
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2004-2019 

2012 

Systems Analysis For Urban Water Infrastructure Expansion With Systems Analysis For Urban Water Infrastructure Expansion With 

Global Change Impact Under Uncertainties Global Change Impact Under Uncertainties 

Cheng Qi 
University of Central Florida 

 Part of the Industrial Engineering Commons 

Find similar works at: https://stars.library.ucf.edu/etd 

University of Central Florida Libraries http://library.ucf.edu 

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted 

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 

Qi, Cheng, "Systems Analysis For Urban Water Infrastructure Expansion With Global Change Impact Under 

Uncertainties" (2012). Electronic Theses and Dissertations, 2004-2019. 2480. 

https://stars.library.ucf.edu/etd/2480 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/307?utm_source=stars.library.ucf.edu%2Fetd%2F2480&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/2480?utm_source=stars.library.ucf.edu%2Fetd%2F2480&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


 
 

 

SYSTEMS ANALYSIS FOR URBAN WATER INFRASTRUCTURE 

EXPANSION WITH GLOBAL CHANGE IMPACT UNDER 

UNCERTAINTIES 

 

 

 

 

 

 

 
by 
 
 

CHENG  QI 
M.S. University of Warwick, 2005 

B.S. Shanghai Jiao Tong University, 2003 
 

 
 

A dissertation submitted in partial fulfillment of the requirements 
for the degree of Doctor of Philosophy in Modeling and Simulation 

in the Department of Industrial Engineering and Management Systems 
in the College of Engineering and Computer Science 

at the University of Central Florida 
Orlando, Florida 

 
 
 
 
 
 

Summer Term 
2012 

 
 
 
 

Major Professor: Ni-Bin Chang 
 

 



 ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

©2012 Cheng Qi 
 



 iii 

ABSTRACT 

Over the past decades, cost-effectiveness principle or cost-benefit analysis has been 

employed oftentimes as a typical assessment tool for the expansion of drinking water utility.  

With changing public awareness of the inherent linkages between climate change, population 

growth and economic development, the addition of global change impact in the assessment 

regime has altered the landscape of traditional evaluation matrix.  Nowadays, urban drinking 

water infrastructure requires careful long-term expansion planning to reduce the risk from global 

change impact with respect to greenhouse gas (GHG) emissions, economic boom and recession, 

as well as water demand variation associated with population growth and migration.  Meanwhile, 

accurate prediction of municipal water demand is critically important to water utility in a fast 

growing urban region for the purpose of drinking water system planning, design and water utility 

asset management.  A system analysis under global change impact due to the population 

dynamics, water resources conservation, and environmental management policies should be 

carried out to search for sustainable solutions temporally and spatially with different scales under 

uncertainties.  This study is aimed to develop an innovative, interdisciplinary, and insightful 

modeling framework to deal with global change issues as a whole based on a real-world drinking 

water infrastructure system expansion program in Manatee County, Florida.  Four intertwined 

components within the drinking water infrastructure system planning were investigated and 

integrated, which consists of water demand analysis, GHG emission potential, system 

optimization for infrastructure expansion, and nested minimax-regret (NMMR) decision analysis 

under uncertainties.  In the water demand analysis, a new system dynamics model was developed 

to reflect the intrinsic relationship between water demand and changing socioeconomic 
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environment.  This system dynamics model is based on a coupled modeling structure that takes 

the interactions among economic and social dimensions into account offering a satisfactory 

platform.  In the evaluation of GHG emission potential, a life cycle assessment (LCA) is 

conducted to estimate the carbon footprint for all expansion alternatives for water supply.  The 

result of this LCA study provides an extra dimension for decision makers to extract more 

effective adaptation strategies.  Both water demand forecasting and GHG emission potential 

were deemed as the input information for system optimization when all alternatives are taken 

into account simultaneously. In the system optimization for infrastructure expansion, a 

multiobjective optimization model was formulated for providing the multitemporal optimal 

facility expansion strategies.  With the aid of a multi-stage planning methodology over the 

partitioned time horizon, such a systems analysis has resulted in a full-scale screening and 

sequencing with respect to multiple competing objectives across a suite of management 

strategies.  In the decision analysis under uncertainty, such a system optimization model was 

further developed as a unique NMMR programming model due to the uncertainties imposed by 

the real-world problem.  The proposed NMMR algorithm was successfully applied for solving 

the real-world problem with a limited scale for the purpose of demonstration. 

 

 
Key Word: nested minimax regret (NMMR), multiobjective interval linear programming, life 

cycle assessment (LCA), carbon footprint analysis, water demand, system 
dynamics modeling, system analysis 
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1 CHAPTER ONE: INTRODUCTION 

1.1 Background 

Global change impact including climate change, population growth and economic 

development are universally recognized. In the past few years, drought impacts affecting big 

metropolitan water supplies alone have plagued Maryland and the Chesapeake Bay in 2001 

through 2002, Lake Mead in Las Vegas in 2000 through 2004, the Peace River and Lake 

Okeechobee in South Florida in 2006, and Lake Lanier in Atlanta in 2007 that especially affected 

the water resources distribution in three states - Alabama, Florida, and Georgia.  In February 

2008, eight major US water agencies united to form the Water Utility Climate Alliance, 

acknowledging that plans for future investment in water infrastructure must be made to 

accommodate climate change projections (SFPUC, 2008).  On March 28, 2008, Doyle Rice 

reported in USA TODAY that the historic drought that has gripped much of the southeastern US 

has eased in recent weeks, according to the most recent US Drought Monitor release.  However, 

the region is not out of the woods yet, with the peak water usage season just ahead.  Most 

recently, on May 13, 2008, the US Drought Monitor (see Figure 1-1) showed that about 18% of 

the Southeast remains either in severe or extreme drought.  Although there currently is no 

immediate public health threat posed by the Southeastern drought, it does pose significant 

challenges to policy makers and utility companies to maintain an adequate supply of potable 

water in the future. 
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source: National Drought 

Figure 1-1 U.S. Drought Monitor for May 13, 2008 

The planning of water resources systems is associated with various objectives with 

complicated supply-demand conflicts (Luo et al., 2003).  Urban water supply systems typically 

require the construction of impoundments (storage reservoirs) to be able to meet demand during 

periods of low river flow such as drought as well as population growth and migration.  The 

proper management of these water supply systems will need to understand both the 

environmental (e.g., climate factors) and human (e.g., population and economic factors) 

dimensions of global change to identify the potential impact on water supply and demand.  Water 

consumption estimates are typically based on population projections and anticipated economic 

growth.  As a consequence of climate change, population growth and economic development, 

additional sources water supplies from stormwater reuse, to wastewater reclamation, to permit 

exchange with other sectors, to more surface water impoundments, and to aquifer storage and 

recovery (ASR) will eventually become essential via an either centralized or decentralized 

approach, or even both.  Effective and adaptive management strategies through the use of the 
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systems engineering approach may be needed to handle the level of sophistication and meet the 

requirements of global change impact under the framework of total quality management (TQM). 

The Manatee County, Florida, is located in the Southern Water Use Caution Area 

(SWUCA) due to the depletion of the Upper Floridian Aquifer and its entire western portion of 

the County is designated as part of the Most Impacted Area (MIA) within the Eastern Tampa 

Bay Water Use Caution Area (WUCA) relative to the SWUCA.  WUCA is defined by Southwest 

Florida Water Management District (SWFWMD) as the area where excess water withdrawals 

from Floridian aquifer are concerned.  Yet, with the population growth and economic 

development, Manatee County have experienced water demand shortage and the county is forced 

to find alternative sustainable solutions to meet changing water demand and to minimize the total 

system costs and environmental impacts at the same time.  Due to its complexity, the water 

supply system in Manatee County turns out to be a good study area for demonstration. 

1.2 Study Framework 

This study focuses on the water supply systems in Manatee County, Florida, USA. 

Manatee County water supply facilities work plan (i.e., the work plan hereafter) released in 2008  

(Board of Country Commissioner, 2008) describes the study area, the water supply and demand, 

and its relationships of water supply with neighboring counties.  The following description in 

section 1.2 was adapted from the report for an overview. 

1.2.1 Brief Introduction 

Manatee County is located in the SWUCA, including Polk, Hardee, Manatee, 

Hillsborough, Desoto, and Sarasota counties, within the area of Upper Floridian Aquifer which is 

being depleted rapidly (Board of Country Commissioners, 2008).  The western portion of the 

County is designated as the MIA, a part of the Eastern Tampa Bay Water Use Caution Area 
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(Eastern Tampa Bay WUCA) relative to the SWUCA (see Figure 1-2).  According to the work 

plan, the County has experienced large residential and tourist population growth and this trend is 

predicted to continue.  For the anticipated future, water supply capacity may become insufficient 

to fulfill the rapidly increasing water demand.  It is essential to study the adaptive management 

strategies from new facility construction to alternative water source development for the future 

demand-supply conditions while contributing the minimal impacts to the global climate change. 

 

Figure 1-2 The location of study area 

1.2.2 Current Water Supply And Existing Facilities 

Current water supply sources consist of both surface water and ground water sources.  

Surface water sources come form Lake Manatee, a man-made reservoir on the Manatee River.  It 

allows a 132,110.9 m3d-1 (34.9 million gallons per day) permitted annual average withdrawal.  

Current ground water sources come from two wellfields: East County Wellfield I (ECWF-1) and 

the Mosaic Phosphate Wellfield (MPWF).  ECWF-1 permits 60,513.6 m3d-1 (15.986 million 

gallons per day) average annual withdrawals and MPWF permits 7,419.4 m3d-1 (1.96 million 

gallons per day) average annual withdrawals.  A total capacity of 200,043.9 m3 d-1 (52.8 million 
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gallons per day) is available from current water supply sources.  There is one water treatment 

plant (WTP) next to Lake Manatee and three wastewater treatment plant (WWTP) located over 

the County.  The maximum-day operating capacity of the WTP is 317,974.6 m3d-1 (84 million 

gallons per day) among which 204,412.2 m3d-1 (54 million gallons per day) is for surface water 

treatment and 113,562.4 m3d-1 (30 million gallons per day) is for ground water treatment.  

Located next to the Lake Manatee WTP, there are Aquifer Storage and Recovery (ASR) wells 

which are used to inject treated potable water into the Florida Aquifer for storage and withdraw 

the water back when the surface water source is lost during drought seasons.  ASR wells have 

been in operation at the Lake Manatee WTP since 1986 for buffering during periods of low 

demand and high surface water flow.  The ASR wells are permitted to maintain up to 

11,356,235.3 m3 (3 billion gallons) in storage with a combined capacity of 37,854.1 m3d-1 (10 

million gallons per day).   Figure 1-2 shows the location of Lake Manatee WTP, the ASR Wells, 

Lake Manatee surface water and the two wellfields.  Recently, Manatee County has completed 

the Manatee Agricultural Reuse Supply (MARS) system to distribute reclaimed water to 

agriculture users and other users who currently pump water from the Florida Aquifer for 

irrigation purposes.  The saved ground water use credits thus become the net benefits that can be 

used for future potable water sources. 

1.2.3 Water Demand 

Principal customers of Manatee County water supply are retail customers, significant 

users, and wholesale customers.  Significant users refer to those customers with water 

demand >94.635 m3d-1, while retail customers are mostly composed of residential water users.  

The significant users accounted for approximately 8782.2 m3d-1 water consumption in 2006.  

Wholesale customers include the cities of Bradenton, Palmetto, Longboat Key, and some regions 
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in Sarasota County to the south.  The water demand to wholesale customers is predictable 

because of the prescribed contracts and supply agreements.  The current agreement with city of 

Bradenton and town of Longboat Key will remain effective through 2030 and the water demands 

for these two customers are relatively stable at 1892.7 m3d-1 (0.5 million gallons per day) and 

9463.5 m3d-1 (2.5 million gallons per day), respectively.  The contract with city of Palmetto 

expires on September 30, 2019 and is expected to be renewed until September, 2029.  After that, 

a new contract is assumed to be ratified.  The agreement for supplying portable water for city of 

Palmetto is gradually increasing based on each five-year basis.  Current agreement with Sarasota 

Country will expire after 2020.  According to the agreement, the water supplying to Sarasota 

Country will gradually decreasing based on each five-year basis.  Table 1-1 lists the detailed 

amount of water demand for wholesale customers based on annual average flows in m3 per day.  

Reserve capacities available to wholesale users are consistent over time as set forth in fixed 

agreements. 

Table 1-1 Water demand projections for wholesale customers in terms of annual average flows 
(Board of Country Commissioner, 2008) 

Wholesale Customers 2006 2010 2015 2020 2025 2030 

City of Bradenton 1,892.7 1,892.7 1,892.7 1,892.7 1,892.7 1,892.7 
City of Palmetto 7,570.8 7,570.8 9,463.5 10,409.9 11,356.2 12,113.3 

Town of Longboat Key 9,463.5 9,463.5 9,463.5 9,463.5 9,463.5 9,463.5 
Sarasota County 37,854.1 30,283.3 22,712.5 18,927.1 0 0 

Unit: m3d-1  

Water demand to retail customers and significant users in the future is generally unknown 

and not easy to predict because of the natural of uncertainty existed in the system.  The Manatee 

County Planning Department developed detailed population projections, in which adequate 

historical data of population was required.  Future water supply needs is determined based on 

water usage per capita basis so that the anticipated increase in population will result in an 
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increase in water demand within the Manatee County Utility Department (MCUD) service area.  

The data for water usage per capita is determined by either arbitrarily setting from target service 

level (maximum per capita potable water usage) or historical data.  Table 1-2 lists the detailed 

amount of water demand for retail customers and significant users.  Thus, the municipal water 

demand for MCUD is determined by adding the demand of all its users. 

Table 1-2 Water demand projections for retail and significant users in terms of annual average 
flows (Board of Country Commissioner, 2008) 

Customers 2006 2010 2015 2020 2025 2030 

Retail customers 115,455.1 115,303,6 132,186.6 149,864.5 168,299.4 187,605.0 
Significant customers 8,782.2 14,346.7 16,466.5 18,662.1 20,933.3 23,356.0 

Unit: m3d-1  

The county-wide water demand in 2006 was 181,018.4 m3d-1 (47.82 million gallons per 

day), including 115,455.1 m3d-1 (30.5 million gallons per day) for domestic water usage, 

65,563.3 m3d-1 (17.32 million gallons per day) for wholesale customers and significant users.  Wi 

It is projected (Board of Country Commissioner, 2008) that the yearly average portable water 

demand will increase to an estimated 234,317.0 m3d-1 (61.93 million gallons per day) by year 

2030 based on the projected population increase.  Currently the county has a sufficient permitted 

water supply to meet the projected water demand by in 2014.  Thus, expansion of current water 

system facilities is required to meet the year-2030 water supply goal as the supply and demand 

will likely become imbalanced by the year 2014.  The water supply shortage by the year 2030 is 

projected to be 34,447.2 m3d-1 (9.1 million gallons per day). 

1.2.4 Future Water Supply Alternatives 

MCUD identified twenty potential water supply alternatives from a combination of 

surface water and groundwater sources in order to meet the increasing water demand.  They are 
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grouped into five categories: groundwater options, surface water options, water right transfer 

options, regional water options, and other options. 

Groundwater options include building new wellfields in various locations of Manatee 

County identified as a part of the MARS projects.  Because of the MARS system with less 

groundwater for irrigation, MCUD is able to increase permitted groundwater pumping by 

allocation for potable water supply.  The MARS projects consist of four phases: MARS-I, 

MARS-II, MARS-III, and MARS-IV, among which MARS-I and MARS-II projects have been 

implemented. 

Surface water options refer to those alternatives for new or expansion of existing 

reservoirs, by which additional surface water can be diverted from rivers into the reservoirs 

during wet seasons.  Some of the surface water may be used for irrigation purposes without 

treatment at Manatee WTP.  This amount is then counted as groundwater credits for MARS-I 

expansion while the expansion of MARS-III and IV are unknown.  Groundwater credit may be 

reserved for MARS-I expansion if it can be replaced with surface water sources. 

Water right transfer options are to purchase water credits from users who own water use 

permits but no longer need them.  For example, those users may sell their land but they still own 

the water use permits.  Thus, those water use permits can be purchased as water supply sources 

and transferred for potable water delivery.  New water supply alternatives from this group may 

not be necessarily required to build additional facilities except piping and pumping costs for 

water distribution. 

The concept of regional water supply in this case study was developed by the Peace River 

Manasota Regional Water Supply Authority (PR/MRWSA), an independent special district and a 

regional water supply authority created by an interlocal agreement in 1982 under the laws of the 
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State of Florida.  The PR/MRWSA aims to integrate and better manage the water resources in 

Charlotte County, DeSoto County, Manatee County and Sarasota County so as to provide the 

region with a sufficient water supply that is reliable, sustainable and protective of the natural 

resources now and into the future.  Starting from 2014, the PR/MRWSA will begin providing 

water to Manatee County. 

The other water options include swamp restoration in Flatford Swamp located in the 

southeastern portion of Manatee County and seawater desalination.   In Flatford Swamp, the 

excess water is resulted from a significant amount of irrigation runoffs resulting in deaths for 

many trees.  Removing the excess irrigation water from the swamp is predicted to have a positive 

environmental impact by allowing hardwood trees to re-establish.   Seawater desalination is an 

option to build seawater treatment plant at Tampa Bay site and take advantage of unlimited raw 

seawater water supply.  The disadvantage of this option is the high construction, high operation 

and maintenance costs. 

Brief descriptions of the twenty future water supply alternatives are grouped and 

summarized in Table 1-3.  More detailed information about each of the twenty options can be 

found in Manatee County water supply facilities work plan released in 2008 (Board of Country 

Commissioner, 2008). 

Table 1-3 The Delineation of Twenty Water Supply Expansion Alternatives in the Future 

# Name of Alternative Brief Description 
Ground Water Options 

1 MARS-I 
This option is to supply new groundwater by developing a new 
wellfield in central Duette Park area near the existing ECWF-1. 

2 MARS-II 
This option is to supply new groundwater by developing a new 
wellfield in Erle Road Tank site. 

3 MARS-III These options are to supply new groundwater by developing a 
new wellfield.  The location of the new wellfield has not yet been 
decided. 

4 MARS-IV 
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# Name of Alternative Brief Description 
Surface Water Options 

5 Lake Parrish Reservoir 

This option is to divert more surface water from the Little 
Manatee River in to the existing Lake Parrish Reservoir located in 
the northern part of Manatee County as a cooling pond for a 
power plant.  The increased water storage in the Lake Parrish 
Reservoir is used for irrigation purpose to obtain well credits.  
Improvements on the existing systems include upgrading 
diversion pumps and distribution pumping and piping facilities. 

6 
Dredging of Lake 
Manatee 

This option is in an attempt to increase the storage of the Lake 
Manatee Reservoir so as to increase the surface water annual 
yield from Lake Manatee.  The capital investment includes 
creation and maintenance of new reservoir and dam, wetlands 
mitigation costs, and water transmission and treatment at the 
existing water treatment plant.  This alternative may or may not 
be funded by SWFWMD. 

7 Gilley Creek Reservoir 
This option is to build a new reservoir upstream of Lake Manatee 
at the Gilley Creek location so as to yield more annual surface 
water.  This alternative may or may not be funded by SWFWMD. 

8 
North and East Fork 
Reservoir 

This option is to create an upstream impoundment at the North 
and East Fork locations to increase storage and yield available at 
the Lake Manatee intake.  The capital investment includes 
creation and maintenance of new reservoir and dam, wetlands 
mitigation costs, and water transmission and treatment at the 
existing water treatment plant.  This alternative may or may not 
be funded by SWFWMD. 

9 
Tatum Reservoir – 
Lake Manatee WTP 

This option is to develop a reservoir to store surface water 
diverted from the Myakka River located in the southeastern 
portion of Manatee County.  The stored surface water due to the 
Tatum Reservoir is used for irrigation purposes so that the well 
credits that are originally used for irrigation can be transferred for 
potable water supply.  The facilities to be built include an 
impoundment structure and distribution pumping and piping. 

Transferred Water Use Permit Options 

10 

Well Credit from 
Current Reuse 
Customers 

This option is to renegotiate with the current reclaimed water 
customers for increased reclaimed water flows in the new 
agreement term.  The cost associated with this alternative is to 
pumping to and treatment at the existing water treatment plant. 

11 

Developer Provided 
Water Use Permits 
(WUP) Transfer 

The option is to implement a policy that will require new 
farmland developers to obtain the previous landowner’s water use 
permit as a part of a land purchase.  In this way, MCUD can take 
off the burden of increasing the water supply to the new potable 
water demand of new developers. 

12 
Direct Purchased of 
WUP 

This option is to buy water use permits from permittees who are 
discontinuing farming operations instead of making new 
developers purchase the water use permit.  This alternative 
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# Name of Alternative Brief Description 
conflicts with option #11 and Manatee County wishes to forego 
the option if option #11 can be implemented. 

Regional Water Options 

13 

Peace River Water 
Treatment Facility 
Expansion 

This option is to improve the existing Pease River water treatment 
facility in Desoto County by construction of a new 6.0 billion 
gallon reservoir and expansion water treatment facility’s 
production capacity from 12 to 24 and finally to 48 million 
gallons per day. 

14 Shell Creek Restoration 

This option is based on improvements on the existing Shell Creek 
water system by restoration and enhancement of natural water 
storage areas.  This alternative is for potable water supply to the 
City of Punta Gorda and the region.  An environment benefit is 
identified for this alternative due to restoration of natural 
conditions. 

15 

Dona Bay/Cow Pen 
Slough Restoration 
(Option A) 

This option is to build a surface new water supply system located 
within Sarasota County.  Dona Bay option A is a two-phase 
project.  The first phase is to build a new reservoir and a new 
water treatment plant at the Dona Bay site and the second phase is 
to expand the size and capacity of the reservoir and the water 
treatment plant. 

16 

Dona Bay/Cow Pen 
Slough Restoration 
(Option B) 

This option is to build a new surface water supply system located 
within Sarasota County.  Dona Bay option B is a single phase 
project.  This alternative conflicts with option #15. 

17 
Flatford Swamp 
Restoration 

This option is to build a new water supply system at Flatford 
Swamp area located in the southeastern portion of Manatee 
County.  The water source comes from the excess irrigation run-
off in Flatford Swamp which causes widespread tree mortality.  
This alternative conflicts with options #18 and #19. 

