 0),( =ji dqR  otherwise.  Cleverdon 

relevancy assumption was criticized for being inaccurate and adds many contradictions and 

problems, since relevancy is subjective rather than objective decision.  Relevancy depends 

on the idea and the search context, so that users can decide if a given document is relevant 

to their information needs. What constitutes relevant information may change over time, 

because we acquire more data and learn new information (Schamber, 1994).  Despite its 

shortcomings, research done by Salton et al. (1968) and Voorhees, (1998), has demonstrated 

that Cleverdon objective relevance function does yield useful results for information 

retrieval research, since objective relevance judgments provide strong information about the 

benefits of one IR system over another.  

Despite the relatively small size of CRANFIELD test collections shown in table 8 

compared to web databases, these test collections have informed the most significant 

theoretical research of dimensionality reduction in IR (Ding,2000),(Hofmann, 2001), they 

were useful for analysis due to their variety and diversity.  Since these test collections span a 

large area due to corpus size, domain of topics, and document representation. In general 

Cranfield test collections have become standard in the IR literature (Baeza-Yates and 

Ribeiro-Neto, 1999). 

Two measures are commonly used to evaluate IR systems, Precision, which is the 

proportion of relevant to non-relevant documents in the retrieved documents, and Recall, 

which is the proportion or relevant documents in the retrieved collection to the total number 

of relevant documents (Van Rijsbergen, 1979) as shown in Equations 2.9.1 and 2.9.2  

(2.9.1)                    
RET

RET

retrievedtotal
PRECISION

∩
==

RELrelevant

_
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(2.9.2)                    
REL

RETREL

relevanttotal

relevant
RECALL

∩
==

_
                                                    

In Equation 2.9.1 and 2.9.2, REL is the set of relevant documents and RET is the set of 

retrieved documents. We describe  to be the ratio of relevant documents to the total 

number of documents retrieved when 50% of the relevant documents for query q have been 

retrieved. Notice that we can get a 100% recall by retrieving every document which means 

more cognitive burden on the user side to view many non-relevant documents in order to 

find relevant document matching. In general, performance is described by reporting the 

observed precision at a variety of recall levels (Van Rijsbergen, 1979). For example, 

consider the document relevancy rankings created as an example and shown in Table 9. This 

data set contains 40 documents. Of those 40, 20 have been judged relevant to a given query 

to system (A) and system (B). Table 10 lists the ordered output of these two retrieval 

systems. 

5.0PR

Table 9: Example of documents relevancy ranking 

System Document Relevancy (R:Relevant, N:Non-Relevant) 

System (A) RNRNNRRNRNRNRNRNRNRNRNRNRNRNNRNRNRNRNRNR 

System (B) RNNNRRNNRRRRNNRRNNRRNRNRRRNNRRRNRNNNNNNR 

Table 10: Example of documents ranking precision and recall 

Recall System (A) Precision System (B) Precision  

0.1 
0.25 
0.5 
0.75 

1 
 

0.67 
0.56 
0.53 
0.50 
0.50 

0.40 
0.50 
0.50 
0.50 
0.50 

According to table 9 we calculate the precision for each system by calculating the 

precision value for that point in the relevance ranking where ten percent (i.e. 2 relevant 

1.0PR
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documents out of 20 have been retrieved for system A and system B). We calculate 

precision on the ranking system A (0.1) = RNR. Thus (A) = 2/3=0.667. On the other 

hand, calculating precision for the ranking in system B (0.1) = RNNNR yields (B) = 

2/5=0.4. Thus we can say that, at the 10% recall level, system (A) yields better precision 

than system (B). 

1.0P

1.0PR

Usually when we evaluate a given system, we create a precision/recall curve for each point 

as the average precision at recall level r  across each of the  queries. We plot the average 

precision at each recall level 

n

r  by Equation 2.9.3. Precision versus recall curves for the data 

given in table 10 are shown in Figure 5. 

 

Figure 5: Precision versus recall curves for data in Table 10 

 (2.9.3)                                       ∑
=

=
n

i

ir

n

P

1

,
rP                                                     

            }0.12.0,1.0,0.0{, ,.......,∈jrj  

As we can see from Figure 9, system (A) performs better in regards to precision than system 

(B) for recall levels {0.1, 0.25, and 0.5}.  
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We can find the interpolated precision for a given level of recall as shown in Equation 2.9.4, 

where the interpolated precision at the  recall level is the maximum precision at any 

recall level between the ( ) and ( ) levels (Baeza-Yates and Ribeiro-Neto, 1999). 

thj

1thj +thj

 

(2.9.4)                              )(__ 1+≤≤= jjrr rrrPMaxPedInterpolat                                                 

Equation 2.9.5 calculates the average precision across several levels of recall, where iP , is 

the overall-queries average precision at recall level i , and r is the number of recall levels 

observed. Losee (2000) mentioned that average precision tends to provide a less biased 

method for information retrieval performance than other precision techniques. 

(2.9.5)                              
r

P
PAvgerage

r

i i

r

∑ == 1_                                                     

 

Another commonly used performance measure for information retrieval evaluation is the 

harmonic mean of precision and recall for the  document in the ranked list of  

documents which is given by Equation 2.9.6 

thj n

(2.9.6)                              

)(

1

)(

1
2

)(

jPjr

j

+
=F

                                                    

In Equation 2.9.6 is the recall level for the  ranked document and  is the 

precision for the  ranked document, thus F(j) increase toward 1 when most documents 

are relevant and F(j)=0 until we retrieve a relevant document or F(j)=1 if all  documents 

are relevant. Optimal ( ) is the maximum value of  found in a given system (Shaw et al., 

1997) (Baeza-Yates and Ribeiro-Neto, 1999) 

)( jr

th

F

thj

F

)( jP

th

j

j
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One of the most important information retrieval performance evaluation measures is 

the Average Search Length (ASL). ASL, define the expected position of a relevant 

document in the ranked results of an information retrieval model as shown in Equation 2.9.7 

(Losee, 1998), (Losee, 2000).  

 

ltotal

Positionl
ASLA

Re_

_Re∑
=(2.9.7)                                 

 

If we want to calculate ASL for the example given in Table 8, then we calculate ASL by 

summing the position of each relevant document in each ranking and divide them by the 

number of relevant documents as shown in Table 11. 

Table 11: Example of documents ranking average search length (ASL) 

System ASL (Document) 

System (A) 35.20
20

4074038......97631
==

+ + + + + +
20

+
=AASL  

System (B) 2.19
20

3844033...109651
==

+ + + + + +
20

+
=BASL  

 

As indicated in table 11, for system A while 35.20=AASL 2.19=BASL  for system B, thus 

we conclude that System (B) arrange relevant documents closer to the front of the ranked 

list than what we get from system (A) arrangement.  

The measure of Relative Relevance (RR) (Borlund & Ingwersen, 1998) is an additional 

performance measure which can be used to measure document relevancy for the search 

result in comparison to the actual document relevancy given by subject matter experts 

(Borlund & Ingwersen, 1998; Borlund, 2000a); relative relevancy measure equation is 

shown below in Equation 2.9.8. 
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(2.9.8)                           
2

1

2
2

1

1

21
21

)Re(*)Re(

)Re(Re
)Re,(Re

ll

ll
llRR

∑∑

∑
=  

 

Basically, Relative Relevance (RR) measure is used in the evaluation of IR systems where 

more types of subjective relevance may be applied such as the well evaluated document 

collections provided by TREC conference. (Saracevic, 1996) (Borlund & Ingwersen, 1998) 

(Cosijn & Ingwersen , 2000). For example, Medline test collection has a collection of 

queries and identified relevant documents according to several subject matter experts, based 

on this we compare our dimensionally reduced IR system results for all query to get the 

relative relevance measure.  

The RR measure evaluates the degree of agreement between results of relevance and vector 

cosines. Results of relevance for each query (Rel1, Rel2) may represent the dimensionally 

reduced system output, where Rel1 represents documents ranked relevance for a specific 

query using a specific dimensionality reduction technique and Rel2 represents SME’s 

subjective relevance for each query. 

The RR measure provides a more comprehensive understanding of the properties of the 

relevance performance of several retrieval engines, in comparison to well known relevance 

properties of each query being searched.  The RR measure propose a solution to close the 

gap between subjective and objective relevance, this will reflect the effect of different 

dimensionality reduction techniques on the relevancy measure and its overall impact on 

user’s cognitive load. The data in Table 12 is an example to demonstrate the implementation 

of the relative relevance measure for a collection of five documents. 
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Table 12: Example to demonstrate RR measure implementation  

  Rel 1(System Relevance) Rel 2 (SME Relevance) 

Document 1 0.95 0.85 

Document 2 0.75 0.65 

Document 3 0.7 0.63 

Document 4 0.64 0.4 

Document 5 0.55 0.2 

 

2
1

2
2

1

1

21
21

)Re(*)Re(
)Re,(Re

ll
llRR

∑∑
=

)Re(Re ll∑
 

975.0
)7419.1(*)67.2(

102.2
)Re,(Re

2
1

2
121 ==llRR  

 In general we can find that Cranfield information retrieval performance evaluation 

measures, discussed in this section, provide strong comparative evidence of whether an 

information retrieval system provides better performance than other systems. Since my 

research will include the implementation of the truncated singular value decomposition and 

an evaluation of different matrix reduction techniques, then Cranfield performance 

evaluation measures will be of much importance and guidance to this research. A summary 

of the published works that consider performance evaluation and dimensionality reduction 

in information retrieval systems is shown in Table 13. 

 

Singular value decomposition arranges the set of documents as a vector. The task is to 

sort all the documents that are relevant to the user query to the beginning of the vector, and 

sort the non-relevant documents to the end of the vector. The question here is how much 
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down the ranked list will users need to consider to find all relevant documents to their 

search queries? 

Information retrieval performance is measured by comparison to other systems. That is, the 

retrieval performance of a system is evaluated on a given set of documents, queries, and 

relevance judgments. Effectiveness of an information retrieval system is related to the 

relevancy of retrieved results. Relevancy, from a human perspective can be identified as a 

combination of the following: 

• Subjective: Depends on specific user’s judgment. 

• Situational: Relates to user’s needs. 

• Cognitive: Depends on human perception and behavior. 

• Dynamic: Changes over time. 

This research is going to test on human labeled document collections (e.g. Medline, CRAN, 

and CISI) which have the following properties: 

• Start with a collection of documents and a set of queries. 

• Have one or more human expert to label relevant documents for each query. 

• Typically assumes either one of two relevance judgments (Relevant or Non-

Relevant). 

• Requires considerable human effort for large document collections. 

Response time is a very important factor in evaluating the usefulness of any information 

retrieval system. Response times of less than one second are often specified as a usability 

requirement.  Response times are of great importance to evaluate user satisfaction in 

studying the interaction between computer systems and human users. Thus, an assessment 

of query times is a very important performance measure for an information retrieval system. 
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In order to do this we study the following process that a typical user will follow for query 

construction: 

• User effort: user effort in formulating queries and screening output. 

• Response time: Time interval between receipt of user’s queries and presentation of 

system responses as shown in Figure 6. 

• Form of presentation: Effect of query search output format on the user’s ability to 

utilize the retrieved documents. 

• Collection coverage: Degree to which relevant items are included in document 

corpus. 

A typical query can retrieve hundreds to thousands of results.  Results relevancy ranking is 

therefore a very important measure in minimizing the time spent by an individual searching 

for specific information thus reducing user’s cognitive load. Average search length (ASL) 

measure defines the expected position of a relevant document in the ranked results of an 

information retrieval model (Losee, 1998) (Losee, 2000). The Average Search Length 

(ASL) measure does reflect how far users have to look in the results till they retrieve 

relevant documents, the less the value of ASL the better the search engine since more 

relevant documents will be returned in the beginning of the results which reflect a lower 

cognitive load on the user side and less time to be spent in filtering the results. 

Standard test collections contain a set of standard documents, queries and a list of relevant 

documents for each query. Since this research will experiment the effect of different 

dimensionality reduction techniques using standard test collections, we would be most 

interested in measuring our system response time, which is an important performance 

measure that spans the time interval between receipt of a user query (in our case standard 
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user query) and presentation of responses.  There are many mechanisms for reducing search 

time; our objective should be to find an acceptable trade-off between query search response 

time and relevancy of returned results. Human factors research indicated the need for 

response times faster than one second (Nielsen, 1997) (Squire et. al.1999).  

Research results concerning response times in interface design is given by Nielsen (1993): 

• Response time of 0.1 second is about the limit for having the user feel that the 

system is reacting instantaneously.  

• Response time of 1.0 second is about the limit for the user’s flow of thought to stay 

uninterrupted. 

• Response time of 10 seconds is about the limit for keeping the user’s attention 

focused on the dialogue. 

In general, response time of the constructed system using different dimensionality 

estimation techniques will be recorded and analyzed in order to capture the effect of various 

dimensionality reduction techniques on retrieval performance. We would like to find the 

average processing time for a user query. 
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Figure 6: Dimensionally Reduced IR system response time measure 
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Table 13: Summary of the published works that consider dimensionality reduction in 
information retrieval systems 
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Author Area Researched and contribution made 

Guttman, 1954 
Fukunaga, et. al.,1971 

Eigenvalue-one criterion (Kaiser-Guttman) for 
identifying significant principal components. 

Cleverdon and Mills, 1963 Collection of experiments conducted by Cleverdon 
for IR performance evaluation. 

Horn, 1965 Introduction of Parallel Analysis (PA). 
Sparck Jones, 1972 Analysis of a term's distribution across documents. 
Forsythe, et al., 1977 
Golub, et al., 1989 

Introduction of singular value decomposition. 

Van Rijsbergen,1977 
Church et al.,1990 

Observe co-occurrence in data from online corpora. 

Wittgenstein,1953 
Rosch,1975 
Rosch, et al.,1976 

Psychological research finds a high degree of 
similarity among psychometric analyses of 
individual linguistic association. 

Salton et al., 1975 
Salton et al., 1983 
Salton et al., 1988 

Introduction of Salton's vector space model (VSM). 

Dillon, et al., 1984 
Jackson, 1993 
Rencher, 1995 

Introduction of the percentage of variance technique.

Deerwester et al., 1990 Introduction of LSI. 
Jobson,1991 
Anderson, 1984 

Introduction of Bartlett’s test of isotropy as an Eigen 
value based estimator for intrinsic dimensionality. 

Rencher,1995 Indicated the importance of inter-variable 
correlation among data collections. 

Neter, et al., 1996 Studies on LSI statistical modeling. 
Landauer et al., 1997 
Landauer et al., 1998 
Landauer, 2002 

Studies on LSI performance. 

Ding, 1999 
Ding, 2000 

Study the effect of dimensionality reduction and the 
risk on inaccurate models. 

Manning et al., 1999 Experiments on the region of optimality with regard 
to parameterizing  in LSI models. k

Baeza-Yates and Ribeiro-
Neto, 1999 

Experiments on Cranfield type of IR performance 
evaluation. 

Dumais, 1993 Dumais experiments on the selection of the number 
of parameterizing factors. 

Story,1996 Provided a detailed discussion of the relation 
between information retrieval and linear regression. 
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Continue - Table 13: Summary of the published works that consider dimensionality 

reduction in information retrieval systems  
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Author Area Researched and contribution made 

Borg, I. and Groenen, P. ,1997 Introduced Multidimensional Scaling theory and 
applications in dimensionality reduction 

Muknahallipatna et. al, 1996 Proposed dimension reduction in neural network 
training. 

Chowdhury, 1999 Use of the cosine coefficient as a measure of 
similarity between document and query vectors. 

Hofmann, 2000 
Papadimitriou et al., 1998 

Proposed the probabilistic LSA (PLSA). 

Brin, S. and Page, L. 1998 Introduction of Page Rank and Google search 
engine 

Kolda et al., 1997 
Kolda et al., 1998 
Kolda et al. 2000 

Introduction of semi discrete matrix decomposition 
to help reduce the huge storage requirements of 
SVD. 

Raymer et. al ,2000 Dimensionality reduction using genetic algorithms 
Losee, 2000 Provides average precision and average search 

length as a less biased methods for information 
retrieval performance than other previously 
mentioned precision estimation techniques. 

Kohonen,2001 Introduced Self-organizing maps for dimensionality 
reduction. 

Newby, 2001 
Huurnink, 2005 

Research on term-based information retrieval and 
the side effects of undue cognitive burden placed 
upon end-users. 

Hofmann 2001 Criticized LSI normality assumption which is 
introduced by least-square method. 

Mihail et al.,2002 Research holds that term count data tend to follow 
a Zipf-like distribution. 

Jolliffe, 2002 Implementation of Eigenvalue-one and the percent 
of variance techniques for dimensionality 
estimation in various software packages. 

Efron, 2003 Researched Eigenvalue based estimators for 
dimensionality reduction and introduced Amended 
parallel analysis. 

Levina, et. al., 2004 Introduction of the maximum likelihood estimator 
for intrinsic dimensionality. 

Burges, 2004 Analyzed several methods for feature selection and 
dimensional reduction by dividing the methods into 
projective methods and manifold on which the data 
lies. 

Maaten et. al. 2007 Comparative study of various dimensionality 
reduction techniques. 



2.10 The Effect of Retrieval Performance on Users Cognitive Load  

Cognitive load theory (Sweller, 1988; 1994) is the instructional theory that describes human 

learning structures in terms of information processing. This includes long term memory, 

which stores all of our skills and knowledge permanently and working memory, which 

continues to perform and supervise tasks associated with consciousness. Information may 

only be stored in long term memory after first being processed by working memory. 

Working memory limitations will impede overall due to its effect on both capacity and 

duration.  

