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ABSTRACT 

Personality disorders (PD) and related traits are associated with and predictive of 

medical outcomes. One mechanism whereby this may occur is through the interaction of PD 

traits and distress during treatment of chronic illness, especially in cancer. The majority of head 

and neck cancers (HNC) are caused by alcohol and tobacco, the disordered use of which is 

prevalent in those with PDs. This study examined how PD traits relate to distress for individuals 

during and after treatment of HNC (32.8% in active treatment). A sample of 137 individuals 

(70.8% male; median age 66) with a diagnosis of HNC from a large southeastern cancer center 

completed measures of personality and psychological distress. Results of Bayesian structural 

equation modeling indicated that higher levels of trait negative affectivity related to greater 

psychological distress. Contrary to our hypotheses, Bayesian one-sample tests indicated that 

those with HNC may be much lower, rather than higher, in PD traits compared to a census-

weighted normative community sample. Years since diagnosis (Median: 2.38 years) and 

treatment status were unrelated to PD trait scores, suggesting that recency of a diagnosis and 

active treatment may not explain the PD trait findings. Overall, PD trait scores may be lower in 

HNC samples and some of these traits may be predictive of distress during and after HNC 

treatment. Future research should use prospective longitudinal designs and examine how PD 

traits measured before a cancer diagnosis can affect the course of distress during and after HNC 

treatment. Using PD trait measures to identify those who are at greater risk of distress may 

allow clinics to allocate clinical resources to those individuals to address their distress and 

health behaviors.  
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INTRODUCTION 

Personality disorders are conditions characterized by a temporally stable and 

situationally pervasive pattern of dysfunction in cognitive, affective, interpersonal, and/or 

impulse control domains (American Psychiatric Association, 2013). Population prevalence 

studies spanning seven countries estimate the point prevalence of having at least one 

personality disorder (PD) to range between 4 to 21% (Quirk et al., 2016). These disorders are 

associated with a variety of negative outcomes and comorbid conditions. For example, 

estimates of comorbidity between PDs and other non-PD psychiatric diagnoses range from 41-

84.5% (Lenzenweger et al., 2007). Further, based on an epidemiological study, if an individual 

has one PD, the odds ratio of having a second can be quite high. For example, the odds ratio of 

having both obsessive-compulsive and antisocial PDs is 4.9, whereas the odds ratio of having 

avoidant and dependent PDs is 118.6 (Grant, Stinson, Dawson, Chou, & Ruan, 2005). However, 

while there is some clinical utility in the 10 categorical PD diagnoses currently described in the 

Diagnostic and Statistical Manual for Mental Disorders-5th edition (DSM-5; American 

Psychiatric Association, 2013), meta-analysis indicates that a catch-all “Not Otherwise Specified 

PD” is commonly diagnosed (this was renamed to "unspecified personality disorder" in DSM-5; 

American Psychiatric Association, 2013; Verheul & Widiger, 2004) and that a dimensional model 
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captures variance of the PD categories and provides incremental utility (Bender et al., 2011; 

Miller et al., 2018; Morey et al., 2012).1 

Recent research on the structure of PDs indicates that transdiagnostic general 

personality dysfunction that is expressed through one’s unique constellation of personality 

traits may be a useful way of describing these disorders (Bender et al., 2011). In the DSM-5 

Alternative Model for Personality Disorders, general personality dysfunction (GPD) is parsed 

into dysfunction in self (GPD-S) and interpersonal (GPD-I) domains. Self-pathology (GPD-S) 

refers to aspects of identity or the coherence, stability, and conceptualization of who one is, 

and self-direction or the motivation and ability to set goals and inhibit impulses to realize one’s 

goals (Morey et al., 2011). Interpersonal pathology (i.e., GPD-I) is defined as a lack of desire for 

or inability to establish stable and meaningful interpersonal relationships and the inability to 

empathize (Morey et al., 2011). Within this model, the second component of a PD is trait 

specific features, in which individualistic features of one’s personality are measured by use of a 

pathological personality trait model. The current trait model for the alternative section of the 

DSM-5 (American Psychiatric Association, 2013) includes factors of negative affectivity, 

antagonism, disinhibition, psychoticism, and detachment (Krueger et al., 2012). Genetic and 

psychometric evidence suggests that, by-and-large, this pathological model resembles 

maladaptive variants of the Five-Factor Model (FFM) of Personality (Kendler et al., 2016; 

 

 

1 This idea has been discussed for almost three decades (Widiger, 1993) and surveys of PD experts 
indicate this type of model is strongly preferred over a categorical approach (Morey & Hopwood, 2019).  
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McCrae & Costa, 2013; Suzuki, Samuel, Pahlen, & Krueger, 2015). Negative affectivity maps 

onto high FFM Neuroticism, antagonism onto low FFM Agreeableness, disinhibition onto low 

FFM Conscientiousness, detachment onto low Extraversion, and psychoticism is more equivocal 

but relates to pathological high openness to experience (Chmielewski et al., 2014)2.  

On average, individuals with one or more PDs have an 18 year lower life expectancy 

than those without a PD (Fok et al., 2012). There is a large body of research that indicates 

adverse outcomes for those with PDs including violence (35%), self-harm (51%), suicidality 

(26%), and disorders related to substance use (22.6%), anxiety (52.4%), mood (24.1%), and 

impulse control (23.2%; Harford et al., 2018; Lenzenweger et al., 2007; Newhill et al., 2009; 

Østergaard et al., 2017). While there is less research, the effect that PDs and personality traits 

have on medical illness may help to explain the lower life expectancy of those with PDs. 

Researchers have proposed at least two broad interacting mechanisms by which 

personality may affect or have a causal role in medical illness (Roberts et al., 2007). First, 

personality traits may be a direct causal risk or protective factor as they may relate to individual 

differences in reactions to environmental stressors through physiological processes (Smith & 

Spiro, 2002). For example, in laboratory tests, a higher level of neuroticism related to greater 

 

 

2 Hereafter personality disorders (PD), personality traits, and PD traits are all discussed interchangeably 
because the same underlying universal traits underlie these constructs. This is due to the current organization of 
the literatures where clinical psychology studies tend to examine categorical PDs, with more recent movement 
toward PD traits, whereas medical and general personality literature often defines personality in the context of the 
five-factor model. Our use of PD, personality, PD traits is dependent on how the study defined personality.  
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cortisol response to a naloxone test, suggesting differences in hypothalamic-pituitary-adrenal 

axis functioning (Mangold & Wand, 2006). Similarly, after a social stress task, people with 

Borderline Personality Disorder are shown to have greater increases in diastolic blood pressure, 

a possible mechanism for increased rates of cardiovascular disease in this group (Grove et al., 

2017). Further, higher conscientiousness meta-analytically predicts lower levels of 

inflammatory hormones—even when health behaviors (e.g., smoking) and medical illnesses are 

controlled for, which authors suggest may be due to a healthier dispositional response to stress 

in more conscientious individuals (Chapman et al., 2011; Elliot et al., 2017; Luchetti et al., 

2014). There is even some evidence that even at 6 and 17 months old, temperament (an early 

antecedent to personality) relates to immune and neuroendocrine markers, suggesting these 

relationships may precede lifestyle or health behaviors (O’Connor et al., 2017). 

A second broad mechanism is that personality may relate to specific diseases or 

outcomes through health damaging or promoting behaviors. For example, personality is 

predictive of midlife allostatic load, which is considered to be indicative of the cumulative effect 

of stress on the body across the lifespan (Christensen et al., 2019). Additive effects of health 

behaviors across the lifespan may also predispose individuals with specific traits to have 

medical illnesses associated with those risk factors—a sort of probabilistic funneling effect 

(Smith & Spiro, 2002).3 For example, low agreeableness is meta-analytically related to greater 

 

 

3 This association would be probabilistic and would relate to the strength of association between the 
health behavior and the medical outcome. 
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use of alcohol (Malouff et al., 2007; Munafò et al., 2007) and research suggests that those with 

alcoholic liver disease are lower in agreeableness than those with liver diseases not caused by 

alcohol use (e.g., familial amyloid polyneuropathy; Telles-Correia et al., 2008). This funneling 

effect of personality may also be relevant to one’s response to the medical treatment. For 

example, abstinence from alcohol becomes an important predictor of mortality after a 

diagnosis of alcoholic liver disease (Bruha et al., 2012) and relapse to alcohol after substance 

use treatment is meta-analytically related to less cooperativeness (a trait subsumed under 

agreeableness; Foulds, Newton-Howes, Guy, Boden, & Mulder, 2017). The role of personality in 

adherence to medical regimens appears to be important for other chronic medical illnesses as 

well (e.g., Axelsson et al., 2011).  

Through these two mechanisms, personality traits may increase risk of specific medical 

illnesses and may play a moderating role in the treatment of those illnesses. One such medical 

illness that both personality mechanisms may be important to understand and has had 

relatively little research to date is cancer. In cancer treatment, psychological distress is so 

prevalent that it is considered to be a vital sign (American College of Surgeons, 2016). 

Examining the relationship of personality disorder traits in cancer may be particularly important 

because distress intolerance is central to some PDs (Cavicchioli et al., 2015). In this study, we 

examine how PD traits may relate to distress during treatment of serious medical illness and 

that those with PDs may be overrepresented in certain medical clinics. To do this, we focus on 

head and neck cancer (HNC) which is associated with high levels of psychological distress (51%; 

Buchmann, Conlee, Hunt, Agarwal, & White, 2013) and the cause of which is often associated 
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with long-term health damaging behaviors (e.g., tobacco and alcohol use; Blot et al., 1988; 

Rodriguez et al., 2004). Furthermore, research on cancer and PDs is understudied (especially 

HNC compared to other cancers, such as breast), despite cancer being one of the leading causes 

of death worldwide (Quirk et al., 2016).  

Psychosocial and health correlates of psychosocial distress in cancer treatment 

Cancer is an umbrella term referring to class of diseases involving aberrant cell growth. 

These abnormal cells have the potential to spread past the original diseased site and invade 

healthy organs and cells, a process referred to as metastasizing (National Cancer Institute, 

2015b). Cancer progression is rated by a staging system, the most popular of which is the 

Tumor, Node, Metastasis (TNM) staging system. The TNM staging system includes information 

about the size and invasiveness of the original tumor (T), lymph node (N) involvement, and if it 

has metastasized (M; National Cancer Institute, 2015). Head and neck cancers refer to cancer in 

areas within the oral cavity, pharynx (nasopharynx, oropharynx, hypopharynx), the larynx, 

visceral tissue (e.g., thyroid), paranasal sinuses/naval cavity, and salivary glands (HNC excludes 

brain cancers; U.S. Department of Health and Human Services, 2017). Compared to individuals 

with other types of cancer, treatment for HNC can be more disfiguring, impairing, and more 

visible because of the location of the cancers. 

Psychological distress is variably defined, but generally refers to a negative emotional 

experience often comprised of anxiety and negative mood changes that range from normal 

stress-related response, to an adjustment or an internalizing disorder (Haman, 2008). Distress is 
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relevant across chronic health conditions and is especially important in cancer care as 33-45% 

of patients experience clinically significant distress, at any given time during cancer treatment 

(Bultz & Carlson, 2006; Clark et al., 2011). Individuals with HNCs show even higher levels of 

distress, as research indicates that 35-60% of patients experience distress above established 

clinical cutoffs (based on optimal cut points established with cancer and community samples; 

Batterham et al., 2018; Buchmann et al., 2013; Williams, 2017). With regards to internalizing 

disorders, one study found that the 63-67% of HNC patients with subthreshold depression 

before starting radiation therapy converted to severe depression by the end of treatment (as 

rated by BDI-II; Chen et al., 2009). This finding is particularly concerning, as depression is shown 

meta-analytically to confer a 39% greater mortality risk in cancer patients (Satin et al., 2009).  

Possible contributing factors to HNC distress include physical surgical changes, 

emotional reactions to the diagnosis and prognosis (e.g., anxiety, depression), physical pain, 

reduced social support, as well as other practical, physical, and family concerns (Buchmann et 

al., 2013). While research suggests that the ability to cope with health and surgical 

complications may increase over time, psychosocial problems such as anger, anxiety, 

interpersonal relations, and general life satisfaction appear to worsen from short (0.5-1.5 

years), to medium (1.5-5 years), and long-term (5-21 years) time periods after successful cancer 

treatment (Rapoport et al., 1993). A likely mechanism in this psychosocial trajectory is that, in 

some cancer centers, up to 82% of distressed patients with HNC receive no psychological or 

psychiatric care (Krebber, Jansen, Cuijpers, Leemans, & Verdonck-de Leeuw, 2016). Of those 

who receive treatment, there is no clear evidence regarding whether antidepressants perform 
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better than placebo for cancer patients (Ostuzzi et al., 2018) and research suggests that recent 

adaptations of evidence-based treatments such as Cognitive-Behavioral Therapy (CBT) may not 

meaningfully improve quality of life in the HNC population (Calver et al., 2018; Richardson et al., 

2019)4. In order to successfully adapt current evidence-based treatments, a better 

understanding of pre-cancer attributes, especially personality pathology, may be important.  

Personality pathology as a risk factor for psychological distress in cancer treatment 

Research across various chronic health conditions suggests that pre-illness attributes 

such as neuroticism can predict one’s distress trajectory (Debnar et al., 2020). Across cancer 

literatures, psychosocial factors are predictive of psychological outcome after treatment. For 

example, research in a breast cancer sample suggests that a history of a premorbid PD may be 

prevalent (33%5; N = 141) and predict a negative post-treatment psychiatric outcome and lower 

quality of life—independent of cancer severity and treatment type (Brunault et al., 2016; 

Champagne et al., 2016).  

With regards to personality traits and across multiple types of cancer, higher trait 

neuroticism—a strong predictor of depression generally—consistently relates to increased 

distress during cancer treatment, although a limitation of most of this research is that traits are 

 

 

4 However, these treatments were varied in the goals, definition of CBT, and level of therapist training; 
and many had methodological problems (e.g., no power analysis). 

5 This estimate may be inflated by the self-report measure used and the relatively small sample size. 
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measured post-diagnosis (Den Oudsten et al., 2009; Goldstein & Klein, 2014; Hinnen et al., 

2008; Morgan et al., 2017; Perry et al., 2020; Ranchor et al., 2002; Shimizu et al., 2015; Van Der 

Steeg et al., 2010). However, one prospective study measured neuroticism and distress before 

and after a diagnosis of cancer and found that pre-diagnosis neuroticism predicted distress 

across all three time points in the study (pre-diagnosis, two months, and one year post-

diagnosis; Ranchor et al., 2002). Another notable study examined personality in a 

chemotherapy center which included breast, gastrointestinal, gynecological, and lung cancers 

(Morgan et al., 2017). They used latent class analysis and derived three classes—resilient, 

normative, and distressed. The distressed class was characterized by greater neuroticism and 

lower extraversion, agreeableness, and conscientiousness, whereas the resilient class was 

comparatively low in neuroticism and high in extraversion, agreeableness, and 

conscientiousness (Morgan et al., 2017). Being in the distressed class predicted greater severity 

of state anxiety, trait anxiety, and depression, independent of type of cancer, type or 

combination of treatments, and cancer stage (including if the cancer was metastatic; Morgan et 

al., 2017). Being in the resilient class was indicative of having the lowest and subthreshold 

levels of anxiety and depression. This article suggests promise in examining personality as a 

contributor to distress, but the authors used normal range personality measures and did not 

include HNCs in the sample. Further, while normal range personality measures index mostly the 

same general constructs, they measure the constructs at nonpathological ranges on the latent 

dimensions and therefore may fail to adequately sample maladaptive high or low levels of 

these trait dimensions (for an item reponse theory study examining this phenomenon see: 

Suzuki et al., 2015). 
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In the HNC literature, personality studies use traits that are narrowly defined and, 

generally, are not explicitly related to any well-established personality model such as the FFM. 