Other Options 

18 

Flatford Swamp – 
Stored and Treated at 
Tatum Reservoir 

This option is to pump the surplus water stored in the Flatford 
Swamp which is located in southeastern portion of Manatee 
County immediately north of Myakka City to the Tatum 
Reservoir for storage and to build a new water treatment plant to 
treat the water to potable water standards at the Tatum Reservoir 
site.  This alternative conflicts with options #9, #17 and #19.  This 
alternative may or may not be funded by SWFWMD. 

19 

Flatford Swamp 
supplemented with 
Diversion from the 
Myakka River – Stored 
and Treated at Tatum 
Reservoir 

This option is similar to option #18.  The difference is that this 
option will divert seasonal surface water from the Myakka River 
to supplement the Flatford Swamp irrigation runoff.  Diversion 
structure, pumping facilities and additional capacity of the new 
water treatment plant will be needed.  This alternative conflicts 
with option #9, #17 and #18.  This alternative may or may not be 
funded by SWFWMD. 

20 Seawater Desalination 
This option is to treat seawater to potable water standards.  New 
seawater desalination facilities at the Port Manatee site need to be 
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# Name of Alternative Brief Description 
built.  High operation and maintenance costs may be experienced.  
But potential price reduction equipments and funding from 
SWFWMD may make this alternative a competitive one. 
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Figure 1-3 Locations of the twenty potential water supply alternatives 

The symbolic diagram in Figure 1-3 the locations of all the twenty potential water supply 

alternatives for the convenience of discussion of optimal expansion strategies.  Among them, 

locations of alternatives 10, 11 and 12 are shown there only for the purposes of illustration 

because these three alternatives are not required to build any physical facilities.  Some of the 

abovementioned twenty alternatives may be eligible for SWFWMD funding; this potentially 

lowers their capital investments and hence, decreases the unit cost of finished potable water.  

However, the SWFWMD funding is not guaranteed even if all required criteria are met, for 

which uncertainty does exist.  In our modeling analysis, we used the highest (conservative) unit 

cost in alternative evaluation following common practice of engineering feasibility analysis.  A 
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summary of the maximal water credit and unit cost for each of the 20 water supply alternatives is 

shown in Table 1-4 (Board of County Commissioner, 2008).  The maximum water credit is 

defined as the maximum permitted water withdrawal from the water supply expansion alternative.  

Unit cost, calculated as the present value for a cubic meter or a tonne (t, thereafter) of water in 

U.S. dollars of 2007, includes the amortization of the estimated initial capital investments and 

operation and maintenance (O&M) costs. 

Table 1-4 Maximum water credit and unit cost of the twenty water supply alternatives 

 1 2 3 4 5 6 7 8 9 10 

Max Water Credit 8.21 11.36 7.57 18.93 15.52 44.29 34.83 40.13 17.79 17.03 
Unit Cost 0.34 0.53 0.31 0.50 0.51 1.09 0.67 0.74 1.08 0.50 
 11 12 13 14 15 16 17 18 19 20 

Max Water Credit 0* 0* 45.42 75.71 75.71 75.71 56.78 30.28 43.15 37.85 
Unit Cost 0.53 0.60 0.30 0.51 0.76 0.62 0.72 0.61 0.55 1.07 
Max Water Credit: 1,000 m3d-1  Unit Cost: $ m-3 
Note: (*) The max water credits for alternative #10 and #11 are not available.  Thus, we set their 
value of 0 as default.  
Sources: Manatee County Water Supply Facilities Work Plan, 2008 (Board of County 
Commissioner, 2008) 

 

1.3 Research Objectives And Challenges 

The system analysis on the water system in this research framework consists of water 

demand analysis, global climate change evaluation, system optimization on water facilities 

expansion strategies and decision support under uncertainties.  Each module of the water system 

analysis is interacted with the other as it is illustrated in Figure 1-4.  This section defines the 

research objectives, questions and challenges for each module of the water system analysis (see 

Figure 1-5). 
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Figure 1-4 System analysis in water system 
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Figure 1-5 Research objectives and questions 

1.3.1 Water Demand Analysis 

The comparative plots between the historical trend of domestic water demand and 

previously estimated demand by Manatee County can be presented as the background 

information at first (Figure 1-6).  The estimated demand by Manatee County (Board of Country 
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Commissioner, 2008), which is based on the assumption of fixed value of per capita demand, is 

obviously not pleasing.  In fact, a various number of macroeconomic factors may affect the per 

capita values such as unemployment rate and average annual income.  The changing pattern of 

water demand also shows the Florida unemployment rate reflecting the most recent recession 

cycle from 2003 to 2009.  When the unemployment rate declines to the bottom in 2006 and 

continues to rise until 2009 due to the well-known sub-prime economic crisis, the water demand 

dropped sharply.  Furthermore, the annual average wage of all occupations in Florida as 

indicated by Figure 1-7 is deemed as an influential factor of water demand. It exhibits a mild 

linear increase over the study period, which shows a seemingly unrelated relationship in 

association with the sharp increase of water demand after 2004 and then the sharp drop of water 

demand after 2007.  Such an abrupt change implies other factors that impact the water demand 

mostly. Whether or not the unemployment rate and average annual income, which are deemed as 

two principal indicators of the changing macroeconomic environments, can interact with other 

socioeconomic factors and how they are going to impact the domestic water demand in Manatee 

County are the two key science questions in this study.  However, forecasting for the water 

demand is out of scope of this research due to the lack of long-term water demand data. 
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Figure 1-6 Historical domestic water demand, county estimation and unemployment rate 

 
(Source: United States Department of Labor, Bureau of Labor Statistics) 

Figure 1-7 Historical Florida mean annual wage (all occupations) 
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1.3.2 Global Climate Change Evaluation 

Over the past decades, cost-effectiveness principle or cost-benefit analysis has been 

employed oftentimes as a typical assessment tool for the expansion of drinking water utility. 

With changing public awareness of the inherent linkages between greenhouse gas (GHG) 

emissions and climate change, the addition of such a new consideration in the assessment 

regime has altered the landscape of traditional evaluation matrix.  However, the global climate 

change evaluation system for the twenty potential water alternatives is missing from the 

drinking water infrastructure system in Manatee County, Florida.  The global warming potential 

(GWP) in the entire water production stages (or the entire life cycle) should be quantified with 

respect to the level of the impacts in units of CO2 equivalents.  It is a challenge in this research 

to provide an evaluation scheme to quantify the GWP for each of the twenty water alternatives, 

especially with limited life cycle inventory (LCI) data available, in support of the decision in 

terms of carbon footprint and cost simultaneously. 

1.3.3 System Optimization For Water System Facilities Expansion Strategies 

Urban water infrastructure requires careful long-term expansion planning to reduce the 

risk from climate change during both the periods of economic boom and recession.  As part of 

the adaptation management strategies, capacity expansion in concert with other management 

alternatives responding to the population dynamics, ecological conservation, and water 

management policies should be systematically examined to balance the water supply and 

demand temporally and spatially with different scales.  Most current decision-making systems 

rely on a single attribute such as economic cost.  Yet the cost saving itself alone may not reflect 

all sustainability attributes necessary to evaluate the adequacy of competing water supply 

expansion options.  To mitigate the climate change impact, this practical implementation 
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oftentimes requires carrying out a multi-objective decision analysis by introducing economic 

efficiencies and carbon-footprint matrices at the same time.  The demonstration of the optimal 

expansion strategies for a typical water infrastructure system in Manatee County, Florida entails 

the essence of the new philosophy.  A full-scale screening and sequencing of multiple 

competing objectives across a suite of management strategies is needed in this research to cast a 

possible thrust of the expansion schedule over the next twenty years for the improvement of co-

benefits in terms of water infrastructure resilience and low life-cycle cost. 

1.3.4 Decision Under Uncertainty 

Linear programming is a classic optimization tool for decision makers to derive an 

optimal solution under the assumption of complete information.  The assumption means that all 

the coefficients and right hand sides in the linear programming model should be perfectly 

known before a decision can be made.  However, most real world problems may violate this 

assumption due to different types of reasons.  Considering the essential uncertainties existing in 

the study framework, a decision support system under uncertainties is needed.  The challenge of 

in this research is to propose a new methodology to support the decision for a multiobjective 

linear optimization model in a general form with uncertainties potentially existing anywhere in 

the model. 

1.4 Limitation Of The Research 

This research is limited by the nature of the study framework and the availability of 

information and data.  Assumptions and hypothesis are made where needed.  However, the 

methodologies proposed in this research framework are transformative and adaptive to other 

water infrastructure systems.  
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2 CHAPTER TWO: LITERATURE REVIEW 

In this section, we review the previous works and techniques that have been developed 

related to the area in my dissertation. 

2.1 Water Demand Modeling 

In the past few decades, many approaches were proposed to forecast water demand for 

both short-term and long-term purposes.  Generally, they can be grouped into five categories: the 

regression analysis, the time series analysis, the computational intelligence approach, the hybrid 

approach, and the Monte Carlo simulation approach. They are separately described as below. 

2.1.1 The Regression Analysis 

The regression analysis is based on statistical estimation of the relationship between 

water demand and explanatory variables (i.e., independent variables) such as socio-economic 

factors.  It assumes that the relationships will continue in the future.  The regression analysis 

approach can then be applied for both short-term and long-term analyses when data are available.  

For long-term water demand forecasting, the independent variables are usually population and 

global climate, whereas for short-term water demand forecasting, the independent variables are 

usually air temperature and rainfall. Some nonlinear regression models were formulated with the 

inclusion of multiplicative terms as an integral part of the econometric analysis applied for 

residential and non-residential water demand modeling (Davis, 2003).  Four types of models 

appeared in relation to econometric analysis, including average rate of use, disaggregate factors 

forecast, functional per unit, and functional population models (Davis, 2003). Table 2-1 

summarizes the development of the regression analysis.  
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Table 2-1 Water demand forecasting based on the regression analysis 

Literatures Remark 
Short 
Term 

Long 
Term 

1
9
6
0
s 

Howe and 
Linaweaver, 1967 

Models of residential water demand were structured, 
with parameters estimated from multi-city cross-
sectional data by regression analysis.  One of the major 
findings was that domestic demands were relatively 
price inelastic. 

 X 

1
9
7
0
s 

Cassuto and 
Ryan, 1979 

The study developed a regression model to forecast the 
residential elasticity of water demand using long-term 
water ฀conservation programs, revenue, and cost 
decisions as independent variables in Oakland urban 
area, California. 

 X 

Foster and 
Beattie, 1979 

The study presented a generalized model allowing for 
categorical effects due to regional and size-of-city 
differences on urban residential water demand 

 X 

1
9
8
0
s 

Hughes, 1980 The water demand functions were developed with data 
from systems varying in size from very small low 
density rural systems to Salk Lake City’s water 
system.  Price of water and outdoor use index were 
two significant independent variables for short term 
demand. 

X  

Maidment and 
Miaou, 1986 

Daily water consumption from nine cities in Florida, 
Pennsylvania and Texas were studied and a regression 
model was developed to forecast short-term response 
of daily municipal water use to rainfall and air 
temperature variations.  The overall coefficient of 
determination R

2 for the nine cities averaged 0.96 in 
Texas, 0.73 in Florida, and 0.61 in Pennsylvania. 

X  

1
9
9
0
s 

Billings and 
Agthe, 1998 

This study investigated the regression method and time 
series state space method and compared them with 
simple monthly average for short term forecasting of 
urban water demand in Tucson, Arizona. 

X  

2
0
0
0
s David, 2003 This study investigates four types of econometric 

models to identify the cumulative effect by using the 
multiplicative functions. 

X  

2
0
0
0
s 

Babel et al., 2006 A regression model was developed based on the 
multivariate econometric approach which considers 
socio-economic characteristics, climate factors and 
public water policies and strategies to forecast the 
domestic water demand. 

 X 
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2.1.2 The Time Series Analysis 

The approach of time series analysis is based on a statistical breakdown of the various 

trends that contribute to water demand over time.  A time series model may include a long-term 

trend component, a cyclical component, and a short-term variance component.   It is a direct 

forecasting method without considering other factors such as income and population that water 

demand may depend on.  The time series analysis was extensively used for short-term water 

demand forecasting in the literature.  Table 2-2 summarizes the development of the time series 

analysis. 

Table 2-2 Water demand forecasting based on the time series analysis 

Literatures Remark 
Short 
Term 

Long 
Term 

1
9
8
0
s 

Hansen and 
Narayanan, 1981 

A monthly multivariate model was proposed in this 
study for forecasting water demand.  The independent 
variables include price, average temperature, total 
precipitation, and percentage of daylight hours. 

X  

Maidment and 
Parzen, 1984 

The approach of the combination of a regression model 
and time a series analysis was applied for forecasting 
water use in six Texas cities.  In each model, a long-
term trend was analyzed by a stepwise regression 
analysis in terms of population, household income and 
water price, whereas short-term memory in connection 
with climatic correlation remains. 

X  

Maidment et al., 
1985 

A time series model of daily municipal water was 
developed using the data in Austin, Texas.  Rainfall 
and air temperature were the two independent 
variables of the model. 

X  

Franklin and 
Maidment, 1987 

The cascade modeling approach was presented to 
describe weekly water demand based on the data from 
Deerfield, Florida.  The study showed that the 
inclusion of the autocorrelation term in model 
considerably improved the forecast accuracy of the 
weekly data. 

X  

Smith, 1988 A time series model of daily municipal water use was 
developed in this study.  The time series model was 
termed as a conditional autoregressive process with 
randomly varying means which accounted for changes 

X  
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Literatures Remark 
Short 
Term 

Long 
Term 

in water use that resulted from price of water, customer 
income, and many others. 

Sastri and Valdes, 
1989 

An iterative computer algorithm that employs a model-
switching transfer function was proposed for a time 
series model which estimated water consumption with 
rainfall interventions.  The method did not need to 
assume homogeneous and covariance stationary since 
the transient dropped in the water consumption during 
rainfall season were removed from time series data. 

X  

1
9
9
0
s 

Miaou, 1990 A nonlinear monthly time series urban water demand 
model was proposed using monthly data in Austin, 
Texas.  The performance of the model was compared 
with conventional linear models.  The adjusted R2 was 
reported as 0.961. 

X  

Jowitt and Xu, 
1992 

An approach based on the time series analysis 
technique was presented. A model using a combination 
of exponentially weighted mean and autoregressive 
structures was developed to predict the daily demand. 

X  

Homwongs, 1994 An adaptive smoothing filtering approach for 
forecasting of hourly municipal water use time series 
was presented.  The seasonal time series model and 
adaptive forecasting algorithm were based on Winters’ 
exponential smoothing, recursive least squares, and 
Kalman filter.  It can capture both weekday and 
weekend cycles and produce accurate forecasts from 
1h to 24h ahead. 

X  

Molino et al., 
1996 

A time evolution model of water consumption was 
proposed in the study for prediction of short-term 
water demand.  Autoregressive moving average model 
was applied. 

X  

2
0
0
0
s 

Zhou et al., 2000 A time series model was developed in this study.  An 
autoregressive procedure was used for the short-term 
variations.  Maximum temperature, precipitation and 
evaporation were climactic variables that account for 
short-term water consumption.  Fourier series was 
employed to represent long-term seasonal cycle.  The 
model efficiency R2 was reported as 0.896. 

X X 

Zhou et al., 2002 A time series model was developed for estimation of 
water demand in 24 hours in advance.  The model 
consisted of long-term trend and short-term variations.  
The long-term cycle were expressed as a Fourier series 
and short-term variations were simulated by climatic 
regression and auto regression.  The model efficiency 
R

2 was reported as 0.75. 

X  
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Literatures Remark 
Short 
Term 

Long 
Term 

Fullerton et al., 
2004 

The study created an autoregressive moving average 
linear transfer function model to study short-term 
water consumption dynamics in El Paso, Texas.  The 
data used were monthly time series of per-meter water 
consumption, days with temperature above 90 degree 
Fahrenheit, rainfall, number of days with rainfall, 
average real price, and a proxy of income. 

X  

Aly and 
Wanakule, 2004 

A short-term forecasting of municipal water use using 
a deterministic smoothing algorithm was presented.  
Daily deviations from monthly average were 
forecasted for up to six days using autocorrelation and 
weather dependence using six years of daily data.  
Evaluation in several municipalities near Tampa, 
Florida showed that the approach provided accurate 
daily forecasts as measured. 

X  

Gato et al., 2007 The study extended the work of Maidment and Miaou, 
1986 and Zhou et al., 2000 and proposed a method to 
calculate temperature and rainfall threshold that would 
affect the water base use.  The new model was tested 
and yielded an R2 of 0.81. 

X  

Jorge, 2007 The study compared the forecast accuracy of 
individual and combined univariate time series models 
(exponential smoothing, autoregressive integrated 
moving average, and generalized autoregressive 
conditional) for base use urban water demand 
modeling for multi-step-ahead water demand 
forecasting. 

X  

Alvisi et al., 2007 A pattern based water demand forecasting model was 
proposed.  The pattern implicit the periodic component 
in the time series data and  daily and hourly demand 
forecasting module were used to fine tune the 
estimated values. 

X  

 

2.1.3 The Computational Intelligence Models 

The computational intelligence models such as artificial neural networks (ANN), fuzzy-

logic model, agent-based model, and so on are based on mathematical models that can be 

employed for the modeling of complex systems.  For example, the ANN models usually consist 

of at least three layers: input layer, output layer, and the layer in-between or hidden layer.  Some 
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complicated ANN models may contain two or more hidden layers.  Input layer represents the 

model inputs, e.g. rainfall and temperature, and output layer represents the model outputs, e.g. 

water demand.  The in-between layer connects these inputs and outputs by a set of highly 

interconnected nodes and maps the model inputs to the model outputs.  The ANN approach is 

purely data driven, using input date to capture the behavior of a process and forecast output 

values. An ANN model must be trained using a valid learning algorithm based on historical data.  

Usually, generated output values are compared with actual values and the errors are propagated 

backward throughout the ANN to adjust parameters under a supervised or an unsupervised 

training process.  The training process would continue iteratively until an acceptable error rate 

can be found.  The well trained ANN model is then to be used to perform forecasting at a 

practical level.  Table 2-3 summarizes the development of the computational intelligence models. 

Table 2-3 Water demand forecasting based on computational intelligence techniques 

Literatures Remark 
Short 
Term 

Long 
Term 

Artificial Neural Networks (ANN) 

2
0
0
0
s 

Jain et al., 2001 Two types of ANN models were developed in the 
study.  One consisted only one hidden layer and 
another one had two hidden layers.  Physical variables 
affecting the process were weekly average maximum 
air temperature and total weekly rainfall in addition to 
the water demand records in the past.  Conventional 
modeling method using regression and time serial 
analysis methods were employed for comparison with 
the ANN models.  The results showed that the ANN 
model with two hidden layers performed the best. 

X 

 

Liu et al., 2003 A three-layer ANN was designed in the study to 
process inputs consisting of water price, house income, 
and household size in order to generate water demand 
as an output in Weinan City, China.  The model 
evaluation showed that the correlation coefficients 
were more than 90% both for the training data and the 
testing data. 

X X 

Bougadis et al., 
2005 

The study investigated in cases using ANN models for 
short-term peak water demand forecasting with respect 

X  
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Literatures Remark 
Short 
Term 

Long 
Term 

to rainfall, air temperature and past water demand as 
input variables.  The study compared the results 
obtained from the ANN models with that from 
regression models and time series analysis. It showed 
that the ANN models outperformed the regression 
models and time-series models. 

Jain and Kumar, 
2006 

A hybrid neural network models for hydrologic time 
series forecasting was proposed.  The approach was a 
combination of the conventional and ANN techniques.  
The results showed that combining the strengths of the 
conventional and ANN techniques provided a robust 
modeling framework capable of capturing the non-
linear nature of the complex time series and thus 
produces more accurate forecasts. 

X 

 

Msiza et al., 2007 Artificial neural networks for forecasting both short- 
and long-term water demand in the Gauteng Province, 
in the Republic of South Africa were investigated.  
Two types of neural network architectures, the multi-
layer perception (MLP) and the radial basis function 
(RBF), were used in the study.  It was observed that 
the RBF converges to a solution faster than the MLP 

X X 

Ghiassi et al., 
2008 

The study presented a dynamic architecture for 
artificial neural networks that was different from 
traditional back propagation architecture for 
forecasting urban water demand.  It reduced the 
number of parameters required for model creation and 
it performed uniformly better than the traditional ANN 
and auto-regressive integrated moving average method 
across all time horizons. 

X X 

Cutore et al., 
2008 

A novel application of the Shuffled Complex 
Evolution Metropolis algorithm (SCEM-UA) for the 
calibration of an urban water consumption prediction 
model a daily time scale was proposed.  SCEM-UA 
algorithm was used calibrate the parameters of an 
ANN model leading to determine the associated 
parameter and model prediction uncertainties.  A 
comparable predictive capability was obtained 
compared to the models with classic, deterministic 
calibration techniques. 

X 

 

Yurdusev et al., 
2009 

Applicability of feed-forward and radial-basis neural 
networks for monthly water consumption prediction 
from several socio-economic and climatic factors 
affecting water use was investigated.  The results 
indicated that feed-forward and radial methods could 

X  
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Literatures Remark 
Short 
Term 

Long 
Term 

be applied successfully for monthly water consumption 
prediction. 

Fuzzy Logic Approach 

2
0
0
0
s 

Altunkaynak et 
al., 2005 

A fuzzy forecasting model was presented as a function 
of three consecutive antecedent water consumption 
amounts in this study for predicting future monthly 
water demand in Istanbul City using Takagi Sugeno 
fuzzy method.  Being different from regression models 
and time series analysis methods, this method did not 
need to assume linearity, normality and independence 
of residuals. 

X  

Agent-based Approach 

2
0
0
0
s 

Athanasiadis et 
al., 2005 

The method assigned agents to be water consumers 
and water-pricing policies makers.  With social 
interactions between agents through an influence 
diffusion mechanism, communication between agents 
was implemented.  It estimated the water demand in 
terms of price policies. 

