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ABSTRACT 

Categorization is an essential survival skill that we engage in daily. A multitude of behavioral 

and neuropsychological evidence support the existence of multiple learning systems involved in 

category learning. COmpetition between Verbal and Implicit Systems (COVIS) theory provides 

a neuropsychological basis for the existence of an explicit and implicit learning system involved 

in the learning of category rules. COVIS provides a convincing account of asymptotic 

performance in human category learning. However, COVIS – and virtually all current theories of 

category learning – focus solely on categories and decision environments that remain stationary 

over time. However, our environment is dynamic, and we often need to adapt our decision 

making to account for environmental or categorical changes. Machine learning addresses this 

significant challenge through what is termed concept drift. Concept drift occurs any time a data 

distribution changes over time. This dissertation draws from two key characteristics of concept 

drift in machine learning known to impact the performance of learning models, and in-so-doing 

provides the first systematic exploration of concept drift (i.e., categorical change) in human 

perceptual category learning. Four experiments, each including one key change parameter 

(category base-rates, payoffs, or category structure [RB/II]), investigated the effect of rate of 

change (abrupt, gradual) and awareness of change (foretold or not) on decision criterion 

adaptation. Critically, Experiments 3 and 4 evaluated differences in categorical adaptation within 

explicit and implicit category learning tasks to determine if rate and awareness of change 

moderated any learning system differences. The results of these experiments inform current 

category learning theory and provide information for machine learning models of decision 

support in non-stationary environments. 
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CHAPTER 1: INTRODUCTION 

Lucretius, a Roman poet and philosopher, once said, “The only constant in life is 

change”. Change is expected in the dynamic environments in which humans live, learn, and 

interact. Consider the field of medicine.  Both the context in which diseases are diagnosed and 

treated, as well as the diseases themselves, are non-stationary. The introduction of new 

technologies changes our understanding of diagnosis and treatment. In addition, the 

characteristic symptoms and signs of a disease may evolve over time (e.g., symptoms of 

Parkinson’s Disease are varied – from symptoms affecting one’s ability to move, to pain, loss of 

the sense of smell, and dementia. These symptoms tend to change slowly over time, and new 

symptoms can suddenly surface; Ratini, 2017). Disease frequencies rise and fall through the 

seasons and years. The resources available to diagnose and treat disease, and the costs and 

benefits of diagnoses can change as the severity of the disease shifts. As a result, diagnostician 

training must include the training of a flexible learning process that is able to adapt to change in 

complex environments. To train proficient, adaptable diagnosticians, a thorough understanding 

of the characteristic influence of non-stationarity on the learning process is needed.        

 Non-stationarity has been extensively studied in machine learning via the idea of 

“concept drift”: a phenomenon describing change in the statistical properties of a target concept. 

Concept drift is an important challenge in machine learning, and there have been many efforts to 

characterize the ways in which concept drift can undermine the predictive accuracy of models. 

Concept drift characterizations have yet to be applied to human categorization, where the notion 

of categorical change is only beginning to be explored. The question of how humans detect 

and/or adapt to categorical change has important applications both for informing categorization 
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theory and machine learning models of concept drift. This dissertation intends to systematically 

explore the influence of non-stationarity on human perceptual category learning with inspiration 

from key concept drift characterizations in machine learning. 

Statement of the Problem 

 How do humans react to categorical change in a perceptual category learning task? 

Categories can change in any number of ways: from a change in decisional variables (the relative 

frequencies of the categories or the relative costs and benefits of classification) to a structural or 

sampling change in the features of categories. Additionally, this change can occur abruptly (from 

one trial to the next) or gradually (incrementally over a longer series of trials), and learners can 

be made aware of the change before it occurs or be left to discover it on their own. While there is 

some evidence for the fluent adaptation of humans to environmental change (Franks & Hicks, 

2016; Schertz, Cho, Lotto, & Warner, 2016), there are also many cases of maladaptation 

(Ackermann & Landy, 2015; Norton, Fleming, Daw, & Landy, 2017). The question remains as 

to what types of change humans can readily adapt to, and if adaptation requires initial conscious 

detection of the change to succeed. 

Purpose of the Research 

 The purpose of this research is to systemically explore and characterize the influence of 

categorical change in human perceptual category learning. This research will explore three 

characteristics of categorical drift – type, rate, and awareness of change – each drawn from 

primary concept drift distinctions in machine learning. This research will lead to a more 

comprehensive understanding of change detection and adaptation in human categorization, 

filling in a few important gaps in the literature regarding transfer and generalization of category 

learning. 
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Significance of the Research 

 Concept drift is an important challenge in machine learning (Ditzler, Roveri, Alippi, & 

Polikar, 2015; Gama, Medas, & Rodrigues, 2004; Tsymbal, 2004; I. Žliobaitė, 2010). However, 

concept drift is not restricted to machine learning contexts; natural categories and environments 

are also vulnerable to sources of change (Helie, Ell, Filoteo, & Maddox, 2015; Summerfield, 

Behrens, & Koechlin, 2011). For example, radiologists make decisions about the classification of 

tumors (i.e., is additional testing needed to determine whether a tumor is malignant?). These 

decision environments are dynamic with potential changes in the patient population, x-ray 

clarity, or costs and benefits over time (Brown & Steyvers, 2005). Despite the possibility for 

categories to change, almost all category learning research uses stationary categories and 

stationary statistical properties (Bohil & Maddox, 2003; Helie et al., 2015; Maddox & Bohil, 

1998).  

Extending our knowledge of category learning into nonstationary contexts may help 

further refine theories of categorization. For example, categorization theories that propose 

separate learning systems in the brain suggest differential performance dependent on the primary 

learning system engaged (Ashby, Alfonso-Reese, & Waldron, 1998; Erickson & Kruschke, 

1998; Nosofsky, Palmeri, & McKinley, 1994). A thorough exploration of categorical change in 

human perceptual category learning should provide evidence for the single vs. multiple systems 

debate in categorization, further informing theory regarding the process in which novel 

categories are learned. In addition, this research should inform machine learning models that can 

gain from a better understanding of human cognitive functioning amid change, providing 

insights for enhancing decision aids for non-stationary environments. 
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Theoretical Perspective 

 The overarching theoretical perspective for the current research is one of criterion 

learning in perceptual classification. In classification, observers first learn the rule that 

discriminates between two or more categories. This comes down to determining the appropriate 

dimension or dimensions of interest (e.g., categorize lines according to their orientation while 

length of the lines can be ignored). Once the appropriate rule is learned, the observer must learn 

how to group categories using the appropriate dimension(s) (e.g., acute vs. obtuse angles). With 

one-dimensional stimuli, the dimension of interest is obvious and the process of setting a 

criterion equates to the classic signal detection task (Green & Swets, 1966; Macmillan & 

Creelman, 2004; Wickens, 2001) with the criterion corresponding to signal detection beta (β). 

With two-dimensional (or higher dimension) stimuli, criterion setting can be viewed from a 

multidimensional extension of signal detection theory. General Recognition Theory (GRT; 

Ashby & Townsend, 1986) is an extension of signal detection theory (SDT) into 

multidimensional perceptual space. GRT assumes that observers set a decision criterion that 

separates the perceptual space into separate response regions; an observer responds “category A” 

if the percept of a stimulus falls on one side of the criterion and “category B” if it falls on the 

other. Learning in the context of this theoretical perspective then comes down to how well 

observers can shift their decision criteria to maximize performance (i.e., accuracy or reward) in 

light of categorical changes. 

 The current research is also informed by the theoretical perspective of COVIS – a 

neuropsychological theory of categorization called COmpetition between Verbal and Implicit 

Systems (Ashby et al., 1998). COVIS provides a neuropsychological interpretation to general 

recognition theory by postulating that there are two separate learning systems involved in 
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category learning. The explicit learning system learns easily verbalizable rules through conscious 

hypothesis testing and is mediated by the prefrontal cortex. The implicit learning system, guided 

by procedural learning, learns rules that are difficult to verbalize and typically require an 

integration of stimulus dimensions at a pre-decisional (i.e., perceptual) stage. The implicit 

learning system is mediated by the basal ganglia and is guided by the release of dopamine 

through immediate feedback (Ashby, Paul, & Maddox, 2011). COVIS provides a foundation 

through which to assess any differences in change performance dependent on the primary 

learning system engaged.  

Research Method 

 In the present research, concept drift in human categorization is studied through 

perceptual category learning tasks in which observers learn novel categories by completing a 

series of training blocks. This design enables one to evaluate how novel categories are 

represented by observers who have no previous experience with the artificial categories. Mid-

way through the experiment, one aspect of the categorization task changes (category base-rates, 

payoffs, or category structure [means]). Primary performance measures include accuracy 

(reward) and criterion values (β from SDT or GRT modeling), with an emphasis on the 

immediate and long-term effects of change. The immediate effect of change on performance is 

analyzed by comparing performance on the first block after change to the last block before 

change. The long-term effects of change on performance are analyzed by comparing 

performance on the final block of the experiment to performance on the first block of trials 

following the change. These measures are compared within different types of change (base-rate, 

payoff, category structure), and across factorial conditions of rate of change (abrupt, gradual), 

and awareness of change (alerted, discovered). GRT Models are also applied to observers’ data 
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to get a better sense of the strategies people use to adapt to change and the relative timing in 

which criterion shifting occurs. 

Definition of Key Terms 

Concept drift: In machine learning, concept drift occurs when there is a change in the statistical 

properties of a target concept within a data stream that require a change in decision criteria and 

sometimes imply a change in category boundary.  

Non-stationarity: Non-stationarity describes a process or state that is not stationary but rather 

changes in some way(s) over time.  

Type of change: Changes can occur in any number of aspects of a data stream (in machine 

learning) or perceptual category (in human classification). Changes might occur in the base-rate 

presence of a category, in the costs or benefits associated with classification, or in the category 

structure/features. 

Virtual concept drift: This type of drift occurs when a data distribution changes without changing 

the posterior distribution. Data distribution changes can include changes in category base-rates, 

payoffs, or distributions of the categories. When virtual concept drift occurs, the learning model 

must be retrained to adequately classify the data (Hoens, Polikar, & Chawla, 2012; Widmer & 

Kubat, 1993). While virtual concept drift does not change category boundaries, it does impact 

the optimal decision criterion. 

Rate of change: Rate of change, in this dissertation, refers to the length of time it takes in full for 

a parameter to change from its starting value to its ending value (i.e., the parameter of the task 

that is non-stationary). Here, only incremental rates of change are considered – ones that change 

in equal increments at each time step in-between the starting and ending values. 
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Awareness of change: Awareness of change refers to whether the learner is made aware of the 

impending change to the data stream or perceptual category (i.e., alerted) or whether that learner 

must figure out that something has changed on his or her own (i.e., discovered). It is possible that 

discover conditions may never be better than alerting; but a lack of a difference between the two 

provides useful information about what is required for adaptation. 

Expected uncertainty: Expected uncertainty is uncertainty that is known to be present in 

predictions. In other words, it is the type of uncertainty that one expects in a familiar 

environment due to unreliability of predictive cues (Yu & Dayan, 2005). 

Unexpected uncertainty: Unexpected uncertainty arises when sensory observations deviate 

significantly from top-down expectations in an environment. In other words, a context change 

occurs that signals strongly unexpected observations, thereby alerting the individual that the 

context has changed (Yu & Dayan, 2005). However, unexpected outcomes can also be the result 

of persistent environmental stochasticity rather than a context change (Nassar, Wilson, Heasly, & 

Gold, 2010). 

Base-rates: The relative frequency of categories (i.e., a priori probability). 

Payoffs: The relative benefits and costs of correct and incorrect responses. Payoffs are often 

expressed in terms of a payoff matrix showing point values for the possible outcomes (e.g., in a 

two-alternative forced choice scenario, payoff matrices include point values for hits, false 

alarms, correct rejections, and misses). 

Decision Criterion: The assumed cutoff value a person uses in deciding between one category 

and another. Decision criteria are dependent on category base-rates and payoffs. Decision criteria 

are typically modeled in signal detection theory as response bias (β). 
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Delimitations 

The present work considers human perceptual category learning of novel categories by 

novice observers. Therefore, it does not consider learning of non-human animals, human concept 

learning (e.g., the learning of abstract concepts such as morality or justice), expert performance, 

or well-established categories (Ashby & Maddox, 2005). What it does is help to fill in the 

research gaps related to the transfer of category knowledge and the detection and adaptation of 

categorical change. This research provides systematic manipulation of variables such as 

awareness of change, rate of change, and the primary learning system (implicit, explicit) 

involved. This research shows people’s ability to adjust their decision rule in response to change, 

which relies on a change in decision criterion rather than a change in perceptual representation. 

The manipulation of category structure may, however, provide some insight into the flexibility of 

category rule representation with changes in perceptual aspects of a category.  

Limitations of the Research 

 This research is limited to use of a convenience sample of undergraduate students from 

the University of Central Florida and members of the surrounding community. Participants 

received no form of compensation beyond class credit. Because performance was not rewarded 

by any form of (additional) compensation, few/more conservative criterion changes could result 

if participant motivation was low. However, previous criterion learning research has been 

successful without monetary compensation (Brown & Steyvers, 2009; Helie et al., 2015; Wismer 

& Bohil, 2017). The stimuli used in the different experiments were low-dimensional, artificial 

stimuli that can be conceived of as non-interesting by participants. In addition, several aspects of 

concept drift and non-stationarity were left unexplored; for example, multi-variable change (e.g., 

base-rates and category structure together) or multiple and/or recurring changes. 
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Summary 

 Categorical change is an important topic not only in machine learning, but also in human 

learning. Ambiguous perceptual categories, such as those represented by tumors on x-rays or 

unsafe items in baggage screening, can shift over time. The frequency of high-profile items may 

increase during a period of time, or screeners may be warned to be less conservative in selecting 

bags to search individually. Changes to base-rates or payoffs shift category representations, 

changing the optimal decision strategy in cases of ambiguity. Even categories themselves can 

change, such as when the evolution of technology results in new representations of x-ray images, 

or when diseases take on new symptom profiles over time. Category non-stationarity is an under-

researched but important area of study that can benefit from systematic application of concept 

drift characterizations from machine learning.  
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CHAPTER 2: LITERATURE REVIEW 

 The notion of concept drift is derived from machine learning classification. An 

abundance of research has investigated the best methods to handle different types of concept drift 

in data streams. These findings will be reviewed in the next section. Then, the current state of 

human category learning will be addressed, highlighting the predominant focus on a dual 

systems approach. Finally, key characteristics of concept drift in machine learning will be 

discussed for their application to human category learning, with a review of the sparse human 

category learning literature relevant to the selected characteristics of concept drift. This literature 

review will identify the primary gaps in our understanding of categorical change and accordingly 

end by describing the ways in which this dissertation aims to fill some of these research gaps.  

Machine Learning and Concept Drift 

Within the past 10-15 years, researchers have paid increased attention to the issue of 

drifting concepts in machine learning and predictive analytics (Ditzler et al., 2015; Indrė 

Žliobaitė, Pechenizkiy, & Gama, 2016). In these fields, researchers apply predictive models to 

datasets in an effort to reliably predict the value of some target variable. For example, one 

common use of learning algorithms is to understand and predict user preference for a website or 

service. Recommendation systems try to determine what a user will find interesting by building a 

user interest profile from an initial learning experiment. In typical applications, a learning 

algorithm is trained on a large set of past, historical data (i.e., training data) on user preferences 

and choices, and the model is then applied to novel information (i.e., test data) to predict if a user 

will find a particular item interesting (Webb, Pazzani, & Billsus, 2001). That is, the model is a 

classifier (it is essentially a model of the human’s classification tendencies – it classifies 
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“interesting things” and “non-interesting things”). Many different forms of learning algorithms 

exist that can, with a small degree of error, successfully make these predictions.  

 A primary challenge to the performance of these predictive models is the fact that target 

variables (such as user preferences) are fluid and prone to change (Webb et al., 2001). For 

instance, although someone may have always preferred Ford vehicles in the past, a positive 

experience with a Honda rental car on vacation may lead to an increased preference for Honda 

vehicles. As a second example, a model may be able to predict with high accuracy the brand of a 

car given a set of inputs describing its features (e.g., high MPG, specific safety features, etc.), but 

if new car models are released with a different set of standard features, the model would need to 

be retrained in order to maintain predictive accuracy. Thus, in order to minimize prediction error 

when data distributions can change, learning algorithms must incorporate the possibility of non-

stationarity. In fact, it is not only concept membership change but also change in decisional 

factors that are included in concept drift (e.g., the availability of Honda vs. Ford rental vehicles - 

or the cost of selecting a rental vehicle that is not desirable – either of which may change over 

time). 

 This problem of non-stationary data distributions is termed the problem of “concept 

drift”. Most recently, a concept has been given a probabilistic definition based on Bayes’ 

Theorem (Webb, Hyde, Cao, Nguyen, & Petitjean, 2016). A concept involves the prior class 

probabilities (i.e., concept base-rate), P(Y), and class conditional probabilities (i.e., probability of 

feature X given concept Y), P(X|Y). The joint distribution P(X,Y) is determined by P(Y) and 

P(X|Y); therefore a concept = P(X,Y). Because concept drift emphasizes the idea that 

distributions can change over time, a concept is identified with a timestamp as Pt(X, Y) to denote 

the concept definition at time t (Webb et al., 2016). Concept drift occurs when a concept Pt(X,Y) 
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does not equal Pu(X,Y) - the concept at a new point in time. The probabilistic definition of 

concept drift motivates the investigation of different types of concept drift explored in this 

dissertation, which will be detailed in later sections.  

Approaches 

There are two primary approaches to dealing with the issue of concept drift: active and 

passive learning. In active learning approaches, learning models are created from past, historical 

data. These same (unaltered) models are applied to classify new inputs without changing any 

model parameters. Only if a “change detection” mechanism in the algorithm determines that 

concept drift is present/has occurred does the algorithm employ an adaptation mechanism. 

Otherwise, the same model is used to classify new inputs. During the adaptation mechanism is 

employed, the model either updates itself based on inspected features from the data or the 

classification errors, or it rebuilds itself; but this only occurs when change is detected. This 

method may be thought of as “detect and react” (Ditzler et al., 2015). Examples of active 

approaches include hypothesis tests, change-point methods, sequential hypotheses tests, and 

change-detection tasks. More details about these techniques can be found in Ditzler et al. (2015) 

or I. Žliobaitė (2010).  

Alternatively, passive learning approaches do not depend on the detection of concept 

drift. Instead, model parameters are continually updated with each new data input, allowing 

concept drift to automatically revise model parameters. Passive approaches can help to avoid 

misses or false alarms (that are more likely in an active approach) by maintaining an up-to-date 

model at all times. Methods for passive approaches typically fall under single classifier models 

or ensemble classifier models. Again, more details regarding these techniques can be found in 

Ditzler et al. (2015) or I. Žliobaitė (2010). 
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 By nature of the adaptation process (detect then react, vs. continual adaptation), active 

and passive approaches differ in their ability to handle changes of different time courses. Active 

approaches, with their requirement of change detection before adaptation, tend to perform best in 

environments with abrupt changes that occur quickly from one data or time point to the next. 

Passive approaches, given their nature of continuously adapting to each new input, perform best 

in environments with more gradual, slower changes. Active approaches have a harder time 

recognizing change that occurs more slowly over a gradual period of time (thus never triggering 

a change in model parameters or triggering after an extended time period), while passive 

approaches can give too much weight to outliers and inputs that are highly variable (Ditzler et 

al., 2015). 

  In machine learning, it is possible for both active and passive approaches to be 

successful in application. However, characteristics of the particular application can drive the 

choice of approach style. Depending on dynamics of the learning scenario such as magnitude, 

rate of change, or computational resources available, one approach tends to be preferable. Active 

approaches tend to do slightly better with higher magnitude, abrupt changes (that more easily 

trigger a major change to model parameters) while passive approaches can better handle more 

slowly changing parameters through continual parameter updating (Ditzler et al., 2015). 

However, both active and passive approaches can handle changes of different magnitude and 

rates fairly well as a whole. 

Characterizations 

One distinction commonly made in machine learning is the division between “real” and 

“virtual” concept drift. In general, researchers posit real concept drift occurs when a change takes 

place in the actual class boundary between concepts, resulting in a change in the posterior 
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probability [p(C|X), the probability of concept C given feature X] of a concept (Webb et al., 

2016). Virtual concept drift, on the other hand, is given different definitions in the literature. 

Most often, virtual concept drift is said to occur when a concept appears to be changing, but it is 

only due to a change in the frequency (i.e., base-rate) of features or classes themselves, without a 

change in the likelihood of feature X given target concept C (Webb et al., 2016). To facilitate 

translation to human category learning, virtual concept drift in this dissertation is taken to 

include any change that results in a shift in the optimal decision criterion (as opposed to shift in 

class boundaries which would occur when actual category structure changes). It is when 

perceptual sensitivity of categories is low that virtual concept drift drives critical changes in 

response strategies. An example of virtual concept drift is when the definition of breast cancer 

remains unchanged (the underlying etiology and symptoms), but the frequency of people with 

breast cancer in a population increases or decreases driving a new for a shift in response strategy. 

 The difference in proposed definitions of virtual concept drift exemplifies the common 

critique that many researchers rely too strongly on qualitative distinctions of concept drift that 

vary widely between researchers. For this reason, there has been a strong push in recent years to 

establish quantitative measures of concept drift that can be universally applied to different 

domains in which concept drift might be expected. For example, Webb et al. (2016) highlight 

that concept drift definitions tend to be qualitative, vague, and inconsistent. To this end, they 

argue that quantitative measures of concept drift are necessary to fully understand the problem of 

concept drift in non-stationary distributions and enable comparison across concept drift research. 

Webb et al. (2016) provide a taxonomy of key quantitative measures of concept drift. The 

authors’ definitions are embedded in the framework of data stream classification; however, they 
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are intended to apply much more broadly, and they apply particularly well to human category 

learning.  

 These quantitative measures include magnitude, duration, path length, and rate of drift. 

1. Magnitude = D(t, u); the distance between old and new concepts, where t and u are the 

two time points and D is the distance between them. 

2. Duration = u – t; length of time over which drift occurs. 

3. Path Length = cumulative deviation during the period of a drift (for path length formula, 

see Webb et al., 2016). For example, the “gradual” path in Figure 1 below has a longer 

path length than the “sudden” path. Path length incorporates elements of the duration and 

magnitude of drift, and increases with drift that “gradually” shifts between two concepts 

before settling on the new concept. 

4. Average drift rate = PathLent,u/(u-t); average rate at which the distribution is changing at 

time t. 

Webb et al. (2016) choose not to specify the particular distance function for the magnitude 

calculation because they believe this function varies by domain. The remaining quantitative 

measures of concept drift follow from the choice of distance function regarding change 

magnitude.  

  

 

Figure 1. Different patterns of change in data distributions. Outlier is not concept drift.  
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 From the literature on concept drift in machine learning, two common themes/variables 

can be seen: 1) The type of concept drift can be described by which component of the formula 

changes (e.g., base-rate of the concept), 2) the optimal approach to handling concept drift (active 

vs. passive) largely depends on characteristics of the change such as the rate of change (i.e., 

abrupt vs. gradual). The themes stemming from this literature review raise the question of 

potential similarities between machine and human learning in the presence of concept drift. Do 

these same concept drift distinctions matter in human learning, and if so, will they shed light on 

the different approaches by which humans adapt to changing categories/decision parameters? 

Human Category Learning 

 Was that sound a gunshot or a car backfire? Is this snake poisonous or not? Is it safe or 

unsafe to merge lanes now? All animals – human and non-human – assign objects and events in 

the environment to separate categories or equivalence classes. The partitioning of objects into 

separate categories allows for distinct responses to be made. If the sound was a gunshot, I need 

to get to a safe place as quickly as possible. If the sound was car backfire, then I do not need to 

worry about it. The ability to successfully categorize environmental objects and events is an 

essential survival skill (Ashby & Maddox, 2005).  

 Given the crucial role categorization plays in everyday life, it is no surprise there exists a 

vast and wide literature on the processes underlying category learning (Ashby & Maddox, 2005). 

However, almost all research has focused on stationary categories in stationary environments 

with unchanging statistics (e.g., Bohil & Maddox, 2003; Helie et al., 2015; Maddox & Bohil, 

1998). While such methods have broadened our understanding of the processes involved in 

category learning, they do not help explain a lot of the types of category learning that occur in 

the environment. Categories are not learned in a vacuum outside of all environmental influences. 
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Rather, category learning occurs in environments prone to change, and this change has an effect 

on an organism’s adaptation to survive.   

 Take the example of classifying a vehicle merging situation as safe or unsafe. The 

appropriate speed one drives at and distance behind the next car change in accordance with 

changes in the weather. What classifies as a “safe” speed in sunny weather is different than in 

rainy or snowy weather, for example. Therefore, a southerner who tries to drive in a northern 

state for the first time will have to transfer his or her knowledge to match the shifted conditions 

regarding safe and unsafe speeds/distances. Situations such as these that are prone to change 

from any number of variables exemplify the need for us to understand the processes by which 

humans can adapt to changing conditions. (Note: this type of scenario also reflects the need for 

an individual to select the appropriately matched rule to situation. That is, a person may have 

learned the appropriate definitions of safe driving distances in both sunny and rainy weather, but 

needs to appropriately apply this knowledge in each context. As a beautiful, sunny day slowly 

shifts into a drizzle, rain, and then torrential down-pour, drivers need to increase their following 

distance and decrease driving speed over time). 

 Before delving any deeper into the nature of non-stationary category learning, some 

boundary conditions for the type of category learning that is being discussed must be delineated. 

There are three primary restrictions to the scope of the present work. First, this work is restricted 

to human category learning only and will not consider non-human animals. Second, since the 

interest is in the learning of categories, the current work will involve novices with no experience 

with the categories prior to the experiment so that these observers might be trained to asymptotic 

performance.  As such, this type of category learning involves the learning of new – never-

before-learned – categories, rather than the integration of new information into previously 
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learned categories. Finally, categorization can encompass a variety of things, but the scope of the 

current work will be limited to perceptual category learning rather than abstract concepts. By 

this, I mean the type of categorization required to classify, for example, different varieties of skin 

moles (items that have observable perceptual features) rather than the ability to classify an item 

as “interesting” or “non-interesting” (Ashby & Maddox, 2005). These restrictions are necessary 

for the impact of this work. 

