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ABSTRACT 

Improving the predictability of airline schedules in the National Airspace System (NAS) 

has been a constant endeavor, particularly as system delays grow with ever-increasing demand.  

Airline schedules need to be resistant to perturbations in the system including Ground Delay 

Programs (GDPs) and inclement weather.  The strategic search heuristic proposed in this 

dissertation significantly improves airline schedule reliability by assigning airport departure and 

arrival slots to each flight in the schedule across a network of airports.  This is performed using a 

multi-objective optimization approach that is primarily based on historical flight and taxi times 

but also includes certain airline, airport, and FAA priorities.  The intent of this algorithm is to 

produce a more reliable, robust schedule that operates in today’s environment as well as 

tomorrow’s 4-Dimensional Trajectory Controlled system as described the FAA’s Next 

Generation ATM system (NextGen). 

This novel airline schedule optimization approach is implemented using a multi-objective 

evolutionary algorithm which is capable of incorporating limited airport capacities.  The core of 

the fitness function is an extensive database of historic operating times for flight and ground 

operations collected over a two year period based on ASDI and BTS data.  Empirical 

distributions based on this data reflect the probability that flights encounter various flight and 

taxi times.  The fitness function also adds the ability to define priorities for certain flights based 

on aircraft size, flight time, and airline usage.   

The algorithm is applied to airline schedules for two primary US airports: Chicago 

O’Hare and Atlanta Hartsfield-Jackson.  The effects of this multi-objective schedule 
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optimization are evaluated in a variety of scenarios including periods of high, medium, and low 

demand. 

The schedules generated by the optimization algorithm were evaluated using a simple 

queuing simulation model implemented in AnyLogic.  The scenarios were simulated in 

AnyLogic using two basic setups: (1) using modes of flight and taxi times that reflect highly 

predictable 4-Dimensional Trajectory Control operations and (2) using full distributions of flight 

and taxi times reflecting current day operations. 

 The simulation analysis showed significant improvements in reliability as measured by 

the mean square difference (MSD) of filed versus simulated flight arrival and departure times.  

Arrivals showed the most consistent improvements of up to 80% in on-time performance (OTP). 

Departures showed reduced overall improvements, particularly when the optimization was 

performed without the consideration of airport capacity.  The 4-Dimensional Trajectory Control 

environment more than doubled the on-time performance of departures over the current day, 

more chaotic scenarios. 

This research shows that airline schedule reliability can be significantly improved over a 

network of airports using historical flight and taxi time data.  It also provides for a mechanism to 

prioritize flights based on various airline, airport, and ATC goals.  The algorithm is shown to 

work in today’s environment as well as tomorrow’s NextGen 4-Dimensional Trajectory Control 

setup. 
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CHAPTER ONE: INTRODUCTION 

Aviation is an integral part of any country’s transportation infrastructure and is 

commonly viewed as the pinnacle of the transportation system.  This is particularly apparent in 

the United States where vast geographic dispersion of metropolitan areas makes aviation or air 

travel the most likely candidate for transportation.  The U.S. in particular has seen a recent surge 

in air travel demand which has long exceeded pre-2001 traffic levels and has been showing 

strong potential for growth over the next decades (FAA APO Projections, Jan 2006).  In fact, the 

Federal Aviation Administration (FAA) has projected a greater than two-fold increase in air 

traffic demand by the year 2025. 

Even before 2001, the United States National Airspace System (NAS) was approaching 

capacity limits particularly at key airports and other points in the system.  Even relatively small 

perturbations due to weather or excessive traffic demand caused sometimes considerable delays, 

which propagated through the system in a mostly non-linear fashion (Hansman, 2005).   

In truth, society has grown very accustomed to aviation, even sometimes without directly 

admitting this fact.  For one, personal and particularly business air travel demands adherence to a 

published schedule.  Repeated delays and unpredictable arrival and departure times may cause 

passengers to search for alternatives to air travel including rail, personal transportation, or even 

online collaboration rather than face-to-face meetings.  The system’s level of unpredictability 

during high stress periods is in fact why airlines routinely overestimate the flight times in and out 

of major airports.  The theory behind this airline scheduling scheme is to give passengers more 

realistic arrival times based on expected airspace and airport delays.  A further benefit of this 

scheduling mechanism is that although delays are routinely encountered in the NAS, flights can 
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still be considered to be on-time if the schedule contains sufficient slack (Ater, 2007).  This 

frequently means that scheduled flight arrival times are significantly overscheduled in an attempt 

to conserve airline schedule predictability.   

Thanks to the current predictability and relative speed of air transportation, we have not 

only become used to on-time travel, but also to the continuous availability of services that utilize 

the air transportation system including cargo shipments, overnight delivery and other products.  

It stands to reason that without reliable and speedy air transportation, our quality of life would 

certainly diminish.  With the obvious popularity of air travel has come the realization that 

today’s air traffic system will most likely be unable to handle the projected traffic growth and is 

therefore in desperate need of modernization.  A relatively small increase in the total number of 

yearly operations may produce a completely disproportionate increase in the number of delays, 

indicating that the system may already have reached an operating threshold.  With the resurgence 

of air traffic, more delays may be seen on the horizon with an expansion in capacity. 

The largest contributor to delay in the NAS in the year 2004 was weather as shown in 

Figure 1 below, which forms the basis for numerous research efforts currently underway in the 

development of technologies to minimize weather impacts on the NAS (UCAR, 2004). 
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Figure 1: Dissection of NAS Delay Causes 

 

Weather impacts become apparent when even small weather disturbances at, for example, 

Chicago O’Hare International Airport, produce considerable ground and airspace delay, which 

then propagate through the entire system.  Other major factors to overall system efficiency are 

individual airport congestion, convective weather, reduced visibility and increased demand, all of 

which may be somewhat ameliorated by current changes in ATM procedures and GDPs, but only 

stand to become a bigger burden unless a significant modernization of the NAS infrastructure 

takes place (Xu, Donohue, Laskey & Chen, 2005). 

Interestingly enough, it is likely the system’s own success that will erode the speed, 

predictability, and affordability benefits of air travel if the NAS does not adapt and grow with 

future demand levels (JPDO NGATS Plan, 2005).   

More advanced methodologies and tools which aim to optimally manage air traffic rather 

than simply control it are currently being researched by a number of government and private 

institutions.  To address these issues at the government level, Congress has passed into law 

Vision 100 – the Century of Aviation Reauthorization Act – which created the Joint Planning 

and Development Office (JPDO), a conglomerate of various government agencies including the 
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FAA, NASA, and DHS. As the JPDO’s Integrated Plan for the Next Generation Air Traffic 

System (NGATS) puts it: 

 

“Whether those benefits will continue to be available in the future will depend 

upon actions we begin taking now.  The system is already showing signs of stress and it 

is clear that projected demand will soon surpass the system’s capacity.” 

 

The purpose of the JPDO is to bring together all of the stakeholders that have a vested 

interest in the next generation air transportation system.  Their purpose is to develop a system 

which can cope with future air travel demand by increasing system predictability, reducing 

impacts of weather and other factors, and reducing delays throughout.  All of this will have to be 

accomplished in light of increasing safety, security, and budget constraints.  The NGATS or 

NextGen system being developed by the JPDO will use technologies yet to be developed in order 

to make the next air traffic system highly predictable.  One of these concepts is the fundamental 

idea of trajectory-based operations (TBOs), where all aircraft fly four-dimensional paths which 

are pre-calculated by ground based systems.  These individual aircraft trajectories are aircraft 

optimal in terms of flight times, safety (routed around weather cells), and are also de-conflicted 

from other aircraft.  This fundamental concept will also allow for fairly accurate departure and 

arrival time planning for each flight. 

The issues addressed in the NGATS Plan for 2025 are not local to the United States.  

Europe, as part of the SESAR (formerly known as SESAME) project is also assessing the 

options, benefits and definition of the future European air traffic system as they work towards a 

unified European OneSky concept (Sesame, 2005).  This effort involves agencies from all major 
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European countries including DFS (Germany), NLR (Holland), AENA (Spain), SkyGuide 

(Switzerland), and Eurocontrol itself which is spearheading the effort. 

Even though airspace congestion is likely to be a concern, terminal and airport capacity is 

likely the most limiting factor facing the transportation system (Andrews, 1999).  Whereas 

unused airspace is still abundant, aircraft all originate and terminate at airports, thereby creating 

choke-points within the system.  In order to facilitate more advanced planning of air traffic 

operations, the FAA is currently implementing various techniques under the premise of the so-

called traffic flow management (TFM).  TFM tools assist in more strategic capacity-demand 

planning of airspace and airports by limiting throughput rates for airspace routes or at airports 

directly.  The most common implementation of this results in airport GDPs where a large number 

of departures are delayed on the ground in an attempt to artificially curb airspace and destination 

airport demand.  GDPs are particularly heavily used when weather disturbances occur at major 

airports or airspace routes. 

In order to artificially curb demand and increase predictability of airport operations, some 

airports – including Chicago O’Hare, New York LaGuardia, and Washington Reagan National – 

in the United States have strategically implemented the concept of slot control (Pate, McDonald 

& Gillespie, 2005).  The premise behind this concept is that every hour, a certain number of 

arrival and departure slots are available for use at these airports.  Airlines are each allocated a 

certain number of slots throughout the day and, unless they trade with other airlines, are not 

allowed to exceed this total number of arrivals or departures at these airports.   

A more recent example of curbing demand is that of the three major airports in the New 

York metropolitan region (LaGuardia, John. F. Kennedy, and Newark Airports).  The U.S. 

Department of Transportation announced in December of 2007 that the number of available 
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hourly runway slots at all three airports will be limited to 82 to 83 aircraft (Airport International, 

2007).  Although this restriction is guaranteed to reduce capacity-driven delays during high-

demand and inclement weather conditions, it also limits capacity in good weather conditions 

when the airports might be able to exceed these operating limits.  In fact, the concepts of 

demand-management and slot allocation are in use at most major European airports already 

including London Heathrow, where slots are extremely valuable and highly restricted. 

There exist a number of DSTs on the market today – called airport arrival and departure 

managers – which aim to optimize arrival and departure sequences from an airport centric point 

of view.  This means that arrival slots are assigned as aircraft reach a certain proximity from the 

airport and then are continuously updated in real-time to assist short term-airport movement 

planning.  These real-time arrival and departure management DSTs operate in a tactical short 

time span environment.  Thus, they have no interaction with more strategic TFM decision 

support tools.  These DSTs also typically do not provide for direct input mechanisms of airline, 

ATC, and airport priorities and preferences.   

The combination of TFM methodologies and strategic airport slot allocation practices 

presents an area of research that has not been widely investigated.  The overall intent of this 

research is to increase the predictability, reliability and performance of airline schedules within 

the NAS and reduce the need for tactical GDPs.  The basic purpose is to optimize arrival and 

departure orders at major US hub airports.   

The purpose of this research effort is to develop a search heuristic methodology tat 

strategically assigns arrival and departure slots at a set of airports from a strategic network 

planning perspective.  The approach outlined in this dissertation will make heavy use of real-

world historic flight and taxi time distributions to add a level of reality to the algorithms that 
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emulate TFM strategic flight planning.  This multi-objective approach will also consider airline 

and other stakeholder preferences as part of the optimization process.  This will, in theory, 

produce a schedule which dynamically manages airport arrival and departure demand in an ATC, 

airport, and airline optimal fashion. 

Statement of the Problem 

Airport operations scheduling within an airline is typically based on very complex 

optimization applications that combine airport arrival and departure schedules, aircraft fleet 

allocation, as well as crew scheduling.  On the other hand, TFM techniques employed by the 

FAA and other government organizations around the globe attempt to optimize the flows – and 

therefore the capacity – of airports and air routes in a safe and efficient manner.   

In order to cater for relatively unpredictable operating times during periods of high 

demand or inclement weather, airline schedules include significant amounts of ‘slack’ within 

each flight’s block time.  This process of over-scheduling is commonly used to increase a flight’s 

on-time performance when comparing actual arrival and departure times with scheduled times.  

It includes flight-by-flight slack time for aircraft performance variations, wind differences, as 

well as expected ATC and airport delays.  In normal operating conditions, these slack times are 

usually much greater than actually required, particularly for long distance flights where wind and 

aircraft performance variations are much more significant.  Determining a flight’s scheduled 

block time is a delicate balance between many operating and economic factors.  However, the 

key input into any airline schedule optimization function is the airline’s desired on-time 

performance (OTP) goal.   
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The air traffic system today is still considered to be sufficiently unpredictable to prevent 

long term strategic planning of airport arrival and departure slots.  Nevertheless, future 

technologies as well as technologies currently being implemented will significantly reduce the 

uncertainty within the entire airspace system, thereby opening the door for more advanced 

strategic decision making tools. 

The practice of arrival and departure slot management DSTs has historically taken a very 

airport centric view.  This means that arrival and departure slots are assigned to aircraft within a 

certain time window of the scheduled movement times at the individual airport and then 

continuously updated in a real-time manner to allow for aircraft capabilities and environmental – 

primarily wind – effects.  On the NAS-wide side, TFM techniques consider airport and airspace 

route throughput rates to more strategically curb demand by implementing GDPs which 

selectively delay aircraft at their origin airports.   

This apparent disconnect between airline scheduling and TFM strategic flow planning 

provides an ideal area for research.  In a perfect scenario, the FAA, airlines, and other 

stakeholders would jointly work to develop an optimized schedule of airport operations which 

would fairly allocate flights within an environmentally-dependent, capacity-realistic scenario.  

This schedule would contain detailed arrival and departure times for each flight, which, if 

properly obeyed, would minimize delays and maximize airline preferences at each airport within 

the schedule.  Thus if aircraft were capable of operating in a full four-dimensional trajectory-

based environment, fairly exact arrival and departure times could be predicted without the need 

for airlines to add slack times to each flight. 

Consequently, the purpose of this research effort is to develop a methodology for 

assigning arrival and departure runway slots from a strategic planning perspective.  This 
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approach combines aspects of airline scheduling and current arrival and departure management 

techniques with more strategic TFM views and methods.   

A major premise for this application is the evolving FAA concept of trajectory-based 

operations which will make aircraft flight times and departure/arrival times highly predictable.  

This means that rather than taking an airport-centric view, a more macroscopic approach will be 

developed to strategically allocate slots across a network of multiple airports with semi-

deterministic flight times based on historic flight time and taxi-time distributions obtained from a 

one and one half year sample of flight data of all aircraft operating in and out of these airports. 

To implement this airport arrival and departure slot allocation methodology, a novel 

optimization approach will be developed which assigns aircraft to arrival and departure slots at 

two major US airports.  To additionally facilitate the demonstration of inter-airport effects of 

airport slot assignment, these airports also have a significant traffic demand between them due to 

their major size and airline hub categorization: Chicago O’Hare International Airport and Atlanta 

Hartsfield-Jackson International Airport.   

Research Objectives 

The objectives intended to be carried out as part of this research effort are divided into 

multiple parts including a literature research, historical data processing and mining, the 

development of the evolutionary algorithm (EA) search heuristic as well as simulation-based 

assessments of the EA approach.  These are described in more detail in turn below: 

• A comprehensive literature review on  

o Airline scheduling 
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o Current practices in airport arrival and departure sequencing and slot 

allocation 

o Evolutionary algorithms and evolutionary search methods and their 

application to slot allocation 

o Future more deterministic trajectory-based operations and the 

predictability of air traffic operations 

• Processing and mining of historic ASDI (Aircraft Situation Display to Industry) 

and BTS (Bureau of Transportation Statistics) data 

o Processing and interpretation of historic flight times and taxi-times based 

on historic FAA-based ASDI and airline-reported BTS data 

• The development of a novel evolutionary search methodology to plan airport 

runway slot allocations. This includes the 

o Development of a fitness function to include semi-deterministic aircraft 

flight times and other intents 

o Development of a software application which implements the algorithms 

and methodology previously developed and generates optimal slot times 

for a realistic traffic schedule 

o Generation of an optimized schedule using the methodology previously 

developed and applied to a real-world traffic sample 

• The development of a discrete-event simulation platform to evaluate the slot 

allocations proposed by the novel approach.  The expected scenarios to be 

simulated and assessed per the average aircraft system delay will include: 
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o Base-Case of scheduled departure and arrival times with no optimization 

(based on actual observed arrival and departure times) using 

 deterministic mode-based flight times (full four-dimensional 

knowledge of flight path and time based on historic data) 

 stochastic distribution-based flight times that are empirical 

distributions of historic observed flight times based on ASDI 

(representative of today’s more chaotic operation) 

o Sequence optimal schedule of slots allocated by the novel methodology 

with  

 deterministic mode-based flight times 

 stochastic distribution-based flight times 

 

The end result of this research effort will be a methodology to assign airport departure 

and arrival runway slots at major high-demand airports using EAs and real-world historic flight 

and taxi time distributions.  The research required to obtain a realistic fitness function will also 

yield distributions and interpretations of aircraft flight and taxi times which can be used in a 

variety of future studies as a model of stochastic aircraft behavior. 

This is basically accomplished by developing advanced methods of allocating aircraft to 

airport arrival and departure schedules, all the while considering historic aircraft operating 

characteristics as well as known airline, airport, and ATC priorities and desires.  The 

methodologies presented in this research effort will optimize existing airline flight schedules 

based on a desirability fitness function within an EA framework.  The intended result of this 

effort is a set of modified airline schedules which show a higher achievability rate but not 
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necessarily produce less delay or higher airport throughput.  Thus, the need for airlines to 

significantly over-schedule flight times will be significantly reduced without sacrificing the 

airlines’ on-time performance.  For instance, airlines routinely over-schedule flights based on 

expected delays throughout the day.  This is usually done on a flight-by-flight basis and does not 

consider the various ATC and airline priorities in sequencing or other airport network 

implications.  Using the algorithm presented in this dissertation, more accurate multi-objective 

predictions of flight times will produce schedules that allow for more accurate predictions of 

arrival and departure times. 

For this research effort, an evolutionary approach inspired by EAs has been selected.  

EAs and Genetic Algorithms (GAs) have seen much research interest and implementation within 

the scope of airport slot allocations.  Since slot allocation can be considered as timetabling or 

scheduling problems, EAs and GAs have been shown as one of the best operations research 

techniques for solving these types of problems at a large scale.  Typically, unless at a very small 

scale, no perfect solution exists to these problems.  Since these problems are also 

computationally NP-complete problems (Garey & Johnson, 1979), no deterministic polynomial 

time algorithm exists and the problem space is far too large for brute force or undirected search 

techniques.  EAs use an evolutionary search method to arrive at a near-optimal solution within a 

fairly short amount of time, making them an obvious candidate for this application. 

It is important to note that this approach does not attempt to maximize the capacity of the 

airports under investigation.  Airport arrival and departure capacities are fixed parameters across 

the planning horizon in this study.  The purpose of this approach is to schedule aircraft in a fixed 

number of arrival and departure slots in an optimal and most efficient manner.  So in essence, the 

airport capacities are hard constraints imposed on this approach.  Various other real-world 
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restrictions, requirements, as well as desires will provide a number of additional hard and soft 

constraints around the arrival and departure schedules. 

Contribution 

The primary contribution of this research effort lies in a novel methodology to 

dramatically increase the predictability of airline and airport flight schedules across a network of 

airports; this is accomplished through the combination of strategic TFM concepts with more 

network-centric sequence optimization methods than are currently being employed.  Each area 

currently uses various optimization methods in a very disparate manner that, when combined, 

can potentially increase the predictability of the system and significantly reduce delays 

throughout.   

The relative unpredictability of the airspace system today prevents longer-term strategic 

demand and capacity planning on an airport-centric level.  Airline and airport flight schedules 

developed using strategic planning tools within current TFM and airport arrival/departure 

management frameworks typically do not survive major capacity limiting scenarios.  This 

subsequently causes ATC and airline operators to revert to tactical planning mechanisms, 

causing flight schedules to become unreliable and unpredictable.   

The strategic demand management framework presented in this dissertation will 

significantly increase airline schedule reliability and allow ATC and airlines to operate under the 

proposed schedule much longer before reverting to tactical planning methods.  The multi-

objective nature of this methodology also allows for multiple stake holders to have input into the 

schedule optimization process.  Hence, airlines and ATC will be able to include priorities and 
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desires into the process.  This is also a novel area of research which is rooted in the FAA’s 

Collaborative Decision Making (CDM) framework, where airlines have input into strategic flow 

rates and GDPs, but currently do not cooperate on detailed flight scheduling practices. 

Based on an extensive literature research on this topic, all of the existing slot 

management applications and research are very tactical and airport centric.  The primary reason 

for this is likely the perception that the current air traffic system shows sufficiently chaotic 

behavior that arrival and departure times cannot be reliably predicted beyond a certain time 

frame.  However, with the advent of trajectory-based operations and resulting highly 

deterministic flight times, larger scale optimizations are possible that not only optimize 

operations at a single airport, but optimize the entire National Air Traffic System (NATS) over 

an extended time period.   

This research effort is unique in that it aims to expand the airport slot allocation planning 

horizon from a microscopic and historically tactical airport-centric view to a network-wide 

strategic allocation of slots across multiple airports.  This essentially incorporates system-wide 

strategic TFM practices by considering flight times and other airport throughout capacities. 

Figure 2 below shows a graphical representation of the area of applicability of this 

research: 
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Figure 2: Area of Contribution 

 

The intended industry application of this research is three fold: (1) FAA airport terminal 

operations planners who desire the most expedient sequence of aircraft as early as possible, and 

(2) airlines who operate major hub airports and are able to heavily influence arrival and 

departure sequences due to the amount of aircraft they operate, and (3) FAA central flow control 

for purposes of aligning airspace operations with airport- and airline-optimal arrival and 

departure sequence as part for their CDM initiative.   

An overview of the perceived usage and benefits of the methodology proposed in this 

research effort is presented below in Figure 3: 
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Airport Runway Closures

Changes in Weather Forecasts

Special Flight Priorities

Collaborative Decision 
Making (CDM)

 

Figure 3: Benefits and Usage of Proposed Application 

 

A further contribution to state-of-the-art knowledge in this field will be the distributions 

of flight and taxi times.  These distributions are based on a sizeable database of historical 

operations and will be useful in a number of other traffic flow planning and simulation 

applications outside of this research effort. 

In general, the multi-objective optimization approach developed in this research project 

will provide users with a more strategic planning ability for aircraft arrivals and departures.  This 

will not only improve the predictability of the operation as a whole but also allow for more 

strategic planning of ground and equipment resources on the ground.  This is particularly 

important when considering that strategic planning always allows for cost minimization whereas 

tactical responses to deviations in the planned operations are very cost intensive.  Obviously, 

with more time to plan, more options can be explored to optimize the overall system operation. 
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Chapter Layout 

The organization of this dissertation is as follows: Chapter 2 describes, in summary form, 

the relevant literature to date regarding current concepts for airport arrival/departure slot 

management, airline scheduling, as well as TFM operations.  This is followed by a discussion of 

evolutionary search methods – in particular EAs – used in scheduling and timetabling problems.   

Chapter 3 presents the data mining efforts for distributions of flight and taxi times and 

subsequently provides the methodology used in developing the multi-objective evolutionary 

approach to strategic slot allocation optimization.  This chapter also outlines the simulation 

methodology used to assess the utility of the given slot allocation approach. 

Chapter 4 presents the results of the implementation of the proposed airport slot 

optimization methodology as well as results of the simulation-based evaluation of the proposed 

slot allocations as outlined previously.  

Chapter 5 will discuss the utility of using the outlined methodology for future airport slot 

allocation planning; it will be supported by a discussion of the simulation assessment of the 

algorithms and the perceived benefits of the proposed approach.  Shortcomings of the given 

methodology as well as proposed future research areas and improvements are also discussed in 

detail in this concluding chapter. 
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CHAPTER TWO: LITERATURE REVIEW 

This section of the dissertation gives a brief history of existing approaches to airport 

arrival and departure runway slot allocation at US and other airports around the globe.  

Additional background will be given on airline scheduling methods as well as relevant TFM 

techniques as they relate to the area of application of this research.  This section will also give 

some necessary background information on future concepts that will, in many ways, support 

theories and assumptions made throughout the course of this effort.  Particular focus will be 

given to strategic flight planning and the desire to develop a more deterministic airspace system 

that is significantly less affected by stochastic events such as weather impacts and decision 

making variations. 

This discussion on airport and airspace operations is followed by necessary background 

information on recent and modern airport slot optimization techniques and their applicability to 

large scale slot allocation problems.  Specific attention will be given to evolutionary search 

techniques with a focus on EAs.  This will conclude the literature review section. 

Airport Arrival and Departure Processes 

The basic objective behind arrival and departure sequencing and scheduling in air traffic 

automation is to match traffic demand and airport capacity while minimizing overall airport 

delay (Carr, 1998).  The continued growth of air traffic in the US as well as the increased use of 

the “hub”-scheduling principle employed by airlines has led to significant increases in 

congestion and delays, particularly at the major US hub airports.  To airlines, concentrating flight 

operations around single airports makes good economic and competitive sense (Bond, 1997).  It 
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not only maximizes the transfer of passengers and the markets served but also allows for central 

maintenance and support facilities. 

Nevertheless, dedicating an airport as a hub airport also taxes the capabilities of those 

airports to the maximum.  This means that airlines will routinely publish schedules of flights into 

major US airports that, on an hourly basis, far exceed the capacity of the given airport.  This, 

even without any weather related or other disturbances, causes major delays at peak hours of the 

day at these major airports (see the sections on airline scheduling as well as airport capacity 

below).  

This section of the literature review will provide necessary background information on 

airport arrival and departure sequencing and management.  It will also provide insight into airline 

flight scheduling concepts as well as airport capacity considerations which are integral to the slot 

allocation methodology developed for this research effort. 

Arrival and Departure Sequencing 

The assignment of airport arrival and departure sequences in the US today is commonly 

performed using best-practice heuristics without the use of automated guidance tools.  This 

process is largely based on a first-come first-serve methodology that does not entirely take into 

account airline flight priorities (Carr, Erzberger & Neuman, 1998).   

Despite recent advancements in automation and collaboration between the FAA and 

airlines, the basic principles of arrival and departure sequencing remain unchanged.   

 19



Arrivals 

Arriving aircraft today are sequenced as they reach a certain distance from the destination 

airport.  This is typically performed near the position along the scheduled flight path where the 

arrival phase begins and the aircraft starts to descend into the destination airport.  At this point it 

is also possible that a specific runway is assigned for landing, although depending on the 

difference in flight paths and approach directions to these runways, this may not occur until later. 

The initial sequence will be largely based on a first-come-first-serve basis but is also to 

some extent based on the scheduled aircraft arrival times.  For example, if an aircraft has already 

suffered major delays and passengers on board stand to miss connections, the aircraft may be 

prioritized in the arrival sequence.  If an aircraft indicates that it is unable to meet a desired 

arrival time, it will be delayed until another arrival sequence slot is available.  The final sequence 

may be changed depending on the delays and priorities of other aircraft scheduled to land within 

the same time window.  An aircraft’s ability to meet a specific landing time may be paramount in 

assuring the desired sequence. 

Departures 

Departing aircraft are entered into the departure sequence as soon as they are ready for 

push-back from the departure gate.  At this point, ATC will assign the aircraft a departure 

runway based on their desired departure direction.  Aircraft are then manually directed into 

runway departure queues in the order that was determined.  Factors which may affect the 

departure sequence include aircraft types (due to wake turbulence between aircraft), direction of 

departure (destination city), and weather considerations. 
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Arrival and Departure Management Tools 

In recent years the use of real-time software tools to assist in arrival and departure 

sequencing has become more and more attractive.  Hence, arrival and departure management 

applications are becoming very popular.  The premise behind these tools is that they are designed 

as real-time DSTs and assist traffic controllers in managing arrival and departure traffic flows 

near major airports based on real-time aircraft location and intent information. 

Based on research that largely originated at NASA, automation tools are now commonly 

used to assist controllers in arrival flow management to efficiently map the arrival traffic demand 

onto the available airport capacity (Neumann & Erzberger, 1991).  One of these suites of tools is 

called the Center-TRACON Automation System (CTAS), of which one sub-application, the 

Traffic Management Advisor (TMA) is already in use at a number of US airports including 

Dallas/Ft. Worth (Erzberger, 1993).  TMA assists in balancing airport arrival demand with 

available arrival capacity and considers aircraft within a 200 nautical mile radius of the target 

airport.  Under development by NASA is also a methodology called the Collaborative Airport 

Planner (CAP), that focuses on the refinement of CTAS algorithms to include airline preferences 

and priorities.  Andersson, Hall, Atkins, and Feron present an extension to the CAP including an 

algorithm called the Arrival Sequencing Model (ASM), which uses integer programming and a 

cost minimization approach to assess aircraft landing sequences at airports (Andersson et. al., 

2003). 