For example, one study found that in the HNC population, higher general dispositional 

optimism was associated with lower mortality risk (Allison et al., 2003), which appears to be 

mostly a combination of low neuroticism and high extraversion (Sharpe et al., 2011). Other 

studies use various personality models and some traits that appear to relate to neuroticism also 

relate to a more “depressed coping” style, which they described as “social withdrawal, self-pity 

and a generally depressive way of coping with their disease” (Rana, Gellrich, Czens, Kanatas, & 

Rana, p. 2984, 2014). Most studies use the Eysenck-Personality Inventory (EPI; Parish, Eysenck, 

& Eysenck, 1965) which includes three factors—Neuroticism, Extraversion, and Eysenck’s 

Psychoticism6—and, while neuroticism consistently positively relates to distress (Aarstad et al., 

2002; Beisland et al., 2013), it is unclear to what degree this measure assesses the extreme 

ends of the personality pathology continua. To the authors’ knowledge, only one published 

study has examined all five personality factors in a HNC sample (but used a normal range scale) 

and found that increased openness to experience related to greater general quality of life 

(QoL), but distress was not examined (Kohda et al., 2005)7. Most of these studies assess 

personality post-diagnosis, which is a limitation because an individuals’ self-report of 

 

 

6 From the FFM perspective, psychoticism in Eysenck’s model is a combination of low agreeableness and 
low conscientiousness, and is not the same construct measured in the PID-5 (Costa & McCrae, 1992). 

7 Other research examining QoL uses measures such as the EPI and show neuroticism to relate to worse 
outcomes (for a review see Dunne et al., 2017) 
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personality traits may be colored by their state distress. For example, a sample item measuring 

neuroticism asks participants to rate how well descriptions such as “[I] fear for the worst” 

describe themselves (for the measure from which this item is taken see Maples et al., 2014). In 

the context of a recent diagnosis, this item may be understood in an entirely different way 

(although some authors argue the report is still a valid representation of current functioning; 

e.g., Costa, Bagby, Herbst, & McCrae, 2005). Even if distress distorts one’s personality trait 

scores, it appears that those with HNC may actually have higher levels of neuroticism prior to 

diagnosis. One study compared neuroticism from a sample of HNC patients to a comparison 

group of hospitalized patients. The comparison patients were scheduled for surgery the next 

day to treat a “benign” condition or to evaluate for the presence of HNC (Aarstad et al., p. 893, 

2002). The authors found those with confirmed HNC were significantly higher in neuroticism 

than the comparison group who is also likely to be experiencing distress (Aarstad et al., 2002). 

While there is little research in this area, certain factors in the HNC population suggest 

some overlap between PD traits and HNC. For example, epidemiological research suggests that 

75% of HNC is caused by alcohol and tobacco use (Blot et al., 1988), and 32.1% percent of 

individuals with a PD have a comorbid alcohol use disorder (Lenzenweger et al., 2007). 

Moreover, a meta-analysis found that certain personality traits (e.g., low agreeableness) predict 

increased likelihood of using alcohol or tobacco, regardless if the use meets diagnostic criteria 

as a disorder (Malouff, Thorsteinsson, Rooke, & Schutte, 2007). There is also evidence that 

substance use is a prevalent challenge in this population as 33 - 50% of those with HNC 
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continue to use tobacco and/or alcohol after diagnosis and treatment, and one-fourth of the 

individuals who quit relapse within 12 months (Howren et al., 2013).  

In addition to substance use, other associated psychological sequelae of PDs are evident 

in the HNC population. For example, suicide rates in those with HNC are three times that of the 

general population (Kam et al., 2015) and are the third highest across cancer categories 

(Zaorsky et al., 2019)8. Increased suicide risk is also found in individuals with alcohol use 

problems (OR: 12.18), a personality disorder (OR: 16.52), and both (OR: 45.40; Doyle et al., 

2016). Although far from conclusive, these associated risk factors and outcomes suggest that 

the HNC population may be elevated in certain pathological personality traits prior to diagnosis, 

and that in a subset of these individuals, the cancer may result from common health damaging 

behaviors engaged in by those with PDs. There is also evidence that continued engagement in 

negative health behaviors following HNC diagnosis (e.g., Howren et al., 2013) can result in 

poorer response to cancer treatment and increased rate of recurrence. If this is the case, care 

for those with HNCs may be improved by screening for personality pathology and related 

negative health behaviors, so that empirically supported treatments that are tailored to address 

these comorbid features when present can be used (e.g., Dialectical Behavior Therapy skills 

training; Linehan et al., 2006).  

 

 

8 The authors indicate that the rates of suicide in HNC are decreasing, which may be due to the success of 
HNC treatments for those with HPV-positive cancers. 
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Even if there is not a higher rate of personality pathology in this population, effectively 

treating distress is important because research shows those who are depressed have increased 

risk of mortality (Satin et al., 2009) and the course of distress occurs relatively independent of 

the severity of one’s cancer or type of treatment (Morgan et al., 2017). Understanding which 

pre-diagnosis factors relate to distress and poorer psychiatric outcome can help improve 

treatment of distress for those with HNC. The purpose of this study is to examine the 

personality trait make-up of an HNC sample, as compared to normative data, and how potential 

personality pathology may relate to severity of acute psychological distress during the 

treatment phase for these individuals.  

H1: We expect that the personality traits of negative affectivity, psychoticism, GPD-I, 

and GPD-S will be positively related to acute psychological distress during treatment for HNC. 

We hypothesize these relationships because GPD-S and neuroticism are positively related 

(Widiger et al., 2019) and neuroticism relates to greater distress with other cancer and non-

cancer samples (e.g., Few et al., 2013). While there is no research examining psychoticism and 

distress in cancer treatment, a higher level of psychoticism relates to greater distress in 

community samples (Few et al., 2013), so we expected this to also be the case in this study. 

Finally, we expected interpersonal dysfunction to relate to greater distress because of previous 

reports suggesting that greater perceived social support may relate to less depression (Howren 

et al., 2013). 

H2: We expect that this sample will have higher scale score means for antagonism, 

disinhibition, and negative affectivity, when compared published normative means from a 
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community sample calibrated to be representative of the US population (sample 3 from 

Krueger et al., 2012). We expect this to be the case because the relation of alcohol and tobacco 

use to HNC and the meta-analytic relationship between alcohol/tobacco use and the three 

corresponding normal range FFM personality traits (Malouff et al., 2007). 

H3: We believe that the subset of participants who are categorically above calibrated 

clinical cutoffs (i.e., ≥ 2 for any of the pathological personality factor scores; Samuel et al., 2013) 

will also be higher in GPD-I, GPD-S, substance use, latent distress, and score lower on a measure 

of quality of life, when compared to the rest of the sample. 
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METHODS 

Participants 

 Participants were recruited from a clinic waiting room of a large specialized cancer 

center. The initial recruitment included patients with HNC, lung cancer, new patients being 

evaluated for cancer, individuals who were being followed after cancer treatment (days to 

years out), and a smaller proportion of individuals who were in the clinic for noncancerous 

tumors or other head and neck surgeries. Undergraduate and graduate research assistants 

(RAs) approached patients in the waiting room to ask if they wanted to participate. Due to the 

possibility of a HIPAA breach by asking only those with HNC, the RA was instructed to ask each 

established patient as they check in to the front desk. During consent, the RA indicated that the 

study was intended for individuals with HNC, and did not include any compensation for 

participation (allowing for people to self-select, without discussing health information in the 

waiting room). To be included in the study, an individual needed to report a cancer of the 

larynx, oral cavity, oropharynx, nasal cavity, nasopharynx, paranasal sinuses, visceral tissue 

(e.g., thyroid, salivary glands), skin of the head, or cutaneous areas. A total of 734 individuals 

were approached and 544 (74%) did not participate. The full initial sample of data included 190 

participants, 53 of whom were non-HNC patients and were excluded. This resulted in a final 

sample of 137 individuals who met criteria for the study.  

In the final HNC sample (N = 137), the minority (34.9%) were undergoing active cancer 

treatment, defined as: surgery only (10.8%), multiple treatments (5.69%), follow-up (6.27%), 
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chemotherapy only (4.09%), other (4.09%), radiation (2.04%), immunotherapy (1.02%), pre-

treatment (0.87%). The majority of patients reported they were currently cancer free (64.1%). 

The remaining participants reported that their cancer stage was unchanged since diagnosis 

(23.07%) or had increased (11.11%), while others reported not knowing their status or just that 

it “has improved” (1.70%). The most common stage at diagnosis was reported to be stage four 

(42%), followed by stage 1 (23.9%), stage 2 (18.25%), stage 3 (8.6%), limited stage (5.84%), and 

extensive stage (0.87%). The most common cancer location in the study was nasal cavity 

(21.2%), followed by oral cavity (17.5%), visceral (14.6%), oropharynx (13.1%), other (12.4%), 

multiple types of HNC (8.85%), skin/cutaneous (7.3%), nasopharynx (3.6%), paranasal sinuses 

(0.73%), and larynx (0.73%). Patients reported the median time since most recent cancer 

diagnosis to be 2.47 years (skew: 2.56; kurtosis: 8.82; for additional statistics see Table 1). The 

randomized measure conditions were approximately evenly split (condition A: 26.5%; B: 

13.28%; C: 20.73%; D: 19.70%; E: 19.7%). 

Most participants identified as male (70.8% male; 26.3% female; 2.9% not reported). 

The majority indicated that they were Caucasian (84.3%), followed by Black or African American 

(7.08%). The remaining participants reported Native American/Alaska Native (1.44%), South 

Asian (<1%), and individuals who wrote “Hispanic” in an “other” category (4.72%). Assessed 

separately from race, the majority identified their ethnicity as non-Hispanic/LatinX (87.5%). The 

majority of the sample consisted of older adults (median age = 66; SD = 12.05; range = 26 to 

85.2) and 66.9% of participants indicated that their household annual income was between 

$15,000 and $74,000 (for comparison, census data indicate that the median household income 
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in the area is $49,000; U.S. Census Bureau QuickFacts: Orlando city, Florida, 2019). The second 

largest household income division was < $15,000+ (23.2%) suggesting that a sizeable portion of 

patients had substantially lower household income than the median household in the area. The 

final sample size of 137 used in the analyses exceeds the sample size of 130 indicated by an a 

priori power analysis (see Statistical Methods section below for details).  

Measures 

Personality Inventory for DSM-5—100 item version (PID-5-100) 

The 100-item Personality Inventory for DSM-5 is a shortened version of the full version of the 

PID-5, derived from item response theory analysis (PID-5; Maples et al., 2015). The PID-5-100 

incorporates five broad factors, as well as lower order facets that load onto each factor, as 

follows - negative affectivity: anxiousness, emotional lability, hostility, perseveration, lack of 

restricted affectivity, separation insecurity, and submissiveness; detachment: anhedonia, 

depressivity, intimacy avoidance, suspiciousness, and withdrawal; psychoticism: eccentricity, 

perceptual dysregulation, and unusual beliefs/experiences; antagonism: attention seeking, 

callousness, deceitfulness, grandiosity, and manipulativeness; and disinhibition: distractibility, 

impulsivity, responsibility, lack of rigid perfectionism, and risk-taking. The PID-5-100 

demonstrates Cronbach’s alphas ranging from .87 to .91 for the broad factors and .72 to .95 for 

the facets, across samples (Maples et al., 2015). When comparing the PID-5-100 to the full-

length PID-5, the association with other relevant constructs in its nomological network appears 

to be largely identical (rICC = .995; Maples et al., 2015). The PID-5 presents questions by asking 
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the participant to answer the measure based on how they would describe themselves, without 

an indication of what time period. 

Severity Indices of Personality Problems-Short Form (SIPP-SF) 

The SIPP-SF is a 60-item short version of the 118 item SIPP, both of which index aspects 

of general personality dysfunction including Self-Control (α = .88), Social Concordance (α = .81), 

Identity Integration (α = .87), Relational Functioning (α = .81), and Responsibility (α = .83; Rossi, 

Debast, & van Alphen, 2017). The SIPP-SF asks the participant to describe how they have been 

over the past three months. 

Level of Personality Functioning Scale-BF 2.0 (LPFS-BF) 

The LPFS-BF is a 12-item scale that measures the broad aspects of general personality 

dysfunction including interpersonal and self-dysfunction. The LPFS-BF shows satisfactory 

predictive validity, construct validity, and reliability (i.e., αinterpersonal = 0.80, αself = 0.86; Bach & 

Hutsebaut, 2018). For the LPFS-BF, the participants were asked to describe how they have been 

over the past three months. For the latent variable model, two LPFS-self item parcels were 

created using a random number generator to assign half of the items to each parcel. 

Distress thermometer (DT) 

The distress thermometer is a single-item scale for which a patient rates their level of distress 

from 0 to 10 (Zwahlen et al., 2008) . Despite the brevity of the scale, studies using item 

response theory show established cutoffs of 5 or greater provides a good balance of sensitivity 

(.75) and specificity (.70; Batterham, Sunderland, Slade, Calear, & Carragher, 2018). This 
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measure is included in the study because of its efficiency, and its ubiquity in cancer cancers and 

research (Riba et al., 2019). The DT presents a thermometer with 0 to 10 on it and asks the 

participant to “please circle the number (0–10) that best describes how much distress you have 

been experiencing in the past week including today.” 

Distress questionnaire-5 (DQ5) 

The DQ5 is a five-item measure of distress created as a screener to identify individuals 

who are greater risk for common forms of psychopathology including major depressive 

disorder, generalized anxiety disorder, social anxiety disorder, panic disorder, adult attention 

deficit hyperactivity disorder, PTSD, and OCD (Batterham et al., 2016). A recent population-

based IRT analysis suggested that the DQ-5 performed well as a screener for distress compared 

to other measures of distress (sensitivity: .83, specificity: .80; Batterham et al., 2018). The DQ5 

asks participants “In the last 30 days…” to rate five statements about distress on a 5-point Likert 

scale. 