Single System Theories 

 A primary distinction within category learning theories is the division between single and 

multiple systems of learning. Two of the most popular single system theories are Exemplar 

(Medin & Schaffer, 1978; Nosofsky, 1987) and Prototype Theory (Homa, Sterling, & Trepel, 

1981; Posner & Keele, 1968). Exemplar theory states that people compare an item to all category 

exemplars held in memory and respond with the category to which a new item is most similar. 

Prototype theory is similar but instead says that people only hold the “prototype” or average 

category member in memory and compare each new item to this prototype to determine category 

membership. Within human perceptual category learning, single system theorists, such as 

Exemplar and Prototype Theory, propose that one system can account for the host of category 

learning phenomena that research uncovers (Nosofsky & Johansen, 2000; Nosofsky & Zaki, 

1998; Poldrack, Selco, Field, & Cohen, 1999). That is, only one system is required to learn all 

types of categories (e.g., based on individual memories for experienced category instances). 

Multiple Systems 

The debate between single and multiple-systems of category learning stems from a 

broader debate within cognitive science, where the majority viewpoint is that of multiple-

systems of memory/learning. Indeed, many categorization researchers have posited a role of 
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distinct learning systems, engaged to varying degrees in different circumstances (Ashby et al., 

1998; Erickson & Kruschke, 1998; Nosofsky et al., 1994), with further support from 

neuroscience (Ashby et al., 1998; Poldrack & Foerde, 2008; Smith & Grossman, 2008) and 

decision research (Kahneman, 2011). As a whole, burgeoning evidence has been given for the 

existence of multiple, qualitatively distinct, processes of category learning (i.e., multiple learning 

processes). At this point, the prominence of multiple systems far outweighs single system 

theories, although single system theories still provide an impetus for much of the current 

research in category learning (Ashby & Ell, 2002).   

 COVIS (COmpetition between Verbal and Implicit Systems) is one prominent theory of 

multiple category learning systems. COVIS is a neuropsychological theory of category learning 

that posits competition between separate learning systems – an active explicit learning system 

and a more passive implicit learning system. Ashby et al. (2011) claim COVIS is the only 

categorization theory rooted in neuroscience linking processes to distinct physical structures in 

the brain, and it is assumedly still the case today. The explicit learning system is believed to be 

mediated by the prefrontal cortex and is associated with verbalizable rules relying on working 

memory. For example, the rule “If it is tall it is a tree; if it is short it is a bush” is a verbalizable 

category rule learned by the explicit system. Category learning usually (but not always) begins 

with the explicit system attempting to find a verbalizable rule to describe the categories. When it 

consistently fails, the implicit system begins to dominate responding. The implicit learning 

system, mediated by subcortical structures (e.g., the dopamine-reward learning system in the 

basal ganglia) slowly learns stimulus-response associations over time. Implicit learning is 

believed to be based on procedural learning, meaning people learn a response generation 

procedure without accessing any exemplar memories during categorization (Ashby et al., 1998). 
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Implicit rules can be learned; however, they are typically non-verbalizable or, at least, quite 

difficult to verbalize (such as when one needs to integrate two or more dimensions that are 

typically difficult to verbalize). COVIS posits that there is competition between learning systems 

until one system does well and begins to determine most responses (Ashby & Maddox, 2005). 

 COVIS is only one multiple systems theory of category learning (see also ATRIUM; 

Erickson & Kruschke, 1998), but it does well to describe asymptotic categorization performance 

(Ashby et al., 1998). Multiple systems theories have been compared against the longstanding 

single system theories of Exemplar and Prototype theory. COVIS (and other decision bound 

theories) differ from Exemplar and Prototype in that COVIS posits people gradually learn to 

associate responses with select regions of perceptual space and respond deterministically (i.e., 

rule-based), while single system theories involve similarity comparisons of new stimuli to 

previous ones (Ashby et al., 2011). 

The COVIS Framework 

COVIS provides a valuable framework for investigating the influence of non-stationarity 

in human category learning. The explicit and implicit learning systems (akin to the 

conscious/unconscious explicit/implicit memory systems) parallel the active and passive 

approaches in machine learning, respectively. Explicit learning involves more active hypothesis 

testing and searching for a verbalizable rule. Implicit learning, based in procedural learning, is 

believed to involve learning to associate responses with regions of perceptual/psychological 

space (i.e., stimulus-response association), thus corresponding to a continually adapting 

“passive” approach in machine learning. Explicit and implicit category structures result in 

qualitatively different performance in many cases, and along with changes in decisional variables 
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(e.g., base-rates and payoffs), provide a platform by which to explore the effects of different 

types of concept drift on human perceptual category learning.  

Review of Related Research 

Base-rates and Payoffs 

Decisional components of category learning have an extensive research history in 

stationary conditions (Maddox & Bohil, 1998, 2000, 2001; Wismer & Bohil, 2017). Two 

decisional components of categorization that play a vital role in maximizing reward and/or 

accuracy of classification are base-rates and payoffs. Base-rates are the relative frequencies of 

each category and can be described as a ratio. For example, a two-category situation in which 

category A is 3 times as likely as category B would have a base-rate ratio of 3:1. Payoffs 

describe the costs and benefits of correct and incorrect classification. Benefits include correctly 

classifying Category A or Category B. Costs involve the negative outcomes of incorrectly saying 

Category A when Category B was presented, or saying Category B when Category A was 

presented. Payoffs are usually manipulated via points summarized in a payoff matrix. For 

example, the payoff matrix [3 -1; -1 3] means that correct classifications for either category 

result in 3 points, while incorrect classifications result in the subtraction of a point. Both base-

rate and payoff changes shift the optimal decision bound between categories (and may be 

considered a source of virtual concept drift).  

Observer performance in categorization studies is often compared to that of a 

hypothetical “optimal classifier” who, through perfect knowledge of the category distributions 

and parameters, is able to maximize long-run reward (Maddox & Bohil, 2003). The optimal 

classifier follows the “optimal decision function” comparing the likelihoods of two category 

distributions via the formula: Lox = F(x|B)/F(x|A), where F(x|i) denotes the likelihood of a 
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particular stimulus given category i. When the resulting ratio is greater than 1, the stimulus is 

most likely to come from category B. When the resulting ratio is less than 1, the stimulus is most 

likely to come from category A. However, the optimal classifier not only has perfect knowledge 

of category distributions but also of category base-rates and the payoffs (i.e., benefits) associated 

with the categories (Because the present work does not include costs, these values are excluded 

from the present discussion). This decisional information forms the optimal decision criterion, 

represented as: βo = [P(A)/P(B)] x (VaA/VbB), where category probabilities (i.e., base-rates) are 

represented by P(A) and P(B), and VaA and VbB represent payoff values associated with correct 

responses. Finally, the output of these two formulas form the optimal decision rule, whereby the 

optimal classifier responds with category B when the lo(x) is greater than βo, otherwise it 

responds category A. The optimal decision rule highlights two important points related to base-

rates and payoffs: 1) When P(A)VaA = P(B)VbB, the optimal decision is based solely on the 

category likelihoods, and 2) when base-rates and payoffs are manipulated independently (i.e., 

only one of the two is manipulated in a block of trials) equivalent ratios result in equivalent 

optimal decision criterions. 

The bulk of research related to base-rates and payoffs in category learning involves 

stationary conditions, or at the most, category training with equal base-rates/payoffs followed by 

an explicit change to evaluate base-rate or payoff sensitivity in terms of criterion placement (e.g., 

see Bohil & Wismer, 2015). The literature reveals that criterion placement is closer to optimal 

for base-rates than for payoffs (Bohil & Maddox, 2001). An explanation for this is provided by 

the Competition between Reward and Accuracy (COBRA) hypothesis (Maddox & Bohil, 2004). 

This hypothesis states that observers strive to balance reward and accuracy in category learning. 

When only base-rates change, a criterion shift can maximize reward and accuracy at the same 
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time. However, when payoffs are asymmetric, an observer must learn to sacrifice some amount 

of accuracy to maximize reward. This is typically difficult to do because of the competing goals 

of accuracy and reward maximization. Because of this, observers typically adjust their criterion 

closer to the optimal decision bound in base-rate conditions as opposed to payoff conditions. In 

general, criterion shifting is possible; in the case of both asymmetric base-rates and payoffs, 

observers typically shift the criterion in the right direction but they do not shift as far as the 

optimal decision bound (see Figure 9 in Chapter 3). This phenomenon has been termed  

conservative cutoff placement (Green & Swets, 1966; Maddox, 1995).  

Purposeful evaluation of adaptation to changing base-rates or payoffs is scarce in the 

literature. Gifford, Cohen, and Stocker (2014) provided an evaluation of auditory categorization 

with varying category base-rates. The category base-rate ratio changed between blocks, 

randomly, from 1:1, 1:3, or 3:1 to one of the other base-rate ratios. Thus, this change occurred 

abruptly, and participants were left to discover the base-rate differences on their own (i.e., no 

explicit instructions given to alert individual to change). The authors found that participants 

learned the base-rates relatively quickly and used them to improve categorization. However, they 

analyzed performance from a different (Bayesian) perspective, making comparisons to a decision 

bound perspective difficult. Nonetheless, their results suggest participants might have been using 

a strategy that assumed non-stationary category base-rates and that participants based their base-

rate estimates on only a recent number of trials. Still, Gifford et al. (2014) did not vary base-rates 

to look at base-rate change in particular but simply to assess general auditory categorization 

ability. This pattern holds true in other category learning studies that varied base-rates only 

abruptly between blocks of trials and the manipulation was not intended to evaluate the issue of 

virtual concept drift (e.g., Maddox & Bohil, 1998; Wismer & Bohil, 2017). 
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Much of the remaining related literature on base-rate and payoff changes comes from the 

decision making, recognition memory, and vigilance literatures. For example, Kantner, Vettel, 

and Miller (2015) tested recognition memory criterion shifts. Setting old-new discrimination at 

near chance level (i.e., similar to a low category discriminability), they tested criterion change to 

changes in base-rates (Experiment 1) and payoffs (Experiment 2). Old-new discrimination was 

set at a low level because it is only when memory evidence is ambiguous that criterion shifts are 

most helpful and necessary. Critically, the payoff experiment involved actual monetary 

incentives for performance to see if this would increase criterion shifting to a more optimal level. 

Kantner et al. (2015) found that in both experiments participants strongly relied on memory 

evidence rather than decision rules to match biased base-rates or payoffs, despite memory 

evidence being highly ambiguous. This over-reliance on memory evidence resulted in high 

critical error rates (i.e., misses and false alarms) despite instruction and incentives to avoid such 

errors. 

Finally, work in vigilance (sustained attention in detection tasks over an extended time 

period; Warm, 1984) provides some evidence of adaptation to category base-rates via 

manipulations of signal probability in vigilance tasks. Parsons (2001) evaluated shifts in 

response bias to increasing or decreasing signal probability of a 40-minute vigilance period. 

While response bias tends to become more conservative over time in consistent-probability 

conditions, Parsons (2001) found that increasing-probability conditions led to greater 

conservatisms shifts while decreasing-probability conditions were associated with stable 

response bias. Overall,  results from Parsons (2001) suggest that observers’ performance did not 

match that of an “ideal observer” (with perfect knowledge of task parameters; Vickers & Leary, 

1983) but rather a “self-doubt” hypothesis where observers interpreted signal probability changes 



 

25 
 

as due to inadequacies in their own observations and over-adjusted their criterion accordingly. 

Critically, criterion shifts to changing signal probability were independent of whether or not 

forewarnings of change were provided, while forewarning increased signal discrimination over 

time.  

Findings by Nassar et al. (2010) suggest that individual differences in criterion shifting in 

dynamic environments can be, at least partially, attributed to differences in underlying beliefs 

about the stationarity of an environment (i.e., a Bayesian prior for expected frequency of 

environment changes). Observers completed a numerical prediction task where they were told 

the numbers came from a noisy process and could change over time and were told to minimize 

their prediction error. A simple computational model including a parameter for belief of 

environmental stationarity helped explain differences in criterion shifting. Thus, beliefs about the 

state of the environment – manipulated by the presence or absence of explicit instruction on 

change – may impact criterion shifting in characteristic ways, depending on how forewarning 

affects an individual’s belief about environmental stationarity. This finding differs from that of 

Parsons (2001), suggesting that the effect of forewarning may depend on task or individual 

characteristics. 

Transfer in Category Learning 

 While little-to-no research has focused specifically on non-stationary category learning, 

researchers have studied how well individuals are able to transfer or generalize category 

knowledge to a new set of (related) categories. Sometimes transfer learning is simply evaluated 

by testing individuals with never-before-seen exemplars selected from the same distribution of 

average features but without response feedback given. Other times transfer learning is evaluated 

by maintaining feedback but shifting stimulus distributions at testing. A common type of transfer 
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learning, known as analogical transfer, relates to the notion of virtual concept drift and is the 

focus of the present work related to categorical change.  

Analogical Transfer  

 Casale, Roeder, and Ashby (2012) define analogical transfer as “the ability to transfer 

knowledge despite significant changes in the surface features of the problem” (p. 434). In 

category learning, this means being able to transfer a learned rule for one stimulus set to a new 

stimulus set. Critically, Casale et al. (2012) were interested in people’s ability to do this for 

verbalizable rules compared to non-verbalizable, or difficult to verbalize, rules. They studied this 

by using rule-based (RB) and information integration (II) category structures with an analogical 

transfer task. Rule-based category structures typically involve the learning of a one-dimensional 

rule that differentiates the categories, and this rule is usually easy to verbalize. Information 

integration category structures involve the integration of information from two (or more) 

dimensions at a pre-decisional stage and are typically difficult to verbalize. Both types of 

category rules are possible to learn, although II rules typically take longer. Because of this, 

researchers sometimes use more complex conjunctive RB rules or four-category conditions as 

opposed to two-categories in an attempt to equate relative accuracy levels across rule types. 

However, the RB rule in Casale et al. (2012) was a simple one-dimensional rule which has been 

used in a great deal of COVIS research. Participants first learned either the RB or corresponding 

II categories and then transferred to a new set of stimuli within the same category structure but in 

a new area of the stimulus space defined by the same linear decision bound (see Figure 2). In so 

doing, the RB and II categories had the same perceptual similarity in both the training and 

transfer conditions. 
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Figure 2. Example category distributions used in Casale et al. (2012, p. 436). X and Y dimensions represent 
perception of bar width and bar tilt, respectively. Rule-based (RB) categories are displayed in the left column; 

information-integration (II) categories are displayed in the right column. 
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This was the first study to look at analogical transfer in II categories. The authors noted 

that while the analogical transfer literature predicts equal transfer in RB and II (given that RB 

and [rotated] II categories have the same degree of perceptual similarity despite being sampled 

from a new space along the same decision bound), COVIS predicts transfer in RB but not II 

categories. COVIS makes this prediction because the explicit system learns a decision bound that 

is not context dependent whereas the slower implicit system learns to associate categorization 

responses with reasonably small regions of perceptual space rather than learning a decision 

bound (Ashby & Waldron, 1999; as cited in Casale et al., 2012).  

Casale et al. (2012) conducted three experiments, finding in all three evidence of transfer 

in RB categories but no evidence for transfer in II categories. The stimuli used were sine wave 

gratings that varied in angle of rotation and spatial frequency. The researchers also used control 

conditions in which categories transferred to a new region of perceptual space along the decision 

bound, however the categories were then rotated 90 degrees clockwise to form new category 

structures within the same RB or II design (e.g., RB changed critical dimension while II changed 

polarity of slope and intercept of bound). The control conditions were included to test the 

potential effects of “meta-learning”, a phenomenon in which learning on one set of category 

structures helps improve performance on any subsequent set of category structures due to 

experience with the stimuli and task (Kendler & Kendler, 1970). Control condition results 

revealed a significant decrease in accuracy in the first transfer block for both II analogical 

transfer and control conditions, but only a decrease in accuracy for the RB control condition (not 

RB analogical transfer condition).  

 A few details regarding this study are pertinent to the present work. Casale et al. (2012) 

had a small sample size in each condition through the three experiments (n’s ranging between 13 
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and 16). Experiment 1 used unequal training lengths for RB (300 trials) and II (700 trials), with 

the understanding that II categories take longer to learn than RB categories when they use the 

same category d’. Experiment 2 took an alternative approach and used unequal category 

discriminability values (d’) for RB and II categories to equate the training lengths. Both of these 

experiments had 200 transfer trials. Stimuli were composed of circular sine wave gratings. 

Experiment 3 involved the removal of feedback at transfer to see if feedback during previous 

transfer cases was the underlying factor rather than a difference between two learning systems. 

In all cases, transfer blocks introduced an abrupt change in category distributions, and 

participants were made aware of the presence of a change. 

Smith et al. (2015) evaluated the generalization of category knowledge in humans and 

macaques. Critically, the authors found parallel results to Casale et al. (2012) for human 

participants: evidence of RB transfer along a decision bound to new regions of perceptual space 

but no evidence of transfer for II categories. They concluded that II learning is constrained to the 

original stimulus context whereas RB category knowledge has some independence from the 

initial stimulus context. Smith et al. (2015) used two dimensional unframed rectangles as their 

stimuli. These rectangles differed in size and number of illuminated green pixels. Participants 

received 200 different stimuli in training, and 100 new random stimuli from generalization 

distributions at transfer. Similar to Casale et al. (2012), the change in category distributions 

occurred abruptly after training, and participants were made aware that they were being asked to 

generalize to new category distributions.  

Many other researchers have looked at category change through the lens of generalization 

phases but, unlike Casale et al. (2012) and Smith et al. (2015), left participants to discover the 

change rather than providing an alert (e.g., Cantwell, Crossley, & Ashby, 2015; Helie et al., 
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2015; Navarro, Perfors, & Vong, 2013; Seger, Braunlich, Wehe, & Liu, 2015; Summerfield et 

al., 2011). No studies to my knowledge have systematically manipulated awareness of change 

within a single study. 

Helie et al. (2015) investigated intra- and extra-dimensional rule changes in rule-based 

(RB) stimuli. Following the results of Casale et al. (2012) and Smith et al. (2015), they found 

that there was no shift-cost (i.e., drop in accuracy) when only the irrelevant dimension changed 

(i.e., an intra-dimensional shift; RB analogical transfer). In addition, Helie et al. (2015) found 

that criterion changes were easier to make on a critical dimension if irrelevant dimensions also 

changed. They also found that it was harder to learn a new criterion that involved a new rule 

dimension, but this was facilitated by a change in the irrelevant dimension as well. The design of 

the two experiments involved 20-23 participants per condition, three 100-trial training blocks, 

three 100-trial transfer blocks, four categories instead of the traditional two, and no alerting of 

the change in category distributions. Thus, results suggest RB analogical transfer occurs both 

with alerting (Casale et al., 2012; Smith et al., 2015) and without alerting (Helie et al., 2015). 

  Seger et al. (2015) explored what they called representational and decision uncertainty in 

the generalization of category learning. Representational uncertainty relates to uncertainty about 

category membership while decision uncertainty is uncertainty about a decision bound. Seger et 

al. (2015) separated category generalization from decision bound implementation by using a 

particular information-integration category learning task. Participants first learned to categorize 

II stimuli within a limited perceptual region and then transferred to II stimuli that differed both in 

distance from the training region prototype as well as distance from the training decision bound. 

These two types of transfer tasks revealed diverse patterns of brain activation as well as differing 

levels of accuracy. In particular, transfer stimuli farther from the decision bound were 
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categorized more accurately than transfer stimuli closer to the decision bound (likely due to 

increases in perceptual sensitivity). Flanking stimuli – stimuli that were located the same 

distance from the decision bound but farther from the training prototype) were categorized as 

well as training stimuli (see Figure 3). Boundary transfer stimuli located closer to the decision 

bound were categorized less accurately. Reaction times followed this identical pattern. Critically, 

this experiment provides the first evidence of II analogical transfer as witnessed with the 

flanking stimuli, which stands in contrast to the results of Smith et al. (2015) and Casale et al. 

(2012), who found no evidence of analogical transfer. A few key methodological detail 

differences may explain the different results between Casale et al. (2012) and Seger et al. (2015). 

Seger et al. (2015) did use abrupt change in that training and transfer blocks were separate; 

however, transfer blocks were conducted in an fMRI scanning session, with flanking transfer 

distributions, with feedback present on only half of the trials. More research is needed to 

understand why these methodological details led to a different pattern of II analogical transfer. 

 As a whole, the separate explicit and implicit learning systems posited by COVIS suggest 

that specific characteristics of drift may influence adaptation by these learning systems. Namely, 

previous research suggests that analogical transfer is relatively easy in cases of explicit learning 

but much more challenging in cases of implicit learning. The question remains whether drift 

characteristics such as rate and awareness of change influence the pattern of analogical transfer 

in explicit and implicit learning conditions in a way akin to the choice between active and 

passive learning approaches in machine learning. 
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Figure 3. Example category structures used by Seger et al. (2015). Blue vs. red oval categories illustrate the starting 
category distributions. Purple and orange categories represent the flanking distributions (analogical transfer 

conditions with same means as original distributions but different areas of stimulus space). 

 

Other Changes 

 As a side note, a few other types of category changes have been looked at in human 

category learning, albeit not too in-depth. The primary type of change that has received attention 

in both machine and human learning is periodicity effects (i.e., multiple or recurring changes). 

Summerfield et al. (2011) used two-dimensional rule-based stimuli defined along one dimension 

and introduced random mean or orientation jumps every 10-20 trials. They found that 

participants’ responses were best fit by a working memory model with short term memory that 

continued to reset category means on the basis of the most recent category member encountered. 

This working memory model provided a significant improvement in fit compared to a Bayesian 

model and a reinforcement learning model. 

 Navarro et al. (2013) studied time varying one-dimensional categories. The stimuli were 

“floaters” – little objects that “floated” some height above a horizontal line. That height was the 

basis of category membership, and the classification boundary consistently rose on each trial. 
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The results reveal that participants became sensitive to the systematic pattern of change in the 

categories as the boundary changed over time.  

 Finally, some researchers have looked at the effect of category change as a rotation of the 

category distributions. An example of category rotation is the transformation of RB category 

distributions (such as in Figure 2) by a 45 degree clockwise rotation to form corresponding II 

category distributions (the technique used in Experiment 1 of Casale et al., 2012). For both RB 

and II category structures, this type of change resulted in a large decrease in accuracy (Cantwell 

et al., 2015) and lack of full accuracy recovery (Helie et al., 2015). The present work provides a 

systematic foundation on which to extend our understanding of concept drift in human category 

learning from cases of analogical transfer to more complex categorical changes. 

Decision Criterion Learning  

Studies of decision criterion learning and change in other domains are also applicable to 

the present work. Before describing some of what has been done in other domains, some 

background on decision criterion placement is in order. According to Signal Detection Theory 

(SDT), perceptual decisions have two components: discrimination and response bias. 

Discrimination, measured by d’, describes how well an observer can discriminate between two 

distributions. Smaller d’ values indicate a lower level of discrimination. At the same time, SDT 

proposes that an observer sets a decision criterion, known as beta (β), when responding (see 

Figure 4). Beta is a measure of response bias indicating how biased an observer is for one 

response versus another (Green & Swets, 1966; Macmillan & Creelman, 2004; Wickens, 2001).  

Decision criteria are based on likelihood ratios. SDT assumes that an observer will 

choose signal anytime the perceptual effect of the stimulus value results in a higher likelihood 

for signal than noise, and vice versa (i.e., when the signal curve in Figure 4 is higher than the 
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adjacent point of the noise curve on the x axis). However, observers tend to be biased in their 

responses and may require more evidence in favor of the signal distribution before responding 

with that option. In this case, the observer has what is referred to as a biased criterion (β ≠ 1) in 

favor of the noise distribution (Wickens, 2001). 

 

 

 

Figure 4. Signal detection curves. 

  

The signal detection model provides a one-dimensional representation of the perceptual 

effect of a stimulus. General Recognition Theory (GRT), also called Decision Bound Theory, is 

a generalization of signal detection theory that applies to multidimensional stimuli (when 

muiltivariate normal perceptual distributions are assumed; Ashby & Townsend, 1986) that 

allows for specific representation of individual dimensions. GRT describes the separate 

perceptual and decisional processes involved in an action such as classification. It claims that 

presentation of the same stimulus does not always result in the same perceptual effect of the 
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stimulus. GRT assumes that an observer partitions the perceptual space into separate regions, and 

a unique response is ascribed to each region. The decision rule separates all perceptual points 

into response regions. GRT also estimates both perceptual noise and decisional noise, related to 

imperfection in perceiving stimuli and setting a criterion from trial to trial (Alfonso-Reese, 

2006). Notably, GRT provides a formal basis for COVIS (i.e., COVIS is the neuropsychological 

extension of GRT). 

 Other sources of noise include “expected” and “unexpected” uncertainty, terms coined by 

Yu and Dayan (2005). Expected uncertainty is uncertainty that is known to be present in 

predictions (or in a stochastic prediction environment). For example, we know that weather 

forecasts are imperfect and may have some level of reliability (say, 80%). It is therefore common 

for weather to sometimes be different than the forecast for that day. This type of difference is 

expected from time to time. On the other hand, unexpected uncertainty arises when sensory 

observations deviate greatly from top-down expectations. Thus, if equipment malfunction affects 

weather forecasting ability, weather forecasts may become no more reliable than flipping a coin 

or looking out the window (Hassall, 2013). When unexpected uncertainty arises in non-stationary 

environments, previously optimal actions become suboptimal. 

 These two forms of uncertainty are not mutually exclusive but rather they interact with 

each other in many environments. In environments with high expected uncertainty, unexpected 

uncertainty can be hard to detect and adapt to (Behrens, Woolrich, Walton, & Rushworth, 2007; 

Bland & Schaefer, 2011). In terms of categorization then, expected uncertainty arises from the 

probabilistic nature of the categories; in other words, the sampled category distributions are the 

largest source of variability. When category distributions significantly overlap, it will be 

expected that stimuli falling in the area under the overlapping curves will sometimes be 
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classified as category A and other times as category B (see Figure 4). In these cases, when a 

categorical distribution shift occurs due to a mean and/or variance shift, such unexpected change 

can be difficult to detect due to the already high level of uncertainty in the environment (Hassall, 

2013).  

 This is the true problem posed by a non-stationary environment – how does one 

differentiate between noise (expected uncertainty) and actual change (unexpected uncertainty)? 