X X 

 

2.1.4 The Hybrid Approach 

The hybrid approach is an integrated approach using a few models together to develop 

synergistic advantages. They can be generally classified as pattern recognition approach, neural-

fuzzy approach and the M5 model tree approach.  Some advances are reported in the literature in 

2000s.  Table 2-4 summarizes the hybrid approach. 

2.1.5 The Monte Carlo Simulation Approach 

Other forecasting models include per-capita-based approach and systems dynamics 

model can be characterized together because of the inclusion of Monte Carlo simulation 

approach although not as many reports are found as compared to the forecasting methods in 

other categories.  Table 2-5 summarizes the Monte Carlo simulation approach. 
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Table 2-4 Water demand forecasting based on the hybrid approaches 

Literatures Remark 
Short 
Term 

Long 
Term 

Patten Recognition Approach 

1
9
9
0
s 

Shvartser et al., 
1993 

A model based on a combination of pattern recognition 
and time-series analysis was developed in the study to 
forecast hourly water demand.  Three possible daily 
demand patterns, ‘rising’, ‘oscillating’, and ‘falling’ 
were defined.  The three patterns were defined as 
states of the demand curve of a Markov process.  The 
transition probabilities were learnt and low-order auto-
regressive integrated moving average models fitted 
using historical data. 

X  

Neural-fuzzy Approach 

 

Pulido-Calvo and 
Gutierrez-
Estrada, 2007 

A hybrid methodology combining feed forward 
computational neural networks, fuzzy logic and 
generic algorithm to forecast one-day ahead daily 
water demand at irrigation districts was presented.  
The result showed that the hybrid model performed 
significantly better than univariate and multivariate 
autoregressive neural networks. 

X 

 

Wu and Zhou, 
2009 

A combination model was developed to forecast urban 
annual water demand.  The combination model used 
Hodrick-Prescott filter method to calculate the trend 
and cyclical components of the facts that were 
correlative with water demand and used multiple linear 
regression method to simulate the trend components.  
The fuzzy neural network was build based on the 
cyclical components.  All the methods were combined 
to forecast the urban annual water demand. 

 

X 

Yurdusev et al., 
2009 

A generalized regression neural network for municipal 
water consumption prediction was proposed.  It was 
combination of regression analysis and ANN 
techniques.  The results showed that the method could 
be successfully applied to establish accurate and 
reliable water consumption prediction models. 

X 

 

M5 Model Tree Approach 

2
0
0
0
s 

Solomatine and 
Xue, 2004 

M5 model tree that is a machine learning technique 
was investigated in a flood forecasting problem for the 
upper reach of the Huai River in China.  M5, ANN and 
hybrid model forming M5 model tree and ANN were 
built respectively.  The M5 model tree performed 
similar to ANN models, but faster in training.  The 
hybrid model gave the best prediction result. 

X  
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 Table 2-5 Water demand forecasting based the Monte Carlo simulation approach 

Literatures Remark 
Short 
Term 

Long 
Term 

Per Capita Based Approach with Uncertainties in Global Change 

2
0
0
0
s 

Khatri and 
Vairavamoorthy, 
2009 

The study presented a method to use Monte Carlo 
simulation to predict the total future population with 
uncertainty, using the Latin Hypercube Sampling 
technique to analysis micro-components of water 
demand and to get distribution for per capita water 
consumption.  Uncertainties that caused by global 
climate change were incorporated and climatic 
variables were assessed using regression models 
developed from historic records. 

 

X 

 

2.2 System Dynamics Modeling  

System dynamics modeling has been used to address practically every sort of feedback 

system, including business systems (Sterman, 2000), ecological systems (Grant et al., 1997), 

social-economic systems (Forrester, 1969, 1971; Meadows, 1973), agricultural systems (Qu and 

Barney, 1998; Saysel et al., 2002), political decision-making systems (Nail et al., 1992), and 

environmental systems (Vizayakumar and Mohapatra, 1991, 1993; Vezjak et al., 1998; Ford, 

1999; Wood and Shelley, 1999; Abbott and Stanley, 1999; Deaton and Winebrake, 2000; Guo et 

al., 2001). In terms of environmental concerns, the spectrum of application matrix has covered 

several issues, including environmental impact analysis of coalfields (Vizayakumar and 

Mohapatra, 1991, 1993), lake eutrophication assessment (Vezjak, 1998), pesticide control (Ford, 

1999), wetland metal balance (Wood and Shelley, 1999), groundwater recharge (Abbott and 

Stanley, 1999), lake watershed management (Guo et al., 2001), river pollution control (Deaton 

and Winebrake, 2000), and solid waste management (Mashayekhi, 1993; Sudhir et al., 1997; 

Karavezyris et al., 2002). Within the solid waste management regime, Mashayekhi (1993) 

explored a dynamic analysis for analyzing the transition in the New York State solid waste 
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system. Sudhir et al., (1997) further employed a system dynamics model to capture the dynamic 

nature of interactions among the various components in the urban solid waste management 

system, and Karavezyris et al., (2002) developed a methodology to incorporate qualitative 

variables such as voluntary recycling participation and regulation impact quantitatively. The 

model provides a platform for examination of various structural and policy alternatives for 

sustainable solid waste management. Dyson and Chang (2005) applied the system dynamics 

modeling to capture the trends of waste generation in a fast growing urban region in Texas.  

More applications in different topical areas can be found in System Dynamics Review (Abbott 

and Stanley, 1999).  Yet system dynamics model that is able to tackle more complicate 

interactions among explanatory variables has ever been applied before to handle both long-term 

and short-term water demand forecasting under uncertainty. In the dissertation, we may use the 

system dynamics modeling as a tool to forecast future water demand under uncertainty 

environment. 

2.3 Environmental Aspects Of Water System Infrastructures 

There is a worldwide concern about the potential effect of climate change on the quality, 

quantity, timing and demand for water resources.  A recent analysis from Natural Resources 

Defense Council (Natural Resources Defines Council, 2010) shows that climate change will have 

significant impacts on water supplies in the coming decades, with over 1,100 counties in the 48 

contiguous states of USA facing greater risks of water shortages due to the effects of global 

warming.  In particular, decision analysis about water infrastructure expansion in response to 

such a worldwide concern have long-term implications because the water infrastructure systems 

we start building today will likely be in place after decades.  Very recently, U.S. Environmental 

Protection Agency (US EPA) started promoting the water infrastructure assessment via 
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developing real world case studies to showcase the successful adaptations projects and to help 

individual water utilities learn from each other (US EPA, 2009). 

Life Cycle Assessment (LCA) is a well-established standard method that can evaluate the 

environmental impacts of a product, service or project in its entire life period or “from cradle to 

grave” (ISO 14040, 2006).  In the water infrastructure domain, LCA was applied for 

comparisons among different technical solutions or alternatives in both drinking water supplies 

(Vince et al., 2007) and wastewater treatment systems (Tillman et al., 1998; Dennison et al., 

1998; Lundin et al, 2000; Peters and Lundie, 2001; Hospido et al., 2008; Pasqualino et al., 2011).  

Harger and Meyer (Harger and Meyer, 1996) developed environmentally sound and sustainable 

development (ESSD) indicators to measure effects of projects on sustainable development.  

These indicators, as complementary to LCA, were applied for urban wastewater treatment 

systems (Parkinson and Butler, 1998; Hellström et al., 2000), agriculture planning (Smith and 

MacDonald, 1998; Pannell and Glenn, 2000), and urban water supply systems (Lundin and 

Morrison, 2002).  Some analytical frameworks for identifying relevant indicators for assessing 

the sustainable development were suggested and applied (Hardi et al., 1997; Hodge, 1997; 

Bagheri and Hjorth, 2007).  These studies universally pointed to the difficulty of identifying 

suitable environmental sustainability indicators (ESIs) applicable to all types of water 

infrastructure systems. 

Carbon footprint is a concise and abstract ESI to characterize the global climate change 

impact.  The carbon footprint is a holistic estimation of the total GHG emissions, being 

expressed as carbon dioxide (CO2) equivalents, as a result of a defined action over the 

project’s/product’s life cycle or over a specified period of time (Strutt et al., 2008).  Thus, CO2 

equivalent is a common metric measure used to compare the emissions from various GHG based 
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upon their GWP.  Facing the rising concern of global climate change, the consideration of carbon 

footprint as a suitable ESI should be meaningful in a carbon regulated environment (e.g. carbon 

tax or carbon trading) in the future. Such a carbon regulated environment would certainly require 

the impact of carbon footprints being incorporated into all decision making processes in water 

infrastructure assessment. It is believed that future water infrastructure assessment in response to 

climate change must have the carbon footprint included in relevant risk analysis and 

vulnerability assessment. 

A few methodologies which include GWP as one of the dimensions to support a decision 

marking process have been applied to water supply systems in the literature.  An LCA study in 

the metropolitan area of Sydney, Australia compared future potential scenarios in each of the life 

cycle impact categories with each other in water systems planning (Lundie et al., 2004).  Stokes 

and Horvath (Stokes and Horvath, 2006) developed an MS-Excel-based decision-support tool, 

called Water Energy Sustainability Tool (WEST), which considers every phase of the life cycle 

of water supply systems. Their case study compared the GWP among three possible future water 

supply alternatives (e.g. imported water, desalinated water, recycled water) in California.  Such a 

tool can be customized for applications in other locations too (Stokes and Horvath, 2009).  

Friedrich and others conducted a carbon footprint analysis for water supply systems in a South 

Africa city (Friedrich et al., 2009).  In their study, future possible scenarios were compared with 

the current base case in terms of CO2 equivalents of GHG emissions. 

2.4 Multiobjective Interval Linear Programming With Uncertain Coefficients 

Linear programming is a classic optimization tool for decision makers to derive an 

optimal solution under the assumption of complete information.  The assumption means that all 

the coefficients and right hand sides in the linear programming model should be perfectly known 
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before a decision can be made.  However, most real world problems may violate this assumption 

due to different types of reasons.  To name a few examples, a decision may be made by a group 

of people who may have different recognitions of a problem that results in vagueness of 

parameters in the problem.  Some parameters in a problem can be random variants that may or 

may not follow some underlying distributions.  Or those parameters in a problem are extremely 

difficult, if not unable, to be obtained so that decision makers are forced to make a decision 

based on the incomplete information.  The classic sensitivity analysis is a post optimality 

analysis tool that provides ranges for coefficients in the objective function and right hand sides 

within which the changes are allowed to keep the optimal if only one is changing at a time.  For 

the changes in more than one coefficient in the objective or right hand sides at a time, 100% rule 

(Bradley et al., 1977) provides a sufficient condition to keep the optimal.  These post optimality 

analysis tools are derived from simplex method and hence can not analyze the uncertainties of 

coefficients in the constraints because inverse of an uncertain matrix is NP-hard (Coxson, 1999).  

Furthermore, the post optimality analysis methods can not suggest any other solutions other than 

the optimal based on the incomplete information.  All these are the motivations to the 

development of linear programming under uncertainties. 

Continuous efforts were made by previous researchers to address the uncertainties in 

single or multiple objective linear programming models.  For example, these efforts include 

studies on the uncertainties only in objectives function (Rommelfanger et al, 1989; Ishihuchi, 

1990), only in constraints (Mráz, 1998; Kuchta, 2008), or both (Urli and Nadeau, 1992; Huang et 

al., 1992; Tong, 1994).  Uncertain parameters can be stochastic based on underlying probability 

distributions, fuzzy numbers based on underlying membership functions or interval numbers that 

only specify the lower and upper bounds.  Stochastic programming (Birge and Louveaus, 1997; 
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Kall and Wallace, 1994; Ruszczyński and Shapiro, 2003), fuzzy programming (Zimmerman, 

1978; Inuiguchi, et al., 1990; Inuiguchi and Ramik, 2000), interval programming (Chinneck and 

Ramadan, 2000; Oliveira and Antunes, 2007) and combinations of these methods (Liu and 

Iwamura, 1998; Huang et al., 2001; Nie et al., 2007) were developed to address those 

uncertainties. 

Due to the rich resources available in the literature, it is not the scope of this paper to 

review all the available approaches.  We only focus on single and multiple objective interval 

linear programming (MOILP) with the following general form, as described in Problem (2-1). 

Min ∑
=

±=
n

j

jpjp xcZ
1

      ( 2-1 ) 

Subject to ±

=

± ≤∑ i

n

j

jij bxa
1

, 0≥jx  

mi ,...2,1= , nj ,...2,1= , Pp ,...2,1=  

The parameters ±
pjc , ±

ija  and ±
ib  are interval numbers with their lower and upper bounds known.  

So that }|{ +−± ≤≤∈ pjpjpjpjpj ccccc , }|{ +−± ≤≤∈ ijijijijij aaaaa  and }|{ +−± ≤≤∈ iiiii bbbbb . 

We restrict ourselves to only review the related works and solution approaches to 

Problem (2-1) in Section 2.4.  For techniques in fuzzy linear programming, we refer readers to a 

comprehensive reference survey (Inuiguchi and Ramik, 2000).  For techniques in stochastic 

linear programming, we refer readers to two books (Birge and Louveaus, 1997; Kall and Wallace, 

1994).   

The general principle of solving interval linear programming is to transform the uncertain 

problem into one or more than one deterministic problems with proper rationality or 

interpretation that can be solved by the classic simplex method.  Then, the solutions derived from 

the deterministic problems are checked whether they can be accepted for the original uncertain 
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problem.  The available approaches in the literature for interval linear programming can be 

briefly categorized into two perspectives.  One of the perspectives is to work out a solution set, 

each element of which is either a potential optimal solution for a single objective linear 

programming or a Pareto optimal solution for a multiobjective linear programming with the 

uncertain coefficients given within their admissible ranges of variation.  A Pareto optimal 

solution was also called an efficient solution in some literature (Bitran, 1980; Inuiguchi and 

Sakawa, 1996).   The other perspective is to work out a single optimal solution from the 

reformulated deterministic problem by incorporating decision maker's goals (such as aspiration 

level) and preferences (such as utilities) or adopting some certain criteria (such as minimax 

regret). 

2.4.1 Solution Set For Interval Linear Programming 

In the first perspective of approaches, a two-step-method (Huang et al., 1992; Huang, 

1994) and its similar method (Tong, 1994) were proposed for single objective interval linear 

programming to find out a possibly optimal solution set.  Both of the methods suggested 

transforming the original interval linear programming into two sub-problems with one of which 

has the most favorable version of the objective function and the maximum value range inequality 

and the other one of which has the least favorable version of the objective function and the 

minimum value range inequality.  The maximum and minimum value range inequalities are 

largest and smallest possible feasible region determined by the non-deterministic constraints 

(Chinneck and Ramadan, 2000).  The derived solutions from these two methods are interval 

solutions with the expectation to include all possibly optimal solutions.  A possibly optimal 

solution to a single objective interval linear programming problem is an optimal solution to at 

least one deterministic linear programming problem with the uncertain parameters selected 



 35 

within their admissible ranges of variance.  The solution can be obtained fast and thus it is 

popularly referenced and applied to many real world examples (Maqsood et al., 2005; Cheng et 

al., 2009; Cao et al., 2010).  However, the rationality of the solution to the original interval linear 

programming is highly doubtable.  Here, we refer to the numeric example in (Huang et al., 1992). 

Max 21 ]90,70[]60,50[ xxf −=     ( 2-2 ) 

Subject to 150]6,4[ 21 ≤+ xx  

  280]7,5[6 21 ≤+ xx  

90]4,3[ 21 ≤+ xx  

110]2,1[ 21 −≤− xx  

0, 21 ≥xx  

The interval solution that is derived from the two-step-method is ]56.36 ,18.24[1 =x , 

]94.4 ,76.3[2 =x  and ]73.1930 ,71.764[=f .  When the interval solution is checked in Problem 

(2-2), the expectation of including all possible optimal solutions in the interval solution is not 

satisfied.  For illustration, Figure 2-1 plots 10,000 possibly optimal solutions to Problem (2-2), 

each of which is solved from a deterministic problem with those uncertain coefficients uniformly 

and independently sampled within their admissible ranges of variance.  Apparently, the first 

issue is that more than half of the possibly optimal solutions in this example are out of the 

interval solution set which is derived from the two-step-method.  Besides, the second issue is that 

not all the elements in the derived interval solution are possibly optimal solutions.  Huang and 

Cao (Huang and Cao, 2011) later recognized the second issue and proposed a three-step-method, 

which adds an extra step to the two-step-method to shrink the interval solution set to q (0<q<1) 

level so that all elements in the derived interval solution are possibly optimal.  However, that 

approach makes the first issue even more severe since more possibly optimal solutions become 

out of coverage of the interval solution set. 
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Figure 2-1 An illustration example for two-step-method 

Also it is noticed in this example that the true possibly optimal solution set in the solution 

space is hardly a rectangle-like shape so that it can not be assumed to have an interval solution 

pattern as ] ,[ optoptopt
+= xxx

- .  More likely, as illustrated in Figure 2-2, the possibly optimal 

solutions can be dispersed in the solution space.  Thus, an interval solution set for an interval 

linear programming will  inevitably cause either the issue of not including all the possibly 

optimal solutions or the issue of not all the elements in solution are possibly optimal, or both of 

the issues at the same time.  Nevertheless, the minimum and maximum possibly objective values 

derived from the two-step-method are still valid and proved (Chinneck and Ramadan, 2000). 

Interval solution 
set derived from 
two-step-method 
by Huang, 1992 

10,000 possibly optimal solutions by 
uniformly sampling the interval numbers 

21 ]90,70[]60,50[max xxf −=

110]2,1[

90]4,3[

280]7,5[6

150]6,4[

21

21

21

21

−≤−
≤+
≤+
≤+

xx

xx

xx

xxs.b. to 
(Huang et al., 1992) 

Non possibly 
optimal solution 
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Figure 2-2 Another illustration example of possibly optimal solutions in solution space 

For multiobjective linear programming, the optimal solution for all the objective 

functions usually does not exist.  Instead, efforts were made to find Pareto optimal solution (or 

efficient solution) set.  A solution is efficient if there is no other feasible solution available to 

improve at least one of the objective functions without compromising the others (Zimmermann, 

1978).  When there are only uncertainties in the objective functions, Bitran (Bitran, 1980) 

proposed the concepts of necessarily and possibly efficient solution set and provided the test 

method to determine whether a feasible solution belongs to those sets.  A necessarily efficient 

solution is a feasible solution that is efficient to any deterministic multiobjective linear 

programming with the uncertain parameters selected with their admissible range of variance.  A 
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possibly efficient solution is a feasible solution that is efficient to at least one deterministic 

multiobjective linear programming with the uncertain parameters selected with their admissible 

range of variance.  The test method was later extended for the uncertain parameters being fuzzy 

numbers (Inuiguchi and Sakawa, 1996).  Also, there were researches available to find necessarily 

efficient and possibly efficient solution sets (Steuer, 1986; Ida, 2005; Wang and Wang, 2001).  

However, all these approaches are limited to the cases with certain feasible region.  That means, 

these methods can only be applied to Problem (2-1) when +− = ijij aa  and +− = ii bb . 

2.4.2 Single Solution For Interval Linear Programming 

In the second perspective of approaches, it is focused to find out a single best solution to 

the decision maker.  The single best solution is usually the optimal solution of the reformulated 

deterministic problem with interpretations from the decision maker's perspective of view.  A 

variety of reformulation methods were proposed in the literature. 

For treatment of uncertain constraints, Urli and Nadeau (Urli and Nadeau, 1992) 

proposed the idea of degree of satisfaction (α ) on the non-deterministic constraints (see Figure 

2-3).  With pre-specified satisfaction thresholds from decision makers, those non-deterministic 

constraints can be transformed into deterministic constraints. 

 

Figure 2-3 Definition of degree of satisfaction of the non-deterministic constraints 
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Similarly, Sengupta et al. (Sengupta et al., 2001) proposed the acceptability index (A ) 

to evaluate the inferior or superior relation of non-deterministic constraints.  The acceptability 

index determined by the midpoints and half widths of the two interval numbers, or 
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)( −+ −= iii bbBw .  Although iA  is defined in a different form, 

12 −= ii αA  essentially in case of ∑
=

−+ ≥
n

j
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 and ∑
=

+− ≤
n

j

ijij bxa
1

.  The selection of degree of 

satisfaction or acceptability index reflects the potential risks that decision maker may agree to 

take to potentially violate the non-deterministic constraints.  The higher α  or  A  values being 

selected, the lower risks may be tolerated by the decision maker; and vice versa.  Some other 

researchers apply fuzzy logic to interpret the constraints with uncertain right hand sides 

(Martinson, 1993; Chang et al., 1997).  In their studies, interval right hand sides are interpreted 

as tolerance levels.  A membership function ( µ ) can be defined for each of the uncertain 

constraints, which equals to 0 if the constraint is strongly violated (e.g. greater than upper bound 

of right hand side), 1 if it is satisfied in the crisp sense (e.g. less than lower bound of right hand 

side), and is linearly decreasing from 1 to 0 over the interval right hand side (see Figure 2-4).  

Apparently, ii αµ =  when ijijij aaa == +− .  In other words, the fuzzy membership function is 

essentially the same as the degree of satisfaction when only right hand sides are interval numbers 

even though the fuzzy membership function is interpreting the non-deterministic constraints 

from a different viewing angle. 
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Figure 2-4 Fuzzy membership function for constraint with interval right hand side 

In addition, considering a decision has potential risks to violate the uncertain constraints 

unless the decision is made with restrictions to the minimum value range inequality (Chinneck 

and Ramadan, 2000), a penalty method was introduced to treat the non-deterministic constraints 

(Jamison and Lodwick, 2001).  In the penalty method, the interval right hand sides are 

interpreted as resources which can be replenished at a cost that is linear with respect to the 

amount of violation if the resources are exceeded.  In case of replenishments are needed, the 

occurring costs are subtracted from the objective function as penalties to violate the constraints.  

The decision makers may specify the penalty terms depending on their preferences or actual 

costs. 
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t1-cut of the closed intervals (Chanas and Kuchta, 1996).  The pλ  can also be interpreted by 

decision makers as weights (utilities or preferences) of the best and worst objective values.  