Patient Health Questionnaire-4 (PHQ-4) 

The PHQ-4 is a four-item screening measure of anxiety and depression. Two of the items 

on the PHQ-4 measure depression and two items measure anxiety. The overall scale shows 

satisfactory internal consistency (α = 0.80; Löwe et al., 2010). The depression items have 

satisfactory sensitivity (.83) and specificity (.90) in detecting major depressive disorder, and the 

anxiety questions have moderate to good sensitivities for generalized anxiety disorder (88%), 

panic disorder (76%), social anxiety disorder (70%), and posttraumatic stress disorder (59%). 
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The specificities for the anxiety questions are also satisfactory (.81 -. 83; Kroenke, Spitzer, 

Williams, & Lowe, 2009). The PHQ-4 asks “in the last 2 weeks, how often have you been 

bothered by the following problems?” Likert scores range from 0 to 3, with zero indicating “Not 

at all.” 

Kessler-10 (K10) 

The K-10 is a 10-item screening measure of general psychiatric distress, which shows 

good psychometric properties (α = .92) and was designed using item response theory to 

adequately measure scores that reach more severe end of the latent distress dimension (i.e., 

90-99th percentile). Sensitivity and specificity metrics are different depending on the population 

to which one is administering the K-10; however, area under the Receiver Operating 

Characteristic curve is approximately 0.88 (Kessler et al., 2002, 2003). The K10 asks about 

distress in the past thirty days. Likert scores range from 1-5, with 1 being “none of the time.” 

Substance Use Brief Screen (SUBS) 

The SUBS is a 3-item screening scale for substance use disorders that includes screening 

questions for tobacco, alcohol, illicit drug, and prescription drug misuse (Mcneely et al., 2016). 

Across substances, it has a sensitivity of .82-1.0 and a specificity .65-.82 (Mcneely et al., 2016). 

The SUBS measure asks about substance use in the last 12 months and defines a “drink” and 

“recreational” use of drugs for participants. Response options are dichotomized with the 

“never” response being negative and “one or two days” or “three or more days” indicating a 

positive score. 
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Head and Neck Cancer Inventory (HNCI) 

The HNCI is a 30-item measure of Health-Related Quality of Life (HRQOL) designed 

specifically for the challenges experienced by the H&NC population. It assesses functional 

ability and attitude towards impairment in areas of speech, eating, aesthetics, and social 

disruption (Funk et al., 2003). The HNCI asks about symptoms in the past four weeks and has a 

Likert scale from “not at all” to “extremely.” 

Demographics and medical variables 

Patients were asked basic demographic questions including age, sex, race, and whether 

they are Hispanic/LatinX. Participants reported time since most recent diagnosis, the location(s) 

of their cancer, the staging, and type of cancer treatment (surgery, chemotherapy, 

radiotherapy, other, or some combination of treatments). Patients gave consent to access their 

medical record to export their medication list. Medications were classified by converting them 

to their Anatomical Therapeutic Class (ATC) codes, these codes were scraped from Wikipedia 

(example web page: https://en.wikipedia.org/wiki/ATC_code_N06). All patient medications 

were coded in this way9; however, only specific psychoactive drugs expected to affect distress 

were included in the analysis. Patients were also asked about engagement in other types of 

treatments (e.g., physical therapy, chiropractic, massage therapy). This question included 

 

 

9 For example, the ATC code N06AB indicates selective serotonin reuptake inhibitors, so sertraline and 
fluoxetine would be counted under N06AB, although they are identified as N06AB06 and N06AB03, respectively. 

https://en.wikipedia.org/wiki/ATC_code_N06
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whether they were seeing a mental health professional (internal or external to clinic) or using 

other integrative medicine services at the hospital. In the control analyses, psychoactive drug 

classes that were included as separate variables were antipsychotics (N05A), antidepressants 

(N06A), psychostimulants (N06B), and opioids (N02A). There were too few individuals on 

anxiolytics (N05B) for them to be included as a control variable.  

Procedures 

 The study was approved by the Institutional Review Boards of both the University of 

Central Florida and Orlando Regional Medical Center. Participants completed an informed 

consent procedure followed by paper versions of all self-report measures. After completion, a 

research assistant scored the DQ5 and if the individual was above the threshold (DQ5 ≥ 11; 

Batterham et al., 2016), they were referred to a clinical social worker or another member of the 

behavioral health staff at the same hospital. The amount of time for completion of the packet 

was anticipated to be approximately 30 minutes, which was also the average wait time for 

patients. We anticipated possibly high levels of missing data due to the inability to provide 

financial compensation for the study, the possibility of survey fatigue, and/or being finished 

with their appointment before completing the packet. In an attempt to reduce the effect of 

missing data, two approaches were used: 1) different conditions which included pre-

randomized ordering of questionnaire presentation in the packet (a planned missing data 

design method; Graham, Taylor, Olchowski, & Cumsille, 2006) and 2) multiple imputation by 

chained equations at the item level (as recomended by Eekhout et al., 2014).  
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Statistical methods 

A priori latent variable and power analyses 

First, we exported data from the correlation matrices of already published studies to 

decide which variables to include in the distress and the GPD latent traits. This was not done for 

the PID-5 traits because they have a well-established latent structure (Al-Dajani et al., 2016). 

Correlation matrices were converted to covariance matrices using the Lavaan package in R 

(version 0.6-5) and the “Cor2Cov” function (Rosseel, 2012). Only one study was missing 

published descriptive statistics needed to create the covariance matrix, so a request to the 

study authors was made who then provided the needed information (Bach & Hutsebaut, 2018).  

For the following measures, the same process was used to decide on the number and 

adequacy of the latent variables. To ensure that two latent variables were needed for adequate 

fit, a principal components analysis was run in Rcmdr (2.6-1; Fox, 2016) with the covariance 

matrix (Component 1 variance: 5.89, component 2 variance: 0.96). Statisticians suggest that a 

variance of 1 or greater is a good metric for indicating the number of components to retain (i.e., 

the Kaiser criterion; Westland, 2015). Although the variance of 0.96 in component 2 is below 

this cutoff, we included it because it is very close to 1 and there is a theoretical reason to 

maintain this factor (Bender et al., 2011). This model was subjected to SEM (using Lavaan “sem” 

function) to evaluate the assumption that two latent variables were defensible, and results 

indicated that the two-factor model of GPD-I and GPD-S fit significantly better than the one-

factor model (ΔAIC: 56.2; Δχ2 [DFdiff = 1, N =187] = 58.18, p < .001).  Variables selected for the 

GPD-I latent model included the LPFS Interpersonal, SIPP Relationship Capacity, SIPP 
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Responsibility (which includes items related to trustworthiness and following of societal rules), 

SIPP Self Control (this was included on GPD-I, based on model modification indices), and SIPP 

Social Concordance scales. Scales selected for the GPD-S included the LPFS Self and SIPP 

Identity Integration. The scales selected for each latent variable were based on theory and 

tested by the adequacy of fit to the model. The final latent variable model, using the previously 

defined latent variables, indicated fit that was fair and better than the alternatives (χ2 [12, N = 

187] = 72.27, p < .001; Standardized Root Mean Square Residual [SRMR] =  .083; Root Mean 

Square Error of Approximation [RMSEA] = .16; 90% CI [.13, .20]. 

Variables selected for the latent distress model included total scores for the K10, DT, 

PHQ-4, and DQ-5. We used the correlation matrix from a previous crosswalk study using the 

general population (N = 3620) to establish the validity of a single latent distress variable 

(Batterham et al., 2018). Using the Kaiser criterion, one component was selected for this model 

(i.e., component 1 variance = 3.29; component 2 = .05). This model was subjected to SEM to 

evaluate the hypothesis that the four measures load onto one latent trait and the results 

indicated adequate fit (χ2 [2, N = 3620] = 64.66, p < .001; SRMR = .01; RMSEA = .09; 90% CI [.07, 

.11]. The RMSEA CI suggests a well-fitting model as the majority of the CI is below the often-

used cutoff score (i.e., <.10; Tabachnick & Fidell, 2012).  

We conducted a power analysis using two methods and compared the results. The 

second method is more commonly used and indicated a larger N was required, so we relied 

upon this method to determine sample size. The second method was a simulation study using 

the simsem package in R (Jorgensen et al., 2018; L. K. Muthén & Muthén, 2002). Standardized 



25 

parameter estimates for factor loadings were taken from the aforementioned latent variable 

development process. The unknown parameters in the model were the distress to GPD-I, GPD-

S, Negative Affectivity, and Psychoticism relationships (see Figure 1 for a depiction of the latent 

variable model). For these parameters, standardized parameters were used from a previous 

study examining general distress and personality pathology in a noncancer population (Few et 

al., 2013).  

Next, three power simulations were completed. The first simulation examined the 

sample size needed to have power = .80 and tested sample sizes from 50 to 150. Using this 

method, 130 participants (rounded up from 127) provided a power of .80 for the parameters of 

interest. This sample size also provided satisfactory relative parameter estimate bias (.10 > for 

all parameters), relative standard error bias (.10 > for all parameters; .05 > for parameters of 

interest), and coverage (between .91 and .98; Beaujean, 2014; Muthén & Muthén, 2009). Next, 

as recommended, two separate simulations were conducted with 10,000 replications and 

different random seeds. Both of these simulations indicated that 130 participants provided 

power greater than .80 and met the other additional criteria discussed above.  

 Bayesian structural equation modeling (BSEM via Blavaan in R; Merkle & Rosseel, 2015) 

and Bayesian one group metric analysis (i.e., Bayesian analog to the frequentist one sample t-

test; Kruschke, 2014) were used for the main analyses of the study. We chose to use BSEM 

because we anticipated that the PD-trait variables would be positively skewed and this would 

cause non-normal residuals in the SEM; however, in Bayesian SEM, the residual variances are 
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given a noninformative Wishart prior distribution which is more flexible than the assumption of 

normality in frequentist analysis. Additionally, BSEM is not based on large sample theory like  

frequentist SEM (i.e., maximum likelihood) and can be more appropriate for smaller samples 

(although this is debated, we expect this to be a nonissue here as the study is adequately 

powered; Smid, Mcneish, Miočević, & Van De Schoot, 2019). Bayesian one group metric 

analysis was also used for consistency in methods across the study (i.e., "BESTmcmc" function 

via the BEST package in R; Kruschke, 2013, 2014). 

In addition to the practical estimation-based advantages, Bayesian analysis has a 

number of interpretational advantages as compared to frequentist analyses. Bayesian analysis 

avoids null hypothesis significance testing (NHST) analysis shortcomings, including alpha 

inflation, the inability to interpret a null finding, and the dearth of information provided by 

frequentist p-values, parameters, and confidence intervals. In Bayesian analysis, one is able to 

conclude a degree of probability indicating that a result is zero (compared to the conclusion 

from failing to reject a null hypothesis). One interprets the highest density interval (HDI) as an 

indication of probability that a parameter is between the two end points (confidence intervals 

do not provide this information and are misused when interpreted in this way) 10. Additionally, 

 

 

10 Neyman strongly argued against this interpretation of confidence intervals in his original paper outlining 
them (see Neyman, 1937). 
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parameters in Bayesian analysis are considered to be random variables and this allows the 

distribution of parameters (i.e., posterior distribution) to be interpreted. 

In contrast to testing a null hypothesis, two methods are used in combination to 

evaluate parameters. First, is the 95% HDI is calculated which contains 95% of the most 

probable/credible parameter values (similar to how confidence intervals are commonly 

interpreted; Kruschke & Liddell, 2018). Second, a region of practical equivalence (ROPE) is used 

(Kruschke & Liddell, 2018), which is similar to equivalence testing in the frequentist framework. 

For the ROPE, one establishes and area of parameter space, that is considered null or not 

practically meaningful. Here we use a standardized parameter between -.10 and .10 (inclusive 

of all parameters between, including zero) as considered to be equivalent to a null and is used 

as the ROPE (Kruschke, 2014). The ROPE is flexible enough that it could contain any range of 

parameters, this range was chosen because it contains a null value (i.e., zero), a standardized 

parameter of < |.10| is likely practically inconsequential, and, additionally, is less than half the 

size of a small effect size for a standardized regression parameter (Kruschke, 2018). Two 

decision rules are used in this study, which are taken from Kruschke and Liddell (p. 185, 2018).   

1. “When the 95 % HDI [entirely] falls outside the ROPE, it literally means that the 

95% most credible values of the parameter are all not practically equivalent to 

the null value.” 

2. “When the 95 % HDI [entirely] falls inside the ROPE, it literally means that all the 

95% most credible values of the parameter are practically equivalent to the null 

value.” 
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Rule one is not rejecting a null hypothesis, but the motivation behind this is similar. Rule two is 

not accepting the null hypothesis, though one could think of this an analog. When a portion of 

the HDI overlaps with the ROPE, we will report the probability that parameter estimates are 

practically equivalent to the null value (i.e., the percentage of the HDI that is within the ROPE). 

In this case, however, the decision is undecided because some values are equivalent to the null 

and some are not (Kruschke, 2018). Both unstandardized and standardized parameter values 

will be reported.  

Bayesian path and SEM model fit is evaluated using the positive predictive p-value (PPP), 

which is a statistic based on the chi-square (Muthén & Asparouhov, 2012). The PPP reflects the 

“proportion of times that the observed data are more probable than the generated data” in the 

calculation of the model (Zyphur & Oswald, p. 402 , 2015). Using this metric, poor fit is 

indicated by extreme values (i.e., good fit indicated by .05 < PPP < .95) and a PPP of .50 

indicates that the model and data were equally likely (Asparouhov & Muthén, 2010). A PPP of 

less than .05 or greater than .95 are used as the cutoffs in the following analyses to indicate 

poor fit. 

The ROPE is also used for the one-sample test that examines the hypothesis that this 

sample will be higher in negative affectivity, antagonism, and disinhibition compared to a 

normative sample. To compare means, Cohen’s d is used as an effect size metric, so the same 

logic for the ROPE is used for this analysis as for the BSEM analysis. The ROPE included all values 

between -.2 and .2 which is a positive or negative small effect size (Cohen’s d) and is inclusive of 

zero. 
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Two methods were used to address missing data. The first method included creation of 

five measure conditions, which included the exact same questions; however, the measures 

were presented in randomized order. The exceptions to this were that consent, demographic, 

and the DQ5 were always first. The rationale for this was that if the average participant stopped 

2/3 of the way through the measures, the last 1/3 of missing measures would differ across 

participants. Second, multiple imputation (MI) at the item level was used for missing data to 

avoid biasing results and reducing power by using listwise or pairwise deletion (Buuren & 

Groothuis-Oudshoorn, 2011). We chose to use MI because it produces less biased estimates 

than listwise deletion in cases with data that are missing completely at random (MCAR), missing 

at random (MAR), and not missing at random (NMAR; for rebuttals to popular MI 

misconceptions see van Ginkel, Linting, Rippe, & van der Voort, 2019). Further, the use of MI at 

the item level retains participant information and is shown to perform better than mean 

replacement at the sample or participant level and better than complete item analysis11 

(Eekhout et al., 2014). The items that were used for main analyses for the study, including 

relevant control and demographic variables, were included in the model. Due to the high 

number of items and to have as much power as possible for the imputation model, the full 

collected sample of data (N = 190) was used for the process of imputation and were 

 

 

11 Complete item analysis refers here to including only participant scale scores that has no missing items. 
Another alternative option is to count the scale score as missing if X out of total items are missing. This practice 
would require an arbitrary cutoff and would still result in a loss of information. 
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subsequently removed after the imputations were created. The Multiple Imputation by Chained 

Equations (MICE) package in R was used to create imputations (Buuren & Groothuis-

Oudshoorn, 2011). As recommended, convergence plots and histograms were examined to 

check the appropriateness and validity of the imputations and these indicated that the 

imputation model fit the data well. Five imputed datasets were created using the Midas Touch 

method of imputation for Likert items and analyses were pooled at the end (van Buuren, 2018). 