The present work will incorporate this aspect of expected vs unexpected uncertainty in the design 

of the categorization experiments. In each experiment, the categories are defined 

probabilistically (i.e., they are drawn randomly from overlapping, normal distributions). This 

means that there is considerable overlap between categories, and one stimulus value(s) may 

indicate category A on one trial but category B on another trial. This variability in category 

members (drawn from overlapping distributions) can be considered expected uncertainty. The 

change manipulations that occur in each experiment will provide a test of unexpected uncertainty 

(at least in the “discover” conditions where participants are not alerted to any change).  

Criterion learning will serve as the basis of measurement to evaluate the influence of 

concept drift in human perceptual category learning. By incorporating distinct, characteristic 

elements of concept drift in human category learning, one can explore how humans learn in non-

stationary environments. The combination of machine and human classification learning 

techniques will inform current categorization theory.  

The Present Research 

In summary, most category learning research has only incidentally studied non-

stationarity as a side component of some larger research question (e.g., generalization, analogical 

reasoning, impact of uncertainty, refining models). In so doing, limited category changes have 
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been investigated, base-rate and payoff changes have not been systematically and intentionally 

studied, and largely only abrupt change rates (between blocks) have been considered (see Table 

1 below for an overview of some of the key non-stationarity variables that have been looked at in 

human category learning). To my knowledge, no one has manipulated rate of change or 

awareness of change within a single study. 

Table 1. Summary of key variables in previous research 

Citation 
Rate Awareness Category Structure 

Abrupt Gradual Alert Discover RB II 
Cantwell et al. (2015)*, **       
Casale et al. (2012)*       
Helie et al. (2015)*, **       
Navarro et al. (2013)**       
Seger et al. (2015)*, **       
Smith et al. (2015)*, **       
Summerfield et al. (2015)**       

Note. Citations marked with one asterisk (*) denote experiments that tested analogical transfer. Citations marked 
with two asterisks (**) denote experiments that tested other types of category change (i.e., shifted category 
boundary). 

 

Systematic investigation of these rate, awareness, and type of change variables should 

provide several useful outcomes. 1) It should provide further evidence for the distinction of 

multiple learning systems by testing differential predictions of explicit and implicit-mediated 

learning tasks. 2) It should provide insights for the refinement of theories for the presence of 

change based on different change characteristics. 3) It may provide insight back to the machine 

learning community regarding the effects of systematic concept drift changes on types of 

learners (human classifiers). In general, the aims of this dissertation are to answer the following 

questions. Do humans need to be aware of change to efficiently adapt to it? If so, under what 

circumstances is it required or most helpful? Do different learning systems respond better or 
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worse to different rates of change? Is the impact of “virtual concept drift” in human category 

learning dependent on the parameter of change (i.e., category base-rates, payoffs, or features)? 

Non-stationary category learning has received quite little attention in the literature. In 

particular, concept drift has not been the target of study in perceptual category learning; rather, it 

has been more of a by-product of other research questions. For example, Casale et al. (2012) 

were interested in analogical transfer in perceptual categorization and whether COVIS provided 

a platform for disambiguating explicit and implicit category learning in terms of transfer. Helie 

et al. (2015) were interested in testing a new model of rule selection, while Cantwell et al. (2015) 

had similar interests in proposing a neurobiological model of procedural category learning. For 

this reason, virtually every categorization study has used abrupt change rates (i.e., between 

blocks) rather than gradual change rates to test transfer performance. Awareness of change has 

not been controlled for, and changes in base-rates and payoffs have received little attention.  

Overview of Experiments 

 This dissertation presents the results of four experiments evaluating effects of concept 

drift in human perceptual category learning. Each experiment consisted of 8 blocks of 50 trials 

for a total of 400 trials. Each experiment included a single, unique change parameter that shifted 

mid-experiment (either abruptly between blocks 3 and 4, or gradually over blocks 4 and 5, 

dependent on the rate of change). Informed by the concept drift literature in machine learning, 

each of the four experiments included the factorial combination of rate of change (abrupt, 

gradual) and awareness of change (alert, discover) as independent variables, along with a control 

condition in which the parameter of interest was held constant. These details are summarized 

below: 
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 Component of virtual concept drift  

o Base-rates (Experiment 1) 

o Payoffs (Experiment 2) 

o Rule-based (RB) analogical transfer (Experiment 3) 

o Information-integration (II) analogical transfer (Experiment 4)  

 Rate of change (Abrupt vs. Gradual) 

o Abrupt change occurs by changing the value of the parameter of change 

immediately, and in full, after the third block of trials.  

o Gradual change occurs by slowly shifting the value of the parameter of change 

in equal increments over blocks four and five.  

 Awareness of change (Alerted vs. Discovered) 

o Alerted = observers are forewarned of the upcoming change, and parameter of 

change, in the instructions before the first change/post-change block. 

Observers are also reminded of the change thereafter between each block of 

trials. Observers are told only that a specific aspect of the task (e.g., category 

base-rates) will change, not the specific direction or magnitude of the change.  

o Discovered = observers are told nothing of the upcoming or past change and 

are left to discover the change on their own. 

Each of the four factorial conditions involved three stationary pre-change blocks (150 

trials) and at least three stationary post-change blocks (150+ trials; blocks 6-8). Abrupt change 

conditions ultimately had two additional post-change blocks (blocks 4 and 5) since the change 

occurred in full following block 3. Gradual change occurred over blocks 4 and 5 by incrementing 

the parameter of change by the magnitude of the change divided by the duration of the change 
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(100 trials) on each change trial. Once the full magnitude of the change occurred, the change 

parameter remained fixed for the remainder of the experiment (see Figure 5 and Figure 6 for the 

design of the abrupt and gradual change rate conditions, respectively. 

 

Figure 5. Experimental design for abrupt change conditions. 

Figure 6. Experimental design for gradual change conditions. 
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Experimental Evaluation 

 COVIS provides a framework for evaluating the effect of concept drift on explicit vs. 

implicit learning. The application of machine learning change characteristics to perceptual 

category learning helps extend categorization theory from stationary contexts into new areas of 

non-stationarity, paralleling the dynamic and complex nature of category learning in the natural 

environment.  

Four experiments were conducted to evaluate the effect of rate and awareness of change 

in different “virtual” change conditions (i.e., tasks that required a shift in decision criteria to 

maximize performance, while category boundaries remained the same). Experiment 1 

investigated people’s ability to shift their decision criteria to changes in category base-rates. 

Experiment 2 investigated people’s ability to shift their decision criteria to changes in category 

payoffs. Experiment 3 investigated people’s ability to transfer rule-based category knowledge 

(i.e., explicit learning) when surface features changed (i.e., analogical transfer), while 

Experiment four investigated the same question within information-integration category 

knowledge (i.e., implicit learning). Within each experiment, the factorial combination of rate 

(abrupt, gradual) and awareness of change (alerted, discovered) was explored.  

The experiments were designed in such a way that a direct comparison could be made 

between Experiment 1 and 2 (base-rate and payoff learning) and between Experiment 3 and 4 

(RB and II learning). Each set of conditions provided a platform to explore the effect of virtual 

concept drift in tasks that tend to involve more implicit vs. explicit learning.  

Decision bound models were explored to provide a qualitative comparison among 

conditions and statistical tests of the best fitting models. Model parameters were maximum 

likelihood estimators determined by a hill climbing algorithm that minimized negative log-
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likelihood fit measures (lnL). The most parsimonious model was determined on the basis of 

goodness of fit tests (χ2 and the akaike information criterion [AIC], Ashby and Soto (1992). 
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CHAPTER 3: EXPERIMENT 1: BASE-RATES 

Base-Rate Change 

 Experiment 1 explored the influence of a shift in category base-rates on categorization 

performance. Base-rate change is one element of concept drift in machine learning, sometimes 

referred to as “virtual concept drift” (Gama, Žliobaitė, Bifet, Pechenizkiy, & Bouchachia, 2014). 

In addition, a change from unbiased (equal) to biased (unequal) category base-rates reflects the 

issue of “class imbalance” in machine learning (Hoens et al., 2012). This type of 

change/imbalance has been studied from different perspectives in machine learning (Alaiz-

Rodríguez, Guerrero-Curieses, & Cid-Sueiro, 2007; Drummond & Holte, 2006; Provost & 

Fawcett, 2001; Saerens, Latinne, & Decaestecker, 2002).  

 In categorization, base-rates provide an important source of information for criterion 

placement (i.e., response bias from signal detection) when categories are difficult to discriminate 

on features alone. A change in category base-rates requires the observer to shift their decision 

criterion in accordance with the changing likelihood of each category to maintain accuracy. Such 

a change is required in medical personnel when disease frequencies and patient populations 

change over time or when new technology increases discriminability. Experiment 1 provides a 

systematic exploration of the influence of rate and awareness of change on perceptual 

categorization with a shift in category base-rates. 

Method 

Experimental Design 

 Four experimental conditions resulted from the factorial combination of the between-

subjects independent variables rate of change (abrupt, gradual) and awareness of change (alerted, 

discovered): 
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1. Abrupt base-rate change, alerted in instructions 

2. Abrupt base-rate change, no alerting (i.e., discovered) 

3. Gradual base-rate change, alerted in instructions 

4. Gradual base-rate change, no alerting (i.e., discovered) 

A fifth between-subjects condition was run with stationary category base-rates, serving as a 

control condition.       

 The task was described as a simulated medical diagnosis task. Participants saw one bar 

graph on each trial, varying in height, which simulated one person’s test result. Participants were 

tasked with learning which disease (A or B) was more likely given the test result. Participants 

were told that the test was not a perfect predictor, but that they should still be able to reach a high 

level of performance over time. 

 

Figure 7. Experimental design for Experiment 1. 
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 All participants started the experiment with stationary, equal category base-rates (1:1 

ratio; on average, 25 exemplars from both disease A and disease B) for the first three blocks of 

trials – from here-on referred to as the “pre-change blocks”. Following block three, the base-rate 

ratio changed from 1:1 to 3:1 either abruptly (immediately between blocks 3 and 4) or gradually 

(in equal increments each trial across blocks four and five), resulting in, on average, 36-39 

exemplars from disease A and 12-13 exemplars from disease B. Once the change was complete 

(i.e., the base-rate ratio reached 3:1), the new base-rate ratio remained stationary for the 

remaining blocks of trials. All participants completed 8 blocks of 50 trials each for 400 trials in 

total (see Figure 5 and Figure 6 in Chapter 2). One hundred trials of gradual change was deemed 

to be sufficiently gradual (i.e., a 0.25% change in base-rate on each trial is too small to notice 

incrementally) and allowed an equal number of blocks pre (3) and post (3) change for 

comparison. 

 The only parameter that changed during Experiment 1 was the category (disease) base-

rate ratio; no other features of the categories or decision environment changed. Two of the four 

experimental conditions were alerted to the change on the instructions screen. In abrupt change 

conditions, the instructions stated “The rate of disease presentation has now changed. One 

category is now more frequent than the other.” In gradual change conditions, the first block of 

change was preceded by instructions saying “The rate of disease presentation will change. One 

category will become more frequent than the other.” The second change block was preceded by 

the instructions “The rate of disease presentation will continue to change, making one category 

more frequent than the other”. All post-change blocks – in alerted conditions - were preceded 

with instructions that stated “REMEMBER: One category is now more frequent than the other!”. 
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Discover conditions were not provided any of this information on instructions screens and were 

left to discover the change on their own.  

 Gradual change conditions slowly incremented the Category A base-rate parameter on 

each change trial of the 100 total change trials across blocks 4 and 5. This occurred by increasing 

Category A’s base-rate by the total base-rate range (75%-50% = 25%) divided by the 100 change 

trials = 0.25% on each trial. Therefore, on the first change trial there was a 50.25% chance of 

observing a stimulus from Category A, a 50.50% chance on the second trial, a 50.75% chance on 

the third change trial, and so on. Once the base-rate of Category A reach its maximum value 

(75%) on the final change trial, the base-rates remained fixed at the new ratio levels (3:1 in favor 

of Category A). 

Participants 

 Students from the University of Central Florida and volunteers from the community 

participated in the study. Most students signed up for and participated in the study through the 

SONA systems participation tool in exchange for course credit. All participants were at least 18 

years of age and normal or corrected-to-normal vision. Each participant completed only one 

condition of the study and were assigned their condition randomly. Samples sizes were as 

follows: abrupt/alerted (n = 32), abrupt/discovered (n = 30), gradual/alerted (n = 28), 

gradual/discovered (n = 27) and control (n = 30) conditions, for a total of 147 participants. One 

participant in the abrupt/discover condition was removed from all analyses due to non-learning 

(responded with low base-rate category on the majority of trials in all post-change blocks), 

resulting in a sample size of 29 for this condition. One participant was removed from the 

gradual/alert condition due to being an overall outlier (7 out of 8 blocks their decision criterion 
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was more than 3 SD’s above the mean). This resulted in 145 participants overall. These sample 

sizes reflect traditional conventions in the literature (Helie et al., 2015; Wismer & Bohil, 2017). 

 A power analysis was also conducted using G Power (ANOVA: Fixed effects, special, 

main effects and interactions; Effect size f = 0.3067, alpha = .05, power = .85, numerator df = 1, 

number of groups = 2) and suggested a total sample size of 98. A target sample size of 25 

participants in each of the four experimental conditions satisfies this analysis. The chosen effect 

size was based on data from Wismer and Bohil (2017)’s Experiment 1 comparing participants’ 

decision criteria (β) in the last block of baseline 1:1 base-rate to the first training block of 3:1 

base-rate in response conditions (ηp
2 = .089). 

 Participant demographics can be seen in Table 2 by condition. Of the 145 participants 

across the five conditions (including the control condition), 91 participants were female and 54 

were male. The average overall age was 18.84 (SD = 1.60). Average age, χ2(24) = 23.40, p = 

.496, and gender, χ2(4) = 3.19, p = .527, were equivalent across conditions. 

 

Table 2. Participant demographics by condition in Experiment 1. 

 Age Gender Count 
Condition  M SD Male Female 

Abrupt, Alert (n = 32) 18.75 1.72 14 18 
Abrupt, Discover (n = 29) 18.93 1.39 7 22 

Gradual, Alert (n = 27) 18.81 1.82 10 17 
Gradual, Discover 19.00 1.27 10 17 
Control (n = 30) 18.73 1.80 13 17 

 

Stimuli 

 Experiment 1 used one dimensional stimuli of bar graphs with categories defined 

probabilistically by the height of the bar graph (see Figure 8). Two categories were sampled from 
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overlapping normal distributions with different mean heights and identical standard deviations 

(see Figure 9). The category separation was small (d’ = 1; discriminability from signal detection) 

such that there was significant overlap in the two categories resulting in an optimal accuracy 

level of approximately 69% in an equal base-rate condition and 78% in a 3:1 base-rate condition. 

As mentioned previously, it is only in cases of significant category overlap when criterion 

shifting is required to continue responding accurately. Categories with a d’ of 1 have been used 

in previous studies of unidimensional criterion learning (Bohil & Wismer, 2015; Maddox & 

Bohil, 2001; Wismer & Bohil, 2017).  

   

                          

Figure 8. Example bar height stimuli used in Experiment 1 (and Experiment 2). One bar stimulus presented on 
screen per trial. 

 

 On each trial, one random stimulus from either Category A or B was presented on the 

center of the screen. The category was determined by a random selection based on the base-rate 

parameter. For example, since the experiment began with a 1:1 base-rate, there was a 50% 

chance of observing either a Category A or a Category B stimulus on a given trial. When the 

base-rate ratio changed to 3:1 (i.e., 75% in favor of Category A), the same random sampling 

method was used, resulting in many more stimuli from the category with a 75% base-rate. Actual 
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bar heights were randomly selected from a normal distribution with a mean value equal to the 

mean of the selected category distribution, and the standard deviation (which is equal for the two 

categories; see Table 3). Because of the probabilistic nature of stimuli and stimulus value 

selection, individuals encountered a slightly different ratio of A:B stimuli on any given block, 

and base-rate ratios also varied slightly among individuals. Nonetheless, base-rate ratios were 

highly consistent across participants and across equivalent ratio blocks (pre-change blocks 1-3: 

M = 0.49, SD = 0.06; post-change blocks 6-8: M = 0.76, SD = 0.05).  

 

Table 3. Category statistics in Experiment 1. 

Time Category μ σ 
Base-rate 

ratio 

Start 
A 99 21 1:1 
B 120 21 1:1 

End 
A 99 21 3:1 
B 120 21 1:3 

 Note. The ratio of category A:B stimuli started at 1:1 and ended at 3:1.  

 

 

 

 

 

 

 

 

 

Figure 9. Distribution of categories for Experiment 1 and 2. The solid line indicates the optimal decision criterion (β 

= 1) in pre-change blocks, while the dotted line indicates new optimal decision criterion following the base-rate 
change (β = 3). When only base-rates are manipulated (i.e., no payoffs differences), the accuracy and reward 

maximizing criteria are equivalent (i.e., both are defined by the optimal decision criterion β = 3). 

β=3  

β=1  
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Procedure 

 Participants provided verbal informed consent prior to study participation. They were 

then directed to the research lab and seated at a computer with a high-resolution monitor. The 

categorization task was employed through MATLAB via the Psychophysics Toolbox extension 

(Brainard, 1997; Kleiner, Brainard, & Pelli, 2007; Pelli, 1997). Participants were provided 

instructions on how to complete the simulated medical diagnosis task using the ‘A’ and ‘B’ 

labeled keys (the ‘z’ and ‘m’ keys, respectively) on the keyboard on each trial. They were also 

instructed that on some trials they would be asked to provide a rating of confidence on a scale 

from 1 (very unsure) to 5 (very confidence) using these respective keys.  Participants were 

instructed to read through the instructions on the screen before beginning the task. 

 On each trial, one randomly selected stimulus was presented on the center of the screen 

(the category was randomly selected based on the base-rate parameter, while the category value 

was randomly sampled from the normally distributed category; see Table 3). The stimulus was 

on screen for 250ms and then replaced with the words “Disease A or B” until the participant 

responded. If the participant did not respond within 10 seconds, they were notified that they took 

too long and the trial repeated. On 17 random trials per 50-trial block (i.e., 1/3 of all trials; 

randomized across participants), the categorization response was followed by a prompt asking 

for a confidence rating prior to receiving correct or incorrect feedback on their categorization 

response1. The participant again had 10 seconds to respond with a confidence rating, at which 

point categorization feedback was displayed for 1000ms. The inter-trial interval was 2000ms.  

                                                 
1 Confidence ratings were chosen to be collected only on 1/3 of trials rather than on every trial for the following 
reasons: 1) confidence is secondary to criterion shifting and accuracy, 2) confidence is analyzed by block averages 
rather than trial-by-trial responses, 3) to reduce the risk of responses becoming too “rote” or repetitive, and 4) to not 
greatly increase the length of the experiment.  
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 Participants completed eight 50-trial blocks. Participants could take short breaks between 

blocks as needed when an instruction screen was presented as a reminder of the task. The 

category base-rates changed upon completion of the third block of trials, either abruptly or 

gradually depending on the experimental condition. At the end of the experiment, the participant 

was thanked, awarded credit for participation, and dismissed. 

Predictions 

Base-rates are known to be poorly understood and applied when presented in descriptive, 

summary formats (i.e., “75% of stimuli are from category A”; Kahneman & Tversky, 1973). 

However, recent research has revealed that base-rates are better understood when learned 

through direct experience (Koehler, 1996; Spellman, 1996). Indeed, new evidence suggests base-

rate sensitivity is driven largely by implicit learning through stimulus-response association 

(Bohil & Wismer, 2015; Wismer & Bohil, 2017).   

For these reasons, it was anticipated that base-rate change would be difficult to adapt to 

in the sense that observers would largely differ from an ideal observer who has perfect 

knowledge of base-rates, base-rate change, and who can apply a consistent decision criterion. 

Considering the implicit nature of base-rate sensitivity and results of Parsons (2001), it was 

predicted that awareness of changing base-rates would not significantly impact performance. In 

addition, given the implicit nature of base-rate sensitivity, categorization may follow a gradual 

Bayesian updating process in which gradually changing base-rates may be better adapted to than 

abruptly changing base-rates. No prior work has investigated the effect of gradually changing 

category base-rates on human perceptual category learning. 

Hypothesis 1: Based on previous research, participants will shift their decision criterion 

in the optimal direction, but they will show conservatism (i.e., sub-optimal criterion shifting) 
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Hypothesis 2: Given evidence of the implicit nature of base-rate sensitivity, performance 

(accuracy, criterion-shifting) in discovery conditions will be no worse than in alerted 

(forewarned) conditions. 

Hypothesis 3: Given evidence of the implicit nature of base-rate sensitivity, there will be 

greater performance (i.e., accuracy and criterion values closer to optimal following the change) 

in gradual change rate conditions compared to abrupt change rate conditions. 

Results 

 Results were analyzed using Matlab, Excel, and JASP (JASP Team, 2018). Primary 

dependent measures included signal detection criterion values (SDT-β), decision bound 

theory/general recognition theory criterion values (GRT-β), and accuracy  (all directly linked to 

specified hypotheses). Secondary measures that were of interest but were not linked any a priori 

hypotheses included average confidence and the frequency of responding with the high base-rate 

category (i.e., category A post-change). Signal detection analyses were conducted on responses, 

and the resulting hit and false alarm rates were used to estimate each participant’s decision 

criterion (β). Perceptual sensitivity (d’) is not presented here as there are no theoretically 

motivated predictions regarding d’, and historically d’ has not been influenced in base-rate and 

payoff studies (indeed, d’ was found to not differ by condition [p = .223] or condition by block 

[p = .704] in Experiment 1). Cases of hit or false alarm rates equaling 0 or 1 (preventing 

calculation of interpretable β values) were corrected following the method of Wixted and Lee 

(n.d.). For N = 25 items from Category A, values of 0 were replaced with 1/2N = .02 and values 

of 1 were replaced by 1 – (1/2N) = 0.98. Any data points that were classified as outliers (more 

than three standard deviations above or below the group mean) were replaced with the mean of 
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the group when outlier values were removed. The number of outlier data points replaced in each 

condition can be seen in Table 4 below. 

 

Table 4. Number of outliers in Experiment 1 by condition and measure. 

 SDT-β Accuracy 
Number data points per measure 

 (# blocks x # participants) 
Abrupt, alert 10 1 256 
Abrupt, discover 2 0 232 
Gradual, alert 3 0 216 
Gradual, discover 4 0 216 
control 4 0 240 

Note. No outliers were identified for average confidence or proportion of Category A responses. 

 
 
The general outline of analyses is as follows. First, a series of results are reported for 

accuracy, β-values (SDT and GRT), confidence, and frequency of responding with high base-rate 

category comparing experimental (change) conditions to the control condition. This set of 

analyses serve as a manipulation check to test for pre-change differences and then assess the 

impact of the base-rate manipulation relative to the control condition. Then, a series of analyses 

are reported for each dependent measure regarding the effect of base-rate change across the four 

experimental conditions. These analyses include the immediate and long-term effects associated 

with the base-rate change, as well as base-rate sensitivity across post-change blocks. Whenever 

the assumption of sphericity (in ANOVA) was violated, Greenhouse-Geisser corrections were 

applied. All post-hoc comparisons were completed using Bonferonni’s method (these points are 

true of all analyses reported in this dissertation). 
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Comparison to Control 

Signal Detection Decision Criterion (β) 

Average decision criterion (β) values can be seen by block and condition in Figure 10 and 

Table 5. To ensure there were no differences in average criterion placement prior to base-rate 

change, a 3 (pre-change blocks 1-3) x 5 (conditions; including control) mixed factor ANOVA 

was conducted on average SDT β-values. Indeed, there were no differences among conditions 

with respect to average β-values, F(4, 140) = 0.55, p = .700, ηp
2 = .02. A similar ANOVA was 

then conducted on change/post-change blocks (4-8) as a manipulation check to assess response 

bias to base-rate change in the four experimental conditions compared to the control. Average β-

values increased across change/post-change blocks, F(1.78, 249.22) = 9.09, p < .001, ηp
2 = .06, 

and differed by condition, F(4, 140) = 5.58, p < .001, ηp
2 = .14. Post-hoc comparisons revealed 

significantly larger β values in abrupt/alert (M = 1.52) and abrupt/discover (M = 1.52) conditions 

compared to both the control condition (M = 1.02; p = 004, p = .006) and the gradual/discover 

condition (M = 1.10; p = .036, p = .045). These results suggest that the base-rate manipulation 

did influence response bias in the experimental conditions. Further differences between rate and 

awareness of change conditions in post-change blocks are evaluated in a later section. 
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Figure 10. Average SDR-β by condition and block in Experiment 1. Error bars represent standard error. 

 

Table 5. Average SDT-β (and d’) by condition and block in Experiment 1. 

 
Block 1 
β (d’) 

Block 2 
β (d’) 

Block 3 
β (d’) 

Block 4 
β (d’) 

Block 5 
β (d’) 

Block 6 
β (d’) 

Block 7 
β (d’) 

Block 8 
β (d’) 

         
Abrupt,  

Alert      
 (n = 32) 

0.98 
(0.58) 

0.95 
(0.53) 

0.97 
(0.53) 

1.32 
(0.80) 

1.43 
(0.62) 

1.24 
(0.53) 

1.60 
(0.72) 

2.01 
(0.60) 

         
Abrupt, 

Discover          
(n = 29) 

1.01 
(0.41) 

1.01 
(0.45) 

1.01 
(0.56) 

1.18 
(0.67) 

1.23 
(0.42) 

1.20 
(0.50) 

1.99 
(0.62) 

1.99 
(0.47) 

         
Gradual,  

Alert      
(n = 27) 

0.98 
(0.46) 

1.00 
(0.51) 

1.00 
(0.46) 

0.98 
(0.59) 

0.97 
(0.48) 

1.15 
(0.55) 

1.34 
(0.60) 

1.53 
(0.51) 

         
Gradual, 
Discover         
(n = 27) 

1.01 
(0.44) 

0.99 
(0.37) 

0.94 
(0.43) 

1.00 
(0.62) 

1.00 
(0.43) 

1.07 
(0.39) 

1.23 
(0.53) 

1.18 
(0.33) 

Control  
(n = 30) 

0.98 
(0.23) 

0.92 
(0.73) 

1.03 
(0.55) 

0.99 
(0.56) 

0.99 
(0.58) 

0.99 
(0.45) 

1.06 
(0.72) 

1.04 
(0.51) 
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Decision Bound Models  

 Decision bound models were fit to the data to provide another estimate of the criterion 

each participant used, and they allow one to test hypotheses at the individual participant level. 

