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Solvability of a non-linear Cauchy problem for an elliptic equation

Fredrik Berntssona, Vladimir Kozlova and Dennis Wokiyib
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ABSTRACT
We study a non-linear operator equation originating from a Cauchy prob-
lem for an elliptic equation. The problem appears in applications where
surface measurements are used to calculate the temperature below the
earth surface. The Cauchy problem is ill-posed and small perturbations to
the used data can result in large changes in the solution. Since the prob-
lem is non-linear certain assumptions on the coefficients are needed. We
reformulate the problem as an non-linear operator equation and show that
under suitable assumptions the operator is well-defined. The proof is based
on making a change of variables and removing the non-linearity from the
leading term of the equation. As a part of the proof we obtain an iterative
procedure that is convergent and can be used for evaluating the operator.
Numerical results show that the proposed procedure converges faster than
a simple fixed point iteration for the equation in the the original variables.
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1. Introduction

In many cases inverse problems can be formulated as operator equations, where the operator is
evaluated by solving a boundary value problem with certain data prescribed on the boundary. Exam-
ples include the Cauchy problem for the Laplace equation [3,13,17], the Cauchy problem for the
Helmholtz equation [4,9,19,20], corrosion detection [1,15], inverse scattering problems [10,23] and
in electrical impedance tomography [11,12]. See also [22] and 6 where genetic algorithms were used
for solving ill-posed Cauchy problems.

In our previous work we studied the inverse geothermal problem [5], where measurements at the
surface level, are used to estimate the stationary temperature profile below the earths surface, see also
[7], by solving a Cauchy problem for the heat equation.

Let x = (x1, x2) ∈ R
2 and � ⊂ R

2 be a two dimensional domain whose boundary ∂� consists
of �0,�1,�2 and �3 such that ∂� = �0 ∪ �1 ∪ �2 ∪ �3. The boundaries �0,�1 are assumed to be
Lipschitz continuous curves and �2,�3 are parallel straight lines of equal length and � distance apart,
see Figure 1. The non-linear Cauchy problem under consideration is

−∇ · (k(x,T)∇T)+ b(x,T) = 0 in�
T = φ0 on �0,
�n · k∇T = φ1 on �0,

(1)

where b = b(x,T) > 0 is the heat production term, k = k(x,T) is the thermal conductivity, �n is the
unit normal to the boundary ∂� and T = T(x1, x2) is the sought temperature distribution. In this
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Figure 1. The domain� and its boundary.

work we will always assume that the equation is elliptic, i.e. there exists constants k0 and k1 such that

0 < k0 ≤ k(x,T) ≤ k1 < ∞, for x ∈ �, T ∈ R. (2)

In order to simplify the analysis of the Cauchy problem (1) we assume that the solution is periodic
in x1 with period �, and that the boundary curves �1 and �0 can be extended as periodic functions
for x1 ∈ R. There are two ways to think about periodic solutions for an equation. The first option
is that points (x1, x2) on the boundaries �2 and �3 are considered interior points, where the differ-
ential equation is valid. The second option is to use the periodicity assumption to supply boundary
conditions to the curves �2 and �3. In particular, we require that

T(x1, x2) = T(x1 + �, x2). (3)

The second option represents a weaker assumption and is sufficient for our study. Thus, we introduce
a space H1

per(�) consisting of all functions in H1(�) that satisfies the periodicity condition (3).
In our previous work [5] we solved the Cauchy problem (1) by reformulating it as an operator

equation. If we require the solution to be a function inH1
per(�) then we we have the following direct

problem:

−∇ · (k(x,T)∇T)+ b(x,T) = 0, in�
T = φ0 on �0,
�n · k∇T = ψ1 on �1,

(4)

with an arbitrary heat flux ψ1 on �1. The Cauchy problem (1) is then replaced by the operator
equation

K(φ0,ψ1) := �n · k∇T|�0 = φ1, (5)

where T is a solution to the direct problem and φ0 is known boundary data.
Our primary interest is in solving the inverse problem, e.g. (1), and in order to prove solvability

for the inverse problem we need to prove existence, and uniqueness for the direct problem (4). Since
the problem is non-linear this is difficult unless the coefficients k(x,T) and b(x,T) satisfy certain
conditions. In [18], uniqueness is proved for a similar equation in the case of a separable conductivity.
See also [14], where uniqueness for a semilinear elliptic equation is investigated, and [2] for additional
uniqueness results. In this work we specifically attempt to find the weakest possible restrictions on
k and b that still allows us to prove that the operator K is well-defined. The main result is that the
operator K, cf. (5), is well-defined if certain bounds for ∇xk(x,T) holds, while the coefficient k(x,T)
may be discontinuous with respect to T. As a part of the proof we develop a convergent iterative
procedure that lets us solve the non-linear problem (4).
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This paper is organized as follows: In Subsection 2.1, we outline the function spaces used. In Sub-
section 2.2, we perform a change of variables and reformulate the problem as Poisson’s equation with
the non-linearity in the right hand side. Thereinwe also give the assumptions on the coefficients k and
b. In Subsection 2.3 we present results on the existence and uniqueness of a solution to the resulting
problem after a change of variables. Also estimates of the solution are given in the appropriate norms.
In Section 3, we show that the operator equation proposed is well-defined and also continuous. We
also discuss solvability of the original problem before the change of variables. In Section 4, we present
numerical experiments related to problem. Finally, in Section 5 we summarize our results and draw
some conclusions.