Descriptive statistics of study relevant variables are presented in Table 1. 
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RESULTS 

 First, the control variable analysis was conducted that included variables that may affect 

distress (see Table 1 for descriptive statistics not already described in Participants section). 

Variables included their age, sex, location of cancer, cancer stage at diagnosis, whether they are 

in active cancer treatment, the years since most their recent diagnosis, current prescription of 

particular classes of psychoactive medications (i.e., separate dichotomized values for 

antidepressants, antipsychotics, psychostimulants, and opioids), the measure order condition 

(see Methods section), self-reported lifetime history of at least one mental health diagnosis 

(dichotomized), their household income (categorized as “less than $15,000” and including four 

$15,000 increments up to $74,999 with the final anchor “$75,000 or more”), and if they are 

receiving other current mental health treatment (self-reported and dichotomized). To avoid 

issues of multicollinearity within the control variable analysis, preliminary regressions followed 

by tetrachoric correlations for the dichotomous variables were conducted. The multicollinearity 

analysis indicated that the tolerance statistics were all satisfactory (i.e., > 0.2; Field, Miles, & 

Field, 2012) and across imputations, the highest tetrachoric correlation was .72 which authors 

suggest is a nonproblematic level of shared variance, especially considering the tolerance 

statistics (Field et al., 2012). 

 Next, the control variable analysis was conducted across the five imputations using path 

modeling in Blavaan (i.e., "bsem" function; Merkle & Rosseel, 2015). The distress measures 

were combined to make a principal component for use in the regression (using “princomp” in 

the stats package; R Core Team, 2018). Results of the control variable analysis indicated that all 
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of the models had good fit (Positive Predictive P-Value Median [PPPs] = .50, 95% HDI = .493, 

.503). The models with 3 chains each were run for a sample of 12,000 after a burn-in period of 

50,000 (totaling 11 hours of computation time). The default priors from Blavaan were used and 

convergence was reached (i.e., Geweke diagnostic < |2.575|12, trace plots, autocorrelation 

plots, effective sample size (ESS) > 10,000, and PSRFs were all satisfactory). Examination of the 

posterior parameter estimates indicated that none of the HDIs of the variables excluded the 

ROPE (all were greater than 5% in the ROPE; see Figure 3 for standardized posterior 

distributions). The self-reported use of other mental health treatment approached a 

“significant” ROPE; however, the percentage in the ROPE was 5.33% and did not reach the <5% 

criterion so it was not included in subsequent analyses. These results indicate that there was 

insufficient evidence that a null value could be ruled out, so none of the control variables were 

included in the main Bayesian SEM (see Table 2 for unstandardized and standardized 

parameters and ROPE percentages).  

 Next, the main Bayesian SEM model was calculated. This model included latent variables 

for GPD-I, GPD-S, Negative Affectivity, Psychoticism, and Distress with paths between the latent 

personality variables to the Distress latent variable (see Figure 1). This model was unable to 

converge and satisfy the convergence diagnostics. The burn-in and sample sizes were increased 

 

 

12 One parameter across all five imputation models had a Geweke that was significant. It met convergence 
criteria for all other metrics, so this was interpreted as a false positive due to many Geweke comparisons (this is a 
frequentist-based test). 



33 

in an attempt to achieve convergence. Increasing the burn-in (from the 1,000 default to 

200,000) and sample (from 500 to 10,000) failed to reach convergence (even after 55+ hours of 

computation time). The Markov chain Monte Carlo (MCMC) estimator used in Blavaan (i.e., 

“Stan”) also indicated errors in the calculations of posterior estimates (i.e., 120 divergent 

transitions indicating issues with Hamiltonian Monte Carlo simulations). The recommendation 

to ameliorate this error is to increase adapt delta to a higher value or reparametrize the model, 

as a poorly specified model may be the cause of the issue (Stan Development Team, 2019). 

Changing adapt delta to the highest possible value (i.e., .999, as is recommended) failed to 

avoid this error. The results of Bayesian analysis are unreliable and should not be trusted 

without clear evidence of convergence of the model, so the next step taken was to examine the 

model for poor path specification13.  

To investigate the appropriateness of the hypothesized structural part of the model, a 

procedure recommended by Westland (2015) was used. In this procedure, one submits all of 

the measured variables to a principal component analysis (PCA) to examine the degree to which 

the latent variable part of the model fits the data (Westland, 2015). For this analysis, all of the 

measures that comprise latent variables were submitted to the PCA, using the correlation 

matrix pooled across all imputations. Parallel analysis (psych R package with “fa.parallel” 

 

 

13 The same model with the data were submitted to frequentist SEM using robust maximum likelihood 
estimation (MLR) and the results indicated that the specified model fit poorly (all χ2 were significant across 
imputations at p < .0001, suggesting this is not simply an issue with Bayesian model convergence). 
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function; Revelle, 2015; Horn, 1965) was used to determine the number of principal 

components present in the data. Results indicated two principal components were warranted 

and the PCA loadings failed to clearly represent the theoretically defined latent variables. 

Because of this, the latent variables for the personality traits—negative affectivity, 

psychoticism, GPD-I, and GPS-S—were excluded in the final model and just the scale scores 

from those measures were used. The same method was applied to the distress variables and 

results indicated that one principal component fit the data well, so this latent variable was 

retained. 

To resolve this issue, the PID-5 and GPD latent variables were removed from the model. 

The reasons for removal were: (1) due to poor fit to the data; (2) because there is literature 

suggesting factor issues with the GPD traits generally (i.e., that GPD factors may be just a 

bloated factor and that they overlap with the traits to a large degree; Oltmanns & Widiger, 

2016, 2018); (3) and the ability to test the main hypotheses without these variables. The latent 

distress variable was the only latent variable that was retained and the PID-514, LPFS, and SIPP 

scale scores were used as observed variables. The final BSEM model included the DQ5, K10, and 

PHQ4 loading onto a latent distress variable with negative affectivity, psychoticism, the SIPP, 

 

 

14 Negative affectivity and psychoticism were calculated using the PID-5 measure scoring instructions (i.e., 
average the facets for the factor scores). 
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and LPFS-BF scale scores variables as predictors (see Figure 2 for the final latent variable 

model). 

The models converged after a burn in of 100,000-150,000 and a sample of 20,000 using 

the aforementioned convergence diagnostics15. The PPP for these models indicated an 

adequate fit (Median PPP: .23; 95% HDI: .20-.42). Next, parameter estimates for the regression 

parameters were examined. The only variable that had less than 5% of the HDI within the ROPE 

was Negative affectivity (see Figure 4 and Table 3 for posterior information), which was 

positively related to latent distress (Standardized parameter mean: 0.43; HDI: 0.27-0.60; ROPE = 

< .0001), indicating that more negative affect is related to greater distress. The remaining 

regression parameters—LPFS interpersonal, LPFS self, psychoticism, SIPP relational capacity, 

responsibility, identity integration, self-control, and social concordance—had distributions that 

failed to exclude the ROPE, indicating no evidence of “significance” (for standardized posterior 

distributions see Figure 4). 

Next, the second hypothesis was examined using one-sample Bayesian tests (the 

Bayesian equivalent to a one-sample t-test) and the means were interpreted on the Likert scale. 

The BEST package in R was used for all one-sample tests (Kruschke, 2013). The trace plots, scale 

reduction factors (R-hat in this case), and effective sample size indicated convergence for all 

 

 

15 Five parameters had a significant Geweke (i.e., Z ≥ 2.575); however, the remainder of the convergence 
diagnostics indicated that these parameters converged. These are likely false positives, as the Geweke test is 
frequentist-based and there are 369 parameters to evaluate total. 
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models. The comparison means that were used for the negative affectivity, disinhibition, and 

antagonism variables were taken from a study (N = 264) of community adults (Krueger et al., 

2012). This comparison sample was collected by a global consumer research company (i.e., 

IPSOS, 2020) who administered the PID-5 online to community individuals using a sampling 

strategy calibrated to ensure representativeness of the US population (Krueger et al., 2012).  

The collected sample contained 49.1% men and 50.1% women, who were approximately evenly 

split among four age groups (i.e., 22.1% = 18-39 years, 26.4% = 30-44, 27% = 45-59, 24.5% = 60+ 

years old), and split among education levels (e.g., 31.8% high school education; 27.9% 

bachelor’s degree or higher). The majority of the sample identified as white and non-Hispanic 

(70.6%) followed by black and non-Hispanic (11.6%). Approximately 13% of individuals 

identified as Hispanic. 

The ROPE criterion for the one-sample tests was similar to that of the BSEM analysis 

(i.e., -0.20 to 0.20 inclusive of a small effect size). The ROPEs indicated that a null value could be 

rejected for all three personality variables, as the ROPEs contained < 5% of the posterior 

distribution (see Figure 5). The mean for this sample was smaller with a large effect size 

compared to the community sample for negative affectivity (Median of mean: 0.42, SD = .43, 

HDI of Cohen’s d: -2.34, -0.88), disinhibition (Median of mean: 0.28, SD = .27, HDI of Cohen’s d: -

3.82, -1.96), and antagonism (Median of mean: 0.15, SD = .17, HDI of Cohen’s d: -3.55, -1.89). 

See Table 4 for results of the Bayesian one-sample tests.  

A sensitivity analysis was also conducted to examine if self-selection into the study could 

have affected the results of hypothesis two. For this analysis, the full collected sample (190) 
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was used which allowed the number of people who declined to participate (544) to be defined. 

For each trait—negative affectivity, disinhibition, and antagonism—an additional 544 responses 

were added to the data. These additional responses were randomly sampled from the 

comparison distributions using the “rnorm” function in R (i.e., published negative affectivity 

mean = 1.07; SD = 0.44; Krueger et al., 2012). Each analysis was conducted 10,000 times and 

analyses were pooled across imputations for frequentist t-tests. This analysis allows one to test 

how the results may change, if the other 544 participants who participated were actually at 

normal levels of the PD traits (based on the comparison distribution).  

Results of the sensitivity analysis indicated that the results were robust for negative 

affectivity (t-value 95% HDI = -7.22, -4.23; Cohen’s d HDI = -2.69, -.52; p-value HDI = < .0000001, 

.001; ROPE for percentage of p-values > .05 = < .0001) and disinhibition (t-value 95% HDI = -

10.9, -7.32; Cohen’s d HDI = -5.57, -.73; p-value HDI = < .0000001, < .0000001; ROPE for 

percentage of p-values > .05 = .04). Less than 5% of the distribution of p-values for negative 

affectivity and disinhibition was greater than .05, indicating that the interpretation of the 

results is unchanged under the sensitivity analysis assumptions. However, for antagonism, the 

results suggested that, if the participants who declined to participate were from the 

comparison distribution and actually participated, the effect we found for antagonism would no 

longer be present (t-value 95% HDI = -.61, .66; Cohen’s d HDI = -.28, .37; p-value HDI = .53, .99; 

ROPE for percentage of p-values > .05 = 1). In other words, for antagonism, 100% of the HDI of 

the p-values were greater than .05. 
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Supplemental analyses indicated there was no evidence that time since most recent 

diagnosis correlated with any of three PID-5 factors (all correlation HDIs overlapped the -.1 to .1 

ROPE: .27-.78), which suggests that recency of a diagnosis and associated distress may not have 

affected personality trait reports. The difference between personality trait levels in the active 

treatment group vs post-treatment group also showed no evidence of an effect of active 

treatment on PID-5 factor scores (ROPEs: .12-.88).  

The third hypotheses depended on the assumption that there would be a subsample of 

individuals who scored above the recommended cutoffs for the PID-5 measure (i.e., a score of 

2); however, there were no individuals who scored above the cutoff for antagonism or 

disinhibition. There were three individuals who scored above the cutoff for negative affectivity 

which is too small to be adequately powered, so the final hypothesis could not be tested. 

In a final supplementary analysis, we examined the level of psychological distress in this 

sample and the comparison score used was taken from a large online sample of community 

adults (N = 3,577; Batterham et al., 2018). The Kessler-10 (K10) distress scale was used for this 

analysis because an IRT analysis suggests that it covers a substantial portion of a latent distress 

domain (compared with other distress measures; Batterham et al., 2018). Norms for the K10 

indicate that a score of 7 approximates a T-score of 50, so this was used as a comparison score 
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(Batterham et al., 2018)16. Results of a Bayesian one-sample test indicated that the level of 

distress in the sample from the present study was considerably lower than the average score 

from this community sample with a large effect size (Median of mean: 3.51, SD = 2.99, HDI of 

Cohen’s d: -1.13, -.52; ROPE < .0001). Examination of the effect of active treatment on K10 

scores provided no evidence of a difference in distress between those who were in active 

cancer treatment vs post-treatment phases (Post-treatment median of the mean: 3.11; Active 

treatment median of the mean: 4.14; Median of Cohen’s d: -0.61; 95% HDI = -1.51, 0.27; ROPE = 

.15). Bivariate correlations between the K10 and time since diagnosis in years suggested there 

is no evidence of a correlation between the two variables (Posterior median of the correlation: 

.0005; 95% HDI = -0.19, 0.19; ROPE = .72).  

  

 

 

16 The k10 was re-scored by summing the items for this analysis, so that the scale would match that of the 
study. 
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DISCUSSION 

Research suggests that personality traits may predict important medical outcomes (e.g., 

Chapman et al., 2013). This study sought to examine how PD-traits (negative affectivity, 

psychoticism, self- and interpersonal-dysfunction) may relate to distress during head and neck 

cancer (HNC) treatment. The second aim was to examine the average level of negative 

affectivity, psychoticism, and disinhibition in an HNC sample. Finally, we were interested in 

examining if those participants above PD-trait cutoffs have a greater prevalence of factors 

associated with worsened course (e.g., alcohol use). 

First, we examined if control variables (e.g., cancer stage, time since most recent 

diagnosis, etc.) affected psychological distress. Results indicated there was insufficient evidence 

that any of these variables contributed to distress. The “in other mental health treatment” 

variable approached the criterion of < 5% of the highest density interval (HDI) being in the 

region of practical equivalence (ROPE); however, 5.3% of the HDI was in the ROPE which 

precluded it from being in the full SEM model. The 5% decision rule is arbitrary, but it was 

established a priori and has precedence in the literature (i.e., Kruschke, 2018), so we did not 

include the variable in the main model. For the control variable model, it was especially 

surprising is that time since most recent diagnosis was not a predictor of distress. This finding 

may be due to the fact that patients self-reported their diagnostic date or that people returning 

to the HNC clinic continue to be distressed as a result of returning to the clinic at which they 

received cancer treatment, even if they are weeks to years out of treatment. Another possibility 

is that there is range restriction in distress scores and that less distressed individuals 
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volunteered to participate. This idea may be supported by the fact that the average K10 distress 

rating was much lower than the general population. Future research could provide monetary 

compensation for participation, which may help with sampling issues. 