Three models were examined: 1) an unbiased model that assumed the participant used an 

unbiased (β = 1) criterion, 2) a free-boundary model that freely estimated the criterion the 

participant used, and 3) an optimal model that assumed the participant used the optimal criterion 

pertaining to each block (βo = 1 before change, βo = 3 after change completed, βo = 1.5 during 

first block of gradual change, and βo = 2.5 during second block of gradual change). The number 

of free parameters in each model are as follows: unbiased (1: noise), free-boundary (2: noise, 

criterion), and optimal (1: noise). Analyses report the proportion of participants in each condition 

best fit by each of the three models (see Table 6). The β’s estimated in the free-boundary model 

were subjected to the same series of analyses as the β’s from traditional signal detection theory. 

Data points considered outliers in the signal detection β-values were also removed as outliers in 

the GRT-β estimates to maintain consistency.  

 A 3 (pre-change blocks 1-3) x 5 (condition; including control) mixed factor ANOVA was 

evaluated to determine if any differences existed in GRT-β estimates prior to the base-rate 

change. As with signal detection β’s, there was no effect of condition on average GRT-β 

estimates (all p’s > .151). A subsequent 5 (change/post-change blocks 4-8) x 5 (condition; 

including control) mixed factor ANOVA revealed a main effect of block, F(3.81, 529.82) = 

11.31, p < .001, ηp
2 = .08, such that average GRT-β values increased across blocks (in 

experimental conditions). There was also a main effect of condition, F(4, 139) = 8.90, p < .001, 

ηp
2 = .20, such that average GRT-β estimates were higher in all four experimental conditions 
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compared to the control condition (all p’s < .003). Results from GRT-β estimates corroborate 

what was found from the signal detection β-values (see Figure 11). 

 

 

Figure 11. GRT-β estimates from free-boundary model in Experiment 1. Error bars represent standard error. 

 

 Table 6 displays the proportion of participants best fit by each model in each block. The 

optimal and unbiased models were equivalent for the first three blocks since the optimal criterion 

was unbiased (βo = 1), as well as for the entire control condition. It is obvious that most 

participants began by using an unbiased (i.e., the optimal) criterion, which is expected given no 

information otherwise regarding base-rate bias. Once the change started to occur or occurred in 

full at block 4, the proportion of participants’ best fit by the unbiased model decreased across 

blocks, suggesting sensitivity to the base-rate manipulation. Indeed, z tests (1-tailed) comparing 

each experimental condition to the control condition within each of the 8 blocks with respect to 

the proportion of participants best fit by the unbiased model found that the control condition was 

best fit by the unbiased model more often than the experimental conditions in every block (all p’s 
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< .05). When looking at the individual effects of rate and awareness of change, the only 

significant difference found was between gradual and abrupt rates of change in block 5 – the 

final change block for the gradual conditions – with a higher proportion of participants best fit by 

the free-boundary or optimal model in abrupt conditions, z = 2.71 (1-tail), p = .003. This suggests 

that participants in the last block of gradually changing base-rates were more conservative in 

their response bias than participants in their second block of post-change base-rate values.  

 

Table 6. Proportion of participants in each condition of Experiment 1 best fit by unbiased, free-boundary, and 
optimal boundary models. 

Condition Block 
1 

Block 
2 

Block 
3 

Block 
4 

Block 
5 

Block 
6 

Block 
7 

Block 
8 

Individual 

Abrupt, 
Alert 

UNB 0.78 0.90 0.74 0.29 0.23 0.17 0.23 0.16 
FRB 0.22 0.10 0.26 0.10 0.20 0.20 0.27 0.26 
OPT 0.78 0.90 0.74 0.61 0.57 0.63 0.50 0.58 

Abrupt, 
Discover 

UNB 0.79 0.86 0.86 0.41 0.28 0.30 0.21 0.14 
FRB 0.21 0.14 0.14 0.14 0.14 0.19 0.21 0.38 
OPT 0.79 0.86 0.86 0.45 0.59 0.52 0.59 0.48 

Gradual, 
Alert 

UNB 0.96 0.93 0.81 0.52 0.67 0.35 0.35 0.22 
FRB 0.04 0.07 0.19 0.11 0.11 0.27 0.23 0.26 
OPT 0.96 0.93 0.81 0.37 0.22 0.38 0.42 0.52 

Gradual, 
Discover 

UNB 0.78 0.77 0.74 0.48 0.42 0.30 0.23 0.19 
FRB 0.22 0.23 0.26 0.07 0.15 0.15 0.15 0.15 
OPT 0.78 0.77 0.74 0.41 0.42 0.56 0.62 0.65 

 UNB .97 .90 .83 .80 .90 .77 .80 .60 
Control FRB .03 .10 .17 .20 .10 .23 .20 .40 

 OPT .97 .90 .83 .80 .90 .77 .80 .60 
Average (proportion best fit by either frb or opt model) 

Abrupt    .65 .75 .77 .78 .85 
Gradual    .50 .45 .68 .71 .79 

    # ** # # # 
Alert    .60 .56 .75 .71 .81 

Discover    .55 .65 .70 .78 .84 
    # # # # # 

Notes. UNB = unbiased boundary model; FRB = free boundary model; OPT = optimal boundary model. UNB and 
OPT proportions are identical for blocks 1, 2, and 3 in experimental conditions, and all blocks in the control 
condition, given unbiased optimal criterion (βo = 1). Significance of comparisons across rate and awareness of 

change conditions is reported below proportions for average conditions (# p >= .05; * p < .05; ** p < .01).  
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Accuracy 

Average percent accuracy can be seen by block and condition in Figure 12 and Table 7. 

A 3 (pre-change blocks 1-3) x 5 (condition; including control) mixed factor ANOVA revealed no 

effect of condition on average accuracy, F(4, 140) = 0.62, p = .649, ηp
2 = .02. Next, a 5 

(change/post-change blocks 4-8) x 5 (condition; including control) mixed factor ANOVA was 

conducted on average accuracy to evaluate the effect of the base-rate manipulation on average 

accuracy in experimental conditions relative to the control condition. Average accuracy 

increased across blocks 4 through 8, F(3.78, 529.32) = 9.17, p < .001, ηp
2 = .06, and differed by 

condition, F(4, 140) = 11.61, p < .001, ηp
2 = .25. Critically, there was an interaction of block and 

condition, F(15.12, 529.32) = 1.83, p = .028, ηp
2 = .05, suggesting that accuracy in all 

experimental conditions did not increase relative to control until blocks 6-8, when the base-rate 

change was complete.  

 

 

Figure 12. Average accuracy by condition and block in Experiment 1. Error bars represent standard error. 
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Table 7. Average accuracy (and frequency of responding category A) by condition and block in Experiment 1. 

 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 
         

Abrupt, 
Alert     

(n = 32) 

0.61 
(0.50) 

0.60 
(0.48) 

0.60 
(0.50) 

0.70 
(0.70) 

0.69 
(0.75) 

0.70 
(0.76) 

0.71 
(0.78) 

0.73 
(0.81) 

         
Abrupt, 

Discover 
(n = 29) 

0.58 
(0.49) 

0.58 
(0.48) 

0.60 
(0.47) 

0.66 
(0.64) 

0.65 
(0.68) 

0.67 
(0.72) 

0.68 
(0.74) 

0.69 
(0.77) 

         
Gradual, 

Alert    
(n = 27) 

0.59 
(0.50) 

0.60 
(0.49) 

0.59 
(0.48) 

0.62 
(0.54) 

0.59 
(0.56) 

0.67 
(0.72) 

0.66 
(0.72) 

0.69 
(0.75) 

         
Gradual, 
Discover 
(n = 27) 

0.59 
(0.49) 

0.56 
(0.49) 

0.58 
(0.48) 

0.61 
(0.52) 

0.59 
(0.54) 

0.64 
(0.69) 

0.66 
(0.68) 

0.64 
(0.69) 

         
Control 
(n = 30) 

0.55 
(0.49) 

0.63 
(0.45) 

0.61 
(0.50) 

0.61 
(0.49) 

0.61 
(0.49) 

0.58 
(0.47) 

0.63 
(0.49) 

0.60 
(0.51) 

         
 

Confidence 

Average confidence ratings can be seen by block and condition in Figure 13. A 3 (pre-

change blocks 1-3) x 5 (condition; including control) mixed factor ANOVA found no significant 

differences in average confidence by condition, F(4, 140) = 0.24, p = .914, ηp
2 = .01. A 

subsequent 5 (change/post-change blocks 4-8) x 5 (condition; including control) mixed factor 

ANOVA found that average confidence increased across blocks 4-8, F(3.11, 434.71) = 3.40, p = 

0.017, ηp
2 = .02, but did not differ among conditions, F(4, 140) = 1.21, p = .311, ηp

2 = .03, or by 

block and condition, F(12.42, 434.71) = 0.87, p = .583, ηp
2 = .02. Qualitatively, average 

confidence during and after change was lowest in the gradual/discover condition (i.e., 

gradual/discover showed the least increase in confidence). 
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Figure 13. Average confidence by condition and block in Experiment 1. Error bars represent standard error. 

 

Proportion of Category A Responses 

The average proportion of Category A responses by block and condition can be seen in 

Figure 14. A 3 (pre-change blocks 1-3) x 5 (condition; including control) mixed factor ANOVA 

found no significant differences in the proportion of Category A responses among conditions, 

F(4, 140) = 0.21, p = .934, ηp
2 = .01. A subsequent 5 (change/post-change blocks 4-8) x 5 

(condition; including control) mixed factor ANOVA revealed a main effect of block, F(3.37, 

472.03) = 50.68, p < .001, ηp
2 = .27, a main effect of condition, F(4, 140) = 35.62, p < .001, ηp

2 = 

.50, and an interaction between block and condition, F(13.49, 472.03) = 5.67, p < .001, ηp
2 = .14. 

All experimental conditions responded category A more frequently, on average, than the control 

condition – suggesting they were sensitive to the base-rate manipulation (even in gradual change 
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expected given that the category A base-rate was lower in gradual change conditions over these 

two change blocks. By the final three blocks, however, there were no significant differences in 

the proportion of Category A responses. This is particularly interesting given that SDT criterion 

estimates suggested lower sensitivity to base-rates in gradual conditions – gradual/discover in 

particular. When proportion of high-base-rate category responses is considered, it appears that all 

change conditions are sensitive to the change in base-rates. 

 

 

Figure 14. Average proportion of Category A (the high base-rate category following the change) responses by block 
and condition in Experiment 1. Error bars represent standard error. 
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effect of base-rate change is assessed. Second, the long-term effects of change are investigated 

(e.g., the ability to recover to pre-change levels of performance when there is a performance 

cost). The calculation of immediate and long-term effects are based on similar measures – 

termed cost and recovery when related to drops in performance associated with category transfer 

– that have been used in previous category learning studies (Cantwell et al., 2015; Maddox, 

Glass, O’Brien, Filoteo, & Ashby, 2010). A third set of analyses evaluates performance trends at 

the end of the experiment (blocks 6-8) by rate and awareness of change to determine how change 

characteristics impact behavior across several post-change blocks.  

The immediate effect of change is calculated as a difference score between the final pre-

change block (block 3) and the first post-change block (block 4 in abrupt conditions; block 6 in 

gradual conditions). The immediate effect is calculated as post-pre, such that negative values 

indicate a decrease in a dependent measure following change. Note that when change is 

associated with a decrease in performance, the immediate effect can be considered a cost 

(Maddox et al., 2010). The long-term effect of change is calculated as a difference score between 

the first and last post-change blocks (Block 8 – block 4 in abrupt change conditions and block 8 

– block 6 in gradual change conditions). Since optimal values of dependent measures (e.g., 

accuracy) change from pre- to post-change, both immediate and long-term change effect 

analyses compare rate and awareness of change conditions using “difference-from-optimal” 

measures at each time point. Thus, analyses are a difference of difference scores (e.g., acc-accopt 

post – acc-accopt pre).  

Finally, performance trends in post-change blocks are evaluated through 3 (post-change 

blocks 6-8) x 2 (rate: abrupt, gradual) x 2 (awareness: alert, discover) mixed factor ANOVAs on 
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the different dependent measures. Such an analysis provides information on continued base-rate 

learning following change and any differences in base-rate sensitivity across change conditions.  

Decision Criterion Placement (β) 

A pair of 2 (rate) x 2 (awareness) between-subjects ANOVAs were conducted to evaluate 

the immediate and long-term effects of change with respect to decision criterion placement (β). 

Since the optimal decision criterion changed from pre-change blocks (βo = 1) to post-change 

blocks (βo = 3), the natural log of β-values were analyzed in terms of difference from optimal 

(lnβ-lnβo). The natural log of β-values was used to linearize the scale and make comparisons 

easier to evaluate. The results revealed no main or interactive effects of rate and awareness of 

change on the immediate effect of change (all p’s > .186) or long-term effect of change (all p’s > 

.313) on lnβ-βo. See Table 8 for the average immediate effect of change on lnβ-βo by condition 

and Table 9 for the average long-term effect of change on lnβ-βo by condition (across all 

dependent measures). 

A 3 (post-change blocks 6-8) x 2 (rate) x 2 (awareness) mixed factor ANOVA revealed a 

main effect of block, F(1.69, 187.49) = 8.07, p < .001, ηp
2 = .07, with significantly larger β-

values in blocks 7 and 8 compared to block 6, suggesting asymptotic performance occurred by 

block 7. There was also a main effect of rate of change on average β-values in post-change 

blocks, F(1, 111) = 5.18, p = .025, ηp
2 = .05, d = .21 with larger β-values in abrupt than gradual 

conditions. There was no main effect of awareness of change on average β values in the post-

change blocks, F(1, 111) = 0.03, p = .855, ηp
2 < .01. 
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Table 8. Mean (SD) immediate effect of change by condition in Experiment 1. 

Condition 
ln(SDT-β) -

ln(βo) 
ln(GRT-β) -

ln(βo) 
Accuracy 

(acc-accopt) 
Confidence 

Proportion 
Category A 
Responses 

      
Abrupt, Alert   (n = 32) -0.83 (0.36) -0.44 (1.11) 0.01 (0.12) 0.20 (0.64) 0.20 (0.16) 

      
Abrupt, Discover (n = 29) -0.98 (0.34) 0.00 (1.36) -0.03 (0.13) 0.26 (0.57) 0.17 (0.12) 

      
Gradual, Alert   (n = 27) -0.98 (0.27) 0.17 (1.86) -0.01 (0.09) 0.30 (0.97) 0.24 (0.16) 

      
Gradual, Discover (n = 27) -1.01 (0.52) 0.08 (1.50) -0.02 (0.13) 0.11 (0.83) 0.21 (0.14) 

      
 

Table 9. Mean (SD) long-term effect of change by condition in Experiment 1. 

Condition 
ln(sdtβ)-

ln(βo) 
ln(grtβ)-

ln(βo) 
Accuracy 

(acc-accopt) 
Confidence 

Proportion 
Category A 
Responses 

      
Abrupt, Alert (n = 32) 0.31 (0.77) 0.61 (1.04) 0.03 (0.12) 0.33 (0.77) 0.11 (0.16) 

      
Abrupt, Discover (n = 29) 0.23 (0.68) 0.65 (1.38) 0.02 (0.12) 0.10 (0.77) 0.13 (0.16) 

      
Gradual, Alert (n = 27) 0.18 (0.48) 0.04 (1.45) 0.01 (0.10) -0.01 (0.78) 0.03 (0.14) 

      
Gradual, Discover (n = 27) 0.13 (0.40) 0.08 (1.21) 0.00 (0.12) -0.11 (1.00) 0.00 (0.11) 

      
 

Decision Bound Modeling Criterion (GRT-β estimate) 

 A pair of 2 (rate) x 2 (awareness) between-subjects ANOVAs were conducted to evaluate 

the immediate effect of change (block 4 – block 3 for abrupt change; block 6 – block 3 for 

gradual change) and long-term effect of change (block 8 – block 4 for abrupt change; block 8 – 

block 6 for gradual change) with respect to decision criterion (GRT-β’) estimates by the free-

boundary model. As with the signal detection β’s, GRT-β values were analyzed in terms the 

difference from optimal, after taking the natural log of each β-value [ln(GRT-β)-ln(βo)]. There 
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were no main or interactive effects of rate and awareness of change on the difference in the 

immediate effect of change on  ln(GRT-β)-ln(βo), all p’s > .211. In terms of the long-term effect 

of change, there was a main effect of rate of change, F(1, 111) = 5.72, p = .018, ηp
2 = .05, with 

greater increases in GRT-β across post-change blocks in abrupt than gradual change rate 

conditions. There was no main effect of awareness of change, F(1, 111) = 0.03, p = .865, ηp
2  

.01, or interaction of rate and awareness of change, F(1, 111) < 0.01, p = .978, ηp
2 < .01, on the 

average long-term effect of change on GRT-β estimates. An analysis of GRT β-values within 

post-change blocks (blocks 6-8) found no significant main or interactive effects of block, rate of 

change, and awareness of change (all p’s > .230). 

Accuracy 

A pair of 2 (rate) x 2 (awareness) between-subjects ANOVAs were conducted to evaluate 

the immediate (block 4 – block 3 for abrupt change; block 6 – block 3 for gradual change) and 

long-term (block 8 – block 4 for abrupt change; block 8 – block 6 for gradual change) effects of 

change on accuracy. Since optimal accuracy changed from pre-change 1:1 base-rate blocks 

(accopt = 0.69) to post-change 3:1 base-rate blocks (accopt = 0.78), accuracy values were analyzed 

in terms of difference from optimal (acc-accopt) for each respective block of trials. Positive 

difference scores indicated an increase in accuracy relative to optimal accuracy, while negative 

difference scores indicated a decrease in accuracy relative to optimal accuracy. 

There were no main or interactive effects of rate and awareness of change on the 

immediate effect of change (all p’s > .195) or long-term effect of change (all p’s > .416) on 

average accuracy in terms of deviation from optimal. Table 8 shows that for all conditions other 

than abrupt/alert, there is a general cost to deviation from optimal accuracy that is associated 

with base-rate change. This is likely due to optimal accuracy increasing by 9% over a short 
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period of time. Table 9 reveals that in most cases (except for the gradual/discover condition) 

accuracy does tend to move closer to optimal over time. However, it seems that neither rate nor 

awareness of base-rate change impact the immediate or long-term effects of base-rate change on 

accuracy. 

A 3 (post-change blocks 1-3) x 2 (rate) x 2 (awareness) mixed factor ANOVA revealed 

main effects of both rate of change, F(1, 111) = 8.55, p = .004, ηp
2 = .07, and awareness of 

change, F(1, 111) = 4.65, p = .033, ηp
2 = .04, with larger post-change average accuracy in abrupt 

(M = 0.70) compared to gradual (M = 0.66) change conditions as well as in alerted (M = 0.69) 

compared to discovery (M = 0.66) conditions. No other main or interactive effects were 

significant (all p’s > .252). 

Confidence 

 The immediate (block 4 – block 3 for abrupt change; block 6 – block 3 for gradual 

change) and long-term (block 8 – block 4 for abrupt change; block 8 – block 6 for gradual 

change) effects of change on average confidence were analyzed using a pair of 2 (rate of change) 

x 2 (awareness of change) between-subjects ANOVAs. There were no differences in the 

immediate effect of change on average confidence (all p’s > .394) or long-term effect of change 

on confidence (all p’s > .075) due to base-rate change, although confidence tended to increase 

more in abrupt than gradual change rate conditions. From Table 8, it is clear confidence 

continued to increase on the first post-change block, on average. However, confidence only then 

continued to increase in abrupt change conditions (see Table 9). An analysis of average 

confidence within post-change blocks (blocks 6-8) by rate and awareness of change revealed no 

main or interactive effects (all p’s > .083). 
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Proportion of Category A Responses 

 The immediate (block 4 – block 3 for abrupt change; block 6 – block 3 for gradual 

change) and long-term (block 8 – block 4 for abrupt change; block 8 – block 6 for gradual 

change) effects of change on the frequency of Category A responses were calculated.  From 

Table 8 it is clear category A response frequency increased immediately following base-rate 

change, and from Table 9, continued to increase (particularly in abrupt change conditions). The 

pair of 2 (rate) x 2 (awareness) between-subjects ANOVAs revealed no main effects of rate or 

awareness of change on the immediate effect of change on category A response frequency (all 

p’s > .160). There was a greater continued increase in the frequency of responding category A 

post-base-rate change in abrupt than gradual change rate conditions, F(1, 111) = 13.61, p < .001, 

ηp
2 = .11 (all other p’s > .435). 

 A 3 (post-change blocks 6-8) x 2 (rate) x 2 (awareness) mixed factor ANOVA found a 

main effect of block on average proportion of category A responses, F(2, 222) = 5.35, p = .005, 

ηp
2 = .05, with the average proportion of category A responses increasing across post-change 

blocks. There was also a main effect of rate of change, F(1, 111) = 3.02, p = .009, ηp
2 = .06, such 

that the average frequency of Category A responses was higher during post-change blocks in 

abrupt (M = 0.76) compared to gradual (M = 0.70) conditions. 

Discussion 

 Participants learned to categorize bar graphs simulating the results of a medical test into 

one of two disease categories. One group served as a control condition and learned the categories 

with equal base-rates in each block. The four experimental conditions, crossing rate (abrupt, 

gradual) and awareness (alert, discover) of change experienced a shift in category base-rates 

from 1:1 to 3:1 in favor of disease category A. Three hypotheses were tested in Experiment 1: 1) 
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Participants would shift their decision criteria in the optimal direction but display conservative 

cutoff placement, 2) discovery conditions would be no worse than alert conditions, and 3) 

performance would be better in gradual than abrupt change conditions.  

The signal detection β-values provide support for Hypothesis 1. Participants in the four 

experimental conditions shifted their decision criteria in the optimal direction, as opposed to the 

control condition which displayed a stable, unbiased criterion, as expected. Despite shifting in 

the optimal direction in the experimental conditions, the maximum average SDT-β by the end of 

the experiment was still conservative (βavg = 2 vs. Bopt = 3). Overall, the pattern of SDT-β values 

across blocks resembles the pattern seen in previous studies, particularly in the abrupt change 

conditions which most closely mirror previous base-rate conditions. It should be noted that 

criterion estimates from the GRT models likely overestimated β-values due to an artifact in the 

modeling procedure (i.e., insufficient constraints on β values), leading to an over-estimation of 

the β parameter; for this reason, GRT model analysis focuses on qualitative relationships 

between conditions and statistical tests between models.   

If base-rate learning is largely implicit (Bohil & Wismer, 2015; Wismer & Bohil, 2017), 

then alerting one to base-rate changes should not help. For this reason, base-rate adaptation was 

predicted to be no different in alerted and discovery conditions. Indeed, there were no differences 

between alerted and discovery conditions with respect to either the immediate or long term effect 

of the base-rate change across all dependent measures (SDT and GRT criterion placement, 

accuracy, proportion of high base-rate category responses, and confidence), providing support 

for Hypothesis 2. Thus, the present results pertaining to awareness of change in base-rate 

adaptation provide additional support for claims of the role of implicit learning in base-rate 

sensitivity (Bohil & Wismer, 2015; Wismer & Bohil, 2017). However, it is important to point 
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out that this conclusion is based on a null-result. Additional research, along with Bayesian data 

analysis, may be required to corroborate this conclusion. 

The rate of change variable (abrupt, gradual) was selected from the machine learning 

literature, where active approaches (that require change detection prior to adaptation) perform 

better with abrupt concept drift, and passive approaches (that do not require change detection, 

but instead continually take new inputs into account for future predictions) perform better with 

more gradual concept drift. Given evidence that base-rate sensitivity develops largely through 

the slower, implicit learning system that learns stimulus-response associations (akin to a passive 

machine learning approach), it was predicted that base-rate adaptation would be greater in 

response to gradual rather than abrupt base-rate changes. Gradual change blocks provide an 

opportunity for observers to develop a response bias earlier and thus exhibit a smaller change 

cost in terms of performance in the new (3:1) base-rate compared to the previous (1:1) base-rate. 

One might then expect long-term adaptation to base-rate change to be greater in abrupt change 

conditions where higher initial change costs are expected. However, it is also possible that 

experience with gradually changing base-rates could heighten sensitivity to base-rates and lead to 

greater improvements in base-rate sensitivity (i.e., criterion placement) over time, suggesting 

improved adaptation in gradual change conditions. Therefore, it is possible to observe no 

difference in long-term adaptation between abrupt and gradual change conditions despite seeing 

a greater change cost in abrupt conditions. 

Actually, Experiment 1 revealed no differences in the immediate effect of base-rate 

change between abrupt and gradual conditions. Visual inspection of Figure 10, as well as GRT 

model comparisons within the gradual change blocks, reveal that gradual change conditions did 

not develop a response bias during gradual change blocks (blocks 4 and 5), contrary to 
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expectations. This provides a possible explanation for why abrupt change conditions did not 

exhibit greater costs to base-rate change than gradual conditions. Despite a lack of differences 

with respect to the immediate effect of base-rate change, abrupt conditions exhibited greater 

long-term adaptation with respect to GRT β estimates, average confidence, and proportion of 

high base-rate category responses. Together, this disconfirms Hypothesis 3, suggesting that 

abrupt change may improve base-rate sensitivity compared to gradual change.  

However, it is possible that the difference between abrupt and gradual change adaptation 

is dependent on operational definitions of the immediate and long-term effects of change. The 

long-term adaptation metric used in the present work was based on three blocks in gradual 

conditions (block 8 – block 6) but five blocks in abrupt conditions (block 8 – block 4). The final 

block, used in the calculation of long-term change effects in both abrupt and gradual conditions, 

was the fifth block of 3:1 base-rates for abrupt change conditions but only the third block of 3:1 

base-rates for gradual change conditions. Equating blocks in terms of experience in 3:1 base-rate 

conditions (i.e., comparing SDT-β’s in block 6 of abrupt to block 8 of gradual) reveals no 

difference in average criterion values among change rate conditions (all p’s > .128). Yet, 

comparing long-term SDT-β adaptation defining adaptation as the difference in β’s between the 

first block post-change in the new base-rate ratio (block 4 abrupt, block 6 gradual) to three 

blocks later (block 6 abrupt, block 8 gradual) again reveals a main effect of rate of change, F(1, 

111) = 4.13, p = .045, ηp
2 = .04, with greater increases in average β-values in abrupt (M = 0.25) 

compared to gradual (M = -0.04) change rate conditions. These results highlight some of the 

difficulties in comparing abrupt vs. gradual change in terms of operationally defining the 

immediate and long-term change effect metrics. Future work that provides lengthened exposure 

to new base-rates may provide insights into this issue. 
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An interesting observation in the confidence data reveals that confidence was lowest in 

the gradual/discover condition, despite evidence that performance did increase in this condition 

with respect to accuracy, frequency of high base-rate category responses, and criterion shifting 

following the base-rate change. Implicit learning is associated with knowledge that is hard to 

verbalize, and it can occur without conscious awareness. The present results then suggest that 

implicit learning of the new category base-rates did occur. 