In Europe, the use of arrival and departure management applications – commonly called 

AMAN and DMAN – is also very common.  Many airports in Europe including Zurich, 

Swizterland, and Frankfurt, Germany, already implement tools that are fully integrated with 
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ATC workstations and are based on flight plans, radar data, and the current situation at the 

destination airport.  This includes, for arriving aircraft, knowledge of departure operations at the 

destination airport so that these operations can be coordinated and maximum capacity can be 

achieved across both operations (Wiesner, 2006).  The departure manager optimizes the 

departure runway sequence for each runway and then proactively communicates exact times for 

pushback, arrival in departure queue, and runway departure times to individual aircraft. 

Another example of an arrival and departure manager uses a job-shop scheduling 

approach with a local search heuristic (Bianco, Dell’Olmo & Giodani, 2006).  This approach 

uses fixed deterministic routings in the air and on the ground to estimate the travel times for 

aircraft in order to improve the certainty of aircraft arrival and departure times and capabilities.  

Anagnostakis also presents a two-stage optimization algorithm for departure sequence 

optimization based on scheduled departure times and expected travel times to the respective 

departure runway (Anagnostakis, 2004). 

All of the applications described thus far are tools which aim to give guidance to ATC 

operations in the sequencing of arrivals or departures.  One application, called Attila, attempts to 

optimize arrival sequences within one particular airline without direct consent from ATC.  Attila 

uses a computer-based decision process to optimize aircraft traffic flows in real-time.  The Attila 

software analyzes the real-time factors affecting the arrival flow, and calculates optimal arrival 

times for each aircraft.  The tool then automatically sends digital messages to individual aircraft, 

instructing them to adjust speeds according to the newly calculated arrival times (Rolan & 

Dlouhy, 2006).  It does this on the airline’s own communications channels and without giving 

notice to ATC operations.  The premise behind this method is that with Attila, airlines can have 
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some influence over when their aircraft are sequenced by ATC, thereby affecting the overall 

landing sequences in their favor. 

Although Attila is a real-time operational DST, it is based on a number of patents which 

optimize aircraft arrival sequences by considering aircraft abilities and goals (Baiada & Bowlin, 

2007).  Attila focuses on flow rates over the arrival fixes rather than runways and ultimate 

approval of each time over the arrival fix lies with a system manager who reviews the entire 

sequence iteratively.  Further patents implemented by Attila relate to methods and systems for 

allocating aircraft arrival/departure slot times using computer software (Baiada & Bowlin, 2004).  

Although these patents address detailed slot allocation schemes for airports, the basis for 

decision making appears to lie with aircraft capabilities and goals, rather than the use of historic 

data.  As such, Attila appears to be airport-centric in nature and thus does not consider expected 

delays at other airports. 

Overall, many ATM focused companies currently offer software applications which 

perform arrival and departure management duties.  One of the limitations of all of these arrival 

and departure managers is that they are designed to operate in a tactical real-time mode and a 

planning horizon that only manages aircraft within a short distance from the airports.  The 

research results generated throughout this effort should allow for the expansion of the tactical 

horizon into a more strategic planning arena. 

Airline Scheduling 

The development of airline schedules is a very complex exercise which takes into 

account numerous different factors, internal and external to airline operations.  Major airlines 
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have entire departments devoted to determining which markets to serve, how frequently to serve 

them, and which aircraft types to devote to each route.  Factors that may influence airline 

schedule planning include (Carr, Erzberger & Neuman, 1998; Barnhart, Lu & Shenoi, 1997): 

• Marketing of specific times for specific flights such as business hour flights 

• Passenger, baggage, and cargo connectivity 

• Airport capacity restrictions 

• Availability of aircraft, crew, and gates 

• Historic delays of aircraft on the given routes and at the given airports 

An efficient operation at an airport depends on the system’s ability to maintain the 

integrity of the airline schedules by meeting planned arrival and departure times.  The desired 

order of arrival and departure is a critical component of this schedule.   

Particularly at major hub airports, airlines tend to schedule their flights in banks of 

arrival-heavy and departure-heavy periods.  The use of these bank structures essentially allows 

the airlines to trade-off arrival capacity with departure capacity in neighboring time periods with 

the effect of minimizing passenger connection times between their arriving and departing flights.  

Figure 4 below depicts a typical departure bank structure schedule at Chicago O’Hare 

International Airport for United Airlines (UAL): 
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ORD - United Airlines Flight Schedules
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Figure 4: ORD Scheduled Flights - United Airlines 

 

A scheduling methodology that has received some notice in the last few years is the 

concept of the continuous or rolling hub.  The idea behind this concept is the smoothing of bank 

structure schedules to a more even and consistent demand rate throughput the day.  This concept 

has been selectively implemented by American Airlines at their Chicago and Dallas/Ft. Worth 

hub airports and was also trialed by Delta Airlines at Atlanta in 2006.  Figure 5 below shows the 

scheduled number of flights at ORD for American Airlines before and after the Continuous Hub 

Concept was implemented: 
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ORD -American Airlines Departure Schedules

0

2

4

6

8

10

12

14

16

1
1

:0
0

1
1

:3
0

1
2

:0
0

1
2

:3
0

1
3

:0
0

1
3

:3
0

1
4

:0
0

1
4

:3
0

1
5

:0
0

1
5

:3
0

1
6

:0
0

1
6

:3
0

1
7

:0
0

1
7

:3
0

1
8

:0
0

1
8

:3
0

1
9

:0
0

1
9

:3
0

2
0

:0
0

2
0

:3
0

2
1

:0
0

2
1

:3
0

2
2

:0
0

2
2

:3
0

2
3

:0
0

2
3

:3
0

Local Time of Day

#
 o

f 
S

c
h

e
d

u
le

d
 F

li
g

h
ts

 (
1
5
 m

in
 p

e
ri

o
d

) 2-Jan-02

8-Feb-06

 

Figure 5: ORD American Airlines Rolling Hub Schedule 

The comparison above of a schedule from the year 2002 with a 2006 schedule taken from 

the same season clearly shows how the 15 minute schedule departure movements in 2006 are 

much more spread-out when compared to the year 2002 schedule.  The intent is to produce a 

schedule that, in terms of hourly throughput rates, consistently stays at or below the expected 

capacity of the airport.  This, in theory, decreases overall delays and increases the on-time 

performance of the schedule. 

However, throughout the NAS today it is quite common that hourly demand exceed the 

hourly capacity available at an airport.  This situation is particularly exacerbated during 

inclement weather conditions when regular scheduled arrival and departure demand has to be 

matched with decreased throughput capacities.  As Petroccione puts it: 

 

“Under the traditional banked model for hubs, airlines typically over-schedule during 

certain periods of the day, even well above the ATC flow capacity even for favorable 

weather conditions.  This is a result of the traditional banked structure and connecting 
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philosophy to capture maximum revenue at the times during the day when stronger traffic 

demand is forecasted.   During the periods when airlines schedule traffic beyond the 

maximum ATC flow rates, delays occur even on good weather days, and become a 

nightmare during bad weather.” (Petroccione, 2007) 

 

In this eventuality, an airport arrival or departure manager can be pivotal in optimizing 

the overall operation.  This is particularly true when the practice of slot allocation accommodates 

artificial strategic demand curbing and flow management. 

The process of scheduling arrivals and departures at or below the maximum ATC flow 

rates for the airport increases the predictability and reliability of the overall operation 

(Petroccione, 2007).  As such, it increases the probability that the intended arrival and departure 

sequences are maintained in an optimal manner.  This concept feeds into the slot allocation 

algorithms under investigation in this research effort by ensuring maximum throughput 

capacities are desired but not exceeded. 

Despite significant efforts in developing these ‘ideal’ schedules based on various 

business and economic goals, it is extremely unlikely that they will ever be achieved.  Because of 

the stochastic nature of the NAS, aircraft currently routinely arrive out of their scheduled 

sequence due to breakdowns, ground delays and most importantly weather (Carr, 1998).  Once 

out of sequence, aircraft are at the mercy of ATC to be re-scheduled for an arrival or departure 

time. 

One of the primary problems with airline scheduling is that, given the current aircraft 

routing optimization approach employed by airlines, the robustness and reliability of schedules 

are not well considered against stochastic disruptions in operations (Wu, 2006).  A root cause for 
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this is that stochasticity within the NAS is today not sufficiently well understood in order to be 

incorporated into scheduling algorithms.  Consequently, at the stage of detailed planning, most 

airline schedulers still rely heavily on individuals’ experience rather than sound data and 

methods. 

The results of this research may provide significant insight for airlines into how the 

stochastic nature of the NAS can be incorporated into strategic flight scheduling at their hub 

airports and how airline operations may affect TFM decision making. 

Some simulation applications have been developed which are specifically targeted 

towards assisting airlines in optimizing their schedules and in assessing the magnitude of 

external factors on the airline schedule.  The MIT Extensible Air Network Simulator (MEANS) 

is an example of a NAS-wide simulation tool which is primarily motivated by airline delay 

propagation and flight scheduling.  It models very specific aspects of airline operations including 

GDPs, weather, and even passengers, using stochastic distributions where detailed operations are 

not required (Clarke, 2004).   

Although the use of simulation tools is very efficient in assessing specific scenarios and 

schedules, it is much too costly in terms of resources in order to be useful for optimization 

practice in the airline schedule planning regime. 

Air Traffic Flow Management 

The concept of air traffic flow management – usually simply referred to as TFM – is the 

management of air traffic operations with the intent to avoid exceeding airport and airspace 
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capacity restrictions in controlling air traffic.  TFM also aims to ensure that any available 

capacity in the system – on the ground or in the air – is used as efficiently as possible.   

TFM operations in the US are handled at the FAA’s ATC System Command Center 

(ATSCC) in Herndon, VA and fall under the umbrella of the CDM initiative (see the subsequent 

section for a detailed definition).  In Europe, TFM operations are the responsibility of the Central 

Flow Management Unit (CFMU) in Brussels, Belgium.  Since most airports in Europe are slot 

controlled and due to the relatively dense geographic environment, Europe’s CFMU currently 

has a much broader application compared to CDM and TFM in the United States.   

In fact, TFM in Europe strategically assesses traffic flows across the entire European 

airspace system from 18 months to a few days prior to the day in question.  Eurocontrol – the 

agency overseeing air traffic in Europe – defines the following phases depicted in Figure 4 below 

for TFM as part of their “Air Traffic Flow & Capacity Management Strategy” (Fournier & 

Fonck, 2004): 

 

Strategic Flow 

Management

Pre-Tactical 

Flow 

Management

Tactical Flow 

Management
NOW

 

Figure 6: Europe's ATFM Phases 
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In this organization, strategic flow management takes place between 18 months and a few 

days prior to the day of operation.  It basically consists of the analysis of the evolution of 

forecasted demand and capacity issues and results in a capacity plan for the given day.  The 

subsequent pre-tactical flow management phase occurs a few days prior to the day of operation 

and it determines the optimal way to manage available resources.  This phase also addresses the 

need for any flow control measures on the day of operation.  The final phase occurs on the day of 

operation and adapts any existing plans from previous phases to the actual environment of the 

given day.  This phase is where flow management plans are complemented by tactical airport and 

route slot allocations as well as ad-hoc re-routings (Fournier & Fonck, 2004). 

The primary focus in this flow management process is the allocation of air traffic demand 

across a network of constrained resources of airports and air routes.  Airport and air-route slot 

assignments are simply optimized to ensure that capacity limits are not exceeded.   

Collaborative Decision Making 

In an effort to allow airlines and other stakeholders more control or influence over 

decisions made primarily in the TFM arena, the concept of CDM has seen wide acceptance.  

Given the fact that major capital investments of new runways, airports, terminals, as well as ATC 

capabilities require many years until funded and finally available, FAA and industry are focusing 

on process and technique improvements rather than major investments in infrastructure and 

aircraft equipment (Bond, 2003).  CDM has evolved out of this paradigm and essentially 

attempts to more closely align FAA and airline interests and help make the system more efficient 

as a whole (Wambsganss, 1999). 
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Part of CDM is direct airline involvement in demand-capacity planning for daily flight 

schedules.  Through this process, airlines have influence over any GDPs or other ATC delays 

which may affect scheduled arrival and departure times for their entire fleets.  Daily CDM 

meetings at the ATCSCC in Herndon, VA also include discussions on forecasted effects of 

meteorological events, that allow airlines and other stakeholders to plan their daily operations in 

a more deterministic manner.  The premise behind CDM is an industry-wide platform of 

information sharing and increased communication of requirements, desires, and intents. 

Figure 5 below gives a graphical description of the CDM concept: 

 

 

Figure 7: CDM Concept Overview (based on FAA CDM Presentations) 

 

Although final decision making still lies with the FAA, the involvement of other 

stakeholders in TFM planning has shown considerable benefits.  CDM has not only shown a 

reduction in ground delays across the entire NAS, but has also increased the predictability of 

arrival sequences (Ball & Hoffman, 2001). 
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This research effort essentially focuses on the strategic planning and scheduling of flights 

across a network of airports that may directly contribute to CDM practices, particularly since it 

highlights the combination of airport and FAA goals with airline operations and desires.  It is 

also expected that the proposed slot allocation methodology reduce the need for GDPs. 

Airport Capacity 

Airport capacity is an important factor in the strategic schedule planning as well as 

tactical operational planning of airport operations.  The ability to correctly forecast airport 

throughput capacity during varying weather conditions and runway configurations can have a 

significant impact on the predictability of the entire operation and resulting delays and costs. 

The definition of capacity within the given context of airport operations is “an airports’ 

ability to process a certain number of flights within a certain amount of time” (Wells, 2000).  

Commonly used variations of capacity within an airport environment include: 

• Maximum capacity 

A theoretical periodic movement throughput value without any regard to 

accumulated delay.  Queuing theory suggests that it is impossible to reach 

maximum capacity for a random access queue but that delays will increase 

hyperbolically above a capacity fraction of 50% (Donohue & Zellweger, 2001). 

• Practical capacity 

A throughput value which represents a periodic number of movements given an 

acceptable level of delay. 
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• Hourly capacity 

The number of movements an airport is capable of accommodating during a one 

hour period.  This value changes throughout the day based on weather, wind, and 

traffic demand conditions. 

Within the context of this research effort, the airport’s hourly capacity rates are of 

primary interest.  Arrival and departure throughout rates are influenced by a number of factors 

including the following: 

• Number and configuration of runways 

• Dependencies between runways 

• Weather conditions 

• Surrounding terrain features 

• Airspace configuration 

 

In order to maximize airport throughput capacity, routine configurations of runways are 

designated which have been shown to optimize throughput in various environmental conditions.  

Figures 8 and 9 below depict the layouts of each of the two subject airports including their 

current runways.  Whereas the Chicago layout consists of multi-directional runways designed to 

operate in varying wind speeds and conditions, Atlanta has five parallel east-west runways which 

are intended to operate in predominantly east-west wind conditions.  Hence, Chicago is capable 

of maximizing throughput rates via a much larger set of standard runway configurations when 

compared to Atlanta. 
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Figure 8: Chicago Airport Diagram 

 

 

           Figure 9: Atlanta Airport Diagram 

 

  For planning purposes, hourly airport arrival rates are published by the FAA’s ATCSCC 

facility for all major airports in the US (FAA OIS, 2007).  These throughput rates essentially 

prescribe the number of available arrival slots at each airport.  Capacity rates are given for 

different weather conditions and runway configurations and are largely based on mathematical 

calculations of runway movement rates and dependencies and usually are conservative by nature 

(See Appendix A and Appendix B for detailed capacity information for each runway 

configuration).   

Other methods of predicting airport capacity include the use of historic traffic data 

combined with weather data as described by Fleming, Hafner and Fairman.  This approach used 

years of historical data and developed statistical predictions of hourly airport capacity rates for 

all weather and runway conditions historically observed (Fleming et. al., 2001).  This approach 
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was based on actual observed arrival and departure throughput rates rather than mathematical 

estimates of capacity as developed by the OIS system. 

Air traffic demand in the United States is predicted to double or even triple by the year 

2025 (JPDO, 2005).  This growth in traffic is expected to have severe impacts on the NAS and 

will require significant improvements to existing methods of handling air traffic, ATC 

equipment, as well as airport infrastructures.  Even though airspace congestion is likely to be a 

concern, terminal and airport capacity are expected to be the most limiting factor facing the 

transportation system (Andrews, 1999).   

Voss and Hoffman also contend that the most limiting factors of any efficient air traffic 

control system are the airports themselves (Voss & Hoffman, 2000).  In their opinion, airspace 

should adapt to runways since they are the least flexible part of the ATM system and are difficult 

to build and to alter.  This has somewhat led to the emergence of secondary airports as a means 

of handling excess demand and operations in the NAS.  This transition from single core airports 

to region wide multi-airport systems and the emergence of new airports in existing multi-airport 

systems, however, will impose new constraints which need to be addressed in future studies and 

NAS improvements (Bonnefoy & Hansman, 2004). 

Although the methodology proposed and developed for this research project does not 

increase the airports’ ability to accommodate more traffic, the strategic demand-capacity 

planning should increase predictability and therefore reduce delays across the entire system.  

Hence, it would stand to reason that any beneficial change to system predictability would extend 

not only the maximum but also the practical capacity of the system (Wells, 2000).   
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Airport Slot Control 

The concept of airport slot control basically limits the number of departure and arrivals at 

designated airports in an effort to artificially curb demand, increase predictability, and reduce air 

traffic delays.  Methods of slot control and allocation vary throughout the world but typically are 

all based on airlines receiving rights to operate a certain number of aircraft at certain times of the 

day at selected airports.  These slots are typically based on historical usage but are also balanced 

so that some competition exists. 

Although US airports are considered amongst the busiest airports by number of 

passengers served in the world (Neufville & Odoni, 2003), airport slot control is still a somewhat 

rare occurrence in the US.  In fact, only a handful of US airports appear to have some level of 

slot control including New York’s LaGuardia and JFK Airports, Chicago O’Hare, as well as 

Washington National Airport.  These airports are some of the most congested airports in the US 

and typically rank highest on the yearly delay summations.  The most fiercely controlled airport 

appears to be New York’s LaGuardia Airport, where arrival and departure slots are assigned 

based on a lottery scheme and are valid for a 10 year period.  The implementation of slot control 

at LaGuardia reduced its’ contribution to the total US delay count from 25% to 10% based on 

2001 figures (Saulny, 2001). 

A recent announcement by the U.S. Department of Transportation indicates that as of 

March 2008, further capacity restrictions will be implemented at all three New York area airports 

including LaGuardia, John F. Kennedy, and Newark Airports (Airport International, 2007).  

Lower capacity limits of 82-83 operations per hour are intended to curb demand at these airport 

in an effort reduce delays in the area.  This will force airlines operating at these airports to make 
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decisions about flight times and destinations and will make intelligent assignment of arrival and 

departure slots even more important. 

In Europe, most major airports are subject to slot control and most exhibit excess demand 

for slots throughout the day.  The current EU slot control system gives airlines "grandfather 

rights" to the take-off and landing slots they currently use. This allows airlines to hold on to 

valuable slots, provided they are used at least 80 percent of the time (NERA, 2004).  

Specifically, at major international airports such as London Heathrow, slots are very coveted 

resources and are highly valued.   

The usage of these airport slots is governed by Eurocontrol’s CFMU, which issues, for 

departures, calculated take-off times (CTOTs) – slot times – to airlines in the form of a time 

range.  Aircraft are required to be ready for departure at these times or they will loose their slots 

and be at the mercy of CFMU to obtain a later slot assignment.  The trading of slot assignments 

between aircraft of the same airline or the same alliance is also quite commonly used to ensure 

delayed aircraft have available slots down the line. 

Many concepts for slot allocation mechanisms are currently being researched including 

advanced lottery systems and differential pricing schemes.  However, the methodology of these 

advanced airport slot assignments and associated capacity impacts does not appear to be 

sufficiently integrated with the CFMU’s traffic flow management practices.  Particularly in a 

short-term tactical scenario, airport capacity restrictions and associated changes in slot 

assignments are not efficiently communicated with the CFMU (Chapman, 2005). 
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Future Supporting ATM Concepts 

With the advent of a next generation ATC system to replace the existing out-dated 

hardware and software, many new technologies and concepts are being researched, developed, 

and implemented today.  Some of these concepts, although not fully implemented at the current 

time, will play a major role in reducing the uncertainty and increasing the efficiency of future 

navigation and control systems.  The methodology presented in this dissertation references a 

number of concepts which are currently being implemented or under investigation for the future 

ATM System.  This section presents an overview of current initiatives in planning and 

developing future ATM technologies, with a primary focus on concepts which increase the 

predictability of aircraft route planning. 

The principal agency responsible for defining the future ATM system in the US is the 

JPDO.  The JPDO was created by the Vision 100 legislation to develop a revolutionary next 

generation air transportation system (NextGen) to handle the needs of air traffic in the next 25 

years (FAA, 2004).  A description of the NextGen initiative states: 

 

“We are entering a critical era in air transportation in which we must either find better, 

proactive ways to work together or suffer the consequences of reacting to the forces of 

change.” (NextGen Statement of Objective, 2004) 

 

Many technologies are on the JPDO’s drawing board which address long-term capacity 

problems including satellite navigation, information sharing platforms, and advanced weather 

prediction systems.  In addition to these long term capital improvements, the JPDO is also 
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researching process improvements – for airport and airspace operations – which assist in better 

accommodating expected traffic demand without major capital investments.  These technology 

improvements include advances in managing aircraft trajectories, improved flight management 

systems aboard aircraft, as well as stringent requirements for aircraft to adhere to four-

dimensional planned trajectories.   

4-Dimensional Air Traffic Management 

The majority of future concepts of operation (ConOps) for the future NAS are all biased 

toward the use of 4-dimensional ATM or ‘trajectory control’.  This means that aircraft will be 

required to fly precise tracks with minimal deviation in the latitude, longitude, altitude and time 

dimensions. 

Ideally the user will be able to fly a user preferred trajectory to the destination, that 

allows freedom vis-à-vis 2D-tracks as well as altitudes and speeds.  This will not only satisfy 

environmental concerns in terms of noise and emissions, but also increases profitability from an 

airline point of view since approaches may be flown almost entirely on airline-preferred low 

engine thrust settings, thereby reducing fuel burn. As aircraft may also remain at higher altitudes 

for longer periods of time before reaching the top of descent (TOD) points on the approach, 

higher speeds are also possibly and this reduces total air time (Wilson & Hafner, 2005). 

The 4-dimensional tracks for each aircraft will be based on airline desired filed flight 

plans but are eventually modified and approved by a central host computer system.  The system’s 

responsibility will be to adapt to the desired flight plan and ensure that no conflicts with other 

aircraft exist and that airspace and airport capacity restrictions are observed.  The result is a 
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strategic 4-dimensional flight trajectory that will only have to be modified in case of emergencies 

or other unforeseen factors such as weather or runway closures.  Of course, the aircraft will have 

to accept this 4-D trajectory and renegotiate as necessary to match internal airline requirements.  

The aircraft subsequently enters into a ‘contract’ to fulfill the requirements of this trajectory. 

The basic purpose of 4-D ATM is to eliminate as many factors as possible that might 

affect in-flight trajectories before the aircraft leave the ground.  Clearly, implementation 

concepts such as NASA’s Evaluator cannot consider all events that may possibly affect flight 

trajectories, but they certainly increase the predictability of the system to a level where more 

advanced trajectory planning technologies can be very valuable. 

Performance Based Operations 

Future ATM systems in the US as well as Europe will implement the broader concept of 

performance-based ATM (PB-ATM), also sometimes called performance-based navigation 

(PBN).  These concepts specify performance requirements in terms of accuracy, integrity, 

continuity, and functionality required for the proposed operations (ICAO, 2007).  This represents 

a paradigm shift from historic sensor-based to future performance-based concepts.  PB-ATM 

will define equipment and performance requirements for navigation levels of service.  Based on 

this, airlines and operators are able to evaluate flight path and other options based on their 

operational requirements and aircraft capabilities.   

The primary advantage of PB-ATM is that different levels of service can be selectively 

provided based on aircraft capabilities.  This generates an environment of increased cost-

effectiveness and predictability for aircraft with advanced avionics.   
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PBN will have an impact in all levels of flight including departures, en-route cruise, and 

arrivals.  Figure 10 below depicts a typical flight profile for an aircraft, the phases of flight, and 

some associated benefits of PBN services (extracted from US JPDO ConOps) : 

 

 

Figure 10: Flight Profile and Phases of Flight 

Failure to repeatedly meet performance of 4-D trajectories and other performance-based 

service may result in increasingly lower level of service for selected airlines or aircraft operators. 

The implementation of the PB-ATM concept is a fundamental concept that supports the 

advanced TFM aspects referenced in this research effort.  The use of stochastic distributions of 

flight times as part of the airport slot allocation scheme makes heavy use of the idea that aircraft 

will be able to accurately fly pre-defined trajectories in the fourth-dimension – time – and meet 

their expected arrival times reasonably precisely.  A primary component of PB-ATM, RNAV 

and RNP, is further defined in the subsequent section. 

Required Navigational Performance 

The International Civil Aviation Organization (ICAO) defines RNP as "a statement of the 

navigation performance necessary for operation within a defined airspace" (ICAO, 2007).  RNP, 
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coupled with the concept of RNAV, is part of the broader concept of PBN and defines 

performance specifications that an aircraft must meet in order to be able to operate on certain 

routes and flight paths.  RNP also monitors the achieved performance and provides for 

alternatives in the event of failure to meet the required performance specification.  As a result, 

due to their higher level of predictability aircraft equipped with RNP avionics are capable of 

operating in more densely populated airport and airspace environments and therefore 

accommodate the increasing demand for air traffic capacity.  Figure 11 below shows a before 

and after comparison of arrival flight routes into Atlanta Hartsfield Jackson International Airport 

and the difference that RNAV-RNP procedures have made in improving the predictability of 3-

dimensional flight paths (McGraw, 2005).  These figures are based on ASDI aircraft tracks 

before and after the implementation of RNAV-RNP procedures at Atlanta: 

 

 

Figure 11: Area Navigation - RNP Procedures at Atlanta before (left) and after (right) 

The closer adherence to pre-defined routes that are caused by RNAV-RNP procedures 

reduces variability in flight paths in three and even four dimensions.  Aircraft can be guaranteed 
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to fly more exact routes in a more automated manner, thereby increasing system predictability 

and reliability. 

Some of the benefits of RNAV-RNP procedures and concepts include (McGraw, 2005): 

• Increased predictability 

• Increased arrival/departure throughput and efficiency 

• Decreased departure delays 

• Reduced track distances and more direct routings 

• Reduced voice communications 

• More efficient vertical profiles 

 

An aircraft’s ability to precisely fly a 4-D track is defined in levels of RNP compliance 

capabilities.  For example, to use RNP as an approach tool, aircraft typically will need to be 

certified for RNP 0.3 or even RNP 0.1, reflecting a capability to maintain track with a maximum 

deviation of 0.3 or 0.1 nm (ICAO, 2007).  The RNP requirement is reduced in airspace where the 

traffic density is reduced. 

The concept of RNAV-RNP also provides for the ability to define tunnels of airspace for 

aircraft that have the same flight paths and required equipment performance.  Essentially, the 

aircraft flies down a tightly contained tunnel in the sky using the onboard navigation and 

monitoring systems to maintain separation with other tunnels in the sky (ICAO, 2007).  These 

tunnels in the sky can be dynamically designed in terminal areas but are likely to be fixed 

routings in upper airspace (Paylor, 2006).  They essentially guarantee conflict free and 

predictable flight paths for aircraft that are sufficiently equipped. 
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Recent Approaches to Schedule Optimization Problems 

Various operations research techniques have been applied to solve timetabling and 

scheduling problems such as the slot allocation problem addressed in this research effort.  The 

application of optimization algorithms depends on the size of the problem space.  In fact, the 

performance of random search techniques on these types of problems is typically a function of 

the proportion of good solutions versus unacceptable solutions.  This makes a random search for 

acceptable or optimal solutions very impractical.  Classical search techniques are often practical 

for small scale problems where either the search space is small or the number of acceptable and 

optimal solutions is abundant (Fang, 1994).  This suggests the use of intelligent search 

techniques and heuristics to solve large scale timetabling problems such as the airport slot 

allocation problem at hand. 

A review of classical Operations Research techniques and their applicability in the 

timetabling/scheduling arena is presented in this section.  The logical division of methods for the 

purpose of this discussion is between enumerative and search techniques.    Enumerative 

techniques use mathematical optimization and programming to solve problems by examining the 

bounds of the acceptable problem space for optimal values.  On the other hand, search 

techniques search for optimal solutions by examining some or all solution sets within the entire 

solution space.  Naturally these search techniques are guided in order to minimize the total 

number of solution sets to examine. 