Since )1 ,0(1
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λ , it was also interpreted as aspiration levels by some 

researchers as shown in Figure 2-5 (Zimmermann, 1978; Chang et al., 1997).  The aspiration 

level is 1 if the objective value is acceptably small (e.g. less than the worst objective value), 0 if 

the objective value is unacceptably large (e.g. grater than the best object value), and between 0 

and 1 for intermediate values (Lodwick and Jamison, 2007).  The transformed objective becomes 

to maximize the aspiration level, which is to maximize pλ .  Apparently, the transformed 

objective in terms of aspiration level is equivalent to minimize pZ  even though it is interpreted 

from a different viewing angle. 

 

Figure 2-5 Aspiration level for the interval objective functions 

Since the best possible optimal value can only be obtained with restriction to the 

maximum value range inequality and the least favorable version of objective function (Chinneck 

and Ramadan, 2000),  the best possible optimal value solution always makes pλ  be conflicting 

with iα , iA  or iµ .  As a compromising among all these decision makers’ preferences, utilities 
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or attitudes, the maxmini operator was proposed to maximize the minimal level of satisfaction or 

aspiration of all the pλ  and iα , iA  or iµ  (Zimmermann, 1978).  The solution obtained by the 

maxmini approach is usually a single optimal solution.  However, in case of potential multiple 

optimums, an augmented maxmini approach (Lai and Hwang, 1993) may guarantee the obtained 

optimal solution is an efficient solution which is not dominated by other potential solutions with 

the same minimal level of satisfaction. 

Another criterion that is often considered by decision makers is the worst regret criterion.  

The regret is caused by uncertainties.  When being forced to make a decision under uncertainties, 

a decision maker may feel regret afterwards knowing that the objective can be better achieved 

with the uncertainties being known after the decision.  Minimizing the worst regret is one of the 

possible conservative attitudes for decision makers facing uncertainties.  The minimax regret 

approach is a solution method to find out a single best solution which makes the worst regret 

minimal by calculating the regrets to all possible scenarios after that decision.  Some minimax 

regret optimization in real world applications were available in the literature, for example in 

municipal solid waste management (Li and Huang, 2006; Chang and Davila, 2007) and energy 

and environmental systems planning (Li et al., 2012).  These studies assume a finite possible 

scenario set that the decision makers already know before the decision, in case of which the 

solution can be obtained quickly.  However, the major difficulty for the minimax regret approach 

is that the possible scenario set after a decision may be infinite.  For linear programming with 

interval coefficients in the single objective function, the minimax regret problem can be solved 

by an iterative relaxation procedure (Shimizu and Aiyoshi, 1980) although it is computational 

demanding.  Inuiguchi and Sakawa (Inuiguchi and Sakawa, 1995) showed that it is sufficient to 

consider a finite set instead of the infinite set for all possible scenarios of a linear programming 
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with an interval objective function.  To further reduce the computational complexity, a heuristic 

algorithm to the minimax regret solutions was proposed (Mausser and Laguna, 1999).  All these 

approaches only allow interval coefficients in the single objective function. 
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3 CHAPTER THREE: METHODOLOGY 

3.1 System Dynamics Modeling For Domestic Water Demand Under Changing Economy 

Unemployment rate is a well-known indicator in macroeconomic systems, which has 

been extensively studied (Neftci, 1984; Sichel, 1989; Rothman, 1991).  Figure 3-1 is depicted 

based on Florida and United States labor statistics and recessionary periods, and unemployment 

rates from Jan. 1974 to Sept. 2010 seasonally adjusted.  As shown in Figure 3-1, it is generally 

believed that unemployment rate has an asymmetric characteristic of fast rising in the recession 

period and slower falls in the economic recovering period.  In particular, Neftci (Neftci, 1984 

found some statistical evidence in support of this observation.  Although this significant finding 

of asymmetries was questioned by Sichel (Sichel, 1989) due to an error in Neftci’s calculations, 

Rothman (Rothman, 1991) further strengthened the belief of such asymmetries by using a 

modified version of Neftci’s test and proved that it is statistically significant.  Due to such 

asymmetric property, unemployment rates are highly persistent in the economic recovery period.  

Such slower recovery from the recession impacts may last for a decade (e.g. from 1982 to 1991 

and from 1992 to 2001).  In other words, the sudden positive shock to the unemployment rate in 

year 2008 and 2009 due to the U.S. subprime crisis may propagate trough the future years and 

take a decade for relief.  Thus, a reasonable assumption may be made for the next decade that 

global economic environment enters the recession recovery period and unemployment rate starts 

to decline slowly over years.  Hence, our system dynamics model particularly in response to the 

changing correlation between unemployment rate and water demand can be constructed and 

validated in this research, and out-of-sample estimation can be possibly carried out for future 
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water demand forecasting under the impact of macroeconomic booming and downturn 

environments alternately. 

 
Source: Florida Agency for Workforce Innovation, Labor Market Statistics Center, Local Area 
Unemployment Statistics Program, in cooperation with the U.S. Department of Labor, Bureau of 
Labor Statistics.  Prepared October 2010 (seasonally adjusted) 

Figure 3-1 Unemployment rates and recessionary periods in Florida and United States 

3.1.1 Water Demand Estimation Methodology 

The design philosophy of this system dynamics model in which the water demand 

estimation is driven by the two macroeconomic indicators, namely unemployment rate and 

average annual income, can be described by Figure 3-2.  Such a information flows were fed into 

the calculations of per capita water demand affected by some independent socioeconomic factors 

such as population dynamics, real estate market, and net immigrations.  The internal linkages 

between those socioeconomic factors are implicitly established in the upper middle building 

block supported by both literature values in the past few decades and local historical data from 
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year 2003 to 2009.  These internal linkages among those socioeconomic factors may be 

statistically confirmed by even including interactive and quadratic terms in addition to the first 

order terms.  With the involvement of all these socioeconomic factors which are simultaneously 

affected with one another, the socioeconomic impact can be well translated to affect the water 

demand at the county level.  With the projected demographic delineation and per capita water 

demand under the postulated uncertain socioeconomic impact, the domestic water demand in 

Manatee County can be finally estimated by such a systems dynamic model. 

 

Figure 3-2 System diagram of system dynamic modeling approach 

To validate this system dynamics model, model output of the domestic water demand has 

to be compared with the corresponding historical record.  If the goodness of fit criteria may be 

confirmed, the model is deemed valid and may be used for future water demand forecasting in 

the next decade based on some assumptions.  For example, considering the asymmetric property 

of the long-term unemployment rate in the business recession cycle, we need to assume that the 

global economy enters recovery period and the unemployment rate keeps declining in the next 

decade.  Further, since the average annual income presents a significant linearly increasing trend 

over the years in a full business recession cycle from 2003 to 2009, the linear tendency may be 

assumed to persist in the future.  Therefore, with these two assumptions, future domestic water 
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demand under the impact of the current macroeconomic environment may be possibly forecasted 

well. 

3.2 Carbon Footprint Evaluation For A Water Infrastructure System 

The carbon footprint is a sum of CO2 equivalents in all phases of each expansion 

alternative.  Time duration for this analysis is twenty years from 2011 to 2030 during which the 

construction, production, use, and recycle phases were analyzed sequentially as shown Figure 

3-3.  The system diagram shows material and energy flow, where each block represents materials 

stocks and is connected by arrows with surrounding blocks via essential material flows. 

Materials, or raw water in our analysis, were initiated from the beginning of a life cycle, passing 

through intermediate phases and finally sinking in the end of the life cycle.  In this analysis, the 

end-of-life phase of water facilities was not included for the reason that an infrastructure 

construction usually has a service life over seventy years, a range beyond our focused time 

period.  Besides, a study (Friedrich, 2002) indicated that the overall environmental burden in the 

end-of-life phase is actually less than 1%.  For this reason, a carbon footprint analysis from 

construction to operation phases in a 20-year time frame (2011-2030) is designed to meet the 

development goal in Manatee County.  To clearly illustrate the processes that are built for carbon 

footprint calculations in this study, Figure 3-3 lists the system boundaries and assumptions that 

are made for the estimation of CO2 equivalents in all relevant phases of 20 expansion 

alternatives.  It is known that the fuel distribution of electric power plants in Manatee and its 

adjacent counties is a mixture of 53% gas, 24% oil, and 23% coal (as shown in Table 3-2).  We 

therefore adopted this mixed power grid as basis to estimate the carbon footprint associated with 

each alternative.  Only CO2 equivalent emissions inside the system boundary were included for 

the calculations of total carbon footprint.  Our premise is that the CO2 calculations for all 
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alternatives are the same in use and recycle phases because there will have no difference in terms 

of carbon footprints in these two phases given that potable water is to be delivered to consumers 

by the same way as usual and wastewater is to be collected by the same way for recycling and 

reuse too.  The rest of this section will evaluate the carbon footprint associated with these 

processes one-by-one in greater details for each alternative. Information and data in the carbon 

footprint analysis mainly were obtained from the County’s work plan.  Distances were measured 

using Google Earth® software.  In cases where detailed information (e.g. the amount of fuels and 

raw materials needed) was not available, assumptions were made with our best judgment. 

 

Figure 3-3 System diagram of carbon footprint analysis 

Table 3-1 System boundary and associated assumptions in different phases 

System boundary and assumptions 

Construction phase:  Only raw materials acquisition and facility construction were included in 
this phase.  Transportation of the raw materials to the water infrastructure locations were not 
considered in this study.  We assumed that all raw materials would be obtained locally for 
construction. 
Process  This process only calculated the carbon footprint burden for uses of two major raw 
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System boundary and assumptions 

materials (steel and cement) in new WTP construction and pipelines production 
(steel only).  Carbon footprint estimation for earthwork was considered for raw 
materials required for constructing new reservoirs.  Other construction materials 
were not considered in this study.  The carbon footprint estimation only included 
GHG emissions caused by producing raw materials. Upstream requirements for 
producing the raw materials (e.g. die cast machine, mixer, etc.) were not 
considered.  Transportation of raw materials was not considered for carbon 
footprint calculation since both cement and steel plants could be found nearby 
within our system boundary.  It was assumed that the requirements of steel, 
cement, and earth were proportional to the size and capacity of new facilities.   

Process  

This process only considered the burden of carbon footprint of steel assemblies 
and concrete-based structural systems.  Upstream equipment for the construction 
of construction tools (e.g., cranes, cement mixers, etc.) was not included for 
carbon footprint assessment.  For all 20 alternatives, we assumed that each square 
meter of the construction site requires 0.1 m3 concrete and 0.1 t steel on average. 

Production phase:  Only raw water treatment and distribution were considered.  Some processes 
related to raw water acquisition were not included in this study.  Upstream equipment for plant 
operation (vessels, controls, etc.) was not considered for this carbon footprint assessment. 

Process  

Distribution of raw/treated water from the water supply alternative sites to 
Manatee County WTP was assumed to be essential for all the 20 alternatives even 
though some alternatives may come with new WTPs.  However, it was assumed 
that treated potable water may depend on the existing piping network for potable 
water delivery to consumers.  The distance between each alternative site and 
Manatee County WTP was estimated by either actual piping route (e.g. regional 
water options) measured by Google Earth® or the suggested driving route by 
Google Map®.  Since the study was conducted in relatively flat terrain in 
southwest Florida USA, a flat topology of pipeline network was assumed for 
potable water deliveries.  

Process  

We assumed that in terms of carbon footprint, the seawater desalination process 
was different with the rest of traditional water treatment processes.  Thus, the rest 
of 19 alternatives bore the same burden of carbon footprint in terms of CO2 
equivalents. 

Use phase: Only potable water distribution and wastewater collection were considered.  The CO2 

equivalent emissions due to using potable water by consumers were not included in this study.  
The 20 water supply alternatives were assumed to perform by the same way in terms of carbon 
footprint in this phase. 

Process  

For all the 20 alternatives, we assumed that the delivery of potable water was 
carried out from the existing Manatee County WTP to the consumers.  The 
delivery distance was estimated by the median distance between the targeted 
consumers to the WTP.  We also assumed that consumers were uniformly 
distributed in Manatee County.  Again, a flat topology of pipeline network was 
assumed for potable water deliveries. 

Process  
This process assumed that the distribution of wastewater to any of the three 
WWTPs bore the same burden of carbon footprint. The shipping distance was 
estimated as the median distance from the targeted consumers to one of the three 
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System boundary and assumptions 

WWTPs. 
Recycle phase: This process did not consider decommission of new facilities and piping network.  
It only included the consideration of wastewater treatment, and discharge/reuse process.  We 
assumed that there was no difference in terms of carbon footprint over the 20 alternatives in this 
phase. 

Process  
It was assumed that three WWTPs in Manatee County were identical.  Since there 
was no detailed CO2 equivalents data available, we assumed that this carbon 
footprint burden would be similar as the value in the literature. 

Process  
It was assumed that transportation of reclaimed wastewater from the WWTPs to 
the irrigation sites was done by gravity and has no energy consumptions. 

Process  
It was assumed that discharge of reclaimed wastewater to sea/river was done by 
gravity and has no energy consumptions. 

 

Table 3-2 Power generation in Manatee and its adjacent counties 

County Facility Name MegaWatt Fuel Type 
Hillsborough TECO Big Bend 1995 Coal 
Polk TECO Polk 693 Coal 
Polk LKLD McIntosh 817 Coal 
Manatee FPL Manatee 1900 Oil 
Polk TECO Polk 940 Oil 
Pinellas Bayboro 232 Oil 
Pinellas Bartow 465 Oil 
Hillsborough Hookers Pt 184 Oil 
De Soto DeSoto 510 Gas 
Hardee van Dolah 680 Gas 
Hardee Hardee 370 Gas 
Polk Seminole 788 Gas 
Polk Tiger Bay 223 Gas 
Polk Peace R 510 Gas 
Polk PEF Hines 1930 Gas 
Polk PPP Mulberry 79 Gas 
Polk OCLP Orange 74 Gas 
Polk LKLD Larsen 153 Gas 
Polk Auburndale Osprey & Peaker 796 Gas 
Hillsborough TECO Bayside 1995 Coal 

Source: Florida Department of Environmental Protection, 2010 

3.3 Multiobjective Programming For Water System Optimization 

Coupled with the methodology in Section 3.2 for carbon footprint quantification, a 

multiobjective mixed integer programming model is to was formulated for the dynamic 

assessment of these multi-stage optimal expansion strategies in relation to future water supply 
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scenarios over a 20-year time horizon from 2011 to 2030.  Such a compromise programming 

model can certainly produce the best Pareto frontier solutions of dynamic expansion options.  

The more the total number of planning periods in such a multi-stage framework, the more the 

total number of decision variables and parameters to be managed in model simulation.  To ease 

the delineation of the expansion sequence in a streamlined planning horizon, the multistage 

planning horizon in our decision analysis was divided into four time periods with each one 

having a 5-year time span. The five year duration is generally feasible for allowing one new 

alternative to be in place from an engineering perspective if construction is required.  Within the 

trade-off process, one objective is to minimize the total system costs required for the water 

supply expansion while the other is to minimize the total GHG emissions expressed as CO2 

equivalent.  Both are geared toward screening and sequencing relevant water supply alternatives 

subject to the essential constraints. With a distance-based metrics defined for solving the 

compromise programming model (Zeleny, 1973), the engineering management questions as to 

where and when an alternative should be implemented may be answered with a hypothesis that 

the inclusion of carbon footprints should alter the expansion sequence resulting in the different 

optimal expansion planning scheme. 

3.4 Nested Minimax Regret For Interval Multiobjective Linear Programming 

To address the uncertainties in the linear optimization model, we propose a nested 

minimax regret (NMMR) solution approach which consists of two tiers of the minimax regret 

solution procedure.  In the first tier, minimax regret method is applied to find the single optimal 

solution in terms of absolute regret for each individual objective and forms a pay-off table.  In 

the second tier, minimax regret method is applied to find a compromising solution in terms of 

relative regret for all the objectives. 
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3.4.1 Definition 

Problem (2-1) can be rewritten as }0  ;|{    ,  min ≥≤∈ ±±± XBXAXXXC , where 
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}0  ,|{ ** ≥≤∈ XBXAXX .  Pp ,...2,1= .  *
pC  is the p-th row vector of *C .  We have 

}s' possible all{ *
pp RR = , Pp ,...2,1= , which can be an unlimited set. 

3.4.2 Nested Minimax Regret Approach 

The first tier of the nested minimax regret approach is to find the minimax regret solution 

for each individual objective function and form a payoff table.  That is to solve Problem (3-1) 

minimax pR , }0  ;|{ ≥≤∈ ±± XBXAXX , Pp ,...2,1= .    ( 3-1 ) 

pR  can be an unlimited set.  Proposition 1 shows that there exists a subset of pR  with a finite 
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Let p
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Therefore, the minimax regret method transforms Problem (3-2) to Problem (3-3). 
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Therefore, a payoff table can be formed as shown in Table 3-3. 
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objectives.  Obviously, pr̂  is a scaled value ranging from 0 and 1.  Hence, the second tier regrets 

are relative regrets to the objectives.  Let }ˆ ..., ,ˆ ,ˆ{ 21 Prrrr =  and r


 max=Γ .  Thus, the nested 

minimax regret solution can be obtained by solving Problem (3-5). 

Table 3-3 A payoff table for multiple minimax objectives 

 1r  2r  … Pr  

)(opt
1 αX  ) ),(( opt

1
opt

1 ααXr  ) ),(( opt
12 ααXr  … ) ),(( opt

1 ααXPr  

)(opt
2 αX  ) ),(( opt

21 ααXr  ) ),(( opt
2

opt
2 ααXr  … ) ),(( opt

2 ααXPr  

… … … … … 

)(opt αXP  ) ),(( opt
1 ααXPr  ) ),(( opt

2 ααXPr  … ) ),(( optopt ααXPPr  

 
   min Γ           ( 3-5 ) 

 Subject to 
) ),(()) ),((max(

) ),(() ),((
optoptopt

optopt

ααXααX

ααXααX

pppp

ppp

rr

rr

−

−
≥Γ , for all p 

   p

pppr 3opt
ˆˆ) ),(( XCXCααX −≥ , for all  p and pĈ  

   )())(( −++−++ −−≤−−− BBαBXAXAαEXA  

   0≥X  

The scale of Problem (3-5) is determined by the number of objectives (P), number of 

uncertainties in the objective (n) and the number of constraints (m).  Generally, Problem (3-5) is 

a single objective deterministic linear programming that can be solved by use of the simplex 

method with )1( ++ Pn  decision variables and ])12([ mp
n ++  constraints excluding the non-

negativity constraints. 

Therefore, the nested minimax regret approach for interval linear programming can be 

summarized as below: 

Step 1: Solve the problems }0 ;|{   ,ˆ min ≥≤∈ +− XBXAXXXC p  and find optimal values. 
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Step 2: Specify α  matrix and solve Problem (3-4) for each individual objective. 

Step 3: Form a payoff table as shown in Table 3-3. 

Step 4: Solve Problem (3-5) and find the nested minimax regret solution.  If the solution is 

acceptable by decision maker, the obtained solution is the final solution.  If not, go to Step 5. 

Step 5: Specify a different α  matrix and repeat from Step 2 to Step 4. 

3.4.3 Numeric Example 

We are considering the following multiple objective interval linear programming. 

Min 211 ]90 ,70[]50 ,60[ xxz +−−=    

Min 212 ]20 ,10[]1 ,3[ xxz +−−=  

Subject to 150]6,4[ 21 ≤+ xx  

  280]7,5[6 21 ≤+ xx  

90]4,3[ 21 ≤+ xx  

110]2,1[ 21 −≤− xx  

0, 21 ≥xx  

For simple illustration, we assume the decision makers require equal degree of satisfaction for all 

the non-deterministic constraints. 

Let 
( ) ( )
( ) ( )






−−
−−

=
20 ,101 ,3

90 ,7050 ,60
C , 

( )
( )
( )

( ) 

















−

=

102 ,1

4 ,31

7 ,56

16 ,4

A , ( )1  ,90  ,280  ,150 −=B . 

Step 1: Solve the problems }0 ;|{   ,ˆ min ≥≤∈ +− XBXAXXXC p  and find optimal values 

z1 z2 

6011 −=c , 7012 =c  ﹣1930.7 321 −=c , 1022 =c  ﹣72.122 

6011 −=c , 9012 =c  ﹣1855.6 321 −=c , 2022 =c  ﹣34.561 

5011 −=c , 7012 =c  ﹣1565.1 121 −=c , 1022 =c  1 

5011 −=c , 9012 =c  ﹣1490 121 −=c , 2022 =c  2 
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Step 2: Solve the minimax regret problem for each individual objective and find minimal 

maximum regret 1r  and 2r  as shown in Figure 3-4. 

 min 1r  

s.t.  7.19307060 211 ++−≥ xxr  

 6.18559060 211 ++−≥ xxr  

 1.15657050 211 ++−≥ xxr  

 14909050 211 ++−≥ xxr  

)())(( −++−++ −−≤−−− BBαBXAXAαEXA

 0≥X  

 min 2r  

s.t.  122.72103 212 ++−≥ xxr  

 561.34203 212 ++−≥ xxr  

 110 212 −+−≥ xxr  

 220 212 −+−≥ xxr  

)())(( −++−++ −−≤−−− BBαBXAXAαEXA

 0≥X  
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Figure 3-4 The first tier minimax regrets for the two objectives 

Assuming the decision maker taking the degree of satisfaction 4.0=α , the minimal 

maximum regret solutions and values for each of the individual objectives are: 

3.4261 =r  , )348.4 ,344.30(opt
1 =X  and 71.382 =r  , )111.3 ,506.21(opt

2 =X . 

Step 3: Form a pay-off table 

4.0=α  1r  2r  

(30.344, 4.348) 426.3 54.62 

(21.506, 3.111) 858.1 38.71 
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Step 4: Solve the following problem for the nested minimax regret solution. 

   min Γ  

 Subject to 3.426)3.4261.858( 1 −≥Γ− r  

   71.38)71.3862.54( 2 −≥Γ− r  

   7.19307060 211 ++−≥ xxr  

   6.18559060 211 ++−≥ xxr  

   1.15657050 211 ++−≥ xxr  

   14909050 211 ++−≥ xxr  

   122.72103 212 ++−≥ xxr  

   561.34203 212 ++−≥ xxr  

   110 212 −+−≥ xxr  

   220 212 −+−≥ xxr  

1508.4 21 ≤+ xx  

2808.56 21 ≤+ xx  

904.3 21 ≤+ xx  

1104.1 21 −≤− xx  

0, 21 ≥xx  

We receive the optimal solution as 4932.0=Γ , 8654.251 =x , 7212.32 =x , 2560.6391 =r , 

5578.462 =r .  Select a different α  value and repeat from Step 2 to Step 4 if the solution is not 

accepted by the decision maker.  We sweep the α  value from 0 to 1 with step size 0.01 and find 

the nested minimax regret solution for each α  by repetitional use of the solution procedure from 

Step 2 to Step 4.  Therefore, the first tier regrets (absolute regrets) and the second tier regret 

(nested minimax regret) are plotted in terms of α  in Figure 3-5. 



