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ABSTRACT
In this paper,we consider theCOSmethod for pricing European andBermu-
dan options under the stochastic alpha beta rho (SABR) model. In the COS
pricing method, we make use of the characteristic function of the dis-
crete forward process. We observe second-order convergence by using a
second-order Taylor scheme in the discretization, or by using Richardson
extrapolation in combination with a Euler–Maruyama discretization on the
forward process. We also consider backward stochastic differential equa-
tions under the SABR model, using the discretized forward process and
Fourier-cosine expansion for the occurring expectations. For this purpose,
we extend the so-called BCOS method from one to two dimensions.
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1. Introduction

Efficient valuation of financial options is an important issue in financial mathematics. In the last few
decades, many pricing methods have been introduced, for example, convenient formulas [3,17,19],
Monte Carlo methods [5,15,20], finite difference methods [10,18,22], quadrature methods [7] and
also Fourier methods [6,12,25,26,28,33]. A variety of option pricing methods is compared in [37],
including several Fourier methods. This type of methods, such as the COS method [12,33], is based
on the characteristic function (ChF) of the underlying process to determine the option value. How-
ever, often no analytic expression for the ChF of the underlying process is available. The authors
in [35] use the ChF of the discrete process to price options and to solve backward stochastic differ-
ential equations (BSDEs). We extend this so-called BCOS method (BSDE COS method) from one
to two dimensions, see also [36], in order to solve BSDEs under the so-called stochastic alpha beta
rho (SABR) SDE system. The BCOS method approximates the solutions of BSDEs by iterating back-
wards in time, so we do not need to simulate the forward process. The theory of BSDEs is described
in detail in the literature [4,11,29,30] and relevant applications in mathematical finance are studied
in for example [23,34,38]. In this paper, we pay attention especially to the valuation of options with
the BCOSmethod. The basis is formed by using the COSmethod under SABR dynamics, and we will
also explain this. As we will observe, the BCOS method may suffer from the curse of dimensionality,
as well as quadrature methods and finite difference methods. Nevertheless, these methods are widely
used for two-dimensional models. Therefore, investigation of the two-dimensional BCOS method is
of value to acquire a wider diversity in methods.

To obtain rapid convergence, we will employ Richardson extrapolation in combination with the
Euler–Maruyama SDE discretization (see also [21]). In particular, we price European and Bermu-
dan options under a two-dimensional model, like the SABR model [17]. Due to the closed-form
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expression of the implied volatility, theHagan formula [17], the SABRmodel is a widely used stochas-
tic local volatility model in the financial world. Many pricing methods for SABR-like models have
been presented in the literature, like [2,9,16,18,27], however, many of those methods are mainly
accurate for valuing European options with short maturities under the SABR model. In [1] a pricing
method is given, which is accurate for options with long maturities, but this method is not applicable
for all parameter sets [1]. When we work on the risk neutral measure, we can simply use the COS
method, for European and Bermudan options. Under the real-world measure, we encounter a BSDE,
where the terminal condition is given by the payoff function.

This paper is organized as follows. In Section 2, we introduce the two-dimensional COS method
for pricing European and Bermudan options. We discuss the two-dimensional BCOS method in
Section 3. Furthermore, we present several numerical experiments in Section 4. Finally, we conclude
in Section 5.

2. The two-dimensional COSmethod

In this section, we explain the two-dimensional COS method for pricing European and Bermudan
options. We assume that the underlying forward stochastic differential equations (FSDEs) can be
written in the following general form:

dX1
t = μ1(X1

t ,X
2
t )dt + σ1(X1

t ,X
2
t )dW

1
t ,

dX2
t = μ2(X1

t ,X
2
t )dt + ρσ2(X1

t ,X
2
t )dW

1
t +

√
1 − ρ2σ2(X1

t ,X
2
t )dW

2
t ,

(1)

where t ≥ 0, X1
0 = x1, X2

0 = x2, the correlation ρ ∈ (−1, 1), andW1
t andW2

t are independent stan-
dard Brownian motions on a filtered probability space F . The functions σ1, σ2,μ1,μ2 : R2 → R are
assumed to be twice differentiable with respect to x1 and x2. When the corresponding bivariate ChF
cannot easily be derived, it is possible to approximate it by the bivariate ChF of the discretized FSDE
process. For this discretization, we use the Euler–Maruyama scheme and also the 2.0-weak-Taylor
scheme.

We are interested in pricing options under the SABR model [17]. The FSDEs of the SABR model
are of the same form as Formula (1), that is,

dFt = αt(Ft)βdW1
t , F0 = f ,

dαt = ρναtdW1
t +

√
1 − ρ2ναtdW2

t , α0 = α,
(2)

where Ft is the forward, for example, the forward swap rate, andαt denotes the volatility. Furthermore,
W1 andW2 are independent standard Brownian motions under the forward measure, exponent 0 ≤
β ≤ 1, the volatility of the volatility ν ≥ 0 and the initial forward f and volatility α are non-negative.
The authors in [17] proposed a very convenient formula to calculate the Black implied volatility under
the SABR model. This formula, also known as the Hagan formula, may however sometimes lead to
arbitrage possibilities for low strikes, as one can observe by examining the corresponding PDF [36].
The Hagan formula is not accurate for pricing options with long maturities [1,18,36].

As no analytic expression for the bivariate ChF of the SABRmodel is available, it may be difficult to
calculate accurate reference values for our purposes. That is why we also consider the Heston model1
as a referencemodel for convergence purposes. TheChFof theHestonmodel is known,which ensures
the availability of accurate reference prices for European and Bermudan options. The FSDEs can be
written in the form of Formula (1), that is,

dXt = − 1
2Atdt +

√
AtdW1

t , X0 = x,

dAt = ρν
√
AtdW1

t +
√
1 − ρ2ν

√
AtdW2

t , A0 = a,
(3)
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whereXt denotes the log-asset process andAt is the variance. Furthermore,W1 andW2 are indepen-
dent standard Brownian motions, the volatility of the volatility parameter ν and the initial variance
a are both non-negative. FSDEs (3) do not obey the Feller condition, so we have to make sure that
we choose the computational domain, see Appendix 2, such that the variance process can attain any
non-negative value. The Heston model (3) is an affine model, so an analytic formula for its bivariate
ChF is known [36]:

φ(Xt+�t ,At+�t)(u1, u2|Xt ,At)

= exp
(
iu1Xt + 1

ν2

[
ζ tan

(
arctan

[
iu2ν2 + iu1ρν

ζ

]
+ �t

2
ζ

)
− iu1ρν

]
At

)
, (4)

where

ζ =
√

−iu1ν2 + u21(ρ2 − 1)ν2. (5)

In Section 2.1, we give the Taylor schemes and the necessary formulas to price European options
with the COSmethod. Also, we detail the procedure for valuing Bermudan options in this section.We
provide an approach to price multiple European options under the SABR model in one computation
in Section 2.2. We describe the use of Richardson extrapolation in Section 2.3. The computational
complexity of the proposed method is discussed in Section 2.4.