The following techniques are all enumerative methods: 

• Mathematical programming 

This includes approaches such as linear programming, integer programming, and 
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mixed integer programming.  At the core of these techniques lies a mathematical 

function which will be optimized subject to various linear constraint functions and 

variables.  These approaches are very suitable for small scale timetabling and 

scheduling problems.  Nevertheless, Tripathi, 1984, has shown that, albeit with 

some challenges, binary integer linear programming methods may be applied to 

larger scale scheduling scenarios as well (Tripathi, 1984).  Another example is 

presented by Wen, Larsen and Clausen, who used mixed integer programming in 

combination with other search techniques to obtain optimal sequences to what 

they called the aircraft landing problem (ALP) (Wen et.al, 2005). 

• Branch and bound 

The branch and bound technique is basically an enumeration approach that prunes 

the search space by eliminating the non-promising search space. Branching 

basically partitions the large problem space into multiple sub-regions and 

bounding subsequently calculates the lower bound on the optimal solution of each 

of the sub-regions.  Branch and bound methods are classified according to the 

methods used for bounding the ways of creating/inspecting the search tree nodes 

during the pruning stages.  This type of approach was used by Carlier and Pinson 

for solving the job-shop problem (Carlier & Pinson, 1989).  The branch and 

bound approach is basically ineffective for timetabling and scheduling problems 

(Fang, 1994). 

• Dynamic programming 

Dynamic programming is also an implicit enumerative method which exhibits the 

properties of overlapping sub-problems and the optimization of substructures 
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Due to the nature of timetabling and scheduling problems, the enumerative methods 

identified previously clearly do not provide an effective means for obtaining optimal solutions in 

large search spaces.  While mathematical programming techniques may be practical in solving 

smaller sized timetabling or scheduling problems, they will not prove to be a computationally 

effective procedure to solve larger scale problems (Wen et. al., 2005). 

This suggests the use of intelligent search techniques to solve the large scale timetabling 

problem for airport slot allocation.  Heuristic searches provide guidelines for intelligent search of 

the problem space for optimal solutions.  The following is a summary of intelligent search 

techniques which may be applied sto timetabling and scheduling problems: 

• Direct heuristics 

These techniques are based on simulations of human behavior in solving 

problems.  Direct heuristics are based on successive augmentation of the solution 

space by scheduling one event after the other until all of the events have been 

scheduled.  The underlying idea of these approaches is to schedule the most 

constrained event first (Schaerf, 1999).  Conflicts between events are resolved by 

simply swapping events in the timetable (Junginger, 1984). 

• Simulated annealing 

The simulated annealing approach was first pioneered by Kirkpatrick, Gelatt, and 
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Vecchi in 1983 and is a global search heuristic, that searches the solution space by 

generating, at random, neighboring solutions to the current solution (Kirkpatrick 

et.al., 1983). A more preferred neighbor is always accepted and an inferior 

neighbor is accepted probabilistically.  This decision is based on the difference in 

quality and a temperature parameter, which is modified as the algorithm 

progresses to alter the nature of the search.  Essentially, non-improving solutions 

are permitted with progressively decreasing probability (Meyers & Orlin, 2006). 

• Tabu searches 

Tabu searches are another local search heuristic which iteratively moves from one 

solution to the next in the immediate neighborhood, until some stopping criterion 

has been satisfied.  The unique aspect of this technique is that it retains memory 

of recently visited solutions and classifies them as unacceptable for re-

examination in the future (Meyers & Orlin, 2006).  Short and long term memory 

both exist within this technique to prevent certain moves even if they are 

increases, essentially making this technique very effective in finding global rather 

than local optima. Examples of this technique can be found in (Colorni, Dorigo & 

Maniezzo, 1998) and (Paquete &Sutzle, 2002). 

• Neighborhood/local searches 

Neighborhood search algorithms define a technique which starts with a feasible 

solution and iteratively attempts to find a better solution in the neighborhood of 

the current solution.  A very large-scale neighborhood search algorithm is one that 

searches over a very large neighborhood, giving an improving solution in a 

relatively efficient amount of time. Such algorithms tend to search implicitly over 
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the neighborhood rather than explicitly, since the quantity of solutions precludes 

performing an exhaustive search (Meyers & Orlin, 2006).  Caramia and 

Dell’Olmo present a novel heuristic which couples a stochastic local search with a 

deterministic local search to more efficiently obtain an optimum (Caramia & 

Dell’Olmo, 2007). 

• Genetic algorithms 

GAs are an approach which uses the basic theory of evolutionary biology to 

migrate from an initial solution set to the most optimal solution in the search 

space.  GAs maintain a pool of potential solutions and individual genes or 

chromosomes are combined or mutated to alter the pool of solutions.  Inferior 

quality solutions are discarded – an analogy to natural selection in biology – 

based on a fitness function which evaluates and scores each potential solution.  

GAs perform particularly well with NP-complete problems such as timetabling 

and scheduling. 

• Evolutionary algorithms 

EAs are a close relative to GAs in form and function.  Also referenced by 

(Holland, 1975), they differ in function from GAs in the limiting of genetic 

operators.  Rather than using mutation and cross as genetic operators, EAs make 

use of only mutation. 

• Memetic algorithms 

Memetic algorithms are a close brother to GAs in that they essentially are 

evolutionary methods and contain units of information – or chromosomes – which 

reproduce themselves as ideas get exchanged.  The memes essentially regenerate 
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themselves and mutate much like genes in the EA approach.  The key difference 

from GAs is that memetic algorithms heavily incorporate local searches before 

mutation (Moscato & Norman, 1992).  The practice of hill climbing can also be 

applied to the mutated solutions to improve the quality of the solution (Burke, 

Newall & Weare, 1996). 

• Particle swarm optimization 

Swarm intelligence optimization was first described in 1995 by Kennedy and 

Eberhart (Kennedy & Eberhart, 1995).  It is also a close relative of GAs in terms 

of its’ evolutionary search methodology and associated fitness function to 

evaluate the quality of each solution.  It slightly differs from traditional EAs in 

its’ secondary focus on individual particles and the quest for their own particle or 

local best solutions.  

 

Other artificial intelligence or knowledge-based intelligent system approaches exist such 

as constraint satisfaction problem techniques or order/resource-based scheduling.  The use of 

hybrid approaches containing distributed artificial intelligence, rule-based expert systems as well 

neural networks are also fairly popular approaches to solving scheduling problems.  

 The most promising and modern heuristics – and likely most advanced – such as Tabu 

Search, GAs, EAs, and particle swam optimization have their roots in artificial intelligence.  

These techniques, particularly for large timetabling problems, seem to outperform tradition 

operations research methods (Meyers & Orlin, 2006).   
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Recent Optimization Approaches for Airport Operations 

Recent research efforts in airport slot allocation optimization have focused primarily on a 

single metric – aircraft delay – and have tended to focus on single airport systems.  Aircraft delay 

is readily measurable in an optimization algorithm as both a linear and non-linear fitness on a 

flight-by-flight basis.  It does, however, assume that the original estimate of arrival or departure 

time has a high level of confidence for each flight.  Optimization across all flights is then 

typically measures as the minimal overall deviation from the original scheduled movement 

times.   

The vast majority of current research efforts in this subject have also focused on a single-

airport system.  Some research has been carried out in the optimization of airport capacities and 

delay propagation across networks of airports.  Nevertheless, the description of an overall 

optimization algorithm that addresses scheduling across a network of airports has thus far not 

been widely discussed. 

The literature has shown that the optimization of airport operations is typically addressed 

from a number of different angles.  Each of these fields of study is a significant research area in 

and of itself.  The different fields include: 

• Optimization and maximization of airport throughput through the use of improved 

forecasting, optimal runway configurations, and aircraft sequences (minimization 

of wake turbulence effects) 

• Optimization of ground operations including optimal taxi paths and the optimal 

usage of resources to minimize aircraft turnaround times 
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• Optimization of airline flight schedules from a strategic or tactical perspective to 

minimize the effects of reduced capacity and other perturbations within the 

system.  An additional goal in this field is the maximization of ground resources 

and the minimization of cost from an airline perspective. 

 

The majority of the optimization approaches above can be applied in a strategic, long-

term planning horizon.  Some, however, are focused on the real-time decision support tool 

planning horizon.  The vast majority of research also focuses on the single airport optimization 

problem rather than addressing networks of airports.  Although the NAS is considered to be a 

networked system of capacitated resources, the scalability of many optimization approaches from 

a single to multiple airports is not addressed. 

Current research in each of these areas will be discussed in turn. 

Capacity Optimization 

The optimization – or in this case the maximization – of available runway resources in 

terms of throughput capacity is a very popular field of study.  Various research programs focus 

solely on the maximization of available runways and the associated throughput capacity under 

varying demand and weather conditions. 

Research into the optimal use of runway configurations under varying weather – and 

particularly wind – conditions is being carried out by Mousa and Mumayiz to produce a tool that 

recommends the most optimal runway configuration based on the given wind conditions (Mousa 

& Mumayiz, 2000).  In their research effort wind variables are being converted into 
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mathematical formulas which are then matched against historic runway configurations using an 

exhaustive search optimization algorithm. 

Other recent research efforts focus on the tradeoffs in arrival and departure capacity.  

Whereas most applications treat arrival and departure capacity as independent variables, 

Dell’Olmo and Lullii have researched the inter-relationships of these two capacities (Dell’Olmo 

& Lullii, 2003).  His research has shown that maximum overall capacity an airport can be 

maximized by using a dynamic programming framework and pareto-optimal operational points 

of departure and arrival capacity.  An initial operational tool for airport capacity tradeoff 

guidance was developed by the Volpe Research Center and tested in St. Louis International 

Airport (Gilbo, 2003).  Volpe continues to research this application. 

Another approach for maximizing airport throughput was presented by Fleming, Hafner 

and Fairman in his research into using historical throughput and weather conditions to forecast 

airport capacities.  Using a combination of prediction equations and pattern matching on 

historical observations, their researched showed that more realistic airport capacities can be 

produced for near-term strategic airport schedule planning (Fleming et.al., 2001). 

A more network-centric approach to maximizing airport capacities has been taken by 

researchers at George Mason University.  Their focus is the net reduction in arrival-departure 

delay across a network of airports by leveraging high fidelity weather forecasts capacity 

optimization algorithms, and ground operations guidance (Roberts, 2004).  This research again 

focuses on the minimization of capacity-constraining effects across a network of airports. 

Another very popular area of research in this field is the optimization of the arrival and 

departure sequences to maximize airport throughput.  Based on various wake-turbulence 

separation criteria, the order in which aircraft arrive and depart may significantly affect the 
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throughput rates.  Various AMAN and DMAN tools exist on the market today that solve this 

problem in various different ways.  Both American and European federal research centers 

dedicate significant resources towards research on advanced arrival and departure guidance tools.  

One such tool, NASA’s Collaborative Arrival Planner, is being used as the basis for developing 

more advanced arrival sequencing models that minimize cost through adjustments of the arrival 

sequence (Andersson, Hall, Atkins & Feron, 2003).  It contains a quantitative model of airline 

operations and is capable of producing optimal schedules for one airline at a single airport for a 

3-4 hour period. 

Research such as that carried out by Saraf and Slater extends this practice and not only 

maximizes airport arrival capacities but assigns capacities along various points along the aircraft 

flight paths (Saraf & Slater, 2008).  Using an Eulerian model-based optimization scheme, airport 

and en-route point capacities and flight arrival orders are assigned with the goal of maximizing 

airport throughput.   

The maximization of airport capacity can be considered the fundamental area of research 

for all ATM traffic flow management tools.  With limited amounts of runway and real estate for 

expansion, it is the optimization of existing resources that can maximize airport operations 

efficiency and throughput. 

Ground Operations Optimization 

The optimization of ground taxi operations is a popular area of research today. It is split 

into two primary areas of research: taxi paths and aircraft turnaround times. 
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Without regards to departure runway sequences, aircraft need to move along taxiways in 

a safe and efficient manner.  This area has historically not seen any research into optimization 

tools.  In order to constantly feed the departure runways with aircraft and make optimal use of 

gate usage times, optimal ground taxi paths can provide distinct advantages.  Research being 

carried out at the University of Madrid, Spain, is focused on developing real-time DSTs that give 

controller guidance regarding aircraft taxi routes (Garcia, Berlanga, Molina & Casar, 2005).  To 

accomplish this task, a hybrid approach using genetic and time-space dynamic flow management 

algorithms has been implemented.  This approach allows the time-space dynamic flow 

management algorithm to solve a deterministic simplified problem that is then complemented by 

the GA and a search within a more realistic problem space.  Similarly, NLR, the Dutch 

Aerospace Research Agency, has developed optimization tools for guiding aircraft along 

taxiways at Schiphol Airport in Amsterdam (Smeltink, Soomer, de Waal, & van der Mei, 2004).  

Using mixed-integer programming, a tactical planning DST was developed that minimized travel 

times on the ground and therefore optimized gate usage. 

Other research efforts have focused on optimizing aircraft turnaround time scheduling.  

Research performed by Wu and Caves has shown that optimal assignment of buffers to 

scheduled turnaround times can minimize costs by balancing the tradeoffs between schedule 

reliability and aircraft utilization (Wu, 2004; Wu & Caves, 2003).  The results from this research 

effort may be of distinct interest to the airport-wide scheduling methodology presented in this 

dissertation.  The ability to not only link arrivals with departures but also to optimize the 

turnaround time buffers would increase the scalability of this approach significantly.  
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Schedule Optimization 

In contrast to the near-term capacity maximization research described in the previous 

section, the optimization of airline schedules around these capacity constraints is a much more 

popular area of research.  In fact, airlines have been researching and practicing this area for a 

long time on both a long-term and a short-term planning platform.  The optimization of airline 

schedules is heavily dependent on the desired metric for evaluation.  Potential metrics include 

delays, costs, crew and ground equipment resources, and human workload.   

At a very rudimentary level, using delay as the sole metric, Ding, Ji, and Wang are 

researching the use of Compromise Immune Algorithms (CIAs) to schedule arrivals and 

departures at airports based on fixed airport capacities (Ding, Ji & Wang, 2007).  Experiments 

have shown very favorable results from the use of CIAs in the combinatorial optimization.  

Another approach to assigning arrival slots under reduced capacity scenarios is presented by 

Butler who uses a ration-by-schedule greedy algorithm (Butler, 2003).  Using an integer 

programming model, Butler uses delay-based metrics to efficiently allocate resources.  The 

model can also be extended to take into account capacity restrictions at waypoints along the 

arrival routes. 

Using airline costs and delays as metrics, research carried out by George Mason 

University shows that airline schedules can optimized around reduced runway capacities without 

sacrificing airline costs and increasing ticket prices (Le, Donohue, Hoffman & Chen, 2008).  

Another cost-based approach is presented by Chang and Schonfeld for scheduling departure 

aircraft along high-demand routes.  Using dynamic programming, the departure times of flights 

that minimize airline operating cost and users waiting cost are determined for a single airline 
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with time-dependent demand along routes (Chang & Schonfeld, 2004).  Cao and Kanafani have 

also used a minimum cost flow model to assign runway slots to flights using relationships 

between airline profits and flight rescheduling (Cao & Kanafani, 2000).  Using their approach, 

airline flights are rescheduled based on a limited set of runway slots.  According to their 

research, this optimization approach can be used to investigate congestion pricing, runway slot 

auctioning, and the adjustment of airline schedules to accommodate reduced capacity scenarios. 

A dynamic programming approach to runway scheduling has been proposed by Chandran 

and Balakrishnan.  Their algorithm computes a tradeoff curve between runway throughput and 

the probability that random deviations of aircraft from the scheduled times violate system 

constraints (Chandran & Balakrishnan, 2007).  The algorithm includes various operational 

constraints and limits the amount of time that an aircraft can be shifted in the schedule.  The 

overall intent is to develop a schedule which is more robust to perturbations. 

Current research into departure schedule optimization is heavily based around the 

sequence of departures in a short-term planning horizon.  High demand airports frequently 

encounter periods where the workload for ATC prevents optimal departure aircraft scheduling.  

To assist controllers in a real-time scenario, research is being focused on DSTs that generate 

optimal departure sequences.  One such tool is being investigated for use at London’s Heathrow 

Airport using a hybrid meta-heuristic to aid runway scheduling (Atkin, Burke, Greenwood & 

Reeson, 2007).  In similar fashion, a two-step algorithm is presented by Anagnostakis which 

produces an optimal departure schedule based on optimal departure sequences as well as 

projected ground taxi times from the gates to the runway entrances (Anagnostakis, 2004).   

Other research efforts into optimal departure sequencing are focused on solving the GDP 

problem.  When sudden decreases in departure capacity are mandated by the FAA, airlines are 
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forced to quickly reschedule flights based on various priorities.  Mukherjee and Hansen present a 

dynamic stochastic integer program which optimizes the departure flight sequence under GDP 

restrictions (Mukherjee & Hansen, 2007).  As part of this approach, certain airline priorities are 

incorporated including priority of long haul over short haul flights.  The major contributor to 

their objective function is the cost of delays taken on the ground by departing aircraft.  This 

integer programming approach produces the highest performance gain under capacity restricting 

scenarios but can also be applied under normal operating conditions.  Other approaches to 

solving the Airline Recovery Problem (ARP) propose the use of evaluated preference genetic 

algorithms to optimize airline schedules (Liu, Liu, Chen, Tsai & Ho, 2007).  Their research 

addresses the scenarios of near-term significant capacity reductions by using multi-objective 

genetic computation that consider flight connections, flight duty swap, total flight delay times, 

and flights delayed over 30 minutes. 

In addition to scheduling runway arrivals and departures, other research is focused on 

optimizing gate arrivals and departures.  If runway throughput capacity exceeds the gate 

handling capacity at an airport, the system inherently exhibits delays.  Thus, optimizing the use 

of valuable gate space is a natural parallel optimization effort that matches resources on the 

ground to the desired arrival and departure slot schedules.  As Dorndorf, Drexl, Nikulin, and 

Pesch note, solutions to the gate assignment problem range from quadratic assignment problem 

solutions, to integer programming, to specialized branch and bound and neighborhood search 

techniques (Dorndorf et.al., 2007).  Objective functions for these optimization problems are 

predominantly intended to minimize passenger walking or baggage transportation distances.  

Realism is injected into these optimization algorithms by adding stochastic perturbations into the 

evaluation of the schedules including flight tardiness and flight gate breakdowns and failures. 
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Based on this literature review, a variety of different approaches have been proposed for 

optimizing airline schedules in a near-term and a long-term planning horizon.  The vast majority 

of these approaches are only applicable to single airport scenarios.  The literature review has also 

not produced any novel research into slot allocation optimization that is based on historically 

observed flight and taxi times.  This is likely due to the lack of data available to organizations 

outside of major research institutions and the airlines themselves. 

Strategic versus Tactical Planning 

Many of the optimization approaches previously identified can be optimized in both a 

strategic and a tactical manner.  Whereas some heuristics focus on optimization operations in a 

strategic, long-term timeframe, other research areas focus solely on real-time DSTs that are 

geared towards assisting active control of aircraft in real-time.   

Capacity and resource optimization planning is typically performed on a tactical near-

term time horizon.  Since near-term schedule optimization depends heavily on airport capacity 

forecasts, tactical schedule optimization is performed within hours of the actual operation.  

Similarly, the optimization of ground operations can only be performed efficiently in the near-

term when traffic demand is more deterministically understood. 

On the other hand, schedule and gate optimization tasks can be performed in both a 

tactical and strategic manner.  Airlines perform strategic optimization of their schedules many 

days, weeks, and months before the actual day of operation.  This allows them to produce 

optimal crew, ground crew, and ground equipment usage profiles.  An Airline Operations Center 

(AOC) then evaluates schedules in a real-time manner on a continuous basis.  Airlines use 
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various optimization tools to assist in the recovery from GDPs or other irregular operations 

phenomena. 

Network Planning 

As mentioned in the previous sections, the majority of airport arrival and departure 

optimization research is focused on solving the single airport problem.  This is likely due to the 

expected audience for these approaches.  The optimization of single airport operations is 

typically the responsibility of airlines and airports (including local ATC).  Airports that require 

strategic schedule planning are generally considered airline hubs or high-demand destinations 

such as New York’s LaGuardia Airport.  The airport’s ability to coordinate slot assignments with 

other airports is not the responsibility of the airport itself, but that of the FAA’s TFM unit.  This 

means that although single-airport optimization approaches can be implemented, the 

understanding of how these affect the NAS lies with the FAA’s command center.  The 

developing of tools for NAS-wide operations has historically been centered at high level 

federally funded research centers such as MITRE or MIT Lincoln Labs.  There appears to be no 

real impetus for wide-spread research into NAS TFM optimization tools at this point. 

Nevertheless, some universities have been working on long-term research projects to 

develop applications which address the networked nature of the NAS.  The intended application 

of the these network-wide approaches differ based on the audiences and the purpose of the 

results. 

One approach for optimizing airline network base schedules is presented by Mashford 

and Marksjo who suggest the use of optimization through simulated annealing of flight networks 
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(Mashford & Marksjo, 2001).  His approach is hierarchical in nature consisting of a master 

problem for logical aircraft optimization and various sub-problems for schedule evaluation.  The 

sub-problems include evaluations of passenger connections, passenger choice modeling, revenue, 

and cost generation.  The nature of the sub-problems seems to indicate that this network-wide 

schedule optimization approach is primarily intended for assigning the correct size and number 

of aircraft to routes based on various passenger origin-destination characteristics. 

Another network-wide optimization approach has been taken by the team developing the 

MIT Extensible Air Network Simulation (MEANS) tool.  As Clark describes, the tool is 

primarily intended for airline delay propagation research and provides for ways to minimize the 

effects of irregular operations across the NAS (Clarke, 2007).  The MEANS platform can assist 

airlines in the optimization of NAS-wide schedules when sudden capacity decreases or GDPs 

occur in the system.  The primary objective of MEANS is to develop a model platform where 

airlines and air traffic service providers can assess the impacts of weather, statistical phenomena, 

crew availability, and passenger movements on a NAS-wide network of airports.  Although 

MEANS uses optimal airport throughput capacities and develops optimal arrival and departure 

sequences, it performs these functions from a level that primarily assesses flow rates and not 

individual aircraft slot assignments.   

Another approach for a NAS-wide optimization tools is the Airport Departure Arrival 

Management System (ADAMS) that was developed at George Mason University (Roberts, 

Grundman, Devlin, Fulgenzi, Sacro, Stapleton & Szurgyi, 2004).  As described, ADAMS 

provides real-time decision support capabilities to local air traffic and ground operations 

managers as well as the FAA’s central flow control unit.  The objective is to minimize net 

arrival-departure delay by leveraging high fidelity weather forecasts, ground sequencing 
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guidance, and capacity optimization algorithms.  ADAMS has been evaluated using a simulation 

platform for a network of 6 airports.  The purpose of this application is real-time guidance of 

aircraft operations across a network of airports.  ADAMS does not appear to incorporate any 

objectives other than delay into its decision making framework. 

Relevance to Proposed Methodology 

This literature review has shown that although various novel approaches to optimizing 

airport operations exist, none of the methodologies address the strategic multi-objective 

optimization of airline schedules across a network of airports.   

Most strategic schedule optimization approaches focus on a single airport problem and do 

not adequately address the multi-objective nature of airline scheduling from a TFM perspective.  

The literature review has clearly shown that no current approaches to schedule optimization exist 

which strategically allocate runway slots on a long-term planning horizon.  All of the approaches 

focus on optimizing the arrival and departure sequences in real-time or within a few hours of the 

operation. 

Also, the network-wide optimization approaches that have been identified either focus on 

real-time optimization for DSTs, delay propagation across the NAS, or strategic assignments or 

aircraft on routes based on passenger origin-destination data. 
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CHAPTER THREE: METHODOLOGY 

In the scenario described previously, the focus lies on the allocation of airport departure 

and arrival times for a given real-world schedule of aircraft flight plans.  The scope is limited to 

two airports and a period of performance for analysis of 4 hours during which a realistic 

complete set of operations will be experienced at each of the following airports: 

• Chicago O’Hare International Airport 

• Atlanta Hartsfield Jackson International Airport 

These airports are the top two busiest airports in the entire US as well as the world 

(McCormick, 2007).  Chicago O’Hare is capable of handling upwards of 3,000 flights per day, 

with analytical maximum arrival capacities of up to 100 arriving and 100 departing flights per 

hour of each, arrivals and departures (OIS Website, 2007).  FAA OIS data indicates that Atlanta 

Hartsfield Jackson Airport is capable of accommodating a similar amount of traffic during good 

weather, i.e., VFR weather conditions. 

The primary reason why these two airports were chosen is that they are both major hub 

airports within the US NAS, which means they are guaranteed to have a fairly constant demand 

pattern.  This also ensures that numerous flights are scheduled between these two airports on a 

daily basis.  Since Chicago O’Hare is already a slot controlled airport, the hourly scheduled 

demand rates have already been artificially trimmed to more closely align with expected capacity 

rates.  Atlanta Hartsfield, on the other hand, regularly experiences periods where the scheduled 

demand exceeds the available capacity – departure and/or arrival – throughout the day. 

Had two airports been picked where absolutely no flights operated between them, the 

approach to this problem would simply be comprised of two completely separate optimization 
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problems where one airport’s slot allocation would not affect slot scheduling at the other airport 

at all.  This would mean that inter-airport effects would not be accurately catered for in the 

subsequent evaluation of the performance of the algorithm. 

Simply allocating airport arrival and departure times at an airport is a far more 

complicated process than this description indicates.  It is fairly routine that the total number of 

scheduled operations at each of these major hub airports exceeds the amount of aircraft the 

airport is actually capable of handling, particularly during inclement weather conditions.  If a 

simple first-come first-serve scheduling methodology was used to allocate arrival and departure 

times between aircraft, the airport may be idle at some points and completely backed up in 

others.  This would also cause some aircraft to be delayed for unacceptable time periods 

depending on the order in which they were schedule to arrive in the first place. 

Due to the complexity of this problem and based on an extensive literature research of 

potential approaches, an EA approach was chosen to optimize the arrival and departure orders of 

the two subject airports.  This section of the dissertation outlines the details of the prerequisite 

data mining efforts of historical data and subsequently the design and implementation of the EA 

methodology including any relevant assumptions.  It also provides the outline of a simulation-

based assessment of the resulting slot allocation schedules produced by the EA methodology. 

Research Approach 

As previous sections of this dissertation have outlined, the basic approach to the airport 

slot allocation problem chosen is that of an EA.  GAs are a smart search technique which use a 

fitness function to evaluate potential solutions to the problem and uses the relative fitness of 
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these solutions to guide the search for better, more preferred, solutions.  A solution within the 

context of this research describes a certain order of arriving and departing aircraft at the two 

subject airports – Atlanta Hartsfield Jackson and Chicago O’Hare.  An iterative search through 

the exhaustive solution space is then performed by the EA. 

During each round of generating candidate solutions, each solution is evaluated with a 

fitness function which considers such factors as aircraft flight times and delay, operating 

characteristics, taxi-times, and airline and ATC priorities.  These factors are incorporated into the 

fitness function for a measure of overall solution desirability, which the EA approach strives to 

maximize.  The EA approach eventually converges on an optimal slot allocation for a given 

demand schedule supplied as input data into the algorithm.   

To evaluate the utility of the slot allocation methodology presented, the optimal slot 

allocation is subsequently subjected to various simulation runs using the AnyLogic simulation 

software.  These simulations are made up of simple queuing models of the two airports and 

essentially assess the quality the optimal EA schedule against other schedules including the 

original filed schedule. 

The end result of this research effort will consist of a novel approach to strategic slot 

allocation scheduling from a TFM perspective.  The results will also yield a vast set of historical 

flight time and taxi-time databases that can be used in any number of other applications. 

Overview of Optimization Process 

The schedule optimization process is composed of a number of different steps.  This 

includes the original capture of demand schedules from existing traffic data, the initial 
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preparation of the schedule, and subsequently the actual optimization of the subject schedule 

based on various criteria and preferences.  Figure 18 below presents a high-level overview of the 

overall optimization process: 

 

 

Figure 12: Optimization Process Steps 

 

As the figure above shows, the subject schedules are initially captured from the raw 

ASDI traffic information dataset.  This results in base airline-preferred flight schedules that are 

subsequently fed into the optimization algorithm.  These schedules are then processed to use the 

mode operating times – the most likely flight and taxi-times based on historically observed 

instances - to calculate new estimated times of arrivals and departures.  The estimated times of 

departure (ETDs) for the runway are held constant to preserve the original schedule integrity. 

Following this, the new schedules are fed into the optimization routines where it is split 

into the four separate datasets of arrivals and departures for ORD and ATL.  Each of these 

individual schedules is then optimized based on the EAs fitness function as well as respective 

airport capacities.   

A step by step overview of the processing within the optimization algorithm is presented 

below: 
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1. Capture original airline schedule from ASDI data.  This schedule represents the 

actual filed flight plans published by airlines. 