With regards to the main model examining the relationship between negative 

affectivity, psychoticism, self- and interpersonal-dysfunction latent variables and a latent 

distress variable, we found poor fit to the structural component of the model. This was likely 

due to the overlap between the personality variables (Widiger et al., 2019). A growing body of 

literature suggests that this issue is not unique to this study, as there is some evidence that the 

personality disorder traits and general personality dysfunction overlap to a substantial degree 

(Few et al., 2013). Because our question was one of relationship between traits and distress, 

and less about verifying the latent structure of these constructs, we used the measured 

variables instead. In doing so, we only found that higher scores on negative affectivity related 

to greater psychological distress at the time of the assessment. This finding was expected and is 

consistent with previous research on distress in non-cancer and cancer samples (Aarstad et al., 

2002; Beisland et al., 2013). The unique contribution of this finding indicates that this short 

personality trait measure may be useful in identifying individuals shortly after diagnosis who 

are more susceptible to developing distress during treatment. This possible applied implication 

is supported by the finding from a supplementary analysis, that there was no evidence that 

time since most recent diagnosis was related to the PID-5 factors (all Bayesian ROPEs > .05). 

Further, there was no evidence that those actively engaged in treatment compared to those 

post-treatment had elevated personality traits, suggesting the validity of the personality trait 
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scores in this context. Personality measures generally (Marek et al., 2020), and these measures 

specifically, may have utility in identifying individuals to whom a clinic could allocate resources 

by increased contact and distress assessment. However, this study is limited because it is cross-

sectional and predictive validity can only be speculated about at this time. An ideal study design 

would include prospective longitudinal methods (similar to Ranchor et al., 2002), in which 

community individuals at risk of HNC are assessed in primary care before diagnosis and are 

followed through cancer treatment to see how personality relates to or predicts the course of 

distress.   

The latent variable model also suggested that there was insufficient evidence to 

conclude that psychoticism, self, and interpersonal dysfunction measures were meaningfully 

related to distress (overlap of the ROPEs indicate 9.3-77.3% probability that they are not 

meaningfully different from the null value). This is unexpected and may suggest that treatments 

tailored to those with HNC may benefit more from addressing aspects of negative affectivity, 

compared to psychoticism-, self-, or interpersonally-focused treatments. We also expected that 

psychoticism would predict distress; however, we also found no evidence this was the case. The 

study may have been underpowered to detect an effect of psychoticism on distress as research 

suggests this relationship is less than half as large as negative affectivity (i.e., .58 vs .24; Few et 

al., 2013). It may also be the case that there is a null relationship; however, more research is 

needed with larger samples to increase precision of the results and allow for a more definitive 

conclusion about the ROPE.  
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The second hypothesis tested whether individuals with HNC had higher levels of PD 

traits on average. We found that individuals in this sample were much lower (with a large effect 

size) on all PD traits examined (i.e., negative affectivity, disinhibition, and antagonism), when 

compared to a published sample of community adults who were sampled to be representative 

of the US population (Krueger et al., 2012). There are a few possibilities for the finding that 

individuals in the current study were much lower than the comparison sample. The PID-5 is a 

face valid instrument and is shown to be susceptible to underreporting (Dhillon et al., 2017), so 

individuals may have presented themselves in a highly desirable way, although we are unaware 

of a secondary motivation to underreport. While possible, this seems an unlikely cause for 

these results because in other studies, when participants are given explicit instructions to 

underreport on the PID-5, their scores drop by approximately one standard deviation (Dhillon 

et al., 2017). Such a drop in scores would still equate to a medium and large effect size 

difference for negative affectivity and antagonism (disinhibition would have a near small effect 

size) between this sample and the comparison sample. This would also require the assumption 

that social desirability would have as strong of an effect as explicit instructions to underreport, 

which seems unlikely and could be tested empirically. To rule this issue out, future research 

could include social desirability measures (e.g., Reynolds, 1982) to account for this possible 

effect. Other options could include normal and pathological range measures of personality 

and/or include an informant report of personality. 

A second possibility is that that those who are much lower on these traits volunteered 

their time to participate because they are lower on these traits. There is research suggesting 
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that personality traits affect who volunteers for research studies (with a small to medium effect 

size for decreased neuroticism and increased conscientiousness predicting volunteering; 

Lönnqvist et al., 2007). While this is a possible explanation for the findings, the small to medium 

effect size would still not negate the findings of the average trait being much lower. Moreover, 

results of the sensitivity analysis—which assumed that the 544 participants who did not 

participant were from the comparison distribution—found that the results were still unchanged 

for negative affectivity and disinhibition, although the antagonism result was no longer present. 

This finding increases the confidence in the former traits and suggests the results from the 

latter is less robust. It seems plausible that antagonism (i.e., low agreeableness) would be a 

trait that affects one’s willingness to volunteer for a study with no monetary compensation. 

This further supports the importance of providing monetary compensation for participation in 

future studies to help incentivize participants who are less likely to volunteer their time.  

It may also be that the comparison sample was inadequate in some way. While there is 

evidence that the traits measured by the PID-5 are generally age-neutral (Van Den Broeck et al., 

2013), some traits are not, so an age-matched sample may be better suited to compare to this 

group, as 72% of individuals in our sample were 60 or older, whereas the comparison sample 

had 24.5% individuals 60 or older (Krueger et al., 2012). There is evidence of measurement 

invariance across sexes for the PID-5 measure (Suzuki et al., 2019); however, we had a much 

higher percentage of men in our study compared to the comparison sample, which may have 

affected the results (i.e., 49.1% male vs 70.8% in this study). To the authors’ knowledge, no 
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such high-quality sample using the PID-5 is available. A future study could collect samples 

across cancer types to examine the stability of these results. 

These findings may also be a result of censored data (of which range restriction is a 

type). For example, it could be that those with maladaptive personality traits were not well 

represented in the clinic because of a worsened course of illness and unsuccessful treatment 

due to other factors (e.g., missed appointments). This may also explain why the average person 

in the clinic rated themselves as less distressed than even community adults (i.e., Batterham et 

al., 2018), those who are more distressed or higher in PD traits were less likely volunteer. Again, 

some form of financial compensation may help reduce this possible effect.  

Finally, the lower levels of personality traits may be due to psychological change 

processes occurring as a result of treatment, such as posttraumatic growth (PTG) and/or 

increases in self-compassion. Individuals may have had a positive change in personality traits as 

a result of a cancer diagnosis (the trauma) and successful treatment. As currently defined, 

those with HNC show lower scores on PTG, compared to those with other cancers (Sharp et al., 

2018); however, personality trait change is rarely an outcome in PTG research (Jayawickreme & 

Blackie, 2014). Although, there is evidence that personality traits change after a chronic illness 

diagnosis, this is often in the less adaptive direction (e.g., lower extraversion, greater 

neuroticism; Jokela, Hakulinen, Singh-Manoux, & Kivimäki, 2014), so more research is needed 

to understand this process. One mechanism by which this change may occur is through an 

increase self-compassion after cancer diagnosis and treatment. There is some literature 

suggesting that a mindfulness and self-compassion intervention can reduce the severity of 
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Borderline Personality Disorder symptoms (Feliu-Soler et al., 2017) and, in this case, the 

increase may be occurring as a function of treatment. However, more research is needed to 

examine if self-compassion changes as a result of treatment and if it affects personality trait 

change. Further, self-selection effects and censored data will be important methodological 

concerns to address in future studies. 

The third hypothesis proposed that those elevated in pathological traits would show a 

worsened course by use of more recreational substances, lower quality of life, and more 

general personality dysfunction. This third hypothesis was dependent on the premise of the 

second hypothesis—namely, that there would be individuals elevated in those traits in this 

sample. We suspect this is partially due to the low base-rates of pathological trait elevations in 

this relatively small sample. Future research could either use a larger sample to increase the n 

of low base rate trait elevations or this question could be better answered by a longitudinal 

approach. A future study could measure pathological traits at the beginning of cancer 

treatment and examine how they affect the course of distress during and after treatment. 

Future research should also investigate the effect of personality traits on health damaging 

behaviors that may increase the risk of recurrence of cancer (e.g., smoking and drinking; 

Howren et al., 2013).  

Conclusion 

Collectively, we found that individuals in an HNC cancer sample were shown to have 

substantially lower pathological PD traits compared to a relatively small but census-weighted 
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normative sample. Our findings also suggest that elevated severity of negative affectivity may 

be useful as a predictor of increased psychological distress during HNC treatment and 

subsequent follow-up visits. 
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APPENDIX A: FIGURES AND TABLES 
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Figure 1. Original latent variable model.  

Note: Squares indicate measured variables and ovals indicate latent variables. Arrows indicate direction of 
relationship. SIPP indicates the Severity Indices of Personality Pathology measure. LPFS refers to the level of 
personality functioning scale. LPFS1 and LPFS2 refer to the two LPFS-self item parcels. GPD refers to general 
personality dysfunction. Unrestricted affectivity is reverse scored restricted affectivity (as is indicated by the 
measure; Maples et al., 2015). 
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Figure 2. Final latent variable model.  

Note: Squares indicate measured variables and ovals indicate latent variables. Arrows indicate direction of 
relationship. SIPP indicates the Severity Indices of Personality Pathology measure. LPFS refers to the level of 
personality functioning scale. PID-5 refers to the personality inventory for DSM-5. 
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Figure 3. Standardized posterior estimates of the control variable model. 

Note: Posterior estimates are of the standardized regression parameters predicting the latent 
distress principal component. The Region of Practical Equivalence (ROPE) that ranges from –
0.1 to 0.1 is plotted at the center of the plot and ROPE percentages are presented in the plot 
on the far right. 
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Figure 4. Standardized posterior estimates for the final latent variable model. 

Note: Posterior estimates are of the regression parameters predicting latent distress. SIPP indicates the Severity 
Indices of Personality Pathology measure. LPFS refers to the level of personality functioning scale. PID-5 refers 
to the Personality Inventory for DSM-5. The Region of Practical Equivalence (ROPE) that ranges from –0.1 to 0.1 
is plotted at the center of the plot and ROPE percentages are presented in the plot on the far right. 
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Figure 5. Unstandardized posterior estimates of Bayesian one-sample tests. 

Note: Posterior estimates are of the posterior means of each of the Personality Inventory for 
DSM-5 variables. The data are plotted on the Likert scale of the PID-5 measure. The Likert 
responses are presented at the top of the plot in red and the Likert anchors are demarcated 
with a vertical dashed red line. The colored numbers on the right side of the plot correspond 
to the comparison value from the normative sample (Krueger, 2012).  
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Table 1. Descriptive statistics of study variables. 

 

Note: SIPP indicates Severity Indices of Personality Pathology; PID-5 indicates Personality Inventory for DSM-5; 
LPFS refers to the Level of Personality Functioning Scale; and PHQ-4 refers to the Patient Health Questionnaire. 
For dichotomous variables, the percentage indicates percentage of scores in the yes (i.e., coded 1) direction. 
Descriptive statistics are averaged across the 5 imputations. 

  

Mean/N SD/% Min Max

Time since diagnosis (in years) 4.35 5.24 0 33

Age 60.25 12.05 26 85.2

SIPP Self Control 3.60 0.44 1.5 4.0

SIPP Identity Integration 3.55 0.44 1.92 4.0

SIPP Responsibility 3.55 0.44 2.0 4.0

SIPP Relational Capacity 3.31 0.45 1.75 4.0

SIPP Social Concordance 3.54 0.42 1.83 4.0

PID-5 Negative affectivity 0.52 0.53 0 2.33

PID-5 Antagonism 0.27 0.33 0 1.5

PID-5 Disinhibition 0.36 0.39 0 1.67

PID-5 Psychoticism 0.23 0.32 0 1.5

Distress Thermometer 2.88 2.81 0 10

Distress Questionnaire-5 1.90 0.89 1.0 4.8

Kessler 10 1.49 0.51 1.0 3.5

LPFS Interpersonal 1.30 0.41 1.0 2.83

LPFS Self parcel 1 1.37 0.58 1.0 4.0

LPFS Self parcel 2 1.27 0.48 1.0 3.67

PHQ-4 0.60 0.76 0 3.0

Sex (Male) 97 70.8% 0 1

Current cancer treatment 45 33% 0 1

Opioid ℞ (ATC N02A) 48.4 35% 0 1

Antipsychotic ℞ (N05A) 35.0 26% 0 1

Psychostimulant ℞ (N05B) 38.4 28% 0 1

Antidepressant ℞ (N06A) 46.6 34% 0 1

In other mental health treatment‡ 9.0 7% 0 1

18.6 14% 0 1

Note: SIPP indicates Severity Indices of Personality Pathology; PID-5 indicates 

Personality Inventory for DSM-5; LPFS refers to the Level of Personality 

Funcitoning Scale; and PHQ-4 refers to the Patient Health Questionnaire. For 

dichotomous variables, the percentage indicates percentage of scores in the 

yes (i.e., coded 1) direction.

Self reported lifetime mental health 

diagnosis
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Table 2. Control variable analysis of predictors of Distress Principal Component 

 

Note: HDI indicates the highest density interval and is set at 95%. Variables with an * are considered significant 
(i.e., the distribution is excluded by the Region of Practical Equivalence [ROPE]). The ROPE was set as a 
standardized parameter from -.10 to .10. HNC refers to head and neck cancer. Codes in parentheses beside 
medication classes are the anatomic therapeutic codes (ATC). 

  

Standardized 

Median

Unstandardized 

Median
SD

HDI 

Low

HDI 

High
ROPE

Age -0.14 -0.02 0.01 -0.29 0.02 0.32

Cancer Stage 0.04 0.05 0.11 -0.13 0.21 0.73

Measure condition 0.09 0.11 0.10 -0.07 0.25 0.54

Active cancer treatment 0.06 0.21 0.32 -0.11 0.23 0.69

Sex -0.03 -0.11 0.35 -0.20 0.14 0.76

Income -0.16 -0.15 0.08 -0.33 0.00 0.21

Reported lifetime mental health diagnosis 0.14 0.75 0.48 -0.03 0.31 0.32

In other mental health treatment 0.22 1.66 0.65 0.05 0.39 0.053

Opioid ℞ (ATC N02A) -0.05 -0.17 0.40 -0.26 0.16 0.63

Antipsychotic ℞ (N05A) -0.04 -0.16 0.41 -0.24 0.17 0.65

Psychostimulant ℞ (N05B) 0.01 0.06 0.41 -0.19 0.21 0.69

Antidepressant ℞ (N06A) 0.04 0.14 0.42 -0.17 0.26 0.61

Time since recent diagnosis 0.01 0.00 0.03 -0.15 0.16 0.83

Type of HNC 0.04 0.02 0.04 -0.11 0.19 0.78

Posterior of parameter estimates
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Table 3. Main Bayesian SEM parameter estimates predicting distress. 