2. The operator equation and its properties

Our strategy for the theoretical analysis of the operator equation is to apply a change of variables
and investigate the solvability of the resulting simpler problem. In particular, we study whether the
resulting operator is well-defined and also continuous.

2.1. Function spaces

We introduce the function spaces used in this paper. We denote by L2(�) the space of square inte-
grable real-valued functions in�. The Sobolev spaceH1(�) consists of all functions in L2(�) whose
first order derivatives belong to L2(�). The subspace H1

per(�) of H1(�) denotes functions that are
periodic in the x1 direction i.e T(0, x2) = T(�, x2). The norm in this space is

||u||H1
per(�)

=
(∫

�

|u|2 dx +
∫
�

|∇u|2 dx
)1/2

.

We also denote by H1
per(�)

∗ the dual space of H1
per(�).

The space H1
0,per is a subspace of H

1
per that consists of all functions which are zero on the bound-

aries �0 and �1. Let H
1/2
per (�k), for k= 0,1, be the space of traces of functions from H1

per(�) on the
boundaries �0 and �1. This space of functions are of equivalent norm

‖u‖H1/2
per (�j)

=
(∫

�j

|u(x)|2 d�j +
∫
�j

∫
�j

|u(x)− u(y)|2
|x − y|2 d�j d�j

)1/2

for j = 0, 1,

where d�i and d�j are arc length on �j. We denote by H−1/2
per (�j) the dual space of H

1/2
per (�j).

2.2. Assumptions and the change of variables

In this section, we formulate the non-linear Cauchy problem as a non-linear operator equation on
Hilbert spaces. In what follows, we assume that the thermal conductivity k and the heat source b
in (1) satisfy the following assumptions:

(a) The function k is �-periodic in the x1 direction, i.e k(x1, x2,T) = k(x1 + �, x2,T), satisfying (2),
and

|∇xk(x,T)| ≤ A0, ∀x ∈ �,T ∈ R

where A0 is a constant.
(b) The function b is Lipschitz continuous with respect to T, i.e.

|b(x,T1)− b(x,T2)| ≤ B0|T1 − T2|, ∀x ∈ �,T1,T2 ∈ R,

for some constant B0, and b(x, 0) ∈ L2(�).
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To remove the non-linearity from the leading order term in the Equation (1), we use the change
of variables

Q(x) = N(x,T(x)) and N(x,T) =
∫ T

0
k(x, τ) dτ . (6)

Clearly,

Q2(x)− Q1(x) =
∫ T2(x)

T1(x)
k(x, τ) dτ ,

and by (a) we have

k0|T2(x)− T1(x)| ≤ |Q2(x)− Q1(x)| ≤ k1|T2(x)− T1(x)|, (7)

where Ti(x), i = 1, 2 are two different functions that satisfy the eqution (1) andQi = N(x,Ti(x)), i =
1, 2.

The functionN(x,T) is strictly monotonically increasing with respect to T and for a fixed x. Thus,
ifQ(x) is known we can undo the change of variables (6) and compute T(x). If T ∈ H1

per(�),Q is also
in H1

per(�) and satisfies

Qxi = k(x,T)Txi +
∫ T(x)

0
kxi(x, τ) dτ .

Using the change of variables in equation (1), we attain

	Q = ∇ · �g(x,T)+ b(x,T), (8)

where

�g(x,T) =
∫ T(x)

0
∇k(x, τ) dτ (9)

and T is considered as a function of Q. In a similar way, we change variables in the boundary
conditions (1) and obtain

Q = ψ0 on �0
�n · ∇Q = h on �0

(10)

where

ψ0(x) = ∫ φ0(x)
0 k(x, τ) dτ ,

h = �n · ∇Q = φ1 + ∫ φ0
0 ∇k(x, τ) dτ .

(11)

Therefore, Q solves the following Cauchy problem

	Q = ∇ · �g(x,T)+ b(x,T) in�
Q = ψ0 on �0
�n · ∇Q = h on �0.

(12)

The strategy of solving the Cauchy problem (12) is to solve the boundary value problem

	Q = ∇ · �g(x,T)+ b(x,T) in�
Q = ψ0 on �0
�n · ∇Q = η on �1,

(13)

with arbitrary data η on �1 and try to match the resulting solutions to the given Cauchy data on �0
in (11).
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Assuming that ψ0 ∈ H1/2(�0), then by the trace theorem [8], the trace γ (H1(�)) = H1/2(�0),
and we have the existence of a function G ∈ H1(�) such that γ (G) = ψ0. Thus we set Q=w+G,
where w solves the problem

	w = ∇ · �g(x,T)+ b(x,T)−	G in�
w = 0 on �0
�n · ∇w = η − �n · ∇G on �1.