2. Update the schedule arrival times based on mode flight and taxi times.  This 

intermediate step generates a schedule that represents perfect-scenario operations 

with no ‘overscheduled’ flight times. 

3. Feed the mode-time schedules into the algorithm. 

4. The algorithm then initially allocates the flights in the schedule to a limited 

number of slots (pre-defined based on airport throughput) within each queue 

(arrival or departure at each airport).  This allocation is done purely based on a 

sequential ordering of the schedule based on requested arrival or departure times 

and does not consider time.  

5. The algorithm then iteratively performs the following functions based on a 

generic EA platform: 

a. Evaluate the fitness of the current allocation of slots based on a proposed 

set of components that address flight and taxi characteristics as well as 

airport and airline preferences.  This fitness function includes: 

i. The new flight time (based on a fixed ETA or ETD at the non-

subject airport and the currently allocated slot time) probability.  

This probability is simply based on a reverse lookup of the 

probability of encountering this flight time based on the empirical 

distributions processed from the historical data 
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ii. The new taxi time, which is computed similar to the flight time 

described previously but based on transit time between gate ETAs 

and ETDs and the new slot times 

iii. Airport and airline preferences, which are multipliers applied to the 

relative difference between the new slot time and the proposed 

ETAs and ETDs prepared in step 2. 

b. Select the slot schedules with the highest fitness values for re-production 

and mutation.  The mutation steps scramble the order of the flight 

sequence defined by the slot allocation. 

c. Repeat the process from step a. until a maximum number of iterations is 

achieved. 

 

This optimization routine is run twice with different airport capacities to produce one 

schedule which is not capacity limited (using the scheduled demand as hourly capacity) and one 

schedule that is capacity limited as observed during inclement weather or other capacity-limiting 

environmental conditions.  The following section briefly describes these two schedules in more 

detail. 

Capacity-Constrained Schedule Optimization 

Airport throughput capacities at ORD and ATL are variables which are configurable 

within the optimization algorithm.  This means that hour-by-hour capacities can be set 

independently for arrivals and departures for each airport to reflect actual and/or forecasted 
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capacities.  If the capacity constraints are set simply to the scheduled hourly demand, then no 

demand management takes place.  Nevertheless, the schedule is still optimized with most 

desirable flight times and stakeholder preferences. 

In order to investigate the performance of the algorithm in capacity constrained as well as 

non-capacity constrained environments, the following two optimized schedules are produced for 

each subject day and time period: 

1. A non-capacity constrained schedule which takes the original scheduled demand, 

on an hourly basis, as input into the schedule optimization algorithm.  This 

intends to emulate good weather operations where little to no capacity constraints 

exist at either airport. 

2. A capacity constrained schedule which optimizes the original schedule around 

hourly arrival and departure throughput limits.  This schedule intends to emulate a 

capacity restricted operation either due to inclement weather or due to airport slot 

control measures. 

Performance Evaluation 

Both schedules will subsequently be evaluated in queuing simulation experiments 

developed with the AnyLogic software.  The throughput capacities within the simulation 

experiments will reflect the capacity-constrained rates used previously during the schedule 

optimization process. 
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The purpose of this evaluation is to assess the performance of the schedule 

optimization methodology.  The evaluation will compare the following two scenarios simulated 

within AnyLogic against each other: 

1. Original airline schedule as filed by the airlines and captured by the ASDI 

data stream 

2. Improved schedule generated by the EA algorithm 

 

Both schedules will be run through the AnyLogic queuing simulations where flight 

and taxi times are used as (1) a deterministic value based on the mode times and (2) an empirical 

distribution based on the historic data. 

The intent of this evaluation is to show the improvement in on-time-performance 

generated by the proposed methodology over the schedules currently published by airlines.  It 

should be noted that although actual observed flight arrival and departure data for the demand 

schedules was available through the ASDI data feed, this data includes too many external delay 

factors – departure delays due to congestion at other airports, GDPs, weather, etc. – to be a valid 

comparison for the optimal schedules.  It was therefore decided to evaluate the improved 

schedules generated by the EA approach against a simulation of the original airline proposed 

demand schedule.  Using the same simulation setup and assumptions, this allowed the analysis to 

isolate effects of operations at the subject airports without having to consider external delay 

factors. 
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Background on Evolutionary Algorithms 

EAs are an evolution-based search technique used to find valid or approximate solutions 

to complex optimization or search problems.  They can be classified as an intelligent search 

technique or a global search heuristic.  This means that rather than using an exhaustive search 

through the entire problem space, the candidate solutions are intelligently evaluated and used to 

guide further searches.  This reduction in the number of candidate solutions searched is 

particularly helpful in larger or NP-hard or NP-complete problems where exhaustive searches are 

not economically feasible.  EAs also allow for non-linearity in the problem formulation.  The 

methodology of EAs are heavily rooted in mimicking biological evolution and natural selection 

in that inferior candidate solutions are naturally discarded and superior solutions used for further 

investigation.  It further mimics biological evolution in using reproduction, mutation, and cross-

over of single or multiple candidate solutions in the search for more optimal solutions.  EAs do 

not guarantee that the resulting solution is the absolute best solution, but only that it is best 

within the search space that has been explored.  For example, EAs will likely fail to capture 

optimal solutions that are point solutions where surrounding solutions do not indicate an increase 

in optimality in a specific direction of the search space. 

EAs work by creating and evaluating a population of potential solutions and simulating 

natural evolution on the basis that only the fittest survive and the weak die off (Goldberg, 1989).  

Once a genetic representation of a particular problem has been developed, a fitness function 

based on user selected parameters is developed.  The EA then initializes the population of 

solutions and iteratively improves the optimality of the solution by the application of various 

mutation operators (Holland, 1975). 
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Representation 

The basic representation of a solution within EAs is that of a chromosome, that basically 

represents one potential solution to the problem.  These chromosomes are typically structured as 

a string of binary digits, although they can also be designed as non-binary and fixed or variable 

length strings.  These chromosomes represent a specific solution – be it a specific 

ordering/sequence of aircraft or a binary representation of certain parameters for a combinatorial 

problem – taken from the overall solution space.  The strings can be made up of sub-groups 

called alleles, which form the basic building blocks for the solution.   

Although it is not a requirement, the chromosomes are typically encoded in binary 

representations of actual data.  Figure 12 below gives a simplistic example of a binary 

chromosome: 

 

 

Figure 13: Sample Binary Chromosome Encoding 

 

At the initialization stage of the EA approach, the alleles will be randomly populated with 

respective data – binary or non-binary – to form a set of candidate solutions.  Each one of these 

chromosomes is then subjected to evaluation by the fitness function to assess the likelihood of 

reproduction for each candidate solution. 
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Fitness Function 

The fitness function essentially links the EA to the problem to be solved in the real world.  

It is entirely dependent on the problem description, constraints, desired outcome and the 

fundamental representation of the solutions being used.  Each of the candidate solutions 

generated by the EAs is subjected to evaluation by the fitness function that judges the quality of 

the solution and determines the likelihood of the solution entering into the mating pool for 

subsequent generations.   

Essentially the purpose of the fitness function is to (Oyro & Hansen, 1995): 

• Determine the probability of being selected for reproduction 

• Determine the probability for survival 

 

Fitness functions can be based on any measurable metric including cost, delays, 

emissions, and even desirability.  Typically, the function is a summation of various parameters 

that are of importance in the evaluation of candidate solutions.  These parameters include the 

constraints within which the solution has to exist.  With this in mind, hard constraints – which 

bound the acceptable solution space – have severe impacts on the fitness function, whereas soft 

constraints have significantly less impacts on the overall function value. 

A typical fitness function for scheduling applications may include the following 

components: 

• Aircraft arrival and departure delays 

• Total number of aircraft out of sequence 

• Hard constraints limiting the movement of aircraft within the slot sequence 
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• Soft constraints 

 

This function basically assigns a single real-integer fitness value to each candidate 

solution.  With the use of constant multipliers to hard and soft constraints, illegal solutions will 

have fitness values in a range which makes them extremely unlikely to be selected for evolution 

into future generations.   

Reproduction 

Reproduction within EAs basically describes the selection process of candidate solutions 

to survive for future generations.  The basic idea behind this is to allow relatively fit solutions to 

survive and procreate in the hopes that their genes are truly aligned with better performance.  

There are a number of ways that can be employed to select individual solutions for reproduction 

including (Fang, 1995): 

 

1. Fitness-based selection 

This method uses the fitness function values of candidate solutions and assigns 

probabilities for survival to each solution based on their relative fitness 

(Goldberg, 1989). Chromosomes are randomly drawn based on these weighted 

survival probabilities.  

2. Rank-based selection  

This technique sorts the individual solutions by their fitness function and assigns 

higher likelihoods of survival to superior fitness solutions.  This method 

 73



essentially ignores the value of the fitness function in all but the ordering of the 

solutions. 

3. Tournament-based selection 

This approach randomly selects a number of candidate solutions from the search 

space and evaluates their fitness, retaining the fittest for reproduction (Brindle, 

1981).  Permutations of this technique include Boltzman tournament selection, 

which uses pair-wise probabilistic acceptance and anti-acceptance mechanisms 

(Goldberg, 1990). 

Following this operation, the solutions can either remain unchanged or undergo 

subsequent crossover or mutation (Goldberg, 1989).   

Crossover 

The theory behind the crossover operation within GAs is that superior solutions are more 

likely to be selected to procreate than inferior ones.  Using this approach, highly superior 

solutions are allowed to breed and produce offspring with the hope that the next generation 

solutions produce ever more fit offspring.  Crossover operations may be performed in many 

different ways, but it typically involves the splitting of randomly selected sub-parts of the parent 

chromosomes, rearranging these fragments and then recombining them to produce offspring of 

the same size chromosomes as the parent solutions.  The following Figure 13 illustrates this 

process: 
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Figure 14: Chromosome Cross-Over Operation 

 

The intent of the crossover operation is to build upon the success of past solution sets, yet 

still explore new areas of the search space. A number of variations of the crossover methodology 

exist including one-point crossover, two-point crossover, n-point crossover, and uniform 

crossover. 

Mathematically, the amount of crossover in an application can be regulated by the 

crossover rate – a number between 0 and 1 – which governs how many candidate solutions will 

undergo crossover (0 meaning no crossover and 1 meaning all solutions will be subjected to 

crossover).  Since the methodology described in this dissertation is based on EA principles, the 

crossover operator, which is very common in GA implementations – will not be utilized. 

Mutation 

Mutation makes slight changes to existing candidate solutions in an effort to obtain 

improved fitness by searching closely related and spaced solutions.  This method essentially 

perturbs chromosomes with some small probability and thereby attempts to restore some of the 

genetic diversity lost during other operations.  Whereas the primary purpose of crossover and 

reproduction operations is to get the solution population to converge to an optimal solution, 
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mutation is more of a fine-tuning mechanism which makes small changes to chromosomes to see 

if any additional fitness can be achieved.  Figure 14 below gives a graphical depiction of this 

process: 

 

 

Figure 15: Chromosome Mutation Operations 

 

The role of mutation is a controversial one within EAs.  While most believe that since 

mutation does not place a big enough emphasis on convergence of the search space – and is 

therefore not of value – other experts believe that mutation may be as, if not more, important 

than the crossover operation (Culberson, 1993). 

As with the crossover operation, mutation is controlled with a mutation rate, which first 

indicates how many individual solutions should undergo mutation and then subsequently how 

much of the chromosome should be mutated. 

Mutation and Crossover with Unique Data Values 

Most of the applications for which EAs or GAs are considered, do not care if individual 

alleles contain duplicate values since they are typically only mathematical representations of the 

value or state of an object in the optimization.  However, certain applications do not allow for 
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duplicate values within a chromosome.  One example of this type of application is the Traveling 

Salesman Problem (TSP).  The TSP optimizes the order in which a salesman chooses routes to 

travel to minimize overall travel time.  Clearly the salesman does not want to travel the same 

route twice. 

Traditional mutation and crossover operators do not generate unique values within a 

chromosome and would subsequently require some form of repair algorithm to ensure 

uniqueness in the solution.  However, certain variations of mutation and crossover exist that 

retain the uniqueness of values within a solution (Larranaga, Kuijpers & Murga, 1994).  Variant 

crossover operators include partially-mapped crossover (PMX), order crossover (CX), sorted 

match crossover, and heuristic crossover.  Variant mutation operators include displacement 

mutation, exchange or swap mutation, inversion mutation, and scramble mutation.  These 

variants of mutation and crossover operators are also preferred for scheduling applications since 

typically the alleles contained within each chromosome are references to individual unique 

objects or, in this case, flights. 

Other Operators 

Other operators that can be applied to chromosomes include inversion and migration.  

Inversion simply inverts the order of some of the elements within the chromosome between two 

randomly chosen points (Holland, 1995).  Although this seems to be a sensible operation to 

apply to chromosomes, it has generally not been reported as a valuable technique in EAs.  

Migration is a technique which is primarily applicable to executing selections and searches in 

parallel and provides a way for migrating from multiple parallel solution sets into a single one. 
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Algorithm 

Any combination of the previously identified operations will be performed iteratively in a 

pre-defined sequence.  The EA algorithm basically executes until a desired outcome is achieved 

or until some set of resources such as processing time are exhausted. 

A typical sequence of tasks involved in an EA search can be summarized as follows: 

1. Encode and initialize a random set of solutions as the starting ‘current solution 

set’. 

2. Evaluate each of the candidate solutions based on the fitness function. 

3. Select superior solutions from the existing solution set based on their relative 

fitness.  These solutions will be used as parents for the next generation of 

solutions. 

4. Apply selected mutation techniques to the existing intermediate solution set.  This 

will generate a new set of candidate solutions that can then be evaluated as the 

new current solution set. 

5. Iteratively repeat steps 2 through 5  

 

The procedure above will continue until either (1) a maximum number of iterations 

and/or generations have been run and evaluated, or (2) the population of solutions converges 

where applying mutation and cross-over techniques repeatedly do not result in increases in 

fitness for future generations. 

 78



General Characteristics 

EAs are generally associated with long computation times and great uncertainty about 

how long computation will take.  Much like GAs, this is a characteristic of the NP-hard nature of 

the problem, requiring significant computational resources and time.  Consequently, they are not 

normally considered for real-time problems such as operational scheduling of airline arrival and 

departure times in a real-time framework (Ciesielski & Scerri, 1998). 

EAs as well as GAs strike an important balance between exploration and exploitation of a 

problem space in that, although random searches across all solutions exist, these searches are 

guided by the quality of past solutions already investigated.  Another benefit is that it is possible 

to parallelize the searches through the solution set by using multiple processes on potentially 

multiple machines to evaluate generations of solutions in parallel. 

Although the benefits of EAs, particularly in large search space problems, heavily 

outweigh the drawbacks, there are some undesirable characteristics.  The primary disadvantage is 

that EAs do not guarantee a global optimal solution.  They can also easily generate invalid or 

illegal solutions as part of the cross-over and mutation operations, which wastes time and 

resources. 

In fact, due to the search heuristic nature of EAs, they do not need to know details on 

how to solve a particular problem.  All that is required is that the EA be able to differentiate a 

good solution from an inferior one. 
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Evolutionary Algorithms in Scheduling 

The theory behind scheduling is basically the problem of allocating resources over time 

to perform a collection of tasks in an optimal fashion.  Timetabling and scheduling problems are 

known to be a computationally NP-hard problem (Garey & Johnson, 1974). As such, it is both 

time and resource consuming and typically the optimal solution cannot be obtained within a 

reasonable amount of time.   

The practice of solving complex scheduling problems through the use of evolutionary 

approaches has been commonplace for many years.  Some other examples of this technique 

applied to scheduling problems include (Stevens, 1995):  

• Job shop scheduling (Fang, 1994).  This problem deals with the scheduling of a 

number of jobs with multiple tasks across a set of machines.  The order and allocation 

of tasks across the machines must be optimized.   

• Learning routes and schedules (Gabbert, Brown, Huntley, Markowicz & Sappington, 

1991).  A specific example of this problem is the scheduling of trains across a 

network of rail lines.  Also, TSP falls under this category where a salesman must 

most efficiently traverse a set of routes. 

• Resource scheduling (Syswerda & Palmucci, 1991).  This category describes any 

problem where a capacitated resources requires scheduling of tasks that require this 

resource.  Examples include the scheduling of flight simulator time for student pilots 

or the scheduling of aircraft for arrival and departure slots. 
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It has been shown that modern search techniques such as EAs and GAs perform very well 

in these types of problems, particularly when the search space is very large.  Any EA 

optimization problem becomes a tradeoff in terms of the desire to achieve better solutions versus 

the computation times and resources available. 

System Overview 

The airport network used for this research effort is comprised of operations in and out of 

the two busiest airports in the world: Atlanta Hartsfield Jackson International Airport and 

Chicago O’Hare International Airport.  This ensures that on a routine basis during the busy hours 

of the day, the number of available arrival and departure slots at these airports is insufficient to 

handle the desired airline generated demand. 

One unique aspect of the approach outlined in this dissertation is that instead of focusing 

on a single-airport’s microscopic arrival or departure planning horizon, aircraft operations across 

a network of airports – each with their own sets of arrival and departure slots – are optimized.  

Figure 15 below provides a high level view of the types of airspace operations considered in this 

slot allocation methodology: 
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Figure 16: Airport Network Traffic Flow 

All of the arrival and departure flights depicted above will be stochastically represented 

by distributions of historic flight times.  In addition to these airspace operations, operations on 

the airport surface will be represented by distributions of taxi-in and taxi-out times that are also 

based on historic data.  This means that for the purpose of this research, for an aircraft that 

departs from San Francisco, then lands in Chicago, continues on to Atlanta, and then finally 

terminates in Orlando, the following distributions are applied during the fitness function 

evaluation: 

1. Flight time distribution – San Francisco to Chicago 

2. At Chicago 

a. Chicago arrival taxi-in time distribution 

b. Chicago departure taxi-out time distribution 

3. Flight time distribution – Chicago to Atlanta 

4. At Atlanta 

a. Atlanta arrival taxi-in time distribution 

b. Atlanta departure taxi-out time distribution  
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5. Flight time distribution – Atlanta to Orlando 

 

The methodology presented will assign arrival and departure slots at ORD as well as 

ATL to this aircraft and use all of the above distributions as an input into the overall fitness 

evaluation of the candidate set of slot allocations. 

The slot allocation algorithm takes as input a schedule of flights with airline desired gate 

and runway arrival and departure times for ATL and ORD airports.  This original input schedule 

spans an eight-hour period of operations.  Further inputs into the algorithm are the flight and taxi 

time distributions previously mentioned as well as information on hourly airport throughput 

capacities for both airports.  These distributions used as inputs represent the aspects of greatest 

variability in airport and airspace operations.  A further input into the algorithm are aircraft 

sequencing guidelines based on airline, airport, and FAA preferences.  Figure 16 below gives a 

graphical depiction of the data and information flow: 
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Slot Allocation Algorithm

Historical Data:

Flight Times

Taxi-Times

Airport Slot 

Schedule

- 10:05  AAL4356 B737

- 10:07  UAL761 B744

- 10:09  COA43 MD80

- 10:11  USA100 A320

-  ...

Preferences

Airport

Airline
FAA

Airline 

Demand 

Schedule

Airport 

Throughput 

Capacity

 

Figure 17: System Overview - Decision & Data Flow 

 

The slot allocation algorithm uses the given inputs to optimally assign runway takeoff 

and touchdown times for all aircraft in the schedule.  The output generated by the algorithm is a 

schedule of airport slot allocations which best optimizes the overall operation based on a 

‘desirability index’.  This index, implemented within the fitness function of the algorithm, 

produces airport arrival and departure slot schedules for both subject airports that ensure all 

aircraft operate as close to nominal – as defined by historic data – and desirable as possible and 

also satisfy stakeholder goals as optimally as possible.  As a general guideline, the optimal 

runway slot times are intended to minimize runway arrival and departure delays and provide for 

most likely flight and taxi-times based on the historic distributions of data. 
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A detailed view of the inner core of the slot allocation algorithm as well as the 

application of the various distributions is described below in Figure 17: 

 

Inbound

Flight-Time

Taxi-In 
Time

Taxi-Out
Time

Outbound

Flight-Time
(If ORD-

ATL)

Original Scheduled Gate 
Arrival and Departure 

Times

(Airline Optimal)

Arrival Slot Time

(TFM & Airline Optimal)

Departure Slot Time
(TFM & Airline Optimal)

 

Figure 18: Algorithm High Level Concept 

 

This optimized slot allocation schedule can be transmitted to airlines, airports, and other 

users of the NAS and may guide airlines and air traffic controllers in assigning required times of 

arrival (RTAs) at various points along the aircrafts’ routes.  Airlines may then be forced to 

conform to these performance targets or loose the benefit of the service in the future. 

Assumptions 

The scheduling of aircraft movement – arrival and departure – times at an airport is a 

difficult task for many reasons.  One of the inherent problems is the continuous tradeoff between 
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maximizing the number of movements on the runways and underlying safety regulations 

governing the separation of aircraft.  Clearly every airport has the desire to maximize the 

throughput at their facility, but FAA regulations govern aspects such as minimum arrival 

separation between aircraft types as well as capacity decreases during inclement weather. 

In order to satisfy some of these unknowns and uncertain aspects and requirements of 

ATC and airport operations, certain assumptions were made throughout the course of this 

research effort.  These assumptions are listed below: 

• Aircraft are capable of flying their 4-dimensional trajectory with very high 

accuracy.  In other words, the variations in flight times for all aircraft are assumed 

to have a negligible effect on strategic arrival time planning. This assumption is 

based on an FAA requirement for aircraft to satisfy RNP standards which aims to 

ensure that flight management systems (FMSs) on aircraft can meet 4-D time and 

space location highly accurately.  

The effect of existing/historic variation in flight times on this slot allocation 

methodology will be examined in the simulation-based assessment stage of this 

research effort. 

• The Distribution-based desirability functions are based purely on observed times 

and not internal valuations.  In other words, the most desirable flight and taxi 

times are based on the mode of the historically observed time distributions.  Any 

other factors such as airline crew time, fuel, etc. are not included in these 

calculations due to the TFM nature of the approach. 

• Airport arrival and departure capacities are assumed to remain constant 

throughout the entire subject period.  This is a valid assumption since airport slot 
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control aims to match demand with available airport capacity and airports are 

themselves not concerned with airline bank structures and the tradeoffs between 

arrival and departure capacity to maximize one over the other.  Variation of 

capacity rates will only be explored in the AnyLogic performance evaluation of 

the schedule optimization methodology. 

• Runway assignments and wake turbulence requirements are expected to be solved 

post-facto.  The number of slots available at each airport is based on overall 

acceptance rate information.  As such, the assignment of specific arrival and 

departure runways is expected to occur in real-time tactical mode and will not 

have reverse effects on throughput capacity.  Similarly, the tactical runway 

assignments also adhere to standard FAA wake turbulence requirements – 

minimum separation between different types of aircraft due to turbulence air – 

and not reversely affect throughput capacity. 

• Wind and weather conditions are not expected to have any impact on the 

scenario.  In a real-world scenario, changing wind conditions – depending on the 

wind intensity – may cause the runway configurations to change and would 

therefore affect airport capacity.  In this scenario, runway changes – and 

associated changes in airport throughput capacity – have been accurately forecast 

in advance and are not subject to change the capacity of the subject airports 

during the period of performance. 

• Down-the-line effects of the decisions are not considered.  The arrival and 

departure slot time assignments calculated for ORD and ATL are assumed to have 
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a negligible effect on down-the-line operations of the same aircraft at other 

airports following the operation at either of the two subject airports. 

• No airspace or route capacity restrictions are considered.  The FAA routinely 

implements GDPs because of traffic flow restrictions along certain routes or 

corridors.  These are caused primarily by weather effects along these routes.  

These route flow restrictions are not considered in this application. 

 

These assumptions primarily address the specific nature of the area of application of this 

approach.  Where airlines tend to focus more on economic factors in their strategic operations 

planning, the FAA and airports are more concerned with system efficiency, safety, and overall 

flow management.  This approach addresses aspects of both airline as well as ATC interest and 

necessarily assumes away many intrinsic microscopic aspects of airport and airspace operations 

in order to adequately address both. 

Input Data Mining and Processing 

In order to incorporate real-world flight data into the fitness function, statistical 

distributions of actual recorded flights in and out of the three subject airports are generated.  

Additionally, distributions of taxi times are required to stochastically reflect ground operations at 

these airports.  All of these distributions are based on more or less public data.  Figure 19 below 

gives an overview of the data sources and information flow that resulted in the frequency 

distributions for the desirability index within the fitness function: 
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Figure 19: Data Sources and Processing 

 

The two primary data sources for historical distributions are the airline driven BTS on-

time performance statistics dataset and the ASDI data feed distributed by the FAA (see BTS, 

2007 and FAA ASDI, 2007 for more information).  Both data sources are based on real-world 

aircraft operations in the NAS.  The ASDI data feed is a highly secured real-time information 

feed that is commonly used by airlines and research institutions for non safety critical DSTs and 

research applications.  BTS data is a publicly available data source which is based on data 

collected by airlines and made available on the BTS website several weeks after the day of 

operation. 

Whereas the ASDI data feed is a real-time record of aircraft operating in the NAS 

including flight plans and radar hits, the BTS data is based on post-facto airline reported data.  
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The airspace focus of the ASDI data, combined with the more generic but broader nature of the 

BTS data provides a sufficient database for all of the distributions required.   

ASDI data includes complete flight-plan information for all commercial aircraft in US 

controlled airspace.  This means that all information available to ATC is available on the ASDI 

feed including flight routes, aircraft types, and departure and arrival times.  BTS data, on the 

other hand, does not include certain information such as aircraft types or flight paths.  Since taxi 

and turn-around times vary by aircraft type, the BTS flight-by-flight records were supplemented 

by aircraft registry information available directly from the FAA (FAA Civil Aviation Registry, 

2007).  This registration database is provided by the FAA and includes a record of ownership of 

all aircraft registered in the US.  The aircraft type information included in this aircraft 

registration database is matched with the BTS data through the N-Number, a unique identifier 

issued to all US-based aircraft that is included in both datasets. 

Data Distributions and Mode Times 

The historical data that is being analyzed for taxi and flight times is used in the algorithm 

in two ways: (1) as empirical distributions representing today’s more chaotic NAS operations 

and (2) as mode times representing the most likely flight and taxi times within a 4-dimensional 

trajectory control scenario. 

Empirical distributions are based on distributions of historical operating times.  Using the 

tremendously large amount of data available, empirical distributions give a more accurate 

representation over theoretical distributions.  One benefit of using theoretical distributions is that 

they are used as generalizations of actual data when only limited data is available.  The 
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theoretical and generalized nature of these distributions also allows them to be valid for future 

use.  Nevertheless, theoretical distributions are only representations of actual data and generally 

do not completely describe reality.  The use of empirical distributions – particularly with the 

mass of available data – provides a completely accurate representation of historic observations 

prior to the day of the optimization schedule.  However, it is expected that in a real-world 

application of this methodology the empirical distributions be continuously updated with data as 

it becomes available.  This will ensure that recent airspace and airport development are properly 

represented in the data. 

Mode times are used throughout the course of this methodology because they denote the 

most likely value based on empirical distributions of historical operating times.  These times 

represent the highest likelihood for flight and taxi-times based on the historical data.  As such, 

they may represent the times that a 4-dimensional trajectory-based system uses to maximize 

predictability of the schedule. 

The actual processing of the data into empirical distributions as well as the data mining 

for significant variables is described in the subsequent sections. 

Significant Variables for Distributions 

The purpose of this data mining effort is to extract distributions of flight and taxi times 

from the ASDI and BTS data sets.  These distributions are naturally heavily affected by certain 

things such as origin-destination airports, aircraft types, airlines, operating time of day and other 

non-obvious factors.   
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Initial attempts at mining the flight and taxi time datasets for significant variables failed 

using the SPSS and Minitab applications.  The range of categories and size of each dataset were 

simply too large for either application to process.  An alternative to these commercial products 

was a freely available tool called WEKA.  WEKA is a collection of machine learning algorithms 

for data mining tasks and contains tools for data pre-processing, classification, regression, 

clustering, association rules, and visualization (see http://www.cs.waikato.ac.nz/ml/weka/ for 

more details).   

A raw sample of 1% of the flight times and taxi times was loaded into WEKA and 

subjected to the ‘Select Attributes’ Routine.  The attribute set evaluation was based on WEKA’s 

CfsSubsetEval Classifier, which evaluates the worth of a subset of attributes by considering the 

individual predictive ability of each feature along with the degree of redundancy between them.  

The search method for evaluation was based on WEKA’s BestFirst class, which searches the 

space of attribute subsets by greedy hillclimbing augmented with a backtracking facility 

(extracted from WEKA Help).  