2.1. Pricing options with the COSmethod

Just as in [36], we define a time-grid tm = m�t for m = 0, 1, . . . ,M, with fixed time steps �t =
T/M. We write Xm = Xtm , X

j
m = Xj

tm , j= 1,2. The discrete forward process is denoted by X�m = X�tm
and Xj,�

m = Xj,�
tm . To determine the values of Xj,�

m+1,m = 0, . . . ,M − 1, and givenXm = x = (x1, x2),
we use the Euler–Maruyama and the 2.0-weak-Taylor schemes. We write the discrete schemes for
Formula (1) in general form, as follows:

Xj,�
m+1 = xj + mj(x)�t + s1j (x)�W1

m+1 + s2j (x)�W2
m+1 + κ

1,2
j (x)�W1

m+1�W2
m+1

+ κ1j (x)(�W1
m+1)

2 + κ2j (x)(�W2
m+1)

2 + ψj(x)�m+1, (6)

where�W1
m+1 and�W2

m+1 are uncorrelated andnormally distributedWiener incrementswithmean
zero and variance �t, and �m+1 is an independent random variable with probability P(�m+1 =
±�t) = 1

2 .
For the Euler–Maruyama scheme,2 we have

m1(x) = μ1(x), s11(x) = σ1(x), s21(x) = 0, κ
1,2
1 (x) = 0,

κ11 (x) = 0, κ21 (x) = 0, ψ1(x) = 0,

m2(x) = μ2(x), s12(x) = ρσ2(x), s22(x) =
√
1 − ρ2σ2(x), κ

1,2
2 (x) = 0,

κ12 (x) = 0, κ22 (x) = 0, ψ2(x) = 0.

(7)

The functions associated with the 2.0-weak-Taylor scheme are given in Appendix 1.
According to [24], the definitions of the order of strong convergence and the order of weak

convergence are:

Definition 2.1: The discrete processX� converges in the strong sense with order γ1 ∈ (0,∞] if there
exists a finite constant C and a positive constant δ such that

E[|XM − X�M|] ≤ C(�t)γ1 , (8)

for any time discretization with maximum step size�t ∈ (0, δ).
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Definition 2.2: Discrete process X� converges in the weak sense with order γ2 ∈ (0,∞] if for any
polynomial h there exists a finite constant C and a positive constant δ such that

|E[h(XM)] − E[h(X�M)]| ≤ C(�t)γ2 , (9)

for any time discretization with maximum step size�t ∈ (0, δ).
For the Euler scheme, the order of strong convergence is γ1 = 0.5 and the order of weak con-

vergence is γ2 = 1, while for the 2.0-weak-Taylor scheme γ2 = 1 and γ1 ≥ 0.5. The strong order
of convergence of the 2.0-weak-Taylor scheme equals 1 when Equation (1) satisfies the following
commutativity conditions [24]:√

1 − ρ2σ2(x)
∂σ1(x)
∂x2

= 0 and
√
1 − ρ2σ1(x)

∂σ2(x)
∂x1

= 0 ∀x1, x2 ∈ R2. (10)

As observed in [36], the convergence of the COS method for pricing European options only
depends on the order of weak convergence of the discretization scheme, and not on its order of strong
convergence, because European options are not path-dependent. In Example 4.2 we observe that even
for Bermudan options the order of weak convergence is leading for the rate of convergence. That is
why we can use a weak-Taylor scheme for the discretization. Also, this implies that for application
of the COS method it does not matter whether the FSDEs in Equation (1) satisfy the commutativity
condition (10) or not.

Theorem 2.1: The analytic expression for the bivariate ChF of X�m+1, as in Equation (6), is given by

φX�m+1
(u1, u2 | x)

= cosh(ic6�t) exp(iu1[x1 + m1(x)�t] + iu2[x2 + m2(x)�t])√
(1 − 2ic4�t)(1 − 2ic5�t)+ c23(�t)2

· exp
(

−�t
2

c21 + c22 + [4(c22c
2
4 + c21c

2
5)− 4c1c2c3(c4 + c5)+ (c21 + c22)c

2
3](�t)2

1 + (2c23 + 4c24 + 4c25)(�t)2 + (c23 − 4c4c5)2(�t)4

)

· exp
(
i(�t)2

(−c21c4 − c22c5 − c1c2c3 + (c23 − 4c4c5)(c21c5 − c1c2c3 + c22c4)(�t)2

1 + (2c23 + 4c24 + 4c25)(�t)2 + (c23 − 4c4c5)2(�t)4

))
, (11)

where X�m = x = (x1, x2) and

c1 = u1s11(x)+ u2s12(x), c4 = u1κ11 (x)+ u2κ12 (x),

c2 = u1s21(x)+ u2s22(x), c5 = u1κ21 (x)+ u2κ22 (x),

c3 = u1κ1,21 (x)+ u2κ1,22 (x), c6 = u1ψ1(x)+ u2ψ2(x).

(12)

Proof: The ChF of X�m+1, given X�m = x based on Equation (6), is given by

φX�m+1
(u1, u2|x) = E[exp(iu1X1,�

m+1 + iu2X2,�
m+1)|X�m = x]

= exp(iu1[x1 + m1(x)�t] + iu2[x2 + m2(x)�t])

· E[exp(i(c1v + c2w + c3vw + c4v2 + c5w2))]E[exp(ic6�)]

= cosh(ic6�t) exp(iu1[x1 + m1(x)�t] + iu2[x2 + m2(x)�t])

· E[exp(i(c1v + c2w + c3vw + c4v2 + c5w2))], (13)

where we abbreviated� = �m+1, v = �W1
m+1 and w = �W2

m+1.
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The ChF of the non-central chi-squared distribution with one degree of freedom and non-
centrality parameter λ reads

φχ ′2
1 (λ)

(u) = exp
(

iλu
1 − 2iu

)
1√

1 − 2iu
. (14)

We assume c4 
= 0 and c5 
= 0, which gives

φX�m+1
(u1, u2|x) = cosh(ic6�t) exp(iu1[x1 + m1(x)�t] + iu2[x2 + m2(x)�t])