  Despite these interesting findings, of central importance to the question of concept drift 

in perceptual category learning is the difference in adaptation to changing base-rates vs. payoffs, 

and the extent to which change characteristics may or may not mediate differences in base-

rate/payoff adaptation. Experiment 2 reports the results of an analogous experiment conducted 

with payoff change replacing the base-rate change used here. 
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CHAPTER 4: EXPERIMENT 2: PAYOFFS 

Payoff Change 

 The costs and benefits of classification/decision making are an important consideration. 

Option alternatives must be weighed against their potential outcomes, and after-the-fact 

outcomes should be valuated to inform future decisions (O'Doherty, Cockburn, & Pauli, 2017). 

This process is particularly difficult because valuations are prone to change, both from internal 

motivational state changes as well as external stimulus changes (O'Doherty et al., 2017). For 

instance, our decisions about what dinner food would satisfy our hunger changes the hungrier or 

thirstier we get, and smells and sounds can influence the valuation we attach to objects 

(O'Doherty et al., 2017). As things change both internally and externally, we must be able to 

shift our decision criteria.  

 Experiment 2 serves as an initial investigation into the effect of payoff change on 

classification performance. When one option is more rewarding than another (and there are no 

costs associated with incorrect decisions), our responses should be biased toward the option with 

a higher reward, to maximize long-run reward. This type of “no-loss” payoff matrix was selected 

as a simple way to provide an initial test of adaptation to payoff change, and it provides a 

comparison to previous work on cost-benefit learning in categorization (Maddox & Bohil, 2000, 

2005). As noted in the literature review, previous work has shown sensitivity to category 

payoffs, but observers have typically 1) displayed conservatism in cutoff placement (i.e., do not 

shift criterion as far as optimal classifier) and 2) are more conservative than equivalent base-rate 

ratio conditions. Experiment 2 explores whether payoff adaptation is influenced by rate and or 

awareness of payoff changes. 
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Method 

Experimental Design 

 As in Experiment 1, Experiment 2 included four conditions resulting from the factorial 

combination of rate of change (abrupt, gradual) and awareness of change (alerted, discovered) as 

well as one control condition:  

1. Abrupt, alerted 

2. Abrupt, discovered 

3. Gradual, alerted 

4. Gradual discovered 

5. Control condition with no change across the eight blocks  

 

 

 

Figure 15. Experimental design for Experiment 2. 

 

Block 1 Block 3 Block 2 Block 5 Block 4 Block 6 Block 8 Block 7 

1:1 PO 

3:1 PO 

  Control 

  Abrupt 

  Gradual 

Alerted: 
Yes or No 
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Participants 

 Students from the University of Central Florida and volunteers from the community 

participated in the experiment. Most students signed up for and participated in the study through 

the SONA systems participation tool in exchange for course credit. All participants were at least 

18 years old and reported normal or corrected-to-normal vision. Each participant completed only 

one condition of the experiment. There were 25 participants randomly assigned to each of the 

four experimental conditions, as well as to the control condition, for a total of 125 participants 

(see Table 10 for participant demographics overall and by condition). This sample size is based 

on the same power analysis that was run for Experiment 1 since it is a direct comparison to base-

rate change in Experiment 1. Indeed, previous work has used equal sample sizes for base-rate 

and payoff conditions (Maddox & Bohil, 1998, 2003, 2005). 

 

Table 10. Participant demographics by condition in Experiment 2. 

 Age Gender Count 
Condition (n’s = 25) M SD Male Female 

Abrupt, Alert 20.40 3.06 12 13 
Abrupt, Discover 21.20 5.24 9 16 

Gradual, Alert 20.48 3.66 9 16 
Gradual, Discover 20.52 3.08 9 16 

Control 18.60 0.96 12 13 
Overall (n = 125) 20.24 3.53 51 74 

 

Stimuli 

 The same stimuli and stimuli selection process as in Experiment 1 were used in 

Experiment 2. The only difference was that category base-rate parameters remained fixed at 1:1 

(equal A:B ratio) through the entirety of Experiment 2. Payoff values were displayed – and 

changed mid-experiment – during Experiment 2 instead. 
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Procedure 

Experiment 2 investigated the influence of category payoff (benefits) change on 

categorization performance. The procedure for Experiment 2 was identical to Experiment 1 with 

the exception of change to the payoff parameters rather than base-rate parameter. This 

manipulation was done by awarding points for correct responses (while receiving 0 points for 

incorrect responses). The four possible payoff outcomes produced in a two-alternative forced 

choice classification task can be described in a two-by-two payoff matrix (Respond A/B x 

Category A/B). Experiment 2 used what is called a no-loss payoff matrix. Points were awarded 

only for correct responses; incorrect responses did not impact point totals (i.e., 0 points awarded 

or taken away). Experiment 2 began with a balanced payoff matrix (1:1) where correct responses 

to both Category A and B stimuli resulted in 100 points for each trial. After the abrupt or gradual 

change, the new payoff matrix awarded 150 points for correct Category A responses but only 50 

points for correct Category B responses (again with 0 points for incorrect responses). No other 

features of the categories or decision environment changed (See Table 11). Again, half of the 

participants were alerted to this change in the same manner as in Experiment 1; the other half 

were left to discover the change. These point values were selected to match the 3:1 ratio change 

in base-rates in Experiment 1. 

Gradual payoff change was implemented in much the same manner as the gradual base-

rate change in Experiment 1. On each change trial, beginning with the first trial of block four, the 

point value for Category A incremented by the point value range (150-100=50) divided by 100 

change trials = .50, and the point value for Category B decreased the same amount starting at 100 

and ending at 50 by the end of block five. 
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Table 11. Category statistics for Experiment 2. 

Time Category μ σ 
Base-rate 

ratio 

Payoff ratio 
Resp 

A 
Resp 

B 
Start A 99 21 1:1 100 0 

 B 120 21 1:1 0 100 

End 
A 99 21 1:1 150 0 
B 120 21 1:1 0 50 

   

Point feedback replaced the correct/incorrect category feedback presented in Experiment 

1. Participants were told which disease category had been presented, how many points they 

earned for their response, and how many points they had accumulated for the current block of 

trials (see Table 12). Block point totals were shown on screen again at the end of the block for 

5000ms to inform participants how they did. The maximum point totals for 1:1 and 3:1 payoff 

conditions are 5000 and 6250, respectively. However, given the low category discriminability (d’ 

= 1), optimal point totals are 3450 and 3881 for the 1:1 and 3:1 payoff conditions, respectively 

(since optimal accuracy is 69% in 1:1 base-rate condition with category d’ = 1). 

 

Table 12. Example category point (payoff) feedback in Experiment 2. 

That was: Disease A 

Points Earned: 100 

Your Total Points: 1000 

 

Predictions 

Experiment 2 provides an investigation of the influence of change rate and awareness of 

change on payoffs (i.e., benefits) in category learning in a one-dimensional, rule-based 

categorization task. Payoffs are assumed to be learned with conscious awareness – at least when 
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payoffs are provided in numerical form on each trial. In categorization, payoffs are typically 

presented as points for correct or incorrect responses and are summarized in a payoff matrix, 

similar to Signal Detection Theory (SDT) outcomes. Assuming the explicit nature of payoff 

sensitivity, the following hypotheses were made:  

Hypothesis 1: Criterion change will be more conservative to payoffs in Experiment 2 

compared to base-rates in Experiment 1, in line with the COBRA hypothesis. 

Hypothesis 2: Performance (point totals, criterion-shifting) following payoff change 

will be better in alerted (forewarned) compared to discovery conditions.  

Hypothesis 3: Criterion change will be better in response to abrupt rather than gradual 

payoff change.  

Results 

 The analysis approach followed that of Experiment 1, with the addition of reward (i.e., 

point total) as a primary dependent measure to assess adaptation to changing payoffs. The same 

outlier replacement approach was taken as in Experiment 1. The number of outlier data points 

identified and replaced in each condition can be seen in Table 13 below.  

 

Table 13. Number of outliers in Experiment 2 by condition and measure. 

 Beta (β) Accuracy 
Total Data Points  

(# blocks x # participants) 
Abrupt, alert 7 0 200 
Abrupt, discover 5 0 200 
Gradual, alert 4 1 200 
Gradual, discover 5 0 200 
Control 3 0 200 

Note. No outliers were identified for average confidence, point total, or proportion of Category A responses. 
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Comparison to Control  

Signal Detection Decision Criterion Placement (β) 

 A 3 (pre-change blocks) x 5 (condition; including control) mixed factor ANOVA was 

conducted on average β-values during pre-change blocks. There was an interaction of block and 

condition, F(7.54, 226.06) = 2.58, p = .012, ηp
2 = .08, such that β-values in block l were larger in 

the abrupt/discover condition than other conditions, but were similar in blocks 2 and 3 by the end 

of the pre-change blocks (see Figure 16). Next, a 5 (change/post-change blocks 4-8) x 5 

(condition; including control) mixed factor ANOVA was conducted to evaluate the sensitivity to 

the payoff change in the experimental conditions compared to the control condition. There was 

no main effect of block on average β-values in blocks 4-8, F(1.16, 139.05) = 2.60, p = .104, ηp
2 = 

.02, but there was a main effect of condition, F(4, 120) = 3.85, p = .006, ηp
2 = .11. Bonferroni 

post-hoc comparisons revealed that β-values were significantly larger in the abrupt/alert 

condition compared to both the gradual/discover (p = .032) and control (p = .004) conditions. 

There was no interaction of block and condition, F(4.64, 139.05) = 2.00, p = .088, ηp
2 = .06; 

however, it is obvious from Figure 16 that the main effect of condition is driven only by the 

abrupt/alert condition in block 8. This increase in β in block 8 in the abrupt/alert condition is 

likely the results of outliers. Three of the 25 participants had extremely large β-values, and only 

one of these values was removed in the +/- 3SD outlier analysis. Removal of the remaining two 

large β-values results in a more modest β-estimate of 1.19. (As a side note, once again there was 

no effect of condition on estimates of d’ from SDT; all p’s > .264). 
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Figure 16. Average SDT-β values by block and condition in Experiment 2. 

  

Decision Bound Models (GRT-β Estimate) 

 The decision bound modeling analysis for Experiment 2 was the same as for Experiment 

1 given that the optimal decision criterion in each block was identical. The same three decision 

bound models as in Experiment 1 were applied to the data (unbiased, free-boundary, and optimal 

models). The β’s estimated by the free-boundary model were subjected to the same analyses as 

the SDT-β’s (see Figure 17). A 3 (pre-change blocks) x 5 (condition; including control) mixed 

factor ANOVA revealed a main effect of block on average GRT- β, F(1.79, 215.18) = 4.89, p = 

.011, ηp
2 = .04, with larger GRT-β estimates in block 1 than block 3 (p = .011). There was also a 

main effect of condition, F(4, 120) = 2.95, p = .023, ηp
2 = .09, with larger GRT-β estimates in the 

abrupt/discover condition compared to the abrupt/alert condition (p = .026), but no differences 

between any of the experimental conditions and the control condition (all p’s > .957).  
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Figure 17. Average GRT-β estimates from free-boundary model by block and condition in Experiment 2. 

 

 An analogous ANOVA was conducted on average GRT-β estimates in change/post-

change blocks (4-8) to evaluate the effect of base-rate change on GRT-β estimates in the 

experimental conditions compared to the control condition. There was a main effect of block, 

F(3.33, 399.64) = 3.40, p = .014, ηp
2 = .03, with significantly larger GRT-β estimates in block 8 

compared to block 7 (p = .015). There was also a main effect of condition, F(4, 120) = 3.31, p = 

.013, ηp
2 = .10, such that GRT-β estimates were significantly higher in the gradual/alert condition 

compared to the control condition (p = .006). No other conditions were significantly different 

than the control condition (all p’s > .433). 

 Table 14 displays the proportion of participants best fit by each model in each block. The 

optimal and unbiased models were equivalent for the first three blocks given an unbiased optimal 

criterion (βo = 1). In block 4, more participants were best fit by the unbiased model in abrupt 

change than gradual change conditions, z = 2.01, p = .044. In block 5, more participants were 

best fit by the unbiased model in discover than alert conditions, z = 2.24, p = .025. This suggests 
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that participants used closer to optimal decision criteria when payoffs changed gradually and 

when they were alerted to the change. Additional z-tests were conducted for each change/post-

change block comparing the proportion of participants best fit by the unbiased model in each 

experimental condition to the control condition. In block 4, control participants were best fit by 

the unbiased model significantly more often than abrupt/discover, gradual/alert, and 

gradual/discover conditions (all p’s < .05), more often than the gradual/alert condition in block 

five (p < .01), and more often than all four experimental conditions in block 7 (all p’s < .05). 

These results therefore provide additional support for payoff sensitivity in the experimental 

conditions, with the highest sensitivity in the gradual/alert condition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

83 
 

Table 14. Proportion of participants in each condition of Experiment 2 best fit by unbiased, free-boundary, and 
optimal boundary models. 

Condition Block 
1 

Block 
2 

Block 
3 

Block 
4 

Block 
5 

Block 
6 

Block 
7 

Block 
8 

Individual 

Abrupt, 
Alert 

UNB .84 .80 .72 .60 .56 .56 .40 .52 
FRB .16 .20 .28 .12 .04 .20 .28 .12 
OPT .84 .80 .72 .28 .40 .24 .32 .36 

Abrupt, 
Discover 

UNB .84 .80 .84 .52 .68 .72 .60 .48 
FRB .16 .20 .16 .04 .12 .04 .04 .16 
OPT .84 .80 .84 .44 .20 .24 .36 .36 

Gradual, 
Alert 

UNB .76 .72 .76 .44 .40 .56 .56 .52 
FRB .24 .28 .24 .16 .24 .12 .08 .12 
OPT .76 .72 .76 .40 .36 .32 .36 .36 

Gradual, 
Discover 

UNB .96 .76 .72 .28 .72 .76 .64 .52 
FRB .04 .24 .28 .16 .08 .04 .24 .24 
OPT .96 .76 .72 .56 .20 .20 .12 .24 

Control 
UNB .84 .92 .84 .84 .76 .72 .88 .64 
FRB .16 .08 .16 .16 .24 .28 .12 .36 
OPT .84 .92 .84 .84 .76 .72 .88 .64 

Average (proportion best fit by unbiased model) 
 

Abrupt    .56 .62 .64 .50 .50 
Gradual    .36 .56 .64 .60 .50 

    * # # # # 
Alert    .52 .48 .56 .48 .52 

Discover    .48 .70 .74 .62 .50 
    # * # # # 

Notes. UNB = unbiased boundary model; FRB = free boundary model; OPT = optimal boundary model. UNB and 
OPT proportions are identical for blocks 1, 2, and 3 in experimental conditions and all blocks for control condition 
[optimal criterion is unbiased (βo = 1)]. The bottom portion of the table describes the proportion of participants best 
fit by a biased model in the post-change blocks. Significance of comparisons across rate and awareness of change 

conditions is reported below proportions for average conditions (# p >= .05; * p < .05; ** p < .01).  

 

Reward (Point Total) 

 A 3 (pre-change blocks 1-3) x 5 (condition; including control) mixed factor ANOVA 

found no differences in average point totals among conditions, F(4, 120) = 0.49, p = .743, ηp
2 = 

.02. A subsequent 5 (change/post-change blocks 4-8) x 5 (condition; including control) mixed 

factor ANOVA was run to evaluate the effect of payoff change on experimental conditions 

relative to the control condition in change/post-change blocks. There was no main effect of 
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block, F(3.85, 462.44) = 0.88, p = .475, ηp
2 = .01, or condition, F(4, 120) = 0.46, p = .769, ηp

2 = 

.02. There was, however, an interaction between block and condition, F(15.42, 462.44) = 1.72, p 

= .043, ηp
2 = .05. Average point total by block and condition can be seen in Figure 18 below. 

  

 

Figure 18. Average point totals by block and condition in Experiment 2. Error bars represent standard error. 

 

Accuracy 

 There was no main effect of condition on average accuracy in the pre-change blocks, 

F(1.92, 7.67) = 0.41, p = .804, ηp
2 = .01. A subsequent ANOVA on average accuracy in the 

change/post-change blocks (4-8) found no main or interactive effects of block and condition on 

average accuracy (all p’s > .080). Average accuracy by block and condition can be seen in Figure 

19. 
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Figure 19. Average accuracy by block and condition in Experiment 2. Error bars represent standard error. 

 

Confidence 

 A 3 (pre-change blocks) x 5 (condition; including control) mixed factor ANOVA found 

that average confidence increased across pre-change blocks, F(1.66, 198.82) = 6.62, p = .003, ηp
2 

= .05, but did not differ by condition, F(4, 120) = 0.21, p = .935, ηp
2 = .01, or by block and 

condition, F(6.63, 198.82) = 0.46, p = .853, ηp
2 = .02. A subsequent ANOVA run on 

change/post-change blocks (4-8) found no main or interactive effects of block and condition (all 

p’s > .485). Average confidence by block and condition can be seen in Figure 20.  
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 Figure 20. Average confidence by block and condition in Experiment 2. Error bars represent standard error. 

 

Proportion of Category A Responses 

 There were no differences among conditions with respect to the average proportion of 

Category A responses in pre-change blocks (all p’s > .403). A subsequent ANOVA run on the 

five change/post-change blocks (4-8) revealed a main effect of condition on the average 

proportion of Category A responses, F(4, 120) = 6.29, p < .001, ηp
2 = .17. Post-hoc comparisons 

suggest that abrupt/alert (p < .001), abrupt/discover (p = .003), and gradual/alert (p = .001) 

conditions had significantly higher average proportions of Category A responses compared to the 

control condition. The increase in proportion of Category A responses in the gradual/discover 

condition compared to the control condition across blocks 4-8 was not significant (p = .208). 

However, as a whole, these results suggest that the experimental conditions were sensitive to the 

base-rate manipulations via increased responding of category A (the high base-rate category) 

compared to the control condition with equal category base-rates. 
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Figure 21. Average frequency of responding with Category A (the high payoff category following the change) by 
block and condition in Experiment 2. 

 

Change Effects 

Criterion Placement (β) 

To evaluate the effect of base-rate change on criterion placement, a series of 2 (rate) x 2 

(awareness) between-subjects ANOVAs were conducted on each dependent variable with respect 

to the immediate (block 4 – block 3 for abrupt change; block 6 – block 3 for gradual change) and 

long-term (block 8 – block 4 for abrupt change; block 8 – block 6 for gradual change) effects of 

payoff change. Lnβ-values were again used in the immediate and long-term change effects 

computations of criterion values to facilitate comparison, and they were calculated as difference 

scores from lnβo due to different optimal β values pre- and post-change. There were no main or 

interactive effects of rate and awareness of change on the immediate (all p’s > .079) or long-term 

(all p’s > .136) effect of change on criterion values as measured by lnβ-lnβo. The immediate and 
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long-term effects of change on each dependent measure can be seen in Table 15 and Table 16, 

respectively. 

 A 3 (post-change blocks 6-8) x 2 (rate) x 2 (awareness) mixed factor ANOVA was then 

conducted on average signal detection β-values in the post-change blocks to evaluate the effects 

of change characteristics in the blocks following change. The main effect of rate of change on 

post-change block β-values approached significance, F(1, 96) = 3.89, p = .051, ηp
2 = .04, with 

average β-values tending to be larger in abrupt compared to gradual change conditions, in 

accordance with Hypothesis 3 - particularly in the final block. There were no other main or 

interactive effects of rate and awareness of change on β-values in the post-change blocks (all p’s 

> .089).  

 

Table 15. Mean (SD) immediate effect of change by condition in Experiment 2.  

Condition 
 (all n’s = 25) 

ln(SDT-
β) - ln(βo) 

ln(GRT-
β) -ln(βo) 

Point 
Total 

Accuracy Confidence 
Proportion 
Category A 
Responses 

Abrupt, 
Alert 

-1.08  
(0.20) 

-0.69 
(0.82) 

186  
(457.5) 

0.02  
(0.07) 

-0.19  
(0.59) 

0.04  
(0.10) 

       
Abrupt, 

Discover 
-1.01  
(0.13) 

-0.88 
(0.80) 

296  
(568.6) 

0.01  
(0.10) 

0.20  
(0.72) 

0.03  
(0.09) 

       
Gradual, 

Alert 
-1.04 
(0.17) 

-0.71 
(0.89) 

-108.9 
(533.4) 

-0.05  
(0.09) 

0.09  
(0.75) 

0.06  
(0.09) 

       
Gradual, 
Discover 

-1.10 
(0.18) 

-0.80 
(0.62) 

101.5 
(583.2) 

0.02  
(0.10) 

-0.12  
(0.71) 

0.03  
(0.11) 

 

 

 

 



 

89 
 

Table 16. Mean (SD) long-term effect of change by condition in Experiment 2 (payoff change) 

Condition 
 (all n’s = 25) 

ln(SDT-β) 
- ln(βo) 

ln(GRT-β) 
- ln(βo) 

Point 
Total 

Accuracy Confidence 
Proportion 
Category A 
Responses 

Abrupt, Alert 
0.21  

(0.77) 
0.39 

(1.17) 
-0.04 
(0.10) 

-0.04  
(0.10) 

-0.03  
(0.79) 

0.01  
(0.13) 

       
Abrupt, 

Discover 
0.01  

(0.11) 
-0.26 
(1.00) 

-0.01 
(0.09) 

-0.01  
(0.09) 

0.06 
 (0.79) 

-0.01  
(0.08) 

       
Gradual, 

Alert 
0.08  

(0.22) 
0.21 

(1.01) 
0.03 

(0.08) 
0.03  

(0.08) 
-0.02 

 (0.54) 
0.02  

(0.11) 
       

Gradual, 
Discover 

0.02  
(0.30) 

0.42 
(0.93) 

-0.03 
(0.07) 

-0.03  
(0.07) 

0.18 
 (0.85) 

0.02  
(0.14) 

 

Decision Bound Modeling Criterion (GRT-β estimate) 

 A pair of 2 (rate) x 2 (awareness) between-subjects ANOVAs were conducted to evaluate 

the immediate (block 4 – block 3 for abrupt change; block 6 – block 3 for gradual change) and 

long-term (block 8 – block 4 for abrupt change; block 8 – block 6 for gradual change) effects of 

change with respect to decision criteria (GRT-β’s) estimated by the free boundary model. As 

with the signal detection β’s, GRT-β values were analyzed in terms of the difference from 

optimal, after taking the natural log of each β- value [ln(GRT-β)-ln(βo)]. There were no main or 

interactive effects of rate and awareness of change on the difference in the immediate effect of 

payoff change on GRT-β’s (all p’s > .397). With respect to long-term effects, there was an 

interaction of rate and awareness of change on average GRT-β estimates, F(1, 96) = 4.38, p = 

.039, ηp
2 = .04, such that alerting made little difference in gradual change conditions but led to 

greater increases in GRT-β across post-change blocks in abrupt change conditions. There were 

no main effects of rate or awareness of change on the long-term effects of payoff change on 

average GRT-β estimates (p’s > .240).  
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 Lastly, there was a main effect of block on GRT β-values, F(1.84, 176.20) = 3.93, p = 

.024, ηp
2 = .04, with average β estimates increasing across blocks 6, 7, and 8. There was also a 

main effect of awareness of change, F(1, 96) = 4.98, p = .028, ηp
2 = .05, with higher average β 

estimates in alert than discover conditions (supporting Hypothesis 2). No other main or 

interactive effects were found (all p’s > .303). 

Reward (Point Total) 

Next, the immediate (block 4 – block 3 for abrupt change; block 6 – block 3 for gradual 

change) and long-term (block 8 – block 4 for abrupt change; block 8 – block 6 for gradual 

change) effects of payoff change were evaluated with respect to point total (reward). Since 

optimal point total varied by pre- (3450) and post- (3813) change blocks, reward was analyzed in 

terms of difference from optimal. A pair of 2 (rate) x 2 (awareness) between-subjects ANOVAs 

were run to evaluate differences in the immediate effect of payoff change on average point totals 

among conditions. There was a main effect of rate of change, F(1, 96) = 5.17, p = .025, ηp
2 = .05, 

with closer to optimal point totals in abrupt compared to gradual conditions (providing support 

for Hypothesis 3) immediately following payoff change. Contrary to Hypothesis 2, there was no 

main effect of awareness of change, F(1, 96) = 2.22, p = .140, ηp
2 = .02, or interaction of rate and 

awareness of change, F(1, 0.22), p = .642, ηp
2 < .01, on the immediate effect of payoff change on 

average point totals. A subsequent ANOVA run on long-term effects of payoff change on point 

totals revealed no main or interactive effects of rate and awareness of change, (all p’s > .140). 

The immediate and long-term effects of payoff change on average point totals, in terms of 

deviation from optimal, can be seen in Table 15 and Table 16. Finally, a 3 (post-change blocks 6-

8) x 2 (rate) x 2 (awareness) mixed factor ANOVA revealed no main or interactive effects with 

respect to average point totals across post-change blocks (all p’s > .142). 
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Accuracy 

A pair of 2 (rate) x 2 (awareness) between-subjects ANOVAs were conducted on the 

immediate (block 4 – block 3 for abrupt change; block 6 – block 3 for gradual change) and long-

term (block 8 – block 4 for abrupt change; block 8 – block 6 for gradual change) effects of 

payoff change on accuracy. Since payoff manipulations do not affect the theoretical optimal 

accuracy of 69% (despite reward maximization being associated with a small decrease in 

accuracy), accuracy cost and recovery was analyzed using raw accuracy values. There was no 

main effect of rate of change, F(1, 96) = 2.41, p = .124, ηp
2 = .02, or awareness of change, F(1, 

96) = 2.55, p = .114, ηp
2 = .03 on average accuracy cost, but there was a significant interaction 

between rate and awareness of change on average accuracy cost, F(1, 96) = 5.11, p = .026, ηp
2 = 

.05, with no difference in accuracy cost in abrupt conditions, but greater cost in alerted than 

discovered gradual change rate conditions (evidence against Hypothesis 2 but in unexpected 

direction). 