(14)

The corresponding weak formulation of (14) is∫
�

∇w · ∇v dx =
∫
�

�g(x,T) · ∇v dx −
∫
�2

(η − �n · ∇G − �g(x,T))v dx +
∫
�

b(x,T)v dx, (15)

where w ∈ H1(�), v ∈ H1(�) with v= 0 on �0.
We define a new non-linear operator equation mapping heat flux on �1 onto the heat flux on

boundary �0, that is,

L(ψ0, η) := �n · ∇Q|�0 = h, (16)

whereQ is a solution to the problem (13). Note thatψ0 is a known boundary data on�0 and therefore,
the operator L depends only on η to give h.

2.3. Solvability and stability results

In what follows, we need the Poincaré inequality which says that there exists a constant� such that

‖u‖L2(�) ≤ �‖∇u‖L2(�), ∀u ∈ H1
per(�), u = 0 on �0 (17)

where the constant� depends only on the diameter of�.

Lemma 2.1: Assume that

σ = �2(A0 +�B0)2

k20
< 1. (18)

Then for each ψ0 ∈ H1/2(�0) and η ∈ H−1/2(�1), problem (13) has a unique weak solution Q ∈
H1
per(�) and this solution satisfies

‖Q‖H1
per(�)

≤ C
1 − √

σ

(
‖ψ0‖H1/2

per (�0)
+ ‖η‖H−1/2

per (�1)
+ ‖b‖L2(�)

)
, (19)

where the constant C is independent of ψ0, η and b(x, 0).

Proof: We begin by proving the existence of such a solution. Define a sequence of functions {Qj}∞j=0,
where Q0 = 0 and Qj+1 weakly solves the problem

	Qj+1 = ∇ · �g(x,Tj)+ b(x,Tj) in�,
Qj+1 = ψ0 on �0,
�n · ∇Qj+1 = η on �1,

(20)

for j = 0, 1, 2, . . . , where Qj and Tj are connected by (6). Let us prove that the sequence converges to
an element Q ∈ H1

per(�) that solves problem (13). First Q1 satisfies

	Q1 = b(x, 0) in�,
Q1 = ψ0 on �0,
�n · ∇Q1 = η on �1.

(21)

�
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The problem is uniquely solvable and the solution Q1 can be estimated by

‖Q1‖H1
per(�)

≤ C(‖ψ0‖H1/2
per (�0)

+ ‖η‖H−1/2
per (�1)

+ ‖b(x, 0)‖L2(�)). (22)

Next let vj+1 = Qj+1 − Qj, taking the difference in (20) we get

	vj+1 = ∇· (�g(x,Tj)− �g(x,Tj−1))+ b(x,Tj)− b(x,Tj−1) on�,
vj+1 = 0 on �0,
�n · ∇vj+1 = 0 on �1.

(23)

Multiplying both sides by vj+1 and integrating by parts, we obtain∫
|∇vj+1|2 dx =

∫
(�g(x,Tj)− �g(x,Tj−1))∇vj+1 − (b(x,Tj)− b(x,Tj−1))vj+1 dx. (24)

Since

�g(x,Tj)− �g(x,Tj−1) =
∫ Tj

Tj−1

∇xk(x, τ) dτ ,

then by the assumption (a) and (7), we have

|�g(x,Tj)− �g(x,Tj−1)| ≤ A0|Tj − Tj−1| ≤ A0

k0
|Qj − Qj−1|, (25)

and similarly by the assumption (b) and (7), we get

|b(x,Tj)− b(x,Tj−1)| ≤ B0|Tj − Tj−1| ≤ B0
k0

|Qj − Qj−1|. (26)

Using (25) and (26) in (24), we arrive at the relation∫
|∇vj+1|2 dx ≤ A0

k0

∫
|vj||∇vj+1| dx + B0

k0

∫
|vj+1||vj| dx. (27)

Using the Cauchy inequality, we get∫
�

|∇vj+1|2 dx ≤ εA0

k0

∫
�

|∇vj+1|2 dx + ρB0
k0

∫
�

|vj+1|2 dx + A0 + B0
4εk0 + 4ρk0

∫
�

|vj|2 dx.

Next we use Poincaré’s inequality (17) to obtain∫
�

|∇vj+1|2 dx ≤
(
εA0

k0
+ ρ�2B0

k0

)∫
�

|∇vj+1|2 dx +
(
�2A0

4εk0
+ �2B0

4ρk0

)∫
�

|∇vj|2 dx.

Finally, we obtain ∫
�

|∇vj+1|2 dx ≤ γ (ε, ρ)
∫
�

|∇vj|2 dx, (28)

where

γ (ε, ρ) =
�2A0
4ε + �2B0

4ρ

k0 − εA0 − ρ�B0
.