·
∫

R2
exp

(
i

(
c2w + c5w2 + c4

(
v + c1 + c3w

2c4

)2
− (c1 + c3w)2

4c4

))
exp

(
−v

2 + w2

2�t

)
dvdw

= cosh(ic6�t)√
2π�t

exp(iu1[x1 + m1(x)�t] + iu2[x2 + m2(x)�t])

·
∫ ∞

−∞
exp

(
i
(
c2w + c5w2 − (c1 + c3w)2

4c4

))
exp

(
− w2

2�t

)
φχ ′2

1 ((c1+c3w)2/4c24�t)(c4�t)dw

= cosh (ic6�t) exp (iu1 [x1 + m1(x)�t] + iu2 [x2 + m2(x)�t])√
2π�t(1 − 2ic4�t)

· exp
(

− (
1
2 + ic4)c21(�t)2

1 + 4c24(�t)2
+ μ2

2σ 2

)∫ ∞

−∞
exp

(
− (w − μ)2

2σ 2

)

· exp
(
i
((

c2 − 2c1c3c4(�t)2

1 + 4c24(�t)2

)
w +

(
c5 − c23c4(�t)2

1 + 4c24(�t)2

)
w2
))

dw, (15)

where

σ 2 = �t(1 + 4c24(�t)2)
1 + 4c24(�t)2 + (�t)2c23

and μ = − σ 2c1c3�t
1 + 4c24(�t)2

. (16)

We abbreviate

c7 = c2 − 2c1c3c4(�t)2

1 + 4c24(�t)2
and c8 = c5 − c23c4(�t)2

1 + 4c24(�t)2
. (17)

So, the integral is given by

∫ ∞

−∞
exp(ic7w + ic8w2) exp

(
− (w − μ)2

2σ 2

)
dw = σ

√
2πE[exp(ic7[σW + μ] + ic8[σW + μ]2)],

(18)
whereW ∼ N (0, 1). Rewriting gives us

E[exp(i(c7[σW + μ] + c8[σW + μ]2))]

= exp
(
i
(
c7μ+ c8μ2 − (c7 + 2c8μ)2

4c8

))
E

[
exp

(
ic8σ 2

(
W + c7 + 2c8μ

2c8σ

)2
)]

= exp
(
i
(
c7μ+ c8μ2 − (c7 + 2c8μ)2

4c8

))
φχ ′2

1 (((c7+2c8μ)/2c8σ)2)(c8σ
2)

= exp
(
i
(
c7μ+ c8μ2 − (c7 + 2c8μ)2

4c8

))
exp

(
i(c7 + 2c8μ)2

4c8(1 − 2ic8σ 2)

)
1√

1 − 2iσ 2c8
. (19)
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Substituting result (19) in Equation (15) gives the ChF of X�m+1, given X�m = x, that is,

φX�m+1
(u1, u2|x) = exp(i(u1[x1 + m1(x)�t] + u2[x2 + m2(x)�t] + c7μ+ c8μ2))√

�t(1 − 2ic4�t)(1 − 2iσ 2c8)

· σ cosh(ic6�t) exp
(

− c21�t
2(1 + 4c24(�t)2)

+ μ2

2σ 2 − (c7 + 2c8μ)2σ 2

2(1 + 4c28σ 4)

)

· exp
(
i
(

− c4c21(�t)2

1 + 4c24(�t)2
− (c7 + 2c8μ)2c8σ 4

1 + 4c28σ 4

))
. (20)

This results in ChF (11) when we substitute Equations (16) and (17) into Equation (20) and rewrite
it. In a similar way, we find that Equation (11) is valid for c4 = 0 and/or c5 = 0 as well. �

2.1.1. Pricing European and Bermudan options
We wish to derive the value VC(t0 = 0,X0) of a European call option with as underlying Xt and
exercise date T, where the FSDEs ofXt = (X1

t ,X2
t ) are given by Equation (1). The payoff of the option

at timeT is given byVC(T,XT) = g(X1
T) for some function g. The value of the option at time t is given

by

VC(t,Xt) = e−r(T−t)E[g(X1
T)|Xt], (21)

where r is the risk-free interest rate and the expectation is taken under the risk-free measure Q. We
will denote VC(tm, x) by Vm(x) and the discretized option value by V�m (x). For m = M − 1, . . . , 0,
we find

V�m (x) = exp(−r�t)Em[V�m+1(X
�
m+1)], (22)

where X�m = x.
A European option can only be exercised at the expiration date T, while a Bermudan option can be

exercised at several predetermined dates. There is aminor change of procedure for pricing Bermudan
options. Let n be the number of early-exercise dates and let τj denotes the early-exercise dates for
j= 1,2,...,n, where 0 ≤ τ1 < τ2 < · · · < τn = T. We choose the number of time steps M such that
each of the early-exercise dates corresponds to a point in our time-grid.3 We replace Formula (22) by

V�m (x) =
{
max{g(x1), Ṽ�m (x)} for tm = τj,
Ṽ�m (x) for tm 
= τj,

(23)

where

Ṽ�m (x) = exp(−r�t)Em[V�m+1(X
�
m+1)] (24)

and X�m = x.
In a similar way, we can also price discretely monitored barrier options, see [13,36].
Formula (22), or for a Bermudan option Formula (24), can be recovered recursively, backwards in

time, on a two-dimensional grid by means of the COS method4 [33], that is,

V�m (x) ≈
N−1∑′

k1=0

N−1∑′

k2=0

1
2


{
φX�m+1

(
k1π

b1 − a1
,

k2π
b2 − a2

∣∣∣∣ x
)
exp

(
−ik1π

a1
b1 − a1

− ik2π
a2

b2 − a2

)

+ φX�m+1

(
k1π

b1 − a1
,− k2π

b2 − a2

∣∣∣∣ x
)
exp

(
−ik1π

a1
b1 − a1

+ ik2π
a2

b2 − a2

)}
Vk1,k2 , (25)



450 Z. VAN DER HAVE AND C. W. OOSTERLEE

where
∑′ indicates that the first term in the series summation is weighted by one-half and

Vk1,k2 = 2
b1 − a1

2
b2 − a2

∫ b2

a2

∫ b1

a1
V�m+1(X) cos

(
k1π

X1 − a1
b1 − a1

)
cos

(
k2π

X2 − a2
b2 − a2

)
dX1dX2.