Cognitive load have been used with little understanding of Cognitive Load Theory. 

Cognitive Load Theory (CLT) has been introduced and developed by educational 

psychologists such as Sweller (1988; 1994).  IR can be viewed as a problem solving process 

with which users try to solve their information search problem by query formulation 

(Kuhlthau, Spink, and Cool, 1992). Cooper (1998) indicated that Cognitive Load Theory 

can be used to describe structures of learning and patterns of thinking.  

Copper (1998) stated that “cognitive load theory focuses on the role of working memory in 

the learning process”. The fundamental principles of cognitive load theory rely on the 

following (Back and Oppenheim, 2001): 

• Working memory is limited. 

• Long term memory is essentially unlimited. 

• The process of learning requires working memory to be actively engaged in the 

comprehension (and processing) of instructional material to encode to-be-learned 

information into long term memory. 
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• If the resources of working memory are exceeded then learning will be 

ineffective. 

Cognitive load theory has been used with IR research in reference to Human Computer 

Interaction issues. The only IR study that has tried to include the concepts of cognitive load 

theory was performed by Hu, Ma, and Chau (1999). Based on their research they examined 

the effectiveness of designs using wither a graphical or list-based concepts that best 

supported the communication of an object’s relevance. Cognitive load was used in research 

as a measure of information processing effort a user must provide to take notice of the visual 

stimuli in an interface and understand its influence (Hu, Ma, and Chau, 1999). In previous 

studies it was assumed that users would prefer an interface design that requires low 

cognitive load in general and at the same time, can result in high user satisfaction with more 

relevant results. Various reporting methods were used to match individual users assessments 

of the cognitive load associated with a particular interface. However, this research will try to 

demonstrate, that the concept of cognitive load associated with information retrieval systems 

can be extended beyond interface design to include the effect of dimensionality reduction 

when considering multiple performance measures in enhancing query search results. 

Although Back and Oppenheim (2001), Kuhlthau (1993) mentioned that there are many 

components for cognitive load in information retrieval they discussed three main 

components: 

� Retrieval Performance: Indicates that cognitive load increases as the number of 

relevant documents identified by the system increase. This research will concentrate 

on evaluating the effect of selecting proper dimensionality reduction parameters on 

enhancing overall search performance. 
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� User’s knowledge of the information need: Cognitive load reduces as more domain 

knowledge is gained.  

� User’s overall level of doubt: Level of uncertainty associated with the search 

process. Cognitive load reduces as users become aware that their information need 

can be addressed.  

Back and Oppenheim (2001) referred to information uncertainty as a cognitive stage which 

causes anxiety and lack of confidence that leads to cognitive load. Uncertainty due to a lack 

of understanding or miss-interpreting the meaning initiates the process of information 

seeking (Kuhlthau, 1993). 

Since this research will concentrate on evaluating the effect of information retrieval 

on the search performance, we will involve the evaluation of the performance of different 

systems by selecting the dimensions found by several dimensionality reduction techniques.  

Cognitive load is related to the effectiveness of an IR system since it can be measured in 

terms of how long it takes for a user to reach relevant information or reach the conclusion 

that no relevant information exists. A search query can return thousands of results. Thus 

document relevancy is a very important measure in minimizing the time spent by the user 

searching for specific information and will help reducing overall cognitive load during 

information search process. Average search length measure defines the expected position of 

a relevant document in the ranked results of an information retrieval model (Losee, 1998) 

(Losee, 2000). We calculate ASL by summing the position of each relevant document in 

each ranking and dividing by the number of relevant documents. Additionally average 

search length measure does reflect how far the user have to look in the results till he get 
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relevant documents, the less the value of ASL the better the search engine since  more 

relevant documents will be returned in the beginning of the results which will be reflected 

by lower cognitive load on the user side. Using document relevancy will reduce the 

problems caused by information overload through avoiding large number of documents 

returned to the user. It is recommended to limit the size of information returned in order to 

prevent distracting the user from answering his search question or requiring extensive 

filtering. This implies a technical reduction of the quantity of information by dimensionality 

reduction to minimize the noise or distraction introduced by large documents collection. 

 

2.11 Evidence of Research Gap 

Information retrieval can be viewed as a problem solving process with which users try to 

solve their information search problem by query formulation (Kuhlthau, Spink, and Cool, 

1992). Latent semantic analysis reflects human knowledge since its results are similar to 

those of humans on standard vocabulary and subject matter expert tests. Additionally latent 

semantic analysis simulate human word sorting, category judgments and estimates content 

coherence, learnability of information by individual student users, and the quality and 

quantity of knowledge included in an essay (Landauer, Foltz, and Laham, 1998). LSI can be 

used as a reliable method for the representation of word meaning that produces measures of 

word-word, word-document and word-concept relations that are similar to much human 

cognitive aspects involving association and representational similarity. 

As discussed earlier, Cognitive Load is related to the effectiveness of an IR system 

and can be measured in terms of how long it takes for a user to reach appropriate and 

relevant information, or discover that no relevant information exists. A typical query can 
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retrieve thousands of results. Document relevancy ranking is therefore a very important 

measure in minimizing the time spent by an individual searching for specific information 

thus reducing cognitive load during search process. Intrinsic cognitive load is related to the 

difficulty of tasks, while extraneous cognitive load is related to the presentation of tasks 

(Cooper, 1998).   Modifying task presentation to a lower level of extraneous cognitive load 

will minimize problem solving effort if the resulting total cognitive load falls to a level 

within the range of cognitive resources. 

As the size and dimensionality of data increases, query performance diminishes and this is 

usually reflected and measured by the average system precision. Literature review of 

research in dimensionality reduction indicted that no one to date has researched the effect of 

different dimensionality reduction methods on user’s cognitive overload, measured through 

multiple IR performance measures.  

Researchers have found that dimensionality reduction provides a better solution to 

IR problems, which results in faster response times, with reasonable accuracy and precision. 

A good dimensionality reduction technique has the capability of reducing the data into a 

lower-dimensional model, while maintaining the properties of the original data. Therefore it 

is desirable to find which technique provides better estimates for data dimensionality in 

order to improve user’s cognitive performance, especially in dense information 

environments such as the World Wide Web, while preserving important information from 

the original data collection. One common way to reduce data dimensionality is to project the 

data onto a lower-dimensional subspace. Previous research done on information retrieval 

systems using LSI has generally found improvements in search results, however still there is 

a lack of research which detail and evaluate the effect of dimensionality reduction on 
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reducing user’s cognitive load. The main problem is that there is no consensus about the 

most effective method for estimating the best number of dimensions in LSI and there is a 

need for more research to be conducted on evaluating the effect of dimensionality on a set of 

performance measures.  

This research is concerned with the parameterization of k, the number of retained 

dimensions during the implementation of singular value decomposition. Additionally, this 

research will test and compare the effect of different dimensionality reduction techniques on 

information retrieval systems overall performance using a set of performance measures. 

Due to the importance of dimensionality reduction, a number of new techniques for 

dimensionality reduction have been proposed recently in image processing.  A systematic 

empirical listing of a large number of dimensionality reduction techniques has been 

presented in Maaten et. al. (2007), such techniques have not been researched for the 

implementation in information retrieval systems to improve query search results.  Document 

relevancy as a performance measure is expected to reduce the problems caused by 

information overload through avoiding large number of documents returned to the user.  It is 

recommended to limit the size of information returned in order to prevent distracting the 

user from answering selected search question or requiring extensive filtering. This implies a 

technical reduction of the quantity of information by dimensionality reduction to minimize 

noise or the distraction introduced by large data collections. 

As stated above, the context of this research is the selection of the number of 

dimensions retained using dimensionality estimation algorithms that will improve overall 

search performance. Although latent semantic indexing has seen many successes, there is 

still much unknown on the effect of dimensionality reduction on enhancing search 
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performance. Intuition suggests that using reduction techniques to select the proper 

dimension would be so important to achieve better search results. However, applying this to 

large data collections is complex and therefore we should perform theoretical investigations 

and thorough examination of the results of practical dimensionality reduction algorithms on 

selected document test collections.  

Based on this discussion we arrive at the following problem statement.  Under what 

conditions can a specific dimensionality reduction algorithm improve query search while 

reducing user’s cognitive load?  

To answer this question, different methods have to be studied in detail in order to study their 

characteristics and effects on search performance. As a guideline to this research the 

following research questions have been formulated:  

(1) Theoretical properties of dimensionality reduction methods,  

(2) Characteristics of efficient implementations in term of results relevancy and other 

performance measures which impact search performance, 

(3) The best dimensionality reduction technique that will result in better overall system 

performance and reduced cognitive load? 

 

This research will seek a better structure of the data collection to uncover concepts 

associations, which are hidden as semantic properties. Because of the complexity of this 

type of research, theoretical research alone will not be able to answer the problem statement. 

We need to find out whether suggested dimensionality reduction methods are of practical 

use. Therefore, they have to be implemented into standard test collections and the properties 
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of those dimensionality estimation methods have to be investigated with respect to various 

performance measures.  

If efficient implementations of the search methods are possible, different techniques have to 

be tested in realistic experimental conditions because the final answer to our problem 

statement depends on whether and when these techniques work effectively in practice.  

 

    This research is going to contribute in identifying the best dimensionality estimation 

method which will reduce user’s overall cognitive load by enhancing retrieval performance 

in terms of relevancy and better concept matching, additionally, novel dimensionality 

estimation techniques will be introduced and tested against other methods. Results will help 

answering several questions such as: what is the best dimensionality reduction technique 

that will result in better overall system performance? 

This research will look for enhanced dimensionality reduction techniques that will improve 

matrix dimensionality estimation and enhancing search results in terms of increasing 

relative relevance, precision and recall while reducing average search length and query 

processing time; this will reduce the time it takes the user to find specific information and 

will reduce users level of uncertainty and  doubt associated with the search process since the 

cognitive load will be reduced as users becomes more confident that their information need 

can be addressed. 
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CHAPTER THREE: IR MULTI-CRITERIA DECISION ANALYSIS 

 

   A decision is a choice made such that selected alternatives are the best among other 

possible candidates. The decision process is not always easy. Most of the time, there are 

many criteria’s to base the judgment on and no alternative can be found to outrank all 

others under each performance criteria. Decision makers also have to prioritize and weight 

the relative importance of selected criteria in order to achieve agreement on selected 

alternatives. In IR systems we encounter the problem of making a decision to select one 

alternative or system over another based on selected performance measures.  

Previous research in IR performance evaluation considered precision and recall as the 

primary, and sometimes sole, performance measures to decide on overall system 

performance, in doing so, they ignored the impact of relative relevance, average search 

length and time on overall system performance. This chapter will discuss the effect of 

multi-criteria decision analysis (MCDA) on information retrieval performance and will 

introduce a novel method based on MCDA to enhance query search and overall 

performance ranking.  

 

3.1 Multi-criteria Decision Analysis (MCDA)  

  Decision analysis is a group of systematic procedures for studying and analyzing 

complex decision problems (Malczewski, 1997). Multi-criteria decision analysis (MCDA) 

methods have been designed to select and rank alternatives according to a set of criteria’s 

(Lootsma, 1999). Malczewski(1999) divided multi-criteria decision analysis into three steps: 

1) Design phase, where decision rules and preferences are specified and  alternatives are 
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considered, 2) Choice phase, where sensitivity analysis is used to gain better insight about 

the problem,  3) Intelligence phase where decision matrix is studied and criteria’s are 

evaluated. Multi-criteria decision analysis process is shown in Figure 7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Framework for MCDA process used in GIS system (Malczewski, 1999) 

 

MCDA techniques can be used to rank alternatives, list a number of options for evaluation, 

identify most preferred alternative, or to differentiate between acceptable and unacceptable 

selections (Dodgson, 2000) (Malczewski, 1997). MCDA techniques can be classified as 

either Multi-Objective decision making (MODM) or Multi-Attribute decision making 

(MADM). The difference between MODM and MADM is based on the evaluation criteria, 

Evaluation Criteria Constraints 

Alternatives Decision Matrix 

Decision Rules 

Sensitivity Analysis 

Recommendation 

Decision Maker’s Preference  

Problem Definition 

Intelligence Phase 

Design Phase 

Choice Phase 
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which is a general term and includes both attributes and objectives, for which an attribute is 

a measurable quantity whose value reflects the degree to which a particular objective is 

achieved. Objectives are derived from a set of attributes as a statement about the desired 

state of the system. (Malczewski, 1997) (Malczewski, 1999). Tables 16 and 17 summarize 

the most often used MODM and MADM methods. Various methods used in estimating 

weights are discussed below. 

 

3.2 Criterion Weights Assignment 

Information retrieval performance measures have weights that reflect the values assigned to 

performance measures and indicate their relative importance compared to other measures 

under consideration. Weights assignment to performance measures provides an indication to 

the different degrees of importance for each performance measure. There are four different 

techniques for assigning weights: Ranking, Rating, Pairwise Comparison and Trade of 

Analysis, Table 15provide a summary of weighing methods. 

3.2.1 Ranking Methods 

Ranking method is a simple method for evaluating the importance of multiple performance 

measures based on ranking each criterion in the order of decision maker’s preferences. 

Ranking method disadvantages are:  lack of theoretical foundation and inappropriateness 

when used with larger number of performance measures (Malczewski, 1999). 

3.2.2 Rating Methods  

Rating method asks the decision maker to estimate weights on the basis of a predetermined 

scale (Malczewski, 1999). This method rely on allocating points ranging from zero to one  

hundred, where zero indicates that the criterion can be ignored, and a hundred represents the 
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situation where only one criterion needs to be considered. Or a score of one hundred is 

assigned to the highly important criterion and proportionally smaller weights are given to 

criteria lower in order. Disadvantages are: lack of theoretical foundation and also the 

assigned weights might be difficult to justify. 

3.2.3 Pairwise Comparison Method 

This method implements pairwise comparisons as input and produce relative weights as 

output, advantages of this method is that only two criteria’s have to be considered at a time. 

Pairwise comparison disadvantage is that if you have many criteria’s, the amount of 

pairwise comparisons that should be made will be very large. Pairwise comparison involves 

three steps (Malczewski, 1999) (Saaty, 1980): 

(1) Create pairwise comparison matrix using a scale with values ranging from (1 to 9) as 

shown in Table 14. 

(2) Computation of the weights in three steps: 

I. Calculating the summation of the values in each column of the matrix, 

II. Dividing each element in the matrix by its column total to get the normalized 

pairwise comparison matrix,  

III. Computation of the average of the elements in each row of the normalized 

matrix.  

(3) Estimation of the consistency ratio to determine if the comparisons are consistent. 

This can be done through the following steps:   

I. Calculation of the weighted sum vector by multiplying the weight for the 

criterion times the column of the original pairwise comparison matrix, then 

sum these values over the rows, 
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II. Find the consistency vector by dividing the weighted sum vector by the 

criterion weights determined previously, 

III. Compute the average value, lambda (λ), of the consistency vector and 

Consistency Index (CI), this average provides a measure of departure from 

consistency and has the following formula (Malczewski, 1999):  

                              CI= (λ - n)/ (n-1) 

IV. Calculation of the Consistency Ratio (CR) which is defined as follows:                      

                                 CR = CI / RI 

Where:   RI is the random index and depends on the number of elements 

being compared. If CR<0.10, the ratio indicates a reasonable level of 

consistency in the pairwise comparison, however, if CR ≥ 0.10, the values 

of the ratio indicates inconsistent judgments (Malczewski, 1999). 

Table 14: Pairwise Comparison Scale (Saaty, 1980) 

Intensity of Importance Definition 

1 Equal importance 

2 Equal to moderately importance 

3 Moderate importance 

4 Moderate to strong importance 

5 Strong importance 

6 Strong to very strong importance 

7 Very strong importance 

8 Very to extremely strong importance 

9 Extreme importance 
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3.2.4 Trade-Off Analysis Method 

Trade-off analysis involves a comparison between two alternatives with respect to two 

criteria’s at a time and assessment of which alternative is preferred. A unique set of weights 

will be defined that will allow all preferred alternatives in the trade-offs to get the same 

overall value.  A disadvantage of this method is that the decision maker is presumed to 

follow axioms to make final judgments (Malczewski, 1997). 

Table 15: Methods used in estimating weights (Malczewski, 1999) 

Method Ranking Rating Pairwise 

Comparison 

Trade-off 

Analysis 

No. Judgments n n n(n-1)/2 <n 

Response scale Ordinal Interval Ratio Interval 

Hierarchical Possible Possible Yes Yes 

Underlying 

Theory 

None None Statistical/ 

Heuristic 

Axiomatic/ 

Deductive 

Ease of use Very easy Very easy Easy Difficult 

Trustworthiness Low High High Medium 

Precision Approximations Not precise Quite precise Quite precise 

Software 

Availability 

Spreadsheets Spreadsheets Expert Choice Logical 

Decision 

 

3.3 Analytical Hierarchy Process (AHP) 

Analytical hierarchy process is a decision support technique developed by Saaty(1980) for 

analyzing and supporting decisions for situations with multiple competing objectives and 

alternatives. AHP is based on three main steps:   
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1. Decomposition: decision problem is decomposed into simpler decision problems to 

form a decision hierarchy (Erkut and Moran, 1991). The hierarchy decreases from 

the general goal to more specific levels until a level of attributes are reached. 

Hierarchical structure includes four levels: goal, objectives, attributes and 

alternatives, 

2. Comparative judgment: using pairwise comparisons to reduce the complexity of 

decision making problem, 

3. Synthesis of priorities: combine the relative weights of the levels obtained in the 

above step by multiplications of the matrices of relative weights at each level of the 

hierarchy. The matrix is squared and the row sums are calculated and normalized for 

each row in the comparison matrix. This sequence is continued when the difference 

between the normalized weights of the iterations become smaller than a determined 

value (Saaty, 1990). 