  

Note: HDI indicates the highest density interval and is set at 95%. Variables with an * are considered 
“significant” (i.e., the distribution is excluded by the Region of Practical Equivalence [ROPE]). SIPP indicates 
Severity Indices of Personality Pathology and LPFS refers to the Level of Personality Functioning Scale. 

  

Median
Standardized 

Median

HDI 

Low

HDI 

High
ROPE

Distress

LPFS Interpersonal 0.06 0.03 -0.14 0.19 .77

LPFS Self dysfunction 0.29 0.20 -0.04 0.38 .17

Negative Affectivity 0.56 0.43 0.27 0.60 < .00001

Psychoticism -0.09 -0.04 -0.17 0.09 .82

SIPP Relational Capacity -0.09 -0.05 -0.18 0.07 .77

SIPP Responsibility -0.14 -0.08 -0.24 0.07 .58

SIPP Self Control -0.34 -0.21 -0.39 -0.03 .09

SIPP Social Concordance 0.25 0.14 -0.01 0.30 .28

SIPP Identity Integration -0.24 -0.15 -0.3 0.01 .26
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Table 4. One sample tests comparing the three PID-5 factor means. 

 

Note: HDI indicates the highest density interval and is set at 95%. Variables are considered “significant” 
(indicated by *) if < .05 of the distribution is excluded by the Region of Practical Equivalence (ROPE). Comparison 
values refer to the mean of the comparison scores from the original derivation sample that was census-matched 
(Krueger, et al., 2012). 

  

Median HDI 

Low

HDI 

High

Comparison 

Value
ROPE

Negative Affectivity

Distribution mean 0.42 0.31 0.56 1.07

Distribution SD 0.43 0.30 0.56

Distribution Cohen's D -1.51 -2.34 -0.88 < .00001*

Antagonism

Distribution mean 0.15 0.11 0.20 0.61

Distribution SD 0.17 0.13 0.22

Distribution Cohen's D -2.64 -3.55 -1.89 < .00001*

Disinhibition

Distribution mean 0.28 0.21 0.35 1.06

Distribution SD 0.27 0.21 0.36

Distribution Cohen's D -2.86 -3.82 -1.96 < .00001*
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Table 5. Correlations among Bayesian structural equation modeling variables. 

 

Note: SIPP indicates Severity Indices of Personality Pathology and LPFS refers to the Level of Personality 
Functioning Scale. All correlations are pooled across imputations using Rubin’s rules. * indicates p < 
.005.  

  

2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.

1. Distress Thermometer -.31* -.32* -.37* -.26* -.26* .39* .22* .44* .47* .30* .40* .49*

2. SIPP Self Control .65* .65* .51* .66* -.59* -.45* -.51* -.60* -.50* -.57* -.52*

3. SIPP Identity Integration .53* .57* .57* -.57* -.39* -.48* -.60* -.46* -.61* -.44*

4. SIPP Responsibility .46* .61* -.44* -.48* -.39* -.47* -.45* -.45* -.43*

5. SIPP Relational Capacity .46* -.43* -.29* -.37* -.43* -.42* -.44* -.36*

6. SIPP Social Concordance -.40* -.45* -.35* -.40* -.44* -.43* -.37*

7. PID-5 Negative Affectivity .53* .57* .69* .45* .65* .59*

8. PID-5 Psychoticism .30* .40* .47* .41* .31*

9. Distress Questionnaire-5 .65* .35* .51* .65*

10. Kessler-10 .51* .72* .75*

11. LPFS Interpersonal Dysfunction .58* .35*

12. LPFS Self Dysfunction .58*

13. PHQ-4
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APPENDIX B: IRB APPROVAL LETTERS 

 

  



60 

 



61 

 



62 

REFERENCES 

Aarstad, H. J., Heimdal, J.-H., Aarstad, A. K. H., & Olofsson, J. (2002). Personality traits in head 

and neck squamous cell carcinoma patients in relation to the disease state, disease extent, 

and prognosis. Acta Oto-Laryngologica, 122(8), 892–899. 

https://doi.org/10.1080/0036554021000028066 

Al-Dajani, N., Gralnick, T. M., & Bagby, R. M. (2016). A psychometric review of the Personality 

Inventory for DSM-5 (PID-5): Current status and future directions. Journal of Personality 

Assessment, 98(1), 62–81. https://doi.org/10.1080/00223891.2015.1107572 

Allison, P. J., Guichard, C., Fung, K., & Gilain, L. (2003). Dispositional optimism predicts survival 

status 1 year after diagnosis in head and neck cancer patients. Journal of Clinical Oncology, 

21(3), 543–548. https://doi.org/10.1200/JCO.2003.10.092 

American College of Surgeons. (2016). Cancer program standards: Ensuring Patient-centered 

care. In Commission on Cancer (Vol. 2). https://www.facs.org/~/media/files/quality 

programs/cancer/coc/2016 coc standards manual_interactive 

pdf.ashx%0Ahttps://www.facs.org/quality-programs/cancer/coc/standards 

American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders 

(5th ed.). 

Asparouhov, T., & Muthén, B. (2010). Bayesian analysis using Mplus: Technical implementation. 

1–38. http://www.statmodel.com/download/Bayes3.pdf%0A 



63 

Axelsson, M., Brink, E., Lundgren, J., & Lötvall, J. (2011). The influence of personality traits on 

reported adherence to medication in individuals with chronic disease: An epidemiological 

study in West Sweden. PLoS ONE, 6(3), 1–7. 

https://doi.org/10.1371/journal.pone.0018241 

Bach, B., & Hutsebaut, J. (2018). Level of Personality Functioning Scale–Brief Form 2.0: Utility in 

capturing personality problems in psychiatric outpatients and incarcerated addicts. Journal 

of Personality Assessment, 3891, 1–11. https://doi.org/10.1080/00223891.2018.1428984 

Batterham, P. J., Sunderland, M., Carragher, N., Calear, A. L., Mackinnon, A. J., & Slade, T. 

(2016). The Distress Questionnaire-5: Population screener for psychological distress was 

more accurate than the K6/K10. Journal of Clinical Epidemiology, 71, 35–42. 

https://doi.org/10.1016/j.jclinepi.2015.10.005 

Batterham, P. J., Sunderland, M., Slade, T., Calear, A. L., & Carragher, N. (2018). Assessing 

distress in the community: Psychometric properties and crosswalk comparison of eight 

measures of psychological distress. Psychological Medicine, 48(8), 1316–1324. 

https://doi.org/10.1017/S0033291717002835 

Beaujean, A. A. (2014). Sample size planning. In Latent variable modeling using R: A step-by-step 

guide. https://doi.org/10.4324/9781315869780 

Beisland, E., Aarstad, A. K. H., Osthus, A. A., & Aarstad, H. J. (2013). Stability of distress and 

health-related quality of life as well as relation to neuroticism, coping, and TNM stage in 

head and neck cancer patients during follow-up. Acta Oto-Laryngologica, 133(2), 209–217. 



64 

https://doi.org/10.3109/00016489.2012.720032 

Bender, D. S., Morey, L. C., & Skodol, A. E. (2011). Toward a model for assessing level of 

personality functioning in DSM-5, part I: A review of theory and methods. Journal of 

Personality Assessment, 93(August), 332–346. 

https://doi.org/10.1080/00223891.2011.583808 

Blot, W. J., Mclaughlin, J. K., Winn, D. M., Austin, D. F., Greenberg, R. S., Bernstein, L., 

Schoenberg, J. B., Stemhagen, A., & Fraumeni, J. F. (1988). Smoking and drinking in relation 

to oral and pharyngeal cancer. Cancer Research, 48, 3282–3287. 

Bruha, R., Dvorak, K., & Petrtyl, J. (2012). Alcoholic liver disease. World Journal of Hepatology, 

4(3), 81. https://doi.org/10.4254/WJH.V4.I3.81 

Brunault, P., Champagne, A.-L., Huguet, G., Suzanne, I., Senon, J.-L., Body, G., Rusch, E., Magnin, 

G., Voyer, M., Réveillère, C., & Camus, V. (2016). Major depressive disorder, personality 

disorders, and coping strategies are independent risk factors for lower quality of life in 

non-metastatic breast cancer patients. Psycho-Oncology, 25(5), 513–520. 

https://doi.org/10.1002/pon.3947 

Buchmann, L., Conlee, J., Hunt, J., Agarwal, J., & White, S. (2013). Psychosocial distress is 

prevalent in head and neck cancer patients. The Laryngoscope, 123(6), 1424–1429. 

https://doi.org/10.1002/lary.23886 

Bultz, B. D., & Carlson, L. E. (2006). Emotional distress: The sixth vital sign—future directions in 

cancer care. Psycho-Oncology, 15(2), 93–95. https://doi.org/10.1002/pon.1022 



65 

Buuren, S. van, & Groothuis-Oudshoorn, K. (2011). mice: Multivariate Imputation by Chained 

Equations in R. Journal of Statistical Software, 45(3). https://doi.org/10.18637/jss.v045.i03 

Calver, L., Tickle, A., Moghaddam, N., & Biswas, S. (2018). The effect of psychological 

interventions on quality of life in patients with head and neck cancer: A systematic review 

and meta-analysis. European Journal of Cancer Care, 27(1), 1–18. 

https://doi.org/10.1111/ecc.12789 

Cavicchioli, M., Rugi, C., & Maffei, C. (2015). Inability to withstand present-moment experiences 

in borderline personality disorder: A meta-analytic review. Clinical Neuropsychiatry, 12(4), 

101–110. 

Champagne, A., Brunault, P., Huguet, G., Suzanne, I., Senon, J., Body, G., Rusch, E., Magnin, G., 

Voyer, M., Réveillère, C., & Camus, V. (2016). Personality disorders, but not cancer severity 

or treatment type, are risk factors for later generalised anxiety disorder and major 

depressive disorder in non metastatic breast cancer patients. Psychiatry Research, 236, 

64–70. https://doi.org/http://dx.doi.org/10.1016/j.psychres.2015.12.032 

Chapman, B. P., Roberts, B. W., & Duberstein, P. (2011). Personality and longevity: Knowns, 

unknowns, and implications for public health and personalized medicine. Journal of Aging 

Research, 2011. https://doi.org/10.4061/2011/759170 

Chapman, B. P., Roberts, B. W., Lyness, J., & Duberstein, P. (2013). Personality and physician-

assessed illness burden in older primary care patients over 4 years. American Journal of 

Geriatric Psychiatry, 21(8), 737–746. https://doi.org/10.1016/j.jagp.2012.11.013 



66 

Chen, A. M., Jennelle, R. L. S., Grady, V., Tovar, A., Bowen, K., Simonin, P., Tracy, J., McCrudden, 

D., Stella, J. R., & Vijayakumar, S. (2009). Prospective study of psychosocial distress among 

patients undergoing radiotherapy for head and neck cancer. International Journal of 

Radiation Oncology Biology Physics, 73(1), 187–193. 

https://doi.org/10.1016/j.ijrobp.2008.04.010 

Chmielewski, M., Bagby, R. M., Markon, K., Ring, A. J., & Ryder, A. G. (2014). Openness to 

experience, intellect, Schizotypal Personality Disorder, and psychoticism: Resolving the 

controversy. Journal of Personality Disorders, 28(4), 483–499. 

https://doi.org/10.1521/pedi_2014_28_128 

Christensen, D. S., Flensborg-Madsen, T., Garde, E., Hansen, Å. M., & Mortensen, E. L. (2019). 

Big Five personality traits and allostatic load in midlife. Psychology and Health, 34(8), 

1011–1028. https://doi.org/10.1080/08870446.2019.1585851 

Clark, P. G., Rochon, E., Brethwaite, D., & Edmiston, K. K. (2011). Screening for psychological 

and physical distress in a cancer inpatient treatment setting: A pilot study. Psycho-

Oncology, 20(6), 664–648. https://doi.org/10.1002/pon.1908 

Costa, P. T., Bagby, R. M., Herbst, J. H., & McCrae, R. R. (2005). Personality self-reports are 

concurrently reliable and valid during acute depressive episodes. Journal of Affective 

Disorders, 89(1–3), 45–55. https://doi.org/10.1016/j.jad.2005.06.010 

Costa, P. T., & McCrae, R. R. (1992). Four ways five factors are basic. Personality and Individual 

Differences, 13(6), 653–665. https://doi.org/10.1016/0191-8869(92)90236-I 



67 

Debnar, C., Carrard, V., Morselli, D., Michel, G., Bachmann, N., & Peter, C. (2020). Psychological 

distress trajectories in chronic physical health conditions. Health Psychology, 39(2), 116–

126. https://doi.org/10.1037/hea0000820 

Den Oudsten, B. L., Van Heck, G. L., Van der Steeg,  a F., Roukema, J. a, & De, V. J. (2009). 

Predictors of depressive symptoms 12 months after surgical treatment of early-stage 

breast cancer. Psycho-Oncology, 18, 1230–1237. https://doi.org/10.1002/pon.1518 

Dhillon, S., Bagby, M. M., Kushner, S. C., & Burchett, D. (2017). The impact of underreporting 

and overreporting on the validity of the personality inventory for DSM-5 (PID-5): A 

simulation analog design investigation. Psychological Assessment, 29(4), 473–478. 

https://doi.org/10.1037/pas0000359 

Doyle, M., While, D., Mok, P. L. H., Windfuhr, K., Ashcroft, D. M., Kontopantelis, E., Chew-

Graham, C. A., Appleby, L., Shaw, J., & Webb, R. T. (2016). Suicide risk in primary care 

patients diagnosed with a personality disorder: A nested case control study. BMC Family 

Practice, 17(1), 106. https://doi.org/10.1186/s12875-016-0479-y 

Dunne, S., Mooney, O., Coffey, L., Sharp, L., Desmond, D., Timon, C., O’Sullivan, E., & Gallagher, 

P. (2017). Psychological variables associated with quality of life following primary 

treatment for head and neck cancer: A systematic review of the literature from 2004 to 

2015. Psycho-Oncology, 26(2), 149–160. https://doi.org/10.1002/pon.4109 

Eekhout, I., De Vet, H. C. W., Twisk, J. W. R., Brand, J. P. L., De Boer, M. R., & Heymans, M. W. 

