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ABSTRACT
The truncated Euler–Maruyama method is employed together with the
Multi-levelMonteCarlomethod to approximate expectations of some func-
tions of solutions to stochastic differential equations (SDEs). The conver-
gence rate and the computational cost of the approximations are proved,
when the coefficients of SDEs satisfy the local Lipschitz and Khasminskii-
type conditions. Numerical examples are provided to demonstrate the
theoretical results.
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1. Introduction

Stochastic differential equations (SDEs) have been broadly discussed and applied as a powerful tool to
capture the uncertain phenomenon in the evolution of systems inmany areas [2,6,20,25,26].However,
the explicit solutions of SDEs can rarely be found. Therefore, the numerical approximation becomes
an essential approach in the applications of SDEs.Monographs [18,23] provide detailed introductions
and discussions to various classic methods.

Since the nonlinear coefficients have beenwidely adapted in SDEmodels [1,10,24], explicit numer-
ical methods that have good convergence property for SDEs with non-global Lipschitz drift and
diffusion coefficients are of interest to many researchers and required by practitioners. The authors
in [13] developed a quite general approach to prove the strong convergence of numerical methods
for nonlinear SDEs. The approach to prove the global strong convergence via the local convergence
for SDEs with non-global Lipschitz coefficients was studied in [29]. More recently, the taming tech-
nique was developed to handle the non-global Lipschitz coefficients [15,16]. Simplified proof of the
tamed Euler method and the tamedMilstein method can be found in [27] and [30], respectively. The
truncated Euler–Maruyama (EM) method was developed in [21,22], which is also targeting on SDEs
with non-global Lipschitz coefficients. Explicit methods for nonlinear SDEs that preserve positivity
can be found in, for example [12,19]. Amodified truncated EMmethod that preserves the asymptotic
stability and boundedness of the nonlinear SDEs was presented in [11].

Compared to the explicit methods mentioned above, the methods with implicit term have better
convergence property in approximating non-global Lipschitz SDEs with the trade-off of the relatively
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expensive computational cost. We just mention a few of the works [14,28,31] and the references
therein.

In many situations, the expected values of some functions of the solutions to SDEs are also of
interest. To estimate the expected values, the classic Monte-Carlo method is a good and natural can-
didate. More recently, Giles in [7,8] developed the Multi-level Monte Carlo (MLMC) method, which
improves the convergence rate and reduces the computational cost of estimating expected values. A
detailed survey of recent developments and applications of the MLMC method can be found in [9].
To complement [9], we only mention some new developments that are not included in [9]. Under the
global Lipschitz and linear growth conditions, the MLMC method combined with the EM method
applied to SDEswith small noise is often found to be themost efficient option [3]. TheMLMCmethod
with the adaptive EMmethodwas designed for solving SDEs driven by Lévy process [4,5]. TheMLMC
methodwas applied to SDEs driven by Poisson randommeasures bymeans of coupling with the split-
step implicit tau-leap at levels. However, the classic EM method with the MLMC method has been
proved divergence to SDEs with non-global Lipschitz coefficients [17]. So it is interesting to investi-
gate the combinations of the MLMC method with those numerical methods developed particularly
for SDEs with non-global Lipschitz coefficients. In [17], the tamed Euler method was combined with
the MLMC method to approximate expectations of some nonlinear functions of solutions to some
nonlinear SDEs.

In this paper, we embed theMLMCmethod with the truncated EMmethod and study the conver-
gence and the computational cost of this combination to approximate expectations of some nonlinear
functions of solutions to SDEs with non-global Lipschitz coefficients.

In [22], the truncated EMmethod has been proved to converge to the true solution with the order
1
2 -ε for any arbitrarily small ε > 0. The plan of this paper is as follows. Firstly, we make some mod-
ifications of Theorem 3.1 in [8] such that the modified theorem is able to cover the truncated EM
method. Then, we use the modified theorem to prove the convergence and the computational cost
of the MLMC method with the truncated EM method. At last, numerical examples for SDEs with
non-global Lipschitz coefficients and expectations of nonlinear functions are given to demonstrate
the theoretical results.