The function γ (ε, ρ) attains its minimum value when ρ = ε/� and ε = k0/(2(A0 +�B0)) and this
minimum is given by (18). Therefore,∫

�

|∇vj+1|2 dx ≤ σ

∫
�

|∇vj|2 dx. (29)
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Let us now show that the sequence {Qj}∞j=0 is a Cauchy sequence in H1
per(�). From (29), it is clear to

see that, for all k> j,(∫
�

|∇(Qk − Qj)|2 dx
) 1

2
≤ √

σ
k−1

(∫
�

|∇v1|2 dx
) 1

2
+ · · · + √

σ
j
(∫

�

|∇v1|2 dx
) 1

2
,

= √
σ
j
(1 + √

σ + √
σ
2 + · · · + √

σ
k−j−1

)

(∫
�

|∇v1|2 dx
) 1

2
,

which implies (∫
�

|∇(Qk − Qj)|2 dx
) 1

2
≤

√
σ
j

1 − √
σ

(∫
�

|∇Q1|2 dx
) 1

2
. (30)

Thus, it follows that {Qj}∞j=0 is a Cauchy sequence with a limit Q in H1(�). Taking the limit k → ∞
and j= 0 in (30), we obtain(∫

�

|∇Q|2 dx
) 1

2
≤ 1

1 − √
σ

(∫
�

|∇Q1|2 dx
) 1

2
. (31)

Using the estimate (22) for Q1 in (31), we obtain the estimate (19) for the solution to problem (13).
To prove uniqueness of the solution Q, let us suppose that Q1 and Q2 be two solutions to the

problem (13). The function v = Q2 − Q1 satisfies

	v = ∇ · [�g(x,T2)− �g(x,T1)] + [b(x,T2)− b(x,T1)] in�,
v = 0 on �0,
�n · v = 0 on �1.

(32)

Multiplying both sides of the equation (32) by v and integrating by parts results in∫
�

|∇v|2 dx =
∫
�

[�g(x,T2)− �g(x,T1)] · ∇v dx +
∫
�

v[b(x,T2)− b(x,T1)] dx. (33)

But

|�g(x,T2)− �g(x,T1)| = |
∫ T2

T1
∇xk(x, τ) dτ | ≤ A0|T2 − T1| ≤ A0

k0
|Q2 − Q1|, (34)

where we used assumption (a) and (7). Similarly, by assumption (b) and (7) we obtain

|b(x,T2)− b(x,T − 1)| ≤ B0|T2 − T − 1| ≤ B0
k0

|Q2 − Q1|. (35)

Using (34) and (35) in (33) gives∫
�

|∇v|2 dx ≤
∫
�

(
A0

k0
|v||∇v| + B0

k0
|v|2

)
dx, (36)

and by using the Cauchy inequality we obtain∫
�

|∇v|2 dx ≤ A0ε

k0

∫
�

|∇v|2 dx + A0

4εk0

∫
�

|v|2 dx + B0
k0

∫
�

|v|2 dx. (37)

Finally, by using the Poincaré inequality we obtain∫
�

|∇v|2 dx ≤
(
A0ε

k0
+�2

(
A0

4εk0
+ B0

k0

))∫
�

|∇v|2 dx. (38)
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The value ε = �/2 minimizes the expression A0ε
k0 +�2( A0

4εk0 + B0
k0 ) and the minimum is given by

�
k0 (A0 +�B0). Hence ∫

�

|∇v|2 dx ≤ √
σ

∫
�

|∇v|2 dx. (39)

Since σ < 1 then, also
√
σ < 1 and therefore v is a constant. Due to the homogeneous Dirichlet

condition on �0 we find that v= 0 which proves uniqueness.
In the next lemma, we present a somewhat different approach that gives better estimates of the

solution to (13) provided b(x,T) is monotonic increasing in T.

Lemma 2.2: Assume that

b(x,T2) ≥ b(x,T1) if T2 ≥ T1 and σ̂ = �2A2
0

k20
< 1. (40)

Then, for each ψ0 ∈ H1/2(�0) and η ∈ H−1/2(�1), (13) has a unique weak solution Q ∈ H1
per(�) and

this solution satisfies

‖Q‖H1
per(�)

≤ C
1 − √

σ̂

(
‖ψ0‖H1/2

per (�0)
+ ‖η‖H−1/2

per (�1)
+ (‖b‖L2(�)

)
, (41)

where C is independent of ψ0, η and b(x, 0).

Proof: In this case we consider a sequence different from the sequence constructed in Lemma 2.1.
We put Q0 = 0 and Qj+1 solves the problem

	Qj+1 = ∇ · �g(x,Tj)+ b(x,Tj+1) in�,
Qj+1 = ψ0 on �0,
∂x2Qj+1 = η on �1,

(42)

for j = 0, 1, ..First, we note that Q1 solves

−	Q1 + b(x,T1) = 0 in�,
Q1 = ψ0 on �0,
∂x2Q1 = η on �1.