 60 

 
Degree of Satisfaction (α ) 

N
es

te
d

 M
in

im
ax

 R
eg

re
t 

 

 
 Degree of Satisfaction (α ) 

R
eg

re
t 

(r
1
) 

minimax regret solution for r1 

minimax regret solution for r2 

nested minimax 

regret solution 

 
Degree of Satisfaction (α ) 

R
eg

re
t 

(r
2
) 

minimax regret solution for r2 

minimax regret solution for r1 

nested minimax 

regret solution 

 

Figure 3-5 Relative and absolute regrets for the nested minimax regret solution 
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4 CHAPTER FOUR: MODEL DEVELOPMENT 

4.1 System Dynamics Modeling For Domestic Water Demand Under Changing Economy 

The system dynamics model used in this study was developed for carrying out the 

domestic water demand estimation for the Manatee County, Florida in our study period from 

2003-2009.  At first, it is necessary to create the system diagrams to link all related 

socioeconomic and managerial components with one another throughout three submodels, 

including socioeconomic submodel, population dynamics submodel, and water demand forecast 

submodel.  Real world data relevant to various internal linkages among socioeconomic and 

managerial factors have to be processed to retrieve some regression equations in support of flows 

and conditions within and between these three submodels.  Real world water demand data from 

2003 to 2009 can then be used for model validation.  Once the system dynamic model can be 

created and well validated, it would become applicable for future water demand forecasting as 

the new input data can be generated by other socioeconomic scientists. 

4.1.1 Modeling The System Dynamics 

In Figure 4-1, the population dynamics was model as a stock being delineated by a 

number of neighboring components such as the net immigration rate within the submodel. 

Outside the submodel, however, birth and death rates as well as economic conditions such as 

unemployment rate and average income may come to play a critical role.  With this setting, 

modeling the water demand in this study became associated with population dynamics and per 

capita water demand driven by some major relevant socioeconomic factors directly and 

indirectly.  Three submodels are therefore interconnected within the modeling framework.  The 

inputs of unemployment rate and average annual income uniquely reflect the changing 
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macroeconomic conditions from 2003 to 2009 that, in turn, affects the real estate market and 

other socioeconomic factors in the socioeconomic submodel.  Population dynamics submodel is 

created by using a component method, in which a component of population change per day due 

to births, deaths, and net migrations is calculated to update the population over years.  The 

component method is also employed by the U.S. Census Bureau for population projections.  The 

difference is that the U.S. Census Bureau employed time series models to estimate the 

component of population change whereas our system dynamics model entails the intrinsic 

relationship of these components (mortality, fertility, and net migration) and socio-economic 

factors integratively and interactively.  Given the birth rate, death rate and net migration under 

the impact of macroeconomic environment, the population dynamic submodel simulates the 

population growth generating and translating the input data for the water demand forecast 

submodel where the culminated synthesis of all information flows from socioeconomic and 

population submodels can be carried over. The water demand forecast submodel, therefore, is 

defined on a per-capita basis with respect to the per-capita coefficient dynamically updated in 

association with the changing macroeconomic environments. 

The next step is to characterize those intertwined internal linkages within and between 

these submodels.  To carry out the modeling practices, there is a need to quantify the statistical 

relationships based on all relevant socio-economic and managerial factors as discussed above by 

fitting regression equations stepwise in support of a suite of legitimate internal linkages in our 

system dynamics model.  Table 4-1 therefore lists all definitions of those socioeconomic factors 

that were used in the system dynamics model as a summary. 
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Figure 4-1 The system dynamics model for domestic water demand estimation 

Table 4-1 Definition of socioeconomic and managerial factors 

Social-Economic factor name Definition 

Population Increase Factor The amount of population increased each year, in Manatee 
Population Decrease Factor The amount of population decreased each year, in Manatee 
Net immigration The amount of population increase due to net immigration, in 

Manatee 
Birth rate The percentage of birth among the population, in Manatee 
Death rate The percentage of death among the population, in Manatee 
Population The amount of population, in Manatee 
Health care The number of uncovered by health insurance, in Florida 
Number of homes sold per year The average number of houses sold per year, in Manatee 
Average home sales price The annual average home sales price, in Manatee 
Per capita Demand The daily average water demand per capita, in Manatee 
Unemployment rate Unemployment rate, in Florida 
Average income Average annual income, in Florida 
Water demand Domestic water demand per day, in Manatee 
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Observational evidences in the literature show that the intrinsic relationships between 

these socioeconomic and managerial factors exist either causally or statistically.  The intrinsic 

relationships between real estate market and macroeconomic fluctuations were well documented 

(Case, 1991; Case et al., 2000).  The involvement of real estate impact on the economic cycling 

has been found in New England, California, Alaska and Hawaii (Case, 1991; Case et al., 2000).  

It shows 72 percent of all bank lending during the boom from 1984 to 1988 was collateralized 

with real estate, and the real estate loans accounted for more than 90 percent of Bank of New 

England’s losses in the economic downturn from 1988 to 1992 (Case, 1991; Case et al., 2000).  

Rising housing prices in the boom fueled consumer spending and expanded the employment rate.  

However, in the economic downturn, mortgage default rates and foreclosures rate were high, and 

losses were severe which, in turn, affected the real estate value and turnovers.  In our model, the 

statistical linkages between real estate market (average home sales price and number of homes 

sold per year) and the macroeconomic indicators (unemployment rate and average annual income) 

were established using statistical regression analysis.  Based on the local data collected in Florida 

and Manatee County from 2003 to 2009, the linkages were proved significant (see Table 4-2). 

Our findings indicate that the local real estate market can be further interrelated with the 

immigration movement.  Burnley et al. (1997) reported that immigration was one of the 

important short- and long-term driving forces of real estate market.  Saiz (2003, 2007) provided 

the evidence of a causal relationship between immigration inflows and housing market in 

American cities.  Thus, a quantitative linkage between the net immigration rate and the real 

estate market (e.g. average home sales price and number of homes sold per year) became 

available in our system dynamics model.  Such a linkage was also proved significant based on 

the local historical data in Manatee County (see Table 4-2).  By the same token, Kuttner (1999) 
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reported that most Americans rely on their employers for health insurance.  In 1997, of the 167.5 

million nonelderly Americans with private health insurance, 151.7 million belonged to 

employer-provided health plans (Fronstin, 1998).  Parkin et al. (1987) stated that it was well 

known that a strong relationship existed between the national expenditures on health care and the 

national income.  Insurance premiums and income are the factors for those who are not included 

in the employer-sponsored health plans.  Therefore, health care level (e.g. the number of 

uncovered) is interrelated to unemployment rate and average annual income.  Local data in 

Manatee County and Florida shows that such a linkage is significant.  Health care level can also 

indicate the fertility and mortality.  Wennberg et al. (1987) found a statistical relationship 

between medical insurance claim data and health care outcomes so that the data maintained by 

medical insurance plans could be used to evaluate the incidence of birth and death.  Hence, it is 

possible to link the health care and the death rate together quantitatively.  The relationship 

between the population increase, the birth rate and the net immigration inflows are thus 

intimately related with each other in the end, as addressed in our system dynamics model.  

Finally, the water demand forecast submodel can be defined on the basis of per-capita water 

demand so that it is affected by both unemployment rate and average annual income.  With this 

endeavor, impacts of changing macroeconomic environments may be allowed to propagate 

throughout the whole system dynamics model leading to a sound elucidation of the trend of 

water demand related to primary socioeconomic factors. 
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Table 4-2 Regression and empirical equations derived in support of the system dynamics model 

Socioeconomic 

Factors 
Empirical Equations  

Population 

Increase Factor 
= Population * Birth rate + Net immigration 

Remark Population increase factor is the sum of new births and net immigration. 
Population 

Decrease Factor 
= Population * Death rate 

Remark Population decrease factor is the amount of deaths. 
Water Demand = PerCapita Demand * Population 

Remark It is a theoretical equation for water demand that total demand equals to the 
product of population and per capita demand. 

 Regression Equations R
2 p-value 

Net immigration = – 3030 + 0.783*Number of homes sold per year – 
0.00000011*Average home sales price*Average home 
sales price 

86.7% 0.002 

Remark There is causal relationship between immigration inflows and real estate 
market and positive correlation was found according to Saiz (2003, 2007) 

Birth rate =  0.00813 + 0.000001 * Health care 66.0% 0.026 
Remark Birth rate is statistically related to the health insurance coverage according 

to Wennberg et al. (1987) 
Death rate = 0.014 – 0.000001 * Health care 86.7% 0.002 

Remark Death rate is statistically related to the health insurance coverage according 
to Wennberg et al. (1987) 

Health care =4513 – 1061*Unemployment rate + 0.0237*Average 
income*Unemployment rate 

95.1% 0.002 

Remark Health insurance is related to the unemployment rate and income (Fronstin, 
1998; Kuttner, 1999) 

Number of homes 

sold per year 

= 30616 – 0.000046*Average income*Average income 
+ 0.082*average home sales price + 0.018*average 
home sales price*unemployment rate 

95.3% 0.040 

Remark Case (1991) and Case et al.(2000) show the intrinsic relationship between 
the real estate market and macroeconomy 

Average home 

sales price 

= 368990 – 129770*Unemployment rate + 
2.81*Unemployment rate*average income 

97.3% <0.000 

Remark Case (1991) and Case et al.(2000) show the intrinsic relationship between 
the real estate market and macroeconomy 

Per capita 

Demand 

= 122 – 0.000269*Unemployment rate*average 
income +0.594*Unemployment rate*Unemployment 
rate 

87.8% 0.015 

Remark Per capita demand is driven by the two macroeconomic indicators. 
Average income = –2164909 + 1097 * Year number 97.2% 0.000 

Remark average annual income presents strong linear property over years as shown 
in Figure 3. 
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Water price is a well-known factor that may have impacts on the per-capita water demand.  

However, it is not included in this model.  One of the reasons is that the demand of water is of 

fundamentally importance in our daily life and there is no substitute of water resources anyhow.  

In addition, water bills are not typically a big proportion of expense in the sense that the 

elasticity of water demand is not a sensitive one to be considered (Savenije and van der Zaag, 

2002).  Therefore, domestic water demand was deemed inelastic to the water price even though 

the price elasticity may be slightly different from zero in our system dynamics model. 

Note that the majority of the historical data that were used in our study came from the 

U.S. Census Bureau and U.S. Department of Labor.  Statistical regression analyses associated 

with these internal linkages within and between submodels were then available based on the 

historical data from 2003 to 2009.  These linkages are also supported by literature being 

reviewed.  Thus, Table 4-2 summarizes all the derived equations and associated remarks of those 

relevant factors. 

4.1.2 Model Validation 

The proposed system dynamics model was validated by comparing the estimated values 

against the historical data from 2003 to 2009.  The model starts its simulation runs in the year 

2003 with the designated initial data for the stock component (e.g. population).  Unemployment 

rate, as one of the macroeconomic driving forces, was replaced by the real historical recorded 

data.  Another macroeconomic driving force, namely the average annual income, was also 

estimated by using the regression equation described in Table 4-2.  Thus, the model-based output 

for Manatee County domestic water demand can be shown in Figure 4-2, which is denoted as the 

base model output in this study.  Apparently, the model-based estimation curve is pretty close to 

the actual historical curve confirming the fidelity of the proposed system dynamics model.  The 
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prediction accuracy of domestic water demand estimation in Manatee County from 2003 to 2009 

can be further evidenced based on the relatively higher R2 value (i.e., 78.72%).  Therefore, the 

development of this system dynamics model is deemed successful.  This validated model 

indicates the pattern of domestic water demand in Manatee County that is clearly driven by the 

Florida unemployment rate and average annual income. 

 

Figure 4-2 Model validation 

4.2 Carbon Footprint Evaluation For A Water Infrastructure System 

4.2.1 Goal And Scope Definition 

The time frame of this analysis was limited from 2011 to 2030, by which the total CO2 

equivalents were estimated over the 20 years for each of the twenty alternatives, respectively. 

The only impact category included in this study was GWP based on the same unit of CO2 

equivalents.  For the purpose of comparison, all values of carbon footprint were normalized to be 
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based on 1 m3 of potable water delivered, serviced and recycled in the production, use and 

recycle phases.  With these common bases, the proposed methodology described in previous 

section was implemented by calculations with the aid of a software package (Gabi 4.0 

education version).  Such a holistic assessment was followed by an uncertainty analysis to 

evaluate the reliability of the carbon footprint assessment. 

Table 4-3 Description of inventory characteristics of potable water service 

Characteristic Unit Value 
Steel 1,000 t see Section 4.2.3.1 
Concrete 1,000 m3 see Section 4.2.3.1 
Diesel L see Section 4.2.3.1 
New facilities 
 piping length 
 reservoir size 
 WTP capacity 

 
km 
106m3 
103 m3d-1 

 
see Section 4.2.4 
see Table 4-5 
see Table 4-6 

 

Table 4-4 The database of LCI applied in this study 

Process Unit  Power (kWh) GHG (g) Reference 
Production of steel kg 4.396 – (Stubbles,  2000) 
Production of 
cement 

103m3 575 – 
(Struble and 
Godfrey, 2004) 

Construction of 
steel structure 

m2 – 400-1000 
(Cole, 2000) 

Construction of 
concrete structure 

m2 – 5000-20000 

Transportation of 
water by pipes 

t see Section 4.2.4.1 – 
(PE International, 
2009) 

Raw water 
treatment 

m3 
normal: 0.1 
seawater: 0.52 

– 
(Friedrich, 2001; 
Cerci et al., 1999) 

Wastewater 
treatment 

m3 – 409 (Pillay, 2005) 

Energy from coal kWh 1 941 
(Lenzen, 2008) 

Energy from gas kWh 1 577 
Energy from oil kWh 1 750 (Weisser, 2007) 
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4.2.2 Inventory And Database 

All processes in the system boundary were assessed for carbon footprint calculations 

based on the characteristics of LCI as shown in Table 4-3.  The database applied in this study is 

summarized in Table 4-4.  Details of the carbon footprint estimation associated with construction, 

use, and recycle phases are given below stepwise for all alternatives. 

4.2.3 Construction Phase 

4.2.3.1 Raw Materials Acquisition 

Raw materials acquisition analysis is the first stage of the carbon-footprint analysis in 

evaluating the twenty expansion alternatives.  Raw materials, such as enforced steel and concrete, 

are used for the construction of new transmission pipes and WTP.  New reservoirs are all 

assumed to be earthen embankments.  Energy consumption for earthwork is estimated based on 

the data in Table 4-4.  Enforced steel and concrete are the two principal raw materials in 

construction selected for carbon-footprint estimation.  The concrete is a mixture of Portland 

cement with fly ash or slag, for which a modest amount of energy is required in the acquisition 

process.  The enforced steel has higher energy consumption per unit as compared to concrete in 

the production phase.  The energy consumed is estimated to be 2.07 GJm-3 or 0.89 MJkg-1 for 

concrete production (Struble and Godfrey, 2004) 15.83 MJkg-1 or 15 MBtut-1 for steel 

production (Stubbles, 2000).  The amount of raw materials required for each of the twenty 

expansion alternatives is estimated using the method illustrated in Figure 4-3.  In this context, we 

assume no enforced steel is required for the construction of new reservoirs and no concrete for 

new pipelines.  Both concrete and enforced steel are only needed for the construction of new 

WTP. 
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Figure 4-3 Carbon footprint estimation in construction phase 

The consecutive tables (Table 4-5, Table 4-6 and Table 4-7) list all the details of earth, 

concrete, and steel requirements for new reservoirs, new WTPs and pipelines.  The bucket of 

excavator grab vehicle is assumed to have a capacity of 0.96 m3 or 1.25 yd3 (e.g. Komatsu 

S4D102LE-2).  Since diesel consumption for a similar size excavator grab may vary from 18 

Lh-1 to 42 Lh-1 if fully loaded, an average value of 30 Lh-1 is assumed and selected in our 

calculation.  We further assume that 180 buckets of earth may be excavated per hour if an 

excavator grab vehicle is fully loaded.  Such information makes the estimation of carbon 

footprint associated with diesel combustion doable.  According to Gabi® LCI database, carbon 

footprint of diesel combustion based on the CO2 equivalent emission is 2.73 kgL-1 diesel burnt.  

Hence, the GHG emission due to earthwork for constructing new reservoirs can be evaluated.  

The lengths of pipelines are approximated by measuring the horizontal distances between the 

Manatee County WTP and the water sources.  The distances are determined by either actual 

piping route (e.g. regional water options) measured by Google Earth® or the suggested driving 

route by Google Map®.  The pipe wall thickness is assumed to be 2 cm.  The outer radius, R, is 

estimated based on the maximum capacity of the corresponding expansion alternative at the 

designed flow speed that is 1 ms-1. 
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Table 4-5 New reservoir size and earthwork for the 20 water supply alternatives 

Alternative 
Number 

New Reservoir 
Size 

(106m3) 

Earthwork 
(106m3) 

Total number 
of  buckets 

needed 

Total time 
required 

(h) 

Diesel 
needed 

(L) 
1 0 0 0  0  0  
2 0 0 0  0  0  
3 0 0 0  0  0  
4 0 0 0  0  0  
5 0 0 0  0  0  
6 7.57 0.92 960000  5333  160000  
7 15.14 1.83 1920000  10667  320000  
8 22.71 2.75 2880000  16000  480000  
9 15.14 1.83 1920000  10667  320000  
10 0 0 0  0  0  
11 0 0 0  0  0  
12 0 0 0  0  0  
13 22.71 2.75 2880000  16000  480000  
14 15.14 1.83 1920000  10667  320000  
15 22.71 2.75 2880000  16000  480000  
16 22.71 2.75 2880000  16000  480000  
17 15.14 1.83 1920000  10667  320000  
18 15.14 1.83 1920000  10667  320000  
19 15.14 1.83 1920000  10667  320000  
20 0 0 0  0  0  

The data of new reservoir sizes are based on the information in the work plan  (Manatee County 
Board of County Commissioner, 2008).  The data point of earthwork for alternative #13 is from 
“Facility Expansion Fact Sheet”, Peach River/Manasota Regional Water Supply Authority.  All 
the other data points for earthwork are estimations by assuming linear proportion to the new 
reservoir size.  Bucket size of a typical excavator grab vehicle is assumed to be 0.96 m3 (1.25 
yd3).  180 buckets of earth are assumed to be excavated per hour if the grab vehicle is fully 
loaded, at which diesel consumption is assumed to be 30 Lh-1. 
 

Using the proposed procedures in Figure 4-3, raw materials required for all twenty 

alternatives are estimated.  We further assume that energy needed for the production of raw 

materials is generated based on the current mixed power grid (53% gas, 24% oil, and 23% coal) 

in 2010.  According to the survey (Lenzen, 2008), the GHG intensity for black coal and natural 

gas are 941 gkWh-1 and 577 gkWh-1, respectively.  The GHG intensity for oil is 750 gkWh-1 

(Weisser, 2007).  Thus, the GHG intensity of such a mixed power grid (e.g., 53% gas, 24% oil, 
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and 23% coal) is about 702 gkWh-1.  With this information, the final CO2 equivalent emissions 

estimated for the twenty alternatives can be described in subsequent subsections. 

Table 4-6 New WTP capacity and raw materials for the 20 water supply alternatives 

Alternative Number New WTP Capacity 
(103m3d-1) 

Concrete Needed 
(103yd3 / 103m3) 

Steel Needed 
(103t) 

1 0 0 / 0 0 
2 0 0 / 0 0 
3 0 0 / 0 0 
4 0 0 / 0 0 
5 0 0 / 0 0 
6 0 0 / 0 0 
7 0 0 / 0 0 
8 0 0 / 0 0 
9 0 0 / 0 0 
10 0 0 / 0 0 
11 0 0 / 0 0 
12 0 0 / 0 0 
13 181.70  12 / 9.174 1.500 
14 75.71 5 / 3.822 0.625 
15 75.71 5 / 3.822 0.625 
16 75.71 5 / 3.822 0.625 
17 56.78 3.75 / 2.866 0.469 
18 53.00 3.5 / 2.676 0.438 
19 53.00 3.5 / 2.676 0.438 
20 37.85 2.5 / 1.912 0.313 

The data of new WTP capacities are based on the information in the work plan  (Manatee County 
Board of County Commissioner, 2008).  The data point of concrete and steel need for alternative 
#13 is from “Facility Expansion Fact Sheet”, Peach River Manasota Regional Water Supply 
Authority.  All the other data of concrete and steel needed are estimations by assuming that raw 
materials needed are linearly proportional to the new WTP capacity. 
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Table 4-7 The details in estimation of steel required for piping 

Alternative 
Number 

Max Water 
Credit 

(103m3d-1) 

Max Water 
Credit (m3s-1) 

Radius of 
pipelines, R, 

(m) 

Steel needed 
(m3) 

Steel needed 
(103 t) 

1 8.21 0.10 0.20  541.07  4.25  
2 11.36 0.13 0.22  785.54  6.17  
3 7.57 0.09 0.19  572.79  4.50  
4 18.93 0.22 0.28  1133.01  8.89  
5 15.52 0.18 0.26  938.01  7.36  
6 44.29 0.51 0.42  negligible negligible 
7 34.83 0.40 0.38  734.43  5.77  
8 40.13 0.46 0.40  2453.72  19.26  
9 17.79 0.21 0.28  1276.27  10.02  
10 17.03 0.20 negligible  negligible negligible 
11 0 0 negligible negligible negligible 
12 0 0 negligible negligible negligible 
13 45.42 0.53 0.43 4807.48  37.74  
14 75.71 0.88 0.55 7415.89  58.21  
15 75.71 0.88 0.55 2857.30  22.43  
16 75.71 0.88 0.55 2857.30  22.43  
17 56.78 0.66 0.48  1748.63  13.73  
18 30.28 0.35 0.35  1287.10  10.10  
19 43.15 0. 50 0.42  1529.26  12.00  
20 37.85 0.44 0.39  1690.46  13.27  

R  is the outer radius of the pipeline.  Pipeline wall thickness is assumed to be 2 cm.  Water flow 
speed is assumed to be 1 ms-1.   