This paper is constructed as follows. Notations, assumptions and some existing results about the
truncated EMmethod and theMLMCmethod are presented in Section 2. Section 3 contains themain
result on the computational complexity. A numerical example is provided in Section 4 to illustrate
theoretical results. In the appendix, we give the proof of the theorem in Section 3.

2. Mathematical preliminary

Throughout this paper, unless otherwise specified, we let (�,F ,P) be a complete probability space
with a filtration {Ft}t≥0 satisfying the usual condition (that is, it is right continuous and increasing
whileF0 contains allP−null sets). LetE denote the expectation corresponding toP. LetB(t) be anm-
dimensional Brownianmotion defined on the space. IfA is a vector ormatrix, its transpose is denoted
byAT . If x ∈ R

d, then |x| is the Euclidean norm. IfA is amatrix, we let |A| =
√
trace(ATA) be its trace

norm. If A is a symmetric matrix, denote by λmax(A) and λmin(A) its largest and smallest eigenvalue,
respectively. Moreover, for two real numbers a and b, set a ∨ b = max(a, b) and a ∧ b = min(a, b).
If G is a set, its indicator function is denoted by IG(x) = 1 if x ∈ G and 0 otherwise.

Here we consider an SDE

dX(t) = μ(X(t)) dt + σ(X(t)) dB(t) (1)

on t ≥ 0 with the initial value X(0) = X0 ∈ R
d, where

μ :Rd → R
d and σ : R

d → R
d×m.
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When the coefficients obey the global Lipschitz condition, the strong convergence of numerical
methods for SDEs has been well studied [18]. When the coefficients μ and σ are locally Lipschitz
continuous without the linear growth condition, Mao [21,22] recently developed the truncated EM
method. To make this paper self-contained, we give a brief review of this method firstly.

We first choose a strictly increasing continuous function ω : R+ → R+ such that ω(r) → ∞ as
r → ∞ and

sup
|x|≤u

(|μ(x)| ∨ |σ(x)|) ≤ ω(u), ∀u ≥ 1. (2)

Denote by ω−1 the inverse function of ω and we see that ω−1 is a strictly increasing continuous
function from [ω(0),∞) toR+.We also choose a number s∗l ∈ (0, 1] and a strictly decreasing function
h : (0, s∗l ] → (0,∞) such that

h(s∗l ) ≥ ω(2), lim
sl→0

h(sl) = ∞ and s1/4l h(sl) ≤ 1, ∀sl ∈ (0, s∗l ]. (3)

For a given stepsize sl ∈ (0, 1), let us define the truncated functions

μsl(x) = μ

(
(|x| ∧ ω−1(h(sl)))

x
|x|
)

and σsl(x) = σ

(
(|x| ∧ ω−1(h(sl)))

x
|x|
)

for x ∈ R
d, where we set x/|x| = 0 when x= 0. Moreover, let X̄sl(t) denote the approximation toX(t)

using the truncated EM method with time step size sl = M−lT for l = 0, 1, . . . , L. The numerical
solutions X̄sl(tk) for tk = ksl are formed by setting X̄sl(0) = X0 and computing

X̄sl(tk+1) = X̄sl(tk) + μsl(X̄sl(tk))sl + σsl(X̄sl(tk))�Bk (4)

for k = 0, 1, . . . , where �Bk = B(tk+1) − B(tk) is the Brownian motion increment.
Now we give some assumptions to guarantee that the truncated EM solution (4) will converge to

the true solution to the SDE (1) in the strong sense.

Assumption 2.1: The coefficients μ and σ satisfy the local Lipschitz condition that for any real
number R> 0, there exists a KR > 0 such that

|μ(x) − μ(y)| ∨ |σ(x) − σ(y)| ≤ KR|x − y| (5)

for all x, y ∈ Rd with |x| ∨ |y| ≤ R.

Assumption 2.2: The coefficients μ and σ satisfy the Khasminskii-type condition that there exists a
pair of constants p> 2 and K > 0 such that

xTμ(x) + p − 1
2

|σ(x)|2 ≤ K(1 + |x|2) (6)

for all x ∈ R
d.