(43)

�

This problem is uniquely solvable and the solution Q1 is estimated by

‖Q1‖H1
per

≤ C(‖ψ0‖H1/2
per (�0)

+ ‖η‖H−1/2
per (�1)

+ ‖b‖L2(�)) (44)

Next let vj+1 = Qj+1 − Qj, taking the difference in (42), we get

	vj+1 = ∇ · (�g(x,Tj)− �g(x,Tj−1))+ b(x,Tj+1)− b(x,Tj) in�,
vj+1 = 0 on �0,
∂x2vj+1 = 0 on �1.

(45)

Multiplying both sides by vj+1 and integrating by parts, we obtain∫
�

|∇vj+1|2 dx =
∫
�

(�g(x,Tj)− �g(x,Tj−1))∇vj+1 − (b(x,Tj+1)− b(x,Tj))vj+1 dx. (46)
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By the monotonicity of b(x,T), we have∫
�

|∇vj+1|2 dx ≤
∫
�

(�g(x,Tj)− �g(x,Tj−1))∇vj+1 dx (47)

Using estimate (25), we transform (47) to∫
�

|∇vj+1|2 dx ≤ A0

k0

∫
�

|vj||∇vj+1| dx (48)

Next we use Cauchy and Poincaré inequalities to show that∫
�

|∇vj+1|2 dx ≤ σ̂

∫
�

|∇vj|2 dx. (49)

Following the same procedure as in the proof of Lemma 2.1 and using the estimate (44), we obtain
the estimate in (41).

Lemma 2.3: Let (18) be valid. If Qk ∈ H1
per(�) is a solution to the problem (13) with ψ0k ∈ H1/2

per (�0)

and ηk ∈ H−1/2
per (�1), where k= 1,2. Then

‖Q2 − Q1‖2H1
per(�)

≤ C
(

‖ψ02 − ψ01‖2H1/2
per (�0)

+ ‖η2 − η1‖2H−1/2
per (�1)

)
, (50)

where C is a positive constant.

Proof: The function v = Q2 − Q1 solves

	v = ∇ · [�g(x,T2)− �g(x,T1)] + [b(x,T2)− b(x,T1)] in�
v = ψ01 − ψ02 on �0
∂x2v = η1 − η2 on �1.

(51)

The solution v can be split into v1 + v2 + v3 where v1 solves

	v1 = ∇ · [�g(x,T2)− �g(x,T1)] + [b(x,T2)− b(x,T1)] in �
v1 = 0 on �0
∂x2v1 = 0 on �1,

(52)

and v2 and v3 satisfies

	v2 = 0 in �, v2 = ψ01 − ψ02 on �0, ∂x2v2 = 0 on �1, (53)

and

	v3 = 0 in�, v3 = 0 on �0, ∂x2v3 = η2 − η1 on �1, (54)

respectively. To find the estimate for v1, multiply both sides of (52) by v1 and integrate by parts to get∫
�

|∇v1|2 dx =
∫
�

[�g(x,T2)− �g(x,T1)]∇v1 − [b(x,T2)− b(x,T1)]v1 dx. (55)

�
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Using (25) and (26) in (55) we obtain∫
�

|∇v1|2 dx ≤
∫
�

A0

k0
|v||∇v1| dx + B0

k0
|v||v1| dx

≤ A0

k0

∫
�

(|v1| + |v2| + |v3|)|∇v1| + B0
k0
(|v1| + |v2| + |v3|)|v1| dx. (56)

Next we use Poincaré’s inequality (17) and obtain∫
�

|∇v1|2 ≤ (�A0 +�2B0)
k0

(∫
�

|∇v1|2 dx +
∫
�

|∇v1||∇v2| dx +
∫
�

|∇v1||∇v3| dx
)
.

We next use Cauchy inequality to obtain∫
�

|∇v1|2 dx ≤ C
(
1
ε

∫
�

|∇v2|2 dx + 1
ρ

∫
�

|∇v3|2 dx
)
,

where

C = �A0 +�2B0
4(k0 − (A0�+ B0�2)[1 + ε + ρ])

.

Using ρ = ε
�
as in the proof of existence of a solution, we arrive at the estimate

‖v1‖2H1
per(�)

≤ C(‖v2‖2H1
per(�)

+�‖v3‖2H1
per(�)

), (57)

where

C = �A0 +�2B0
4ε(k0 − (�A0 +�2B0)(1 + ε(1 + 1

�
))
.

The functions v2 and v3 are estimated by

‖v2‖H1
per(�)

≤ C1‖ψ02 − ψ01‖H1/2
per (�0)

and ‖v3‖H1
per(�)

≤ C2‖η2 − η1‖H−1/2
per (�1)

,

for some positive constants C1,C2 [8]. Combining the estimates for v1, v2 and v3 we obtain the
estimate (50).

Remark 2.4: Assume that (40) is valid. Then if Qk ∈ H1
per(�) is a solution to the problem (13)

satisfying ψ0k ∈ H1/2
per (�0) and ηk ∈ H−1/2

per (�1) for k= 1,2, we obtain the estimate

‖Q2 − Q1‖2H1
per(�)

≤ C
(

‖ψ02 − ψ01‖2H1/2
per (�0)

+ ‖η2 − η1‖2H−1/2
per (�1)

)
, (58)

where C is a constant depending on only the geometry of the domain, k0,A0 and ε > 0. The proof of
this remark follows the same procedure as in the proof of Lemma 2.3 taking into consideration the
assumed monotonicity of b.