 

3.3.1 Evaluation of IR Systems Overall Performance Using AHP 

Wang and Forgionne presented a decision-theoretic approach based on AHP for 

evaluating IR systems from a user perspective and reported its workability and proofed AHP 

suitability to IR evaluation with promising results. (Wang and Forgionne, 2005).   

    Godwin (2000) used AHP to model and study information technology (IT) outsourcing 

decisions. Results indicated that AHP can be used effectively to analyze IT decisions and 

provides a computer based group decision environment needed to capture experts' opinions 

on several criteria’s. The sensitivity analysis of AHP is important in that it creates real-time, 
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interactive, graphical display of the ranking of the options as the decision makers compare 

between different possibilities. 

Kawasaki and Sunahara, acheived improved response time of distributed multemedia 

retrieval network through the use of integrated AHP into query routing system (Kawasaki 

and Sunahara,2000).  Based on the results from previous studies for using AHP in various 

IR problems,  AHP enhanced systems performance and improved decision and alternatives 

ranking. 

 

3.4 Multi-Criteria Weighted Model to Estimate Intrinsic Dimensionality 

In estimating term document matrix intrinsic dimensionality we encounter the problem of 

making a decision to select a cutoff value ( ). Many alternatives and techniques exist and 

all claim increased performance for a selected measure.  This involves a decision making 

problem to select an alternative over the other based on selected performance measures.  

Inspired by the work done in the field of Multi-criteria Decision Analysis, this research 

propose a novel method to estimate matrix intrinsic dimensionality based on using a multi-

criteria model for weighted performance measures.  

k

In the proposed multi-criteria weighted model we calculate the sum of weighted values of  

 which gave us best performance using all possible dimensions. In order to achieve best 

performance we seek maximizing precision, recall and relative relevance while minimizing 

query processing time and average search length. Thus we multiply the value of which 

gave maximum precision by the weight of precision as a performance measure assigned by 

SME’s, doing the same for all other performance measures and taking the summation, as 

shown in Equation 3.3.1.1,  is expected to give a better estimate for intrinsic dimensionality 

k

k
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that accounts for system overall performance. In Equation 3.3.1.1, calculations of 

is based on the experimental results for selected test collections 

using various dimensionality estimation techniques. Thus  , is the value of k that 

resulted in the maximum overall precision using the selected dimensionality estimation 

technique. 

)k,k,k,k,(k tASLRRRcPr

([ Pr MaxWeighted kWk ×=∑

PrMax

( ASLW ×

k

 (3.3.1.1) 

)]())()() .Pr tMintMinASLMaxRRRRMaxRcRc kWkkWkW ×+++×+×+  
 

Where: 

PrecisionMax  Pr kk = RecallMax Rc kk =  RelativeMax RR kk ,    ,  = Relevance  , 

Length  Time ProcessingQuery Min  t kkSearch  Avg.Min ASL kk = ,   =  

 

PrW  : Priority of precision performance measure 

RcW  : Priority of recall performance measure 

RRW  : Priority of relative relevance performance measure 

ASLW  : Priority of average search length performance measure 

tW  : Priority of query processing time 

 

Although decision-making theories have existed for a long time, the application of decision 

science especially AHP into information retrieval systems to evaluate overall performance is 

a new contribution to the field of information retrieval. The weighted multi-criteria model 

for leveraging the effect and weight of multiple performance measures is anticipated to 

provide a better estimate of intrinsic dimensionality based on accounting for overall system 

performance. 
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Table 16: Summary of the most often used MODM methods (Malczewski, 1999) 

MODM 

Method 

Input Output 

Types of 

Decision 

DM 

Interactor 

Assumptions 

Value/ Utility 

model 

Value/Utility 

Functions, 

Weights 

Best 

alternative 

Individual DM, 

deterministic, 

probabilistic 

Moderate/ 

high 

Very 

restrictive 

Goal 

Programming 

Aspiration 

Levels, 

Priorities, 

weights 

Best 

Alternative 

Individual DM, 

deterministic, 

fuzzy 

High 
Very 

restrictive 

Interactive 

Programming 

Aspiration 

reservation 

Satisfying 

alternative 

Individual DM, 

deterministic, 

fuzzy 

Moderate 

increases 

with 

problem size 

Moderately 

restrictive 

Compromise 

Programming 

Ideal point, 

Weight 

Compromise 

alternative, 

cardinal 

ranking 

Individual and 

group DMs, 

probabilistic, 

fuzzy 

Moderate 
Moderately 

restrictive 

Data 

Envelopment 

Analysis 

Set of 

evaluation 

inputs  and 

outputs 

Cardinal 

ranking 

Individual and 

group DMs, 

deterministic, 

probabilistic, 

fuzzy 

Low 
Moderately 

restrictive 
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Table 17: Summary of the most often used MADM methods (Malczewski, 1999) 

 

MADM  

Method 

Input Output Types of Decision 

Scoring (SAW) 

Attribute scores, 

weights 

Ordinal 

ranking 
Individual DM, deterministic 

Multi-attribute 

value 

Value functions, 

weights 

Cardinal 

ranking 

Individual and group DMs, 

deterministic, fuzzy 

Multi-attribute 

utility 

Utility functions, 

weights 

Cardinal 

ranking 

Individual and group DMs, 

probabilistic , fuzzy 

Analytic 

hierarchy 

process 

Attribute scores, 

pairwise 

comparisons 

cardinal 

ranking 

(ratio scale) 

Individual and group DMs, 

deterministic, probabilistic , fuzzy 

Ideal point 

Attribute scores, 

weights, ideal 

point 

Cardinal 

ranking 

Individual and group DMs, 

deterministic, probabilistic , fuzzy 

Concordance 

Attribute scores, 

weights 

Partial pr 

ordinal 

ranking 

Individual and group DMs, 

deterministic, probabilistic , fuzzy 

Ordered 

weighted 

averaging 

Fuzzy attribute, 

weights, order 

weights 

Cardinal or 

ordinal 

ranking 

Individual and group DMs, fuzzy 
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CHAPTER FOUR: AVERAGE STANDARD ESTIMATOR (ASE) 

 

      This chapter will introduce the Average Standard Estimator (ASE), a novel method for 

estimating data intrinsic dimensionality based on singular value decomposition. ASE 

estimates the level of significance for singular values resulted from the truncated singular 

value decomposition (TSVD). Truncated singular value decomposition proceeds by 

including only those significant singular values according to ASE and excluding those with 

low significance. In doing so we include the analysis of term independence discussed in 

Chapter 2, since singular values reflect terms dependence, a lower value of ASE reflects 

more terms independence as will be shown in this chapter. 

 

4.1 The Method of Average Standard Estimator in IR Systems 

      The basic assumption behind latent semantic analysis and truncated singular value 

decomposition is that term correlation in information retrieval reduces searchers cognitive 

burden.  LSI was created to address the gap between information spaces and cognitive 

spaces so as to improve data representation to accommodate for the error of term 

independence (Landauer et al., 1997), (Landauer et al., 1998), (Foltz et al., 

1998),(Gardenfors, 2000),(Landauer, 2002),  

Several researchers referred to the deficiency of current information retrieval methods, in 

which, the words searchers use in their queries are not the same as those by which the 

information they seek has been indexed, this will result in relatively poor search 

performance. As discussed in chapter 2, latent semantic indexing use a low rank 

approximation of the original data matrix by adopting the use of singular value 
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decomposition (SVD), a least-squares matrix factorization method from linear algebra 

(Golub, et al., 1989), (Forsythe, et al., 1977), (Berry et al., 1994), (Strang, 1998).   

         Wong (1987) generalized vector space model (GVSM) improved retrieval results by 

assuming terms non-orthogonality and interdependence. This assumption of terms 

interdependence is proven to be true by other researchers (Manning et al., 1999) (Oakes, 

1998) (Cooper, 1988) (Cooper, 1991). 

SVD is used to derive a least-squares approximation of matrix A, as shown in Equation 

2.4.2, where all term-document similarities are approximated by the results of this model 

with the reduced dimension (Deerwester, 1990). In Equation 4.1 and 4.2, matrix ∑ is an 

rr ×  diagonal matrix, with the diagonal elements  called 

the singular values (Deerwester, 1990) (Berry et al., 1994) (Hastie et al., 2001). The matrix 

of singular values  acts as a reference when selecting singular values to retain during 

dimensionality reduction.    
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To estimate intrinsic dimensionality of the sparse matrix, we have to differentiate between 

large and small singular values. Selecting proper singular values involves deriving a suitable 

method for judging their significance based on their magnitude.  

      ASE is based on the concept of terms correlation represented by singular values in SVD, 

thus if terms in the document collections are independent then there will be no improvement 

by dimensionality reduction. However, as discussed earlier, terms dependency is proofed to 

be true in previous research. Noticing that calculated singular values decrease in a 

magnitude of different rates, average standard estimator (ASE) is concerned in the cutoff 

point, where the calculated singular value magnitude decrease in a rate less than the average 

rate. The proposed method, overcome shortcomings of previous methods by selecting a 

cutoff value based on analyzing all singular value rate of decrease in magnitude, then ASE 

select those values which satisfy this condition shown in Equation 4.3. 

 

(4.3)                       

 

In order to account for random noise distracters in the data, we add a multiplier ( n ) of 

singular values standard deviation to the cutoff average estimator.  This is helpful since it 

leads to a dynamic estimation of . Thus, for document collections with relatively small size 

of indexed terms, selecting a higher standard deviation multiplier (e.g. 1.5 or 2) reflects the 

need to account for less variability in the data; this will include the effect of small singular 

values and prevent ignoring important relationships. While for larger data collections, with 

respect to indexed terms, adding a lower value of standard deviations multiplier to the 

average estimator (e.g. 0 or 0.5) will result in a decline of those factors corresponding to 

k

1

1

1
)()1(

−

−
=
∑
−

=
+

r

svsv
r

m

mm

Average Decrease in Magnitude 

  86



relatively small singular values which contain essentially random noise distracters, this 

approach align with Ding (1999, 2000) and Story (1996) research recommendations to 

improve search performance by accounting for the effect of random noise distracters. The 

average standard estimator model is shown in Equation 4.4.   
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ASE estimates the number of dimensions retained in the truncated singular value 

decomposition shown in Equation 4.5 by including only those singular values in the data set 

which are larger or equal to the cutoff point estimation based on Equation 4.4.  In Equation 

4.5, contains the fist k columns of  kT T  estimated by ASE and k∑ contains the first k rows 

and columns of∑  estimated by ASE, and contains the first k columns of  estimated by 

ASE.  

kD D

(4.5)                                  )()()()(
ˆ

ASEkASEkASEkASEk DTA ∑=

Additionally the effect of selected value for the standard deviation component in ASE will 

be studied for three test collections, recommendations will be suggested based on document 

characteristics and overall IR system performance results. 

While previous research in dimensionality reduction underestimates document collections 

intrinsic dimensionality. ASE technique is useful since it applies a practical rationale to 

estimate intrinsic dimensionality. ASE method remedy the underestimation problem of 

intrinsic dimensionality in previous approaches by accounting for standard deviation as an 

important factor to accommodate for variability in document collection characteristics and 

in regard to the number of documents and indexed terms. ASE assumes that variables in the 
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document collection with deep relations have sufficient correlation and that only those 

relationships with high singular values are significant and should be maintained.  Based on 

this discussion and preliminary data analysis shown in the next section, ASE is expected to 

improve matrix intrinsic dimensionality estimation by including the effect of both singular 

values magnitude of decrease and random noise distracters. 

 

4.2 Example of Dimensionality Estimation Using ASE  

This section will discuss an example of using the average standard estimator to estimate data 

sets intrinsic dimensionality. In this example we tested ASE on MEDLINE document 

collection for the first 15 queries, and compared the results obtained under ASE with those 

obtained under Kaiser-Guttman technique and dimensionality estimation based on scree plot 

using only the first (10) most relevant documents returned by the dimensionally reduced 

system for each query. Using scree plot to estimate MEDLINE intrinsic dimensionality ( ), 

we find that intrinsic dimensionality was estimated approximately at ( ) as 

indicated in Figures 8 and 9.  

k

203=SPk

0 200 400 600 800 1000

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

MEDLINE Scree Plot

Singular Value Index - k

S
in

g
u
la

r 
V

a
lu

e

 

 

data 1

 
Figure 8: Scree Plot for MEDLINE test 
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Figure 9: Scree Plot with data fitting for MEDLINE test collection 

 

Kaiser-Guttman technique retains all factors whose corresponding singular values are 

greater than the average of all the singular values (Guttman, 1954), using this technique, 

MEDLINE intrinsic dimensionality was estimated at ( 358=KGk ).  

Average standard estimator technique (ASE) estimates MEDLINE data intrinsic 

dimensionality at ( ) using (n=1.5) for the standard deviation multiplier. 

MEDLINE document collection has a relatively small size of indexed terms compared to 

other document collections, thus selecting a relatively high standard deviation reflects the 

need to account for more variability in the data; this will include the effect of smaller 

singular values and prevent ignoring important relationships. 

182=ASEk

Results for the three intrinsic dimensionality estimators with various performance measures 

is included in Appendix (B) and summarized in Table 18 below. Appendix (C) includes 

sample Matlab code used to generate results for this example. 
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Table 18: Summary of performance measures using ASE compared to two other intrinsic 
dimensionality estimators for 15 queries in MEDLINE test collection 

Method K 
Average 

Precision 
Recall ASL 

Relative 

Relevance 

Average processing 

time/query 

Kaiser-Guttman 358 0.6800 0.3835 1.9044 0.9034 3.7565 

ASE (n=1.5) 182 0.7133 0.3979 1.8782 1.0542 1.7233 

Scree plot 203 0.6933 0.3929 1.8380 1.0388 1.9427 

 

Based on the results of this example, we conclude that ASE achieved better estimation of 

matrix intrinsic dimensionality with regard to average precision, recall and improvement in 

query processing time; however, these results are not conclusive since they were based on 

small testing scale. This example highlights the need to develop a model to assess and 

evaluate overall dimensionality estimation performance with regard to various evaluation 

measures. Additionally, we would like to evaluate collections overall performance under 

various values of standard deviations to find the relation between various document 

collections characteristics and selected ASE parameters. 
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CHAPTER FIVE: PROPOSED METHODOLOGY  

 

       Research discussed in this document is concerned with the parameterization of k, the 

number of retained dimensions during the implementation of truncated singular value 

decomposition.  Analysis is aimed at discovering a better and effective means for selecting k 

in unsupervised environments while maintaining a reasonable query response time for 

information retrieval systems. This research will try to give answers to the following 

question: Can we achieve better search results in terms of relative relevance, precision and 

recall, while reducing search time and average search length through the use of the weighted 

multi-objective set of performance measures to achieve an improved estimate of matrix 

intrinsic dimensionality? To be able to achieve a better estimate of the matrix 

dimensionality, there is a need to study a number of document collections and evaluate each 

test collection using a number of performance measures.  

Since there is no agreement on which performance measure is the best mean to assess 

retrieval performance, this research suggested a new technique to evaluate search overall 

performance based on a multi-criteria weighted model. We start by estimating  using 

various dimensionality estimation techniques in addition to the multi-weighted model and 

the novel dimensionality estimation technique based on the Average Standard Estimator 

(ASE) using average distances between consecutive singular values and  standard 

deviations as a cut-off value to estimate . After getting various estimates of for each 

document collection, result will be processed in the truncated singular value decomposition 

using various performance measures including the multi-criteria weighted model and 

compare the results using the analytical hierarchy processing (AHP). 

k

n

kk
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5.1 Information Retrieval Test Collections  

    When comparing intrinsic dimensionality estimation methods, Kolda et al. (2000) used 

three standard document collections as indicated in Table 19.  MEDLINE (MED) is a 

collection of 1033 medical abstracts from the Medlars collection. CISI is a collection of 

1460 information science abstracts. CRANFIELD (CRAN) is a collection of 1398 

aerodynamics abstracts from the Cranfield collection. Each test collection comes with a 

collection of documents, a collection of queries, and the correct answers to each query is a 

list of relevant documents.  Those three test collections have been selected because they 

cover major types to test collections with different characteristics.  

Those test collections were recommended by TREC because they have been evaluated and 

studied by experts and used in previous theoretical research in IR systems as standard 

document collections. Selected test collections, MED, CISI, CRAN, were also 

recommended because they have been used in Ding's theoretical work on dimensionality 

reduction for IR (Ding, 1999) (Ding, 2000). Thus using these documents collection for this 

study allows comparison with previous results obtained under other studies for similar kind 

of problems.  