(26)
When the above double integral cannot be computed analytically, we compute the function on

an x-grid by using the two-dimensional discrete Fourier-cosine transform. For each example in this
paper, we evaluate the functionV�m (x) on a regular grid withN2 grid-points on the domain [a1, b1] ×
[a2, b2]. In Appendix 2, we explain how to choose these domain boundaries. We proved first-order
convergence for the Euler scheme and second-order convergence for the 2.0-weak-Taylor scheme in
the error analysis given in [36]. So, we cannot price a European option in only one time step anymore
when we work with the ChF of the discrete process.

2.2. Multiple strikes for the SABRmodel

It is possible to price European options under the SABRmodel for multiple strikes at once, by using a
unique scaling symmetry of the SABRmodel [31]. The forward value of a European call option under
the SABR model with strike value K> 0 and time to maturity T is given by

VC(t0 = 0,K, x) = E[(exp(X1
T)− K)+|x], (27)

where X1
t and X2

t denote, respectively, the log forward log(Ft) and the log volatility log(αt). In For-
mula (27), we added the strikeK to the notationVC(0,K, x), because we use a general strikeK0 in this
analysis and it is important to have a clear distinction between those strike values. The corresponding
FSDEs, written in the form of Formula (1), are given by

dX1
t = − 1

2 exp(2X
2
t + 2(β − 1)X1

t )dt + exp(X2
t + (β − 1)X1

t )dW
1
t , X1

0 = x1 = log(f ),

dX2
t = − 1

2ν
2dt + ρνdW1

t +
√
1 − ρ2νdW2

t , X2
0 = x2 = log(α),

(28)

To observe the scaling symmetry, we use the following transformations:

X̂1
t = log

(
K0

K

)
+ X1

t and X̂2
t = (1 − β) log

(
K0

K

)
+ X2

t , (29)

and for any K0 ∈ R>0, it holds that:

VC(0,K, x) = E[(exp(X1
T)− K)+|x]

= E

[(
K
K0

exp(X̂1
T)− K

)+∣∣∣∣∣ x
]

= K
K0

E[(exp(X̂1
T)− K0)

+|x], (30)

so this is the scaled price of a call option under the transformed dynamics. Also, it is easy to observe
that dX̂1

t = dX1
t and dX̂2

t = dX2
t . This implies that exp(X̂1

t ) and exp(X̂2
t ) form a SABR process, with

the same parameters β , ν and ρ as exp(X1
t ) and exp(X2

t ), but with different initial values. This
observation, together with Equation (30), implies that:

VC(0,K, x) = K
K0

VC
(
0,K0, log

(
K0

K

)
+ x1, (1 − β) log

(
K0

K

)
+ x2

)
. (31)

We are thus able to price European options under the SABR model for multiple strikes in one com-
putation by using Formula (31), that is, we price the corresponding European option for one general
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strike K0 for different initial values. This hardly costs more CPU time, because evaluating V�m (x)
backwards in time on the x-grid is the time-consuming part of the pricing method as we will also
mention in Section 2.4. Such a strike K0 can be, for example, the ATM strike value. For most models
such a transformation does not exist.

2.3. Richardson extrapolation

The use of the 2.0-weak-Taylor SDE scheme in combination with the COSmethod results in second-
order convergence, whereas the Euler scheme results in only first-order convergence [36]. Using this
second-order scheme is however computationally expensive in two dimensions as we will observe in
Example 4.1. The number of terms to be computed grows significantly in the ChF of the 2.0-weak-
Taylor scheme (11). This disadvantage of the 2.0-weak-Taylor scheme led us to the use of Richardson
extrapolation on the results of the Euler scheme, just as the authors in [21] and many others did, to
obtain second-order convergence.

Suppose VC
0 = VC(0,X0) is the exact option value and v̂(M1) and v̂(M2) denote the approxi-

mations by the COS method for the Euler scheme to this value, where the number of time steps is
respectively given by M1 and M2. We choose M1 and M2 such that M1 < M2. The Euler scheme
exhibits first-order convergence. When this convergence is smooth and monotone, we obtain the
following approximations:

v̂(M1) = VC
0 + ε

1
M1

+ O
(

1
M2

1

)
, (32)

v̂(M2) = VC
0 + ε

1
M2

+ O
(

1
M2

2

)
. (33)

Rearranging these equations gives

VC
0 = M2v̂(M2)− M1v̂(M1)

M2 − M1
+ O

(
1

(M2)2

)
. (34)

Formula (34) implies that combining the Euler results for M1 and M2 results in a second-order
method if and only if the convergence is smooth and monotone5. In this paper, we will always use
2M1 = M2.

Remark 2.1: Theoretically, we can apply Richardson extrapolation on the Euler or 2.0-weak-Taylor
results to achieve a rate of convergence of three or more. In practice, we have to make a trade-off
between the order of convergence and the computational costs of the method. To apply Richardson
extrapolation, the spatial discretization error should be relatively small with respect to the temporal
discretization error. Because of the computational complexity of the method, as we will discuss in
Section 2.4, performing more time steps with second-order convergence to achieve a certain accu-
racy may have lower computational costs than using more grid-points to try to achieve third-order
convergence.

2.4. Computational complexity

In this section, we discuss the computational complexity of our algorithm.As explained in Section 2.1,
we evaluate the function V�m (x) backwards in time on a regular grid with N2 grid-points on the
domain [a1, b1] × [a2, b2], for m = M − 1, . . . , 0. At each time step, we use the two-dimensional
discrete Fourier-cosine transform to approximate the N2 terms in Formula (26), which is of order
O(N2 log(N2)) = O(N2 log(N)). Evaluating the function V�m (x) on one grid-point costs O(N2)
operations, which is higher than for Lévy processes, becausewe do not have the benefits of the decom-
position into a Hankel and Toeplitz matrix [33]. V�m (x) is explicit for each grid-point, so it is possible
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to evaluate this function for each grid-point parallel at a certain time step. Atm= 0, we only have to
evaluateV�0 (x) on the initial value x = X0 which is of orderO(N2). So, the total number of operations
is of the order:

O((M − 1)N4)+ O(N2)+ O(MN2 log(N)). (35)

Despite the fact that we can compute many strike values in one computation, these computational
costs are a disadvantage of the method.

3. The two-dimensional BCOSmethod

In Section 2, we considered the COS method for pricing European and Bermudan options under the
SABR model. In this section, we generalize a method to solve BSDEs under the SABR model with
the COSmethod on the basis of the ChF of the discrete scheme, the two-dimensional BCOSmethod.
This method is an extension of the one-dimensional BCOS method [34,35].