(2014). Missing data in a multi-item instrument were best handled by multiple imputation 



68 

at the item score level. Journal of Clinical Epidemiology, 67(3), 335–342. 

https://doi.org/10.1016/j.jclinepi.2013.09.009 

Elliot, A. J., Turiano, N. A., & Chapman, B. P. (2017). Socioeconomic status interacts with 

conscientiousness and neuroticism to predict circulating concentrations of inflammatory 

markers. Annals of Behavioral Medicine, 51(2), 240–250. https://doi.org/10.1007/s12160-

016-9847-z 

Feliu-Soler, A., Pascual, J. C., Elices, M., Martín-Blanco, A., Carmona, C., Cebolla, A., Simón, V., & 

Soler, J. (2017). Fostering Self-Compassion and Loving-Kindness in Patients With Borderline 

Personality Disorder: A Randomized Pilot Study. Clinical Psychology and Psychotherapy, 

24(1), 278–286. https://doi.org/10.1002/cpp.2000 

Few, L. R., Miller, J. D., Rothbaum, A. O., Meller, S., Maples, J., Terry, D. P., Collins, B., & 

MacKillop, J. (2013). Examination of the section III DSM-5 diagnostic system for personality 

disorders in an outpatient clinical sample. Journal of Abnormal Psychology, 122(4), 1057–

1069. https://doi.org/10.1037/a0034878 

Field, A., Miles, J., & Field, Z. (2012). Discovering Statistics Using R. In Statistics (1st ed.). Sage 

Publications. 

Fok, M. L. Y., Hayes, R. D., Chang, C. K., Stewart, R., Callard, F. J., & Moran, P. (2012). Life 

expectancy at birth and all-cause mortality among people with personality disorder. 

Journal of Psychosomatic Research, 73(2), 104–107. 

https://doi.org/10.1016/j.jpsychores.2012.05.001 



69 

Foulds, J., Newton-Howes, G., Guy, N. H., Boden, J. M., & Mulder, R. T. (2017). Dimensional 

personality traits and alcohol treatment outcome: A systematic review and meta-analysis. 

Addiction, 112(8), 1345–1357. https://doi.org/10.1111/add.13810 

Fox, J. (2016). Using the R commander: A point-and-click interface for R. In Using the R 

Commander: A Point-and-Click Interface for R. https://doi.org/10.1201/9781315380537 

Funk, G. F., Karnell, L. H., Christensen, A. J., Moran, P. J., & Ricks, J. (2003). Comprehensive head 

and neck oncology health status assessment. Head and Neck, 25(7), 561–575. 

https://doi.org/10.1002/hed.10245 

Goldstein, B. L., & Klein, D. N. (2014). A review of selected candidate endophenotypes for 

depression. Clinical Psychology Review, 34(5), 417–427. 

https://doi.org/10.1016/j.cpr.2014.06.003 

Graham, J. W., Taylor, B. J., Olchowski, A. E., & Cumsille, P. E. (2006). Planned missing data 

designs in psychological research. Psychological Methods, 11(4), 323–343. 

https://doi.org/10.1037/1082-989X.11.4.323 

Grant, B. F., Stinson, F. S., Dawson, D. A., Chou, S. P., & Ruan, W. J. (2005). Co-occurrence of 

DSM-IV personality disorders in the United States: Results from the National Epidemiologic 

Survey on Alcohol and Related Conditions. Comprehensive Psychiatry, 46(1), 1–5. 

https://doi.org/10.1016/j.comppsych.2004.07.019 

Grove, J. L., Smith, T. W., Crowell, S. E., Williams, P. G., & Jordan, K. D. (2017). Borderline 

personality features, interpersonal correlates, and blood pressure response to social 



70 

stressors: Implications for cardiovascular risk. Personality and Individual Differences, 113, 

38–47. https://doi.org/10.1016/j.paid.2017.03.005 

Haman, K. L. (2008). Psychologic distress and head and neck cancer: Part 1--Review of the 

literature. The Journal of Supportive Oncology, 6(4), 155–163. 

Harford, T. C., Chen, C. M., Kerridge, B. T., & Grant, B. F. (2018). Self- and other-directed forms 

of violence and their relationship with lifetime DSM-5 psychiatric disorders: Results from 

the National Epidemiologic Survey on Alcohol Related Conditions−III (NESARC−III). 

Psychiatry Research, 262(September 2017), 384–392. 

https://doi.org/10.1016/j.psychres.2017.09.012 

Hinnen, C., Ranchor, A. V., Sanderman, R., Snijders, T. A. B., Hagedoorn, M., & Coyne, J. C. 

(2008). Course of distress in breast cancer patients, their partners, and matched control 

couples. Annals of Behavioral Medicine, 36(2), 141–148. https://doi.org/10.1007/s12160-

008-9061-8 

Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. 

Psychometrika, 30(2), 179–185. https://doi.org/10.1007/BF02289447 

Howren, M. B., Christensen, A. J., Karnell, L. H. ynd., & Funk, G. F. (2013). Psychological factors 

associated with head and neck cancer treatment and survivorship: Evidence and 

opportunities for behavioral medicine. Journal of Consulting and Clinical Psychology, 81(2), 

299–317. https://doi.org/10.1037/a0029940 

IPSOS. (2020). https://www.ipsos.com/en 



71 

Jayawickreme, E., & Blackie, L. E. R. (2014). Post-traumatic growth as positive personality 

change: Evidence, controversies and future directions. European Journal of Personality, 

28(4), 312–331. https://doi.org/10.1002/per.1963 

Jokela, M., Hakulinen, C., Singh-Manoux, A., & Kivimäki, M. (2014). Personality change 

associated with chronic diseases: Pooled analysis of four prospective cohort studies. 

Psychological Medicine, 44(12), 2629–2640. https://doi.org/10.1017/S0033291714000257 

Jorgensen, T. D., Pornprasertmanit, S., Miller, P., Schoemann, A., & Quick, C. (2018). SIMulated 

structural equation modeling (0.5-14). 

Kam, D., Salib, A., Gorgy, G., Patel, T. D., Carniol, E. T., Eloy, J. A., Baredes, S., Park, R. C., & Park, 

R. C. W. (2015). Incidence of suicide in patients with head and neck cancer. JAMA 

Otolaryngology-Head & Neck Surgery, 141(12), 1075–1081. 

https://doi.org/10.1001/jamaoto.2015.2480 

Kendler, K. S., Aggen, S. H., Gillespie, N., Neale, M. C., Knudsen, G. P., Krueger, R. F., Czajkowski, 

N., Ystrom, E., & Reichborn-Kjennerud, T. (2016). The genetic and environmental sources 

of resemblance between normative personality and personality disorder traits. Journal of 

Personality Disorders, 31(2), 1–15. https://doi.org/10.1521/pedi_2016_30_251 

Kessler, R. C., Andrews, G., Colpe, L. J., Hiripi, E., Mroczek, D. K., Normand, S. L. T., Walters, E. E., 

& Zaslavsky, A. M. (2002). Short screening scales to monitor population prevalences and 

trends in non-specific psychological distress. Psychological Medicine, 32(6), 959–976. 

https://doi.org/10.1017/S0033291702006074 



72 

Kessler, R. C., Barker, P. R., & Colpe, L. J. (2003). Screening for serious mental illness in the 

general population. Archives of General Psychiatry, 60. 

http://jamanetwork.com/journals/jamapsychiatry/fullarticle/207204 

Kohda, R., Otsubo, T., Kuwakado, Y., Tanaka, K., Kitahara, T., Yoshimura, K., & Mimura, M. 

(2005). Prospective studies on mental status and quality of life in patients with head and 

neck cancer treated by radiation. Psycho-Oncology, 14(4), 331–336. 

https://doi.org/10.1002/pon.892 

Kroenke, K., Spitzer, R. L., Williams, J. B. W., & Lowe, B. (2009). An ultra-brief screening scale for 

anxiety and depression: The PHQ-4. Psychosomatics, 50(6), 613–621. 

https://doi.org/10.1176/appi.psy.50.6.613 

Krueger, R. F., Derringer, J., Markon, K. E., Watson, D., & Skodol, A. E. (2012). Initial 

construction of a maladaptive personality trait model and inventory for DSM-5. 

Psychological Medicine, 42(9), 1879–1890. https://doi.org/10.1017/S0033291711002674 

Kruschke, J. K. (2013). Bayesian estimation supersedes the T test. Journal of Experimental 

Psychology: General, 142(2), 573–588. https://doi.org/10.1037/a0029177 

Kruschke, J. K. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan, second 

edition. In Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan, Second Edition. 

https://doi.org/10.1016/B978-0-12-405888-0.09999-2 

Kruschke, J. K. (2018). Rejecting or accepting parameter values in Bayesian estimation. 

Advances in Methods and Practices in Psychological Science, 1(2), 270–280. 



73 

https://doi.org/10.1177/2515245918771304 

Kruschke, J. K., & Liddell, T. M. (2018). The Bayesian New Statistics: Hypothesis testing, 

estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychonomic 

Bulletin and Review, 25(1), 178–206. https://doi.org/10.3758/s13423-016-1221-4 

Lenzenweger, M. F., Lane, M. C., Loranger, A. W., & Kessler, R. C. (2007). DSM-IV personality 

disorders in the National Comorbidity Survey Replication. Biological Psychiatry, 62(6), 553–

564. https://doi.org/10.1016/j.biopsych.2006.09.019 

Linehan, M. M., Comtois, K. A., Murray, A. M., Brown, M. Z., Gallop, R. J., Heard, H. L., Korslund, 

K. E., Tutek, D. a, Reynolds, S. K., & Lindenboim, N. (2006). Two-year randomized 

controlled trial and follow-up of dialectical behavior therapy vs therapy by experts for 

suicidal behaviors and borderline personality disorder. Archives of General Psychiatry, 

63(7), 757–766. https://doi.org/10.1001/archpsyc.63.7.757 

Lönnqvist, J.-E., Paunonen, S., Verkasalo, M., Leikas, S., Tuulio-Henriksson, A., & Lönnqvist, J. 

(2007). Personality characteristics of research volunteers. European Journal of Personality, 

21(8), 1017–1030. https://doi.org/10.1002/per.655 

Löwe, B., Wahl, I., Rose, M., Spitzer, C., Glaesmer, H., Wingenfeld, K., Schneider, A., & Brähler, 

E. (2010). A 4-item measure of depression and anxiety: Validation and standardization of 

the Patient Health Questionnaire-4 (PHQ-4) in the general population. Journal of Affective 

Disorders, 122(1–2), 86–95. https://doi.org/10.1016/j.jad.2009.06.019 

Luchetti, M., Barkley, J. M., Stephan, Y., Terracciano, A., & Sutin, A. R. (2014). Five-factor model 



74 

personality traits and inflammatory markers: New data and a meta-analysis. 

Psychoneuroendocrinology, 50, 181–193. https://doi.org/10.1016/j.psyneuen.2014.08.014 

Malouff, J. M., Thorsteinsson, E. B., Rooke, S. E., & Schutte, N. S. (2007). Alcohol involvement 

and the Five-Factor Model of Personality: A meta-analysis. Journal of Drug Education, 

37(3), 277–294. https://doi.org/10.2190/DE.37.3.d 

Mangold, D. L., & Wand, G. S. (2006). Cortisol and adrenocorticotropic hormone responses to 

naloxone in subjects with high and low neuroticism. Biological Psychiatry, 60(8), 850–855. 

https://doi.org/10.1016/j.biopsych.2006.03.049 

Maples, J. L., Carter, N. T., Few, L. R., Crego, C., Gore, W. L., Samuel, D. B., Williamson, R. L., 

Lynam, D. R., Widiger, T. A., Markon, K. E., Krueger, R. F., & Miller, J. D. (2015). Testing 

whether the DSM-5 personality disorder trait model can be measured with a reduced set 

of items: An item response theory investigation of the personality inventory for DSM-5. 

Psychological Assessment, 27(4), 1195–1210. https://doi.org/10.1037/pas0000120 

Maples, J. L., Guan, L., Carter, N. T., & Miller, J. D. (2014). A test of the International Personality 

Item Pool representation of the Revised NEO Personality Inventory and development of a 

120-item IPIP-based measure of the Five-Factor Model. Psychological Assessment, 26(4), 

1070–1084. https://doi.org/10.1037/pas0000004 

Marek, R. J., Markey, C. H., & Porcerelli, J. H. (2020). Assessment of personality and 

psychopathology in healthcare settings: Introduction to the special section. Journal of 

Personality Assessment, 102(2), 149–152. 



75 

https://doi.org/10.1080/00223891.2020.1713140 

McCrae, R. ., & Costa, P. T. J. (2013). Introduction to the empirical and theoretical status of the 

Five-Factor Model of personality traits. In Thomas A Widiger, P. T. J. Costa, T. A. Widiger 

(Ed), & P. T. J. Costa (Ed) (Eds.), Personality disorders and the five-factor model of 

personality. (pp. 15–27). American Psychological Association. 

https://doi.org/10.1037/13939-002 

Mcneely, J., Strauss, S. M., Saitz, R., Cleland, C. M., & Joseph, J. (2016). A brief patient self-

administered substance use screening tool for primary care: Two-site validation study of 

the Substance Use Brief Screen (SUBS). American Journal of Medicine, 128(7), 1–25. 

https://doi.org/10.1016/j.amjmed.2015.02.007.A 

Merkle, E. C., & Rosseel, Y. (2018). blavaan: Bayesian structural equation models via parameter 

expansion. Journal of Statistical Software, 85(4). https://doi.org/10.18637/jss.v085.i04 

Miller, J. D., Sleep, C., & Lynam, D. R. (2018). DSM-5 alternative model of personality disorder: 

Testing the trait perspective captured in Criterion B. Current Opinion in Psychology, 21, 50–

54. https://doi.org/10.1016/j.copsyc.2017.09.012 

Morey, L. C., Berghuis, H., Bender, D. S., Verheul, R., Krueger, R. F., & Skodol, A. E. (2011). 

Toward a model for assessing level of personality functioning in DSM-5, part II: Empirical 

articulation of a core dimension of personality pathology. Journal of Personality 

Assessment, 93(4), 347–353. https://doi.org/10.1080/00223891.2011.577853 

Morey, L. C., & Hopwood, C. J. (2019). Expert preferences for categorical, dimensional, and 



76 

mixed/hybrid approaches to personality disorder diagnosis. Journal of Personality 

Disorders, 1–8. https://doi.org/10.1521/pedi_2019_33_398 

Morey, L. C., Hopwood, C. J., Markowitz, J. C., Gunderson, J. G., Grilo, C. M., McGlashan, T. H., 

Shea, M. T., Yen, S., Sanislow, C. A., Ansell, E. B., & Skodol, A. E. (2012). Comparison of 

alternative models for personality disorders, II: 6-, 8- and 10-year follow-up. Psychological 

Medicine, 42(08), 1705–1713. https://doi.org/10.1017/S0033291711002601 

Morgan, S., Cooper, B., Paul, S., Hammer, M. J., Conley, Y. P., Levine, J. D., Miaskowski, C., & 

Dunn, L. B. (2017). Association of personality profiles with depressive, anxiety, and cancer-

related symptoms in patients undergoing chemotherapy. Personality and Individual 

Differences, 117, 130–138. https://doi.org/10.1016/j.paid.2017.05.039 

Munafò, M. R., Zetteler, J. I., & Clark, T. G. (2007). Personality and smoking status: A meta-

analysis. Nicotine and Tobacco Research, 9(3), 405–413. 

https://doi.org/10.1080/14622200701188851 

Muthén, B., & Asparouhov, T. (2012). Bayesian structural equation modeling: A more flexible 

representation of substantive theory. Psychological Methods, 17(3), 313–335. 

https://doi.org/10.1037/a0026802 

Muthén, L. K., & Muthén, B. (2002). How to use a Monte Carlo study to decide on sample size 

and determine power. Structural Equation Modeling: A Multidisciplinary Journal, 9(4), 

599–620. https://doi.org/10.1207/S15328007SEM0904 

National Cancer Institute. (2015a). Cancer Staging - National Cancer Institute. 