Each dataset was processed using cross-validation experiments with ten (10) folds, 

meaning that WEKA divided the original dataset into 10 subsets, which were each analyzed for 

variable significance.  Table 1 below presents the results of this analysis.  A value of 10 for a 

specific variable indicates that each of the 10 fold experiments indicated that it was significant: 
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                        Table 1: Flight Time Significant Variable Analysis 

 

 

 Atlanta Chicago 

Factor Arrivals Departures Arrivals Departures 

City Pair 10 10 10 10 

Year 0 0 0 0 

Month 0 0 0 0 

Day 0 0 0 0 

DOW 0 5 10 10 

ZATDH 0 0 0 0 

ZATAH 9 10 0 6 

ZETDH 0 0 0 0 

ZETAH 0 1 10 4 

Airline 10 10 10 10 

AcftType 10 10 10 10 

where the significant variables are: 

 - City pair represents the combination of departure and arrival airport 

- DOW represents the day of week of the operation 

- ZETAH represents the estimated time of arrival hour in ZULU (GMT) Time 

- Airline represents the three letter ICAO identifier of the airline 

- AcftType represents the ICAO type designation of the aircraft type 

 

As expected, the variables of city pair, airline, and aircraft type are strongly significant 

within each of the 10 folds.  The day of week and estimated time of arrival show a stronger 

significance in the Chicago sample, but are still deemed to be significant.  Although ZATAH – 

the actual time of arrival – is also a somewhat significant variable, it is not directly usable in a 

scheduling application, where schedules/estimated times are used for planning. 

The same analysis for taxi-in and taxi-out times was performed using WEKA and yielded 

the following results presented in Table 2: 
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                        Table 2: Taxi Time Significant Variable Analysis 

 Atlanta Chicago 

Factor Arrivals Departures Arrivals Departures 

Airport 8 0 10 10 

Year 0 9 9 0 

Month 8 10 10 10 

DOW 10 10 2 10 

ATDH  10  10 

ATAH 8  10  

Airline 10 0 10 10 

AcftType 7 9 7 0 

 

where the significant variables are: 

 - Airport represents the flight’s arrival or departure airport 

 - Month represents the month of the operation 

 - DOW represents the flight’s day of the week 

 - ATDH represents the actual time of departure hour for departures only  

 - ATAH represents the actual time of arrival hour for arrivals only 

- Airline represents the three letter ICAO identifier of the airline 

 

Although the year and aircraft type also show some significance, they were not included 

in the processing.  The reason for this decision is that trials showed that treating all variables as 

significant would increase the number of taxi-time distributions – and thereby reduce the count 

of values in each distribution – to a less manageable and productive level. 

These significant variables essentially make up the ‘key’ value for each flight time and 

taxi time distribution.  This unique key variable is then easily indexed and searchable for 

distributions and other summary data. 
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The detailed processing of data for flight times and taxi times based on the significant 

variables is described in more detail in the subsequent sections: 

Flight Times 

The distributions of flight times for aircraft operating into and out of the two subject 

airports were obtained from the ASDI data stream which is available to the aviation industry 

from the FAA’s VOLPE technology center in Boston, Massachusetts.  This data stream is a 

derivative of the ETMS (Enhanced Traffic Management System) data stream which contains all 

flight information data in the FAA’s host computer system across North America. 

The ETMS air traffic data stream is a data feed available from the FAA and contains all 

relevant flight planning and tracking information on aircraft in the NAS.  As part of the overall 

architecture, ETMS also provides a set of front-end tools, which are used by FAA facilities to 

plan traffic flows and other activities used in NAS planning and operation (Klein, 2005). 

The ETMS data feed includes all relevant information for aircraft operating in controlled 

airspace, including flight plans, amended flight plans, cancellations, arrival/departure messages, 

and 3D track information where available.  

Data contained in the ETMS data feed is available to industry via the so-called ASDI 

feed, which contains the vast majority of messages from ETMS but lacks any confidential 

government and military operations. 

  Based on the analysis of significant variables performed previously, the following 

pieces of information from the ASDI data feed for each aircraft operating in and out of the 

subject airports were of most interest: 
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1. Aircraft carrier and flight number 

2. Aircraft type 

3. Aircraft departure & arrival airport 

4. Aircraft departure & arrival times 

5. Day of week of the flight (an integer from 0 through 6 with Monday being 0) 

 

The data required for this analysis was provided by Embry-Riddle Aeronautical 

University’s Center for Applied ATM Research (CAAR) for a period of 23 months starting in 

January 2005 and ending in November 2006.  The initial dataset consisted of millions of flights 

in and out of North American airports, which were stored in over 100 gigabytes of data.  

Purpose-built software had to be developed to parse this dataset in a two-step process: 

1. Process the information on a flight-by-flight basis to obtain, among a number of 

other data items, the aircraft operator (airline), type, flight times, and flight 

distances for each flight.  This resulted in a vast dataset of flight information for 

all aircraft that operated in the US in 2005 and first half of 2006.  An excerpt of 

the data gathered is shown below in Table 3: 
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Table 3: ASDI Flight-by-Flight Data 

CityPair        Year    Month   Day     DOW     ZATD    ZATA    ZETD    ZETA    Airline Type    FltTime SchTime 

DepFix  ArrFix  AptToAptGCD     FiledDistance   FlownDistance   AvgSpd 

 

 

KORD-KATL       06      01      05      4       12:17   13:53   12:0    13:32   UAL     A320    96      92     

GUIDO           527.177 586.162 616.799 385.499 

 

KORD-KATL       06      01      06      5       15:53   17:20   15:48   17:12   AAL     MD82    87      84     

GUIDO           527.177 586.162 611.307 421.591 

 

KORD-KATL       06      01      06      5       18:13   19:33   18:7    19:31   AAL     MD82    80      84     

GUIDO           527.177 586.162 592.485 444.364 

 

KORD-KATL       06      01      06      5       0:28    2:10    0:6     1:33    AAL     MD82    102     87     

GUIDO   DALAS   527.177 550.499 637.189 374.817 

 

KORD-KATL       06      01      06      5       15:33   16:58   15:15   16:29   ASH     CRJ7    85      74     

EON     DALAS   527.177 541.887 593.521 418.956 

 

KORD-KATL       06      01      06      5       4:3     5:24    3:20    4:39    ASH     CRJ7    81     79     

KORD    DALAS   527.177 540.813 569.036 421.508 

 

KORD-KATL       06      01      06      5       18:20   19:39   17:50   19:7    DAL     MD88    79      77     

GUIDO           527.177 586.162 595.391 452.196 

 

2. Use the flight-by-flight information output from the previous software program 

and summarize flight times by city pair (departure and arrival airport) and other 

significant variables.  Table 4 below presents this summary data which is 

subsequently used to produce the stochastic distributions for the fitness function 

of the evolutionary search algorithm.  The data sample below is for United 

Airlines (UAL) flights of types Airbus 319, 320, and Boeing 737-300, 737-500, 

and 757-200 operating from ORD to ATL.  The leading line for each distribution 

is the ‘key’ that contains all significant variables for storing this data for later use. 

The data gives the minutes of flight times followed by the observed frequency 
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throughout the dataset: 

 

Table 4: Excerpt of Flight Time Frequencies 

KATL-KORD-3-.-UAL-A319 96.9384,146,90  

80:1,82:1,83:1,85:7,86:5,87:4,88:3,89:10,90:13,91:7,92:8,93:7,94:4,95:4,96:7,97:6,98:9,99:4,100:7,101:3,102:5,

103:2,104:4,105:2,106:1,107:1,109:6,110:2,111:1,112:1,113:1,116:1,118:1,120:1,121:1,122:1,125:2,126:1,158:1 

KATL-KORD-3-.-UAL-A320 96.8462,78,90  

81:1,82:1,86:4,87:2,88:1,89:6,90:10,91:4,92:3,93:7,94:5,95:2,96:3,97:4,98:2,99:3,100:3,101:1,102:1,103:1,104:1

,105:1,106:1,107:2,109:1,112:1,114:1,115:1,118:1,129:1,130:1,134:1,135:1 

KATL-KORD-3-.-UAL-B733 99.947,132,89  

85:1,86:5,87:2,88:2,89:13,90:4,91:7,92:4,93:9,94:3,95:5,96:3,97:7,98:8,99:11,100:4,101:6,102:3,103:5,104:5,105

:1,106:4,107:1,108:3,110:1,111:2,112:1,115:1,117:1,118:1,121:2,122:1,123:1,128:1,129:1,143:1,162:1,222:1 

KATL-KORD-3-.-UAL-B735 97.0984,61,91  

82:1,86:3,88:2,89:3,91:5,92:4,93:3,94:4,95:5,96:3,97:3,98:4,99:1,100:2,101:2,102:3,103:1,104:2,105:4,108:1,109

:1,111:1,114:2,122:1 

KATL-KORD-3-.-UAL-B752 96,70,90  

81:1,82:1,83:1,85:2,86:1,87:1,88:3,89:2,90:9,91:4,92:6,93:4,94:5,95:5,96:3,97:2,98:4,99:1,101:3,105:2,106:1,10

7:2,108:1,109:1,115:1,121:1,122:1,130:1,135:1 

KATL-KORD-4-.-DAL-B732 98.4383,235,93  

81:1,82:4,83:4,85:4,86:6,87:11,88:10,89:9,90:9,91:10,92:9,93:15,94:14,95:8,96:7,97:12,98:5,99:9,100:11,101:12,

102:5,103:5,104:9,105:7,106:1,107:2,108:3,109:2,110:3,111:4,112:2,113:2,114:2,118:3,120:1,121:2,122:1,123:1,12

5:1,128:1,129:1,132:1,135:1,138:1,139:1,140:1,144:1,169:1 

KATL-KORD-4-.-DAL-B738 95.8268,127,88  

81:1,82:2,83:2,84:2,85:4,86:5,87:5,88:12,89:2,90:7,91:6,92:11,93:8,94:6,95:6,96:5,97:4,98:3,99:6,100:4,101:3,1

02:2,103:3,104:1,105:1,106:2,107:3,108:1,109:1,110:2,112:1,117:1,119:1,126:1,131:1,141:1,189:1 

KATL-KORD-4-.-DAL-B752 97.9091,22,98  

85:1,86:1,90:2,91:1,92:1,93:2,95:2,96:1,97:2,98:3,100:1,101:1,105:1,109:1,114:1,131:1 

 

 

The basic output of this data processing effort are histograms of flight time distributions 

for each relevant route in and out of the subject airports.   

Figure 20 below presents a sample histogram of frequency distributions for flights 

between ORD and ATL.  Of immediate interest in this chart are the distinct differences in flight 

times across aircraft types.  A Japan Airlines (JAL) Boeing 747 gives a mode of 79 minutes of 

travel time between ORD to ATL.  A Delta Airlines (DAL) MD-80 aircraft shows a mode of 88 

minutes, and on the extreme end, UAL Boeing 737-500 aircraft have a mode of flight times of 91 

minutes.   
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Sample Flight Time Distributions - ORD to ATL
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Figure 20: Sample Flight Time Distribution for ORD-ATL City Pair 

 

These flight time distributions are processed for all airlines and all aircraft types 

operating in and out of ORD to ATL.  For use in the fitness function of the slot allocation 

algorithm, the distributions are subjected to a simple normalization step based on the observed 

frequencies and the total number of observations.  Figure 21 below presents the same data in a 

normalized fashion: 
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Sample Flight Time Distributions - ORD to ATL 
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Figure 21: Sample Flight Time Distribution for ORD-ATL City Pair (Scaled) 

 

The database of flight time information for all North American non-military flights that 

was produced for this research can be used for a number of other applications within the scope of 

TFM planning for airspace and airports.  The flight-by-flight information includes over 30 

million flights which operated in 2005 and the first half of 2006 including all commercial 

operations as well as a majority of general aviation flights that operated in airspace controlled by 

the FAA.  The data is not restricted to any specific airports and is only geographically limited to 

aircraft that either departed or arrived at airports within the bounds of US airspace. 

Taxi Times 

Information regarding departure taxi-times is not available through the ASDI feed which 

was used previously for flight time information.  The arrival and departure taxi-times required 

for this study were extracted from information publicly available on the BTS website (BTS, 

 100



2007).  BTS data is available in a database-type format and was downloaded and processed for 

the same time period as the flight-time ASDI data – January 2005 through June 2006. 

This database of aviation on-time performance statistics includes aircraft-by-aircraft 

information reported by most major airlines for most major airports in the US.  The aircraft type 

information was obtained by matching the BTS recorded tail number for each aircraft with 

records obtained from the FAA’s aircraft registration database. 

The resulting data contained in each BTS flight record includes: 

• Aircraft carrier and flight number 

• Aircraft type 

• Aircraft departure and arrival airport 

• Aircraft departure and arrival time 

• Airport departure and arrival taxi times 

The taxi times extracted from this BTS data are based on airline reported out-of-on-in 

(OOOI) data, which reports the times that aircraft leave the departure gate, take off, land, and 

reach the arrival gate respectively.  The calculations then simply subtract the ‘out’ time from the 

‘off’ time and the ‘in’ time from the ‘on’ time to get departure and arrival taxi times, 

respectively. 

There are two main issues with this data that should be noted, although they are not 

expected to have any manifest impact on this research effort: 

1. The vast majority of data contained within each BTS flight record is based on 

information provided by airlines which in some cases is manually entered into 

databases including taxi-times and departure and arrival times.  This means that 
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errors in transcription or transmission may occur.  However, with the vast amount 

of data processed, the effects of this phenomenon are negligible. 

2. Since data is only gathered at major airports and for major airlines, the available 

records do not constitute a complete set of operations at either of the airports 

included in the data.  However, particularly at major hub airports such as ORD 

and ATL, the major carrier(s) operate all but a very small fraction of the total 

flights.  With all likelihood, missing airlines will not experience any difference in 

taxi-times compared to the major carriers. 

In order to extract the taxi-time data from the BTS data, custom software applications 

were developed to parse the data for relevant flights and then summarize the data by carrier and 

aircraft type into frequency distributions.  The key for each distribution is again composed of the 

significant variables for taxi times processed by the WEKA application. 

Figure 22 below gives a sample taxi-out distribution by carrier for ATL and ORD: 

 

Departure Taxi-Time Distribution - Atlanta
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Departure Taxi-Time Distribution - Chicago
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Figure 22: Departure Taxi Times by Carrier for ATL and ORD 
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It is clearly visible that differences on the order of several minutes exist in departure taxi 

times simply by delineating the data by airline carrier.  This is primarily due to the allocation of 

gates and terminals and their relative geographic locations and distances to the departure 

runways.   

The arrival taxi-time distributions for ATL and ORD are presented below in Figure 23.  

Whereas ATL shows really no discernable difference in arrival taxi-times by carrier, ORD’s taxi-

times are again – due to the layout of the runways and terminals – heavily influenced by the 

geographic dispersion of terminals and gates and associated taxi-path lengths: 

 

Arrival Taxi-Time Distribution - Atlanta
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Arrival Taxi-Time Distribution - Chicago
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Figure 23: Arrival Taxi Times by Carrier for ATL and ORD 

 

Another variable which significantly contributes to variation in taxi-times is the hour of 

the day.  It is logical that taxi-times and associated runway or gate queuing times change with the 

demand schedule throughout the day.  Consequently, during peak departure demand periods, 

lineup queues for departure runways are longer, causing departure taxi-times to increase.  Figure 

24 below is a depiction of hourly departure taxi-time variation for DAL at ATL: 
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Taxi-Out Times - Delta Airlines at Atlanta
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Figure 24: Taxi-Out Times by Hour for Delta Airlines (Atlanta) 

Although small variations exist across all hours of the day, this distribution of taxi-out 

times by hour reinforces the distinct difference between peak demand hours (9:00am – 10:00am) 

and non-peak hours.  Not only are the average taxi-out times longer during these periods, but the 

observed frequency distributions are skewed to the right and thus have a higher variation.  

Similar results can be shown for all of the other significant variables contributing to taxi-in and 

out times. 

Airline and Air Traffic Control Priorities 

In addition to time dependent distribution functions, priorities considered by airlines, the 

airports and ATC also play an important role in the optimization of arrival and departure 

sequences.  These priorities or desires basically specify guidelines for sequencing of aircraft 

based on an accepted practice heuristic as currently implemented by airlines and the FAA.  They 
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are based on the author’s personal experiences with airport and airspace operations as well as 

several interviews and conversations with former FAA air traffic controllers and airline 

employees. 

For arrivals, the following priorities or guidelines have been identified: 

• The longer the flight time and distance of an arriving aircraft, the higher the 

priority of this aircraft in terms of meeting the scheduled arrival time.  This is 

based on the theory that longer range aircraft are typically delivering a large 

percentage of passengers to hub-airports that have connecting flights to smaller 

surrounding airports.  The cost of passengers missing these connections is 

typically very high, particularly if the arrival is international. 

• The largest aircraft types receive more favorable arrival slots due to their 

relatively high cost of airborne delay and their limited maneuverability in the air. 

This includes the Boeing 747, the Boeing 777, and the Airbus 777, the largest 

aircraft that operated in US airspace during this time period.  An indication of this 

practice was shown earlier in distributions of flight times between ORD and ATL, 

where a JAL B747 had the lowest average flight time between this city-pair. 

• Airlines with higher operational counts at the respective airport will receive a 

higher priority in slot assignments.  The premise for this guideline is that 

dominant airlines at airports have increased responsibilities for passengers to 

make their connections.  Arrival delays reduce available connection times and 

increase the likelihood of missed connections. 

Conversely, for departing aircraft the following priorities apply: 
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• The decision process for departure slot assignments requires the categorization of 

destination airports into standard categories of hub, non-hub major and 

commercial service airports.  The purpose for this categorization is that in order to 

prioritize departing aircraft, the type of destination is of utmost importance.  

Flights with other hub or major airports as destinations typically receive preferred 

slots assignments due to the consideration of down-the-line missed connections.  

Flights destined for termination airports do not typically receive preferred 

sequence slots. 

• Long-distance flights are typically more flexible in their departure times due to 

their ability to make up delay with higher airborne speeds en-route.  With this in 

mind, a parameter which adjusts the tolerance for departure delay based on the 

distance to the destination airport will be considered. 

These priorities and guidelines will be included in the desirability index formulation of 

the fitness function as linear multipliers to deviations (differences between schedules and 

projected scheduled operating times based on the new slot allocations). 

The incorporation of these goals required that a number of different factors associated 

with each flight be categorized.  The following categorizations were used: 

• Arrivals 

o Arrival aircraft size categories  

Ranged from 1 through 5 and were based on aircraft classifications and 

wake turbulence categories as used by the Total Airspace and Airport 

Modeler (TAAM) (Sillard, Vergne & Desart, 2000).  An aircraft category 

of 1 describes heavy aircraft such as the Boeing 747 and the Airbus A340. 
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Aircraft Category 5 on the other hand mostly includes small propeller and 

piston aircraft. 

o Arrival flight time categories 

Ranged from 1 through 6 and were based on the flight duration as follows.   

 Cat 1: Flight time greater than 500 minutes 

 Cat 2: Flight time greater than 400 minutes and less than or equal 

to 500 minutes 

 Cat 3: Flight time greater than 300 minutes and less than or equal 

to 400 minutes 

 Cat 4: Flight time greater than 200 minutes and less than or equal 

to 300 minutes 

 Cat 5: Flight time greater than 100 minutes and less than or equal 

to 200 minutes 

 Cat 6: Flight time less than 100 minutes 

o Arrival airline usage category 

Ranged from 1 through 6 depending on the proportional share of 

movements at each airport as follows: 

 Cat 1: Airline has a greater than 25% share of airport operations 

 Cat 2: Airline has a greater than 20% but less than or equal to a 

25% share of airport operations 

 Cat 3: Airline has a greater than 15% but less than or equal to a 

20% share of airport operations 
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 Cat 4: Airline has a greater than 10% but less than or equal to a 

15% share of airport operations 

 Cat 5: Airline has a greater than 5% but less than or equal to a 10% 

share of airport operations 

 Cat 6: Airline has a less than 5% share of airport operations 

• Departures 

o Departure destination airport category 

Ranged from 1 through 5 and depended on the official airport category as 

defined by the FAA’s airport classification circular (Wells, 2000). These 

are 

 Cat 1: Large hub airports 

 Cat 2: Medium hub airports 

 Cat 3: Small hub airports 

 Cat 4: Commercial service airports 

 Cat 5: General aviation airports 

o Departure flight time categories 

Range from 1 through 6 in the same way as arrival flight time categories is 

defined: 

 Cat 1: Flight time greater than 500 minutes 

 Cat 2: Flight time greater than 400 minutes and less than or equal 

to 500 minutes 

 Cat 3: Flight time greater than 300 minutes and less than or equal 

to 400 minutes 
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 Cat 4: Flight time greater than 200 minutes and less than or equal 

to 300 minutes 

 Cat 5: Flight time greater than 100 minutes and less than or equal 

to 200 minutes 

 Cat 6: Flight time less than 100 minutes 

 

It should be noted that in all cases, Category 1 represents the highest priority aircraft.  

This categorization follows that of existing airport and airspace simulation models in use today 

including TAAM. For instance, a Category 1 aircraft represents the largest aircraft in use today 

(a Boeing 747 and an Airbus A340).  The use of the new Airbus A380 as a super-heavy aircraft 

will generate a Category 0 aircraft. 

Distributions and Components of Fitness Function 

As discussed previously, the composition of the fitness function is the core component to 

the slot allocation algorithm being proposed.  This function evaluates each solution based on a 

‘desirability index’ (DI) and thereby guides subsequent searches for more optimal solutions in 

the search space.   

In contrast to previous slot allocation algorithms, this desirability index is not primarily 

based on real-world quantifiable values such as delay or cost.  The reason behind this decision is 

that it is frequently impossible to apply the same metrics to this problem when airline and FAA 

concerns are jointly addressed.  The airlines’ economic and cost-benefit driven metrics usually 

compete with the more safety and security driven views that the FAA has adopted.  Whereas the 
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variation from aircraft-internal operating times is of primary concern to FAA and airline 

schedulers, other factors such as priority of larger aircraft sometimes contradict the primary 

function of the algorithm.  The purpose of this algorithm is to show that improved schedule 

integrity can be achieved when considering historic flight time distributions rather than simply 

expected delays in the current schedule based on capacity constraints. 

Instead, the desirability index combines various heterogeneous factors into a fitness index 

that is neutral.  This index is composed of a mix of frequency distributions of relevant transition 

times as well as various parameters which indicate preferences and standard practice guidelines.  

This composite index ensures that the interests of both the airlines as well as FAA TFM are 

equitably addressed. 

This fitness function jointly evaluates the desirability of four distinct slot schedules: (1) 

ATL arrivals, (2) ATL departures, (3) ORD arrivals, and (4) ORD departures.  Aircraft are 

individually assigned to one or more of these slot schedules depending on their scheduled origin-

destination airports.  For example, if an aircraft was scheduled to depart from ATL and arrive at 

ORD within the planned time horizon, the aircraft would be assigned to both an Arrival as well 

as a departure slot schedule within the algorithm. 

The evaluation of the desirability of the overall set of all four slot allocations for each 

candidate solution is based on a number of factors.  The primary factors address the deviation of 

the slot assignments from the expected normal (or mode) operation by using frequency 

distributions of various phases of aircraft operations.  Using these distributions, the desirability 

index penalizes the deviation from the mode frequency operating time in either direction by a 

certain factor.  Other factors such as flight priorities, airline desires, and ATC standard practice 

are taken into account by using additional scalar parameters.  Since neither of these factors are 
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hard constraints, the algorithm cannot guarantee that all guidelines and operating time 

characteristics are always adhered to.  However, in principle, the algorithm should ensure that 

the multi-objective quality and desirability of the slot allocation schedule is optimal when all 

components of the fitness function are considered. 

The soft constraints that have been identified as the primary factors guiding the 

desirability index are: 

• Aircraft operating time frequency distributions where the highest desirability is 

the modal value in the distribution and any deviation, positive or negative, is less 

desirable.  These distributions cover all phases of aircraft operating characteristics 

into and out of an airport including: 

o Arrival flight time distributions 

o Arrival taxi-in time distributions 

o Departure taxi-out distributions 

o Departure flight time distributions 

• Airline preferences as scalar parameters guiding the priority of flights by origin or 

by number of passengers on board that stand to lose connections if excessively 

delayed.  Additionally, scalar parameters may guide departure slot order by giving 

priorities to aircraft based on their destination airport category.  For instance, a 

flight to another airline hub airport may get a higher priority since passengers may 

be in danger of missing connections at this destination airport. 

• FAA and airport preferences guiding the sequence of aircraft or priorities of 

certain aircraft over another.  For instance, large, very heavy aircraft are not very 

maneuverable and require advance notice for trajectory changes.  Since smaller 
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aircraft are easier to re-route, larger aircraft typically receive priority over smaller 

ones. 

 

In addition to these soft constraints which contribute to the evaluation of the desirability 

index, certain harder constraints are applied to systematically ignore solutions from further 

evolution cycles.  These constraints include: 

• The total number of airport slots available each airport 

• The exact time that each individual slot represents 

 

All of these constraints feed into the fitness function – or desirability index – for the slot 

allocation approach in the form of a simple summation of these various factors into a single 

neutral metric.   

It is important to understand that the components of this fitness function are not based on 

an analysis of variables that historical data shows are significant.  In fact, the historical data that 

was used for flight and taxi times includes no dependent variable that is similar to the fitness 

value defined below.  Rather, the function is a compilation of proposed individual objectives that 

represent important goals and preferences of the various stakeholders in this slot allocation 

scheduling realm.  The weights that are associated with each parameter are not a notion of how 

significant it’s contribution to the fitness was from a historical perspective, but are simply used 

to adjust the parameter’s importance in a day-by-day slot scheduling application. 

The desirability index is computed as follows: 
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Fitness function  =  max DI 

Where 
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Where 

FltTimeDist  = Scaled historic frequency value of flight time 

TaxiTimeDist  = Scaled historic frequency value of taxi-in or taxi-out  

time 

ArrFltDistCatMult = A value of 1+(6-n)*0.2 where n is the flight distance 

category, yielding a value of 2.2 for the longest flights 

AcftCatMult  = A value of 1+(5-n)*0.2 where n is the aircraft category 

of the flight, yielding a value of 2.0 for the largest aircraft 

AptUsageCatMult = A value of 1+(6-n)*0.2 where n is the airport usage share 

category of the airline operator yielding a value of 2.2 for 

the airline with highest usage count 
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DestAptCatMult = A value of 1+(5-n)*0.2 where n is the destination airport  

category of the flight, yielding a value of 2.0 for the largest 

destination airport 

DepFltDistCatMult = A value of 1+(6-n)*0.2 where n is the flight distance 

category, yielding a value of 2.2 for the longest flights 

 

and 

α1, α2, α3  =  weighting parameters for importance of punctuality 

β1, β2, β3 = weighting parameters for the importance of arrival priorities and  

guidelines 

γ1, γ2  = weighting parameters for the importance of departure priorities and  

guidelines 

 

The purpose of each categorical multiplier is to penalize the movement away from the 

scheduled arrival or departure times – as observed by new slot times – using a scalar multiplier.  

These multipliers are based directly on the categories previously identified for each of the airline, 

airport, or ATC goals. 

The weighting parameters for αi, βi, and γi will be initialized with a value of 1, which 

indicates that all of these components to the desirability index have the same importance.  This is 

an important notion since the variation of these weighting parameters may give preference to 

certain aspects of the function.  For instance, if airline factors are deemed to be more important, 

the βi, and γi parameters could be increased to giver more weight the respective part of the fitness 

function. 
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As discussed previously, these weighting parameters are solely used to adjust the 

importance of a certain variable on the outcome of the algorithm.  It is expected that these 

weights be modified to reflect day-by-day scheduling practices or that additional factors be 

added to reflect the preferences of other stakeholders in this application.  The multi-objective 

nature of the fitness function allows the incorporation of preferences by all relevant stakeholders 

in the operation including airports, airlines, and ATC. 

In addition to these factors, additional limits are imposed on each flight.  For instance, a 

value of zero is returned for a flight’s fitness if the proposed optimal arrival or departure slot 

time is more than 30 minutes away from the scheduled time.  Also, each flight’s new scheduled 

flight and taxi times are being evaluated against the mode of the time distribution.  If the 

proposed new flight time is more than 4 positive standard deviations or 2 standard deviations in 

the negative away from the pre-defined mode, the algorithm returns a value of zero for this 

flight.  While these additional constraints technically only affect individual flight fitness values, 

they do contribute to the overall schedule fitness in a way that reduces the survival likelihood of 

schedules with a multitude of limit exceeding flights. 