When evaluating a query, we get an ordered list of documents with the position of those 

documents in the ordered list reflects relevancy to the search query. For each query, we 

compute the recall and precision values in addition to relative relevance, ASL and query 

search time. Selecting document collections with different numbers of documents will 

ensure capturing the relationship between terms, documents and concepts among various 

collections. 
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Table 19: Characteristics of selected document test collections (Source: Kolda et al., 1997) 

Characteristics MEDLINE CRANFIELD CISI 

Number of Documents: 1033 1399 1460 

Number of Queries: 30 225 112 

Number of (Indexing) Terms: 5526 4598 5574 

Avg. No. of Terms/Document: 48 57 46 

Avg. No. of Documents/Term: 9 17 12 

% Nonzero Entries in 

Matrix: 

0.87 1.24 0.82 

Storage for Matrix (MB): 0.4 0.6 0.5 

Avg. No of Terms/Query: 10 9 7 

Avg. No Relevant/Query: 23 8 50 

 

We compare various IR systems by looking at various IR performance measures such as 

average precision, recall, ASL, relative relevance and response time, some of which are 

standard measures used by the information retrieval community (Harman 1995), (Kolda, 

1997). The first and second rows of Table 19 reflect the number of documents and the 

number of queries in each test collection. Third row reflects the number of indexing terms in 

each test collection. Selected document collections have different characteristics with regard 

to the number of documents and the size of their indexed terms. The number of indexing 

terms is the number of selected terms used to represent each document after processing 

documents and removing stop-words.  Rest of Table 19 describes other document collection 

characteristics, such as the average number of terms per document and average number of 

relevant documents per query as studied by SME’s.  By selecting document collections with 

varying numbers of documents per term, we would like to ensure that different relationships 

between terms, documents and concepts among the various collections will be captured. 
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 Those three collections, with various sizes regarding the number of documents and 

vocabulary were selected in order to maximize the diversity of experimental characteristics, 

and to ensure capturing different relationships between terms, documents and concepts. It is 

also of great interest to study how the value of estimated  relates to different features of a 

data set, and how various dimensionality estimation techniques perform on data of various 

features.  

k

 

5.2 Information Retrieval Performance Measures  

Finding IR models that enhance document retrieval performance requires observing 

retrieval performance in terms of various performance measures including Cranfield-based 

metrics discussed earlier in Chapter 2. The objective is to find an information retrieval 

system with better collective system performance as will be discussed in this section. 

5.2.1 Cranfield Performance Measures 

IR performance evaluation metrics have been selected for a number of reasons, first, average 

precision has become a common criteria and standard performance indicator in IR research, 

thus, defining performance in terms of precision and recall is preferred since it aligns this 

research results with the majority of previous research in the field as discussed in Chapter 2.    

 After estimating intrinsic dimensionality for selected test collections, MED, CISI, CRAN 

using various estimation techniques, this research will test these findings using a system 

built for this purpose and analyze different results using Cranfield information retrieval 

performance evaluation measures and other measures based on experimental results. Three 

other metrics, Relative Relevance (R.R), Average Search Length (ASL) and search time will 

be included since they will help assessing the validity of results, and in order to find whether 
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observed best performance with regard to precision, recall, ASL, relative relevance and time 

agrees on the matrix intrinsic dimension. Different approaches for dimensionality reduction 

will then be applied to each test collection and evaluation will be based on selected IR 

performance measures as shown in Table 20. 

Table 20: IR selected performance measures  

Measure Description 

Precision (Prec.) Average precision at various recall levels. 

Recall (Rec.) Average recall per query. 

Relative Relevance (R.R) Ratio of IR system and expert relevance for  
returned document. 

Average Search Length 

(ASL) 

Location of a relevant document in the ranked 
output of search result. 

Response time (t) Average IR system query processing time. 

 

According to Losee (2000), average precision tends to provide a less biased method for 

information retrieval performance than other previously mentioned measures shown in 

Equations 2.9.1 and 2.9.5.   Recall measure, shown in Equation 2.9.2, is the proportion or 

relevant documents in the retrieved collection to the total number of relevant documents 

(Van Rijsbergen, 1979). This research will adapt the mathematical formulation of both 

average precision and recall as denoted by Losee (2000), Van Rijsbergen(1979) and Baeza-

Yates and Ribeiro-Neto(1999). 

Relative Relevance ( ) measure, shown in Equations 2.9.7, is used in the evaluation of 

IR systems where more types of subjective relevance may be applied such as the well 

evaluated document collections provided by TREC conference. (Saracevic, 1996) (Borlund 

& Ingwersen, 1998) (Cosijn & Ingwersen , 2000). The R.R measure computes the degree of 

RR.
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agreement between two results of relevance assessments or vectors cosines.  This research 

will adapt the mathematical formulation of relative relevance which was suggested by 

Cosijn & Ingwersen (2000). For example, MEDLINE test collection has a collection of 

queries and identified relevant documents for each query according to subject matter 

experts, based on this we can compare our dimensionally reduced IR system results for each 

query to get the relative relevancy score.   

Average Search Length (ASL), define the expected position of a relevant document in the 

ranked results of an information retrieval model (Losee, 1998), (Losee, 2000). As discussed 

in Chapter 2, we calculate ASL by summing the position of each relevant document in each 

ranking and dividing by the number of relevant documents as shown in Equation 2.9.7.  

Since our goal is to find a suitable trade-off between response time and the quality of 

retrieval results. Response time will be used as a performance measure to determine the 

usefulness of information retrieval systems.  In general, Cranfield information retrieval 

performance measures, provide strong comparative evidence of whether an information 

retrieval system provides better performance than other systems and since this research will 

include the implementation of the truncated singular value decomposition and an evaluation 

of different matrix reduction techniques, then Cranfield performance evaluation measures 

will be of much importance and guidance to accomplish such objectives. 

 

5.2.2 Evaluation of IR Overall Performance Using Analytical Hierarchy Processing 

         In AHP we specify different evaluation measures and integrate them into a multi-

criteria hierarchy, AHP model identifies the factors that must be measured to evaluate the 

effectiveness of an IR system from a decision-making perspective (Wang and Forgionne, 
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2005).   The hierarchy in AHP isolates the specific cause of a decision outcome leading to 

more objective results.  For many MCDM methods the effects of dissimilarities in weights 

produced by these methods become obvious leading to inconsistent results for problems 

with few alternatives. (Zanakis et al., 1998).   Based on the research conducted by Wang and 

Forgionne (2005), Godwin (2000), Kawasaki and Sunahara (2000), AHP proofed suitability 

to information retrieval.  Results indicated that AHP can be used effectively to analyze IT 

decisions and provides a computer based group decision environment needed to capture 

experts' opinions on several criteria. The sensitivity analysis of AHP is important in that it 

creates real-time, interactive, graphical display of the ranking of the options as the decision 

makers compare between different possibilities. Although decision-making theories have 

existed for a long time, the application of decision science especially AHP into information 

retrieval to evaluate systems overall performance is a new contribution to the field of IR 

systems performance evaluation. 

 

5.3 Dimensionality Estimation Techniques 

     Results from literature review and current research on dimensionality estimation 

highlights several techniques for intrinsic dimensionality estimation which can be used to 

improve performance; a list of these techniques is shown below: 

 Kaiser-Guttman technique. 

 Singular Values estimation based on scree plot. 

 Percentage of variance explained (90%). 
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 Average Standard Estimator (ASE): a novel dimensionality estimation technique for 

estimating intrinsic dimensionality based on the average distance between 

consecutive singular values and n  standard deviations to estimate k .   

 Intrinsic dimensionality estimation based on the results of the Multi-criteria 

weighted model developed in this research. 

 

5.4 Methodology Outline:  

Research experimental framework is illustrated in Figure 10 and summarized in the 

following steps: 

 Converting text documents to Term-Document Matrix  

 Parsing standard queries using terms indexes (Tokens) from TD matrix 

 Calculate singular value decomposition of TD matrix 

 Apply ASE dimensionality estimation technique to find the reduced dimension 

estimate “ k ”. 

 Apply all other dimensionality estimation techniques to find the reduced dimension 

estimator ( k ). 

 Update calculated Singular value decomposition to include only the k  highest singular 

values resulted from each dimensionality reduction method.   

 Calculate selected performance measures for each standard query in each test 

collection. 

 Calculate performance measures for all queries in each document collection. 

 Calculate the weighted importance of each performance measure using the relative 

importance scale from the ranked results of subject matter experts. 
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 Use the Multi-criteria weighted model developed in this research to find a new 

estimate of k  and apply the estimated k  value to each document collection and 

compare results. 

 Use Analytic Hierarchy Process (AHP) to evaluate and compare different 

dimensionality estimation techniques according to the results of their performance 

measures. 
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Figure 10: Framework of proposed methodology  
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5.5 Software and Computational Tools Used In Experimentation 

This section reviews selected hardware and software choices that have been made to 

enable successful experimentation and computation of various performance measures. The 

objective is to provide guidance and proof of workability and accuracy of selected tools for 

future researchers interested to work in this field. 

All experimentations were performed on the latest generation of computers supported with 

Intel Core 2 processors with CPU’s clock speed of 2.20GHz, equipped with up to 4 

gigabytes of physical random access memory, 350 gigabytes of disk space, and 512MB 

dedicated graphics card. This hardware configuration will allow the system to perform 

matrix indexing, singular value decomposition and truncated singular value decomposition 

on a small size term by document matrix in less than half an hour of CPU time. 

All of the software used to calculate estimated intrinsic dimensionality, performance 

measures and all other calculations will be in MATLAB R2007a Version 7.4.0.   MATLAB 

stands for “Matrix Laboratory”, which is a mathematical computing software from Math 

Works. 

The indexing module included in Text to Matrix Generator (TMG) will be used in 

MATLAB to generate term by document sparse matrices. One of the benefits of TMG is 

that it can be used for the construction of new and the update of existing term document 

matrices from text collections in the form of MATLAB sparse arrays. Choices made for 

term by document generation and terms indexing were based on the default recommended 

choices in common indexing standards in Text to Matrix Generators. Table 21 lists default 

indexing choices.  
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Table 21: Text to term document selected parameters (Zeimpekis and Gallopoulos, 2007) 
 

Parameter Description Selected Value 

Delimiter 

The delimiter between tmg’s views 
of documents. Possible values are 
‘emptyline’, ‘none delimiter’ (treats 
each file as single document) or any 
other string. 

Empty line and “I.” 

Stop list 

Name of file containing stopwords, 
i.e. common words not used in 
indexing. 

SMART , 
English Common Words 

Min Length Minimum term length. 
3 

Max Length 
Maximum term length. 

30 

Min Local Frequency 
Minimum local term frequency. 

1 

Max Local Frequency 
Maximum local term frequency. 

Inf. 

Min Global 

Frequency 

Minimum global term frequency. 
1 

Max Global 

Frequency 

Maximum global term frequency. 
Inf. 

Local Term 

Weighting 

Local term weighting function. 
values: ‘Term Frequency’(TF) TF 

Global Term 

Weighting 

Global term weighting function. 
Possible values: ‘None’,‘Entropy’, 
’Inverse Document Frequency 
(IDF)’,  ‘GfIdf’, 
’Normal’, ‘Probabilistic Inverse’. 

None 

 

To perform SVD and TSVD, this study will use functions that are based on LAPACK 

routines, which are provided in LAPACK library. LAPACK is a library of Fortran 77 

subroutines for solving many problems in numerical linear algebra and designed to be 

efficient on a wide range of modern high-performance computers (Anderson et al., 1999). 

Library download is available at (http://www.netlib.org/lapack/). The Statistics Toolbox 

functions and basic routines will be used to help complete the logic and construct testing 
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codes as shown in ASE code example in Appendix (C). Analytical Hierarchy Processing 

will be performed using Expert Choice Software ver. 11.5, Expert Choice software can be 

downloaded from:(http://www.expertchoice.com/ ). 

Original code for the calculation of all related performance measures and dimensionality 

estimations techniques will be developed based on the literature review in chapter 2 and the 

discussion of the two novel methods in Chapters 3 and 4 (ASE and Multi-criteria weighted 

model). Figure 11 shows a sample MATLAB code. 

 

% Open TD matrix.

data=X 
% Size of TD matrix. 
[n,p] = size(data); 
% Center the data. 
datac = data - repmat(sum(data)/n,n,1); 
% Find the covariance matrix. 
covm = cov(datac); 
[svec,sval] = eigs(covm,p); 

% find SV for the first 1032 (k<n) row and column 
sval = diag(sval);  % extract the diagonal elements 
% order in descending order 
svec = svec(:,p:-1:1); 
% Draw a plot. 
figure, plot(1:length(sval),sval,'ko-') 
title('MEDLINE Scree Plot') 
xlabel('Singular Value Index - k') 
ylabel('Singular Value') 

 

 

 

 

 

 

 

 

Figure 11: Sample SVD MATLAB code. 

5.6 Analysis of Results 

Experimentation will provide complex results to be studied and analyzed. In Chapter 

6, experimental results will be analyzed to rank various dimensionality estimation methods 

according to their overall performance for various measures. Of particular interest, the 

Average Standard Estimator method and Multi-criteria weighted model proposed in this 

research which provided improved performance in estimating data intrinsic dimensionality. 
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CHAPTER SIX: RESULTS 

 

The previous chapter provided detailed outline for testing document collections using 

various dimensionality estimation techniques, and rank them according to different 

performance measures. In addition to introducing a new approach based on the multi-criteria 

weighted model.  A novel dimensionality estimation technique was introduced based on the 

Average Standard Estimator (ASE), this is a new technique which have been proposed in 

this research for estimating data intrinsic dimensionality ( ) that corresponds to the average 

distance between consecutive singular values and a multiplier of standard deviations.  

Following are the dimensionality estimation techniques tested in this research: 

k

 Kaiser-Guttman technique; 

 Intrinsic Dimensionality estimation based on scree plot; 

 Percentage of variance explained (90%); 

 Average Standard Estimator (ASE); 

 Intrinsic dimensionality estimation based on the Multi-criteria weighted model. 

 

Since estimating data intrinsic dimensionality though Cranfield performance measures 

requires much attention, this chapter starts with a general overview and comparison of 

document collections retrieval performance under various dimensions. Section 6.2 will 

include detailed analyses of strengths and weaknesses of each dimensionality estimation 

method. Finally section 6.3 will summarize experimental results and findings. 
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6.1 Overview of Experimental Outline 

This section gives only a brief discussion on the methods used for data analysis after 

experimentation and testing.  Analysis of results will involve three major parts. Studying 

and analyzing the singular value decomposition performance results at a range of selected 

dimensionalities on the three selected document collections. This will give us insight and 

indication about the effect of selected dimensionality on various performance measures. 

After estimating the intrinsic dimensionality for each document collection, this study will 

evaluate and analyze the effect of k  value on the system overall performance and how 

estimated values correlates with performance analysis of value.  k

The performance of various dimensionality estimation techniques, including the average 

standard estimator (ASE) and intrinsic dimensionality estimation will be researched based 

on the multi-criteria weighted technique and AHP analysis.  Additionally, it is of interest to 

study the effect of selected value of the standard deviation multiplier in ASE on retrieval 

performance. Recommendations will be suggested based on overall IR system performance 

while analysis will involve all document collections described in Table 19. Intrinsic 

dimensionality will be estimated by five estimation techniques.  Results will be validated 

through comparison between various dimensionally reduced IR systems through search 

results and TREC standard document relevancy (i.e. expert’s relevancy ranking for each 

query).  The second stage involves a comparison of the results for all dimensionality 

estimation techniques and study performance for the multi-criteria weighted estimation of .  k

This research will help facilitate better understanding for the strengths and 

weaknesses of each dimensionality estimation method and analyze the effect of document 

collection characteristics on overall system performance. Studying the effect of documents 
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characteristics such as sparsity on IR systems performance will facilitate better 

understanding to the relation between various factors in term of matrix size, sparsity, and 

value of on each performance measure.  k

 

6.2 Intrinsic Dimensionality Estimation for Document Collections 

This section provides analysis of test collections to find the best representative 

dimension for data intrinsic dimensionality. We are interested in knowing if whether, for a 

given test collection, a low-rank approximation of the term-document matrix will improve 

model performance over a full-rank model. If matrix dimensionality reduction will improve 

a system's precision, recall, ASL and relevance measures, then it would be interesting to 

find which value of  led to the most noticed improvement. Also we are going to use 

multiple performance measures to find how dimensionality reduction improves retrieval 

performance over a full rank model.  It’s crucial to notice that the amount of dimensionality 

reduction required to find matrix intrinsic dimensionality varies across test collections.  

k

The problem of estimating dimensionality for documents collection with different 

characteristics is part of current research problems in dimensionality estimation, this 

research will try to avoid conflicting measures by introducing the multi-criteria weighted 

model to reach the dimension(s) that satisfy multiple performance objectives.  Table 23 

summarize findings for test collections intrinsic dimensionality estimation ( ) with 

respect to various performance measures.  

Estk

For each performance measure in Table 23 there are four statistics: the value of  that led to 

best performance ( ) with respect to the selected performance measure, actual value of 

selected performance measure observed at its respective  , amount of dimensionality 

k

Estk

Estk
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reduction from the full rank model for selected performance measure and percentage of total 

variance covered when selecting . Estk

Weighted

( RcW

6.2.1 Analytical Hierarchy Processing (AHP) Model Results 

A multi-weighted performance measures model was constructed based on the results 

of the analytical hierarchy processing (AHP) for performance measures ranked by subject 

matter experts. Ranking details provided in Appendix D. AHP analysis indicates that 

precision overall priority in the information retrieval system as (0.128), recall overall 

priority (0.156), relative relevance overall priority (0.235), average search length overall 

priority (0.235) and processing time overall priority (0.245).  AHP analysis was conducted 

using Expert Choice Software v11.5; results are summarized in Table 22 and Appendix E. 

Table 22: Summary AHP results using SME’s ranking  

AHP Performance Measures priorities based on SME’s ranking ( Inconsistency=0.08) 

Processing Time Priority  0.245  

Relative Relevance Priority 0.235  

Average Search Length Priority 0.235  

Average Recall  Priority 0.156  

Average Precision Priority 0.128  

 

Based on experimental findings for the three document collections shown in Table 23 and 

Equation 3.3.1.1, we calculate  for each documents collection as shown below: k

PrPr ttASLASLRRRRRcWeighted )]()()())([ kWkWkWkkWk ×+×++×+×+×=∑  
 

  107



Where: 

PrecisionMax  Pr kk =  ,  , RecallMax Rc kk = Relevance RelativeMax RR kk =  , , LengthSearch  Avg.Min ASL kk =

 Time ResponseQuery Min  t kk =  where : [ ]ASLRRRc kkkktMin ,,,)( Prk t =  

 

PrW  : Priority of precision performance measure from AHP analysis. 