 

4.2.3.2 Facility Construction 

Limited information is available in this regard for the estimation of energy consumption 

needed in facility construction.  To fill in the gap, it is inevitable to count on our best judgment 

along the track to produce the burden of carbon footprint due to facility construction.  Research 

on carbon footprint associated with construction of reservoirs/dams and WTP facilities is still 

lacking since no study up to the present includes all steps required for the estimation of GHG 

emissions.  Besides, this type of estimation of GHG emissions may vary from case to case with 

differing factors such as materials used, size of reservoirs, and capacity of WTP.  A study 
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(Peisajovich et al., 1996) was conducted in Quebec, Canada indicated that the GHG emissions 

associated reservoir construction could be close to each other as long as the construction 

materials were limited to be either concrete or earth/rock.  Thus, to ease the estimation of GHG 

emission, earthen reservoirs is chosen as basis in our assessment.  According to recent 

assessments by Cole (Cole, 2000; Cole, 1998), steel assemblies typically emit 0.4-1.0 kgm-2 

CO2 equivalent and concrete-based structural systems may lead to 5-20 kgm-2 CO2 equivalent 

emissions.   The upper bound of values is taken for our estimation.  Based on the raw materials 

(e.g. concrete and steel) required, we are able to estimate the approximate CO2 equivalent 

emissions during the construction phase based on the estimated area of land needed for facility 

constructions.  This is carried out based on the fact that that each square meter of the 

construction site requires 0.1 m3 concrete or 0.1 t steel on average for new WTPs and 1 m3 of 

earth for new reservoirs. 

4.2.4 Production Phase 

4.2.4.1 Raw Water Transportation 

In this stage, the equivalent CO2 emissions are generated based on shipping the raw 

water from raw water site to WTP in the Manatee County.  According to the database of GaBi® 

LCA software package (PE International, 2009), the energy consumption of pipeline 

transportation can be estimated by Equation 4-1, where EC is energy consumption in unit of 

kilowatt-hour per cubic meter of water (kWh∙m-3) distributed through piping, U represents the 

utilization rate of piping facilities in %, and D is denoted for the length of pipelines in kilometers.  

The utilization rate of pipelines is defined as the amount of actual water transported divided by 

the maximum transportation capacity of the pipelines. 
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1000

71828.21347.7 3413.2
D

EC
U ××

=      ( 4-1 ) 

To calculate the energy consumption per cubic meter of water each day, we estimate D as 

the horizontal distance between the raw water site and the Manatee County WTP for all the 

expansion alternatives except alternatives #5 and #9.  Same as described in Section 4.2.3.1, D is 

determined by either actual piping route (e.g. regional water options) measured by Google 

Earth® or the suggested driving route by Google Map®.  Although raw water may be treated at a 

new WTP in some alternatives, the treated water from those alternatives is assumed to be 

rerouted to the Manatee County WTP for distribution to customers using the current existing 

pipeline network, and thus the energy consumption does not change much from each other 

between different alternatives.  Even though an increased impact may be expected relative to the 

current situation due to increased water supplies, such an increase can be ignored numerically 

when comparing all expansion alternatives together.  Water supply expansion alternatives #5 and 

#9 are different with the rest of alternatives because of no required treatment for the surface 

water as the supply source is simply prepared for irrigation.  As a consequence, the pipeline 

distances from the raw water site to the irrigation site are used as the basis for the estimation of 

carbon footprint in alternatives #5 and #9. 

In Equation 4-1, U is assumed to be 100% for all twenty alternatives in which the newly 

constructed pipelines are required.  In other words, the maximum capacity of newly built 

pipelines is assumed to be operated under maximum water credit that can be obtained from each 

water supply alternative.  This assumption meets the cost-effectiveness requirement. 
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4.2.4.2 Treatment Of Raw Water At WTP 

Energy consumption in the raw water treatment phase has no difference between 

alternatives from #1 to #12 in which treatment is supposed to be performed at the Manatee 

County WTP.  For those alternatives from #13 to #19, new WTPs will be built using similar 

treatment processes as the same as the current Manatee County WTP.  Thus, we assume the same 

energy consumption in the raw water treatment phase when compared with those of alternatives 

from #1 to #12.  A study with a similar WTP treatment process in eThekwini Municipality 

(South Africa) was conducted and energy consumption was reported as 0.10 kilowatt-hour per 

cubic meter treated water (Friedrich, 2001).  That is equal to 70.2 g CO2 equivalents in terms of 

GWP assuming that the energy comes from the same mixed power grid (e.g., 53% gas, 24% oil, 

and 23% coal). 

Energy consumption is significantly higher for the seawater desalination used as a unit 

process in alternative #20.  A study of desalination process (Cerci et al., 1999) indicated that the 

energy consumption depends on the salinity level of source seawater and recovery ratio of 

membrane treatment.  At the assumed 35 g∙L-1 salinity for seawater in the Tampa Bay area, the 

minimum energy required was 0.52 kilowatt-hour per cubic meter water treated at a recovery 

rate 40% (Cerci et al., 1999).  This rate corresponds to 365.04 g CO2 equivalents of GWP when 

the energy comes from the same mixed power grid (53% gas, 24% oil, and 23% coal).  Up to this 

point, we are able to summarize the energy consumption and corresponding CO2 equivalent 

emissions in the raw water treatment phase for all the twenty alternatives (Table 4-8) 
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Table 4-8 Carbon footprint in raw water treatment phase 

Alternative Number Energy consumption 
Unit: kWhm-3 

CO2 equivalent emissions 
Unit: gm-3 

1 ~ 19 0.10 70 
20 0.52 365 

 

4.2.5 Use Phase 

4.2.5.1 Potable Water Distribution 

Energy consumption for potable water distribution is the same for all the twenty 

alternatives that use the same existing piping networks for distribution.  The drinking water 

distribution pipes in the Manatee County system have a total length of 2,234.19 km (1,388.56 

miles) with a maximum capacity of 317,975 m3∙d-1 (84 million gallons per day).  Based on the 

water demand projection in the work plant, the total demand at wholesale quantity will reach 

234,431 m3∙d-1 (61.93 million gallons per day) by year 2030.  Thus, in the year 2030, the treated 

potable water pipeline utilization rate, U, will be 234,431÷317,975 = 73.73%.   

We estimated energy requirements for the potable water distribution phase by using 

Equation 4-1.  An accurate estimation can be obtained from hydraulic modeling of water 

distribution in a future network configuration, including pump scheduling and pressure zone 

management (Walski et al., 2009).  The uncertainty in future network configuration and 

management makes this type of calculation unattainable.  Instead, using Equation 4-1 is a 

feasible way for the purpose of alternative screening only.  For the topographically flat service 

area of the district, the energy consumption can be estimated for a median piping distance from 

the WTP.  In Figure 4-4, the boundaries of the Manatee County are represented by solid lines.  

Its service area is measured using tools in Google Earth®.  Sarasota County, as a wholesale 
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customer, is right next to Manatee County in the south.  Assuming that residents are uniformly 

distributed in Manatee County and Sarasota County, the median distance (Rmedian) between the 

Manatee County WTP and customers is given in Equation 4-2. 

2
median 59.5 km 48 kmRπ = ×       ( 4-2) 

 

Figure 4-4 Location of WTP and median distance to customers 

Based on these simplifications, the median distance between Manatee County and 

customers is 21.4 km.  The energy consumption in the potable water distribution phase, 

calculated from Equation 4-1, is 0.858 kWhm-3.  This equals 602.32g equivalents of CO2 

emission when the energy comes from the same mixed power grid (e.g., 53% gas, 24% oil, and 

23% coal). 

4.2.5.2 Sewage And Wastewater Collection 

Energy consumption in sewage and wastewater collection is indifferent among the twenty 

water supply expansion alternatives.  According to the work plan, three wastewater treatment 
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plants (WWTP) are in operation providing wastewater service for Manatee County (Figure 4-5).  

Similarly by assuming uniform distribution of residents in Manatee County and Sarasota County, 

we estimate the median distance of 12.35km between the WWTPs and customers.  We further 

assume that the sewage and wastewater collection rate is 80% of potable water serviced, and 

estimated the rate of 187,544.8 m3∙d-1 in wastewater collection by 2030.  Assuming that the 

capacity of pipeline for wastewater collection is the same as that for potable water delivery, the 

utilization rate of wastewater collection pipelines is 58.98%.  We recognized that energy 

consumption in wastewater collection varies significantly between locations.  For most 

wastewater utilities, wastewater collection is composed of gravity drains and booster pump 

stations.  Due to the flat topography of the Manatee County, we assumed most wastewater 

streams were shipped by pumping in our analysis.  Let U = 58.98% and D = 12.35 km.  By 

applying Equation 4-1, we obtain an energy consumption of 0.351 kWhm-3.  The equivalent 

CO2 emission is 246.40 g when the energy comes from the same mixed power grid (e.g., 53% 

gas, 24% oil, and 23% coal). 

 

Figure 4-5 Locations of WWTPs and median distance to customers 
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4.2.6 Recycle Phase 

4.2.6.1 Treatment Of Wastewater At WWTPs 

All the three WWTPs in Manatee County have applied the same secondary wastewater 

treatment process.  Thus, there is no difference in energy consumption if wastewater is treated in 

one of the three WWPs.  In a similar carbon footprint analysis study conducted for wastewater 

treatment in eThekwini Municipality, South Africa, it shows that 112g CO2 equivalent emissions 

for primary treatment and 297 g CO2 equivalent emissions for secondary treatment per cubic 

meter wastewater can be quantified (Pillay, 2005), For the case when wastewater generation rate 

is 80%,, the phase of wastewater treatment will generate about 238g CO2 equivalent emission 

per cubic meter drinking water consumed in the district. 

4.2.6.2 Reclaimed Water Reuse Or Discharge To Rivers 

In this stage of the potable water service, reclaimed water from wastewater treatment 

plant is either discharged to rivers or to irrigation fields.  Since rivers and irrigation fields are not 

potable water users, they may have different topographies between these two locations.  Thus, 

we assume that reclaimed water is transported to irrigation fields or rivers by gravity from which 

no energy consumption and no GHG emissions will occur. 

4.3 Multiobjective Programming For Water System Optimization 

In the quantitative analysis, the multistage planning horizon was divided into four time 

periods with each having a 5-year time span.  Decisions in each period as to how many new 

water supply alternatives need to be picked up to meet the growing water demand can be 

assessed via a trade-off between the two objectives subject to associated constraints. Together 
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with a set of technical, managerial, and social constraints, the model is able to output a set of 

decision variables for calculation of the amount of water that may be generated from a selected 

water supply alternative in a specific time period and its associated environmental impact in 

terms of CO2 equivalent emissions. 

4.3.1 Multiobjective And Multistage Mixed Integer Programming Model 

4.3.1.1 Objective Functions 

The following formulation of two objective functions implements the prescribed 

technical setting of 5-year operation per time period.  All monetary values associated with cost 

terms are discounted value to the year 2007.  These two objectives are deemed comparable with 

each other in decision making which implies that there is no hierarchical relationship in between.  

Objective function 1:  Minimize Z1 = total CO2 equivalent emissions, unit: g 

=
20 4 20

1 1 ( 1)
1 2 1

(1000 CO2eo 365 5 CO 2ec ) [1000 CO2eo 365 5 ( )CO 2ec ]i i i i it i it i t i

i t i

A Y A Y Y −
= = =

× × + + × × + −∑ ∑∑  

Objective function 2:  Minimize Z2 = total cost, unit: $ 

= 
20 4 20

1 1 ( 1)
1 2 1

(1000 365 5 ) [1000 365 5 ( ) ]i i i i it i it i t i

i t i

A C Y F A C Y Y F−
= = =

× × + + × × + −∑ ∑∑  

in which Yit is 1 if alternative i is implemented in and after time stage t; otherwise Yit = 0,  i = 1, 

2, …, 20; t = 1, 2, 3, 4. CO2ec i is the amount of CO2 equivalent emissions in the construction 

phase of alternative i in unit of g, and CO2eoi is the amount of CO2 equivalent emissions in the 

operational phase of alternative i in unit of gm-3, i = 1, 2, …, 20.  Ait is actual water withdraw 

(103m3d-1) from alternative i, i = 1, 2, …, 20, t = 1, 2, 3, 4.  Ci is unit water cost of solution i in 

$m-3, i = 1, 2, …, 20.  F i is Fixed capital investment for alternative solution i, i = 1, 2, …, 20. 
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4.3.1.2 Constraints 

Constraint set in this compromise programming model includes definitional constraints, 

water demand constraints, capacity limitation constraints, availability constraints, sequencing 

constraints, mutually exclusive constraints, irreversible constraints, and screening constraints, 

and non-negative and binary constraints. These constraints provide different functionalities in an 

intertwined solution space that uniquely narrow down the dynamic selection and ranking based 

on the streamlined logic as described by the coupled objective functions and constraints over the 

planning horizon. 

a) Definitional constraints: This set of constraints defines the current maximum water supply and 

projected water demand in each time period in thousand cubic meters per day.  All of them 

empower the final decision analysis collectively to bridge the objectives and constraint set. 

S = 200.04   103m3d-1         ( 4-3 ) 

D1 = 192.19   103m3d-1        ( 4-4 ) 

D2 = 209.14   103m3d-1        ( 4-5 ) 

D3 = 211.83   103m3d-1        ( 4-6 ) 

D4 = 234.43   103m3d-1        ( 4-7 ) 

F i = 0.001   $          ( 4-8 ) 

G = an ultra big number (e.g., 999999999)      ( 4-9 ) 

in which S is current water supply upper bound. Dt is water demand in time period t (= 1, 2, 3, 4). 

G is a dumb number in programming for computing stability to support the simultaneous 

screening based on the If-Then logic in Constraints (4-24)~(4-26).  Fi is the virtual fixed cost 

that is artificially assigned small number relative to all cost parameters to aid in screening logic 
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in cost-effectiveness objective and associated constraints. The settings of F i and G can also help 

avoid a void selection of an alternative with no actual water supply over the planning horizon. 

b) Water demand constraints: This set of constraints between demand (D) and supply (S) apply 

to the entire 20-year period in modeling space: 

20

1
it t

i

A D S
=

≥ −∑  for all t       ( 4-10 ) 

c) Capacity limitation constraints: This set of constraints assures that the water amount supplied 

by each future water source will not exceed its predetermined supply limit. 

max
it i it

A A Y≤  for all t and all i      ( 4-11 ) 

in which max
i

A is the maximum water credit (103m3d-1) for A i, i = 1, 2, …, 20. 

d) Availability constraints: This set of constraints assures that only MARS-I and MARS-II can 

be available in time period 1 and the rest of future water supply alternatives may be available 

only after time period 1 because of the original setting in the work plan. 

1

1     1, 2   

0           3, 4,..., 20
i

i
Y

i

=
=  =

        ( 4-12 ) 

e) Sequencing constraints: This set of constraints assures that MARS-II project is not able to be 

implemented until implementation of MARS-I project because of the original setting in the work 

plan.  Similarly, MARS-II project must be implemented ahead of the implementation of MARS-

III project. This forward-looking sequence is also applied for MARS-III project which must be 

implemented ahead of MARS-IV project. 

1 2

2 3

3 4

t t

t t

t t

Y Y

Y Y

Y Y

≥

≥

≥

 for all t        ( 4-13 ) 
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f) Mutually exclusive constraints: Some of the future water supply alternatives are mutually 

exclusive based on the original setting in the work plan. This set of constraints assures that only 

one of exclusive future water supply alternatives may be implemented in any time period.  For 

example, alternatives 11 and 12 are mutual exclusive since water use permit is either transferred 

to developers or purchased by Manatee County.  MARS-III project has conflicts with regional 

water supply alternatives because any one of the regional water supply sources or completed 

implementation of MARS projects will provide enough water supply capacity according to the 

work plan (Board of County Commissioner, 2008).  Alternatives 15 and 16 are mutually 

exclusive because both alternatives use the same water supply sources with different 

implementation schedules.  Similarly, alternatives 17, 18 and 19 are mutually exclusive because 

all of the three alternatives count on Flatford Swamp as a water source.  The differences among 

the three are linked with whether we have to build a new WTP and whether this site will be 

implemented as a regional water supply option.  Alternatives 9, 18 and 19 are mutually exclusive 

because all of the three are tied with a new reservoir site at Tatum.  The difference is whether the 

new reservoir site will be used to store water pumped from Myakka River or from Flatford 

Swamp. Constraints (4-19)~(4-22) illustrate the need of having MARS I in place at first before 

allowing the other relevant alternative 5, 9, 10, and 11 to be selected because of the sequential 

credit transfer. 

11 12 1t tY Y+ ≤      for all t     ( 4-14 ) 

3 13 14 15 16 17 1t t t t t tY Y Y Y Y Y+ + + + + ≤   for all t     ( 4-15 ) 

11615 ≤+ tt YY      for all t     ( 4-16 ) 

1191817 ≤++ ttt YYY     for all t     ( 4-17 ) 

9 18 19 1t t tY Y Y+ + ≤     for all t     ( 4-18 ) 
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tt YY 15 ≤      for all t     ( 4-19 ) 

tt YY 19 ≤      for all t     ( 4-20 ) 

tt YY 110 ≤      for all t    ( 4-21 ) 

tt YY 111 ≤      for all t    ( 4-22 ) 

g) Irreversible constraints: This set of constraints assures that the implemented water supply 

alternatives in one time period will be available in and after that time period. 

( 1)it i tY Y +≤     i = 1, 2, …, 20, t = 1, 2, 3  ( 4-23 ) 

h) Screening constraints: The set of constraints assures that the inclusion of a new water supply 

alternative at a time in the screening process is considered when the maximum capacity of 

current water supply in the current time period is not able to meet the projected water demand in 

the next time period.  Otherwise, there is no need to implement any water supply alternative as 

long as there are enough water supplies.  In Constraints (4-24)~(4-26), the formulation would 

allow n number of water supply alternatives to be included in each time period for capacity 

expansion, in which n is a positive integer.  If n =1, it implies the model would only pick up one 

alternative at a time for ranking in sequence. Three different scenarios were analyzed, which 

include n =1, n =2 and n =3, respectively, in our case study, to address the number of alternatives 

that are allowed to be selected at a time. 

20
max

1 2 1
1

20 20

2 1 1
1 1

( )

(1 )

i i

i

i i

i i

Y A D S GY

Y Y n Y

=

= =

− − <

− ≤ −

∑

∑ ∑
        ( 4-24 ) 

20
max

2 3 2
1

20 20

3 2 2
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in which Y1, Y2, and Y3 are binary integer variable for screening of multiple alternatives 

associated with differing scenarios in the optimization context. 

i) Non-negative and binary constraints: This set of constraints assures that the amount of water 

assigned to each water supply alternative is non-negative and the binary decision variables are 

dichotomous. 

0itA ≥            ( 4-27 ) 

0,1itY =  i = 1, 2, …, 20,  t = 1, 2, 3, 4      ( 4-28 ) 

Y1, Y2, Y3 = 0, 1         ( 4-29 ) 

4.3.2 Solution Procedure 

4.3.2.1 Solution Space And The Pareto Optima Solutions 

We can obtain the ideal solution of the multi-objective model defined in Section 4.3.1 by 

solving each of the individual objectives sequentially.  The ideal solution (shown in Table 4-9) is 

considered optimal when each objective is optimized individually and achieved at the same time.   

However, the ideal solution may not be feasible given that the objectives may be competing, 

even conflicting in the decision space for which the “Pareto Optima” solution set is commonly 

used.  The solution optimization is then transferred to finding the Pareto Optima frontier in the 

solution space of a compromise programming model.  Alternatively, the compromised solution 

can be also obtained by applying the distance-based metrics defined in solving the compromise 

programming model (Zeleny, 1973). 
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Table 4-9 Ideal solution of the multi-objective model  

 Minimize Z1 

(g) 
Minimize Z2 

($) 
n = 1 1.22×1012 2.23×108 
n = 2 7.53×1011 1.72×108 
n = 3 7.29×1011 1.72×108 

 

4.3.2.2 Solution Space And Pareto Optimal Solutions 

Since there are two objective functions in the model, the solution space is a two 

dimensional objective space with the x-axis defined for CO2 equivalent emissions (Z1) and the y-

axis for total system cost (Z2).  The possible numerical range of Z1 can be found by solving two 

single objective optimization models with an objective function to minimize Z1 and maximize Z1, 

respectively, subject to Constraints (4-3)~(4-29).  The same method is also applicable for the 

range of Z2.  We denote that the lower and upper bounds of Z1 as min
1Z  and max

1Z .  Similarly,  

min
2Z  and max

2Z  are the lower and upper bounds of Z2.  For every feasible point of p
1Z  and p

2Z , 

they must fall in the range between min
1Z  and max

1Z or min
2Z  and max

2Z .  Hence, we have p
1 1Z Z=   

and Z2= p
2Z .  This leads to the generation of the solution set { }p p

1 2( , ) all pZ Z  consisting of all the 

Pareto optimal points.  However, in case of unlimited number of p
1Z  and p

2Z  in the range 

bounded by the upper and lower limit and p indicates any possible solution in between, we have 

to discretize the feasible solution range along the Z1 and Z2 dimension by dividing them into 

several small intervals.  For example, we denote ind as the indifferent amount of CO2 equivalent 

emissions that decision makers may feel indifferent with each other. Thus, the feasible range of 

Z1 may be discretized to min min
1 1( , )Z Z ind+ , min min

1 1( , 2 )Z ind Z ind+ + , …, min max
1 1( , )Z l ind Z+ ×  

where max min
1 1( ) /l f Z Z ind = −  , and f is a flooring function that returns the maximum integer 
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that is less than max min
1 1( ) /Z Z ind− , which must be defined inherently.  Similarly, for the interval 

of min min
1 1( , ( 1) )Z m ind Z m ind+ × + + × , we may solve a single objective optimization model with 

the objective function to minimize Z2 subject to those constraints defined by Constraints (4-

3)~(4-32). 

min
1 1Z Z m ind≥ + ×          ( 4-30 ) 

 indmZZ ×++≤ )1(min
11         ( 4-31 ) 

1
2 2

m
Z Z

−≤           ( 4-32 ) 

m = 0, 1, …, l, 1
m

Z  and 2
m

Z are the corresponding optimal solutions, and 1
2Z
− = ∞ . 