Design and Development of the Slot Allocation Algorithms 

The design of the slot allocation algorithms follows standard practice for EAs: 

1. Encode the slot schedule with the pre-defined number of available slots – based 

on hourly airport capacities – over a selected time period.  Each of the four 

separate slot schedules (departure and arrival at each airport) is treated as a 
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separate chromosome of genes.  Each slot or gene holds the index of an aircraft as 

defined by the initial airline demand schedule. 

2. Initialize all four slot schedules with a pre-defined order of indexes/aircraft.  This 

gene initialization is based on an ordered schedule of aircraft indexes based on the 

original schedule.  This causes flights to be initialized approximately close to their 

schedule arrival or departure times.  A variable number of candidate solutions are 

generated in parallel. 

3. Use the fitness function’s desirability index to rank the candidate solutions and 

propose the chromosomes with the highest desirability for evolution. 

4. Use the swap mutation technique to evolve the existing highest desirability 

chromosomes into future candidate generations. 

5. Repeat steps 3) and 4) for a pre-defined number of iterations. 

 

The method of encoding the slot schedule chromosomes, programming the Fitness 

Function, as well as the implementation of the software algorithms are discussed in turn: 

Encoding 

Encoding of the chromosomes for the EA model for this application is an essential factor 

in the overall success of this research.  As with any EA model, the efficiency, performance, and 

the speed and quality of the results depend heavily on how the individual chromosomes are 

encoded.   
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For this application, four individual chromosomes are used which represent the different 

schedule slot allocations, one departure and one arrival, per airport.  Each gene in these 

subgroups represents a unique aircraft index, which can be referenced back to the original 

demand schedule via a simple lookup table.  Each gene is also directly linked to a movement 

time, which is based on the hourly throughput rates.  The total number of genes in each subgroup 

depends on the respective arrival and departure capacity rates at the airports.  These rates – and 

the associated number of genes in each chromosome – are dynamically configurable within the 

EA framework and may vary on an hour-by-hour basis. 

Figure 25 below presents a simplified overview of the chromosome encoding for this 

application for ORD.  Each value – or allele – within a chromosome represents a single arrival or 

departure slot with a given operating time based on the hourly throughput capacity at the airport.  

The contents of each allele are flight index values that can be linked back to a complete schedule 

of operations (right side of the figure).  For instance, flight AAL123 with index 001 for ORD 

Arrivals currently has a slot time of 9:35am.  The original scheduled arrival time was 9:45am.  

This means that if the aircraft is capable of reducing the estimated flight time by 10 minutes, it is 

guaranteed an arrival slot at ORD. 
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Figure 25: ORD Slot Allocation Encoding 

The arrival and departure runway slot times are based on an even distribution of the 

throughput capacity rates over the available period of performance.  This rate can be amended on 

an hourly basis if any hourly changes in throughput capacity rates are being implemented.   

Through the use of the fitness function, these runway slot times relate back to the original 

scheduled arrival and departure times and the effects of each set of solutions are quantified. 

Fitness Function 

The desirability index or the fitness function requires a tremendous amount of data as 

input parameters.  Since the fitness is not simply based on a delay time calculation – i.e., the 

difference between scheduled and actual movement times – various distributions or multiplier 

parameters are required to transform the time-based calculations into the more neutral 

desirability factor. 

The distribution functions required to feed these fitness function calculations are very 

extensive due to the number of significant variables.  For example, departure taxi-times not only 

depend on the airline but also on the time of day of the operation.  This means that the number of 
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distributions required only for taxi-out times are 24 times the number of airlines identified in the 

schedule.  It is, however, also imperative that the processing times necessary to evaluate the 

fitness of each generation of solutions not be excessive.  Otherwise the utility of this approach 

would be limited by the reduced ability to parse the search space of potential solutions. 

The implementation of the fitness function within a Java development framework 

therefore makes heavy use of Java hashtable containers, which use the previously defined 

distribution keys as lookup keys for each distribution.  The fitness function simply uses the 

hashtables to look up a scaled frequency value based on the respective operating times.  This 

scaled frequency value is used directly as a desirability value for each flight.  It essentially 

represents the likelihood of a given flight to encounter the given flight or taxi-time based on the 

historic distributions. 

Mutation Operator 

It became obvious very early on that traditional crossover and mutation operators would 

not be a viable solution for this application because these operators routinely generated duplicate 

gene values within the chromosomes.  Since each gene value represents a unique flight within 

the schedule, the chromosomes would have to be subjected to a repair algorithm after the 

mutation step in order to fix duplicate values.  This would be an extremely inefficient operation 

and would severely limit the solution search space within reasonable time constraints. 

As an alternative, the mutation operator that was used to iteratively alter the sequence of 

flights was the exchange or swap mutation operator as described by (Banzhaf, 1990) as well as 

(Oliver, 1987).  This operator did not randomly alter or cross existing gene values, but randomly 
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swapped the location of genes within each chromosome.  This type of operator is commonly 

used in scheduling problems such as the TSP where the uniqueness of objects to be scheduled 

needs to be preserved.  Historically, the swap mutation operator is applied across the entire 

chromosome and randomly swaps genes without bounding limits.  For the purpose of this 

scheduling application, where aircraft are not likely to be able to trade slots with aircraft more 

than a certain number of minutes away from their own slot times, an amended version of this 

operator was developed.  This bounded swap mutation operator provides ways of limiting the 

range of slots across which swapping may occur.  For instance, if a value of 15 is specified as the 

range bound, then the mutation operator only swaps the position of a flight with another flight 

which is 15 slots away on either side.  This not only limits the incremental movement of flights 

across the slot schedule but also places a higher focus on exploring the local solution space 

around each flight’s slot time in the current chromosome. 

Evolutionary Algorithm Implementation 

The algorithms which implement the EA approach for this slot allocation optimization 

problem were programmed using a Java-based software package called Java Genetic Algorithms 

Package (JGAP).  JGAP is a genetic algorithm and genetic programming component provided as 

a Java framework. It provides basic genetic mechanisms that can be easily used to apply 

evolutionary principles to problem solutions (Meffert, 2007).  JGAP has thus far seen active 

usage in various research and software testing applications (see http://jgap.sourceforge.net).  It is 

an actively supported open-source development project and the source code is freely distributed 

over the web. 
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The Java framework provided by the JGAP package provides sample Java Classes for 

GA chromosomes, alleles, and genes, all of which are readily adaptable to encode the slot 

allocation schedules defined previously.  Within JGAP, chromosomes are encoded using simple 

arrays, that may be composed of binary or integer values.  To assess the fitness of each 

chromosome Java classes and methods are provided that are used to evaluate the desirability of 

each candidate solution set based on the desirability index composition formula previously 

specified.  Each Java class can be modified and adapted to fit specific evolutionary programming 

needs.  The implementation of the fitness function is as simple as a Java class function which 

returns the summation of all of the DI components as a value. 

Once the chromosomes are encoded and the fitness function has been programmed, 

JGAP includes default – and user modifiable – classes and methods for evolving the population 

of solutions.  As an input, users are able to specify the number of iterations – or the total number 

of generations to evolve – as well as the number of candidate solutions or chromosomes to 

process and evaluate in parallel. 

JGAP included a class definition for a basic swap mutation operator based on the un-

bounded principle described in the previous section.  In order to bound this operator, the Java 

class was modified to accept a range variable which limits the index value (or slot time) with 

which a certain gene’s current location can be swapped.  This implementation of a bounded 

Swapping Mutation Operator was accepted as a contribution to the open-source JGAP project 

and will appear in the general release of JGAP starting with the next version. 
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Selection and Generation of Demand Schedule for Assessment 

The selection of the date and time periods used in the evaluation of the slot allocation 

algorithms follows standard airport and airspace simulation practice.  The selected periods of 

operation represent those of normal busy days and hours from the busy season as the basis for 

analysis.  In order to evaluate the applicability of this optimization approach to other days as 

well, medium and low demand schedules are also generated.  In all, the following three types of 

schedules will be optimized and subsequently evaluated: 

• High demand periods based on days which rank in the 95
th

 percentile of all 

operations in 2006 for both ATL and ORD 

• Lower demand periods based on days which rank in the 75
th

 percentile of all 

operations in 2006 for both ATL and ORD  

• Minimal demand periods which are based on the morning hours of the 95
th

 

percentile days previously evaluated 

 

This selection is based on an analysis of seasonal, daily, and hourly variations in traffic 

demand as well as a day-by-day summary analysis ranking each day of 2006 based on the total 

scheduled observed demand.  Both analyses are based on the ASDI data previously used for the 

historic flight time distributions and uses movement counts of scheduled and actual hourly and 

daily traffic.  Figures 26 and 27 below show an analysis on daily total scheduled operations at 

both airports based on the month as well as the day of the week: 
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Figure 26: Median Scheduled Daily Traffic Counts by Month for 2006 

 

Median Scheduled Daily Traffic Counts - 2006

by Day of Week
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Figure 27: Median Scheduled Daily Traffic Counts by Day of Week for 2006 

 

This analysis clearly indicates that the subject days for schedule optimization analysis 

will lie in the three summer months since June, July, and August showed the highest median 
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daily traffic levels for both airports.  The subject days will also likely be either Thursdays, 

Fridays, or Saturdays, since these three days of the week showed the highest median daily traffic 

counts. 

A detailed day-by-day analysis of scheduled traffic volume is presented in Appendix D 

where all scheduled daily traffic counts for the year 2006 are evaluated based on the 75
th

 as well 

as 95
th

 percentile counts of the entire year.  Since the intent is to choose two high demand days 

and two medium demand days for evaluation, this analysis suggests the following four days for 

analysis: 

• 95
th

 percentile days 

o August 12, 2006 and June 29, 2006 (Both days are Thursdays) 

• 75
th

 percentile days 

o July 5, 2006 and July 17, 2006 

• Minimal demand periods 

o Morning hours of August 12, 2006 and June 29, 2006 

 

In addition to this analysis which suggests certain days for optimization and evaluation, 

an hourly traffic count analysis was also performed.  This analysis presented in Figure 28 will 

narrow down the time periods of the day for study: 
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Figure 28: Median Scheduled Hourly Traffic Counts for 2006 

 

The figure above shows certain periods of raised activity in the early morning hours but 

suggests a steady demand period of mid-afternoon through early-evening for study.  The 

following 6-hour time periods were selected for normal and morning hour schedules: 

• Normal hours: 1700GMT through 2300GMT 

o Atlanta local time (summer period): 1300 through 1900 

o Chicago local time (summer period): 1200 through 1800 

• Morning hours: 0300GMT through 0900GMT 

o Atlanta local time (summer period): 2300 through 0500 

o Chicago local time (summer period): 2200 through 0400 
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This approach resulted in a total of 6 distinct demand schedules which were extracted 

from the ASDI data, pre-processed, optimized using the novel slot allocation approach, and 

subsequently evaluated using AnyLogic queuing simulations.   

Simulation Assessment Methodology 

The arrival and departure slot allocations generated by the schedule optimization 

approach require evaluation to show that they are in fact an improvement over existing practice.  

To accomplish this task, simulation models of the subject airports were developed that would 

take airline schedules as input and evaluate the performance of individual aircraft within a 

queuing simulation framework (see Le, Donohue, and Chen in a similar evaluation of auction-

based slot assignments at ATL airport) (Le et. al., 2005).  These simulation models essentially 

take the input schedules’ departure times and then taxi or fly aircraft based on the historic 

distributions previously developed.  Flights are constrained by runway throughput rates – 

causing queuing on departure and arrival – at each airport.  A total of four queues – departures 

and arrivals at each airport – are implemented. 

The intent of this analysis is to evaluate the integrity of the optimal slot schedules against 

the original filed schedule as obtained from the ASDI dataset.  In a more realistic environment of 

capacitated runway resources at each airport, the optimal slot schedule should not only produce a 

closer-to-planned operation, but also improve the performance with respect to airline, airport, 

and ATC goals and preferences.   

The various scenarios will be evaluated using deterministic flight and taxi-times based on 

the assumption that all aircraft are fully capable of negotiating 4-dimensional trajectories with 
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appreciable variation in RTAs.  Subsequently, these scenarios will be subjected to stochastic 

distributions of flight and taxi-times as used for the slot allocation optimization algorithms 

previously.  This more closely resembles current-day observations where RNP is not yet fully 

implemented.  

The metric used for quantifying the optimality of the EA-based slot allocation schedule is 

predominantly a delay-based measure.  However, since the purpose of the schedule optimization 

approach outlined in this dissertation is to produce a more predictable and reliable schedule, the 

metric needs to account for deviation from scheduled arrival and departure times in both 

directions.  A flight that arrives 30 minutes early is as bad for planning purposes as one that 

arrives 30 minutes late.  With this in mind, the summary metric used to evaluate the performance 

of each schedule is the mean squared difference (MSD) of actual versus scheduled for each 

flight. 

The simulation models were developed using AnyLogic, an extremely popular Java-

based simulation tool which is capable of discrete event, continuous, as well as agent-based 

simulation methodologies.  AnyLogic is a Java-Based application, which also facilitates the re-

use of various segments of software from the EAs – implemented using Java-Based JGAP – 

application developed previously. 

Metrics 

The primary measure used in the comparison of the various scenarios is at its’ core delay-

based.  Delay is likely the most common measure used in evaluating the efficiency of airport 

simulation scenarios used by airlines and the FAA alike.   
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However, since the intent of this simulation study is to evaluate the reliability of the 

optimal slot schedules, the positive and negative values for deviation from scheduled arrival and 

departure times need to be captured.  To accomplish this, the metric of sum of squared difference 

(SSD) was used.  This metric is calculated based on the square difference between scheduled and 

simulated actual for each flight, which is then summed and divided by the total number of flights 

as follows: 
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where n is the number of flights in the schedule.  This metric is computed for both arrivals and 

departures based on the runway touchdown (arrivals) and takeoff (departures) times obtained 

from the AnyLogic queuing simulations.  

The squaring of the difference between scheduled and observed times causes large 

deviations from the scheduled arrival or departure times to be counted in an exponentially severe 

fashion.  For example, a flight which deviates 6 minutes from the scheduled arrival time is not 

considered twice as bad as a flight which deviates 3 minutes, but 6
2
/3

2
 or 4 times. 

In addition to this SSD-based metric that evaluates the overall reliability of each 

schedule, other more qualitative metrics will be calculated.  These metrics will evaluate the 

impact of the various airline, ATC, and airport goals on the performance of the optimal 

schedules.  Despite also being based on the SSD metric, these analyses will focus more on the 

relative improvements of certain categories of aircraft – by size, flight time, or airport – over 

other category aircraft. 
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Simulation Scenarios 

Each of the time periods previously identified as subject schedules for optimization will 

be subjected to a number of different scenarios for simulation.  These include an original 

schedule of filed departure and arrival times, a non-capacity constrained optimal schedule, a 

capacity-constrained optimal schedule, and, in the case of morning hours, a simple optimal 

schedule based on mode-flight and taxi times.  The following table summarizes the set of 

simulation scenarios under evaluation: 

 

Table 5: AnyLogic Simulation Scenarios 

Schedule Periods Types of Schedules Time Variation 

- August 17 (afternoon) 

- July 29 (afternoon) 

- July 5 (afternoon) 

- July 17 (afternoon) 

- Original Filed 

- Non Capacity Constrained 

Optimal 

- Capacity Constrained 

Optimal 

- Deterministic Flight & Taxi Times 

(full 4-D trajectory capabilities) 

- Stochastic Flight & Taxi Times 

(current-day variation) 

- August 17 (morning) 

- July 28 (morning) 

- Original Filed 

- Non Capacity Constrained 

Optimal 

- Deterministic 

- Stochastic 

 

Each of the primary afternoon schedules will be simulated using the original filed 

schedule as well as a non capacity-constrained and a capacity constrained schedule.  The 

morning schedules, on the other hand, are only simulated using the original as well as a non-
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capacity constrained optimal since no capacity limiting factors are expected at either airport in 

these morning hours. 

Each schedule is simulated under deterministic as well as stochastic flight and taxi-time 

conditions.  The deterministic operating time scenarios emulate a future 4-dimensional trajectory 

environment where aircraft are capable of meeting departure and arrival times highly accurately.  

On the other hand, the stochastic operating time scenarios represent current day operations where 

flight and taxi-times are still increasingly chaotic and unpredictable.  Deterministic flight and 

taxi times are based on the mode time values of each historical distribution, whereas stochastic 

times use the entire discrete time distribution of historic times for each aircraft. 

Each of these scenarios will be subjected to a series of 50 multi-runs and runs over the 

entire six-hour schedule period.  Throughout these 50 multi-runs, the runway throughput rates 

for arrivals and departures will be randomly varied within the range of 80 to 85 aircraft per hour.  

The intent of this is to further replicate normal capacity variations at airports in a real-world 

fashion and also to increase the statistical reliability and applicability of the results from the 

simulation analysis. 

The simulation analysis will subsequently focus on the middle four hours of the 

performance period.  This provides the simulation with ample time – a 1 hour period – for run-up 

and minimizes any optimization overlap error at either end of the schedule. 

Simulation Setup 

The simulation setup for this evaluation models the two airports as simple queues, one 

arrival and one departure queue per airport.  With this setup, aircraft would enter the simulation 
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based on the arrival and departure schedules, operate deterministically or stochastically based on 

the distributions previously generated, and be delayed or not within their respective arrival and 

departure queues. 

Figure 29 below presents a high level view of the AnyLogic model which shows the 

initial steps of loading the flight schedule, delaying aircraft until their departure times, and then 

allocating flights to their respective airports.  Connections between ATL and ORD allow for 

flights to operate between these two airports. 

 

 

Figure 29: AnyLogic Model - High Level View 

 

Upon entering an airport’s sub-model, aircraft are split by operating type – arrival or 

departure – and subsequently fly their arrivals or taxi for departure, respectively.  Runway 

queues with capacitated resources represent actual departure or arrival runway throughput rates.  

Following touchdown, an arrival flight is subject to arrival taxi-time and upon gate arrival is 

removed from the simulation.  Departures either are sent to the other airport’s sub-model or fly 

to their end destination where they are also removed from the simulation.  This process is 

depicted below in Figure 30: 
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Figure 30: AnyLogic Model - Airport View 

   

The fact that both AnyLogic as well as JGAP, which is used for the slot allocation 

algorithms, are both Java-based packages will allow for a significant ability to reuse software, 

particularly the stochastic distribution tables and methods. 
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CHAPTER FOUR: FINDINGS 

This chapter of the dissertation presents the results from the schedule optimization as 

well as the simulation-based assessments of the optimal slot schedules prepared by the EA search 

method.  First, the optimization process itself is quantified using a time-series analysis of the 

fitness function values by generation.  This is followed by a summary analysis of the MSD 

metric by scenario, which compares the overall integrity of each schedule to the original filed 

schedules.  In addition to a graphical analysis of the various scenarios, statistics used to test the 

significance of the differences between the original and optimal schedules are presented.  

Specifically, the Mann-Whitney test is used to test if the optimized schedule produces 

significantly different results when compared to the original schedule.  An F-test will also be 

employed to examine if there have any significant changes in the variability of the simulation 

results. 

The chapter is concluded by an analysis of the schedule integrity by categorical goals for 

airlines, ATC, and airports.  

Optimization Process 

The schedule optimization process for this approach used as input a number of different 

variables that controlled the number of chromosomes in the population, the number of 

evolutions, the mutation rate of each chromosome, as well as some other basic configuration 

parameters.  Table 6 below summarizes these core input parameters: 
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Table 6: Core Optimization Input Parameters 

Input Parameter Value 

Number of Evolutions 2,000 

Population Size 200 

Mutation Rate 2% 

Retain Rate 0.25 

 

The relatively large number of the evolutions and the population size were chosen due to 

the incremental optimization nature of the application.  Solutions are explored incrementally and 

in small steps but are subject to a relatively large amount of evolutions. 

To better understand the optimization, the chosen number of evolutions, and other 

parameters, a series of time-series plots showing the total fitness function value against the 

elapsed number of seconds are presented below in Figures 31 through 33. Figure 31 below plots 

the four subject days for the non-capacity constrained optimization process: 
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Figure 31: Total Fitness Function Time Series (Unconstrained Capacity) 

 

As the figure aboveshows, little difference exists between the four days in terms of the 

overall fitness function value.  Although June 29 ranks slightly above the other three days in 

terms of fitness value, there is no discernible difference between a high demand – 95
th

 percentile 

– and a medium demand – 75
th

 percentile – period. 

The fitness function values for the capacity constrained schedule optimization process are 

presented below in Figure 32: 
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Total Fitness Value Time-Series Analysis
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Figure 32: Total Fitness Function Time Series (Constrained Capacity) 

 

This figure clearly shows that the high demand days of August 17, 2006 and June 29, 

2006 are not able to achieve as high a fitness value as the lower demand days based on the 75
th

 

percentile analysis.  The reason for this is somewhat unclear, but may lie in the difference in 

bank structures and aircraft mix between the schedules as well as the fact that the 75
th

 percentile 

days are different days of the week compared to the 95
th

 percentile days. 

Fitness function values for the morning hour schedules for August 17, 2006 and June 29, 

2006 are presented below in Figure 33.  These value show a strong contrast to the afternoon hour 

fitness values presented above: 
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Figure 33: Total Fitness Function Time Series (Morning Hours) 

 

The figure above clearly shows a difference between the June 29 and August 17 

schedules.  The difference in these values results from the difference in the total number of 

flights in both schedules.  June 29, 2006 saw a significantly larger number of flights than did 

August 17, 2006. 

As the curves plotted in Figures 31 and 32 above show, the schedule optimization process 

sees a significant reduction in fitness function value gain at the end of the optimization process.  

This indicates that the number of evolutions as well as the size of the population chosen were 

sufficiently large to gain the most benefit from the EA.  Clearly the morning hours have a 

significantly reduced fitness value as well optimization duration due to the reduced number of 

aircraft in the schedule. 

A sensitivity analysis of the aircraft category parameter within the fitness function 

generated the time series plot of total fitness as shown below in Figure 34: 
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Figure 34: Total Fitness Function Time Series – Sensitivity Analysis of Aircraft Category 

 

As the figure above shows, the total fitness values appear to proportionally increase as 

more weight is given to the aircraft category parameter in the fitness function.  Since the 

categorical contributions to the fitness functions are delay-based, they generate a larger 

contribution to the fitness function value as compared to the flight and taxi time distributions.  

This means that as the importance of the flight and taxi time distributions are reduced, the 

categorical parameter is capable of generating larger fitness function contributions. 

Raw Original Schedule Comparison 

In order to have a reference point for subsequent alternative schedule experiments, an 

analysis of the given schedules was performed.   A comparison of the filed arrival and departure 

times against the actual observed times – essentially equaling system delays – was performed 
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based on the ASDI data feed.  This data shows how the actual operation of each subject day 

performed when compared to the original schedule that was published by the airlines: 

Figure 35 below presents this comparison for the 95
th

 Percentile days: 
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Figure 35: Actual vs. Observed MSD Comparison (95th Percentile days) 

 

As the figure above shows, both 95
th

 percentile days showed similar characteristics in on-

time performance.  The MSD between the original airline schedules and the actual observed 

operation show a well distributed trend for both days.  August 17 shows a slightly higher than 

normal MSD for ATL arrivals, which may indicate inclement weather or some other capacity 

limiting phenomena in the Atlanta area. 

Figure 36 below presents this comparison for the 75
th

 Percentile days: 
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Figure 36: Actual vs. Observed MSD Comparison (75th Percentile days) 

 

The figure above indicates that July 17 operated in a very similar manner to both 95
th

 

percentile days in Figure 35.  July 5, on the other hand, exhibits a noticeable increase in delays 

for ATL operations.  This likely indicates inclement weather or some other capacity limiting 

scenario during the afternoon analysis period in Atlanta on July 5, 2006.  Since the primary delay 

contributor at ATL for July 5 appears to be the departures, this may indicate some sort of GDP 

for certain departures out of ATL.  It may also show a scenario where airlines overscheduled 

flight-times more aggressively at ATL as compared to the other scenarios. 

Figure 37 below shows the actual versus filed schedule comparison for the 95
th

 Percentile 

morning hour schedules.  This figure shows a significantly increased difference for the June 29 

morning hour schedule.  This again may indicate inclement weather or aggressive over-

scheduling of flight times. 
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Figure 37: Actual vs. Observed MSD Comparison (Morning Hours) 

AnyLogic Multirun Mean Squared Difference Comparison 

This section of the dissertation presents the analysis of overall MSDs when each of the 

subject schedules is simulated in AnyLogic.  For the 95
th

 and 75
th

 percentile schedules, the 

simulated scenarios are composed of: 

• Filed schedule as extracted from ASDI data 

• Non-capacity constrained optimal schedule 

• Capacity constrained optimal schedule 

For the morning hours where typically no capacity constraints are seen, the only optimal 

schedule simulated is the non-capacity constrained schedule. 

Each of the demand schedules was simulated using two distinct operating characteristics: 

using (1) mode taxi and flight times and (2) distributions of taxi and flight times.  Both are based 

on the taxi and flight time analyses described in Chapter 3.  The use of mode times reflects 
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perfect 4-dimensional flight planning where aircraft are highly capable of meeting times en-

route.  Using distributions more closely reflects current day operations with increased 

unpredictability. 

The MSDs are computed by performing a flight-by-flight comparison of scheduled-filed 

versus simulated schedules.  A small MSD indicates that the capacity-constrained simulation 

experiment operated flights very close to the intended schedule.  This means that the schedule is 

more reliable than other schedules with large MSDs.  An SSD for all flights is subsequently 

scaled by dividing it by the number of flights in the schedule, resulting in the MSD.  This makes 

the results independent of the number of flights in the schedule and therefore comparable across 

different demand days. The MSDs are mean results from the 50 simulation runs performed in 

AnyLogic.  As described in Chapter 3, the airport arrival and departure capacities were varied 

between 80 and 85 aircraft per hour throughout these 50 multi-runs (a total of 160-170 

operations per hour at each airport). 

Each of the subject schedules is further analyzed using a Mann-Whitney test for equality 

of the median as well as a standard F-test for difference in variance.  In each statistic, the null 

hypothesis is that no difference in median value or variance exists.  This will indicate if the 

optimal schedules perform significantly different from the published filed schedules. 

95
th

 Percentile days 

The 95
th

 Percentile day schedules for August 17 and June 29 produced the following 

MSDs shown in Figures 38 and 39.  Figure 38 shows the results of the AnyLogic simulations 

using mode times for taxi and flight times. 
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Figure 38: AnyLogic Comparison using Mode Operating Times (95th Percentile days) 

 

Statistics assessing the significance of median and variance differences between the 

scenarios above were calculated for the scenarios using mode taxi and flight times.  Table 7 

below presents P-value statistics for the Mann-Whitney test for equality of medians as well as 

the F-test for equality of variance based on a 95% confidence interval.  Values less than 0.05 

indicate a significant change in median or variance based on the 95
th

 confidence interval.  

Insignificant values are highlighted.
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Table 7: Mann-Whitney and F-test P-value Statistics using Mode Times (95th Percentile days) 

 Scheduled Optimal vs Filed Capacitated vs Scheduled Optimal 

 August 17 June 29 August 17 June 29 

 M-W F-test M-W F-test M-W F-test M-W F-test 

ORD Arrivals 0.0 0.008 0.0 0.0 0.0 0.0 0.0 0.0 

ORD Departures 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

ATL Arrivals 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

ATL Departures 0.0 0.001 0.0 0.022 0.083 0.0 1.00 0.0 

 

 

Figure 39 below shows the results for the simulated scenarios using distribution times for 

taxi and flight times: 
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Figure 39: AnyLogic Comparison using Distribution Times (95th Percentile days) 
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The following Table 8 presents the Mann-Whitney and F-test P-values for the respective 

simulations using distribution flight and taxi times; 

 

Table 8: Mann-Whitney and F-test P-value Statistics using Distribution Times (95th Percentile 

days) 

 Scheduled Optimal vs Filed Capacitated vs Scheduled Optimal 

 August 17 June 29 August 17 June 29 

 M-W F-test M-W F-test M-W F-test M-W F-test 

ORD Arrivals 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

ORD Departures 0.056 0.462 0.091 0.683 0.0 0.001 0.0 0.0 

ATL Arrivals 0.0 0.059 0.0 0.117 0.0 0.0 0.0 0.0 

ATL Departures 0.037 0.0 0.777 0.586 0.0 0.119 0.0 0.586 

 

 

Both figures show noticeable improvements in schedule reliability from the proposed 

schedule optimization procedure for airport arrivals at both ORD and ATL.  Departures on the 

other hand show little significant differences in most of the schedules and occasionally the MSD 

is actually increased through the use of the optimal scheduling algorithm.  

Focusing on arrivals, the use of the capacity constrained schedules shows a much less 

significant benefit when mode flight and taxi-times are used as compared to distribution times.  