In Section 3.1, we introduce the 2D BCOS method and we discuss the computational complexity
of this method in Section 3.2.

3.1. Themethod

Wewish to derive the valueV(t0 = 0,X0)with as underlying asset processXt = (X1
t ,X2

t ) and exercise
date T, where the FSDEs of Xt are given by (1). The payoff of the derivative at time T is given by
V(T,XT) = g(XT) for some function g. We also assume that we are working in a complete market,6
that is, a replicating portfolio can be created and the market is frictionless. We make a self-financing
portfolio Yt consisting of a1t assets of X1

t , a2t assets of X2
t and bonds with risk-free return rate r, such

that YT = g(XT), and:

dYt = r(Yt − a1t X
1
t − a2t X

2
t )dt + a1t dX

1
t + a2t dX

2
t

= [rYt + (μ1(Xt)− rX1
t )a

1
t + (μ2(Xt)− rX2

t )a
2
t ]dt

+ [σ1(Xt)a1t + ρσ2(Xt)a2t ]dW
1
t +

√
1 − ρ2σ2(Xt)a2t dW

2
t , (36)

for 0 ≤ t ≤ T. If we set Z1
t = σ1(Xt)a1t and Z2

t = σ2(Xt)a2t , then (Y ,Z) solves the BSDE:

dYt = −f (t,Xt ,Yt ,Zt)dt + (Z1
t + ρZ2

t )dW
1
t +

√
1 − ρ2Z2

t dW
2
t , (37)

f (t, x, y, z) = − ry − μ1(x)− rx1
σ1(x)

z1 − μ2(x)− rx2
σ2(x)

z2, (38)

whereYT = g(XT).Yt is a self-financing portfolio, so the value of the derivative is given byV(0,X0) =
Y0. The function f : [0,T] × R5 → R is assumed to be uniformly continuous with respect to x1 and
x2 and satisfies a Lipschitz condition in (y, z), with Lipschitz constant Lf and the function g : R2 → R

is assumed to be uniformly continuouswith respect to x1 and x2. Details on conditions of the existence
and uniqueness of solution (Y ,Z) can be found in [29,30].

Just as in Section 2, we define a time-grid ofM+1 time points. We also define �t := (Xt ,Yt ,Zt),
�m = �tm and ��

m = (X�m,Y�m ,Z�m). Integrating Equation (37) gives us:

Y0 = g(XT)+
∫ T

0
f (t,�t)dt −

∫ T

0
(Z1

t + ρZ2
t )dW

1
t −

√
1 − ρ2

∫ T

0
Z2
t dW

2
t . (39)

At time tm, this gives the recursion:

Ym = Ym+1 +
∫ tm+1

tm
f (t,�t) dt −

∫ tm+1

tm
(Z1

t + ρZ2
t ) dW

1
t −

√
1 − ρ2

∫ tm+1

tm
Z2
t dW

2
t . (40)
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We take conditional expectations at both sides of the equation and use numerical integration to
approximate the integral, for some θ1 ∈ [0, 1], we find:

Ym = Em[Ym+1] + Em

[∫ tm+1

tm
f (t,�t) dt

]
(41)

≈ Em[Ym+1] + Em[�tθ1f (tm,�m)+�t(1 − θ1)f (tm+1,�m+1)]

= Em[Ym+1] +�tθ1f (tm,�m)+�t(1 − θ1)Em[f (tm+1,�m+1)]. (42)

Multiplying Equation (40) with�W1
m+1 gives

Ym�W1
m+1 = Ym+1�W1

m+1 +
∫ tm+1

tm
f (t,�t) dt�W1

m+1 −
∫ tm+1

tm
(Z1

t + ρZ2
t ) dW

1
t �W1

m+1

−
√
1 − ρ2

∫ tm+1

tm
Z2
t dW

2
t �W1

m+1. (43)

Again, we take conditional expectations at both sides of the equation and use numerical integration
with θ2 ∈ [0, 1], giving:

0 ≈ Em[Ym+1�W1
m+1] + Em[(�tθ2f (tm,�m)+�t(1 − θ2)f (tm+1,�m+1))�W1

m+1]

− Em[(θ2�W1
m+1(Z

1
m + ρZ2

m)+ (1 − θ2)�W1
m+1(Z

1
m+1 + ρZ2

m+1))�W1
m+1]

−
√
1 − ρ2Em[θ2�W2

m+1(Z
2
m + Z2

m+1)�W1
m+1]

= Em[Ym+1�W1
m+1] +�t(1 − θ2)Em[f (tm+1,�m+1)�W1

m+1]

−�tθ2(Z1
m + ρZ2

m)−�t(1 − θ2)Em[Z1
m+1 + ρZ2

m+1]. (44)

Analogously, we find

0 ≈ Em[Ym+1�W2
m+1] +�t(1 − θ2)Em[f (tm+1,�m+1)�W2

m+1]

−�tθ2
√
1 − ρ2Z2

m −�t(1 − θ2)
√
1 − ρ2Em[Z2

m+1]. (45)

We use one of the approximation schemes of Section 2 in Formulas (42), (44) and (45), which
results, form = M − 1, . . . , 0, in the following formulas:

Y�m (x) = Em[Y�m+1(X
�
m+1)] +�tθ1f (tm,��

m(x))

+�t(1 − θ1)Em[f (tm+1,��
m+1(X

�
m+1))], (46)

Z1,�
m (x) = 1

�tθ2
Em[Y�m+1(X

�
m+1)�W1

m+1] − 1 − θ2

θ2
Em[Z1,�

m+1(X
�
m+1)+ ρZ2,�

m+1(X
�
m+1)]

+ 1 − θ2

θ2
Em[f (tm+1,��

m+1(X
�
m+1))�W1

m+1] − ρZ2,�
m (x), (47)

Z2,�
m (x) = 1

�tθ2
√
1 − ρ2

Em[Y�m+1(X
�
m+1)�W2

m+1] − 1 − θ2

θ2
Em[Z2,�

m+1(X
�
m+1)]

+ 1 − θ2

θ2
√
1 − ρ2

Em[f (tm+1,��
m+1(X

�
m+1))�W2

m+1], (48)

whereX�m = x.Y�m (x) is implicit for θ1 > 0 and can be determined by performing P Picard iterations,
starting with initial guess Em[Y�m+1(X

�
m+1)]. We give the approximations of the conditional expecta-

tions in Formulas (46)–(48) with the COS method in Appendix 3. The value of the derivative can be
approximated by V(0,X0) = Y�0 (X0).
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We expect to obtain first-order convergence for the Euler scheme, independent of the choice for
θ1 and θ2. This means that we can avoid the use of Picard iterations for the Euler scheme by taking
θ1 = 0. Second-order convergence can be achieved when we apply Richardson extrapolation on the
results of the Euler scheme, in the way we explained in Section 2.3. This is not only possible for the Y
-process, but also for both Z-processes. We obtain second-order convergence if and only if the Euler
results are converging smoothly and monotonically and this holds when θ2 = 1 [21]. Also, we expect
to obtain second-order convergence for the 2.0-weak-Taylor scheme, when we choose the second-
order mid-point method as the numerical integration method in Formulas (42), (44) and (45), so
θ1 = θ2 = 1

2 .