RcW  : Priority of recall performance measure from AHP analysis. 

RRW  : Priority of relative relevance performance measure from AHP analysis. 

ASLW  : Priority of average search length performance measure from AHP analysis. 

tW  : Priority of query processing time from AHP analysis. 

 

)]90245.0()90235.0()100235.0()150156.0()150128.0([_ ×+×++×+×+×=∑MEDLINEWeightedk

109_ =MEDLINEWeightedk  

)]100245.0()100235.0()320235.0()320156.0()320128.0([_ ×+×++×+×+×=∑CRANFIELDWeightedk

214_ =CRANFIELDWeightedk  

)]350245.0()350235.0()850235.0()1250156.0()1350128.0([_ ×+×++×+×+×=∑CISIWeightedk

736_ =CISIWeightedk  

We find that the multi-weighted model estimates MEDLINE intrinsic dimensionality at 

=109 and CRANFIELD intrinsic dimensionality at =214 and CISI intrinsic 

dimensionality at =736. In the next section those estimates, which were obtained by the 

multi-weighted methods, will be compared with other results obtained by various 

dimensionality estimation techniques. 

k k

k
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Table 23: Summary of document collections intrinsic dimensionality estimation with 

respect to multiple performance measures. 
Estk

Characteristics: MEDLINE CRANFIELD CISI 

Number of Documents 1033 1399 1460 

Number of Queries 30 225 112 

Number of (Indexing) Terms 5526 4598 5574 

Average Number of Terms/Query 10 9 7 

Average Number of Relevant Documents /Query 23 8 50 

Number of Documents Returned 10 10 10 

KEst  (Precision), (Percentage of total dimensionality 
retained) 

150 (14.5%) 320 (22.9%) 1350 (92.5%) 

Precision  at kEst 0.680     0.156 0.278 

Dimensionality Difference  (kEst -kMax) -883  -1079 -110 

Variance Captured at kEst (Precision) (%) 26.33% 61.97% 99.2% 

Average Processing (Seconds)time at kEst(Precision) 20.88 40.67 257.54 

KEst (Recall), (Percentage of total dimensionality 
retained) 

150 (14.5%) 320 (22.9%) 1250 (85.6%) 

Recall  at kEst 0.331 0.2187 0.1127 

Dimensionality Difference  (kEst -kMax) -883 -1079 -210 

Variance Captured at kEst (Recall) (%) 26.33% 61.97% 97.92% 

Average Processing time (Seconds) at kEst (Recall) 20.88 40.67 236.105 

KEst (ASL), (Percentage of total dimensionality 
retained) 

90 (8.7%) 100 (7.1%) 350 (23.9%) 

ASL at kEst 1.580 0.828 0.4135 

Dimensionality Difference  (kEst -kMax) -943  -1299 -1110 

Variance Captured at kEst (ASL) (%) 17.45% 33.10% 57.41% 

Average Processing time (Seconds) at kEst (ASL) 23.709 13.25 63.69 

KEst (Relative Relevance), (Percentage of total 
dimensionality retained) 

100 (9.6%) 320 (22.9%) 850 (58.2%) 

Average Relative Relevance at kEst 1.127 0.208 0.4279 

Dimensionality Difference  (kEst -kMax) -933 -1079 -610 

Variance Captured at kEst (R.R) (%) 19.01% 61.97% 87.78% 

Average Processing time (Seconds) at kEst (R.R) 13.805 40.67 158.61 
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6.2.2 Test Collections Experimental Results 

Results shown in Table 23 and Figure 12 for Medline test collection indicate the 

variation and disagreement between various performance measures. There is a clear 

disagreement on the value of  for a selected document collection.  Figure 13 indicates 

the relationship of query processing time with the number of dimensions retained, this 

relationship highlight the need to retain the minimum number of dimensions that will result 

in the best overall model performance within a reasonable query processing time.  

Estk
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Experimental results for MEDLINE indicate that  should be in the vicinity of 150 to 

200, this will provide the highest performance with respect to average precision as shown in 

Figure 12. It is important to notice that performance for all measures increase as the number 

of dimensions retained increase up to a certain point (intrinsic dimensionality). Past this 

point performance starts to decrease. 

Estk
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Figure 13: MEDLINE average query processing time (Seconds) 

 
 
Performance measures have been studied across all possible MEDLINE matrix dimensions. 

It was noticed that average search length and average query processing time measures 

performed the best at lower dimensions, while average precision, average recall and relative 

relevance have close agreement on higher dimensions.  This research will seek a good 

balance between each performance measure to achieve best overall retrieval performance.   
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From Table 23, using average precision and average recall performance measures in 

MEDLINE, it is clear that (Avg. Precision) was similar to (Avg. Recall) at 

=150, this is 14.5% of full rank model. While average search length (ASL) performance 

measure in MEDLINE performed best at (ASL) =90, this is 8.7% of full rank model. 

Relative relevance performance measure in MEDLINE performed the best at (R.R) 

=100, this is equivalent to 9.6% of the full rank model.  

Estk Estk

Estk

Estk

Estk

As discussed in Chapter four, the Average Standard Estimator (ASE) is concerned in 

the cutoff point, where the calculated singular value rate of change is less than the average 

rate of change. The negative effects of random noise distracters will be minimized by 

adding a multiplier ( n ) of singular values standard deviation to the cutoff point calculated.  

Thus, ASE propose that for MEDLINE document collection selecting a higher standard 

deviation multiplier reflects the need to account for less variability in the data; this will 

include the effect of small singular values and prevent ignoring important relationships.  

Table 24 and Figure 14 summarize experimental results for the average standard estimator 

using MEDLINE document collection. It was noticed that at multiplier value of (n=1.5), 

=182 yields the best average precision, relative relevance and recall levels as can be 

noticed from the figures in Appendix F. ASE experimental results at (n=1.5) coincides with 

MEDLINE experimental results shown in Figure 12 over all possible dimensions.  
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Table 24: Summary of MEDLINE ASE results for various standard deviation multipliers  

Standard Deviation 

factor in ASE (n) 
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kEst 
Average 

Precision

Average 

Relative 

Relevance

Average 

Recall 
ASL 

Average query 

processing 

time 

0 1033 0.62 1.554 0.306 1.0526 131.894 

0.5 634 0.64 1.5602 0.3146 1.0543 76.144 

1 338 0.6633 1.626 0.3257 1.0892 38.756 

1.5 182 0.6833 1.6291 0.331 1.1268 18.632 

2 103 0.6667 1.7233 0.3285 1.1331 7.254 

2.5 59 0.6433 1.5947 0.3092 1.0759 3.089 

3 36 0.64 1.6024 0.3044 1.0915 1.846 
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Figure 14: MEDLINE average standard estimator precision plot over a range of standard 
deviation multiplier’s (n). 
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Table 25 and Figure 16 summarize experimental results for various dimensionality 

estimation methods with MEDLINE documents collection. For example, to account for 90% 

of variance then we find that =681, weighted model estimated k =109 with average 

precision of (0.660) while scree plot shown in Figure 15 estimates intrinsic dimensionality 

for MEDLINE at =203. Results over =203 yields average precision of (0.677) and 

average relative relevance of (1.116).  From Table 25 and Figure 16, it is obvious that ASE 

performance at (n=1.5) is the best estimate for MEDLINE data intrinsic dimensionality 

among all other tested methods. 
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Figure 15: MEDLINE singular values scree plot 
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Table 25: Summary MEDLINE dimensionality estimation performance measures 

Method kEst 
Average 

Precision

Average 

Relative 

Relevance  

Average 

Recall  
ASL 

Average processing 

time/query 

Weighted Model 109 0.660 1.096 0.326 1.661 15.66 

ASE (n=1.5) 182 0.683 1.127 0.331 1.629 34.47 

Scree plot 203 0.677 1.116 0.333 1.662 38.85 

Kaiser-Guttman 358 0.650 1.057 0.320 1.579 75.13 

Percentage of 

variance (90%) 
681 0.620 0.998 0.305 1.482 142.86 
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Figure 16: MEDLINE dimensionality estimation techniques performance measures 
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The most important result evident in all previous results is the disagreement among the 

various dimensionality estimation methods and performance evaluation measures. In most 

cases the four performance metrics were optimized at widely different dimensionalities. 

Overall, average search length calls for models with lower intrinsic dimensionality than do 

average precision, recall and relative relevance. Thus there is no clear relationship between 

matrix size and average search lengths estimation of matrix dimensionality. While the closer 

agreement between average precision, recall and relative relevance might give us the option 

to discount ASL because of its divergence from other metrics. Results support the need to 

seek a balance between different models called for by each performance evaluation criteria. 

Analytical hierarchy processing performance ranking for studied dimensionality estimation 

techniques on MEDLINE test collection is shown in Figure 17. According to subject matter 

experts responses for performance measures priorities we notice that the average standard 

estimator results in MEDLINE outperformed all other dimensionality estimation methods 

followed by scree plot and the weighted model.  Among the data of Table 23 the highest 

dimensionality reduction was found for the MEDLINE documents collection. Using the 

average search length measure, MEDLINE's estimated dimensionality was 90 or 8.7% of the 

total possible dimensions for a full rank matrix. Similar results were obtained with 

precision, recall and relative relevance evaluation metrics, with (Relative Relevance) 

=100 or 9.6% of full model and (Precision) = (Recall) = 150, or 14.5% of the full 

model.   

Estk

Estk Estk

 

Figure 16 shows performance measures graphs of several dimensionality estimation 

methods. Performance of the full-rank model is shown along with other dimensionality 
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estimation results, from Figures 12 and 16 it is clear that MEDLINE collection retrieval 

performance found with the average standard estimator technique at = 182 is better than 

all other dimensionality estimation techniques. Results suggest that LSI's reduced model 

improves retrieval for MEDLINE across multiple performance measures. This coincides 

with Deerwester et al. suggestions that MEDLINE is especially amenable to dimensionality 

reduction since it was constructed by a series of keyword queries. This implies that a set of 

well-defined concepts may be evident in the MEDLINE document collections and reflect its 

suitability for dimensionality reduction since results obtained by setting the model at 

(Precision) are nearly identical to those found for (Recall). The agreement between 

multiple performance metrics suggests that in the case of MEDLINE, performance 

evaluation metrics analysis detects the intrinsic dimensionality in the neighborhood of 200.  

Estk

Estk Estk

CRANFIELD test collection experimental results shown in Table 23 and Figure 18 indicate 

a disagreement between selected performance measures.  We still notice the relationship of 

query processing time with the number of dimensions retained as indicated in Figure 19. As 

the number of dimensions increase, processing time increase until reaching matrix full rank 

where processing time is at its highest level. 
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Figure 17: MEDLINE AHP performance ranking for dimensionality estimation techniques 

 

Experimental results for CRANFIELD documents collection over all possible dimensions 

indicate that k =320 will result in better performance for average precision, average recall 

and relative relevance as can be seen in Figure 18. Performance measures have been studied 

across all possible dimensions, average precision, average recall and relative relevance have 

close agreement at =320.  From this point we can estimate CRANFIELD documents 

intrinsic dimensionality at =320.   
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Figure 18: CRANFIELD performance results 
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Figure 19: CRANFIELD average query processing time (Seconds) 

 

From Table 23, using average precision and average recall performance measures in 

CRANFIELD, It was noticed that (Avg. Precision) = (Avg. Recall) = (Relative 

Relevance) = 320, this is 22.9% of full rank model. While average search length (ASL) 

performance measure performed best at k (ASL) =100, this is 7.1% of full rank model.  

Estk Estk Estk

Est

ASE propose that for CRANFIELD document collection selecting a lower random noise 

multiplier, as shown in Table 26, reflects the need to account for more variability in the data 

since singular values are arranged in a descending order; this will not include the effect of 

smaller singular values and will ignore random relationships, since lower multiplier values 

will result in a decline of those factors corresponding to relatively small singular values 

which contain essentially random noise distracters. 
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Table 26 and Figure 20 summarize experimental results for the average standard estimator 

using CRANFIELD document collection.  It was noticed that a relatively low random noise 

multiplier (n=1), resulted in matrix intrinsic dimensionality estimation of =231 with 

average precision of (0.1522) and average relative relevance of (0.1972). Average standard 

estimator at (n=1) provided the best estimation that ASE can achieve but does not 

completely coincides with CRANFIELD experimental results over all possible dimensions 

shown in Figure 18 or Appendix F which estimates =320. 
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Estk

Table 26: Summary of CRANFIELD ASE results for various standard deviation multiplier’s 
(n) 

Standard Deviation 

factor in ASE (n) 
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kEst 
Average 

Precision

Average 

Relative 

Relevance

Average 

Recall 
ASL 

Average query 

processing time 

(Seconds) 

0 1398 0.1384 0.1781 0.186 0.7521 251.16 

0.5 515 0.15 0.1957 0.2082 0.8916 72.02 

1 231 0.1522 0.1972 0.211 0.8972 28.68 

1.5 110 0.1451 0.1933 0.1972 0.8438 6.722 

2 56 0.1371 0.1900 0.184 0.8277 3.032 

2.5 33 0.1254 0.1709 0.1666 0.7652 1.903 

3 23 0.1116 0.153 0.1475 0.6771 1.414 
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Figure 20: CRANFIELD average standard estimator precision  plot over a range of standard 
deviation multiplier’s (n). 

 

Table 27 and Figure 22 summarize experimental results for various dimensionality 

estimation methods using CRANFIELD documents collection. If we want to account for 

90% of the variance then we find that dimensionality was estimated at =804 while scree 

plot shown in Figure 21 estimates intrinsic dimensionality for CRANFIELD in the 

neighborhood of  290, results over =290 yields average precision of (0.154) and average 

relative relevance of (0.203).  The weighted model estimates k at (214). From Table 27 and 

Figure 22, we notice that percentage of variance method when accounting for (90%) of the 

variance tends to overestimate data intrinsic dimensionality.  We conclude that Scree plot, 

Estk

Estk
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weighted model and ASE at (n=1) provides better estimation of data intrinsic dimensionality 

for CRANFIELD documents collection than Kaiser-Guttman and Percentage of variance.  
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Figure 21: CRANFIELD singular values scree plot  

Table 27: Summary of CRANFIELD dimensionality estimation performance measures 

Method kEst 
Average 

Precision 

Average 

Relative 

Relevance 

Average 

Recall 
ASL 

Average 

processing 

time/query

(Seconds) 

Weighted Model 214 0.1527 0.1984 0.2108 0.8984 27.54 

ASE (n=1) 231 0.1522 0.1972 0.211 0.8972 28.68 

Scree plot 290 0.154 0.203 0.215 0.938 37.881 

Kaiser-Guttman 440 0.151 0.197 0.210 0.903 61.282 

Percentage of 

variance (90%) 
805 0.146 0.194 0.200 0.869 110.370 
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Figure 22: CRANFIELD dimensionality estimation techniques performance measures 
 
 

AHP performance ranking for tested dimensionality estimation techniques on CRANFIELD 

test collection is shown in Figure 23. According to performance measures priorities 

provided by subject matter experts, it’s clear that the multi-weighted model achieved the 

best results followed by scree plot and the average standard estimator.  
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Figure 23: CRANFIELD AHP performance ranking for dimensionality estimation 
techniques 

 

CISI documents collection experimental results shown in Table 23 and Figure 24 clearly 

indicates the strong disagreement between all performance measures.  We still notice the 

linear relationship of query processing time with the number of dimensions retained as 

indicated in Figure 25.  Experimental results for CISI documents collection over all possible 

dimensions indicate that =1350 will result in best average precision performance, 

=1250 will result in best average recall performance and =350 will result in best 

Estk

Estk Estk
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average search length performance while =850 will result in best relative relevance 

performance. 

Estk
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Figure 24: CISI performance results 

From Table 23, considering average precision and average recall performance measures in 

CISI documents collection, It was noticed that there is a clear disagreement between all 

performance measures such that (Avg. Precision) ≠ (Avg. Recall) ≠ (Relative 

Relevance) ≠ (Average Search Length).  Based on experimental results, it is obvious 

that the Average Standard Estimator (ASE) technique propose that for CISI documents 

Estk Estk Estk

Estk
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collection selecting a random noise multiplier of (0) reflects the need to account for more 

variability in the data since singular values are arranged in a descending order; this will 

include the effect of smaller singular values since lower multiplier values will result in 

including those factors corresponding to relatively small singular values. 
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Figure 25: CISI average query processing time (Seconds) 
 

Table 28 and Figure 26 summarize CISI experimental results for the average standard 

estimator. It was noticed that neglecting random noise distracters by selecting a very low 

multiplier results in matrix dimensionality of =1454 with average precision of (0.2795) 

and average relative relevance of (0.4184). Average standard estimator results at (n=0) is the 

best estimation that ASE can achieve for CISI. ASE results at (n=0) provide a good 

estimates of CISI documents intrinsic dimensionality and this coincides with CISI 

experimental results over all possible dimensions as shown in Figure 24. 
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Table 28: Summary of CISI ASE results for various standard deviation multiplier’s (n) 

Standard Deviation 

factor in ASE (n) 

DSn
r

svsv

ASE

r

m

mm

.)(
1

1

1
)()1(

+
−

−
=
∑
−

=
+  

kEst 
Average 

Precision

Average 

Relative 

Relevance 

Average 

Recall 
ASL 

Average query 

processing time 

(Seconds) 

0 1454 0.2795 0.4184 0.1114 0.537 276.54 

0.5 798 0.2652 0.3970 0.0994 0.5033 139.46 

1 424 0.2679 0.4051 0.0955 0.4737 69.72 

1.5 229 0.2625 0.3792 0.0926 0.4374 35.17 

2 121 0.2607 0.3853 0.0948 0.4556 13.21 

2.5 63 0.2768 0.3857 0.0915 0.445 4.41 

3 34 0.258 0.3392 0.0825 0.4224 2.36 
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Figure 26: CISI average standard estimator precision plot over a range of standard deviation 
multiplier’s 
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Table 29 and Figure 27 summarize CISI experimental results for various dimensionality 

estimation techniques. Experimental results for CISI document collection indicates that if 

we want to account for 90% of the variance then we estimate intrinsic dimensionality at 913 

while scree plot shown in Figure 28 estimates intrinsic dimensionality for CISI at = 600. 