 A similar pattern was found for accuracy recovery, with no main effects of rate of 

change, F(1, 96) = 1.50, p = .224, ηp
2 = .02, or awareness of change, F(1, 96) = 0.88, p = .351, 

ηp
2 = .01, but a significant interaction between rate and awareness of change on average accuracy 

recovery, F(1, 96) = 8.17, p = .005, ηp
2 = .08. Accuracy recovery was greater in alerted than 

abrupt conditions when payoff change occurred gradually, but worse when change occurred 

abruptly. Average accuracy cost and recovery can be seen in Table 15 and Table 16. 

 Finally, a 3 (post-change blocks 6-8) x 2 (rate) x 2 (awareness) mixed factor ANOVA 

was conducted on average accuracy in the final 3 blocks of the experiment. There were no main 

or interactive effects of block, rate, and awareness of change on average accuracy (all p’s > 

.125). 
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Confidence 

 Raw confidence averages were analyzed in terms of the immediate (the immediate impact 

of payoff change on confidence; block 4 – block 3 in abrupt change, block 6 – block 3 in gradual 

change) and long-term (the change in confidence following exposure to new category payoffs; 

block 8 – block 4 in abrupt change, block 8 – block 6 in gradual change) effects of payoff 

change. There was no main effect of rate of change, F(1, 96) = 0.02, p = .892, ηp
2 < .01, or 

awareness of change, F(1, 96) = 0.42, p = .521, ηp
2 < .01 on the immediate effect of payoff 

change on average confidence. The interaction of rate and awareness of change was significant, 

F(1, 96) = 4.71, p = .032, ηp
2 = .05, with an increase in confidence post-change in the 

gradual/alert condition but a decrease in confidence post-change in the abrupt/alert condition, 

with the opposite pattern in discover conditions. An analogous analysis of the long-term effects 

of payoff change on average confidence found no main or interactive effects of rate and 

awareness of change (all p’s > .339). The immediate and long-term effects of payoff change on 

average confidence can be seen in Table 15 and Table 16. 

 An analysis of confidence in the final three blocks of the experiment (post-payoff 

change) revealed a significant interaction between block and rate of change, F(1.91, 183.69) = 

3.63, p = .030, ηp
2 = .04, such that average accuracy was no different between abrupt and gradual 

conditions at block 6 but higher in gradual conditions in blocks 7 and 8. There were no other 

main or interactive effects (all p’s > .298).  

Proportion of Category A Responses 

 There were no main or interactive effects of change on the immediate effect of payoff 

change on the average proportion of Category A responses (all p’s > .332), nor were there on 

long-term effects of payoff change (all p’s > .389). The immediate and long-term effects of 



 

93 
 

payoff change on the average proportion of Category A responses can be seen in Table 15 and 

Table 16. The average proportion of Category A responses post-payoff change tended to be 

higher in alert than discover conditions, although this difference was not significant, F(1, 96) = 

3.18, p = .078, ηp
2 = .03. No other main or interactive effects of block, rate, or awareness of 

change were found on the proportion of category A responses during blocks 6-8. 

Base-rate vs. Payoff Change Adaptation 

 Previous work has found more optimal criterion placement in base-rate than payoff 

conditions, likely due to the interaction of accuracy and base-rates/payoffs (payoff maximization 

with equal base-rates requires accuracy sacrifice, whereas accuracy & payoff can be maximized 

together in base-rate conditions). To evaluate whether change in either category base-rates or 

payoffs affects human category learning differently, a series of 2 (condition: base-rate, payoff) x 

2 (rate: abrupt, gradual) x 2 (awareness: alert, discover) between-subjects ANOVAs were 

conducted on signal detection and GRT β’s, accuracy, average confidence, and the proportion of 

Category A responses (the category associated with higher base-rate/payoff post-change). 

Signal Detection Decision Criterion Shifting (β) 

 A first ANOVA was conducted on lnβ values with respect to the immediate and long-

term effects of change. There was a main effect of condition on the immediate effect of change 

on average lnβ, F(1, 207) = 213.01, p < .001, ηp
2 = .51, suggesting that participants in base-rate 

change conditions were better able to immediately shift their decision criteria than participants in 

payoff change conditions. There was also a main effect of rate of change on the immediate effect 

of change on lnβ, F(1, 207) = 113.27, p < .001, ηp
2 = .35, such that there was greater immediate 

criterion change in abrupt than gradual change rates. The interaction of condition and rate of 

change was also significant, F(1, 207) = 166.29, p < .001, ηp
2 = .45, suggesting rate of change 
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did not impact immediate criterion shifting in response to base-rate change, but for payoff 

changes, immediate criterion shifting was better in response to abrupt than gradual change. 

Finally, long-term criterion adaptation was greater in base-rate than payoff conditions, F(1, 207) 

= 7.28, p = .008, ηp
2 = .03, with no main or interactive effects of rate and awareness of change 

(all p’s > .242). 

Decision Criterion Shifting (GRT-β Model Estimates) 

 A second set of ANOVAs was conducted on ln-GRT-β-values with respect to the 

immediate and long-term effects of change (ln values were selected to match signal detection β 

analyses). There was a main effect of condition on the immediate effect of change on ln-GRT-β, 

F(1, 207) = 19.29, p < .001, ηp
2 = .09, with greater criterion shifting in base-rate than payoff 

conditions. There was also an interaction of condition and rate of change on long-term effects of 

change on ln-GRT-β, F(1, 207) = 6.46, p = .012, ηp
2 = .03, such that abrupt change led to greater 

criterion shifting than gradual change in response to base-rate change, but rate of change had no 

effect on long-term adaptation to payoff change.  

Accuracy 

 A third set of ANOVAs was conducted on accuracy values with respect to the immediate 

and long-term effects of change. There was a main effect of condition on the immediate effect of 

change on average accuracy, F(1, 207) = 27.00, p < .001, ηp
2 = .12, such that average accuracy 

increased to a greater extent following base-rate than payoff change. There was also an 

interaction between condition and awareness of change, F(1, 207) = 3.90, p = .050, ηp
2 = .02, 

such that the benefit of alerts was greater in base-rate than payoff conditions. There were no 

significant main or interactive effects with respect to long-term adaptation to change in terms of 

accuracy (all p’s > .067). However, when accuracy adaptation was recalculated in terms of 
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maximum accuracy achieved pre-change vs. post-change, a significant main effect of condition 

was found, F(1, 207) = 48.67, p < .001, ηp
2 = .19, suggesting that across all change types, base-

rate change leads to greater increases in maximum accuracy than payoff change. 

Confidence 

A fourth set of ANOVAs was conducted on the immediate and long-term effects of 

change on average confidence. There was a main effect of condition on the immediate effect of 

change on confidence, F(1, 207) = 5.00, p = .026, ηp
2 = .02, with larger increases in confidence 

following base-rate change than payoff change. There was an interaction of rate and awareness 

of change, F(1, 207) = 4.47, p = .036, ηp
2 = .02, such that participants who were alerted were 

more confident in gradual than abrupt change conditions, while participants who were not alerted 

were more confident in abrupt change conditions compared to gradual change conditions. There 

were no main or interactive effects on long-term effects of change on average confidence (all p’s 

> .116). 

Proportion of Category A Responses 

A fifth set of ANOVAs was conducted on the immediate and long-term effect of average 

proportion of category A responses. There was a main effect of condition on the immediate 

effect of change on the proportion of category A responses, F(1, 207) = 90.25, p < .001, ηp
2 = 

.30, such that the proportion of Category A responses increased to a greater extent following 

base-rate than payoff change. There was also a main effect of condition, F(1, 207) = 9.28, p = 

.003, ηp
2 = .04, such that increases in the proportion of Category A responses were greater in 

base-rate than payoff conditions. There was also a main effect of rate of change on the long-term 

effect of change on average proportion of Category A responses, F(1, 207) = 4.83, p = .029, ηp
2 

= .02, with greater increase in the average proportion of Category A responses in abrupt than 
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gradual change rate conditions. Finally, there was an interaction of condition and rate of change, 

F(1, 207) = 10.94, p = .001, ηp
2 = .05, such that abrupt change led to larger increases in the 

proportion of Category A responses across post-change blocks compared to gradual change in 

base-rate conditions but not payoff conditions. 

Discussion 

Payoff Change Adaptation 

 As in Experiment 1, participants in Experiment 2 learned to categorize bar graphs 

simulating the results of a medical test into one of two disease categories. This time, instead of a 

shift in category base-rates, there was a change in the payoffs (i.e., the point values for correct 

responses) mid-experiment. On each trial, participants were awarded points for correct Category 

A and Category B responses. These point values were equivalent (i.e., 1:1 payoff ratio) for the 

first three blocks but shifted after block 3 to favor Category A (i.e., 3:1 payoff ratio). There were 

again four experimental conditions (where change occurred abruptly or gradually, and 

participants were either alerted or not to the change) and one control condition with no change in 

payoffs. There were three hypotheses of interest: 1) decision criterion placement following 

payoff change would be conservative relative to that of base-rate change in the first experiment, 

2) alerting one to changes in payoffs would lead to improved performance relative to discovery 

conditions, and 3) decision criterion shifting would be better (i.e., closer to optimal) in abrupt 

than gradual change rate conditions. 

Criterion shifting was much more conservative in response to changes in payoffs in 

Experiment 2 than base-rates in Experiment 1. In fact, there was no significant increase in 

criterion values post-payoff change. These results ultimately support Hypothesis 1, given more 

conservative β-values in Experiment 2 than Experiment 1. However, the overall pattern of 
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decision criterion placement in Experiment 2 is also more conservative than what has been found 

in previous studies using stationary, 3:1 payoff ratios (Bohil & Maddox, 2001; Maddox & Bohil, 

2000), although is similar to corresponding payoff condition in (Maddox & Bohil, 2005). Future 

research might consider the possibility that payoff changes are more difficult to adapt to than 

base-rate changes in cases of low perceptual sensitivity.  

Hypothesis 2 received some support in the present experiment. There was an interaction 

of rate and awareness of change on the long-term effect of change on average GRT β estimates, 

such that alerting made no difference in gradual change conditions but led to greater increases 

across post-change blocks (i.e., criterion shifting in optimal direction) in abrupt change 

conditions. Within the post-change blocks (blocks 6-8), alerting was associated with larger GRT 

β-values than discovery conditions. There was a greater immediate accuracy cost followed by 

recovery in gradual, alerted than gradual, discover conditions, while alerting made no difference 

in abrupt change conditions. Finally, confidence increased post-change in gradual, alert but 

decreased in abrupt, alert. Alerting was associated with (non-significant) increases in the 

frequency of category A responses during blocks 6-8. Post-change GRT β-values larger in 

gradual/alert compared to control, and more unbiased in discover than control via model 

comparisons in block 5 (with blocks 6 and 7 similar). 

Hypothesis 3 also received some support in the present experiment. GRT models 

suggested that in block 4, more participants were best fit by an unbiased model in abrupt than 

gradual conditions. However, this is expected since the payoff change occurred in full prior to 

block 4 in abrupt conditions, whereas the payoff change was only beginning in the gradual 

condition (and was associated with a much more conservative optimal criterion; βopt = 1.5). The 

GRT β-estimates post-change (blocks 6-8) were also larger in abrupt compared to gradual 
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change conditions. Finally, the analysis of the immediate effect of change suggested that abrupt 

change was associated with closer to optimal point totals following change than gradual 

conditions (in other words, abrupt change had an immediate improvement in point totals not seen 

in gradual change conditions). Therefore, despite large increases in β or accuracy in Experiment 

2, the results support the hypothesis that abrupt payoff change is easier to adapt to than gradual 

payoff change. 

Summary of Base-rate vs. Payoff Change Comparison 

 Adaptation to change within base-rate and payoff change conditions generally followed 

what is expected based on the criterion placement in stationary base-rate and payoff conditions. 

Criterion shifting was conservative in both conditions, but was closer to optimal in base-rate than 

payoff conditions. Participants shifted their decision criteria earlier, and farther, in response to 

base-rate change than payoff change. Gradual change was expected to support base-rate 

adaptation more than payoff adaption; however, this hypothesis was not supported. Instead, 

abrupt change supported adaptation in both base-rate and payoff conditions more than gradual 

change. It was also anticipated that alerting would be more beneficial in payoff than base-rate 

change conditions. This hypothesis was not supported either. Contrary to expectations, alerting 

supported greater base-rate adaptation compared to payoff adaptation.  Alerting actually reduced 

the decreased accuracy change costs to a greater extent in base-rate than payoff conditions. 

While generalizations from these findings must be cautioned given the lack of payoff adaptation 

in Experiment 2 – likely due to insufficient motivation to maximize points (e.g., they were not 

paid) - the results do suggest that the hypothesized distinction between implicit and explicit 

learning in base-rate and payoff learning needs to be reconsidered.   
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CHAPTER 5: EXPERIMENT 3: RB ANALOGICAL TRANSFER 

Analogical Transfer 

Analogical transfer is the ability to transfer knowledge despite large differences in 

surface features (Casale et al., 2012). Thus, this type of generalization is often considered in 

category learning. In the present work, as in Casale et al. (2012),  analogical transfer is taken to 

mean a change in the average category features without a change in the optimal decision 

criterion. In other words, category distributions shift to a new area of stimulus space along the 

same (learned) criterion. Thus, while the average features may change (e.g., lines may appear 

longer and angles may appear more acute), application of the rule learned prior to transfer will 

result in positive transfer performance (see Figure 9).  

Analogical transfer has received some attention in the COVIS literature (e.g., Casale et 

al., 2012; Helie et al., 2015), but the problem has not been studied from the perspective of 

concept drift. More specifically, there has not been a systematic exploration of change 

characteristics that might affect transfer adaptation. In particular, gradual change rates have not 

been considered nor compared to abrupt change rates. Experiment 3 provides an initial 

exploration of analogical transfer in perceptual category learning and a comparison between 

explicit and implicit-based category structures (following Experiment 4).  

Perceptual categories in the natural environment are subject to change (i.e., display 

concept drift). Because of the distinction made earlier between categories and concepts, a more 

general term for the phenomenon of concept drift in perceptual category learning might be 

categorical change. Going back to a previous example, the symptoms that underlie a particular 

illness might change over time, as is often the case when diagnostic measures improve. 
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Sometimes these new symptoms might signify a change in the illness classification, while other 

times it might simply be a different symptom profile for the same category of illness.  

 Given the understanding that i) perceptual categories can change over time, and ii) 

widespread evidence suggests the role of multiple learning systems involved in perceptual 

category learning (Ashby & Maddox, 2005), it makes sense to explore the way(s) in which 

categories dominated by one learning system or another influence change performance. 

Experiments 3 and 4 should provide a replication of the work by Casale et al. (2012) and others 

finding shift costs related to II but not RB category structures. The manipulation of change rates 

and alerting to change may uncover conditions in which II analogical transfer is more successful. 

Experiments 3 and 4 will lay the groundwork for a fuller understanding of human change 

detection, adaptation, and transfer. 

 In machine learning, analogical transfer is often referred to as population drift (Hand, 

2006; Kelly, Hand, & Adams, 1999), covariate shift (Shimodaira, 2000; Yamazaki, Kawanabe, 

Watanabe, Sugiyama, & Müller, 2007), or sample selection bias (Hand, 2006; Huang, Gretton, 

Borgwardt, Schölkopf, & Smola, 2007). Analogical transfer occurs when the input distribution 

(or initial category distribution) differs from later distributions, despite conditional probabilities 

staying the same (Alaiz-Rodríguez & Japkowicz, 2008). Alaiz-Rodríguez and Japkowicz (2008) 

note that this type of change can be seen in banking, medical diagnosis, and bioinformatics. 

Experiments 3 and 4 do not explore class definition change -  the case where p(x) remains but 

p(C|x) changes, resulting in a new mapping of features to category labels (Alaiz-Rodríguez & 

Japkowicz, 2008). Rather, Experiment 3 and 4 address analogical transfer in which p(x) changes 

(i.e., average category features change) with p(C|x) remaining the same (i.e., same classification 
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boundary). Experiment 3 addresses analogical transfer in rule-based (RB) categories, while 

Experiment 4 evaluates analogical transfer in information-integration (II) category structures. 

Method 

Experimental Design 

 In Experiment 3, four experimental conditions resulting from the factorial combination of 

the independent variables (all between-subjects) rate of change (abrupt, gradual) and awareness 

of change (alert, discover) were investigated, along with a control condition: 

1. RB: Abrupt change, alerted in instructions 

2. RB: Abrupt change, no alerting (i.e., discovered) 

3. RB: Gradual change, alerted in instructions 

4. RB: Gradual change, no alerting (i.e., discovered) 

One additional condition serving as an RB control was examined with stationary category 

distributions.  

Figure 22. Experimental design for Experiment 3. 

Block 1 Block 3 Block 2 Block 5 Block 4 Block 6 Block 8 Block 7 

  Control 

  Abrupt 

  Gradual 
End 

Start 

Alerted: 
Yes or No 
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Participants 

 One hundred and twenty-five students from the University of Central Florida and 

volunteers from the community participated in the experiment. Most participants (students) 

signed up for and participated in the experiment through the SONA systems participation tool in 

exchange for course credit. All participants were at least 18 years of age and reported normal or 

corrected-to-normal vision (see Table 17). Each participant completed only one condition of the 

experiment, with 25 participants per each of the 5 conditions. This sample size is similar to 

previous work in analogical transfer (Cantwell et al., 2015; Helie et al., 2015), larger than 

(Casale et al., 2012), and fulfills the suggestion of an a priori power analysis conducted using 

G*Power 3.1.9 (Faul et al., 2007; power = .98, f = .40, alpha = .05, numerator df  1,# of groups = 

2) using a large effect size from Experiment 2 of Casale et al. (2012) evaluating the interaction of 

block and condition (RB/II). 

 

Table 17. Participant demographics for Experiment 3. 

 Age Gender Count 
Condition (n’s = 25) M SD Male Female 

Abrupt, Alert 18.36 0.86 12 13 
Abrupt, Discover 18.52 1.53 10 15 

Gradual, Alert 18.64 1.82 12 13 
Gradual, Discover 18.84 2.21 9 16 

Control 18.20 0.50 5 20 
Overall (n = 125) 18.51 1.51 48 77 

 

Stimuli 

 Two-dimensional stimuli (i.e., lines) were created that varied in length and orientation 

(angle). Two categories (A and B) were sampled from overlapping normal distributions with 

different mean lengths and orientations but identical standard deviations (see Table 18). RB 
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stimuli were created via the Ashby and Gott “randomization technique” (Ashby & Gott, 1988) 

using the Matlab GRT toolbox (Alfonso-Reese, 2006). RB stimuli were created with a d’ of 6 

based on previous work showing appropriate learning over the course of an experiment this 

length, and the categories were defined on the orientation dimension (i.e., length provided no 

important information for discriminating categories). Three RB data sets were created: 1) a 

control dataset with stationary RB category distributions throughout the 400 trials, 2) an abrupt 

change RB dataset with 150 pre-change trials and 250 post-change trials with new category 

means on the irrelevant dimension (i.e., length), and 3) a gradual change RB dataset with the 

same 150 pre-change trials, followed by 100 trials with category means incremented 

appropriately, and finally 150 post-change trials matching the other datasets. Stimuli were 

presented at a 1:1 base-rate with no payoffs provided. All participants saw identical stimuli in the 

first 150 trials (i.e., the pre-change blocks) with all change blocks taking the stimulus values in 

the control dataset and incrementing category means appropriately based on the magnitude/rate 

of change. 

 

Table 18. RB Category statistics for Experiment 3. 

Condition Category μx μy σx σy Covxy 

RB Start A 300 152 100 9 0 
 B 300 98 100 9 0 

RB End A 500 152 100 9 0 
 B 500 98 100 9 0 

 

All conditions in Experiment 3 used equal base-rate and payoff ratios (although payoffs 

were not included). The only parameter of change was the mean value of the categories on the 
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irrelevant, length dimension. The relationship of category A to category B never changed; only 

the stimulus space of the selected stimuli changed. In gradual change conditions, category 

stimulus values were equivalent to the respective stimuli in the control condition but the mean 

value of the critical dimension(s) increased incrementally based on the total amount of change 

from pre- to post-change. For example, if the mean line length was 200 pixels before the change 

and 400 pixels after the change, the mean line length would increase by (400-200)/100 change 

trials = 2 pixels on each change trial. Note that the definition of “long” versus “short” remains 

the same. 

Procedure 

 Participants provided verbal informed consent prior to study participation. They were 

then directed to the research lab and seated at a computer with a high-resolution monitor. The 

categorization task was employed through MATLAB via the Psychophysics Toolbox extension 

(Brainard, 1997; Kleiner et al., 2007; Pelli, 1997). Participants were provided instructions on 

how to complete the task using the ‘A’ and ‘B’ labeled keys (the ‘z’ and ‘m’ keys, respectively) 

on the keyboard on each trial. They were also instructed that on some trials they would be asked 

to provide a rating of confidence on a scale from 1 (very unsure) to 5 (very confidence) using 

these respective keys.  Participants were instructed to read through the instructions on the screen 

before beginning the task. 

 On each trial, one randomly selected stimulus was presented on the center of the screen. 

The stimulus remained onscreen until the participant made a response, or for 10 seconds. If the 

participant did not respond within 10 seconds, they were notified that they took too long and the 

trial repeated. On 17 random trials per 50-trial block (i.e., 1/3 of all trials; randomized across 

participants), the categorization response was followed by a prompt asking for a confidence 
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rating prior to receiving correct or incorrect feedback on their categorization response. The 

participant again had 10 seconds to respond with a confidence rating, at which point 

categorization feedback was displayed for 750ms. The inter-trial interval was 1000ms.  

 Participants completed eight 50-trial blocks. Participants could take short breaks between 

blocks as needed when an instruction screen was presented as a reminder of the task. The 

category distributions shifted upon completion of the third block of trials, either abruptly or 

gradually depending on the experimental condition. At the end of the experiment, the participant 

was thanked, awarded credit for participation, and dismissed. 

Predictions 

Experiment 3 investigates rule-based category transfer by sampling from category 

distributions that are shifted along the optimal decision criterion (i.e., category members are 

drawn from a new region of perceptual space while the optimal criterion maintains the same 

slope and intercept values). Because use of the same decision criterion pre- and post-change 

would result in the same level of performance, it was not expected that change rates (abrupt or 

gradual) or awareness of change (alerted or discovered) will impact performance, at least in 

terms of accuracy or rule usage. However, it is possible these variables have an impact on 

confidence. Confidence was not investigated in previous relevant examples of analogical transfer 

in RB (and II) category learning.   

 Hypothesis 1: RB-change conditions will exhibit analogical transfer (i.e., performance 

following change will be no different than control condition). 

Hypothesis 2: Awareness of change (alert, discover) will have no effect on performance 

in RB-change conditions.  
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 Hypothesis 3: Rate of change (abrupt, gradual) will have no effect on performance in RB-

change conditions.  

Results 

Comparison to Control 

Accuracy 

 A 3 (pre-change blocks 1-3) x 5 (condition; including control) mixed factor ANOVA was 

conducted on average accuracy in the pre-change blocks. While average accuracy increased 

across pre-change blocks, F(1.21, 145.23) = 106.14, p < .001, ηp
2 = .47, there was no main effect 

of condition on average accuracy, F(4, 120) = 0.40, p = .807, ηp
2 = .01, or interaction of block 

and condition, F(4.84, 145.23) = 0.53, p = .747, ηp
2 = .02. (As a side note, there was again no 

effect of condition on d’, F(4, 120) = 1.14, p = .343, ηp
2 = .036). 

 Next, a 5 (change/post-change blocks 4-8) x 5 (condition; including control) mixed factor 

ANOVA was conducted on average accuracy to evaluate the influence of analogical transfer on 

accuracy in the experimental conditions relative to accuracy in the control condition. There was a 

main effect of block, F(3.85, 462.44) = 4.97, p < .001, ηp
2 = .04, with significantly lower average 

accuracy in blocks 4 (p = .022) and 5 (p = .008) compared to block 8. There was also a main 

effect of condition, F(4, 120) = 5.65, p < .001, ηp
2 = .16. Average accuracy was significantly 

higher than control in abrupt/discover (p < .001), gradual/alert (p = .012), and gradual/discover 

(p = .001) conditions, with the increase in accuracy in abrupt/alert approaching significance (p = 

.068). However, there was also an interaction of block and condition, F(15.42, 462.44) = 1.69, p 

= .049, ηp
2 = .05, such that accuracy was initially higher in block 4 in discover conditions 

compared to alert conditions, and average accuracies fluctuated across the remaining blocks by 

condition. Average accuracy can be seen below by block and condition in Figure 23. 
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Figure 23. Average accuracy by condition and block in Experiment 3. Error bars represent standard error. 

 

Confidence 

 An analogous set of ANOVAs was conducted on average confidence ratings. First, there 

was a main effect of block on pre-change average confidence, F(1.75, 209.91) = 86.35, p < .001, 

ηp
2 = .42, with average confidence increasing across pre-change blocks 1-3. Critically, there was 

no difference in confidence among conditions prior to the analogical transfer, F(4, 120) = 0.62, p 

= .650, ηp
2 = .02. A similar result was found when comparing average confidence in the 

change/post-change bocks 4-8. There was a main effect of block, F(3.51, 420.94) = 13.07, p < 

.001, ηp
2 = .10, with average confidence continuing to increase across post-change blocks. There 

was no main effect of condition on average confidence in post-change blocks, F(4, 120) = 1.60, p 

= .178, ηp
2 = .05, nor was there an interaction of block and condition, F(14.03, 420.94) = 1.43, p 

= .135, ηp
2 = .05. Therefore, despite the shift in RB categories (i.e., analogical transfer), average 

0.75

0.80

0.85

0.90

0.95

1.00

1 2 3 4 5 6 7 8

A
v

er
a

g
e 

A
cc

u
ra

cy

Block

abrupt, alert abrupt, discover

gradual, alert gradual, discover

control



 

108 
 

confidence levels in the experimental conditions are no different than that of the control 

condition. Average confidence can be seen by block and condition in Figure 24. 

 

 

Figure 24. Average confidence by condition and block in Experiment 3. Error bars represent standard error. 