3.2. Computational complexity

In this section, we discuss the computational complexity of the BCOS method. This method is more
expensive than the COS method of Section 2. These extra costs are caused by the two additional
processes Z1

t and Z2
t and also by the use of Picard iterations in the implicit formula (46). We evaluate

the functionsY�m (x), Z1,�
m (x) and Z2,�

m (x) backwards in time on a regular grid withN2 grid-points on
the domain [a1, b1] × [a2, b2], form = M − 1, . . . , 0. At each time step, we use the two-dimensional
discrete Fourier-cosine transform to approximate theN2 cosine coefficients of each process. Also, we
do P Picard iterations at each time step. Atm= 0, the costs of these iterations are of orderO(P), and
for m = M − 1, . . . , 1 these costs are of order O(PN2) for each time step. So, the total number of
operations is of the order:

O(3(M − 1)N4)+ O(3N2)+ O(3MN2 log(N))+ O(P((M − 1)N2 + 1)). (49)

4. Numerical examples

In this section, we present some numerical experiments. We price European and Bermudan options
in the examples of Section 4.1 and several BSDE examples are given in Section 4.2.We usedMATLAB
R2015a for the coding and the computations are performed on Intel(R) Core(TM) i5-2400 3.10GHz
processor with 16GB RAM.

4.1. European and Bermudan examples

In the first example, we pricemultiple European call options under the uncorrelated SABRmodel.We
consider the correlated Heston model in the second example, where we value not only call options,
but also a Bermudan put option.

Example 4.1: For the SABR dynamics (28), we consider initial log forward x1 = log(2), initial log
volatility x2 = log(0.35), exponent β = 0.8, volatility of volatility parameter ν = 0.4, correlation
ρ = 0, strikesK = 2.55,2.7,2.85, time to expiration T= 1 and number of grid-points and cosine coef-
ficients in each dimensionN = 27. Figure 1 shows themean of the absolute error in the Black implied
volatility in basis points (BPS) for the Euler scheme (with and without Richardson extrapolation) and
the 2.0-weak-Taylor scheme with the COS method, where we use Formula (31).7 We determined
our reference values by using the method given in [1], which gives for each option a reference Black
implied volatility with an error of orderO(10−1) in BPS, for ρ = 0.

As expected, the 2.0-weak-Taylor scheme shows faster convergence than the Euler scheme, but not
in terms of CPU time as we show in Table 1. This is the main disadvantage of using the 2.0-weak-
Taylor scheme, and the reason why we use Richardson extrapolation on the Euler scheme which also
results in a second-order method. With Richardson extrapolation, we only need two additional time
steps to observe an accuracy of less than 1 BPS, compared to 2.0-weak-Taylor scheme, as is shown in
Figure 1. The use of Richardson extrapolation leads to a significant reduction in CPU time.
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Figure 1. SABR example.

Table 1. Number of time steps and CPU time needed to obtain an absolute error of 1 or 0.5 basis points in the
Black implied volatility for the Euler (with andwithout Richardsonextrapolation) and2.0-weak-Taylor schemes.

M CPU (s) Absolute error in BPS

Euler 28 65.41 < 1
2.0-weak-Taylor 5 143.56 < 1
Richardson 8 24.62 < 1

Euler 56 134.85 < 0.5
2.0-weak-Taylor 7 235.42 < 0.5
Richardson 10 33.94 < 0.5

Example 4.2: In this example, we consider the Hestonmodel with different values for the correlation
ρ. We wish to derive the value of a European call option with initial log-asset price x = log(2), initial
variance a= 0.2, vol–vol ν = 0.3, correlations ρ = −0.8,−0.4, 0, 0.4, 0.8, strike K = 1.9 and time to
expiration T= 0.1. The reference value is obtained by using the COS method, with the ChF of the
continuous process, which is given in Formula (4), and with 214 cosine coefficients. The convergence
of the COS method with the Euler scheme is shown in Figure 2(a) and we observe for all values ρ
first-order convergence.

Also, we apply Richardson extrapolation on these Euler scheme results. The results are given in
Figure 2(b) and we observe second-order convergence for all ρ values, confirming the accuracy of
Richardson extrapolation.

We continue by considering early-exercise dates for this problem. We take correlation ρ = −0.2
and we wish to derive the value of a Bermudan put option under the Heston model with strike price
K = 1.9 and 5 early-exercise dates: T = 0.02, 0.04, 0.06, 0.08, 0.1. The convergence results are given
in Figure 3. We observe, as expected, first-order convergence for the Euler scheme and second-order
convergence with Richardson extrapolation on the Euler results. Pricing Bermudan options under
the Heston model with the COS method is also considered in [14,33], and we used the method given
in this last paper to obtain the reference values. The difference with our method is that we employed
the ChF of the discretized process.

4.2. BSDE examples

In the first experiment, we approximate the value of a geometric basket call option and in the second
example we consider a spread option. We price a European call option under the SABR model in the
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Figure 2. The Heston model with different correlations: (a) the Euler–Maruyama scheme and (b) Richardson extrapolation on the
Euler results.

Figure 3. Heston Bermudan put with 5 early-exercise dates.

last experiment. All forward processes are under the P-measure and we choose θ1 = 0 and θ2 = 1
for the Euler scheme in each example, because for these values we obtain smooth, monotonic conver-
gence for the Euler scheme, which is a necessary condition for applying Richardson extrapolation, see
also [21]. For the 2.0-weak-Taylor scheme, we take θ1 = θ2 = 1

2 , because a second-order numerical
integration method is required to achieve second-order convergence.