Looking at the trends of arrivals in Figure 38 actually shows a slight increased in MSD when 

mode times are used with capacity constrained schedules.  
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75th Percentile days 

The medium demand schedule of July 5 and July 17 generated the Mean MSD graphs 

presented below in Figures 40 and 41.  Figure 40 presents the results of the 75
th

 percentile day 

schedule simulated in AnyLogic using mode flight and taxi times: 
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Figure 40: AnyLogic Comparison using Mode Operating Times (75th Percentile days) 

 

Accordingly, Table 9 below presents P-value statistics for the Mann-Whitney test for 

equality of means based on a 95% confidence interval for the given 75
th

 percentile day scenarios.   
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Table 9: Mann-Whitney and F-test P-value Statistics using Mode Times (75th percentile days) 

 Scheduled Optimal vs Filed Capacitated vs Scheduled Optimal 

 July 5 July 17 July 5 July 17 

 M-W F-test M-W F-test M-W F-test M-W F-test 

ORD Arrivals 0.0 0.0 0.0 0.0 0.669 0.0 0.0 0.0 

ORD Departures 0.0 0.0 0.0 0.017 0.0 0.0 0.0 0.0 

ATL Arrivals 0.0 0.259 0.0 0.050 0.016 0.0 0.553 0.0 

ATL Departures 0.0 0.0 0.242 0.002 0.0 0.0 0.0 0.0 

 

 

Figure 41 below presents the same analysis but for AnyLogic scenarios that used 

distribution times for flight and taxi times: 
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AnyLogic Multirun Means - 75th Percentile Days
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Figure 41: AnyLogic Comparison using Distribution Operating Times (75th percentile 

days) 

 

The associated Mann-Whitney and F-tests for these distribution time scenarios is shown 

below in Table 10: 
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Table 10: Mann-Whitney and F-test P-value Statistics using Distribution Times (75th Percentile 

days) 

 Scheduled Optimal vs Filed Capacitated vs Scheduled Optimal 

 July 5 July 17 July 5 July 17 

 M-W F-test M-W F-test M-W F-test M-W F-test 

ORD Arrivals 0.0 0.0 0.0 0.003 0.0 0.123 0.055 0.0 

ORD Departures 0.069 0.383 0.530 0.629 0.0 0.401 0.0 0.002 

ATL Arrivals 0.0 0.381 0.0 0.005 0.0 0.0 0.0 0.0 

ATL Departures 0.058 0.987 0.076 0.314 0.0 0.002 0.0 0.0 

 

 

The 75
th

 percentile medium demand day schedules show similar trends to the high 

demand day schedules analyzed earlier. As expected the total MSD values are simply slightly 

lower than the respective values for the high demand day schedules. 

 Using mode flight and taxi times in the AnyLogic simulations generates significant 

improvements of the optimal schedules over the filed schedule.  However, similar to the 95
th

 

Percentile day schedules, the benefit of using a capacitated optimized schedule in these scenarios 

is fairly minimal.  The use of distribution times within AnyLogic indicates fairly insignificant 

changes in results for airport departures, indicating that airport arrivals benefit most from the 

optimization process. 
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95
th

 Percentile day - Morning Hours 

The AnyLogic simulation results for the schedules based on the 95
th

 Percentile day 

morning hour periods are presented below.  MSDs between scheduled and simulated flights 

using mode flight and taxi times are depicted in Figure 42: 
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Figure 42: AnyLogic Comparison using Mode Operating Times (95th Percentile days - 

Mornings) 

 

These values are significantly lower than the values generated by the medium and high 

demand days due to the lack of any capacity restricting factors in the simulation.  The relatively 

low demand in these schedules means that the optimal schedule had few aircraft that deviated 

from their expected flight times when mode flight and taxi times are used. 

The corresponding Mann-Whitney and F-test statistics are listed below in Table 11: 
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Table 11: Mann-Whitney and F-test P-value Statistics using Mode Times (95th Percentile day 

morning hours) 

 Scheduled Optimal vs Filed 

 August 17 June 29 

 M-W F-test M-W F-test 

ORD Arrivals 0.0 0.0 0.0 0.0 

ORD Departures 1.0 0.0 0.221 0.013 

ATL Arrivals 0.0 0.0 0.0 0.0 

ATL Departures 0.427 0.113 1.0 0 

 

 

Results for the same scenarios but with the use of distribution times for flight and taxi 

times is depicted below in Figure 43: 
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AnyLogic Multirun Means - Morning Hours 
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Figure 43: AnyLogic Comparison using Distribution Operating Times (95th Percentile 

days - Mornings) 

 

The corresponding Mann-Whitney and F-test statistics are listed in Table 12: 

 

Table 12: Mann-Whitney and F-test P-value Statistics using Distribution Times (95th Percentile 

day Morning Hours) 

 Scheduled Optimal vs Filed 

 August 17 June 29 

 M-W F-test M-W F-test 

ORD Arrivals 0.146 0.043 0.0 0.714 

ORD Departures 0.128 0.973 0.720 0.709 

ATL Arrivals 0.0 0.021 0.0 0.007 
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ATL Departures 0.396 0.438 0.412 0.950 

 

 

These results show that the optimization algorithm has very insignificant effects on the 

departures in either the mode or the distribution time scenarios.  Departure MSDs for distribution 

time scenarios actually increased. 

August 17 showed consistently lower MSDs throughout due to the reduced traffic 

demand in the schedules when compared to June 29.  This analysis indicates that very low 

demand periods benefit very little from the optimal schedules. 

AnyLogic Multirun Categorical Analysis Comparison 

This section of the dissertation analyzes the AnyLogic simulation runs based on the 

previously defined categories of airport, aircraft, flight time, and airline usage classification (See 

Chapter 3 for details).  The analysis is performed using the following methodology: 

• Sum each flight’s MSD by the categories previously identified 

• Calculate the percent improvement or decrement of the optimal schedules’ MSDs 

(by category) when compared to the filed schedule MSDs 

• Average the percent improvements or decrements across the two airports and two 

subject days for each demand level  

This method generates summary relative MSD improvements by category.  A positive 

percentage value indicates an improvement in MSD of either the non-capacitated or capacitated 

optimal schedule over the filed schedule as simulated in AnyLogic.  
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Departure Destination Airport Category 

Percentage improvements for the departure destination airport categories is presented 

below in Table 18 for August 17 and June 29.  The data is summarized across both days and 

across both airports for each category.  Category 1 denotes the largest or busies airport which the 

FAA identifies as a large hubs.  Category 5 airports are small general aviation airports. 

Improvements are presented for the scheduled capacity scenario compared to the filed schedule 

as well as the fixed capacity scenario compared to the filed schedule: 

 

Table 13: Departure Destination Airport Category Percentage Improvements (95th 

Percentile days) 

 Mode Times Distribution Times 

Cat 
Scheduled 
Capacity 

Fixed 
Capacity 

Scheduled 
Capacity 

Fixed 
Capacity 

1 46% 94% 26% 7% 

2 45% 94% 25% 15% 

3 49% 94% 25% -24% 

4 44% 94% 27% 6% 

5 45% 94% 27% 1% 

 

 

Using mode flight and taxi times, a clear improvement exists for both optimal schedules.  

However, the fixed capacity optimal schedule dominates with almost double the improvements.  

Using distribution times, the scheduled capacity scenarios show limited savings whereas the 

fixed capacity scenarios show almost no effects. 

The respective data for July 5 and July 17 – the 75
th

 percentile days – is presented below 

in Table 14: 
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Table 14: Departure Destination Airport Category Percentage Improvements (75th 

Percentile days) 

 Mode Times Distribution Times 

Cat 
Scheduled 
Capacity 

Fixed 
Capacity 

Scheduled 
Capacity 

Fixed 
Capacity 

1 35% 90% 36% -23% 

2 29% 91% 45% -17% 

3 35% 91% 48% -19% 

4 27% 89% 43% -27% 

5 31% 91% 35% -11% 

 

The 75
th

 percentile days show the same trends as the 95
th

 percentile high demand days but 

at somewhat reduced rates.   

The following table presents the percent improvements for departure destination airport 

categorical analysis for the low demand periods: 

 

Table 15: Departure Destination Airport Category Percentage Improvements (95th 

Percentile Mornings) 

 Mode Times 
Distribution 

Times 

Cat 
Scheduled 
Capacity 

Scheduled 
Capacity 

1 0% -5% 

2 0% -23% 

3 0% 0% 

4 0% 0% 

5 0% 0% 

 

In all demand scenarios, the fixed capacity optimal schedules outperform the scheduled 

capacity scenarios when mode times are used for flight and taxi times.  When distribution times 

are used, the trend appears to reverse.  Also, the benefits of the optimization algorithm appear to 

have fairly even effects across all of the departure destination airport categories. 
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Departure Flight Time Category 

Percent improvements for the departure flight time categories are presented below in 

Tables 16 through 18.  Category 1 denotes the longest flights in the schedule. 

 

Table 16: Departure Flight Time Category Percentage Improvements (95th Percentile 

days) 

 Mode Times Distribution Times 

Cat 
Scheduled 
Capacity 

Fixed 
Capacity 

Scheduled 
Capacity 

Fixed 
Capacity 

1 30% 93% -5% 42% 

2 36% 94% -10% 55% 

3 46% 95% 2% 65% 

4 40% 94% 4% 48% 

5 49% 95% 0% 38% 

6 47% 94% 2% 46% 

 

Table 17: Departure Flight Time Category Percentage Improvements (75th Percentile 

days) 

 Mode Times Distribution Times 

Cat 
Scheduled 
Capacity 

Fixed 
Capacity 

Scheduled 
Capacity 

Fixed 
Capacity 

1 15% 88% -26% 38% 

2 36% 91% 6% 57% 

3 18% 82% -15% 52% 

4 23% 91% 5% 41% 

5 33% 91% 6% 33% 

6 33% 91% -4% 43% 

 

 156



Table 18: Departure Flight Time Category Percentage Improvements (95th Percentile 

Mornings) 

 Mode Times 
Distribution 

Times 

Cat 
Scheduled 
Capacity 

Scheduled 
Capacity 

1 0% -21% 

2 0% 0% 

3 0% 38% 

4 0% -40% 

5 -11% 35% 

6 1% -20% 

 

This analysis by flight time categories shows relatively even improvements in MSD 

across all of the categories.  In both basic scenarios – mode and distribution times – the optimal 

schedules with no capacity restrictions show relatively minor improvements over the airline filed 

schedules.  The capacity-restricted scenarios however show very significant improvements over 

today’s airlines flight schedules. 

The benefits observed by the high demand days slightly exceed benefits of the medium 

demand day periods.  In contrast, benefits of the algorithm during low demand periods are 

almost negligible.  

Arrival Aircraft Category 

The categorical analysis for arrival aircraft size is outlined below in Tables 19 through 

21.   Category 1 aircraft are the largest aircraft in the schedule including the four-engine Boeing 

B747 and Airbus A340 aircraft: 
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Table 19: Arrival Aircraft Category Percentage Improvements (95th Percentile days) 

 Mode Times Distribution Times 

Cat 
Scheduled 
Capacity 

Fixed 
Capacity 

Scheduled 
Capacity 

Fixed 
Capacity 

1 98% 97% 94% 96% 

2 32% 20% 24% 52% 

3 35% 25% 26% 49% 

4 23% 50% 6% 45% 

5 -47% -113% 18% -245% 

 

 

 

Table 20: Arrival Aircraft Category Percentage Improvements (75th Percentile days) 

 Mode Times Distribution Times 

Cat 
Scheduled 
Capacity 

Fixed 
Capacity 

Scheduled 
Capacity 

Fixed 
Capacity 

1 98% 98% 95% 97% 

2 28% 24% 16% 50% 

3 31% 19% 15% 41% 

4 18% 16% -14% -7% 

5 26% -95% 21% -6% 

 

Table 21: Arrival Aircraft Category Percentage Improvements (95th Percentile 

Mornings) 

 Mode Times 
Distribution 

Times 

Cat 
Scheduled 
Capacity 

Scheduled 
Capacity 

1 0% 10% 

2 0% 8% 

3 0% 24% 

4 0% -12% 

5 0% 15% 

 

The optimal schedules based on the high and medium demand periods show significant 

improvements over the filed schedules.  The magnitude and trend shown in the analysis for these 
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two scenarios show high similarities.  They indicate little extra improvements with restricting 

capacity during the optimization process.  Low demand schedules generate absolutely no 

improvements with the mode time scenarios and very little improvement when distribution times 

are used. 

An important trend seen in this analysis is the gradual reduction in benefits as the aircraft 

size gets smaller.  This mirrors the multi-objectivity of the optimization approach since one of 

the goals is that larger aircraft receive priority in the arrival sequence.  This goal would indicate 

that the optimization should produce the largest benefits for larger aircraft, which is exactly the 

case based on this analysis. 

Arrival Flight Time Category 

The categorical analysis for arrival flight times is presented below.  The breakdown of 

this category is exactly the same as for the departure flight time categories where Category 1 

refers to the longest flights in the schedule. 

 

Table 22: Arrival Flight Time Category Percentage Improvements (95th Percentile days) 

 Mode Times Distribution Times 

Cat 
Scheduled 
Capacity 

Fixed 
Capacity 

Scheduled 
Capacity 

Fixed 
Capacity 

1 99% 99% 97% 98% 

2 91% 93% 79% 83% 

3 73% 89% 48% 57% 

4 35% -24% 21% 41% 

5 29% -9% 20% 45% 

6 32% 23% 24% 54% 
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Table 23: Arrival Flight Time Category Percentage Improvements (75th Percentile days) 

 Mode Times Distribution Times 

Cat 
Scheduled 
Capacity 

Fixed 
Capacity 

Scheduled 
Capacity 

Fixed 
Capacity 

1 99% 99% 97% 98% 

2 99% 99% 97% 98% 

3 43% -72% 30% -15% 

4 39% 14% 16% 45% 

5 26% 2% 13% 35% 

6 26% 22% 14% 56% 

 

Table 24: Arrival Flight Time Category Percentage Improvements (95th Percentile 

Mornings) 

 Mode Times 
Distribution 

Times 

Cat 
Scheduled 
Capacity 

Scheduled 
Capacity 

1 0% 0% 

2 0% 0% 

3 0% -18% 

4 0% 19% 

5 0% 33% 

6 100% 30% 

 

 

The overall scale of the improvements seen with the application of the optimization 

algorithm mirrors those of the aircraft size category analysis.  Benefits are largest for longest 

flights and tend to reduce with shorter flight times.  Similarly, the benefits of the optimized 

schedules are basically non-existent in the morning hour schedules, which would indicate how 

optimal the airline filed schedule was in the first place. 
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Arrival Airline Usage Split Category 

The final airline goal implemented as part of the multi-objective optimization approach is 

that of airline usage.  In this analysis, Category 1 of airline usage denotes the airlines which have 

the highest proportion of operations at each of the airports.  This categorical analysis is presented 

below in Tables 25 through 27: 

 

Table 25: Arrival Airline Split Category Percentage Improvements (95th Percentile days) 

 Mode Times Distribution Times 

Cat 
Scheduled 
Capacity 

Fixed 
Capacity 

Scheduled 
Capacity 

Fixed 
Capacity 

1 80% 80% 65% 81% 

2 84% 80% 73% 83% 

3 89% 81% 85% 86% 

4 15% 15% 8% 48% 

5 35% 37% 23% 53% 

6 53% 47% 59% 76% 

 

Table 26: Arrival Airline Split Category Percentage Improvements (75th Percentile days) 

 Mode Times Distribution Times 

Cat 
Scheduled 
Capacity 

Fixed 
Capacity 

Scheduled 
Capacity 

Fixed 
Capacity 

1 76% 80% 66% 84% 

2 91% 89% 79% 86% 

3 90% 88% 88% 91% 

4 11% 6% 6% 47% 

5 30% 21% 12% 45% 

6 76% 74% 64% 77% 
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Table 27: Arrival Airline Split Category Percentage Improvements (95th Percentile 

Mornings) 

 Mode Times 
Distribution 

Times 

Cat 
Scheduled 
Capacity 

Scheduled 
Capacity 

1 0% 0% 

2 0% 0% 

3 0% 32% 

4 0% -361% 

5 0% 37% 

6 83% 31% 

 

 

This analysis shows significant improvements during the high and medium demand 

schedules listed in Tables 24 and 25.  The scale of improvements when using mode flight and 

taxi times in the simulation scenarios is slightly lower than when distribution times are used.  

One significant difference from the previous categorical analyses for arriving aircraft is that the 

trend of improvements with increased categorical values is not as apparent.  High use airlines do 

not receive significantly more benefits than low operations carriers.  This may be caused by the 

categorical breakdown of the airline usage statistics themselves.  If the breakdown caused a 

majority of airlines to be in the same category, then an uneven trend in improvements would 

likely results. 

As with all previous analysis, the analysis of the morning hour schedules indicates minor 

improvements but exhibits no discernible trend. 
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Sensitivity Analysis 

A sensitivity analysis was performed on the arrival aircraft size factor.   In this analysis 

the weight of this factor and its contribution to the fitness function was varied slightly above and 

below the original value.  The original fitness function had equal weights for all of the different 

contributions including flight and taxi time distributions as well as all other airline and airport 

goals previously identified. 

This analysis varied the weight of this single factor within the fitness function from one 

tenth (1/10
th

) of the weight of other factors to seven (7) times the weight.  The analysis of MSDs 

using modes and distributions for flight and taxi times is presented below in Figure 44: 
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Figure 44: Sensitivity Analysis of Arrival Aircraft Category - AnyLogic MSDs 

 

The figure shows a gradual increase in arrival flight MSD as the weight of the arrival 

aircraft category factor is increased.  As expected, departure flight MSD is not affected since the 

factor being varied is arrival flight specific. 

An additional analysis of the MSDs by each category of arriving aircraft size is shown 

below: 
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Figure 45: Sensitivity Analysis - Arrival Aircraft Category Analysis 

 

 Figure 45 gives an indication of the contribution to the overall MSD by each aircraft size 

category.  The charts are grouped by simulations with varying arrival aircraft size factor weights 

from 1/10
th

 through 7 times the weight of all other factors contributing to the fitness function.   

Of primary interest in this analysis is the gradual reduction in contribution to the MSD of 

the larger aircraft categories.  The MSD for category one aircraft is almost halved throughout the 

gradual increase of the factor weight.  In sequence, the MSD contributions of higher category – 

lower size – aircraft are increased. 

This trend in distribution of MSDs by arrival aircraft category is inherent in the setup of 

the individual fitness function of the aircraft size goal within the global fitness function.  The 

function is basically a linear degradation of importance of delay by increasing aircraft size 

category.  This means that higher size aircraft should see a higher likelihood of MSD reduction. 
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CHAPTER FIVE: CONCLUSION 

This section of the dissertation summarizes the results and finding from the previous 

chapter and draws conclusions based on these findings and the methodology described in 

Chapter 3.  The results are summarized and associated benefits are discussed.  This chapter also 

summarizes the applicability of this methodology to various stakeholders and outlines the major 

contributions via a high-level cost-benefit template.   

This summary is followed by a discussion on future research and work that has been 

identified throughout the course of this research project.  Various ideas on improvements to the 

fitness function as well as the optimization process itself are discussed. 

A short overall summary of the entire dissertation concludes this chapter and the 

dissertation. 

Summary of Analysis Data and Benefits 

Based on the detailed analysis of data performed in the previous chapter, a summary 

evaluation of the performance of the schedule optimization algorithm produced the following 

results: 

• The algorithm consistently and significantly produces performance increases of 

greater than 70% for arriving aircraft irrespective of the demand level 

• There is little difference in arrival benefits between mode time (4-D trajectory 

control) and distribution time (current/historic dispersion) scenarios. This 

indicates that the algorithm will produce performance benefits for arrivals today 

and in the Next Generation System (see Figure 46). 
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• The algorithm produces significantly more benefits for departures primarily when 

the algorithm is instructed to use limited departure runway capacity rather than 

scheduled demand capacity (see Figure 47). 

• Departure benefits are primarily observed in scenarios where mode time or 4-D 

trajectory control is implemented.  The benefits in this scenario are at least twice 

that of using distribution times (90% versus 40% using mode flight and taxi 

times). 

• The multi-objective nature of the algorithm provides for a way to assign priorities 

to flights based on various factors.  Figure 48 and 49 show that the algorithm 

correctly favors higher priority flights and causes their on-time performance to be 

improved over lower priority flights 

• The algorithm’s performance with respect to airline and ATC priorities is higher 

in 4-D trajectory control scenarios (using mode times), indicated by a higher 

negative slope in Figure 48 over Figure 49.  This means that the algorithm will 

perform better in the next generation ATM system 

 

In essence, the results indicate that the algorithm proposed in this dissertation produces 

significant on-time performance improvements over the current day operation.  It also efficiently 

provides for increased control in schedule production over airline and ATC priorities.  Using the 

algorithm, it is possible to give arrival priority to larger aircraft.  This proportionally increases 

the on-time performance of larger aircraft over smaller aircraft while still producing an overall 

optimal schedule with significantly improved performance over today’s operation. 
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The proposed algorithm produces significant benefits for a number of stakeholders 

including the following: 

• For airlines 

o More predictable operations reducing the need for tactical decision 

making 

o Higher passenger satisfaction with increased on-time performance 

o Increase capability to strategically plan ground resources 

o Better fuel planning and reduced fuel usage 

o Reduced flight times meaning a reduction in maintenance workload 

• For airports 

o Improved traffic flow coupled with reduced ATC workload 

o Reduced weather impact and need for GDPs 

o Increased airline satisfaction 

o Increased ground operations efficiency 

• Other 

o Reduced flight times generating less environmental pollution and carbon 

emissions 

o Increased reliability in the schedule means an automatic increase in 

reliability of other applications that depend on these schedules including 

gate management and crew/staff resource scheduling 

 

A more detailed conclusion of the overall performance of the algorithm as well as the 

categorical analysis and the performance of the multi-objective nature of the algorithm is 
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discussed in the following section.  This is followed by a short high-level discussion of costs and 

benefits for various stakeholders. 

Benefits and Overall Performance 

The overall performance of the schedule optimization algorithm is based on the total 

values of MSD obtained using AnyLogic simulation models across various demand schedule 

scenarios.  Clearly, differences in performance exist as demand levels change.  The performance 

of the optimal schedules also appears to be heavily influenced by the capacity-limitation of the 

schedule optimization process as well as the use of mode of distributions times during the 

simulation evaluation. 

 Based on the results outlined previously in Chapter 4, summary graphs showing average 

improvements of the optimal schedules were prepared.  These figures are based on average 

improvements or decrements of MSD across the paired demand level days.  A summary analysis 

of airport departures across both airports is presented below in Figure 46: 

 168



Average Percentage Improvements of MSD Statistic

Chicago and Atlanta Departures

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Mode Times Distribution Times Mode Times Distribution Times

Scheduled Capacity Fixed Capacity

A
v
e
ra

g
e
 P

e
rc

e
n

ta
g

e
 I
m

p
ro

v
e
m

e
n

t 

o
v
e
r 

F
il
e
d

 S
c
h

e
d

u
le

95th Percentile Day

75th Percentile Day

 

Figure 46: Average Percentage Improvements of MSD - Departures 

 

Based on the figure above, it is clearly evident that highest benefits for departing flights 

are obtained when the optimization algorithm optimizes a flight schedule with a predicted and 

fixed airport capacity in mind.  This reinforces the recommendation that improved airport 

capacity forecasts will yield significantly more reliable airline schedules.  Clearly if flights are 

scheduled to depart at or under runway capacity, very little delay will be encountered on taxi-out. 

The figure above also indicates that the use of mode flight and taxi times in the 

simulation analysis generated a significantly higher benefit compared to the distribution time 

scenarios. The use of mode times mimics the concept of 4-dimensional trajectory control where 

aircraft are perfectly capable of flying their routes and meet ETAs highly accurately.  The results 

suggest that in a system where aircraft are 4-D trajectory capable, highest benefits for arriving 

flights will be observed.  In fact, a greater than 90% improvement may be achieved when fixed 

capacities are included in the optimization algorithm.  Since this is a concept of the Next 
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Generation ATS, these results should support the need for such a system.  In a current-day 

scenario where distribution flight and taxi times represent a more unpredictable system, benefits 

favor a scenario where the optimization algorithm is implemented with fixed airport capacities.  

An improvement greater than 40% is projected during this scenario. 

Despite variability across days within each demand level, average improvements show a 

decreasing trend with reduced departure demand.  Although a relatively minor drop in 

improvement is observed between the 95
th

 and 75
th

 percentile day schedules, the morning 

schedule data shows absolutely no improvement in departure flight reliability.  This is likely 

because of the lack of any capacity constraints during these time periods.  When demand is 

significantly below capacity, aircraft depart whenever scheduled since they see very little delay 

along their entire route. 

The same analysis was performed for airport arrivals.  Figure 47 below summarizes these 

average improvements: 
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Figure 47: Average Percentage Improvements of MSD – Arrivals 

 

In contrast to departures, arrivals show a fairly consistent improvement across the 

analysis.  Using arrival runway capacities in the optimization process seems to only slightly 

benefit the optimization.  Using this fixed airport capacity causes the distribution time scenarios 

to show higher improvements over using mode flight and taxi times.  This seems to indicate that 

despite adding variability into the system with distribution flight and taxi times, the use of fixed 

arrival runway capacities in the optimization process reverses the trend previously seen for 

departures in Figure 46.   

Another interesting fact shown in this arrival flight analysis is that reduced demand 

scenarios do not show reduced improvements in MSD.  Despite some variation in the days 

within each demand level, the 95
th

 and 75
th

 percentile day periods show very similar results in 

each scenario.  Although not shown in this figure, the low demand – morning hour – period data 
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shows a distinct benefit for arrivals.  This can be attributed to a lack of capacity constraints 

during these time periods.  It is also likely that in a real-world schedule these morning arrivals 

were expected to encounter more severe capacity limitations at their origin airports.   

Overall, these summary results indicate that improvements in arrivals outweigh those of 

departures.  This result should be taken with caution though, since other than ORD-ATL flights, 

destination airport queues and delays are not modeled for departures.  The results indicate that 

the majority of delays are encountered in the arrival sequence.  A more complete simulation 

would be required to properly model these effects.   

Arrivals, on the other hand, are modeled in detail and show distinct improvements in 

predictability through the use of the optimization algorithm.  The schedule predictability 

increases slightly with the use of reliable airport capacity forecasts.  More interestingly, the 

results show that in a scenario where aircraft can fly highly reliable trajectories, the schedule 

optimization approach can significantly improve the on-time performance of the departure 

schedules to levels above 70%. 

Overall, the results also indicate how airlines routinely over-schedule their flight times 

unnecessarily in order to meet their on-time performance.  This reduces the system’s ability to 

strategically plan for the incorrect projected demand levels.  An optimization approach based on 

historic flight times, taxi times, and airline/ATC preferences would significantly improvement 

demand planning practice at airports.  This is particularly true during high demand periods where 

demand exceeds capacity. 
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Effects on Airline, Airport, and FAA Goals 

In addition to showing distinct on-time performance improvements, the schedule 

optimization algorithm also caters for multiple objectives including airline and airport goals and 

preferences.  The ability to define differences in priorities for flights adds to the uniqueness of 

this algorithm.  Providing for ways to optimize on-time performance alongside of differentially 

treating aircraft at varying priorities makes this approach very unique. 

Based on the set of airline and airport goals identified in Chapter 3, the priority treatment 

of larger aircraft, longer flights, higher use airlines, and larger destination airports was 

accomplished.  The categorical analysis presented in Chapter 4 indicates that the results are in 

line with the intended goals.   

Figures 48 and 49 below present a summary of improvements across the various 

categories for the high demand fixed capacity scenarios.  These trends are mirrored in the other 

75
th

 percentile day as well as the scheduled capacity scenarios. 
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Figure 48: Percentage Improvements by Category - 95th Percentile with Fixed Capacity 

and Mode Times 

 

The chart above clearly indicates a distinct preference of lower category flights by 

showing higher improvements for these flights.  This theory holds for arriving flights only.  

Departures show an even trend of improvements across all categories, which may be primarily 

attributed to airlines evenly over-scheduling flight times across all categories for these 

departures.  Again, detailed modeling of destination airport queues may alter these results. 

The same analysis was performed for the scenarios that used distribution flight and taxi 

times.  This is presented in Figure 49 below: 
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Percentage Improvements- 95th Percentile Days
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Figure 49: Percentage Improvements by Category - 95th Percentile with Fixed Capacity 

and Distribution Times 

 

These results using distribution times show somewhat different trends.  For arrivals, 

despite still showing a decreasing trend with increased category, the magnitude of this trend is 

much smaller.  The percentage improvements of departures show much more realistic 

improvements compared to the previous figure.  A minor decreasing trend can actually be 

observed in the treatment of flights by departure destination airport category. 