Assumption 2.3: There exists a pair of constants q ≥ 2 and H1 > 0 such that

(x − y)T(μ(x) − μ(y)) + q − 1
2

|σ(x) − σ(y)|2 ≤ H1|x − y|2 (7)

for all x, y ∈ R
d.
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Assumption 2.4: There exists a pair of positive constants ρ and H2 such that

|μ(x) − μ(y)|2 ∨ |σ(x) − σ(y)|2 ≤ H2(1 + |x|ρ + |y|ρ)|x − y|2 (8)

for all x, y ∈ R
d.

Let f (X(t)) denote a payoff function of the solution to some SDE driven by a given Brownian path
B(t). In this paper, we need f satisfies the following assumption.

Assumption 2.5: There exists a constant c> 0 such that

|f (x) − f (y)| ≤ c(1 + |x|c + |y|c)|x − y| (9)

for all x, y ∈ R
d.

Using the idea in [7,8], the expected value of f (X̄sl(t)) can be decomposed in the following way

E[f (X̄sL(T))] = E[f (X̄s0(T))] +
L∑
l=1

E[f (X̄sl(T)) − f (X̄sl−1(T))]. (10)

LetY0 be an estimator forE[f (X̄s0(T))] usingN0 samples. LetYl be an estimator forE[f (X̄sl(T)) −
f (X̄sl−1(T))] using Nl paths such that

Yl = 1
Nl

Nl∑
i=1

[f (X̄(i)
sl (T)) − f (X̄(i)

sl−1
(T))].

The multi-level method independently estimates each of the expectations on the right-hand side of
Equation (10) such that the computational complexity can be minimized, see [8] for more details.

3. Main results

In this section, Theorem 3.1 in [8] is slightly generalized. Then the convergence rate and computa-
tional complexity of the truncated EMmethod combined with the MLMCmethod are studied.

3.1. Generalized theorem for theMLMCmethod

Theorem 3.1: If there exist independent estimators Yl based on Nl Monte Carlo samples, and positive
constants α,β , c1, c2, c3 such that

1. E[f (X̄sl(T)) − f (X(T))] ≤ c1sαl ,
2.

E[Yl] =
{

E[f (X̄s0(T))], l = 0,
E[f (X̄sl(T)) − f (X̄sl−1(T))], l > 0,

3. Var[Yl] ≤ c2N−1
l sβl ,

4. the computational complexity of Yl, denoted by Cl, is bounded by

Cl ≤ c3Nls−1
l ,
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then there exists a positive constant c4 such that for any ε < e−1 the multi-level estimator

Y =
L∑
l=0

Yl

has a mean square error (MSE)

MSE ≡ E[(Y − E[f (X(T))])2] < ε2.

Furthermore, the upper bound of computational complexity of Y, denoted by C, is given by

C ≤

⎧⎪⎪⎨
⎪⎪⎩
c3
(
2c25c2 + M2

M − 1
(
√
2c1)1/α

)
ε−1/α , α ≤ (− log ε)/log[(log ε/ε)2],

c3
(
2c25c2 + M2

M − 1
(
√
2c1)1/α

)
ε−2(log ε)2, α > (−logε)/log[(log ε/ε)2]

for β = 1,

C ≤

⎧⎪⎪⎨
⎪⎪⎩
c3
[
2c2Tβ−1(1 − M−(β−1)/2)−2 + M2

M − 1
(
√
2c1)1/α

]
ε−2, α ≥ 1

2
,

c3[2c2Tβ−1(1 − M−(β−1)/2)−2 + M2

M − 1
(
√
2c1)1/α]ε−1/α , α <

1
2

for β > 1, and

C ≤

⎧⎪⎪⎨
⎪⎪⎩
c3
[
2c2(

√
2c1)(1−β)/αM1−β(1 − M−(1−β)/2)−2 + M2

M − 1
(
√
2c1)1/α

]
ε−2−(1−β)/α , β ≤ 2α,

c3
[
2c2(

√
2c1)(1−β)/αM1−β(1 − M−(1−β)/2)−2 + M2

M − 1
(
√
2c1)1/α

]
ε−1/α , β > 2α

for 0 < β < 1.

The proof is in the appendix.