Example 4.3: We determine the value of a geometric basket call option, where both assets follow a
geometric Brownian motion (GBM):

dS1t = μ1S1t dt + σ1S1t dW
1
t , S10 = s1,

dS2t = μ2S2t dt + ρσ2S2t dW
1
t +

√
1 − ρ2σ2S2t dW

2
t , S20 = s2,

(50)
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Figure 4. Geometric basket call option with the Euler scheme.

and the payoff function is g(S1T , S
2
T) = max(

√
S1T
√
S2T − K, 0). For the experiment we consider the

following parameter values:

s1 = 0.90, s2 = 1.10, μ1 = 0.1, μ2 = 0.1, σ1 = 0.2, σ2 = 0.3, ρ = 0.25, r = 0.04,

K = 1, T = 0.1.

We evaluate the BSDE for pricing and hedging this basket option, such as in Formula (37), that is,

dYt =
(
rYt + μ1 − r

σ1
Z1
t + μ2 − r

σ2
Z2
t

)
dt + (Z1

t + ρZ2
t )dW

1
t +

√
1 − ρ2Z2

t dW
2
t . (51)

The reference value for this option is given by the Black–Scholes price of a European call option
with initial stock value S0 = √

s1
√
s2 = √

0.9
√
1.1, constant dividend yield q = 1

4 ((σ1)
2 + (σ2)

2 −
2σ 2) = 0.0125, volatility σ =

√
1
4 ((σ1)

2 + (σ2)2 + 2ρσ1σ2) = 0.2 and the same risk-free interest
rate, time of maturity and strike price. This gives the reference values Y0 = 0.023982340, Z1

0 =
0.049514739 and Z2

0 = 0.074272109. We observe first-order convergence of the BCOS method with
the Euler scheme in Figure 4.

Example 4.4: In this example we consider a spread option. The payoff function of such an option
is given by g(S1T , S

2
T) = max(S1T − S2T − K, 0). We assume that the underlying assets both follow a

constant elasticity of variance (CEV) process:

dS1t = μ1S1t dt + α1(S1t )
βdW1

t , S10 = s1,

dS2t = μ2S2t dt + ρα2(S2t )
γ dW1

t +
√
1 − ρ2α2(S2t )

γ dW2
t , S20 = s2,

(52)

For this example, we consider the following parameter values:

s1 = 2.1, s2 = 1.9, μ1 = 0.1, μ2 = 0.1, α1 = 0.2, α2 = 0.3, β = 0.4, γ = 0.6,

ρ = −0.2, r = 0.04, K = 0.2, T = 0.1.
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Figure 5. Spread option with the Euler scheme and CEV FSDEs (52).

The BSDE for pricing and hedging this spread option is given by

dYt =
(
rYt + μ1 − r

α1
(S1t )

1−βZ1
t + μ2 − r

α2
(S2t )

1−γZ2
t

)
dt + (Z1

t + ρZ2
t )dW

1
t +

√
1 − ρ2Z2

t dW
2
t .

(53)
There is no analytic formula available for calculating the reference values. We expect to obtain simi-
lar satisfactory results for this example as for the example with GBMs in Figure 4. Therefore, we use
the BCOS method with very large numbers forM and N to get the reference values Y0 = 0.0710487,
Z1
0 = 0.137419 and Z2

0 = −0.216524. To double-check our results, we used Monte Carlo to obtain,
respectively, the following 95%-confidence intervals for these reference values: [0.0698, 0.0723],
[0.13696, 0.13781] and [−0.21719,−0.21573]. The convergence of the BCOS method is shown in
Figure 5, as expected we obtain first-order convergence with the Euler scheme.

Example 4.5: For the SABR model, we use very large numbers for M and N to get reference value
V0, Z1

0 and Z
2
0, like we did in Example 4.4. In this experiment we have the following SABR FSDEs for

the log-asset price X1
t and the log volatility X2

t under the P-measure:

dX1
t = [μ− 1

2 exp(2X
2
t + 2(β − 1)X1

t )]dt + exp(X2
t + (β − 1)X1

t )dW
1
t , X1

0 = x1,

dX2
t = − 1

2ν
2dt + ρνdW1

t +
√
1 − ρ2νdW2

t , X2
0 = x2,

(54)

Wemake a self-financing portfolio consisting of assets exp(X1
t ), assets depending on X2

t (for example
a volatility swap), and bonds and bonds.8 By using Formula (36), we find

dYt =
(
rYt + μ− r

exp(X2
t + (β − 1)X1

t )
Z1
t

)
dt + (Z1

t + ρZ2
t ) dW

1
t + Z2

t dW
2
t . (55)

For the experiment we take the following parameter values:

x1 = log(2), x2 = log(0.4), μ = 0.2, β = 0.8, ν = 0.4,

ρ = 0.25, r = 0.04, K = 1.9, T = 0.1.

The convergence for Y0, Z1
0 and Z2

0 are shown in Figure 6, where we used the following refer-
ence values for the European call option: Y0 = 0.149767, Z1

0 = 0.489597 and Z2
0 = 0.030305. We
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Figure 6. SABR example.

Table 2. Number of time steps and CPU time needed to obtain a certain accuracy in
option price for the Euler (with andwithout Richardson extrapolation) and 2.0-weak-Taylor
schemes.

M CPU (s) Absolute error Y0

Euler 12 84.95 < 3e − 4
2.0-weak-Taylor 3 203.54 < 3e − 4
Richardson 6 53.89 < 3e − 4

Euler 36 258.43 < 1e − 4
2.0-weak-Taylor 6 504.92 < 1e − 4
Richardson 8 82.09 < 1e − 4

observe first-order convergence for the Euler scheme and second-order convergence when we use
Richardson extrapolation on the Euler results. We also achieve second-order convergence with the
2.0-weak-Taylor scheme, but just as in Example 4.1, the corresponding computational costs are high.
By comparing the CPU times in Tables 1 and 2, we observe that one time step with the BCOSmethod
is around three times more expensive than one time step with the COS method. As explained in
Section 3.2, these extra costs are caused by the two additional processes Z1

t and Z2
t . Moreover, the

2.0-weak-Taylor scheme is also more expensive because of the use of P= 10 Picard iterations per
time step in the implicit Formula (46) and the additional expectations in Formulas (47) and (48)
caused by θ2 = 0.5.