4.4 Application Of Nested Minimax Regret Solution Method 

As presented in Section 3.4, the complexity of the nested minimax regret solution method 

increases exponentially with the increase of the scale of the original multiobjective interval linear 

program and the number of uncertainties in the objective functions.  The number of constraints in 

the minimax regret solution is ])12([ mp
n ++ excluding the non-negativity constraints where n is 

the number of uncertainties in the objective functions, p is the number of objectives (p = 2) in 

our study area, and m is the number of constraints.  Due to such limitation, we apply the nested 

minimax regret solution method to a reduced scale version of our study area in Manatee County, 

Florida.  In the reduced scale version of study area, we combine water supply alternatives in the 

same category into one option.  Thus, there are five potential water supply options available for 

Manatee County, which are ground water options, surface water options, regional water options, 

transferred water options and other options.  Whereas the combined uncertain maximum water 

credits and unit costs for the five water supply options can be seen in Table 4-10,  the combined 

uncertain CO2 equivalent emissions in construction phase and operational phase for the five 
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water supply options can be found out in Table 4-11.  In addition, we only consider facility 

expansion strategy under uncertainties for the entire 20-year-planning-period in the reduce scale 

version of study area, rather than a multiple time stage analysis. 

Table 4-10 Uncertain maximum water credit and unit cost for each water supply option 

 Water Supply Categories Max Water Credit Unit Cost 
I Ground Water Options [7.57, 18.93] [0.31, 0.53] 
II Surface Water Options [15.52, 44.29] [0.51, 1.09] 
III Transferred Water Options 17.03 0.5 
IV Regional Water Options [45.42, 75.71] [0.30, 0.76] 
V Other Options [30.28, 43.15] [0.55, 1.07] 

Max Water Credit: 1,000 m3d-1  Unit Cost: $ m-3 

Table 4-11 Uncertain GHG emissions for each water supply option 

 Water Supply Categories CO2 equivalent emissions in 
construction phase (g) 

CO2 equivalent emissions in 
operational phase (gm-3) 

I Ground Water Options [1.31×1010, 2.75×1010] [2346, 2865] 
II Surface Water Options [1.88×1010, 1.16×1011] [1156, 3745] 
III Transferred Water Options 0 1156 
IV Regional Water Options [8.31×1010, 2.22×1011] [2706, 6853] 
V Other Options [4.31×1010, 7.76×1010] [2706, 3278] 
 

4.4.1 Multiobjective Interval Linear Programming Model Formulation  

We define GYi is 1 if water supply category i is implemented; otherwise GYi = 0,  i = 1, 

2, …, 5.  ±
iGHGc  is the uncertain amount of CO2 equivalent emissions in the construction phase 

of water supply category i in unit of g, and ±
iGHGo  is the uncertain amount of CO2 equivalent 

emissions in the operational phase of water supply category i in unit of gm-3, i = 1, 2, …, 5.  GA i  

is actual water withdraw (103m3d-1) from alternative i, i = 1, 2, …, 5.  ±
iGC  is the uncertain unit 

water cost of water supply category i in $m-3, i = 1, 2, …, 5.  F i is Fixed capital investment for 

alternative solution i, i = 1, 2, …, 5.  Thus, we have the two objective functions with uncertain 

coefficients as defined below. 
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Objective function 1:  Minimize Z1 = total CO2 equivalent emissions, unit: g 

=∑
=

±± ×+×××
5

1i

)203651000( iiii GHGcGYGHGoGA  

Objective function 2:  Minimize Z2 = total cost, unit: $ 

= ∑
=

± ×+×××
5

1i

)203651000( iiii FGYGCGA  

As water supply alternatives are combined to only five categories, there will be a reduced 

constraint set as well because some constraints (such as sequencing constraints, mutual exclusive 

constraints and etc.) are no longer applicable.  The constraint set is summarized as below. 

a) Definitional constraints:  

S = 200.04   103m3d-1         ( 4-33 ) 

±
GD = 234.43 ± 10%    103m3d-1      ( 4-34 ) 

Fi = 0.001   $          ( 4-35 ) 

in which S is current water supply upper bound. ±
GD  is the uncertain water demand in planning 

time period.  We arbitrarily impose 10% random error into the projected water demand.  F i is the 

virtual fixed cost that is artificially assigned small number relative to all cost parameters to aid in 

screening logic in cost-effectiveness objective and associated constraints.  

b) Water demand constraints:  

SGDGA
i

i −≥ ±

=
∑

5

1

         ( 4-36 ) 

c) Capacity limitation constraints: 

iii GYGAGA
±≤ max     for all i     ( 4-37 ) 

in which ±
iGAmax is the uncertain maximum water credit (103m3d-1) for iGA . 

d) Non-negative and binary constraints:  

0≥iGA      i = 1, 2, …, 5    ( 4-38 ) 
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1 ,0=iGY      i = 1, 2, …, 5    ( 4-39 ) 

4.4.2 Application Of The NMMR Method 

We follow the NMMR solution method step by step as proposed in Section 3.4.2.  We 

define αΩ  as the feasible solution region at the degrees of satisfaction matrix  α  such that 

)}())((|{ −++−++ −−≤−−−=Ω BBαBXAXAαEXAXα , where  T]0 ,0 ,0 ,0 ,0 ,833.57[−=−B , 

T]0 ,0 ,0 ,0 ,0 ,947.10[−=+B , T
GYGYGYGYGYGAGAGAGAGA ] , , , , , , , , ,[ 5432154321=X ,


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A ,  and 
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
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
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
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A . 

Step 1: Solve the problems 1ˆ min
0

z
Ω

 and  2ˆ min
0

z
Ω

 and find optimal values, where 

∑
=

×+×××=
5

1i
1 )203651000(ˆ iiii GHGcGYGHGoGAz , 

∑
=

×+×××=
5

1i
2 )203651000(ˆ

iiii FGYGCGAz , 

} ,{ +−∈ iii GHGoGHGoGHGo , } ,{ +−∈ iii GHGcGHGcGHGc , } ,{ +−∈ iii GCGCGC  .  Let optz1ˆ 's be 

the optimal values of problems 1ˆ min
0

z
Ω

 and optz2ˆ 's be those of problems 2ˆ min
0

z
Ω
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Step 2: Specify α  matrix and solve the problems 1 min
1

r
RαΩ

 and 2 min
2

r
RαΩ

, where 

}ˆˆ| ,{ 11111 optzzrr −≥= XR  and }ˆˆ| ,{ 22221 optzzrr −≥= XR .  Let )(opt
1 αX  and ) ),(( opt

1
opt

1 ααXr  be 

the optimal solution and value of the problem 1 min
1

r
RαΩ

 and )(opt
2 αX  be those of the problem 

2 min
2

r
RαΩ

. 

Step 3: Form a payoff table. 

 1r  2r  

)(opt
1 αX  ) ),(( opt

1
opt

1 ααXr  ) ),(( opt
12 ααXr  

)(opt
2 αX  ) ),(( opt

21 ααXr  ) ),(( opt
2

opt
2 ααXr  

 

Step 4: Solve the problem Γ
Ω

 min
21 rRRRα 

 and find the NMMR solution, where  

} 
) ),(() ),((

) ),((
 and 

) ),(() ),((

) ),((
| , , ,{

opt
2

opt
2

opt
12

opt
2

opt
22

opt
1

opt
1

opt
21

opt
1

opt
11

21 ααXααX

ααX

ααXααX

ααX
XR

rr

rr

rr

rr
rrr −

−
≥Γ

−
−

≥ΓΓ= .  

If the solution is acceptable by decision maker, the obtained solution is the final solution.  If not, 

go to Step 5. 

Step 5: Specify a different α  matrix and repeat from Step 2 to Step 4. 
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5 CHAPTER FIVE: RESEARCH RESULTS 

5.1 System Dynamics Modeling For Domestic Water Demand Under Changing Economy 

In the system dynamics model, the uncertainties embedded in parameters or equations 

being derived associated with the two driving forces are worthy of being further explored by 

sensitivity analysis. It helps gain a better understanding as to how reliable the estimated water 

demand could be under the uncertain economic impact given that the domestic water demand in 

the study period is highly nonlinear in response to the changing macroeconomic environments.  

Therefore, small offset on the two driving forces were setup in order to keep the trend so that the 

offset demand curved would be in a similar pattern as the base model as shown in Figure 5-1.  In 

the sensitivity analysis, the unemployment rate (UR) and the average annual income (AAI) are 

offset by ±5% and ±2%, respectively.  Having this carried out, the resultant impact on domestic 

water demand can be realized and illustrated in Figure 5-2 with respect to the upper and lower 

bounds of the estimated water demand in response to the offset unemployment rate and annual 

average income from 2003 to 2009.  The vertical solid lines represent the intervals of water 

demand, which are caused by the fluctuations or uncertainties associated with the changing 

macroeconomic environments.  The triangle marks stand for the estimated values of the base 

model relative to those fluctuated values above and below them. 
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Figure 5-1 Model outputs with the offset unemployment rate and average annual income 

From the sensitivity analysis, it is indicative that the subtle change of unemployment rate 

results in a more change in the estimated domestic water demand.  Such a fluctuation does not 

change the estimated water demand curve pattern, however.  Besides, the subtle change of 

average annual income may result in a greater impact to the water demand compared to the 

impact of unemployment rate fluctuations.  Such an impact to the water demand due to the 

uncertain average annual income becomes obvious when the unemployment rate is in a high 

level (e.g. year 2008 and 2009).  It is noticeable that the increase of average annual income may 

positively affect the real estate market and further affect the population growth and migration.  

Yet, the phenomenon that the estimated water demand declines in response to the average annual 

income increase is mainly caused by the total population decrease which is primary due to the 

change of net immigration rate.  Therefore, it may lead to a conclusion that the proposed system 
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dynamics model is less sensitive to the uncertainties of unemployment rate than the average 

annual income. 

 

Figure 5-2 Sensitivity analysis of domestic water demand 

5.2 Carbon Footprint Evaluation For A Water Infrastructure System 

5.2.1 Carbon Footprints In Construction Phase 

By applying the methods described in Sections 4.2.3.1 and 4.2.3.2, CO2 equivalent 

emissions in the raw material acquisition stage and in the facility construction stage are 

determined.  The results are shown in Table 5-1 and Table 5-2, respectively.  The options for 

transferred water use permit (e.g., alternatives #10, #11, and #12) bear no burden of carbon 

footprint in the construction phase since no new facility or piping is needed due to the nature of 

these alternatives. Those transferred water credits are mainly from existing water sources, 

transported using existing piping, treated at the existing WTP, and delivered to consumers by 

existing piping network.  Nothing needs to be changed when such options are adopted. 
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Table 5-1 Carbon footprint in raw material acquisition stage (Process ) 

Column no. 1 2 3 4 5 6 

Alternative 
number 

Concrete 
required 
(103m3) 

Energy 
required for 
concrete* 

(J) 

Steel 
required 

(103t) 

Energy required 
for enforced 

steel** 
(J) 

Diesel 

required
△
 

(L) 

CO2 
equivalent 

emissions
△
 

(g) 
1 0 0 4.25  6.72×1013 0  1.31×1010 
2 0 0 6.17  9.76×1013 0  1.90×1010 
3 0 0 4.50  7.12×1013 0  1.39×1010 
4 0 0 8.89  1.41×1014 0  2.75×1010 
5 0 0 7.36  1.17×1014 0  2.27×1010 
6 0 0 0 0 160000  4.37×108 
7 0 0 5.77  9.13×1013 320000  1.87×1010 
8 0 0 19.26  3.05×1014 480000  6.08×1010 
9 0 0 10.02  1.95×1014 320000  3.18×1010 
10 0 0 0 0 0  0 
11 0 0 0 0 0  0 
12 0 0 0 0 0  0 
13 9.174 1.90×1013 39.24  6.21×1014 480000  1.26×1011 
14 3.822 7.91×1012 58.84  9.31×1014 320000  1.84×1011 
15 3.822 7.91×1012 23.05  3.65×1014 480000  7.40×1010 
16 3.822 7.91×1012 23.05  3.65×1014 480000  7.40×1010 
17 2.866 5.93×1012 14.20  2.25×1014 320000  4.59×1010 
18 2.676 5.54×1012 10.54  1.67×1014 320000  3.45×1010 
19 2.676 5.54×1012 12.44  1.97×1014 320000  4.04×1010 
20 1.912 3.96×1012 13.58  2.15×1014 0  4.27×1010 

Note: 1 joule = 2.7778×10-7 kWh or 1 Wh = 3600 J 
* Estimations in (2) = estimations in (1) × 2.07 GJm-3  (Struble and Godfrey, 2004) 
** Estimations in (4) = estimations in (3) ×15.83 MJkg-1 (Stubbles, 2000) 
△
Estimations in (6) = [estimations in (2) + (4) ]×702 gkWh-1+ estimation in (5) × 2.73 kgL-1 
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Table 5-2 Carbon footprint in facility construction stage (Process ) 

Column no. 1 2 3 4 5 6 

Alternative 
number 

Earth 
structural 
system for 
reservoirs 

(km2) 

CO2 
equivalent 

emissions for 
reservoirs* 

(g) 

Concrete 
structural 
systems 

for WTPs 
(m2) 

Steel 
assemblies 
for WTPs 

(m2) 

CO2 
equivalent 
emissions 

for WTPs** 
(g) 

Total CO2 
equivalent 

emissions
△
 

(g) 

1 0 0 0 0 0 0 
2 0 0 0 0 0 0 
3 0 0 0 0 0 0 
4 0 0 0 0 0 0 
5 0 0 0 0 0 0 
6 0.92 1.83×1010 0 0 0 1.83×1010 
7 1.83 3.76×1010 0 0 0 3.67×1010 
8 2.75 5.50×1010 0 0 0 5.50×1010 
9 1.83 3.67×1010 0 0 0 3.67×1010 
10 0 0 0 0 0 0 
11 0 0 0 0 0 0 
12 0 0 0 0 0 0 
13 2.75 5.50×1010 91740 15000 1.85×109

 5.69×1010
 

14 1.83 3.67×1010 38220 6250 7.71×108
 3.75×1010

 

15 2.75 5.50×1010 38220 6250 7.71×108
 5.58×1010

 

16 2.75 5.50×1010
 38220 6250 7.71×108

 5.58×1010
 

17 1.83 3.67×1010
 28660 4690 5.78×108

 3.73×1010
 

18 1.83 3.67×1010
 26760 4380 5.40×108

 3.72×1010
 

19 1.83 3.67×1010
 26760 4380 5.40×108

 3.72×1010
 

20 0 0 19120 3130 3.86×108
 3.86×108

 

Assumptions: 1m2 requires 0.1m3 concrete or 0.1t steel for WTP and 1m3 earth for reservoirs. 
* Estimations in (2) = estimations in (1) ×20 kgm-2 (Cole, 1998) 
** Estimations in (5) = estimations in (3) × 20 kgm-2 + estimations in (4) × 1 kgm-2 (Cole, 1998) 
△
 Estimations in (6) = estimations in (2) + estimations in (5) 

5.2.2 Carbon Footprints In Operational Phase 

The operational phases include production, use, and recycle processes.  By applying the 

methods described in Section 4.2.4.1, we may estimate the CO2 equivalent emissions in the raw 

water transportation stage (see Table 5-3).  Table 5-4 further summarizes the CO2 equivalent 

emissions in the raw water treatment stage (process ), potable water distribution stage (process 

), sewage and wastewater collection stage (process ), wastewater treatment stage (process 
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), reclaimed water reuse and discharge stages (process  and ).  The process numbers used 

above are defined by Figure 3-3.  Those CO2 equivalent emissions in the operational phase are 

variable as a function of the volume of water supplied and serviced.  The calculated CO2 

equivalent emissions are rounded to the nearest unit of gram per cubic meter water produced. 

Table 5-3 Carbon footprint in raw water transportation stage (Process ) 

Column no. 1 2 3 

Alternative 
number 

D 
(km) 

Energy consumption 
(kWhm-3) 

CO2 equivalent 
emissions 

(gm-3) 
1 22.85 1.69 1190 
2 29.29 2.17  1525 
3 25.43 1.89  1324 
4 32.83 2.43  1709 
5 29.93 2.22  1558 
6 negligible negligible  negligible  
7 15.93 1.18 829 
8 49.73 3.69  2589 
9 37.82 2.80 1969 
10 negligible negligible negligible  
11 negligible negligible negligible  
12 negligible negligible negligible  
13 90.93 6.74  4734 
14 109.44 8.12  5697 
15 42.16 3.13  2195 
16 42.16 3.13  2195 
17 29.77 2.21  1550 
18 29.77 2.21  1550 
19 29.77 2.21  1550 
20 35.08 2.60  1827 

Estimates in (2) = 7.1347 × 2.718182.3413 × estimates in (1) / 1000 (Gabi database) 
Estimates in (3) = estimates in (2) × 702 gkWh-1 (Energy density of real mixed power grid) 
 

Table 5-4 Carbon footprint estimations in process , , , ,  and  

Alternative 
Number 

CO2 equivalent emissions (gm-3) 
Process  Process  Process  Process  Process  Process  

1 ~ 19 70 
602 246 238 0 0 

20 365 
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5.2.3 Carbon Footprint Analysis 

The carbon-footprint analysis in all phases of the twenty alternatives were estimated and 

compared with each other in terms of CO2 equivalent emissions within a 20-year time period 

(2011–2030).  Estimated carbon footprints are summarized in Table 5-5.  Averages of the total 

CO2 equivalent emissions and unit costs of those alternatives are also listed for comparisons.  

The carbon-footprint analysis was also carried out by using a Gabi® 4 model that may automate 

the generation of the same results as shown in Table 5-5.  A screenshot of Gabi® model is 

shown in Figure 5-3.  In the Gabi® 4 model, all processes and their corresponding CO2 

equivalent emissions were set according to Section 3.2 and Figure 3-3.  With this model, 

calculations of CO2 equivalent emissions become convenient once the data of the processes have 

to be updated at any time.  Besides, the Gabi® 4 model provides the possibility to perform 

sensitivity analysis related to any one of relevant parameters (e.g., distance, rate of CO2 

equivalents, etc.) or collective changes of many parameter values simultaneously. 

 

Figure 5-3 A screenshot of Gabi® 4 carbon-footprint analysis 
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Table 5-5 Results of carbon-footprint analysis 

Alterna-
tive 

Number 

CO2 
equivalent 

emissions in 
construction 

phase
△
 

 (g) 

CO2 
equivalent 

emissions in 

use phase
△△

   
(gm-3) 

20-year-
capacity 
(103m3) 

Total CO2 
equivalent 
emissions 

(g) 

Group 
average of 
total CO2 
equivalent 
emissions 

(g) 

Group 
average of 
unit cost 
($m-3) 

G
ro

u
n
d
 

w
at

er
 1 1.31×1010

 2346  59933 1.54×1011
 

2.42×1011 
0.42 2 1.90×1010

 2681  82928 2.41×1011
 

3 1.39×1010
 2480  55261 1.51×1011

 

4 2.75×1010
 2865  138189 4.23×1011

 

S
u
rf

ac
e 

w
at

er
  

5 2.27×1010
 2714  113296 3.30×1011

 

5.94×1011 
0.82 

6 1.88×1010
 1156  323317 3.93×1011

 

7 5.54×1010
 1985  254259 5.60×1011

 

8 1.16×1011
 3745  292949 1.21×1012

 

9 6.85×1010
 3125  129867 4.74×1011

 

W
U

P
*

 10 Negligible 1156  124319 1.44×1011
 

1.44×1011 
0.54 

11 Negligible  1156  negligible  Negligible  
12 Negligible  1156  negligible  Negligible  

R
eg

io
n
al

 
w

at
er

  

13 1.83×1011 5890  331566 2.14×1012
 

2.26×1012 
0.58 

14 2.22×1011 6853  552683 4.01×1012
 

15 1.30×1011 3351  552683 1.98×1012
 

16 1.30×1011 3351  552683 1.98×1012
 

17 8.31×1010 2706  414494 1.20×1012
 

O
th

er
s 18 7.17×1010 2706  221044 6.70×1011

 

8.50×1011 
0.74 

19 7.76×1010 2706  314995 9.30×1011
 

20 4.31×1010 3278  276305 9.49×1011
 

*WUP = Water Use Permit.  The capacities of the alternative #11 and #12 are currently not 
available according to the work plan (Manatee County Board of County Commissioners, 2008).  
Thus, CO2 equivalent emissions in the operational phase associated with the alternative #11 and 
#12 are set to zero temporarily.  The average of total CO2 equivalent emissions associated with 
the WUP group does not take alternative #11 and #12 into consideration. 
△
Process  +  

△△
Process ++++++ 

5.2.4 Sensitivity Analysis 

It is well known that limitations of data quality and difficulties to assess uncertainties on 

the variables may lead to incorrect or sometimes misleading decisions (US EPA, 1995).  

Uncertainties can be reduced by better understanding of data sources, based on how the carbon 

footprints and costs are derived.   



 102 

5.2.4.1 Types And Sources Of Uncertainty 

A comprehensive survey (Bjoerklund, 2002) on types and sources of uncertainty may 

also be applicable in our carbon footprint analysis. These uncertainties are summarized in Table 

5-6.  Major categories of uncertainties include data accuracy (e.g. distance measurement in 

Google Earth®), unrepresentative data (e.g. using similar WTP and WWTP processes data), and 

uncertainty due to choices (e.g. choice of assumptions), all of which can affect the carbon 

footprint calculations. Under the guidelines of ISO standard (ISO 14043, 2000) we performed 

the sensitivity analysis to identify the most significant uncertainties related to the assumptions 

and data in the present study.  Final outcome may be used to help clarify the efforts in decision 

analysis in which key issues with high uncertainty should be highlighted in final decision making. 