Remark 3.1: The main difference of Theorem 3.1 and Theorem 3.1 in [8] lies in the first condition.
In [8], one needs α ≥ 1

2 . In this paper, this requirement is weaken by any α > 0.

3.2. Specific theorem for truncated Euler with theMLMC

Next we consider the MLMC path simulation with truncated EM method and discuss their compu-
tational complexity using Theorem 3.1.

From Theorem 3.8 in [22], under Assumptions 2.1–2.4, for every small sl ∈ (0, s∗l ), where s
∗
l ∈

(0, 1) and for any real number T> 0, we have

E|X(T) − X̄sl(T)|q̄ ≤ c sq̄/2l (h(sl))q̄, (11)

for q̄ ≥ 2. If q̄ = 1, by using the Holder inequality, we also know that

E|X(T) − X̄sl(T)| ≤ (E|X(T) − X̄sl(T)|2)1/2 ≤ (csl(h(sl))2)1/2 = cs1/2l h(sl),



1720 Q. GUO ET AL.

so we can obtain

E[|f (X̄sl(T)) − f (X(T))|]
≤ E[c(1 + |X̄sl(T)|c + |X(T)|c)|X̄sl(T) − X(T)|] ≤ c(E|X̄sl(T) − X(T)|2)1/2

≤ cs1/2l h(sl) (12)

with the polynomial growth condition (9). This implies that α = 1
4 for the truncated EM scheme.

Next we consider the variance of Yl. It follows that

Var[f (X̄sl(T)) − f (X(T))] ≤ E[(f (X̄sl(T)) − f (X(T))2] ≤ csl(h(sl))2 (13)

using Equations (9) and (11).
In addition, it can be noted that

f (X̄sl(T)) − f (X̄sl−1(T)) = [f (X̄sl(T)) − f (X(T))] − [f (X̄sl−1(T)) − f (X(T))],

thus we have

Var[f (X̄sl(T)) − f (X̄sl−1(T))]

≤ (

√
Var[f (X̄sl(T)) − f (X(T))] +

√
Var[f (X̄sl−1(T)) − f (X(T))])2

≤ csl(h(sl))2 + csl−1(h(sl−1))
2

≤ cs1/2l ,

where the fact s1/4l h(sl) ≤ 1 from Equation (3) is used.
Now we have

Var[Yl] = N−1
l Var[f (X̄(i)

sl (T)) − f (X̄(i)
sl−1

(T))] ≤ cN−1
l s1/2l .

So we have β = 1
2 for the truncated EMmethod.

According to the Theorem 3.1, it is easy to find that the upper bound of the computational
complexity of Y is [

4c21c2c3
√
M(1 − M−1/4)−2 + 4M2

M − 1
c41c3

]
ε−4.

4. Numerical simulations

To illustrate the theoretical results, we consider a nonlinear scalar SDE

dx(t) = (x(t) − x3(t)) dt + |x(t)|3/2 dB(t), t ≥ 0, x(0) = x0 ∈ R, (14)

where B(t) is a scalar Brownian motion. This is a specified Lewis stochastic volatility model. Accord-
ing to Examples 3.5 and 3.9 in [22], we sample over 1000 discretized Brownian paths and use stepsizes
sl = T/2l for l = 1, 2, . . . , 5 in the truncated EM method. Let Ŷl denote the sample value of Yl. Here
we set T= 1 and h(sl) = s−1/4

l .
Firstly, we show some computational results of the classic EM method with the MLMCmethod.
It can be seen from Table 1 that the simulation result of (14) computed by the MLMC approach

together with the classic EM method is divergent.
The simulation results using the MLMC method combined with the truncated EM method is

presented in Table 2. It is clear that some convergent trend is displayed.
Next, it is noted that compared with the standardMonte Carlomethod the computational cost can

be saved by usingMLMCmethod. FromFigure 1, we can see that theMLMCmethod is approximately
10 times more efficient than the standard Monte Carlo method when ε is sufficient small.
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Table 1. Numerical results using the MLMC with the classic EMmethod.

l 1 2 3 4 5

Ŷl 1.00 2.59e + 102 −2.94e + 159 – –

Table 2. Numerical results using theMLMCwith the truncated EMmethod.

l 1 2 3 4 5

Ŷl 0.39 −0.18 −0.024 −0.003 −0.0006

10
−3

10
−2

10
0

10
1

ε2  C
os

t

ε

Std MC
MLMC

Figure 1. Computational cost.
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Appendix
Proof of Theorem 3.1: Using the notation 
x� to denote the unique integer n satisfying the inequalities x ≤ n < x + 1,
we start by choosing L to be

L =
⌈
log(

√
2c1Tαε−1)

α logM

⌉
,

so that
1√
2
M−αε < c1sαL ≤ 1√

2
ε.