 

Change Effects 

Analogical Transfer within Conditions 

Two-tailed paired-samples t-tests were conducted within each of the four experimental 

conditions to evaluate evidence of analogical transfer. Average accuracy in the final pre-change 

block (block 3) was compared to the final block of the experiment (block 8) to assess evidence of 

analogical transfer (i.e., if participants returned to at least pre-change accuracy levels following 

the category change). There were no significant differences between average accuracy in blocks 

3 and 8 for any of the four experimental conditions (see Table 19), thus providing evidence of 

analogical transfer in every RB condition. Additional paired-samples t-tests were conducted to 

evaluate significant accuracy costs (block 4 – block 3 in abrupt conditions; block 6 – block 4 in 
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gradual conditions) and recovery (block 8 – block 4 in abrupt conditions; block 8 - block 6 in 

gradual conditions) within each condition. Cost and recovery are also summarized in Table 19. 

The terms “cost” and “recovery” are used here in the context of RB (and in Experiment 4, II) 

analogical transfer, matching the literature (Maddox et al., 2010). First, there was a significant 

“cost” in the gradual/discover condition, t(24) = 2.51, p = .019, such that average accuracy 

actually increased following completion of the gradual change. There was also significant 

“recovery” in the abrupt/alert condition such that participants in this condition saw no accuracy 

costs from the change and continued to increase their accuracy across the blocks. As a whole, it 

is evident that analogical transfer did occur, and transfer was not impacted negatively by 

differences in rate or awareness of change. 

 

Table 19. Average cost, recovery, and analogical transfer by condition in Experiment 3. 

Condition Measure 
Value 

(acc2-acc1) 
t(24) p Cohen’s d 

Abrupt, Alert Cost -0.01 0.85 .406 0.17 
 Recovery 0.02 2.31 .030 0.46 
 Transfer 0.01 1.52 .141 0.30 
      

Abrupt, Discover Cost 0.02 1.36 .186 0.27 
 Recovery 0.00 0.42 .676 0.09 
 Transfer 0.02 1.77 .090 0.35 
      

Gradual, Alert Cost 0.00 0.18 .863 0.04 
 Recovery 0.00 0.54 .598 0.11 
 Transfer 0.01 0.55 .587 0.11 
      

Gradual, Discover Cost 0.03 2.51 .019 0.50 
 Recovery -0.02 1.72 .098 0.35 
 Transfer 0.01 1.199 .248 0.24 
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Accuracy Cost and Recovery by Rate and Awareness of Change 

 A set of 2 (rate: abrupt, gradual) x 2 (awareness: alert, discover) between-subjects 

ANOVAs were conducted on average accuracy cost (block 4 – block 3 for abrupt change; block 

6 – block 3 for gradual change) and recovery (block 8 – block 4 for abrupt change; block 8 – 

block 6 for gradual change) as measures of analogical transfer. If RB analogical transfer does 

indeed occur, there should be no accuracy cost, nor need for recovery (other than any continual 

increases in accuracy until asymptotic performance). There was a main effect of awareness of 

change, F(1, 96) = 7.64, p = .007, ηp
2 = .07, such that alerting led to a negligible change cost 

(i.e., accuracy was maintained), while discover conditions led to small increases in accuracy 

post-analogical transfer (see Table 19). There was no main effect of rate of change on accuracy 

cost, F(1, 96) = 0.68, p = .410, ηp
2 = .01, nor was there an interaction of rate and awareness of 

change, F(1, 96) = 0.09, p = .763, ηp
2 < .01. 

 Analysis of accuracy recovery (from first block post-change to final block) revealed main 

effects of both awareness of change, F(1, 96) = 4.39, p = .039, ηp
2 = .04, and rate of change, F(1, 

96) = 4.59, p = .035, ηp
2 = .04. Alerting led to greater accuracy recovery than discover 

conditions, and there was a greater recovery in accuracy in abrupt change rate conditions 

compared to gradual change rate conditions. Given no main effect of change rate on accuracy 

cost, the main effect of change rate on recovery suggests that accuracy increased beyond pre-

change levels in abrupt change conditions. Lastly, there was no interaction of rate and awareness 

of change on average accuracy recovery, F(1, 96) < 0.01, p = .982, ηp
2 < .01.  

Confidence Cost and Recovery by Rate and Awareness of Change 

 An analogous set of ANOVAs were conducted on the immediate and long-term effects of 

change on average confidence. There were main effects of both rate of change, F(1, 96) = 7.00, p 
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= .010, ηp
2 = .07, and awareness of change, F(1, 96) = 7.30, p = .008, ηp

2 = .07, on the immediate 

effect of change on average confidence. Average confidence increased more post-change in 

discover than alert conditions and gradual than abrupt conditions. There was no interaction of 

rate and awareness of the immediate effect of change on average confidence, F(1, 96) = 0.06, p = 

.815, ηp
2 < .01. 

 Analysis of the long-term effect of change on average confidence again revealed main 

effects of both rate, F(1, 96) = 11.71, p < .001, ηp
2 = .11, and awareness of change, F(1, 96) = 

6.86, p = .010, ηp
2 = .07. Average confidence increased to a greater extent in abrupt than gradual 

change rate conditions, as well as when alerted rather than not alerted to the change. There was 

no interaction of rate and awareness of change on the long-term effect of change on average 

confidence, F(1, 96) = 0.18, p = .676, ηp
2 < .01. 

 The analysis of the immediate and long-term effects of change on average confidence 

suggests differing impacts of RB analogical transfer on confidence levels by change 

characteristics. Yet, confidence by the end of the experiment is equivalent across conditions 

(meaning that recovery was possible for conditions in which confidence took an immediate hit). 

It appears that alerting participants to a potential change in the categories, when the same 

decision rule would apply with the new categories, resulted in a small drop in confidence despite 

generally no drop in accuracy. Once participants had enough experience with the new categories, 

rate and awareness of change had little effect on confidence or accuracy. 

Decision Bound Modeling 

 Data from each individual participant were fit by several linear decision bound models to 

estimate the category rule that participants were using in each block of the experiment. Decision 

bound models provide an important second look at analogical transfer, as accuracy alone does 
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not tell the whole story due to the possibility that different types of strategies can result in similar 

accuracy levels. Four decision bound models were examined: 1) an optimal (opt) model that used 

fixed values for the slope and intercept of the decision bound, assuming that the participant 

correctly used the optimal rule, 2) a general linear classifier (glc) model with free parameters for 

both the slope and the intercept, providing an estimate of when the participant was integrating 

information from both dimensions in their rule, 3) a model (called the rbx model) that assumed 

the participant used a selective attention rule focusing on the x dimension (i.e., line length), and 

4) a model (called the rby model) that assumed the participant used a selective attention rule 

focusing on the y dimension (i.e., line orientation). The categories in the present experiment were 

defined by the y dimension (line orientation). Thus, participants who were best fit by the rby 

model but not the optimal model learned the correct rule but not the optimal criterion location 

upon which to classify the two categories on line orientation. Of critical interest is the number of 

participants best fit by a selective attention rule (i.e., rule-based strategy; opt, rbx, or rby models) 

vs. a dimensional integration rule (i.e., information-integration strategy; glc model). For this 

reason, the number of participants best fit by either a selective attention or dimensional 

integration model type is reported in Table 20. 
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Table 20. Number of participants whose data were best fit by RB vs. II model types in Experiment 3. 

n = 25 per 
condition  

Block 
1 

Block 
2 

Block 
3 

Block 
4 

Block 
5 

Block 
6 

Block 
7 

Block 
8 

Abrupt, 
Alert 

RB 21 20 24 24 18 23 21 21 

II 4 5 1 1 7 2 4 4 

          

Abrupt, 
Discover 

RB 22 21 19 20 23 23 22 25 

II 3 4 6 5 2 2 3 0 
          

Gradual, 
Alert 

RB 22 21 22 23 22 24 25 23 

II 3 4 3 2 3 1 0 2 

          

Gradual, 
Discover 

RB 23 21 24 23 24 25 24 20 

II 2 4 1 2 1 0 1 5 
          

Control 
RB 19 23 23 23 21 25 21 21 

II 6 2 2 2 4 0 4 4 
      

Averages (selective attention rule types only)      
 Abrupt 43 41 43 44 41 46 43 46 

 
Gradu

al 45 42 46 46 46 49 49 43 
  # # # # # # * # 
          
 Alert 43 41 46 47 40 47 46 44 

 
Discov

er 45 42 43 43 47 48 46 45 
  # # # # * # # # 

Note. RB model types, known as selective attention rules, include opt and rby. No one was best fit by rbx model. II 
model type, known as a dimensional integration rule, includes the glc model. The bottom portion of the table 
describes the proportion of participants best fit by a selective attention model. Significance of comparisons across 
rate and awareness of change conditions is reported below the number of participants best fit for average conditions 

(# p >= .05; * p < .05; ** p < .01).  
 
 

 From Table 20, it is clear that the majority of participants across all conditions used a 

rule-based strategy (of the optimal type; no one used sub-optimal rbx rule) to classify the stimuli.  

It is particularly interesting to explore how many people switched (or did not switch) from an RB 

to an II strategy type following the category change. From Table 20 it is clear that there are few 

differences in selective attention vs. dimensional integration rule usage between change 
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conditions. However, two significant differences were found. First, in block 5 (the second 

gradual change block or the second block post-abrupt change with the new RB categories) a 

significantly larger number of participants in discovery conditions were best fit by a selective 

attention rule compared to participants in alerted conditions, z (2-tailed) = 2.08, p = 038. In 

addition, in block 7 there was a significantly larger number of participants in gradual than in 

abrupt change conditions that were best fit by a selective attention type rule, z (2-tailed) = 2.21, p 

= .027. Nonetheless, for the majority of the blocks, and particularly in the final block, there were 

no differences in rule usage among change conditions suggesting that analogical transfer (i.e., 

category change) did occur and was minimally impacted by levels of rate and awareness of 

change. 

Discussion 

 Experiment 3 provides a systematic investigation of the effect of concept drift 

characteristics (rate and awareness of change) on rule-based (RB) analogical transfer. 

Participants learned to categorize lines varying in length and orientation into two categories in 

equal base-rate and payoff conditions. After block 3, category distributions shifted either 

abruptly or gradually to new areas of the stimulus space defined by the same optimal decision 

bound (i.e., a sampling shift). While previous research has found evidence of analogical transfer 

in explicit (RB) learning (Casale et al., 2012; Helie et al., 2015; Smith et al., 2015), gradual 

change is a novel consideration. In addition, both Casale et al. (2012) and Smith et al. (2015) 

alerted participants they would be transferring to new categories, while Helie et al. (2015) did 

not provide an alert. Forewarning has not been systematically manipulated within a single study. 

The rate and awareness of change variables in the present experiment were used largely as a 

comparison to the case of II categories (Experiment 4), where these variables were expected to 
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mediate performance detriments in II analogical transfer. Thus, the three hypotheses regarding 

the present Experiment predicted positive RB analogical transfer (Hypothesis 1), no effect of 

awareness of change (Hypothesis 2), and no effect of rate of change (Hypothesis 3). 

 The results of Experiment 3 are consistent with the first hypothesis. Positive analogical 

transfer was present in all experimental conditions. There was little-to-no change in accuracy 

from the final pre-change block (block 3) to the first-post change block (block 4 abrupt; block 6 

gradual). GRT modeling results support this conclusion in that there were the same, or more, 

cases of RB-model fits post-change compared to the last pre-change block. In fact, accuracy was 

higher (and a larger proportion of participants were best fit by selective attention vs. dimensional 

integration model) in blocks 4-8 in all experimental conditions compared to the control 

condition, suggesting an unexpected benefit from the change. There were no differences in 

confidence among any of the experimental conditions or between experimental and control 

conditions.  

 Hypothesis 2 was not supported. An analysis of accuracy cost and recovery revealed that 

the initial impact (i.e., cost) of RB analogical transfer was an improvement in accuracy in 

discover conditions not observed in alerted conditions. Likely due to this difference in the initial 

cost of analogical transfer, there was a significant improvement in accuracy across post-change 

blocks (i.e., recovery) observed in alerted compared to discovery conditions. Therefore while the 

immediate impact of analogical transfer was better in discovery than alerted conditions, there 

were no differences in analogical transfer by the final block. In addition, the immediate impact of 

analogical transfer was an increase in confidence in discovery conditions but a decrease in 

confidence in alerted conditions (despite generally high confidence ratings in all conditions). 
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Even though there was evidence of analogical transfer in each experimental condition, 

Hypothesis 3 – regarding a predicted lack of difference between change rate conditions – was not 

supported. Despite there being no significant differences in accuracy costs among experimental 

conditions, accuracy recovery was significantly greater in abrupt than gradual change rate 

conditions. Since accuracy was similar in the final block, this suggests that accuracy costs must 

have been more positive (meaning accuracy increased post-change) in gradual than abrupt 

conditions (although this was not significant). Thus, the gradual condition exhibited a larger 

increase in accuracy from the initial cost to the final block. Similarly, immediate changes in 

confidence were more positive in gradual than abrupt change conditions, while long-term 

increases in confidence were greater in abrupt than gradual conditions. Model fits from GRT 

models provide additional support for potential benefits of gradual change in RB analogical 

transfer, with a significantly greater proportion of gradual change participants fit by optimal RB 

models compared to participants in abrupt change conditions. Nonetheless, asymptotic 

performance is equivalent in the final block. 

 One interesting finding was the difference in accuracy between the control and 

experimental conditions in the change/post-change blocks (blocks 4 through 8). Given that no 

part of the task changed in the control condition, accuracy should have at the least maintained at 

the asymptotic level. The fact that average accuracy in the control condition decreased across 

blocks 5-8 in particular suggests that participants perhaps learned the rule fairly quickly and got 

bored with the task in the later stages, resulting in a few more incorrect trials. Perhaps then 

experimental conditions were more engaged throughout the task given that the average 

categories shifted and new information was provided in some conditions (i.e., alert conditions). 

Interestingly, accuracy continued to increase slightly in discover conditions who may never have 
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realized that anything changed. Thus, it may not take awareness of change to maintain 

engagement through task changes. Future work might further explore the effect of change, and 

awareness of change, on task engagement. 

 A second interesting finding was that alerting participants to the upcoming category 

change resulted in small decreases in both accuracy and confidence in the first block following 

change. It is possible that alerting can have a negative cost on immediate performance in 

analogical transfer by presenting participants with an invitation to figure out what has changed. 

Instructions did not say how the categories would change - only that they would change. 

Performance may likely have been better in discover conditions in block 4 since they could 

continue to apply their learned rule successfully without thinking they might need to change their 

strategy.  

 Despite these interesting findings, of central importance to the question of concept drift in 

perceptual category learning is the difference in analogical transfer between RB and II category 

structures, and the extent to which change characteristics may or may not mediate differences in 

analogical transfer. Experiment 4 then reports the results of an analogous experiment conducted 

using II category structures. 
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CHAPTER 6: EXPERIMENT 4: II ANALOGICAL TRANSFER 

 Experiment 4 provides a direct comparison for Experiment 3. Experiment 4 is identical to 

Experiment 3 with the exception of the category structure used. II category structures were used 

instead of RB to evaluate analogical transfer and the effect of change characteristics within the 

procedural learning system. 

Method 

Experimental Design 

 Four experimental conditions resulted from the factorial combination of the between-

subjects independent variables rate of change (abrupt, gradual) and awareness of change (alerted, 

discovered): 

1. II: Abrupt change, alerted in instructions 

2. II: Abrupt change, no alerting (i.e., discovered) 

3. II: Gradual change, alerted in instructions 

4. II: Gradual change, no alerting (i.e., discovered) 

Again, a fifth between-subjects condition was also run with the II category distributions 

remaining stationary over the entire experiment. See  for a figure of the experimental design. 
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Figure 25. Experimental design for Experiment 4. 

 

Participants 

 One hundred and twenty-five students from the University of Central Florida and 

volunteers from the community participated in the experiment. Students who signed up for the 

study through the SONA systems participation pool received course credit in exchange for their 

participation. No form of compensation was awarded to volunteers. All participants were at least 

18 years of age and reported normal or corrected-to-normal vision (see Table 21). Each 

participant completed only one condition of the experiment, with 25 participants in each of the 5 

conditions. The sample size for Experiment 4 was set to match that of Experiment 3. 

 

 

 

Block 1 Block 3 Block 2 Block 5 Block 4 Block 6 Block 8 Block 7 

Start 

End 

  Control 

  Abrupt 

  Gradual 

 

Alerted: 
Yes or No 
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Table 21. Participant demographics in Experiment 4. 

 Age Gender Count 
Condition (n’s = 25) M SD Male Female 

Abrupt, Alert 26.80 12.85 12 13 
Abrupt, Discover 24.04 7.27 15 10 

Gradual, Alert 23.16 9.45 7 18 
Gradual, Discover 25.12 11.52 15 10 

Control 24.40 11.15 14 11 
Overall (n = 125) 24.70 10.52 63 62 

     
 

Stimuli 

The stimuli were of the same kind as Experiment 3 (i.e., lines varying in length and 

orientation) but were created with a different structure. Information integration category 

structures were created using the Ashby and Gott (1988) “randomization technique”, as were the 

RB stimuli in Experiment 3. Since II category structures require an integration of dimensional 

information (i.e., both length and orientation are relevant to classification), they are typically 

harder to learn. Because of this, the path of many other researchers was taken(Ashby, Maddox, 

& Bohil, 2002; Casale et al., 2012, Exp 2), and the II category d’ value increased (from d’ = 6 to 

d’ = 13) making categories further separated so as to relatively equate asymptotic pre-change 

accuracy levels between the RB and II categories (RBacc = .82, IIacc = .83, learner average across 

400 trials; p > .05; based on previous work).  

 First, the Matlab GRT toolbox by Alfonso-Reese (2006) was used to create an RB 

stimulus set with a d’ of 13 (otherwise matching the RB stimulus set in Experiment 3). Then, the 

II stimuli were then created by shifting the distributions to center on the origin, rotating the 

horizontal categories counter-clockwise 45 degrees, and shifting these new II categories back to 

their original stimulus space location (matching the starting stimulus space location in the RB 
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categories). Mid- and post-change category distributions were created by incrementing the 

category means from the II control data set based on the number of change trials. This process 

resulted in three data sets: 1) 400 trials of stationary II category distributions (control), 2) 150 

trials of II category distributions followed by immediate change to 250 trials of new (ending 

location) II category distributions, and 3) 150 identical pre-change trials, 100 change trials (same 

stimuli as control dataset but with category means incremented appropriately), and 150 post-

change trials identical to the other two datasets. Stimuli were presented at a 1:1 base-rate with no 

payoffs provided. II category statistics can be seen in Table 22. 

 

Table 22. II category statistics for Experiment 4. 

Condition Category μx μy σx σy Covxy 

II Start A 349.80 157.53 71 71 5041 
 B 432.53 74.80 71 71 5041 

II End A 491.22 298.95 71 71 5041 
 B 573.95 216.22 71 71 5041 

 

Procedure 

 The procedure for Experiment 4 was identical to that of Experiment 3.  

Predictions 

COVIS theory predicts sustained performance in RB conditions but deteriorated 

performance in II conditions (since these conditions rely on stimulus-response associations). 

Indeed, previous research has shown good performance in RB conditions in change of this type 

but generally poor II performance (Casale et al., 2012; Helie et al., 2015; Smith et al., 2015). 

However, one study (Seger et al., 2015) found positive II transfer when category distributions 



 

122 
 

shifted to flanking distributions with the same category means (see Figure 3). The results of 

Seger et al. (2015) suggest that under the right conditions, people might be able to handle 

concept drift in information integration category structure conditions. In particular, since II 

category learning is mediated by implicit learning, certain characteristics of change (i.e., gradual 

change) may improve analogical transer. The following hypotheses were developed regarding II 

analogical transfer in Experiment 4:   

 Hypothesis 1: Based on previous research, analogical transfer will occur with II 

categories (i.e., full recovery to pre-change accuracy levels), but there will be an initial 

performance decrement (i.e., accuracy cost) due to the shift in category distributions. This initial 

performance decrement is linked to the need to relearn stimulus-response associations in implicit 

learning. 

 Hypothesis 2: There will be no effect of awareness of change (alerted, discovery) on II 

analogical transfer since II categories are learned implicitly.  

 Hypothesis 3: II analogical transfer will be greater in response to gradual than abrupt 

change, as it provides the slower implicit learning system a chance to gradually relearn the 

stimulus-response associations. 

Results 

Comparison to Control 

Accuracy 

 A 3 (pre-change blocks 1-3) x 5 (condition; including control) mixed factor ANOVA was 

conducted on average accuracy in pre-change blocks. There was a main effect of block, F(1.80, 

216.36) = 99.60, p < .001, ηp
2 = .45, with average accuracy increasing across pre-change blocks. 

There was no main effect of condition, F(4, 120) = 0.87, p = .487, ηp
2 = .03, or interaction of 
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condition and block, F(7.21, 216.36) = 0.67, p = .699, ηp
2 = .02. Average accuracy by condition 

across all blocks can be seen in Figure 26. 

 A subsequent 5 (change/post-change blocks 4-8) x 5 (condition; including control) mixed 

factor ANOVA was conducted on average accuracy in blocks 4-8 to assess the impact of II 

analogical transfer on accuracy in the experimental conditions compared to the control condition. 

There was a main effect of block, F(2.97, 356.23) = 9.94, p < .001, ηp
2 = .08, such that average 

accuracy continued to increase across change/post-change blocks. There was also a main effect 

of condition, F(4, 120) = 3.57, p = .009, ηp
2 = .11, with lower average accuracy in the 

abrupt/discover condition compared to both the control condition (p = .022) and the gradual/alert 

condition (p = .046). The interaction of block and condition was also significant, F(11.87, 

356.23) = 4.59, p < .001, ηp
2 = .13, such that there are differences among conditions in blocks 4 

and 5 (e.g., abrupt/discover lower than other conditions), but there are no differences in blocks 6-

8.  

 

Figure 26. Average accuracy by block and condition in Experiment 4. Error bars represent standard error. 
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Confidence 

 Average confidence increased across pre-change blocks (1-3), F(1.75, 210.42) = 29.49, p 

< .001, ηp
2 = .20. There was no main effect of condition on average confidence in pre-change 

bocks, F(4, 120) = 0.67, p = .614, ηp
2 = .02, or interaction of block and condition, F(7.01, 

210.42) = 0.47, p = .857, ηp
2 = .02. 

 Additionally, average confidence tended to continue to increase across change/post-

change blocks (4-8), F(2.89, 11.57) = 7.58, p < .001, ηp
2 = .06. There was no main effect of 

condition on average confidence in change/post-change blocks, F(4, 120) = 2.00, p = .099, ηp
2 = 

.06, or interaction between block and condition, F(11.57, 346.98) = 0.83, p = .615, ηp
2 = .03.  

Confidence was lowest in the abrupt/discover condition, with similar average confidence in the 

remaining conditions. Average confidence by block and condition in Experiment 4 can be seen 

in Figure 27. 

 

Figure 27. Average confidence by block and condition in Experiment 4. Error bars represent standard error. 
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Change Effects 

Analogical Transfer within Conditions 

 Paired samples t-tests were conducted within each of the experimental conditions to 

evaluate evidence of analogical transfer. Average accuracy in the final pre-change block (block 

3) was compared to the final block of the experiment (block 8). There was no significant 

difference between block 3 and block 8 for abrupt/alert, t(24) = 0.58, p = .566, abrupt/discover, 

t(24) = 0.71, p = .483, gradual/alert, t(24) = 0.44, p = .661, or gradual/discover, t(24) = 0.09, p = 

.933, thus providing evidence of analogical transfer in every experimental condition. Paired 

samples t-tests were also conducted to evaluate significant differences in accuracy cost (block 4 

– block 3 in abrupt conditions; block 6 – block 4 in gradual conditions) and recovery (block 8 – 

block 4 in abrupt conditions; block 9 - block 6 in gradual conditions) within each condition. 

Since optimal accuracy is the same pre- and post-change (100%), raw values are used. Average 

cost and recovery by condition are summarized in Table 23. There were significant effects of 

change on accuracy cost and recovery in the abrupt change conditions but not in the gradual 

change conditions. This suggests that abrupt change is associated with an immediate accuracy 

cos, but observers are able to recover significantly over the next several blocks. 

 

 

 

 

 

 

 



 

126 
 

Table 23. Average accuracy cost, recovery, and analogical transfer by condition in Experiment 4. 

Condition Measure 
Value 

(acc2-acc1) 
t(24) p Cohen’s d 

Abrupt, Alert Cost -0.09 3.62 .001 0.72 
 Recovery 0.11 3.84 < .001 0.77 
 Transfer 0.02 0.58 .566 0.12 
      

Abrupt, Discover Cost -0.16 4.91 < .001 0.98 
 Recovery 0.14 4.35 < .001 0.87 
 Transfer -0.02 0.71 .483 0.14 
      

Gradual, Alert Cost -0.03 1.50 .146 0.30 
 Recovery 0.01 0.79 .440 0.16 
 Transfer -0.01 0.44 .661 0.09 
      

Gradual, Discover Cost -0.03 1.26 .220 0.25 
 Recovery 0.03 1.54 .137 0.31 
 Transfer 0.00 0.09 .933 0.02 

 

Accuracy Cost and Recovery by Rate and Awareness of Change 

 A set of 2 (rate) x 2 (awareness) between-subjects ANOVAs was conducted on the 

average accuracy cost and recovery to evaluate any differences with respect to change 

characteristics. There was a main effect of rate of change on average accuracy cost, F(1, 96) = 

14.32, p < .001, ηp
2 = .13, such that there was a larger decrease in accuracy immediately 

following change in abrupt compared to gradual change conditions. There was no main effect of 

awareness of change on average accuracy cost, F(1, 96) = 1.87, p = .175, ηp
2 = .02, nor was there 

an interaction between rate and awareness of change, F(1, 96) = 1.17, p = .281, ηp
2 = .01. 
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Table 24. Mean (SD) accuracy and confidence cost and recovery by condition in Experiment 4. 