5. Conclusion

In this paper, we considered the COS method for pricing European and Bermudan options and the
BCOS method for solving backwards stochastic differential equations. We made use of the bivariate
ChF of the discretized FSDEs in this technique, where we use the Euler-Maruyama or the 2.0-weak-
Taylor scheme for the discretization. The use of these schemes in combination with the COSmethod
results, respectively, in first-order and second-order convergence. Second-order convergence can also
be observed by using Richardson extrapolation in combination with a Euler–Maruyama discretiza-
tion on the forward process, which provides a significant reduction in computational costs compared
to the 2.0-weak-Taylor scheme.
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Notes

1. We omit the mean reverting term for the Heston variance.
2. From now on, we will refer to this scheme as the Euler scheme.
3. If desired, it is possible to choose�t non-constant.
4. We left out the discount term exp(−r�t) for convenience.
5. For the COS method, we observe smooth, monotonic convergence for the Euler scheme, this behaviour is only

observed when θ2 = 1 for the BCOS method
6. Sometimes additional assumptions are required to complete a market [8,32], such as the tradability of volatility

swaps in Example 4.5.
7. In this paper, we assume a deterministic risk-free interest rate, which implies that the risk-free measure and the

forward measure coincide.
8. Note that we transform X1

t and X2
t , before applying the theory of Section 3.1.
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Appendices

Appendix 1
In this appendix, we give the functions for Formula (6) associated with the 2.0-weak-Taylor scheme.

m1(x) = μ1(x)− 1
2

(
σ1(x)

∂σ1(x)
∂x1

+ ρσ2(x)
∂σ1(x)
∂x2

)

+ 1
2

(
μ1(x)

∂μ1(x)
∂x1

+ μ2(x)
∂μ1(x)
∂x2

+ 1
2
σ 2
1 (x)

∂2μ1(x)
(∂x1)2

+ ρσ1(x)σ2(x)
∂2μ1(x)
∂x1∂x2

+ 1
2
σ 2
2 (x)

∂2μ1(x)
(∂x2)2

)
�t, (A.1a)

s11(x) = σ1(x)+ 1
2

(
σ1(x)

∂μ1(x)
∂x1

+ ρσ2(x)
∂μ1(x)
∂x2

+ μ1(x)
∂σ1(x)
∂x1

+ μ2(x)
∂σ1(x)
∂x2

+ 1
2
σ 2
1 (x)

∂2σ1(x)
(∂x1)2

+ ρσ1(x)σ2(x)
∂2σ1(x)
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2
σ 2
2 (x)

∂2σ1(x)
(∂x2)2

)
�t, (A.1b)

s21(x) =
√
1 − ρ2

2
σ2(x)

∂μ1(x)
∂x2

�t, κ
1,2
1 (x) =

√
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, (A.1c)

κ11 (x) = 1
2
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σ1(x)

∂σ1(x)
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+ ρσ2(x)
∂σ1(x)
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)
, κ21 (x) = 0, (A.1d)

ψ1(x) = −
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2
σ2(x)

∂σ1(x)
∂x2

, (A.1e)
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+ 2ρσ2(x)
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Appendix 2
In this appendix, we provide some information on how to choose the computational domain [a1, b1] × [a2, b2]. The
FSDEs are given by Formula (1), that is,

dX1
t = μ1(Xt)dt + σ1(Xt)dW1

t ,

dX2
t = μ2(Xt)dt + ρσ2(Xt)dW1

t +
√
1 − ρ2σ2(Xt)dW2

t ,
(A.2)

where X1
0 = x1 and X2

0 = x2.
When the first, second and fourth cumulants ofX1

T andX2
T given (x1, x2) are knownwe advise to choose the domain

[a1, b1] × [a2, b2] as presented in [33], so for i= 1,2:

[ai, bi] = [xi + ci,1 − L
√
ci,2 + √

ci,4, xi + ci,1 + L
√
ci,2 + √

ci,4], (A.3)

where L= 10 and ci,j denotes the j-th cumulant of Xi
T given (x1, x2). When the first cumulant is relatively large, we

suggest to use a time-dependent domain, that is,

[ai(t), bi(t)] = [xi + ci,1(t)− L
√
ci,2(t)+

√
ci,4(t), xi + ci,1(t)+ L

√
ci,2(t)+

√
ci,4(t)], (A.4)

where ci,j(t) denotes the j-th cumulant of Xi
t given (x1, x2). This time dependency is important, because otherwise,

for example xi may be outside the interval [ai, bi]. The (B)COS method only needs a minor adaptation regarding the
time-dependent domain: ai and bi have to be replaced by ai(tm) and bi(tm), respectively, in Formulas (25), (26) and in
each formula in Appendix 3.

When the cumulants of X1
T and/or X2

T given (x1, x2) are unknown, we choose the domain as in [36]:

[ai, bi] = [ci,1 − L
√
ci,2, ci,1 + L

√
ci,2], (A.5)

where L= 10, ci,1 = xi + μi(x1, x2)T and ci,2 = σi(x1, x2)T. When desired, this domain can also be time dependent.
The interval [ai, bi] can be adjusted such that it satisfies specific constraints of Xi

t , for example, non-negativity.
We used Equation (A.5) for all experiments for the SABR model, but not for problems in which a drift function is

large compared to the associated volatility, for example,

dXt = αtdt, X0 = x,

dα0 = γαtdWt , σ0 = α,
(A.6)

whereW is a standard Brownian motion and the vol–vol parameter γ ≥ 0.
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If we follow Equation (A.5), we would obtain

[a1(t), b1(t)] = x + αt. (A.7)

This is incorrect, because Xt is not deterministic.
A better domain [a1(t), b1(t)] × [a2(t), b2(t)] in this case would be based on Formula (A.5), as follows:

[a2(t), b2(t)] = [max{0,α − Lγα
√
t},α + Lγα

√
t], (A.8)

so that we find

Xt ≥ x +
∫ t

0
a2(t)dt = a1(t), (A.9)

and

Xt ≤ x +
∫ t

0
b2(t)dt = x + αt + 2

3
Lγαt3/2 = b1(t). (A.10)

Appendix 3
In this appendix, we give approximations of Em[h(tm+1,X�m+1)], Em[h(tm+1,X�m+1)�W1

m+1] and
Em[h(tm+1,X�m+1)�W2

m+1] with the COS method for a general sufficiently smooth function h(t, x). We denote
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Using the two-dimensional COS method, we find
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Also, we have
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and
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where we abbreviated:

d±
1 = k1π

b1 − a1
s11(x)± k2π

b2 − a2
s12(x), d±

4 = k1π
b1 − a1

κ11 (x)± k2π
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κ12 (x),
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κ22 (x),

d±
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κ
1,2
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b2 − a2
κ
1,2
2 (x).

(A.15)

The approximations (A.13) and (A.14) have, besides the error introduced by the COS method, an error of order
O((�t)3) [36].
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