Hence, by the condition 1 and 2 we have

(E[Y] − E[f (X(T))])2

=
(

E

[ L∑
l=0

Yl

]
− E[f (X(T))]

)2

= (E[f (X̄sL (T)) − f (X(T))])2

≤ (c1sαL )2 � 1
2
ε2. (A1)

Therefore, we have

(E[Y] − E[f (X)])2 ≤ 1
2
ε2.

This upper bound on the square of bias error together with the upper bound of 1
2 ε

2 on the variance of the estimator,
which will be proved later, gives a upper bound of ε2 to the MSE.

Noting
L∑
l=0

s−1
l = s−1

L

L∑
i=0

M−i <
M

M − 1
s−1
L ,

using the standard result for a geometric series and the inequality (1/
√
2)M−αε < c1sαL , we can obtain

s−1
L < M

(
ε√
2c1

)−1/α
.

Then, we have
L∑
l=0

s−1
l <

M
M − 1

s−1
L <

M2

M − 1
(
√
2c1)1/αε−1/α . (A2)

We now consider the different possible values of β and to compare them to the α.
(a) If β = 1, we set Nl = 
2ε−2(L + 1)c2sl� so that

V[Y] =
L∑
l=0

V[Yl] ≤
L∑
l=0

c2N−1
l sl ≤ 1

2
ε2,

which is the required.
For the bound of the computational complexity C, we have

C =
L∑
l=0

Cl ≤ c3
L∑
l=0

Nls−1
l

≤ c3
L∑
l=0

(2ε−2(L + 1)c2sl + 1)s−1
l

≤ c3

(
2ε−2(L + 1)2c2 +

L∑
l=0

s−1
l

)

≤ c3
(
2ε−2(L + 1)2c2 + M2

M − 1
(
√
2c1)1/αε−1/α

)
.
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According to the definition of L, we have

L ≤ log ε−1

α logM
+ log(

√
2c1Tα)

α logM
+ 1.

Given that 1 < log ε−1 for ε < e−1, we have

L + 1 ≤ c5 log ε−1,

where

c5 = 1
α logM

+ max

(
0,

log(
√
2c1Tα)

α logM

)
+ 2.

Hence, the computation complexity is bounded by

C ≤ c3(2ε−2c25(log ε−1)2c2 + M2

M − 1
(
√
2c1)1/αε−1/α)

= c3(2ε−2c25(log ε)2c2 + M2

M − 1
(
√
2c1)1/αε−1/α).

So if α ≤ (−logε)/log[(logε/ε)2], we have

C ≤ c3
(
2c25c2 + M2

M − 1
(
√
2c1)1/α

)
ε−1/α .

If α > (− log ε)/log[(log ε/ε)2], we have

C ≤ c3
(
2c25c2 + M2

M − 1
(
√
2c1)1/α

)
ε−2(log ε)2.

(b) For β > 1, setting

Nl = 
2ε−2c2T(β−1)/2(1 − M−(β−1)/2)−1s(β+1)/2
l �,

then we have

V[Y] =
L∑
l=0

V[Yl] ≤
L∑
l=0

c2N−1
l sβl

≤ 1
2
ε2T−(β−1)/2(1 − M−(β−1)/2)

L∑
l=0

s(β−1)/2
l .