3. Definition and properties of the operator L

In this section, we prove boundedness and continuity of the non-linear operator L : L2(�1) →
L2(�0). To do this, we first study the properties of the derivatives of the solutions to (13) in appropriate
function spaces in the following Lemma.
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Lemma 3.1: Let (18) be valid. Let ψ0 ∈ H1
per(�0), η ∈ L2(�1) and let Q ∈ H1

per(�) be a solution to
the problem (13). Then ∂x2Q|�0 is well-defined and belongs to L2(�0) and

‖∂x2Q|�0‖L2(�0) ≤ C(‖ψ0‖H1
per(�0)

+ ‖η‖L2(�1) + ‖b(x, 0)‖L2(�)). (59)

Proof: To prove this theorem, we split the solution of the problem into two partsQ = Q1 + Q2. The
function Q2 solves the problem

	Q2 = f (x) in�,
Q2 = 0 on �0,
∂x2Q2 = η on �1,

(60)

where f (x) = ∇ · �g(x,T)+ b(x,T) and Q1 solves the problem

	Q1 = 0 in�,
Q1 = ψ0 on �0,
∂x2Q1 = 0 on �1.

(61)

The function f (x) in (60) can be estimated by

‖f (x)‖L2(�) ≤ C(‖Q‖H1
per(�)

+ ‖b(x, 0)‖L2(�))

and due to Lemma 2.1,

‖f (x)‖L2(�) ≤ C(‖ψ0‖H1/2
per (�0)

+ ‖η‖H−1/2
per (�1)

+ ‖b(x, 0)‖L2(�)).

From the regularity theory of elliptic problems [8], the solution to (60) belongs toH2(� \ �1ε) in the
outside ε− neighbourhood �1ε of �1 and

‖Q2‖H2
per(�\�1ε ) ≤ C(‖f (x)‖L2(�) + ‖η‖L2(�1)). �

Therefore,

‖∂x2Q2|�0‖L2(�0) ≤ C(‖ψ0‖H1
per(�0)

+ ‖η‖L2(�1) + ‖b(x, 0)‖L2(�)). (62)

By Theorem 1.8.2 in [16], the solution Q1 has a derivative ∂x2Q1 on �0 that can be estimated by

‖∂x2Q1‖L2(�0) ≤ C‖ψ0‖H1
per(�0)

. (63)

Therefore, combining the estimates in (62) and (63), we get the estimate for the derivative of the
solution Q in (59).

Remark 3.2: When (40) is valid, then we obtain similar results as in (59). The constant C in this case
is independent of the constant B0.

Lemma 3.3: Let (18) be valid. Givenψ0k ∈ H1
per(�0) and ηk ∈ L2(�1), let Qk ∈ H1

per(�) be a solution
to the problem (13), where k= 1,2. Then

‖∂x2(Q1 − Q2)‖L2(�0) ≤ C
(
‖ψ02 − ψ01‖H1

per(�0)
+ ‖η1 − η2‖L2(�1)

)
. (64)

where C is a positive constant.



2328 F. BERNTSSON ET AL.

Proof: The function v = Q2 − Q1 solves the problem

	v = p(x) in�
v = ψ01 − ψ02 on �0
∂x2v = η1 − η2 on �1,

(65)

where p(x) = ∇ · [�g(x,T2)− �g(x,T1)] + [b(x,T2)− b(x,T1)]. The solution v can be split into two;
v = v1 + v2. The function v1 solves the problem

	v1 = p(x) in�,
v1 = 0 on �0,
∂x2v1 = η2 − η1 on �1,

(66)

and the function v2 solves the problem

	v2 = 0 in�,
v2 = ψ02 − ψ01 on �0,
∂x2v2 = 0 on �1.

(67)

�

The function p(x) can be estimated by ‖p(x)‖L2(�) ≤ C‖v‖H1
per(�)

and due to Lemma 2.3

‖p(x)‖L2(�) ≤ C(‖ψ02 − ψ01‖H1
per(�0)

+ ‖η2 − η1‖L2(�1)).

Using the same arguments as in the Lemma 3.1, the solution v1 belongs to H2(� \ �1ε) in the ε-
neighbourhood of �1 and therefore,

‖v1‖H2
per(�\�1ε ) ≤ C(‖ψ02 − ψ01‖H1

per(�0)
+ ‖η2 − η1‖L2(�1)). (68)

The derivative ∂x2v1|�0 can then be estimated by

‖∂x2 |�0‖L2(�0) ≤ C(‖ψ02 − ψ01‖H1
per(�0)

+ ‖η2 − η1‖L2(�1)), (69)

and by Theorem 1.8.2 in [16], ∂x2v2 is estimated by

‖∂x2v2|�0‖L2(�0) ≤ C‖ψ02 − ψ01‖H1
per(�0)

. (70)

Thus, combining the estimates in (69) and (70) gives the required estimate for the derivative of the
solution Q in (64).