Table 5-6 Types and sources of uncertainty 

Types of uncertainty Remark 

Data inaccuracy It is caused by random error which results from imperfections in the 
measurement. 

Data gaps It is caused by missing parameter values. 
Unrepresentative data It may avoid data gaps.  But, data from similar processes may be of 

unrepresentative age, geographical origin, or technical performance. 
Model uncertainty It is caused by simplifications of aspects that cannot be modeled 

within the analysis structure. 
Uncertainty due to 
choices 

Choices of system boundaries, marginal or average data, and 
allocation rules are also a source of uncertainty because there is often 
not one single correct choice. 

Epistemological 
uncertainty 

It is caused by lack of knowledge on system behavior. 

Mistakes Mistakes are also a source of uncertainty, seldom acknowledged and 
vey difficult to assess (Finnveden, 2000). 

Estimation of 
uncertainty 

Estimation of all types of uncertainty is in itself a source of 
uncertainty. 

Source: (Bjoerklund, 2002) 
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5.2.4.2 Sensitivity Analysis Results 

Some key input parameters can be highlighted for sensitivity analysis following the order 

of construction, production, use and recycle phases (Table 5-7), in which the Gabi® 4.0 model 

expressed in Figure 5-3 is repeatedly carried out.  Because the range of variation for each input 

parameter is largely unknown, subjective selection of ±5% from the base value is applied in this 

sensitivity analysis.  By comparing the level of changes of GWP, the important impact of each 

input parameter on decision analysis can be characterized.  The results of sensitivity analysis 

correspond to the percent change in terms of total CO2 equivalent emissions over the focused 

time period due to ±5% change in each of the individual input parameter can be summarized in 

Table 5-8.  ).  In this context, the variance of raw material requirement (e.g steel and cement) can 

only cause an insignificant fraction of GWP fluctuations in term of the GHG emissions in the life 

cycle that we focused on.  The most influential factors affecting the total GHG emissions are 

from operational phrase.  The uncertainties associated with the amount of potable water demand 

and the distance for water transportations are among the biggest contributors to the uncertainty of 

total GHG emissions.  Thus, acquisition and estimation of these parameters as model inputs are 

the most important as they are viewed as hotspots in terms of GWP within the prescribed system 

boundary.  Further refinement of uncertainties associated with energy or GHG intensity of WTP 

or WWTP may also improve the reliability of the optimization analysis; however, they are less 

significant factors than potable water demand and water transportation distances. 
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Table 5-7 The selection of inputs parameters for sensitivity analysis 

Input parameter Uncertainty type Remark 

Construction phase 

Need of Steel Uncertainty due to 
choices 

The need of steel and cement is assumed to be 
proportional to the length of piping, capacity of 
new WTP and size of new reservoir 

Need of Cement 

Production, use and recycle phases 

Distance of raw 
water transportation 

Data inaccuracy 

The distance is estimated by either actual piping 
route (e.g. regional water options) measured by 
Google Earth® or the suggested driving route by 
Google Map® between the source water location 
and the Manatee WTP. 

Distance of potable 
water distribution 

Data inaccuracy 
This distance is estimated by using method in 
Section 5.3.1 

Distance of waste 
water collection 

Data inaccuracy 
This distance is estimated by using method in 
Section 5.3.2 

Energy intensity of 
raw water treatment 

Unrepresentative data Data from other similar processes are used 

GHG intensity of 
wastewater treatment 

Unrepresentative data Data from other similar processes are used 

Daily water credit Uncertainty due to 
choices 

Average value is selected 

 

Table 5-8 The results of sensitivity analysis 

Results of sensitivity analysis 

±5%               Alternative 1 2 3 4 5 

Daily water credit 4.57% 4.61% 4.54% 4.68% 4.66% 
Distance of raw water 
transportation 

2.32% 2.62% 2.42% 2.79% 2.67% 

Distance of portable water 
distribution 

1.17% 1.03% 1.1% 0.983% 1.03% 

Distance of waste water 
collection 

0.48% 0.423% 0.45% 0.402% 0.422% 

Energy intensity of raw 
water treatment 

0.137% 0.121% 0.128% 0.115% 0.12% 

GHG intensity of 
wastewater treatment 

0.463% 0.408% 0.435% 0.388% 0.408% 

Need of Cement 0 0 0 0 0 
Need of Steel 0.427% 0.395% 0.46% 0.324% 0.344% 
±5%               Alternative 6 7 8 9 10 

Daily water credit 4.76% 4.51% 4.52% 4.28% 5.00% 
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Results of sensitivity analysis 

Distance of raw water 
transportation 

0 1.88% 3.13% 2.7% 0 

Distance of portable water 
distribution 

2.48% 1.37% 0.727% 0.825% 2.6% 

Distance of waste water 
collection 

1.01% 0.559% 0.297% 0.337% 1.06% 

Energy intensity of raw 
water treatment 

0.289% 0.159% 0.085% 0.096% 0.304% 

GHG intensity of 
wastewater treatment 

0.978% 0.539% 0.287% 0.325% 1.03% 

Need of Cement 0 0 0 0 0 
Need of Steel 0 0.159% 0.245% 0.326% 0 
±5%               Alternative 11 12 13 14 15 

Daily water credit 0 0 4.57% 4.72% 4.67% 
Distance of raw water 
transportation 

0 0 3.67% 3.93% 3.06% 

Distance of portable water 
distribution 

0 0 0.467% 0.415% 0.84% 

Distance of waste water 
collection 

0 0 0.191% 0.17% 0.343% 

Energy intensity of raw 
water treatment 

0 0 0.055% 0.048% 0.098% 

GHG intensity of 
wastewater treatment 

0 0 0.184% 0.164% 0.331% 

Need of Cement 0 0 0.013% 0.003% 0.006% 
Need of Steel 0 0 0.284% 0.227% 0.18% 
±5%               Alternative 16 17 18 19 20 

Daily water credit 4.67% 4.66% 4.47% 4.58% 4.77% 
Distance of raw water 
transportation 

3.06% 2.67% 2.56% 2.63% 2.66% 

Distance of portable water 
distribution 

0.84% 1.04% 0.994% 1.02% 0.877% 

Distance of waste water 
collection 

0.343% 0.423% 0.406% 0.417% 0.358% 

Energy intensity of raw 
water treatment 

0.098% 0.121% 0.116% 0.119% 0.532% 

GHG intensity of 
wastewater treatment 

0.331% 0.409% 0.392% 0.402% 0.346% 

Need of Cement 0.006% 0.007% 0.012% 0.009% 0.006% 
Need of Steel 0.18% 0.182% 0.243% 0.206% 0.221% 

Note: The values in the cells present for the standard deviation of total GHG emissions in a 20 
year period from 2011 to 2030. 
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5.3 Multiobjective Programming For Water System Optimization 

5.3.1 Pareto Optimal Solutions 

A Pareto Optimal solution is one of the feasible solutions that no other feasible solution 

may perform better than it in terms of both objectives at the same time.  Thus, a non-Pareto 

optimal solution is not interested for decision makers because there must be at least one solution 

in the Pareto optimal set that will perform better in terms of both cost and CO2 equivalent 

emissions.  With this understanding, the solution set { }1 2( , ) all m m
Z Z m  is the approximate Pareto 

optimal frontier with which we can plot all the Pareto optimal solutions in the objective space.   

These “Pareto Optimal” solutions present trade-offs with each other along the frontier.  That 

means, if one Pareto optimal solution performs worse in one objective, it must performs better in 

terms of the other objective in trade-off.  Therefore, in the objective space, the Pareto optimal set 

in our case would always located along the most lower left side of the entire feasible solution set 

with respect to the given ideal solution situated at the lower left corner in Figure 5-4.  Figure 5-4 

plots the Pareto Optimal frontiers of the three cases (e.g., n = 1, 2, and 3). 

Along the Pareto Optimal frontier, the term of ‘A dominates B’ means that there is no 

solution in B which is absolutely better than any one of the solutions in A in terms of both 

objective functions.  In other words, the frontier of the solution set of A is closer to the lower left 

corner of the objective space compared with the frontier of the solution set of B.  Because both 

objective functions are defined for minimization, the ideal solution is located in the lower left 

corner of the objective space.  Thus, as it can be seen from Figure 5-4, the Pareto Optimal 

solution dominates in the order of n=3 > n=2 > n=1.  Apparently, with more water supply 

alternatives implemented in one time stage, more options are available for the County to improve 



 107 

the long-term performance of the solutions in terms of both economic efficiencies and carbon 

footprints. 
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Figure 5-4 Solution space of the multiobjective programming model 

5.3.2 Sensitivity Analysis 

Since municipal water demand projection is highly uncertain, a sensitivity analysis was 

conducted to evaluate the modeling effect of the uncertainty.  The expected water demand was 

assumed to contain a ±10% variance, for which the best (optimistic) and the worst (pessimistic) 

cases were re-examined by setting water demand Di (i = 1, 2, 3, 4) as 0.9Di and 1.1Di in the 

multiobjective programming.  For n = 1, the Pareto Optimal solution sets are solved for the best 

case of 0.9Di (D1 = 172.97, D2 = 188.23, D3 = 190.65, and D4 = 210.99) and the worst case of 

1.1Di (D1 = 211.41, D2 = 230.05, D3 = 233.01, and D4 = 257.87).   The results are plotted in 

Figure 5-5.  Apparently, the Pareto Optimal frontier remains unchanged.  In other words, the 
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frontier is closer to the lower left corner in the best case than that in the base case; however, the 

frontier in the base case is closer to the lower left corner than that of the worst case.  In fact, the 

10% uncertainty in water demand projection confines optimization sequence to the same solution. 
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Figure 5-5 optimal solution sets of the three water demand cases under uncertainties 

In order to find the best compromised solutions in all the three cases by a comparative 

approach, we have to normalize the two objective functions by setting them into the same scale 

between 0 and 1.  Such a normalization scheme can be described by Equations 5-1 and 5-2 where 

where NZ1 and NZ2 stand for the normalized values of Z1 and Z2, respectively. 

 
min

1 1
1 max min

1 1

Z Z
NZ

Z Z

−
=

−
       ( 5-1 ) 

 
min

2 2
2 max min

2 2

Z Z
NZ

Z Z

−
=

−
       ( 5-2 ) 
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Figure 5-6 illustrates the normalized solution space as a kind of sensitivity of the best and 

the worst cases within ±10% offset of the forecasted water demand.  Both objectives of carbon 

footprints and total system cost are scaled uniformly between 0 and 1.  Graphical illustrations 

were employed to holistically present the best choice of the compromised solution associated 

with these three cases relative to the ideal solution.  A widely accepted definition of such 

distance is based on Minkowski’s La mectric (Zeleny, 1973), where 1 a≤ ≤ ∞ . 
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Figure 5-6 The normalized objective space with the three selected cases 
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Practically, a = 1 implies weighed average of both objectives; a = 2 implies weighted 

geometric distance between the solution (NZ1, NZ2) to the ideal solution (0, 0); and a = ∞  

implies to minimize the maximum NZi when La is to be minimized.  In our case study, we 

assume a = 2 and w1 = w2 = 1.  Thus, the best compromised solutions for the three cases can be 

found and marked in Figure 5-6.  These compromised solutions are considered to be the best 

choices between the two objectives when trade-offs are considered.  From Figure 5-7 to Figure 

5-10, , it collectively illustrates the details of the optimal facility expansion strategies associated 

with water distribution solutions for the best compromised solutions in the three cases (worst, 

base and best).  Water distribution solutions for the best and base cases are not shown in Figure 

5-7 because no facility expansions are needed in these two cases. 
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Figure 5-7 Optimal expansion options in time period 1: Year 2011~2015 
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Figure 5-8 Optimal expansion options in time period 2: Year 2016~2020 
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Figure 5-9 Optimal expansion options in time period 3: Year 2021~2025 



 112 

N

WTP

ECWF-I

ASR

MPWF
Lake Manatee 

Reservoir

A1

A2

A4

A14

A3

A16

A17

A13 A15

A5

A11

A7

A12

A10

A6

A18
A19

A20

A9

A8

Manatee County

County Boundary

C
o
u
n
ty

 B
o
u
n
d
ar

y

60.51 10
3 m

3 d
-1

7.42 103m3d-1
132.11 103m3d-1

11.36 10 3
m 3

d -1

11.36 10 3
m 3

d -1

43.15 10 3
m 3

d -1

8.21 10
3 m

3 d
-1

8.21 10
3 m

3 d
-1

17.03 10
3 m

3 d
-1

a

a
b

c

a
b

b

8.21 10
3 m

3 d
-1

c 11.36 10 3
m 3

d -1

c 17.03 10
3 m

3 d
-1

c 7.57 10
3 m

3 d
-1

a b cWorst Case Base Case Best Case

62.13 10 3
m 3

d -1

b

17.03 10
3 m

3 d
-1

a

42.42 10 3
m 3

d -1

a

c 31.12 10
3 m

3 d
-1

 

Figure 5-10 Optimal expansion options in time period 4: Year 2026~2030 

In the base case and the best case, no more water supply will be required by 2015 so that 

current water supply is self-sufficient in the first time period.  When the forecasted water demand 

is underestimated or while extra water resources would be needed, MARS-I and MARS-II can 

provide enough water credit to fulfill the demand from 2016 to 2025. The optimal expansion 

strategies in this time period are highly dependent on the level of forecasted water demand.   

Regional water options that offer larger water supply capacity and relatively lower unit costs 

than other alternatives are needed in both the base case and the worst case.  In the best case, 

regional water supply options must be avoided due to their relatively larger carbon footprints 

(e.g., long distance shipping) (Table 5-5).  Other alternatives available inside the Manatee 

County may provide better performance for both objectives.  As more water demand is 

anticipated starting from 2026, there will have a variety of optimal expansion strategies and final 

selection is subject to the decision maker’s preference.  In any circumstance, the WUP 
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alternative (e.g. alternative #10) is always preferred in all the cases due to its zero carbon 

footprint burden and low unit cost.  It is indicative that the consideration of objective addressing 

the concern of carbon footprint did affect the final decision analysis in this case, which confirms 

our hypothesis in this study. 

5.4 Nested Minimax Regret Solution For Decisions Under Uncertainty 

The nested minimax solution is a compromising and conservative solution based on 

decision makers' attitudes to the potential risks to violate non-deterministic constraints.  For 

illustrations, we  assume decision makers require equal degree of satisfaction (α ) for all the non-

deterministic constraints.  In other words, the α  matrix is assumed to have a single  α  value as 

its all diagonal entries.  We sweep the α  value from 0 to 1 with step size 0.01 and apply the 

NMMR solution approach described in Section 4.4.2.  The first tier absolute regrets for the two 

objectives are plotted in Figure 5-11.  It shows that the first tier absolute regrets are monotone 

increasing in term of α .  Table 5-9 lists the facility expansion recommendations based on the 

minimax regret criterion in cases of 8.0 and 6.0 ,4.0=α  respectively.  As the two objectives are 

conflicting and a common best minimax regret solution can not be reached, the second tier 

relative regret solution is needed for the NMMR solution as the final facility expansion strategy.  

A payoff table is formed in Table 5-10 for the preparation of the NMMR solution method. 

Table 5-9 Minimax regret solutions for r1 and r2 

 min r1 min r2 
α  0.4 0.6 0.8 0.4 0.6 0.8 

Ground Water Options 12.671 12.114 9.842 9.454 12.114 9.842 
Surface Water Options 0 0 0 0 0 0 

Transferred Water Options 17.030 17.030 17.03 15.488 17.030 17.03 
Regional Water Options 0 0 0 4.760 9.935 21.584 

Other Options 0 9.935 21.584 0 0 0 
Unit: 1,000 m3d-1 
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Figure 5-11 The first tier absolute regret of the two objectives 

Table 5-10 Payoff table for the two minimax regret objectives 

α =0.4 r1 r2 α =0.6 r1 r2 α =0.8 r1 r2 
X(r1) 343.85 87.21 X(r1) 647.52 162.65 X(r1) 878.76 244.86 
X(r2) 723.65 79.56 X(r2) 1244.8 124.19 X(r2) 1586.4 180.03 

r1, unit: 109 g  r2, unit: 106 $ 

For the NMMR solution, we again sweep the α  value from 0 to 1 with step size 0.01 and 

find the NMMR solution by repetitional use of the NMMR solution method.  The results are 

plotted in Figure 5-12.   The vertical axis in Figure 5-12 represents the nested minimax regret 

which is also the compromised solution between the two conflicting objectives based on the 

criterion to minimizing the maximal relative regrets.  The NMMR solutions in term of α  are 

plotted together with the first tier absolution regrets of r1 and r2 in Figure 5-13. 
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Figure 5-12 Nested minimax regret in term of degree of satisfaction 
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Figure 5-13 Nested minimax regret solutions v.s. minimax regret solutions 

As a compromised solution, the NMMR output lies between the minimax regret solutions 

of the two first-tier regret objectives (Figure 5-13).  The facility expansion strategies suggested 

by the NMMR solution method in case of 8.0 and 6.0 ,4.0=α  are listed in Table 5-11.  

Comparing with the facility expansion recommendations in Table 5-9, the NMMR solution 

harmonizes the two conflicting objectives, thereby being deemed more robust in response to the 
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uncertainties.  Under the assumption that decision makers require equal degree of satisfactions 

associated with all non-deterministic constraints, the NMMR solutions suggest that the options  

of water transfer is always preferred in all cases due to its relatively low carbon footprint burden 

and low unit cost within the system boundary.  However, the underlying assumption of the low 

carbon footprint burden of water transfer options is that GHG emissions are negligible within the 

defined system boundary which is the Manatee County.  When considering the global warming 

potential in a broader sense that is out of the defined system boundary, the water transfer options 

should be reconsidered.  Groundwater option appears to be an irreplaceable option among the 

five options.  Regional water and other options are only needed to offset the water demand when 

the supply of groundwater and transferred water options is not sufficient.  Regional water option 

shows more cost efficient but not as environmentally friendly as other options due to its larger 

carbon footprints burden.  The NMMR solution suggests that implementation of both regional 

water and other options would be a more robust solution than implementing only one of them 

especially when decision makers can tolerate a lower risk to violate the non-deterministic 

constraints.  The surface water option shows no competitive strength among the five options.  

More studies on the global warming impacts and unit costs of surface water options may be 

needed to reduce the interval of uncertainties before it may be considered by decision making 

process under uncertainties via the NMMR approach.  This result positively supports the 

research findings in Section 5.3. 

Table 5-11 Nested minimax regret solution for facility expansion strategy 
NMMR Solution α = 0.4 α = 0.6 α = 0.8 

Ground Water Options 11.268 12.114 9.842 
Surface Water Options 0 0 0 

Transferred Water Options 17.03 17.03 17.03 
Regional Water Options 1.404 3.31 6.126 

Other Options 0 6.625 15.458 
Unit: 1,000 m3d-1 
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6 CHAPTER SIX: CONCLUSION 

This study conducted a thorough system analysis via a real-world drinking water 

infrastructure system expansion program in Manatee County, Florida.  Four interrelated sub-

systems of the drinking water infrastructure system were investigated and studied, which 

consisted of water demand analysis, global climate change evaluation, system optimization for 

infrastructure expansion and decisions under uncertainties.   

In the water demand analysis, it was believed that system dynamics model carried unique 

features that would support the illustrative needs for complex interactions among system 

components for water demand estimation and forecasting.  The case study using the system 

dynamics modeling tool to estimate the domestic water demand from 2003 to 2009 for Manatee 

Country, Florida was made successful even the historical data of population and water 

consumption were limited.  Such a practice leaded to illuminate the modeling challenge - how do 

we build up a representative model to account for the interactions among those factors under 

global macroeconomic changes at different temporal scale in an urban region.  The 

unemployment rate and average annual income were deemed as two principal indicators of the 

changing macroeconomic environments.  With proper assumptions associated with these two 

driving forces, the system dynamics model could be used to estimate and forecast the future 

water demand under the impact of changing macroeconomic environments. 

In the global climate change evaluation sub-system, carbon footprint analysis which 

quantifies the CO2 equivalent emissions in every phase of the life cycle for each of the twenty 

expansion alternatives was performed.  This result provided the chance of inclusion of GHG 

emissions as an extra dimension for decision makers in planning water infrastructure expansion 

strategies in Manatee County.  A sensitivity analysis with the aid of Gabi 4.0 education version 
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was conducted and the most sensitive input parameters under uncertainties that may affect the 

system output the most were highlighted. 

In the system optimization analysis, carbon footprint was included as an environmental 

objective in addition to the economic efficiencies when identifying the optimal water 

infrastructure expansion strategies subject to technical, managerial, and social constraints in 

Manatee County.  Based on the trade-offs between costs and carbon footprints, the Pareto 

Optimal solution sets were identified using the distance-based metrics in a compromise 

programming model.  Such a practice ended up generating some lucid suggestions after 

screening and sequencing these alternatives over four specified time periods. 

To handle the potential uncertainties in the system optimization model, the NMMR 

solution method was proposed.  The novel solution method was used to solve the multiobjective 

interval linear programming.  A compromising and conservative solution was obtained by 

applying the NMMR solution method.  The results reinforced the suggestions and 

recommendations to Manatee County decision makers for the strategies in planning the water 

infrastructure system expansion. 

As a final remark, it is recommended from this research that MARS projects need to be 

implemented by 2015 for potential water demand increase by 2025.  Starting from 2026, there 

will have a variety of optimal expansion strategies based on the decision maker’s preference.  

The groundwater options and water transfer options are always preferred because they are 

deemed environmentally benign and economically efficient simultaneously. However, the 

negligible carbon footprint associated with water transfer options in decision making are mainly 

due to our defined system boundary that is the Manatee County.  When considering the global 

warming potential in the broader sense, decision makers may need to think more before the 
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implementation of water transfer options.  Needless to say that these type of water transfer 

options normally involve the complexity of political economy that may further compound the 

decision making arena.  To reduce the risks associated with the uncertainties in water supply and 

demand data, estimated unit costs and global climate change impact of each water alternatives, 

both regional water and other options are recommended for a more robust and conservative 

strategy.  
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