Overall, the trends observed in this categorical analysis show the impact of the 

contribution of these goals to the overall schedule.  Lower category aircraft show the highest on-

time performance improvement for arrivals.  The data also support the statement that in a 4-D 

trajectory-based environment, the impacts of these goals are further amplified with higher slopes 

in the trends.  
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Based on the magnitude of improvements of the distribution time scenarios, departures 

show much more realistic improvements.  In a 4-D trajectory environment where capacity 

constraints have been provided for in the optimization process, departures are shown to fly their 

routes highly accurately across all category aircraft.  These results for departures should again be 

taken with caution since destination airport queues are not modeled. 

A sensitivity analysis performed on the arrival aircraft size category showed the effects of 

varying the importance of a single factor in the global fitness function.  Higher weights on this 

factor generate higher improvements for large aircraft and proportionally smaller improvements 

for small aircraft. 

The balancing of factor weights in the fitness function is an integral part in this 

optimization process and represents a large part of the uniqueness of the proposed application.   

Cancellations and Slot Swaps 

The optimal schedules produced by the proposed algorithm essentially generate landing 

and departure rights for airlines at the subject airports.   

In any case, airlines may disagree with certain slots for their aircraft due to inabilities to 

meet the proposed slot times or because they want to prioritize certain flights due to specific 

reasons that were not included in the algorithm.  In these instances, it is expected that airlines 

will be able to trade aircraft between slots that were originally assigned to their airline.  It is also 

feasible that airlines may trade slots with other airlines to produce a more airline-optimal 

schedule based on the given day’s operating environment.  Although this, in theory, reduces the 

overall optimality of the schedule, the proposed schedule still gives ownership of slots to airlines.  
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Naturally, FAA TFM will need to approve these slot swaps to ensure FAA goals are not 

contradicted. 

It is also common that airlines may cancel flights due to inclement weather, aircraft 

maintenance, or other capacity restrictions.  In this case, the airline which owns the slot is 

expected to have first priority in filling the given slot time.  If they are unable to do so, it is 

expected that this slot will be offered in order to flights scheduled in subsequent slots. 

Cost Benefit Analysis 

A detailed cost-benefit analysis was not performed for this application due to the lack of 

detailed information on the effects of improved schedule reliability.  Primarily, a lack of detailed 

cost information for the implementation of this application is what limits this analysis.  Different 

parties will likely also interpret the benefits of these optimal schedules in a different way.  A 

summary of economic benefits is provided below for each stakeholder: 

• Airlines 

o Higher on-time performance (reduced delays) 

o Increased passenger performance 

o Improved crew and equipment scheduling 

o Better fuel planning 

o Increased passenger satisfaction 

o Optimized gate usage 

• Airports 

o Improved ground equipment scheduling 
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o Increased passenger satisfaction 

o More level security screening demand 

• FAA 

o Improved traffic flows and reduced airspace congestion 

o Reduced need for irregular operations due to weather 

o Reduced flight times 

o Reduced controller workload 

 

Future research should investigate the detailed costs and benefits of this application 

further in order to explore the utility of this approach in a real-world financial environment.   

Scalability 

The optimization method described in Chapter 3 divides the overall airline schedule into 

subsets of queues with each airport having separate queues for arrivals and departures.  This 

breakdown simplifies the addition of new airports as additional queues to be optimized within 

the process.  Increasing the number of hours to be optimized linearly increases the size of each 

departure and arrival queue. 

From a programming perspective, adding additional hours for optimization is a very 

simple process and simply accomplished by modifying a single parameter within the JGAP 

framework.  The number of genes in each chromosome is subsequently easily modified. 
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Adding additional airports is a more difficult exercise since in the current implementation 

of the algorithm the number of chromosomes is fixed.  Using the current single threaded 

algorithm, significant software changes would be required.   

All things equal, the primary problem with scalability for this methodology is the limited 

amount of resources for processing.  The time required for processing each optimal schedule 

exceeded 40 minutes on a single processor laptop computer.  The processor and memory usage 

was maximized during each execution.  

The parallelization of the algorithm using multiple threads as an alternative is further 

discussed in the subsequent section on Future Research. 

Extendibility of this Methodology 

The proposed methodology is concerned with the scheduling of flights in and out of 

airports.  It is primarily based on historically observed transit times in the air and on the ground 

but is also capable of incorporating certain preferences.  In this application, aircraft operate in 

and out of capacity-constrained airports. 

This basic principle of entities moving between capacitated resources in a three-

dimensional environment is extendible to a number of different applications.  The basic 

requirements are that data for transit times is available for analysis and that detailed information 

on capacity restrictions of the various resources is given.  The premise of this approach could 

then be easily extended to a number of other applications, including maritime or rail 

transportation. 
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Future Research 

Throughout the course of this research effort, several areas for future research have been 

identified.  These areas can be broadly categorized into three categories: (1) research into 

improvements of the fitness function, parameters, and input distributions, (2) research into the 

improvement of the optimization process itself, and (3) research into improvements for 

quantifying the benefits of the proposed methodology.  Each of these areas is covered in turn. 

Fitness Function and Distribution Parameters 

The novel schedule optimization approach outlined in this dissertation contains core 

fitness function components and inputs that were identified as important with respect to FAA 

TFM, airport management, and airlines.  The inputs and parameters of the EA were based on 

aviation data that was available during the process of this research.  However, in order to develop 

this product into a viable solution for airports, airlines, and the FAA, several areas warrant 

further in-depth research.  Several of these future research areas are discussed below: 

Weighting Factors 

As described in Chapter 3, all of the different factors that contribute to the overall fitness 

function are weighted per their expected contribution to the overall schedule.  To simply and 

conceptually show the multi-objectivity of this approach, all of the factors were treated with 

equal weight.  This means that airline, airport, and FAA TFM goals were all treated to be of 

equal importance in the optimization process.  The effect of simply changing a single parameter 

weight was obvious in the analysis of sensitivity of the arrival aircraft size category factor. 
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In a real-world scenario however, certain goals may require increased weight on a 

standard or scenario-specific basis.  For example, if this application is used for primarily TFM 

purposes, the flight and taxi-time distributions may govern the optimization with minimal input 

of airline and airport gorals.  It may also be possible that goals based on airline usage statistics at 

each airport have minimal effects on the overall optimization when compared to, for example, 

aircraft size considerations. 

Further research is required to fine-tune these factor weights not only from a high-level 

stand-point but also for scenario-specific applications (i.e. airline, airport, or FAA TFM usage of 

the optimization tool). 

Categorical Breakdown 

All of the contributions to the fitness function that are based on airport or airline goals 

contain categorical breakdowns in scaling their global fitness contribution.  For example, large 

aircraft receive preferential treatment over small aircraft when assigning runway arrival slot 

times.  Although for some factors the categorical breakdown is based on existing heuristics, other 

categories were developed specifically for this application.   

Airport and aircraft size categories are based on FAA guidelines for airport classification 

and on aircraft wake turbulence criteria.  Airport categories are assigned based on the operations 

counts at an airport and aircraft categories are based on the size of the aircraft and the required 

separation between subsequent arrivals or departures for the same and other aircraft types.  On 

the other hand, the flight time categories as well as the airline usage split categories were 

developed specifically for this research effort.  Despite following a basic linear breakdown into 
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equally sized bins of flight time and airline usage percentage, the size of each category was 

chosen arbitrarily based on the range of data that was at hand.  Further research may be needed 

to investigate the bin sizes for these two variables.  For example, it may be more beneficial to the 

overall optimization to divide flight time categories into bins that linearly grow by 50 minutes of 

flight time rather than the existing 100 minutes. 

Airport Capacity Information 

An integral aspect of this application is the schedule optimization given certain predicted 

airport capacities.  As future research efforts are identified to improve the optimization of the 

schedule itself, parallel research should be carried out to identify advanced airport capacity 

information sources.  Using the known adage of “the quality of the outputs depends on the 

quality of the inputs”, improvements in forecasting airport capacities under various weather 

conditions would improve the schedule optimization’s ability to optimize airline schedules 

around this capacity constraint.  Examples of more advanced airport capacity forecasting 

techniques include Fleming et.al., (2001).    

Additional Factors for Flight and Taxi Time Distributions 

The flight and taxi time distribution data was processed from data that was readily 

available throughout this research effort.  Both the ASDI and BTS data sources give fairly 

inclusive flight-by-flight information but do, by nature, not include information that may be used 

to further identify significant variables within the datasets.   
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For instance, weather information would be a very valuable additional source of 

information.  Specific information on meteorological conditions during flight operations may 

prove useful in generating flight time distributions for specific weather types at the airports or 

along the flight routes.  Data regarding the wind effects on aircraft along routes would be a very 

valuable addition to the input data and would likely assist in producing an even more predictable 

and viable schedule. 

Isolation of Airport-Centric Effects in Distribution-based Data 

The input time distributions for flight taxi times are records of actual events in the NAS.  

This means that system delays are inherently included in the time distributions.  For the purpose 

of this application, the scheduling of flights requires the inclusion of expected delays in planning 

an optimal airline schedule (airlines routinely practice this over-scheduling of flights based on 

expected delays, etc.).  However, the distribution data includes flight times that are inherently 

affected by events outside of the scope of the airports under study.  For example, flights from 

Rome, Italy to ORD may routinely see delays in European airspace due to airspace congestion 

over Western Europe. 

Since the datasets are used to describe expected flight and taxi times, all of the delays 

along a flight’s route are included in the distributions.  However, a dissection of delays by the 

subject airport’s runway queues and delays incurred externally would help in further refining the 

scheduling process.   

 183



Also, information on ATC system delays such as GDPs or TFM practices may further 

refine the flight and taxi-time distributions by separating normal from non-normal days in the 

historic data. 

Turn-Around Times 

The original proposal for this research project included the inclusion of aircraft turn-

around times within the fitness function.  The intent was to link inbound with outbound aircraft 

and use turn-around time distributions to probabilistically describe and model the times between 

aircraft gate arrivals and subsequent departures.  The current implementation of the algorithm 

treats arrivals and departures as separate queues and does punish departures based on tardy 

arrival flights.  While from a strategic planning perspective this is a reasonable assumption 

(airlines frequently swap and substitute aircraft to retain schedule integrity), the scenario would 

be more realistic if the turn-around link was provided for in the fitness function. 

The reason for not including turn-around times in the analysis primarily lies in the 

availability of sufficient data to generate the turn-around time distributions.  After some initial 

data processing of the BTS and aircraft registry data, it quickly became apparent that the turn-

around time data generated was not sufficiently reliable for this application.  Although aircraft 

registry and tail number data allowed for the linking of inbound with outbound flights in the 

historic BTS data, the turn-around times included too many data points for overnight stays, 

maintenance periods, and additional uncharacteristic time spent at the gates. 
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Future research on this topic should focus on producing a more reliable turn-around time 

dataset based on more accurate airline internal data.  The linking of inbound with outbound 

aircraft within the schedule would add significant realism to the optimization scenarios. 

Destination Airport Queues 

The nature of the simulation analysis for the proposed algorithm only simulated the 

airport queues at the airports under investigation.  This appears to properly describe the arrival 

sequence process for arriving flights, but does not simulate delays for departing aircraft along 

their routes and into their destination airports.   

The results indicate that this fact may overestimate the benefits for departures particularly 

for scenarios where mode times are used for flight and tax times.  A more complete modeling of 

airport capacities throughout the NAS would likely have given more realistic on-time 

performance improvement results for departing aircraft.  While this does not affect the 

optimization process itself, the expansion of the simulation model to cater for this would produce 

more accurate predictions of benefits for further analysis. 

4-Dimentsional Trajectory Control may increase Airport Capacity 

The optimization algorithm is capable of incorporating airport capacity in the overall slot 

allocation scheme.  As mentioned previously, the algorithm would benefit from more accurate 

capacity predictions.  Future research on this topic should consider the implications on capacity 

when 4-dimensional trajectory control is implemented.  It has been shown that early 

implementations of this concept such as continuous descent approaches (CDAs) may actually 
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increase airport capacity (Wilson & Hafner, 2005).  This may affect the optimization algorithm 

itself as well as any subsequent simulation assessments of this methodology. 

Environmental Impacts 

The current fitness function in the proposed algorithm is predominantly based on 

empirical distributions of historically observed flight times and airline/ATC priorities.  This 

means that the flight and taxi time component of the fitness functions produces the same fitness 

for a small aircraft flying and taxiing at mode times as for a large aircraft.  This is then 

complemented by using priorities for larger, longer, and more important flights to ensure that 

they deviate the least from the mode times.  

One aspect that has not been addressed explicitly is that of carbon emissions.  Emissions 

are implicitly reduced by favoring the operations of larger, more polluting, aircraft.  However, 

the emissions produced by an aircraft may not necessarily follow the aircraft size categories.  

Emissions are not only affected by the size and quantity of engines on an aircraft but also the 

quality and efficiency of the aircraft engines themselves.  Future research should investigate the 

addition of an emissions goal into the fitness function.  

Ranking of Airports for Multi-Airport Use 

The proposed algorithm provides for a way to expand arrival and departure slot planning 

to a multi-airport network.  Throughout the evaluation of this algorithm, only two airports have 

been used, both of which are major hub airports in the US.  It stands to reason that if the 

algorithm were to be expanded to more airports, major hub airport operations would have a 
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higher importance over operations at non-hub small airports.  Some form of ranking of airports 

(based possibly on the existing airport size categories) should be implemented within the Fitness 

Function to provide for this priority scale. 

Optimization Process 

In addition to research focused on improving the composition of the Fitness Function, 

improvements to the actual optimization process are also of interest.  Future research into 

alternatives or enhancements to the EA approach used in this application may yield ways for 

obtaining better schedules in a more time-efficient manner.  Some potential research areas for 

process improvements are discussed below: 

Additional Operators  

The EA used for this application solely used the swap or exchange mutation operator to 

mutate the schedules throughout each evolution of the population.  The reason for this decision 

was simply the capability of JGAP and existing classes of operators which preserved uniqueness 

in the gene values (see Chapter 3 for a more detailed discussion on this topic). 

Research into other mutation and crossover operators may yield faster optimization 

methods.  Crossover operators such as the sorted match crossover or the cycle crossover 

combined with mutation operators such as inversion or scramble mutation may give more 

optimal results in a more expedient way (Larranaga, Kuijpers & Murga, 1998). 
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Particle Swarm Intelligence 

An area of research that has recently gained some attention is particle swarm intelligence.  

Similar to GAs, this optimization method is also based on a Fitness Function that is optimized 

through evolutions of population mutation and crossover.  An interesting distinction between 

particle swarm optimization and GAs is that the focus not only lies with the optimization of a 

global fitness function but also the maximization of local neighborhood fitness (Kennedy, 2001).  

Individual particles also communicate their fitness locally to other particles. 

In an application of scheduling where not only the overall quality of the schedule is 

important but also that individual airlines, groups of flights, or individual flights obtain optimal 

local fitness, particle swarm intelligence may be a beneficial option.  Actually, this tradeoff of 

overall quality of the schedule versus individual or airline optimality may be an interesting area 

of study itself. 

Scaling of the Optimization Process 

As discussed previously, the current application scales easily on a single machine by 

threading the execution of each individual queue’s EA program and then subsequently 

combining the results.  In theory this makes optimal use of a system’s processing resources.  

While this is manageable for a limited set of airports and hours, larger scenarios will likely 

require significantly more processing power. 

Future research may explore the use of computational clusters or grid computing with 

this application.  Being able to widely distribute subsets of the schedule optimization approach 
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across a network of machines increases the potential size of the problem significantly.  

Optimization tasks could be 

• Distributed as threads for subsets of the schedules or  

• Individual fitness computations for sets of populations can be sent out to networks 

of machines with global optimization performed on a central host 

Quantification of Results  

As mentioned previously when addressing costs and benefits of the proposed 

methodology, the simulation analysis used to evaluate the performance of the algorithm was 

based on a comparison of proposed versus originally filed flight schedules.  In addition to this 

analysis of theoretical performance improvements, a comparison of the proposed, enhanced 

schedules versus the actual observed operations for the given demand schedule periods can be 

performed.   

The basic issue with this comparison of simulated versus real-world data is that the real-

word scenario naturally includes delays and other environmental impacts that cannot be 

simulated.  For instance, in a situation where weather in the New York area delayed all flights 

out of ORD and ATL destined for New York, the real-world actual data is not directly 

comparable to a simulated enhanced schedule of the same time period. 

Future research may be able to find ways of isolating delay effects to single airports and 

provide ways for performing a more detailed performance analysis using real-world data as the 

baseline.  This notion was also previously introduced with respect to future research into the 

flight time distributions and the localization of delays within these distributions per each airport. 
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APPENDIX A  

OIS AIRPORT ARRIVAL CAPACITY DATA FOR CHICAGO O’HARE 
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The rates given below are for good weather (VFR) as well as inclement weather (IFR) 

and reflect the number of FAA planned arrivals per hour at Chicago O’Hare International Airport 

under the given circumstances: 

 

   Table 28: Chicago O'Hare FAA Airport Acceptance Rates (Arrivals) 

Landing Runways Departing Runways IFR Weather VFR Weather 

14R 22R 9L 22L 27L 80 94-96 

22R 27L 32L 32R 22L 80 96 

4R 9L 4L 9L 32L 32R 64-72 - 

32L 27R 22L 27L 32R 72-80 - 

9R 14R 4L 9L 22L 80 100 

4R 9R 4L 9L 32L 32R 80 100 

14L 14R 9L 9R 68 - 

27L 27R 22L 32L 32R 76-80 - 

32L 32R 22L 27L 68 - 

4L 4R 9L 9R 32 68 - 
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APPENDIX B  

OIS AIRPORT ARRIVAL CAPACITY DATA FOR ATLANTA 

HARTSFIELD-JACKSON 
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The rates given below are for good weather (VFR) as well as inclement weather (IFR) 

and reflect the number of FAA planned arrivals per hour at Atlanta Hartsfield Jackson 

International Airport under the given circumstances: 

 

Table 29: Atlanta Hartsfield Jackson FAA Airport Acceptance Rates (Arrivals) 

Landing Runways Departing Runways IFR Weather VFR Weather 

27L 26R 27R 26L 68-78 80-86 

26L 27L 26L 27R 55 65 

26R 27R 26L 27R 55 65 

26R 27L 27R 37 42 

26L 27L 26L 27R 45 45 

8L 9R 8R 9L 68-78 80-86 

8R 9R 8R 9L 55 65 

8L 9L 8R 9L 55 65 

8L 9R 9L 37 42 

 

The underlined configurations mark the preferred runway configurations at Atlanta with a 

four runway operation. 
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APPENDIX C 

ANALYSIS OF DAILY OPERATIONS COUNT FOR CHICAGO AND 

ATLANTA 
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Table 30: Analysis of Chicago Total Scheduled Operations - 2006 

Chicago Scheduled Total Operations - 2006 

 Mean Median Standard Deviation Percentile 25 Percentile 75 Percentile 95 

Year 6 2,657 2,708 151 2,593 2,761 2,827

1 2,543 2,603 124 2,457 2,634 2,663

2 2,591 2,654 142 2,507 2,700 2,732

3 2,656 2,709 122 2,593 2,741 2,765

4 2,671 2,738 127 2,634 2,755 2,795

5 2,683 2,742 132 2,613 2,765 2,809

6 2,742 2,771 110 2,693 2,820 2,847

7 2,711 2,781 139 2,579 2,817 2,833

8 2,750 2,781 98 2,711 2,813 2,849

9 2,646 2,721 168 2,569 2,755 2,815

10 2,664 2,691 122 2,633 2,748 2,793

Month 

11 2,567 2,682 209 2,404 2,716 2,755

0 2,603 2,641 110 2,553 2,671 2,722

1 2,694 2,723 98 2,649 2,755 2,813

2 2,710 2,738 86 2,676 2,766 2,817

3 2,723 2,742 121 2,682 2,799 2,840

4 2,709 2,757 151 2,664 2,796 2,833

5 2,731 2,755 111 2,709 2,802 2,846

Day 
of 
Week 

6 2,424 2,411 94 2,362 2,510 2,562
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Table 31: Analysis of Atlanta Total Scheduled Operations - 2006 

Atlanta Scheduled Total Operations - 2006 

 Mean Median Standard Deviation Percentile 25 Percentile 75 Percentile 95 

Year 6 2,708 2,749 187 2,585 2,864 2,944 

1 2,532 2,573 165 2,485 2,686 2,723 

2 2,547 2,549 144 2,514 2,642 2,735 

3 2,680 2,719 118 2,643 2,761 2,801 

4 2,657 2,680 134 2,601 2,759 2,818 

5 2,638 2,673 170 2,585 2,770 2,821 

6 2,786 2,844 160 2,718 2,902 2,926 

7 2,812 2,882 148 2,779 2,918 2,944 

8 2,864 2,906 133 2,850 2,944 2,996 

9 2,726 2,764 204 2,685 2,890 2,952 

10 2,786 2,807 146 2,762 2,873 2,956 

Month 

11 2,750 2,832 200 2,666 2,892 2,946 

0 2,683 2,720 134 2,591 2,791 2,850 

1 2,747 2,740 119 2,680 2,865 2,886 

2 2,713 2,682 138 2,614 2,832 2,916 

3 2,743 2,759 150 2,608 2,881 2,942 

4 2,837 2,877 141 2,762 2,946 2,967 

5 2,820 2,833 115 2,759 2,912 2,935 

Day 
of 
Week 

6 2,403 2,415 127 2,305 2,526 2,559 
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APPENDIX D 

BUSY DAY ASDI TRAFFIC ANALYSIS 
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Table 32: Traffic Days above 95th Percentile for 2006 

95
th

 Percentile     Scheduled Total Operations 

ATL ORD Both Year Month Day 
Day of 
Week ATL ORD 

X X X 6 Jun     29 Thu      2951 2847 

X X X 6 Aug     17 Thu      2967 2841 

X   6 Jul     27 Thu      2981 2777 

X   6 Aug     1 Tue      2947 2777 

X   6 Aug     3 Thu      2949 2775 

X   6 Aug     9 Wed      2996 2801 

X   6 Aug     10 Thu      3023 2747 

X   6 Aug     24 Thu      2946 2617 

X   6 Aug     31 Thu      2945 2801 

X   6 Sep     7 Thu      2952 2801 

X   6 Sep     21 Thu      2952 2815 

X   6 Oct     5 Thu      2950 2754 

X   6 Oct     12 Thu      2959 2710 

X   6 Oct     19 Thu      2956 2793 

X   6 Nov     2 Thu      2946 2759 

X   6 Nov     9 Thu      2951 2745 

 X  6 Jun     14 Wed      2902 2839 

 X  6 Jun     15 Thu      2925 2833 

 X  6 Jun     16 Fri      2897 2846 

 X  6 Jun     23 Fri      2926 2839 

 X  6 Jun     28 Wed      2916 2870 

 X  6 Jun     30 Fri      2922 2847 

 X  6 Jul     13 Thu      2944 2828 

 X  6 Jul     14 Fri      2912 2840 

 X  6 Jul     24 Mon      2882 2831 

 X  6 Jul     26 Wed      2922 2833 

 X  6 Aug     2 Wed      2924 2891 

 X  6 Aug     18 Fri      2935 2849 

 X  6 Aug     23 Wed      2942 2840 
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Table 33: Traffic Days above 75th Percentile for 2006 

75
th

 Percentile     Scheduled Total Operations 

ATL ORD Both Year Month Day 
Day of 
Week ATL ORD 

X X X 6 Jun     8 Thu      2891 2799 

X X X 6 Jun     9 Fri      2914 2819 

X X X 6 Jun     20 Tue      2887 2793 

X X X 6 Jun     27 Tue      2890 2820 

X X X 6 Jul     5 Wed      2927 2812 

X X X 6 Jul     6 Thu      2922 2817 

X X X 6 Jul     7 Fri      2925 2802 

X X X 6 Jul     10 Mon      2874 2790 

X X X 6 Jul     11 Tue      2918 2770 

X X X 6 Jul     12 Wed      2891 2798 

X X X 6 Jul     17 Mon      2868 2791 

X X X 6 Jul     18 Tue      2916 2817 

X X X 6 Jul     19 Wed      2921 2818 

X X X 6 Jul     21 Fri      2874 2809 

X X X 6 Jul     25 Tue      2892 2818 

X X X 6 Jul     28 Fri      2913 2781 

X X X 6 Jul     31 Mon      2888 2807 

X X X 6 Aug     4 Fri      2936 2802 

X X X 6 Aug     7 Mon      2879 2781 

X X X 6 Aug     8 Tue      2903 2800 

X X X 6 Aug     11 Fri      2908 2827 

X X X 6 Aug     14 Mon      2880 2813 

X X X 6 Aug     15 Tue      2909 2783 

X X X 6 Aug     16 Wed      2944 2827 

X X X 6 Aug     21 Mon      2892 2785 

X X X 6 Aug     22 Tue      2906 2804 

X X X 6 Aug     30 Wed      2882 2813 

X X X 6 Sep     1 Fri      2864 2804 

X X X 6 Sep     14 Thu      2935 2815 

X X X 6 Sep     28 Thu      2927 2795 

X X X 6 Sep     29 Fri      2909 2767 

X X X 6 Oct     20 Fri      2895 2789 

X X X 6 Oct     23 Mon      2869 2772 

X   6 Jun     21 Wed      2879 2729 

X   6 Jun    22 Thu      2903 2761 

X   6 Jul     20 Thu      2915 2544 

X   6 Aug     20 Sun      2888 2716 

X   6 Aug     25 Fri      2939 2761 

X   6 Aug     28 Mon      2880 2740 

X   6 Sep     8 Fri      2900 2755 

X   6 Sep     15 Fri      2895 2746 

X   6 Sep     22 Fri      2890 2709 

X   6 Oct     6 Fri      2900 2747 

X   6 Oct     9 Mon      2873 2727 
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X   6 Oct     13 Fri      2920 2629 

X   6 Oct     26 Thu      2914 2534 

X   6 Nov     3 Fri      2920 2695 

X   6 Nov     8 Wed      2864 2706 

X   6 Nov     10 Fri      2892 2603 

X   6 Nov     13 Mon      2866 2648 

X   6 Nov     16 Thu      2918 2749 

X   6 Nov     17 Fri      2934 2755 

X   6 Nov     26 Sun      2868 2722 

X   6 Nov     27 Mon      2886 2725 

X   6 Nov     28 Tue      2896 2747 

X   6 Nov     29 Wed      2920 2404 

 X  6 Mar     8 Wed      2737 2788 

 X  6 Mar     10 Fri      2774 2765 

 X  6 Apr     5 Wed      2757 2795 

 X  6 Apr     6 Thu      2818 2797 

 X  6 Apr     7 Fri      2815 2763 

 X  6 Apr     13 Thu      2772 2785 

 X  6 Apr     20 Thu      2841 2775 

 X  6 Apr     27 Thu      2792 2767 

 X  6 Apr     28 Fri      2788 2775 

 X  6 May     4 Thu      2809 2765 

 X  6 May     10 Wed      2670 2780 

 X  6 May     16 Tue      2617 2769 

 X  6 May     17 Wed      2715 2799 

 X  6 May     18 Thu      2821 2827 

 X  6 May     19 Fri      2770 2802 

 X  6 May     24 Wed      2725 2788 

 X  6 May     26 Fri      2817 2809 

 X  6 Jun     1 Thu      2862 2779 

 X  6 Jun     12 Mon      2827 2763 

 X  6 Jun     13 Tue      2846 2800 

 X  6 Jun     19 Mon      2829 2818 

 X  6 Jun     26 Mon      2841 2799 

 X  6 Aug     29 Tue      2817 2772 

 X  6 Oct     18 Wed      2762 2823 

 X  6 Oct     25 Wed      2816 2777 
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APPENDIX E 

DEPARTURE DESTINATION AIRPORT CATEGORY ANYLOGIC 

RESULTS 
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Figure 50: AnyLogic Results for Departure Destination Airport Category Analysis - 

Mode Times 
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Figure 51: AnyLogic Results for Departure Destination Airport Category Analysis - 

Distribution Times 
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APPENDIX F 

DEPARTURE FLIGHT TIME CATEGORY ANYLOGIC RESULTS 
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Figure 52: AnyLogic Results for Departure Flight Time Category Analysis - Mode Times 
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Figure 53: AnyLogic Results for Departure Flight Time Category Analysis - Distribution 

Times 
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Figure 54: AnyLogic Results for Arrival Aircraft Category Analysis - Mode Times 
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Figure 55: AnyLogic Results for Arrival Aircraft Category Analysis - Distribution Times 
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Figure 56: AnyLogic Results for Arrival Flight Time Category Analysis - Mode Times 
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Figure 57: AnyLogic Results for Arrival Flight Time Category Analysis - Distribution 

Times 
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Figure 58: AnyLogic Results for Arrival Airline Usage Split Category Analysis - Mode 

Times 
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Figure 59: AnyLogic Results for Arrival Airline Usage Split Category Analysis - 

Distribution Times 
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