Performance measures calculations over =600 yields average precision of (0.2661) and 

average relative relevance of (0.3985).  From Figure 27 and Appendix F for CISI test 

collections, we notice that all methods except ASE at (n=0) tend to underestimate CISI 

documents collection intrinsic dimensionality.  We conclude that ASE dimensionality 

estimation technique at (n=0) provides better estimation of CISI intrinsic dimensionality 

than all other methods.  Additionally, based on CISI performance over a range of random 

noise multipliers, ASE was able to detect irregularities at (n=2.5 and n=0) and high noise in 

CISI.  Research results on CISI suggest that ASE would add so many benefits by 

eliminating noise or non relevant data in such databases. 
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Figure 28: CISI singular values scree plot 

 

Table 29: Summary of CISI dimensionality estimation performance measures 

Method kEst 
Average 

Precision

Average 

Relative 

Relevance 

Average 

Recall 
ASL 

Average processing 

time/query 

(Seconds) 

ASE (n=0) 1454 0.2795 0.537 0.1114 0.4184 276.54 

Percentage of 

variance (90%) 
913 0.269 0.5248 0.1062 0.4083 162.09 

Kaiser-Guttman 514 0.267 0.3928 0.0974 0.488 92.24 

Scree plot 600 0.2661 0.3985 0.0948 0.4792 109.59 

Weighted Model 736 0.2616 0.3828 0.0954 0.4659 129.869 
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Analytical hierarchy processing performance ranking for selected dimensionality estimation 

techniques on CISI test collection is shown in Figure 29. According to performance 

measures priorities by subject matter experts, it’s clear that the average standard estimator 

results outperformed all other dimensionality estimation techniques followed by Percentage 

of Variance and Kaiser Guttmann techniques. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: CISI AHP performance ranking for dimensionality estimation techniques 
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6.3 Summary of Results and Findings 

Experimental results indicated that the average standard estimator (ASE) provided 

the best estimate for MEDLINE collection intrinsic dimensionality among all other 

dimensionality estimation techniques.  Also, it was noticed that scree plot, weighted model 

and ASE at (n=1) provided better estimation of data intrinsic dimensionality for 

CRANFIELD collection than Kaiser-Guttman and Percentage of variance. For CISI 

documents collection, we notice that all methods except ASE tend to underestimate CISI 

documents collection intrinsic dimensionality.  Experimental results indicates that only ASE 

dimensionality estimation technique at (n=0) provides a better estimation of CISI intrinsic 

dimensionality than all other tested methods. 

As shown in Table 19, average term frequency in CRANFIELD documents collection is 57 

Terms/Document, this is higher than in MEDLINE (48 Terms/Document) or CISI (46 

Terms/Document). Likewise, CRANFIELD median term-document frequency is 17 

Document/Term, versus MEDLINE's term-document frequency of 9 and CISI term-

document frequency of 12. In other words, CRANFIELD displays more term repetition than 

does MEDLINE or CISI.   

Latent semantic indexing advantage to CRANFIELD data may thus be attributable 

to the redundancy and increased term-document frequency of CRANFIELD's terms. 

Noticing that document collections with large number of distinct indexing terms will 

perform better under dimensionality reduction in LSI. Since larger termspace reflect a 

greater opportunity for synonymy to negatively affect retrieval results.  In all experiments, 

smaller document collections get the greatest benefit from dimensionality reduction.  Table 

23 show an inclination toward increased dimensionality reduction for models with smaller 
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documents collections and a tendency to smaller models for document collections with 

greater amounts of term repetitions. Thus collections with greater repetition of terms 

benefited more from dimensionality reduction.  

The fact that all four performance measures were not always in agreement about 

intrinsic dimensionality complicates the task of finding matrix intrinsic dimensionality and 

this reflects the need to search for better intrinsic dimensionality estimates.  As discussed 

earlier, CISI provided little benefits by dimensionality reduction, at least so far as average 

precision and average recall were concerned (Precision) =1350 and (Recall) =1250. 

But from Table 23 it can be seen that according to the average search length (ASL), where 

intrinsic dimensionality was estimated at (ASL) =350 or 23.9% of full rank model, 

dimensionality reduction did improve retrieval performance for CISI for average search 

length performance measure only. To help understand the dynamics of dimensionality 

reduction, Figure 25 demonstrates reduced-rank and full-rank retrieval performance as 

measured by precision, recall ASL and relative relevance for the CISI data. Here 

dimensionality reduction provides no discernible advantage, with the precision-

dimensionally reduced model and the full-rank solution showing nearly similar behavior.  

Estk

Estk

Estk

On the other hand ASL dimensionally reduced model gives significantly worse results than 

the full-rank model. All dimensionally reduced models converge on similar performance at 

high levels of intrinsic dimensionality, with only the ASL dimensionally reduced model 

offering slight benefit.  

In CISI collection it was noticed that a heavy dimensionality reduction deprives the 

model of important discriminatory power required to achieve good retrieval performance,  

In fact, the disagreement between all four performance evaluation measures for CISI and the 
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failure of any of them to demonstrate a strong and convincing improvement over the full-

rank model by means of dimensionality reduction implies that analysis based solely on these 

performance measures may not be sufficient for accurately estimating intrinsic 

dimensionality of documents collection.  This is not surprising since the average number of 

relevant documents per query in CISI is 50 (the highest among all other test collections), 

and that this collection has the largest number of total documents among other collections. 

Thus it might be possible that the 112 tested queries were not adequate to gather a complete 

and accurate estimation of CISI intrinsic dimensionality.  

In Table 23 Similar but less obvious situation appears for CRANFIELD with its 225 

queries, the average number of relevant documents per query is only 8, the lowest among 

tested document collections.  It is important to mention that CRANFIELD contains a large 

number of documents that are not relevant to any query. These documents have been 

included in experimental studies. However in some studies conducted by Jiang and Littman 

these documents have been removed prior to analysis (Jiang et al., 2000).  Non relevant 

documents were not removed. Since, including these documents will provide models 

capable of achieving better retrieval flexibility in terms of search queries,  and to act as an 

evidence for the capabilities of performance measures to find the actual intrinsic 

dimensionality. Table 30 summarize my findings regarding document collections intrinsic 

dimensionality, these results have been discussed in detail in Section 6.2. However for each 

collection, Table 30 summarizes twelve measured statistics grouped into five performance 

measures.  Rows labeled “dimensions retained” show the percentage of dimensions retained 

in the model under the specified performance evaluation metric. Rows named “performance 
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measure improved” reflect the percent of improvement over the full rank model under the 

specified performance measure. 

Table 30: Summary of intrinsic dimensionality results 

Performance evaluation measure MEDLINE CRANFIELD CISI 

Dimensions retained (Precision) 14.5% 22.9% 92.5% 

Precision performance  improvement 0.10 0.13 -0.01 

Processing time performance improvement  124.76 159.16 20.28 

Dimensions retained  (Recall ) 14.5% 22.9% 85.6% 

Recall performance improvement 0.08 0.18 0.01 

Processing time performance improvement 124.76 159.16 41.71 

Dimensions retained  ( Relative Relevance ) 9.6% 22.9% 58.2% 

Relative Relevance performance improvement 0.07 0.16 0.02 

Processing time performance improvement 131.83 159.16 119.21 

Dimensions retained  (ASL) 8.7% 7.1% 23.9% 

ASL performance improvement 0.02 0.10 0.23 

Processing time performance improvement 121.93 186.58 214.13 

 

In general, average search length performance measure was associated with more 

dimensionality reduction than average precision, recall or relative relevance. Also, the 

percentage of total dimensions retained across all three test collections varies widely. 

Dimensionality reduction provided highest retrieval improvement for MEDLINE and 

CRANFIELD collections where the dimensionally reduced models improved performance 

greatly. The average search length performance measure indicated that CRANFIELD 

collection performed well at 93% dimensionality reduction, this provided 10% improvement 

over the full-rank model. MEDLINE average precision measure performed well at 85.5% 
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dimensionality reduction with 10% improvement over the full rank model. CISI data appear 

to respond poorly to dimensionality reduction since none of the four performance evaluation 

measures provided an evidence of a reduced dimensional model for CISI.   

Finally, CISI appear to give no strong evidence regarding the benefits of 

dimensionality reduction, this might be due to the higher distribution of the number of 

relevant documents per queries (on average 50 relevant document/query as indicated in 

Table 23). CISI might have a dimensionally reduced structure which is not easy to find 

through tested performance measures since it was noticed that CISI had 2% improved 

performance over the full rank model  with 41.8% dimensionality reduction with respect to 

relative relevance ( (R.R) =850).  Based on this, it seems that CISI database needs more 

queries to be able to estimate its intrinsic dimensionality. 

Estk

Along all studied document collections, the five tested dimensionality estimation techniques 

provided clear estimates of datasets intrinsic dimensionality. Although there was a variation 

in those estimated values, dimensionality estimation methods were consistent in their 

predictions. In both MEDLINE and CRANFIELD test collections, the weighted technique 

followed by the average standard estimator for dimensionality estimation provided the 

highest dimensionality reduction with superior performance results among all other 

methods, while Kaiser-Guttman and percentage of variance results indicated poor overall 

model performance in terms selected performance measures. For CISI test collection, 

although the average standard estimator didn’t provide the highest amount of dimensionality 

reduction, ASE results in terms of average precision, recall and relative relevance 

outperformed all other tested methods. Kaiser-Guttman and percentage of variance results 

were better estimates for CISI than scree plot and the weighted model.  
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AHP provided an excellent solution to rank all dimensionality estimation techniques 

according to subject matter expert’s retrieval performance priorities.  Table 31 summarizes 

dimensionality estimation techniques performance results with respect to average precision 

performance measure for each document collection.  Table 31 indicates the direct difference 

of dimensions found by various estimation techniques from the dimension associated with 

best performance for average precision. For example the difference between intrinsic 

dimensionality estimation of ASE and Precision performance measure is 32 

( 3 ). This indicates that ASE overestimated the precision 

performance measure dimension for MEDLINE by 32 dimensions. Tables 32 and 33 

provide similar calculations for average search length and average relative relevance where 

bold values indicate best performance with respect to each dimensionality estimation 

technique. In all tables, a value near zero indicates better estimations performance with 

respect to selected performance measure. Tables 31, 32 and 33 indicate that the average 

standard estimator and the weighted model performed well in providing good estimates for 

MEDLINE and CISI. This performance is not clear for CRANFIELD collection. As have 

been concluded before in our experiments, CRANFIELD median term-document frequency 

is higher than MEDLINE's and CISI term-document frequency (17 versus 9 and 12 

respectively). Because of this variation in term frequency, CRANFIELD displays more term 

repetition than does MEDLINE or CISI.   

2=(Pr) -(ASE) MEDLINEMEDLINE kk

k Pr

Latent semantic indexing proved some advantages to the CRANFIELD data all of 

which attributable to the redundancy of CRANFIELD's terms. It was noticed previously that 

document collections with large number of distinct indexing terms will perform better under 

dimensionality reduction since larger termspace reflect a greater opportunity for synonymy 
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to negatively affect retrieval results, thus dimensionality reduction acts as a filter to reduce 

synonymy negative effects.   

Table 31: Dimensionality differences for Average precision performance measure ( - ) Estk Prk

Method 
MEDLINE 

( =150) Prk

CRANFIELD 

( =320)  Prk

CISI  

( =1350) Prk

ASE  32 (n=1.5) -89 (n=1) 104 (n=0) 

Weighted Model -41 -106 -614 

Scree plot 53 -30 -750 

Kaiser-Guttman 208 120 -836 

Variance (90%) 531 485 -437 

 

Table 32: Dimensionality differences for Average search length performance measure  

( - ) Estk ASLk

Method 
MEDLINE 

( =90) ASLk

CRANFIELD 

( k =100) ASL

CISI 

( = 350) ASLk

ASE 92(n=1.5) 131(n=1) 1104(n=0) 

Weighted Model 19 114 386 

Scree plot 113 190 250 

Kaiser-Guttman 268 340 164 

Variance (90%) 591 705 563 
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Table 33: Dimensionality differences for average relative relevance performance measure 
( - ) Estk RRk .

Method 

MEDLINE 

( =100) RRk .

CRANFIELD 

( =320) RRk .

CISI 

( k = 850) RR.

ASE 82 -89 604 

Weighted Model 9 -106 -114 

Scree plot 103 -30 -250 

Kaiser-Guttman 258 120 -336 

Variance (90%) 581 485 63 

 

As have been discussed earlier, the average standard estimator propose that for CISI test 

collection selecting a random noise multiplier of (0) reflects the need to account for the 

variability in the data since singular values are arranged in a descending order; this will 

include the effect of small singular values since lower multiplier values will result in 

including those factors corresponding to relatively small singular values. ASE technique 

was found useful in this situation since it applies a practical rationale to estimate intrinsic 

dimensionality.  

ASE method remedy the underestimation problem of intrinsic dimensionality in all other 

approaches by accounting for standard deviation as an important factor to accommodate for 

variability in document collection characteristics and in regard to the number of documents 

and indexed terms. ASE assumes that those variables with deep relations have sufficient 

correlation and that only those relationships with high singular values are significant and 

should be maintained.  Based on the previous discussion and experimental results over all 

possible dimensions, ASE improved CISI matrix intrinsic dimensionality estimation by 
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including the effect of both singular values magnitude of decrease and random noise 

distracters. Dimensionality estimation performance summary shown in Tables 34, 35 and 36 

indicates that ASE provided the best estimate for MEDLINE intrinsic dimensionality among 

all other dimensionality estimation techniques, ASE improved precision and relative 

relevance by 10.2% (from 0.62 to 0.683) and 7.4% (from 1.049 to 1.127) respectively. ASE 

reduced MEDLINE processing time by 76% (from 145.42 to 34.47). AHP analysis indicates 

that ASE and the weighted model ranked among the best compared to other methods with 

30.3% and 20.3% in satisfying overall model goals in MEDLINE and 22.6%  and 25.1% for 

CRANFIELD as shown in Figure 17 and 23. The weighted model improved MEDLINE 

relative relevance by 4.42% (from 1.049 to 1.096), while scree plot, weighted model and 

ASE provided better estimation of data intrinsic dimensionality for CRANFIELD collection 

than Kaiser-Guttman and Percentage of variance.  

Table 34: MEDLINE dimensionality estimation performance summary 

  Method (MEDLINE ) (n =1033), (t=145.42) 

Performance measure  

 (% improvement from 

full rank model) 

KEst 

performance 

KEst 

Processing 

time 

(Seconds) 

ASE 

(n=1.5) 

Weighted 

Model 

Scree 

plot 

Kaiser-

Guttman 

Variance 

(90%) 

Dimensions retained     182 109 203 358 681 

Precision (KEst=150) 0.62 20.88 0.683 0.660 0.677 0.650 0.620 

Recall (KEst=150) 0.306 20.875 0.331 0.326 0.333 0.320 0.305 

Relative Relevance 

(KEst=100) 

1.0496 13.805 1.127 1.096 1.116 1.057 0.998 

Average Search 

Length (KEst=90) 

1.554 23.709 1.629 1.661 1.662 1.579 1.482 

Processing time   34.47 15.66 38.85 75.13 142.86 

  140



ASE dimensionality estimation technique provided a better estimation of CISI intrinsic 

dimensionality than all other tested methods since all methods except ASE tend to 

underestimate CISI documents collection intrinsic dimensionality.  ASE reduced 

CRANFIELD processing time by 85.7% (from 199.95 to 28.68), while the Weighted model 

reduced CRANFIELD processing time by 86.2% (from 199.95 to 27.54). ASE improved 

CISI average relative relevance and average search length by 28.4% (from 0.418 to 0.537) 

and 22.03% (from 0.536 to 0.4184) respectively.  