Remark 3.4: Assuming that (40) holds, letQk ∈ H1
per(�) be a solution to the problem (13) forψ0k ∈

H1
per(�0) and ηk ∈ L2(�1), where k= 1,2. Then through the same procedure and arguments as in

Lemma 3.3 it can be shown that

‖∂x2(Q1 − Q2)‖L2(�0) ≤ C
(
‖ψ02 − ψ01‖H1

per(�0)
+ ‖η1 − η2‖L2(�1)

)
. (71)

where C is a positive constant independent of B0.

From results in the Lemmas 3.1 and 3.3, we see that the derivative ∂x2Q is well-defined and is
Lipschitz continuous on the boundary �0. Therefore using the definition of the operator L, see (16),
and the Lipschitz continuity of ∂x2Q, we state the following result about the properties of the operator
in appropriate function spaces.
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Theorem 3.5: Let (18) be valid. The operator L : L2(�) → L2(�0) is a well-defined Lipschitz continu-
ous map satisfying

‖L(ψ0, η)‖L2(�0) ≤ C(‖ψ0‖H1
per(�0)

+ ‖η‖L2(�1) + ‖b(x, 0)‖L2(�)) (72)

and

‖L(ψ02 , η2)− L(ψ02 , η1)‖L2(�0) ≤ C
(
‖ψ02 − ψ01‖H1

per(�0)
+ ‖η1 − η2‖L2(�1)

)
, (73)

where the constant C is independent of b,ψ0 and η.

The proof of the boundedness and the continuity of the operator L follows from the discussions
in Lemmas 3.1 and 3.3, respectively.

We conclude this section by noting that since the the problem (13) was obtained from the original
problem by a change of variables then we also have the following result:

Corollary 3.6: Provided the assumptions on k and b holds there exists a unique solution to the original
problem (4).

4. Numerical convergence verification

The main topic of discussion in this paper is the solvability of the operator equation (5). However,
since the operator is non-linear calculatingK(φ0,ψ1) for a given set of boundary data (φ0,ψ1) is also
non-trivial.

In our previous work [5], we implemented a simple fixed point iteration as follows: Let T0 ∈
H1
per(�) be a starting guess and iterate by solving

∇(k(x,Tj)∇Tj+1) = b(x,Tj), (74)

with the boundary conditions as specified in (4). The algorithmwas found to converge rapidly for the
specific tests we conducted but the convergence was never formally proved.

The solvability result in this paper was based on first making the change of variables Q =
N(x,T(x)), see (6), and then proving that the iterative procedure

	Qj+1 = ∇ · �g(x,Tj)+ b(x,Tj), Tj = N−1(x,Qj), (75)

with boundary conditions as in (20), does converge to the unique solution. This offers an alterna-
tive method for evaluating the non-linear operator which has some advantages over the previous
algorithm. First there is a proof of convergence and second, the boundary value problems at each
step are simpler to solve.

4.1. Numerical implementation

For the implementation of our iterative algorithmswe need to solve the boundary value problems (74)
and (75). For this purpose we introduce a uniform computational grid, of sizeN × M, on the domain
�. The functions T(x1, x2) and Q(x1, x2) are represented by their values at the grid points, e.g. the
unknowns are Tj and Qj during the iterations are represented by matrices.

In our work, we use second order accurate finite differences to discretize the boundary value prob-
lems. The code for solving (74) is described in detail in [5] and a similar code is used for solving the
Poisson equation (75).
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For our new algorithm, implementing the change of variablesQj = N(x,Tj), and its inverse, repre-
sent an additional challenge.Here, additional assumptions are needed for an efficient implementation.
In our work we assume that

k(x,T) = k1(x)k2(T), (76)

with both k1, k2 > 0.We first compute theminimumand themaximumof the temperature and intro-
duce a set of n equidistant values {Ti},T(1) = minTj andTn = maxTj. The second step is computing
the integrals

qi2 =
∫ T1

0
k2(τ ) dτ , qi+1

2 = qi2 +
∫ Ti+1

Ti
k1(τ ) dτ , i = 1, 2, . . . , n − 1,

using a numerical quadrature rule, and finding the cubic spline q2(T) that interpolates {Ti, qi2}, with
natural endpoint conditions. The change of variables can then be computed pointwise as

Q(x) = k1(x)q2(T). (77)

The procedure is rather efficient and only a small number of integrals n need to be evaluated. In our
experiments we use n= 100. Note that we can calculate the vector valued function �g(x,T), see (9), at
the same time since ∇k(x,T) = (∇k1(x))k2(T).