77 

https://www.cancer.gov/about-cancer/diagnosis-staging/staging 

National Cancer Institute. (2015b). What Is Cancer? - National Cancer Institute. 

https://www.cancer.gov/about-cancer/understanding/what-is-cancer 

Newhill, C. E., Eack, S. M., & Mulvey, E. P. (2009). Violent behavior in borderline personality. 

Journal of Personality Disorders, 23(6), 541–554. 

https://doi.org/10.1521/pedi.2009.23.6.541 

Neyman, J. (1937). Outline of a theory of statistical estimation based on the Classical Theory of 

Probability. Philosophical Transactions of the Royal Society A: Mathematical, Physical and 

Engineering Sciences. https://doi.org/10.1098/rsta.1937.0005 

O’Connor, T. G., Scheible, K., Sefair, A. V., Gilchrist, M., Blackmore, E. R., Winter, M. A., Gunnar, 

M. R., Wyman, C., Carnahan, J., Moynihan, J. A., & Caserta, M. T. (2017). Immune and 

neuroendocrine correlates of temperament in infancy. Development and Psychopathology, 

29(5), 1589–1600. https://doi.org/10.1017/S0954579417001250 

Oltmanns, J. R., & Widiger, T. A. (2016). Self-pathology, the Five-Factor Model, and bloated 

specific factors: A cautionary tale. Journal of Abnormal Psychology, 125(3), 423–434. 

https://doi.org/10.1037/abn0000144 

Oltmanns, J. R., & Widiger, T. A. (2018). Maladaptive variants of adaptive traits and bloated 

specific factors. Journal of Research in Personality, 76, 177–185. 

https://doi.org/10.1016/j.jrp.2018.08.006 

Østergaard, M. L. D., Nordentoft, M., & Hjorthøj, C. (2017). Associations between substance use 



78 

disorders and suicide or suicide attempts in people with mental illness: A Danish nation-

wide, prospective, register-based study of patients diagnosed with schizophrenia, bipolar 

disorder, unipolar depression or personal. Addiction, 112(7), 1250–1259. 

https://doi.org/10.1111/add.13788 

Ostuzzi, G., Matcham, F., Dauchy, S., Barbui, C., & Hotopf, M. (2018). Antidepressants for the 

treatment of depression in people with cancer. Cochrane Database of Systematic Reviews, 

4, CD011006. https://doi.org/10.1002/14651858.CD011006.pub3 

Parish, L., Eysenck, H. J., & Eysenck, S. G. B. (1965). The Eysenck Personality Inventory. British 

Journal of Educational Studies. https://doi.org/10.2307/3119050 

Perry, L. M., Hoerger, M., Molix, L. A., & Duberstein, P. R. (2020). A validation study of the Mini-

IPIP Five-Factor Personality Scale in adults with cancer. Journal of Personality Assessment, 

102(2), 153–163. https://doi.org/10.1080/00223891.2019.1644341 

Quirk, S. E., Berk, M., Chanen, A. M., Koivumaa-Honkanen, H., Brennan-Olsen, S. L., Pasco, J. A., 

& Williams, L. J. (2016). Population prevalence of personality disorder and associations 

with physical health comorbidities and health care service utilization: A review. Personality 

Disorders: Theory, Research, and Treatment, 7(2), 136–146. 

https://doi.org/10.1037/per0000148 

R Core Team. (2018). R: A Language and Environment for Statistical Computing. https://www.r-

project.org/ 

Rana, M., Gellrich, N.-C., Czens, F., Kanatas, A., & Rana, M. (2014). Coping with oral cancer: The 



79 

impact of health and disease-related personality traits. Supportive Care in Cancer, 22(11), 

2981–2986. https://doi.org/10.1007/s00520-014-2300-6 

Ranchor, A. V, Sanderman, R., Steptoe, A., Wardle, J., Miedema, I., & Ormel, J. (2002). Pre-

morbid predictors of psychological adjustment to cancer. Quality of Life Research, 11(2), 

101–113. https://doi.org/10.1023/A:1015053623843 

Rapoport, Y., Kreitler, S., Chaitchik, S., Algor, R., & Weissler, K. (1993). Psychosocial problems in 

head-and-neck cancer patients and their change with time since diagnosis. Annals of 

Oncology, 4(1), 69–73. http://www.ncbi.nlm.nih.gov/pubmed/8435366 

Revelle, W. (2015). Package “psych” - Procedures for psychological, psychometric and 

personality research. R Package. 

Reynolds, W. M. (1982). Development of reliable and valid short forms of the Marlowe Crowne 

Social Desirability scale. Journal of Clinical Psychology, 38(1), 119–125. 

https://doi.org/10.1002/1097-4679(198201)38:1<119::AID-JCLP2270380118>3.0.CO;2-I 

Riba, M. B., Donovan, K. A., Andersen, B., Braun, Ii., Breitbart, W. S., Brewer, B. W., Buchmann, 

L. O., Clark, M. M., Collins, M., Corbett, C., Fleishman, S., Garcia, S., Greenberg, D. B., 

Handzo, R. G. F., Hoofring, L., Huang, C. H., Lally, R., Martin, S., McGuffey, L., … Darlow, S. 

D. (2019). Distress Management, Version 3.2019, NCCN Clinical Practice Guidelines in 

Oncology. Journal of the National Comprehensive Cancer Network : JNCCN, 17(10), 1229–

1249. https://doi.org/10.6004/jnccn.2019.0048 

Richardson, A. E., Broadbent, E., & Morton, R. P. (2019). A systematic review of psychological 



80 

interventions for patients with head and neck cancer. Supportive Care in Cancer, 27(6), 

2007–2021. https://doi.org/10.1007/s00520-019-04768-3 

Roberts, B. W., Kuncel, N. R., Shiner, R., Caspi, A., & Goldberg, L. R. (2007). The power of 

personality: The comparative validity of personality traits, socioeconomic status, and 

cognitive ability for predicting important life outcomes. Perspectives on Psychological 

Science, 2(4), 313–345. https://doi.org/10.1111/j.1745-6916.2007.00047.x 

Rodriguez, T., Altieri, A., Chatenoud, L., Gallus, S., Bosetti, C., Negri, E., Franceschi, S., Levi, F., 

Talamini, R., & La Vecchia, C. (2004). Risk factors for oral and pharyngeal cancer in young 

adults. Oral Oncology, 40(2), 207–213. 

https://doi.org/10.1016/j.oraloncology.2003.08.014 

Rosseel, Y. (2012). Lavaan: An R package for structural equation modeling. Journal of Statistical 

Software, 48(2), 1–36. http://www.jstatsoft.org/v48/i02/ 

Rossi, G., Debast, I., & van Alphen, S. P. J. (2017). Measuring personality functioning in older 

adults: Construct validity of the Severity Indices of Personality Functioning–Short Form 

(SIPP-SF). Aging and Mental Health, 21(7), 703–711. 

https://doi.org/10.1080/13607863.2016.1154012 

Samuel, D. B., Hopwood, C. J., Krueger, R. F., Thomas, K. M., & Ruggero, C. J. (2013). Comparing 

methods for scoring personality disorder types using maladaptive traits in DSM-5. 

Assessment, 20(3), 353–361. https://doi.org/10.1177/1073191113486182 

Satin, J. R., Linden, W., & Phillips, M. J. (2009). Depression as a predictor of disease progression 



81 

and mortality in cancer patients. Cancer, 115(22), 5349–5361. 

https://doi.org/10.1002/cncr.24561 

Sharp, L., Redfearn, D., Timmons, A., Balfe, M., & Patterson, J. (2018). Posttraumatic growth in 

head and neck cancer survivors: Is it possible and what are the correlates? Psycho-

Oncology, 27(6), 1517–1523. https://doi.org/10.1002/pon.4682 

Sharpe, J. P., Martin, N. R., & Roth, K. A. (2011). Optimism and the Big Five factors of 

personality: Beyond neuroticism and extraversion. Personality and Individual Differences, 

51(8), 946–951. https://doi.org/10.1016/j.paid.2011.07.033 

Shimizu, K., Nakaya, N., Saito-Nakaya, K., Akechi, T., Ogawa, A., Fujisawa, D., Sone, T., Yoshiuchi, 

K., Goto, K., Iwasaki, M., Tsugane, S., & Uchitomi, Y. (2015). Personality traits and coping 

styles explain anxiety in lung cancer patients to a greater extent than other factors. 

Japanese Journal of Clinical Oncology, 45(5), 456–463. 

https://doi.org/10.1093/jjco/hyv024 

Smid, S. C., McNeish, D., Miočević, M., & van de Schoot, R. (2020). Bayesian versus Frequentist 

estimation for structural equation models in small sample contexts: A systematic review. 

Structural Equation Modeling: A Multidisciplinary Journal, 27(1), 131–161. 

https://doi.org/10.1080/10705511.2019.1577140 

Smith, T. W., & Spiro, A. (2002). Personality, health, and aging: Prolegomenon for the next 

generation. Journal of Research in Personality, 36(4), 363–394. 

https://doi.org/10.1016/S0092-6566(02)00014-4 



82 

Stan Development Team. (2019). Brief Guide to Stan’s Warnings. https://mc-

stan.org/misc/warnings.html#divergent-transitions-after-warmup 

Suzuki, T., Samuel, D. B., Pahlen, S., & Krueger, R. F. (2015). DSM-5 alternative personality 

disorder model traits as maladaptive extreme variants of the Five-Factor Model: An item-

response theory analysis. Journal of Abnormal Psychology, 124(2), 343–354. 

https://doi.org/10.1037/abn0000035 

Suzuki, T., South, S. C., Samuel, D. B., Wright, A. G. C., Yalch, M. M., Hopwood, C. J., & Thomas, 

K. M. (2019). Measurement Invariance of the DSM-5 section III pathological personality 

trait model across sex. Personality Disorders: Theory, Research, and Treatment, 10(2), 114–

122. https://doi.org/10.1037/per0000291 

Tabachnick, B. G., & Fidell, L. S. (2012). Using Multivariate Statistics (6th ed.). Pearson. 

Telles-Correia, D., Barbosa, A., Mega, I., Direitinho, M., Morbey, A., & Monteiro, E. (2008). 

Psychiatric differences between liver transplant candidates with familial amyloid 

polyneuropathy and those with alcoholic liver disease. Progress in Transplantation, 18(2), 

134–139. https://doi.org/10.7182/prtr.18.2.1xml5421646x0377 

U.S. Census Bureau QuickFacts: Orlando city, Florida. (2019). 

https://www.census.gov/quickfacts/fact/table/orlandocityflorida/INC110218#INC110218 

van Buuren, S. (2018). Flexible imputation of missing data, second edition. In Flexible 

Imputation of Missing Data, Second Edition. https://doi.org/10.1201/9780429492259 

Van Den Broeck, J., Bastiaansen, L., Rossi, G., Dierckx, E., & De Clercq, B. (2013). Age-neutrality 



83 

of the trait facets proposed for personality disorders in DSM-5: A DIFAS analysis of the PID-

5. Journal of Psychopathology and Behavioral Assessment, 35(4), 487–494. 

https://doi.org/10.1007/s10862-013-9364-3 

Van Der Steeg, A. F. W., De Vries, J., & Roukema, J. A. (2010). Anxious personality and breast 

cancer: Possible negative impact on quality of life after breast-conserving therapy. World 

Journal of Surgery, 34(7), 1453–1460. https://doi.org/10.1007/s00268-010-0526-0 

van Ginkel, J. R., Linting, M., Rippe, R. C. A., & van der Voort, A. (2019). Rebutting existing 

misconceptions about multiple imputation as a method for handling missing data. Journal 

of Personality Assessment, 102(3), 297–308. 

https://doi.org/10.1080/00223891.2018.1530680 

Verheul, R., & Widiger, T. A. (2004). A meta-analysis of the prevalence and usage of the 

Personality Disorder Not Otherwise Specified (PDNOS) diagnosis. Journal of Personality 

Disorders, 18(4), 309–319. https://doi.org/10.1521/pedi.2004.18.4.309 

Westland, J. C. (2015). Structural equation models: From paths to networks. In Structural 

equation models: From paths to networks. https://doi.org/10.1007/978-3-319-16507-3 

Widiger, T.A. (1993). The DSM-III-R categorical personality disorder diagnoses: A critique and an 

alternative. Psychological Inquiry, 4(2), 75–90. https://doi.org/10.1207/s15327965pli0402 

Widiger, T.A., Bach, B., Chmielewski, M., Clark, L. A., DeYoung, C., Hopwood, C. J., Kotov, R., 

Krueger, R. F., Miller, J. D., Morey, L. C., Mullins-Sweatt, S. N., Patrick, C. J., Pincus, A. L., 

Samuel, D. B., Sellbom, M., South, S. C., Tackett, J. L., Watson, D., Waugh, M. H., … 



84 

Thomas, K. M. (2019). Criterion A of the AMPD in HiTOP. Journal of Personality 

Assessment, 101(4), 345–355. https://doi.org/10.1080/00223891.2018.1465431 

Williams, C. (2017). Psychosocial distress and distress screening in multidisciplinary head and 

neck cancer treatment. Otolaryngologic Clinics of North America, 50(4), 807–823. 

https://doi.org/10.1016/j.otc.2017.04.002 

Zaorsky, N. G., Zhang, Y., Tuanquin, L., Bluethmann, S. M., Park, H. S., & Chinchilli, V. M. (2019). 

Suicide among cancer patients. Nature Communications, 10(1), 1–7. 

https://doi.org/10.1038/s41467-018-08170-1 

Zwahlen, D., Hagenbuch, N., Carley, M. I., Recklitis, C. J., & Buchi, S. (2008). Screening cancer 

patients’ families with the distress thermometer (DT): A validation study. Psycho-Oncology. 

https://doi.org/10.1002/pon.1320 

Zyphur, M. J., & Oswald, F. L. (2015). Bayesian estimation and inference. Journal of 

Management, 41(2), 390–420. https://doi.org/10.1177/0149206313501200 

 


	Maladaptive Personality Traits and Acute Psychological Distress in Individuals with Head and Neck Cancer
	STARS Citation

	Abstract
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Psychosocial and health correlates of psychosocial distress in cancer treatment
	Personality pathology as a risk factor for psychological distress in cancer treatment

	METHODS
	Participants
	Measures
	Procedures
	Statistical methods

	RESULTS
	DISCUSSION
	Conclusion

	APPENDIX A: FIGURES AND TABLES
	APPENDIX B: IRB APPROVAL LETTERS
	REFERENCES