Table 35: CRANFIELD dimensionality estimation performance summary 

  Method (CRANFIELD) (n=1399), (t=199.95) 

Performance measure  

(% improvement from 

full rank model) 

KEst 

performance 

KEst 

Processing 

time 

(Seconds) 

ASE 

(n=1) 

Weighted 

Model 

Scree 

plot 

Kaiser-

Guttman 

Variance 

(90%) 

Dimensions retained     231 214 290 440 805 

Precision (KEst =320) 0.1384 40.67 0.1522 0.1527 0.154 0.151 0.146 

Recall (KEst =320) 0.186 40.67 0.211 0.2108 0.215 0.210 0.200 

Relative Relevance (KEst 

=320) 

0.1788 40.67 0.1972 0.1984 0.203 0.197 0.194 

Average Search Length 

(KEst =100) 
0.7521 

13.25 0.8972 0.8984 0.938 0.903 0.869 

Processing time   28.68 27.54 37.881 61.282 110.370 
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Table 36: CISI dimensionality estimation performance summary 

  Method (CISI)(n=1460), (t=277.82) 

Performance measure  

(% improvement from 

full rank model) 

KEst 

performance 

KEst 

Processing 

time 

(Seconds) 

ASE 

(n=0) 

Weighted 

Model 
Scree plot 

Kaiser-

Guttman 

Variance 

(90%) 

Dimensions retained     1454 736 600 514 913 

Precision (KEst =1350) 0.2795 257.54 0.2795 0.2616 0.2661 0.267 0.269 

Recall (KEst =1250) 0.111 236.11 0.1114 0.0954 0.0948 0.0974 0.1062 

Relative Relevance 

(KEst =850) 

0.4184 158.61 0.537 0.3828 0.3985 0.3928 0.5248 

Average Search 

Length (KEst =350) 

0.5366 63.69 0.4184 0.4659 0.4792 0.488 0.4083 

Processing time    276.54 129.869 109.59 92.24 162.09 

 

In general, analysis based on selected performance measures indicates that for each 

document collection there is a region of lower dimensionalities associated with improved 

retrieval performance. However, it was noticed that there is a clear disagreement between 

various performances measures on the model associated with best performance. The 

introduction of the weighted model and AHP analysis helped in ranking dimensionality 

estimation techniques and facilitates satisfying overall model goals by leveraging 

contradicting constrains and satisfying subject matter experts priorities. AHP analysis 

provided for the first time a model to help rank and compare the performance of several 

dimensionality estimation techniques according to overall performance. This comparison 

was not possible before.  In all previous studies, researchers were comparing dimensionality 

estimation methods based on a single or multiple criteria’s and neglecting all other 
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important metrics.    Results shown in Figures 17 and Tables 34 through 39 for MEDLINE, 

CRANFIELD and CISI test collections indicated that the average standard estimator 

technique provided better results than other dimensionality estimation techniques and 

ranked the best among other tested methods according to AHP analysis, satisfying overall 

information retrieval model performance goals.  AHP results and Figure 23 indicates that 

the weighted model not ASE provided the best estimates for CRANFIELD test collection. 

My explanation for this is that CRANFIELD contains a large number of documents that are 

not relevant to any query and acts as noise and prevented accurate dimensionality estimation 

for ASE.  Additionally, CRANFIELD displays more term repetition than does MEDLINE or 

CISI. Dimensionality estimation advantage to CRANFIELD data may thus be attributable to 

the redundancy of CRANFIELD's terms, although this seems to be a disadvantage to the 

average standard estimator technique.  
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CHAPTER SEVEN: CONCLUSIONS 

      This chapter concludes experimental work and analyses covered in Chapter 6 by 

answering my initial research questions. Intrinsic dimensionality estimation techniques 

studied were very useful in providing good means for estimating documents collections 

intrinsic dimensionalities and to evaluate performance based on independent performance 

evaluation metrics.  Previous research found that there is no consensus about the most 

effective method for estimating data intrinsic dimensionality which will provide improved 

overall retrieval performance.  Section 7.1 in this chapter begins with coverage of my initial 

research questions and their theoretical significance, summarizing dimensionality estimation 

results and discussing each method strengths and weaknesses. Section 7.2 concludes 

experimental results and their implications for information retrieval. Section 7.3 describes 

shortcomings of this study and suggests future work on information retrieval dimensionality 

estimation.  

 

7.1 Singular Value Decomposition and Dimensionality Estimation 

Research covered in this study indicated that dimensionality reduction provides a 

better solution to information retrieval problems discussed in Chapter 1 and Chapter 2 of 

this research. Dimensionality reduction improved information retrieval by providing more 

relevant results and faster computational time, while giving reasonable accuracy in terms of 

precision, recall, higher relative relevance and lower average search length.  

Salton’s Vector Space Model (VSM) discussed in Chapter 2 treats documents as vectors in a 

dimensional space with inter-document similarity represented by their corresponding vector 

cosine (Salton et al., 1983).   Documents that are about similar topics lie near each other in 
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Salton’s vector space model. Thus information retrieval is concerned with navigating this 

vector space; attempting to locate regions of the vector space that contain documents 

relevant to specific information needs. Salton’s VSM deviates from reality by assuming 

simplicity when VSM suggested statistical independence among terms. 

Generalized Vector Space Model (GVSM) removes error from Salton's Vector Space 

Model (VSM) theory by including the observed term correlations as discussed in Section 

1.3.  Latent Semantic Indexing (LSI) removes error from the GVSM through a model based 

on the observed sample of the population correlation matrix. Thus LSI extends Wong 

GVSM by attempting to improve the model by creating a statistical model of the population 

correlation matrix via dimensionality reduction. 

Latent Semantic Indexing (LSI) introduce the basis for a vector space by an 

orthogonal projection of its P-dimensional document vectors onto a k-dimensional subspace, 

where in LSI (k < p). Dimensionality reduction provides a systematic representation of 

term-document associations, similar objects are arranged by eliminating observed data over 

specification error (Deerwester et al., 1990).  LSI is based on the singular value 

decomposition (SVD) of an input matrix, which was discussed in Chapter 2. Given an pn×  

matrix A of rank r , the singular value decomposition of A is given in Equation 7.1.1: 

(7.1.1)                                             'DTA ∑=                                                     

Where T is an rn×  orthogonal matrix, ∑  is an rr × diagonal matrix, and D is an rm×  

orthogonal matrix. Where matrices T and D contain the left and right singular vectors of A 

respectively, while the main diagonal of ∑  contains the singular values, which are the 

positive square roots of A'A and AA'. The diagonal elements of  ∑   reflects the amount of 

variance of the dimensionally reduced model from the original model 
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Those diagonal elements of    decrease in magnitude as  goes from 1 to rank , this is 

demonstrated in Equation 7.1.2 where singular values follow a power law distribution hence 

the magnitude of singular values is related inversely and exponentially to the specified 

matrix rank k  . 

∑ i k

(7.1.2)                               rρρρρ ≥≥≥≥ ...........321                             

Singular values decrease in magnitude as their rank increase, because they represent the 

amount of variance indicated by the corresponding dimensions from the full rank model. 

LSI suggests that we can improve information retrieval results by neglecting those singular 

values with small magnitudes. Results indicated that LSI queries performance improve as 

the number of dimensions  increases, but this performance will decrease past a certain 

value of . 

k

k

Although Latent semantic indexing dimensionality reduction has proved good 

performance in empirical studies, the motivation behind its performance has remained 

largely un-formalized in previous research and literature.  Several questions were un-

answered such as why should a dimensionally reduced model approximation provides a 

better estimate of the full rank matrix!  

 Experimental results and analysis covered in Chapter 6 for the Average Standard 

Estimator (ASE) indicated that ASE was found to provide the best approximation for term-

document matrix intrinsic dimensionality and better estimates than all other tested 

dimensionality estimation techniques. The performance of the average standard estimator 

supports my initial theoretical argument which states that ASE is based on the concept of 

terms correlation represented by singular values in SVD, thus if terms in the document 

collections are independent then there will be no improvement by dimensionality reduction. 
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ASE technique is useful since it applies a practical rationale to estimate intrinsic 

dimensionality.  

Previous research in dimensionality reduction underestimates document collections 

intrinsic dimensionality. ASE method remedy the underestimation problem of intrinsic 

dimensionality in previous approaches by accounting for standard deviation, as an important 

factor to accommodate for variability in document collection characteristics and in regard to 

the number of documents and indexed terms. ASE assumes that variables in the document 

collection with deep relations have sufficient correlation and that only those relationships 

with high singular values are significant and should be maintained.  Based on the previous 

discussion and experimental results, ASE improved matrix intrinsic dimensionality 

estimation by including the effect of both singular values magnitude of decrease and random 

noise distracters. Thus ASE answered one of our research questions regarding how much we 

need to reduce the dimensionality to derive the best estimated matrix dimensionality. 

Intrinsic dimensionality or the best number of dimensions for a given corpus is thus 

a critical factor to the theoretical stability and success of latent semantic Indexing.  

Traditional matrix dimensionality estimation models do not translate easily to the 

unsupervised learning environment presented by information retrieval. Results in Chapter 6 

confirmed that we can get better search results in terms of relevance and precision, while 

reducing search response time through the use of selected dimensionality reduction 

parameter in truncated singular value decomposition. 

Since there is no consensus about the most effective method for estimating the best number 

of dimensions in LSI which will provide better overall retrieval performance.  One of the 
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main objectives of this research was to develop a new and improved model to investigate 

the effect of various dimensionality estimation techniques on overall retireval performance.   

Two new techniques were introduced in this research in order to estimate matrix intrinsic 

dimensionality and to compare and investigate the effect of various dimensionality 

estimation techniques on overall search performance.  

Results in Chapter 6 indicated that a system using a weighted multi-criteria 

performance evaluation technique resulted in better overall performance than a single 

criteria ranking model. Thus the weighted multi-criteria model with dimensionality 

reduction provides a more efficient implementation for information retrieval than what we 

get by using full rank model.  

 

7.2 Findings from Experimental Data 

Experimental results in Chapter 6 indicated that ASE provided the best estimate for 

MEDLINE collection intrinsic dimensionality among all other dimensionality estimation 

techniques.  While scree plot, weighted model, and ASE at (n=1) provided better estimation 

of data intrinsic dimensionality for CRANFIELD collection than Kaiser-Guttman and 

percentage of variance.  

Latent semantic indexing advantage to CRANFIELD data was attributable to the 

redundancy and increased term-document frequency of CRANFIELD terms.  ASE 

dimensionality estimation technique at (n=0) provides a better estimation of CISI intrinsic 

dimensionality than all other tested methods since all methods except ASE tend to 

underestimate CISI document collection intrinsic dimensionality. Dimensionality reduction 

provided highest retrieval improvement for CRANFIELD and MEDLINE collections where 
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the dimensionally reduced models improved performance greatly, and where all five 

performance measures have been in close agreement about model intrinsic dimensionality 

associated with best performance. Results indicated that document collections with large 

numbers of distinct indexing terms will perform better under dimensionality reduction in 

LSI since larger termspace reflect a greater opportunity for synonymy to negatively affect 

retrieval results.  In all experiments, smaller document collections get the greatest benefit 

from dimensionality reduction. 

As have been discussed in Chapter 6, analysis based on selected performance 

measures indicate that for each document collection there is a region of lower 

dimensionalities associated with improved retrieval performance while there is clear 

disagreement between the various performance measures on the model associated with best 

performance. The introduction of the multi-weighted model and AHP analysis supported 

ranking of dimensionality estimation techniques and facilitates satisfying overall model 

goals by leveraging contradicting constrains and satisfying subject matter expert priorities. 

AHP analysis provided for the first time a model to help rank and compare performance of 

several dimensionality estimation techniques according to overall performance. In previous 

studies, researchers were comparing dimensionality estimation methods based on a single or 

multiple criteria and neglecting all other important metrics. 

The average standard estimator technique provided better results than other dimensionality 

estimation techniques and ranked as the best among all other tested methods according to 

AHP analysis which was constructed based on expert priorities for MEDLINE and CISI.   
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AHP results indicate that the weighted model not ASE provided the best estimates for 

CRANFIELD test collection. This can be explained knowing that CRANFIELD contains a 

large number of documents that are not relevant to any query and acts as noise and prevents 

accurate dimensionality estimation for ASE.  Additionally, CRANFIELD displays more 

term repetition than does MEDLINE or CISI. The advantage of Dimensionality estimation 

to CRANFIELD data may be attributable to the redundancy of CRANFIELD terms although 

this seems to be a disadvantage to the average standard estimator technique. Based on the 

Experimental results reported in this research I would suggest to revise CISI document 

collection by adding more queries to better estimate its dimension.  

ASE served as a method to detect documents collection noise and irregular behavior through 

the use of the ASE plot over various noise multipliers, for example, ASE was able to detect 

irregular performance and high noise in CISI through the use of the random noise multiplier 

at n=0 and n=2.5. Thus, based on experimental results, this research suggests the use of ASE 

as a tool to be used in the detection of noise and non-relevant documents in such databases. 

Also, results clearly mark the importance of considering the random noise multiplier as a 

performance measure to study and evaluate information retrieval systems performance in 

estimating intrinsic dimensionality. 

This research provided the evidence, which supports that: a system using a weighted multi-

criteria performance evaluation technique resulted in better overall performance than a 

single criteria ranking model. Thus the weighted multi-criteria model with dimensionality 

reduction provides a more efficient implementation for information retrieval than what we 

get by using full rank model. 

 

  150



7.3 Study Limitations and Future Work 

This section covers research limitation and provides suggestions for future work. 

Additionally, a couple of issues left open for future research will be discussed.  One of the 

important issues that needs to be addressed in future research is the number of test 

collections and the their associated characteristics such as size, number of terms per 

document and all other matrix characteristics mentioned previously in this research. This 

research tested three document collections with distinct characteristics and qualities. 

However, future research should study larger document collections form either supervised 

or unsupervised learning environments such as large data libraries and compare results that 

we got for each one of them. 

  The numbers of performance evaluation measures were restricted to average 

precision, recall, relative relevance, average search length and time. Future research should 

study performance evaluations measures and introduce other possible candidates, such as 

the random noise multiplier introduced in this research, which can better estimate matrix 

intrinsic dimensionality and improve over the multi-weighted model results. The random 

noise multiplier acts as a method to detect irregularities in documents collections and 

possibly as a method to detect non relevant documents which acts as noise. Another 

important aspect is the number of tested dimensionality estimators and the number of 

dimensionality reduction techniques, this research studied five techniques for dimensionality 

estimation based on the singular value decomposition due to wide acceptance in the IR 

community and good performance. It would be interesting to see what will be the results 

under other dimensionality estimation techniques or other dimensionality reduction 

techniques such as the Independent component analysis and multi-dimensional scaling.  
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APPENDIX A: SMART STOP LIST 
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THEMSELVES THEN THENCE THERE THERE'S THEREAFTER THEREBY 
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APPENDIX B: ASE EXAMPLE RESULTS  
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Table: Kaiser-Guttman dimensionality estimation results for ASE example 

        Kaiser-Guttman Analysis (k=358) 

Query Precision Recall ASL 
Relative 

Relevance 
Processing time 

1 0.9 0.2432 1.3514 0.9625 3.8064 

2 0.5 0.3125 1.125 0.7498 3.5568 

3 0.7 0.3182 1.4091 0.8031 3.6504 

4 0.6 0.2609 1.0435 0.6861 3.744 

5 0.9 0.3462 1.9231 1.2728 4.1964 

6 0.7 0.5385 2.6154 2.1592 3.6504 

7 0.6 0.4 1.6667 1.0008 3.6348 

8 0.4 0.3636 1.7273 0.6187 3.7752 

9 0.4 0.3636 1.7273 0.4123 3.7908 

10 0.6 0.25 1.3333 0.2481 3.9312 

11 0.7 0.3889 2.3333 0.5311 3.8532 

12 0.7 0.7778 4.2222 1.1347 3.6348 

13 1 0.4762 2.619 1.3262 3.7752 

14 0.7 0.4375 2.125 0.8291 3.6504 

15 0.8 0.2759 1.3448 0.8171 3.6972 
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Table: ASE dimensionality estimation results for ASE example 

Average Standard Estimator Analysis (k=182) 

Query Precision Recall ASL 
Relative 

Relevance 

Processing time 

(Seconds) 

1 0.9 0.2432 1.3784 1.0033 1.638 

2 0.6 0.375 1.5625 0.9208 1.6224 

3 0.7 0.3182 1.3636 0.9877 1.6224 

4 0.8 0.3478 1.8696 0.7893 1.7784 

5 1 0.3846 2.1154 1.6299 1.8096 

6 0.8 0.6154 3.0769 2.6535 1.6536 

7 0.6 0.4 1.4667 1.2266 1.6692 

8 0.4 0.3636 1.0909 0.7378 1.5444 

9 0.4 0.3636 1.0909 0.5193 2.1684 

10 0.6 0.25 1.4167 0.2101 1.6848 

11 0.7 0.3889 2 0.6247 1.794 

12 0.6 0.6667 3 1.0717 1.6848 

13 1 0.4762 2.619 1.5645 1.7784 

14 0.8 0.5 2.8125 1.0146 1.6848 

15 0.8 0.2759 1.3103 0.8595 1.716 
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           Table: Scree Plot dimensionality estimation results for ASE example 

Scree Plot Analysis (k=203) 

Query Precision Recall ASL 
Relative 

Relevance 

Processing time 

(Seconds) 

1 0.9 0.2432 1.3514 1.0039 1.8876 

2 0.6 0.375 1.5625 0.8908 1.9188 

3 0.7 0.3182 1.4545 0.9928 2.0592 

4 0.7 0.3043 1.3913 0.7633 1.9032 

5 0.9 0.3462 1.7692 1.5168 1.95 

6 0.8 0.6154 3.1538 2.5867 1.95 

7 0.6 0.4 1.4 1.2202 2.106 

8 0.4 0.3636 1.1818 0.7189 1.8252 

9 0.4 0.3636 1.1818 0.5085 1.716 

10 0.5 0.2083 1.0833 0.2041 1.9968 

11 0.7 0.3889 1.8889 0.6146 1.9188 

12 0.7 0.7778 4 1.207 1.9344 

13 1 0.4762 2.619 1.5467 2.028 

14 0.7 0.4375 2.1875 0.9524 1.9968 

15 0.8 0.2759 1.3448 0.8558 1.95 
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APPENDIX C: MATLAB CODE FOR ASE EXAMPLE 
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% This Matlab Code was written by: Tareq Ahram (PhD research).  
% Date: August 5, 2008 
%-------------------------------------------------------------------- 
% MEDLINE Queries Document Collection Performance Measure for 15 queries. 
% performance measures based on the first 10 most relevant documents 
% returned 