The inverse T = N−1(x,Q) is computed using a similar algorithm. Now we start by computing
Q̃ = k−1

1 Q on the grid, introduce an equidistant discretization {qi} of the interval [min Q̃, max Q̃],
and find the values {Ti} by solving equations of the type

fi+1(T) = qi+1 − qi −
∫ T

Ti
k2(τ ) dτ = 0, f1(T) = q1 −

∫ T

0
k2(τ ) dτ = 0,

using Newton’s method. The final T values are computed pointwise by evaluating spline interpolating
{qi,Ti} pointwise for the values given by Q̃.

4.2. Numerical examples

In this section we present a few concrete examples and verify that our iterative procedure is con-
vergent. In all cases we consider a problem in the domain � = [0, 400] × [0, 80] km and use the
boundary conditions T = 10 oC, for x on the surface �0, and �n · (kT) = Qm, for x on the lower
boundary �2. The solution and the flux Qm are illustrated in Figure 2.

Example 4.1: In the first test we use the coefficients

k(x,T) = 2.5
1 − 2 · 10−4T

and b(x,T) = 2.0 · 10−6

1 + 1.7 · 10−5T
(78)

and demonstrate the convergence of the iterative procedure. The initial guess is T0 = Q0 = 0. This
is a rather poor starting guess and thus the error is initially very large. The convergence is measured
using the Frobenius norm. In order to test if the convergence rate depends on the grid size we use
both (N,M) = (500, 250) and (N,M) = (300, 150). The results are displayed in Figure 3 and show
that the iterative algorithm using the original variable needs 19 iterations to reach full accuracy; while
the new algorithm only needs 9 iterations. Also, the convergence rate does not depend significantly
on the grid size.
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Figure 2. Wedisplay the heat flux at the lower boundaryQm in the left graph. The exact solution T(x1, x2) for the test problemused
in Example 4.1 is shown to the right.

Figure 3. Example 4.1. The convergence rate for both algorithms measured using the Frobenius norm. To the left we display
‖Tj+1 − Tj‖F for the original algorithm and to the right we display ‖Qj+1 − Qj‖F for our new proposed algorithm. In both cases
the results for N= 500 andM= 250 corresponds to the solid curve and the results for N= 300 andM= 150 are shown as a dashed
curve.

Example 4.2: In our second test we use the grid size (N,M) = (500, 250) and let the coefficient k
depend on the x1 variable. More precisely,

k(x, t) = k1(x)k2(T), k1(x1, x2) = 1 + 1
5
sin
(π
�
x1
)
, k2(T) = 2.5

1 − 2 · 10−4T
, (79)

where � = 400 km is the width of the domain �. The coefficient b(T) is the same as in Example 4.1.
Note that for this case we can calculate the gradient of k1 analytically and thus we can calculate

∇ · �g = 	k1(x)
∫ T

0
k2(τ ) dτ ,

using the same technique as for the change of variables T = N(x,T(x)). The convergence of the
two algorithms is illustrated in Figure 4. For this particular example the new algorithm converges
approximately twice as fast as the original one.

5. Conclusions

In this paper we have demonstrated the unique solvability of the auxiliary problem of the original
problem. Existence and uniqueness of a solution is proved by using an iterative procedure which is
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Figure 4. Example 4.2. The convergence rate for both algorithms measured using the Frobenius norm. To the left we display
‖Tj+1 − Tj‖F for the original algorithm and to the right we display ‖Qj+1 − Qj‖F for our new proposed algorithm. The results are
for the case N= 500 andM= 250.

shown to converge to a unique fixed point. The solution is also bounded within appropriate function
spaces.

In our previous work [5] we used fixed point iteration to solve the steady state heat conduction
problem (4). The fixed point iterations converged rapidly but we did not have a proof of convergence
for general coefficients k(x,T) and b(x,T).

The existence and uniqueness result in this paper was proved by using the change of variables
Q = N(x,T(x)), see (6), that lets us rewrite the problem in the form	Q = ∇ · �g(x,T)+ b(x,T), i.e.
we have Poisson’s equation.We also formulate an iterative procedure for findingQ that can be proved
to converge. The new iterative procedure has several advantages. First convergence can be proved
in advance, also the Poisson equation is simpler to solve and several fast algorithms are available,
see e.g. [21]. Thus, in comparison to the previous algorithm, solving the well-posed boundary value
problem during each iteration step is potentially simpler for the new algorithm. Though we also need
to implement the change of variables Q = N(x,T(x)) and its inverse. This can be done efficiently if
the coefficients k and b have sufficiently simple analytic expressions. Finally, our experiments indicate
that the new algorithm converges roughly twice as fast as the previous one. For the new algorithm
the convergence speed is determined by the constant σ , see Lemma 2.1. For the original iterative
algorithm, i.e. the scheme (74) in the original variables, we do not yet have a convergence proof.
Thus we cannot make any precise comparison between the two methods with regards to the speed of
convergence. This is something we hope to do in the future.

Our original interest was solving a Cauchy problem for the non-linear steady state heat conduc-
tion problem. By using the above change of variables we instead obtain a Cauchy problem for the
simpler Poisson equation. In our future work we will investigate efficient iterative implementations
of Tikhonov’s regularization and where the sub problems are solved using fast Poisson solvers.
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