Using the stand result for a geometric series

L∑
l=0

s(β−1)/2
l = T(β−1)/2

L∑
l=0

(M−(β−1)/2)l

< T(β−1)/2(1 − M−(β−1)/2)−1, (A3)
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we obtain that the upper bound of variance is 1
2 ε

2. So the computation complexity is bounded by

C ≤ c3
L∑
l=0

Nls−1
l

≤ c3
L∑
l=0

(2ε−2c2T(β−1)/2(1 − M−(β−1)/2)−1s(β+1)/2
l + 1)s−1

l

= c3

[
2ε−2c2T(β−1)/2(1 − M−(β−1)/2)−1

L∑
l=0

s(β−1)/2
l +

L∑
l=0

s−1
l

]

≤ c3[2ε−2c2T(β−1)/2(1 − M−(β−1)/2)−1T(β−1)/2(1 − M−(β−1)/2)−1

+ M2

M − 1
(
√
2c1)1/αε−1/α]

= c3
[
2ε−2c2Tβ−1(1 − M−(β−1)/2)−2 + M2

M − 1
(
√
2c1)1/αε−1/α

]
.

So when α ≥ 1
2 , we have

C ≤ c3[2c2Tβ−1(1 − M−(β−1)/2)−2 + M2

M − 1
(
√
2c1)1/α]ε−2,

When α < 1
2 , we have

C ≤ c3
[
2c2Tβ−1(1 − M−(β−1)/2)−2 + M2

M − 1
(
√
2c1)1/α

]
ε−1/α .

(c) For 0 < β < 1, setting

Nl = 
2ε−2c2s
−(1−β)/2
L (1 − M−(1−β)/2)−1s(β+1)/2

l �,
then we have

V[Y] =
L∑
l=0

V[Yl] ≤
L∑
l=0

c2N−1
l sβl

≤ 1
2
ε2s(1−β)/2

L (1 − M−(1−β)/2)

L∑
l=0

s−(1−β)/2
l .

Because
L∑
l=0

s−(1−β)/2
l = s−(1−β)/2

L

L∑
l=0

(M−(1−β)/2)l

< s−(1−β)/2
L (1 − M−(1−β)/2)−1, (A4)

we obtain the upper bound on the variance of the estimator to be 1
2 ε

2.
Finally, using the upper bound of Nl, the computational complexity is

C ≤ c3
L∑
l=0

Nls−1
l

≤ c3
L∑
l=0

(2ε−2c2s
−(1−β)/2
L (1 − M−(1−β)/2)−1s(β+1)/2

l + 1)s−1
l

= c3[2ε−2c2s
−(1−β)/2
L (1 − M−(1−β)/2)−1

L∑
l=0

s−(1−β)/2
l +

L∑
l=0

s−1
l ]

≤ c3[2ε−2c2s
−(1−β)
L (1 − M−(1−β)/2)−2 +

L∑
l=0

s−1
l ],
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where (A4) is used in the last inequality.
Moreover, because of the inequality (1/

√
2)M−αε < c1sαL , we have

s−(1−β)
L < (

√
2c1)(1−β)/αM1−βε−(1−β)/α ,

then

C ≤ c3[2ε−2c2s
−(1−β)
L (1 − M−(1−β)/2)−2 +

L∑
l=0

s−1
l ]

≤ c3[2ε−2c2(
√
2c1)(1−β)/αM1−βε−(1−β)/α(1 − M−(1−β)/2)−2 +

L∑
l=0

s−1
l ]

≤ c3[2ε−2c2(
√
2c1)(1−β)/αM1−βε−(1−β)/α(1 − M−(1−β)/2)−2 + M2

M − 1
(
√
2c1)1/αε−1/α]

= c3[2c2(
√
2c1)(1−β)/αM1−β(1 − M−(1−β)/2)−2ε−2−(1−β)/α + M2

M − 1
(
√
2c1)1/αε−1/α].

If β ≤ 2α, then ε−2−(1−β)/α > ε−1/α , so we have

C ≤ c3[2c2(
√
2c1)(1−β)/αM1−β(1 − M−(1−β)/2)−2 + M2

M − 1
(
√
2c1)1/α]ε−2−(1−β)/α .

If β > 2α, then ε−2−(1−β)/α < ε−1/α , so we have

C ≤ c3
[
2c2(

√
2c1)(1−β)/αM1−β(1 − M−(1−β)/2)−2 + M2

M − 1
(
√
2c1)1/α

]
ε−1/α . �
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