  
% Load MEDLINE data 
load('MED_Original.mat'); 
   disp(['Some statistics about the MED data collection:']) 
   disp(['  Number of rows in term-by-document matrix A is 

',int2str(m),'.' ]) 
   disp(['  Number of columns in term-by-document matrix A is 

',int2str(n),'.' ]) 
   disp(['  Number of nonzeros in term-by-document matrix A is 

',int2str(nnz),'.' ]) 

  
 % ASE Estimation 
data=A; 
[b,c] = size(data); 
% data normalization. 
datac = data - repmat(sum(data)/b,b,1);  
%Find the covariance matrix. 
covm = cov(datac); 
[eigvec,eigval] = eigs(covm,c);  
% find singular values for the first 1032 (k<n) row and column 
eigval = diag(eigval);  % extract the diagonal elements 
% Calculation of Distances 
for g=1:c-1 
val(g)=abs(eigval(g+1)-eigval(g)); 
end 
%calculate singular values standard deviation 
stdev=std(eigval); 
% calculate singular values average distance 
k=Kest, 
    [U,S,V]=svds(A,k); 
    'ALERT!: MEDLINE Matrix Dimension Change'  
    'Loading MEDLINE Data for Selected K Completed Successfully' 
% Construct Empty matrix to save each loop results 
 MEDresult=zeros(15,5); 
 numreturn=10; 

  
for qnumber=1:15 
    if (qnumber == 1) 
      qterms=[1197  2481    2482    2648    3007    3008    5706]; 
    elseif (qnumber==2) 
      qterms=[609   610 770 1007    1008    2096    2800    2801    3294    

3295    3705    3762    4106    4107    4473 ]; 
    elseif (qnumber==3) 
      qterms=[645   646 647 1693    3114    3115    3311    3314]; 
    elseif (qnumber==4) 
      qterms=[5404  5405    1208    1210    3114    3115    645 647 646 

3484    3483]; 
    elseif (qnumber==5) 
      qterms=[1190  1998    1993    79  82  3925    3924    3923    3926    

529 530 3541    3029    3028    2030    2031    2029 ]; 
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     elseif (qnumber==6) 
      qterms=[5694  4797    1293    1294    3604    426 338 337 4462]; 
    elseif (qnumber==7) 
      qterms=[4323  2357    4718    4719    3154    3153    1440    1437    

1439    3837    1672    5104    5105    5529    1761    282 283 284 3840    

5355    5354    5293    4644    4314    4315 ]; 
    elseif (qnumber==8) 
      qterms=[1660  1665    1607    1608    615 616 617 3202    294 295 

4974    4975    1660    4873    4874    786 ]; 
    elseif (qnumber==9) 
      qterms=[2689  2690    2545    2546    2357    5208    5209    3501    

2350    2757    2707    2705    1523    1524 ]; 
     elseif (qnumber==10) 
      qterms=[3483  3484    2604    2588    2603    2602  ]; 
    elseif (qnumber==11) 
      qterms=[609   5633    5632    5054    2481    2482    637 4208    

4209    3483    3484 ]; 
    elseif (qnumber==12) 
      qterms=[1660  1665    506 5262    3117    1811    4443    4500    

3013    3012 ]; 
    elseif (qnumber==13) 
      qterms=[514   5139    3872    2204    2203    4433    5454    5453]; 
     elseif (qnumber==14) 
      qterms=[4500  252 987 5522    1665    1660    5054    5053    1025    

5324    5329    2928    2929    1523    1524    3493    3492    5246    

4769    4768    4066    4065    2800  ]; 
    elseif (qnumber==15) 
      qterms=[2457  2384    5735    5736    341 342 3234    421 2219    

5246    185 186 2800 ]; 
    end   
  q=zeros(m,1); 
  for i=1:size(qterms,2) 
    q(qterms(i))=1; 
  end   
% query processing time 
  tic=cputime; 
% Document relevance calculation 
normq=norm(q,2);  
for j=1:n 
  rowiofV=V(j,:); 
  s=S*(rowiofV)'; 
  angle(j)=(s'*(U'*q))/(norm(s,2)*normq); 
end 
calcanglestime=cputime-tic; 
[sortedangle,index]=sort(angle); 

  
% MEDLINE data      
     if qnumber==1 
       % MED query 1 
       reldocs=[13  14  15  72  79  138 142 164 165 166 167 168 169 170 

171 ... 
           172  180 181 182 183 184 185 186 211 212 499 500 501 502 503 

504 ... 
           506  507 508 510 511 513]; 
       kset=ismember(index(n:-1:n-numreturn+1),reldocs); 
       precision=sum(kset)/numreturn; 
     elseif qnumber==2 
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       % MED query 2 
       reldocs=[80  90  162 187 236 237 258 289 290 292 293 294 296 300 

301 ... 
           303]; 
       kset=ismember(index(n:-1:n-numreturn+1),reldocs); 
       precision=sum(kset)/numreturn;    
     elseif qnumber==3 
       % MED query 3 
       reldocs=[59  62  67  69  70  71  73  78  81  160 163 230 231 232 

233 ... 
           234  276 277 279 282 283 287]; 
        kset=ismember(index(n:-1:n-numreturn+1),reldocs); 
       precision=sum(kset)/numreturn; 
     elseif qnumber==4 
       % MED query 4 
       reldocs=[93  94  96  141 173 174 175 176 177 178 207 208 209 210 

259 ... 
           396  397 399 400 404 405 406 408]; 
        kset=ismember(index(n:-1:n-numreturn+1),reldocs); 
       precision=sum(kset)/numreturn; 
     elseif qnumber==5 
       % MED query 5 
       reldocs=[1   2   4   5   6   7   8   9   10  11  12  158 159 188 

304 ... 
           305  306 307 325 326 327 329 330 331 332 333]; 
        kset=ismember(index(n:-1:n-numreturn+1),reldocs); 
       precision=sum(kset)/numreturn; 
     elseif qnumber==6 
       % MED query 6 
       reldocs=[112 115 116 118 122 238 239 242 260 309 320 321 323]; 
        kset=ismember(index(n:-1:n-numreturn+1),reldocs); 
       precision=sum(kset)/numreturn; 
     elseif qnumber==7 
       % MED query 7 
       reldocs=[92  121 189 247 261 382 385 386 387 388 389 390 391 392 

393]; 
       kset=ismember(index(n:-1:n-numreturn+1),reldocs); 
       precision=sum(kset)/numreturn;  
     elseif qnumber==8 
       % MED query 8 
       reldocs=[52  60  61  123 190 251 262 263 264 265 266]; 
        kset=ismember(index(n:-1:n-numreturn+1),reldocs); 
       precision=sum(kset)/numreturn; 
     elseif qnumber==8 
       % MED query 9 
       reldocs=[30  31  53  56  57  64  83  84  89  124 125 126 192 252 

253 ... 
           267  268 269 270 271 272 273 409 412 415 420 421 422]; 
        kset=ismember(index(n:-1:n-numreturn+1),reldocs); 
       precision=sum(kset)/numreturn; 
     elseif qnumber==10 
       % MED query 10 
       reldocs=[54  55  58  152 153 154 155 254 255 256 257 529 531 532 

533 ... 
           534  535 537 538 539 540 541 542 543]; 
        kset=ismember(index(n:-1:n-numreturn+1),reldocs); 
       precision=sum(kset)/numreturn; 
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     elseif qnumber==11 
       % MED query 11 
       reldocs=[32  63  66  148 150 225 226 228 229 440 441 444 445 446 

447 ... 
           448  451 452]; 
        kset=ismember(index(n:-1:n-numreturn+1),reldocs); 
       precision=sum(kset)/numreturn; 
     elseif qnumber==12 
       % MED query 12 
       reldocs=[16  17  19  20  193 364 365 366 367]; 
        kset=ismember(index(n:-1:n-numreturn+1),reldocs); 
       precision=sum(kset)/numreturn; 
     elseif qnumber==13 
       % MED query 13 
       reldocs=[21  22  143 144 145 146 194 195 196 197 198 199 470 471 

474 ... 
           475  477 478 479 481 483]; 
        kset=ismember(index(n:-1:n-numreturn+1),reldocs); 
       precision=sum(kset)/numreturn;  
     elseif qnumber==14 
       % MED query 14 
       reldocs=[23  24  25  26  28  29  454 455 456 457 459 461 463 466 

467 ... 
           468]; 
        kset=ismember(index(n:-1:n-numreturn+1),reldocs); 
       precision=sum(kset)/numreturn; 
    elseif qnumber==15 
       % MED query 15 
       reldocs=[33  34  101 102 104 105 107 109 110 140 215 216 218 219 

220 ... 
           222  349 350 351 352 353 355 356 357 358 359 361 362 363]; 
       kset=ismember(index(n:-1:n-numreturn+1),reldocs); 
       precision=sum(kset)/numreturn; 
     end 
     % performance measure calculation 
     precision=(sum(kset)/numreturn); 
     recall=(sum(kset)/(size(reldocs,2))); 
     asl=sum(find(kset==1))/size(reldocs,2); 
     relrelevance= ((sum(kset.*sortedangle(n:-1:n   

numreturn+1)))/sqrt(sum(kset))*sqrt(sum(sortedangle(n:-1:n-

numreturn+1)))); 
     calcanglestime=calcanglestime; 

      
   % Display Query Number 
     Query=qnumber, 
   % Display Query Performance  
     QueryPerf=[precision,recall,asl,relrelevance,calcanglestime], 
      MEDresult(qnumber,1) = precision; 
      MEDresult(qnumber,2) = recall; 
      MEDresult(qnumber,3) = asl; 
      MEDresult(qnumber,4) = relrelevance; 
      MEDresult(qnumber,5) = calcanglestime; 
end  
    '1)Precision 2)Recall 3)ASL 4)Relative Relevance  5)Time' 
      MEDresult, 
    % Show Average Performance measure result for selected K value 
      Averageprecision=(mean(MEDresult(1:15,1))), 
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      Averagerecall=(mean(MEDresult(1:15,2))), 
      Averageasl=(mean(MEDresult(1:15,3))), 
      Averagerelrelevance=(mean(MEDresult(1:15,4))), 
      Averagetime=(mean(MEDresult(1:15,5))), 
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APPENDIX D: INFORMED CONSENT AND QUESTIONNAIRE 
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Informed Consent  

Researchers at the University of Central Florida (UCF) study many topics.  To do this we 
need the help of people who agree to take part in a research study.  You are being invited to 
take part in a research study which will include about four subject matter experts.  You can 
ask questions about the research.  You can read this form and agree to take part right now, 
or take the form home with you to study before you decide.  You will be told if any new 
information is learned which may affect your willingness to continue taking part in this 
study.  You have been asked to take part in this research study because you are a researcher 
in the field of Optimization or Information Retrieval. You must be 18 years of age or older 
to be included in the research study and sign this form.   

 

The person doing this research is Tareq Ahram, a PhD candidate in the Industrial 
Engineering Department at the University of Central Florida. Because the researcher is a 
PhD student he is being guided by Dr. Pamela McCauley-Bush, a UCF faculty supervisor in 
the department of Industrial Engineering. 

 

Study title: The Multi-criteria Decision Weighted model to enhance information 

retrieval and search engines performance. 

 
Purpose of the research study:  The purpose of this study is to participate as a Subject 
Matter Expert (SME) to decide on information retrieval priorities for The Multi-criteria 
Decision Weighted model designed to enhance information retrieval and search engines 
performance.  
 
What you will be asked to do in the study: After reading the consent form, you will be 
presented with short questions to complete electronically. As you work through the list of 
questions you will select the answers that best represent your preference and priorities.  
 

Voluntary participation:  You have been selected to participate in this study as one of 
four participants with expertise in the Information retrieval and decision analysis research. 
You should take part in this study only because you want to.  There is no penalty for not 
taking part, and you will not lose any benefits. You have the right to stop at any time.  Just 
tell the researcher or a member of the research team that you want to stop. You will be told 
if any new information is learned which may affect your willingness to continue taking part 
in this study.   

Location:  Study will be conducted by e-mail 

 

Time required:  This study will take approximately (10) minutes to complete. 

 

Risks:  There are no expected risks for taking part in this study.  You do not have to answer 
every question or complete every task. You will not lose any benefits if you skip questions 
or tasks.  You do not have to answer any questions that make you feel uncomfortable. 
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Benefits:   

As a research participant you will not benefit directly from this research, besides learning 
more about how research is conducted.  

 

Compensation or payment:   

There is no compensation or other payment to you for taking part in this study.  

 

Confidentiality: Your identity will be kept confidential.  The researcher will make every effort 
to prevent anyone who is not on the research team from knowing that you gave us 
information, or what that information is.  For example, your name will be kept separate from 
the information you give, and these two things will be stored in different places. 

Your information will be assigned a code number.  The list connecting your name to this 
number will be kept in a locked file cabinet.  When the study is done and the data have been 
analyzed, the list will be destroyed.  Your information will be combined with information 
from other people who took part in this study.  When the researcher writes about this study 
to share what was learned with other researchers, He will write about this combined 
information. Your name will not be used in any report, so people will not know how you 
answered or what you did.  

There are times when the researcher may have to show your information to other people.  
For example, the researcher may have to show your identity to people who check to be sure 
the research was done right.  These may be people from the University of Central Florida or 
state, federal or local agencies. 

  

Study contact for questions about the study or to report a problem:    

Tareq Ahram, Graduate Student, Industrial Engineering & Mgmt. Systems , College of 
Engineering and Computer Science, (407) 823-0608 or by email at tahram@mail.ucf.edu or 
Dr. Pamela McCauley-Bush, Faculty Supervisor, Department of Industrial Engineering & 
Mgmt. Systems at (407) 823-6092, by email at mbush@mail.ucf.edu.  

 

IRB contact about your rights in the study or to report a complaint:    Research at the 
University of Central Florida involving human participants is carried out under the oversight 
of the Institutional Review Board (UCF IRB).  For information about the rights of people 
who take part in research, please contact: Institutional Review Board, University of Central 
Florida, Office of Research & Commercialization, 12201 Research Parkway, Suite 501, 
Orlando, FL 32826-3246 or by telephone at (407) 823-2901. 

If you are harmed because you take part in this study: If you believe you have been injured during 
participation in this research project, you may file a claim with UCF Environmental Health & Safety, Risk and 
Insurance Office, P.O. Box 163500, Orlando, FL 32816-3500 (407) 823-6300.  The University of Central 
Florida is an agency of the State of Florida for purposes of sovereign immunity and the university’s and the 
state’s liability for personal injury or property damage is extremely limited under Florida law. Accordingly, the 
university’s and the state’s ability to compensate you for any personal injury or property damage suffered 
during this research project is very limited.   
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How to return this consent form to the researcher:  Please write down your name and 
check all boxes that apply and return this consent form by email.   
 

□ I have read the procedure described above   

□ I voluntarily agree to take part in the procedure   

□ I am at least 18 years of age or older         

 

___________________________          __________________________       ________ 
Signature of participant                           Printed name of participant                   Date 

 

____________________________________ ____________ 

Principal Investigator  Date 
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Study title: 
The Multi-criteria Decision Weighted model to enhance information retrieval and 

search engines performance. 

 
Study Description: Information retrieval today is much more challenging than traditional 
small document collection information retrieval systems. In this study, we focus on 
evaluating and testing a novel multi-criteria decision weighted model created to enhance 
information retrieval and search engines performance based on customized user priorities. 
Below is a brief description of each factor we would like to study:  
 

 Precision: is the Proportion of relevant documents in the retrieved results to all 
returned results (relevant and non relevant). 

 Recall: is the Proportion or relevant documents in the retrieved collection to the total 
number of relevant documents.  

 Relevance: Documents relevancy (similarity) to search query in the retrieved 
results.  

 Search Length: Expected position of a relevant document in returned results (How 
long are you willing to look into returned search result pages till you find relevant 
documents). 

 Query Processing time: Time to process queries and return search results.  
 
Based on your personal preferences and experience using web search engines (e.g. 

Google and Yahoo!).   Please select the answer(s) which best match your priorities:  
 
Please rate the relative importance of Precision with other factors:  
1) Precision has______________________ Recall.  
 

 
 

2) Precision has______________________ Relevance. 

 
 

3) Precision has______________________ Search length. 
 

 
 

4) Precision has______________________ Processing time. 
 

 
 
Please rate the relative importance of Recall with other factors:  
5) Recall has______________________ Relevance.  
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6) Recall has______________________ Search Length.  
 

 
7) Recall has______________________ Processing time.  
 

 
 
Please rate the relative importance of Search length with other factors:  
8) Search length has______________________ Relevance.  
 

 
 

9) Search length has______________________ Processing Time.  
 

 
 
Please rate the relative importance of Relevance with other factors: 
10) Relevance has ______________________ Processing Time.  
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APPENDIX E: AHP ANALYSIS FOR SUBJECT MATTER EXPERT’S 

RESPONSES 
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                     Table: Subject Matter Experts Responses to questionnaire 

             

Question# SME#1 SME#2 SME#3 SME#4 

1 3 4 6 6 
2 4 3 4 4 
3 2 4 4 4 
4 4 5 7 5 
5 7 4 3 4 
6 6 5 5 4 
7 4 3 5 3 
8 6 5 2 5 
9 7 5 5 4 
10 7 7 6 4 

 

Table: AHP analysis for SME performance measures ranking 

 
 

Table: AHP performance measures priorities 
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APPENDIX F: AVERAGE STANDARD ESTIMATOR RESULTS 
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Figure: Performance measures plot for a range of dimensions using ASE standard 
deviation factor in MEDLINE 
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Figure: Performance measures plot for a range of ASE standard deviation factor in 
MEDLINE 
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