  
Accuracy 

 
Confidence 

 
Cost 

 
Recovery 

 
Cost Recovery 

Abrupt, Alert 
   

0.51 (0.64) -0.09 (0.13) 0.11 (0.14) -0.42 (0.70) 
   

Abrupt, Discover 
 

-0.16 (0.16) 0.14 (0.016) 0.11 (0.43) 0.24 (0.61) 
    

Gradual, Alert 
 

-0.03 (0.08) 0.01 (0.09) 0.05 (0.63) 0.16 (0.85) 
    

Gradual, Discover -0.03 (0.13) 0.03 (0.10) 0.60 (1.17) 0.13 (0.46) 
     

 

 Analysis of average accuracy recovery also revealed a main effect of rate of change, F(1, 

96) = 16.16, p < .001, ηp
2 = .14, such that accuracy recovered to a greater extent in abrupt than 

gradual change rate conditions. There was no main effect of awareness of change on average 

accuracy recovery, F(1, 96) = 0.70, p = .405, ηp
2 = .01, nor was there an interaction of rate and 

awareness of change, F(1, 96) = 0.05, p = .822, ηp
2 < .01. 

 Average accuracy recovery was considered in a second way to understand how much 

recovery is possible despite normal fluctuations in performance across blocks (e.g., often 

observer’s highest accuracy does not fall in the final block of the experiment). Accordingly, 

recovery was recalculated as the difference between the maximum accuracy level obtained in 

pre-change blocks (1-3) compared to maximum accuracy obtained in post-change blocks (6-8). 

An analogous ANOVA was conducted that revealed a nearly significant main effect of 

awareness of change, F(1, 96) = 3.80, p = .054, ηp
2 = .04, but no main effect of rate of change, 

F(1, 96) = 0.32, p = .575, ηp
2 < .01, or interaction of block and condition, F(1, 96) = 2.60, p = 
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.110, ηp
2 = .03. Analyzed in this way, average accuracy recovery was found to be higher when 

alerted to change as opposed to when not (particularly when change was abrupt). 

 Finally, a 3 (post-change blocks 6-8) x 2 (rate) x 2 (awareness) mixed factor ANOVA 

was conducted on average accuracy in post-change blocks. There was a main effect of awareness 

of change, F(1, 96) = 7.10, p = .009, ηp
2 = .07, such that participants who were alerted to the 

category change had higher average accuracy in post-change blocks than participants who were 

not alerted. No other main or interactive effects were significant (all p’s > .121). 

Confidence Cost and Recovery by Rate and Awareness of Change 

 There was a main effect of rate of change on the immediate effect of change on average 

confidence, F(1, 96) = 14.36, p < .001, ηp
2 = .13, with a larger initial decrease in confidence 

post-change in abrupt compared to gradual change rate conditions. There was also a main effect 

of awareness of change on the immediate effect of change on average confidence, F(1, 96) = 

7.64, p = .007, ηp
2 = .07, with larger initial decreases in confidence post-change when alerted to 

change compared to when not alerted. There was no interaction of rate and awareness of change, 

F(1, 96) = 0.55, p = .462, ηp
2 = .01. In addition, there were no main or interactive effects of rate 

and awareness of change on the long-term effects of change on average confidence (all p’s > 

.086). The immediate and long-term effects of change on average confidence can be seen in  

Table 24. 

 Finally, a 3 (post-change blocks 6-8) x 2 (rate) x 2 (awareness) mixed factor ANOVA 

was conducted to evaluate the role of rate and awareness of change on confidence levels post-

category change. There was a main effect of block on average confidence, F(1.95, 187.47) = 

3.89, p = .023, ηp
2 = .04, such that confidence tended to increase across post-change blocks, with 

significantly higher accuracy in block 8 compared to block 6 (p = .036). There was also a main 
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effect of rate of change on average confidence in post-change blocks, F(1, 96) = 4.55, p = .035, 

ηp
2 = .05, with higher average confidence in gradual compared to abrupt change conditions. No 

other main or interactive effects were significant.  

Decision Bound Modeling 

 The same decision bound models from Experiment 3 were evaluated here, with the 

addition of a free-boundary model that assumed the participant used the optimal slope of the 

decision bound but left the intercept value free to vary (giving the model two free parameters: 

intercept and noise). The free-boundary model was not explored in Experiment 3 because it was 

identical to the rby model in that case. Here, the free-boundary model provides an estimate of 

when a participant uses the optimal rule (dimensional integration) but sub-optimal criterion 

value. Participants were again compared in terms of whether they were best fit by a selective 

attention (i.e., RB) or a dimensional integration (i.e., II) model type in each block. Dimensional 

integration models in the present experiment are encompassed in the optimal (opt), free-

boundary (frb), and general linear classifier (glc) models, while selective attention models 

include the rbx and rby selective attention models. The number of participants best fit by models 

of either type across the eight blocks of the experiment can be seen in Table 25. 
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Table 25. Number of participants best fit by RB vs. II model types by condition and block in Experiment 4. 

n = 25 per 
condition  

Block 
1 

Block 
2 

Block 
3 

Block 
4 

Block 
5 

Block 
6 

Block 
7 

Block 
 8 

Abrupt, 
Alert 

RB 8 9 6 10 5 7 5 7 

II 17 16 19 15 20 18 20 18 

          

Abrupt, 
Discover 

RB 8 5 2 6 6 7 7 7 

II 17 20 23 19 19 18 18 18 
          

Gradual, 
Alert 

RB 3 5 1 2 6 5 6 4 

II 22 20 24 23 19 20 19 21 

          

Gradual, 
Discover 

RB 10 10 3 4 6 6 9 3 

II 15 15 22 21 19 19 16 22 
          

Control 
RB 4 6 3 2 2 5 2 2 

II 21 19 22 23 23 20 23 23 
 

Average (dimensional integration [II] model types only) 

 Abrupt 34 36 42 34 39 36 38 36 

 Gradual 37 35 46 44 38 39 35 43 

  # # # ** # # # * 

          

 Alert 39 36 43 38 39 38 39 39 

 
Discov

er 32 35 45 40 38 37 34 40 
  # # # # # # # # 

Note. RB model types include rbx and rby models. II model types include opt, frb, and glc models. The bottom 
portion of the table describes the proportion of participants best fit by a dimensional integration model. Significance 
of comparisons across rate and awareness of change conditions is reported below number of participants best fit for 

average conditions (# p >= .05; * p < .05; ** p < .01).  

  

 Table 25 reveals there was generally a drop in the number of participants in each 

condition best fit by a dimensional integration model starting in block four, but in most cases 

showed evidence of “recovery” towards block 8. Participants in the abrupt/alert condition in 

block 4 were best fit more often by a sub-optimal selective attention model than the control 

condition, and this difference was significant, z (1-tailed) = 2.65, p = .004. In block 7, the 



 

131 
 

gradual/discover condition was best fit more often by a selective attention model than the control 

group, z (1-tailed) = 2.39, p = .008. Finally, in block 8, a greater proportion of both abrupt 

conditions were best fit by selective attention models compared to the control condition, z (1-

tailed) = 1.84, p = .033. Averaging across rate and awareness of change conditions (the bottom 

half of Table 25) revealed a significant cost in analogical transfer in block four in abrupt 

compared to gradual conditions, z (1-tailed) = 2.41, p = .008, suggesting that abrupt conditions 

switched to a selective attention rule more often immediately following the analogical transfer. 

The same pattern was found in the final block where a greater proportion of participants in 

abrupt conditions were best fit by a sub-optimal selective attention rule compared to gradual 

change conditions, z (1-tailed) = 1.72, p = .043, providing evidence of improved analogical 

transfer with gradual change. 

Comparing RB and II Analogical Transfer 

 To evaluate the differential effect of analogical transfer in RB and II category structures, 

a series of 2 (category structure: RB, II) x 2 (rate: abrupt, gradual) x 2 (awareness: alert, 

discover) between-subjects ANOVAs was conducted on the immediate and long-term effects of 

change on average accuracy and confidence. Of central importance is the immediate effect of 

analogical transfer on accuracy within each category structure.  

Accuracy 

First, the effect of category structure, rate of change, and awareness of change were 

evaluated with respect to average accuracy costs. There was a main effect of category structure 

on average accuracy cost, F(1, 192) = 37.50, p < .001, ηp
2 = .16, with a greater decrease in 

average accuracy immediately post-change in II compared to RB category structures. Second, 

there was a main effect of rate of change, F(1, 192) = 14.64, p < .001, ηp
2 = .07, with a greater 
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initial decrease in average accuracy in abrupt compared to gradual change rates. Third, there was 

an interaction between condition and rate of change, F(1, 192) = 10.41, p = .001, ηp
2 = .05, such 

that abrupt change led to larger initial decreases in accuracy post-change than gradual change 

within II conditions (no difference within RB category structures). Fourth, the interaction of 

category structure and awareness of change was significant, F(1, 192) = 5.18, p = .024, ηp
2 = .03, 

such that alerting had a greater impact (i.e., reduced decreases in accuracy relative to discover 

conditions) in II compared to RB category structures. 

 Next, the effect of category structure, rate of change, and awareness of change were 

evaluated with respect to average accuracy recovery. There was a main effect of category 

structure on average accuracy recovery, F(1, 192) = 26.43, p < .001, ηp
2 = .12, with greater 

recovery in II than RB category structures. There was a main effect of rate of change average 

accuracy recovery, F(1, 192) = 20.30, p < .001, ηp
2 = .10, with greater recovery in abrupt 

compared to gradual change rates. There was also an interaction between category structure and 

rate of change, F(1, 192) = 9.40, p = .002, ηp
2 = .05, such that the improvement of recovery in 

abrupt relative to gradual change was greater in II than RB category structures. Finally, when 

analyzing recovery in terms of difference between maximum accuracy pre and post-change, 

there was a significant interaction between category structure and awareness of change, F(1, 

192) = 4.89, p = .028, ηp
2 = .03. Awareness of change made no difference in RB conditions but 

improved average accuracy recovery in II conditions. 

Confidence 

 Confidence analyses revealed a main effect of rate of change, F(1, 192) = 21.13, p < 

.001, ηp
2 = .10, and awareness of change, F(1, 192) = 13.90, p < .001, ηp

2 = .07, on the 

immediate effect of change on average confidence. Confidence increased post-change to a 
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greater extent in discover than alert conditions, and gradual compared to abrupt change rates. 

There was also an interaction between category structure and rate of change, F(1, 192) = 4.12, p 

= .044, ηp
2 = .02, such that discover conditions were associated with greater increases in 

confidence post-change compared to alert conditions to a greater extent in II than RB category 

structure conditions.  

 Lastly, there were main effects of both rate of change, F(1, 192) = 9.76, p = .002, ηp
2 = 

.05, and awareness of change, F(1, 192) = 5.09, p = .025, ηp
2 - .03, on the long-term effects of 

average confidence. Average confidence increased across post-change blocks to a greater extent 

in alert than discover conditions, as well as in abrupt compared to gradual change rate 

conditions.  

Summary of RB vs. II Analogical Transfer 

 As predicted, analogical transfer was evident in both RB and II categories. In addition, 

there was a greater initial accuracy cost (sometimes associated with a switch to a sub-optimal 

rule type) in the block immediately following the transfer (again, in line with predictions). 

Because of the greater initial cost of analogical transfer in II categories, there was also greater 

recovery. The largest accuracy costs were associated with abrupt change, which affected II 

category learning more than RB category learning. Finally, alerting an individual to change 

improved performance in II conditions but made no difference in RB conditions; confidence was 

higher when alerted and when change occurred gradually. This entire pattern of results follows 

what was expected based on previous research and the concept drift literature. These results have 

implications for the transfer of implicit vs. explicit category learning knowledge. 
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Discussion 

II Analogical Transfer 

 Experiment 4 provides a direct counter-part to Experiment 3. Experiment 3 investigated 

the effect of concept drift characteristics within RB analogical transfer, while Experiment 4 

replicated this experiment using information-integration (II) categories.  Participants again 

learned to categorize lines varying in length and orientation, with a category sampling shift (i.e., 

analogical transfer) occurring after block 3. As in the previous experiments, three hypotheses 

were explored: 1) analogical transfer would occur in II learning (i.e., full recovery) after an 

initial performance decrement (i.e., accuracy cost) due to the shift in the category distributions, 

2) awareness of change (i.e., alerting) would not improve II analogical transfer, and 3) analogical 

transfer would be greater in gradual change conditions than abrupt change conditions. 

 Analogical transfer did occur, in support of Hypothesis 1. Visual inspection of Figure 26 

reveals that average accuracy returned to at least pre-change accuracy levels. Two other tests 

were conducted to verify the occurrence of analogical transfer. First, a paired-samples t-test was 

conducted comparing average accuracy in the final pre-change block (block 3) to the final post-

change block (block 8). There was no significant difference between average accuracy in blocks 

3 and 8, t(99) = 0.35, p = .729. Additionally, analogical transfer was assessed by comparing 

maximum accuracy in pre-change blocks (blocks -1-3) to maximum accuracy in post-change 

blocks (blocks 6-8). A paired-samples t-test found a significant difference between pre- and post- 

maximum accuracy, t(99) = 2.50, p = -.014, cohen’s d = .25, with higher maximum accuracy in 

post-change blocks than pre-change blocks. Thus, not only did analogical transfer occur in II 

category learning, but the analogical transfer categories were learned even better than the 

original categories.  
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 The second part of Hypothesis 1 predicted that there would be an initial performance 

decrement due to the category change. This was also supported, as there was an initial accuracy 

cost. However, it was only significant in abrupt change conditions. This provides support for 

Hypothesis 3, suggesting that gradual change is easier to adapt to in II categories than abrupt 

change. Decision bound modeling results corroborate this by highlighting a higher number of 

participants using an optimal rule types in gradual compared to abrupt change conditions. 

Finally, Hypothesis 2 was not supported. Contrary to expectations, alerting participants to 

change in II categories resulted in significantly higher accuracy in post-change blocks. This 

finding is particularly interesting, as II categories involve a typically non-verbalizable rule, and 

yet instructions providing a general alert to change (without specifying the manner in which 

categories would change) improved performance. 
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CHAPTER 7: GENERAL DISCUSSION 

 The impact of change on human perceptual category learning was explored through a 

series of four experiments. Changes occurred mid-experiment to either category base-rates (Exp 

1), category payoffs (Exp 2), RB categories (Exp 3), or II categories (Exp 4). Each type of 

change reflected a component of “virtual concept drift” prevalent in machine learning and data 

sciences. Concept drift occurs when data distributions change over time, causing the 

performance of learning models to deteriorate. In the present case, data distributions were 

represented as normally distributed category distributions in human perceptual category learning 

tasks.  

A thorough review of concept drift in machine learning resulted in the identification of 

two prominent components of the problem of concept drift. First is the rate at which a data 

distribution parameter changes over time, ranging from abrupt (instantaneous) change to more 

gradual change extended over a period of time. Second is a differentiation of approaches taken to 

handle concept drift. Learning models employing active approaches involve two phases: 

detection and adaptation. The model must first decide that something in the decision 

environment has changed if the model is to adjust its parameters to relearn the data distributions. 

If no change is identified, the same model (trained on previous data) is applied to new inputs. 

Passive learning approaches, on the other hand, continually adapt to incoming data, with each 

new input causing the learning model to update its parameters. These differences in approaches 

lend themselves better to different types of change; active approaches are better suited to handle 

abrupt concept drift, while passive approaches are better suited to handle gradual concept drift. 

The idea of active versus passive approaches was employed in the present work by providing an 

instructional alert to some participants as to an upcoming change (paralleling an active approach 
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that is first made aware of change and then adapts). Other participants received no alert and 

needed to simply adapt to the change on their own (whether or not they explicitly detected 

change, paralleling a more passive approach). These two variables – rate (abrupt, gradual) and 

awareness (alert, discover) of change – were investigated in each of the four experiments.  

 The selection of parameters of change in each experiment was made to provide insight 

into the relative impact of change on explicit vs. implicit learning. Experiment 1 (base-rates) and 

Experiment 2 (payoffs) provide a comparison of two decisional components of categorization 

that are believed to be learned largely through opposite learning systems. Recent evidence has 

supported earlier hypotheses (Koehler, 1996; Spellman, 1996) suggesting base-rate sensitivity is 

mediated largely by the implicit learning system (Bohil & Wismer, 2015; Wismer & Bohil, 

2017). Payoffs (i.e., costs and benefits), on the other hand, are believed be learned and reasoned 

about explicitly. Base-rates and payoffs have a long history of research in category learning and 

provide an initial venue for exploration of the effect of change in explicit vs. implicit learning.  

 Additionally, two different category structures studied in the COVIS literature provide an 

additional set of tasks in which to evaluate the effect of change on performance. Rule-based (RB) 

category structures are learned via the explicit learning system, mediated by the prefrontal 

cortex, through conscious hypothesis testing relying on working memory. RB categories 

typically are defined by a verbalizable rule. Information-integration (II) category structures are 

learned via the implicit learning system, are mediated by subcortical structures such as the basal 

ganglia and dopamine reward system, and learn stimulus-response associations through a 

procedural learning process. II categories are typically defined by a non-verbalizable, or difficult 

to verbalize, rule. These two category structures - the focus of a wealth of research in the study 
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of multiple systems of category learning - provide an additional layer of investigation into the 

effect of change within explicit vs. implicit learning. 

Experiment 1 Summary 

 Experiment 1 tested three hypotheses. First, it was hypothesized that people would be 

sensitive to category base-rates but would display conservatism in the decision criteria used. 

Second, it was hypothesized that awareness of change would have no effect on change 

adaptation since base-rates are believed to be learned implicitly. Third, it was hypothesized that 

gradually changing base-rates may be better incorporated into classification than base-rates that 

change abruptly. Hypothesis 1 and 2 were supported. People were sensitive to category base-

rates but displayed conservative cutoff placement in their decision criteria. Awareness of change 

also had no effect on change adaptation. Hypothesis 3 was rejected, however. Gradually 

changing base-rates did not lead to development of an earlier response bias during change or 

improved criterion placement post-change. Still, evidence of base-rate sensitivity in the 

gradual/discover condition, coupled with the lowest confidence of all conditions, suggests that 

implicit learning did occur despite lack of explicit awareness. 

 The results of Experiment 1 have relevance for various training applications, such as 

medical training. Oftentimes learners are presented relatively equal numbers of normal and non-

normal cases in training, or in the least, consideration of the impact of the distribution of normal 

vs. non-normal cases in training on future performance is not considered. Training equally on 

positive and negative cases can actually promote the adoption of an unbiased decision criterion, 

posing potential issues when practitioners later work with patient populations with different, and 

possibly quite extreme, base-rates. As noted previously, this is of particular relevance in 

applications of ambiguous classification, such as radiology or epidemiology, where base-rates 
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should be more vital in the decision making process. Given that simply alerting observers to the 

base-rate change did not promote more immediately optimal decision criteria placement or 

increased classification accuracy in the present experiment, additional mitigations may be needed 

when patient populations, symptom profiles, and/or associated base-rates change. Future work 

might consider the possible use of simulations in medical (or other) training as a way to provide 

direct experience with relevant cases matched to population base-rates of relevance in an effort 

to promote use of optimal decision criteria.   

Experiment 2 Summary 

 Experiment 2 explored additional hypotheses. First, it was hypothesized that people 

would be sensitive to changes in payoff values, but that decision criteria would be more 

conservative than analogous base-rate conditions. Second, it was hypothesized that providing an 

instructional alert about the payoff change would increase criterion shifting to the new payoff 

values. Third, it was hypothesized that abrupt payoff changes would be easier to adapt to than 

gradually changing payoffs. Both hypothesis 2 and 3 were based on the assumed role of explicit 

learning in payoff sensitivity.  

 Hypothesis 1 was partially supported. Observers were more conservative than observers 

in corresponding base-rate conditions; however, they exhibited almost no sensitivity to the new 

payoff values at all in terms of decision criterion placement. There was a slight increase in the 

frequency of responding with the high value category, as well as bias suggested by GRT model 

estimates, that suggested some sensitivity to payoffs despite not being reflected in SDT β-values. 

Hypotheses 2 and 3 also received partial support. Some differences were seen suggesting 

improved performance in alerted vs. discovery conditions and abrupt vs. gradual change 

conditions. Both alerting and abrupt change led to larger GRT-β estimates post-change. Alerting 
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improved the long-term effect of change in some conditions. Abrupt change was associated with 

more immediate increases in point totals (i.e., reward). 

 Unfortunately, conclusions drawn from Experiment 2 may be limited due to the 

uncharacteristically low adaptation to the payoff manipulation. Besides the fact that payoff 

values changed mid-experiment (which is novel in category learning), a few other details 

differed from previous reports of category payoff learning and may explain the present lack of 

sensitivity. First, the category payoff values used in the present work were larger than in 

previous studies. In the past, a 3:1 payoff ratio has typically been introduced by awarding 3 

points for one correct response and 1 point for another. In the present work, a 150:50 point ratio 

was employed. This ratio was selected so that gradually changing payoff values could increment 

in integer values, starting from a ratio of 100:100. Second, stimuli were randomly selected on 

each trial determined via category means, variances, and a base-rate parameter (1:1 ratio). 

Previous studies of category payoff learning have typically preselected stimulus values to ensure 

perfect 1:1 base-rate ratios within any block of trials. It is possible that the added variability in 

the present work, coupled with the low category discriminability (d’ = 1), resulted in poor payoff 

sensitivity. Despite the fact that situations of high ambiguity are cases in which payoff values 

become important, it is obvious that payoffs were not relied on as an alternative to stimulus 

information. A person who would have chosen to maximize payoffs by responding only category 

A (the high payoff category) would have received an average of 3750 points in each post-change 

block – a point total that is higher than any group average across the experiment. Future work 

might consider using alternative d’ levels to see if payoff adaptation is dependent on higher 

levels of discrimination. Third, previous category learning payoff studies usually included two 

additional lines of payoff feedback onscreen related to the potential amount of points for the 
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completed trial (Bohil & Maddox, 2003; Maddox & Bohil, 2005). The first line lists the number 

of points that were available to earn (“potential points”) while the second line lists the possible 

total number of potential points earned for the block of trials to that point in time (“potential 

point total”). However, these lines of feedback were usually presented in studies investigating 

objective vs. optimal classifier feedback, where possible point totals are linked to either objective 

accuracies or ideal observer responses. Thus, these lines were chosen to be removed from 

Experiment 2. Still, it is possible that these lines increased motivation in prior studies, providing 

a reason for the lower performance witnessed in the present Experiment 2. Finally, no form of 

compensation was awarded for point maximization (unlike most previous studies of payoff 

learning), suggesting that participants may have focused on accuracy instead of maximizing 

reward in Experiment 2. 

Experiment 3 Summary 

 Experiment 3 explored an additional three hypotheses. First, it was predicted that RB 

analogical transfer would occur, without any initial performance cost to the category change. 

Second, it was predicted that because positive analogical transfer would occur, awareness of 

change would not impact performance. Third, for the same reason it was predicted that rate of 

change would not impact transfer performance.  

 Hypothesis 1 was supported. Analogical transfer occurred in every experimental 

condition, regardless of the change characteristics. In fact, change conditions showed increases 

in accuracy relative to a control condition. This suggests an interesting possibility that something 

as simple as a sampling shift can increase task engagement in an extended, repetitive task. It is 

possible that participants in the control condition learned the category rule relatively quickly and 
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became more disengaged later in the experiment, accounting for a small drop in accuracy relative 

to the analogical transfer conditions.  

 Hypothesis 2 was rejected. Awareness of change did have some subtle effects on 

performance in RB analogical transfer. Discovery conditions were associated with greater 

increases in accuracy immediate following the change as well as increases in confidence. Still, 

alerted conditions displayed an increase in accuracy to match that of discovery conditions by the 

final block. This pattern of results suggests that instructionally alerting a person to a category 

change that does not require a new category rule may actually impede performance 

improvements initially. This may be due to observers’ changing their strategy in anticipation of 

some larger change in the rule structure. Future studies that evaluate rule structures changes in 

category learning may find a difference patterns of results with respect to the effect of alerts. 

 Hypothesis 3 was also rejected; benefits of gradually changing categories were found. In 

particular, discovery conditions were associated with larger increases in accuracy across the 

experiment and more frequent adoption of optimal rule types after the change than alerted 

conditions. Despite these differences in response to change, asymptotic performance in the final 

block was similar for all conditions. Again, this suggests that change characteristics may have 

more subtle impacts on the initial effect of analogical transfer in explicit learning that are not 

long-lasting. 

Experiment 4 Summary  

 Experiment 4 provided a replication of Experiment 3 with information-integration (II) 

categories, thus providing an exploration of change effects in implicit learning. Three additional 

hypotheses were explored. First, it was predicted that II analogical transfer would occur, but that 

there would first be initial performance decrement in response to the change. Second, it was 
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predicted that awareness of change would have no impact on learning in an implicit learning 

task. Third, it was predicted that performance would be greater in gradual change compared to 

abrupt change rate conditions. In other words, gradual change might alleviate the predicted cost 

of analogical transfer and/or lead to increased accuracy recovery across blocks. 

 Results provided support for Hypothesis 1. There was evidence of analogical transfer in 

every condition (i.e., final block accuracy returned to pre-change accuracy levels or higher). In 

fact, the transfer categories were learned to a higher level of accuracy then the initial categories. 

Additionally, there was a drop in accuracy immediately following analogical transfer. This drop 

in accuracy was isolated to abrupt change conditions, thus supporting both Hypothesis 1 and 

Hypothesis 3.  

Hypothesis 2 was rejected. Alerting participants to the change in categories resulted in 

higher accuracy post-change compared to discovery conditions as well as greater accuracy 

recovery from the cost of analogical transfer than in discovery conditions. In fact, accuracy in 

discovery conditions was lower than the control condition post-change. The highest accuracy and 

best example of analogical transfer was the gradual/alert condition. It appears that despite being 

an implicit learning task, explicit awareness of change may help alleviate analogical transfer 

costs when those changes occur gradually rather than abruptly. Thus, slower rates of change may 

enable an observer to make use of the alert and maintain performance with the II sampling shift. 

Adaptation in Explicit vs. Implicit Category Learning 

Theoretical Implications 

 Hypotheses concerning null effects in the present work should be considered provisional 

pending further study and perhaps would be better addressed using Bayesian analysis, which can 

provide a direct test of the null hypothesis. Nonetheless, the present work has implications for 
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current theories of category learning. First, the translation of concept drift into perceptual 

category learning provides a theoretical framework to build upon in future research. Studies of 

categorical change can provide both insights into transfer and generalization, as well as build an 

understanding of the ways in which humans learn natural categories in the real world where 

environments are dynamic and change can be expected. This framework can be extended to 

investigate the effect of other types of change that might provide evidence for single vs. multiple 

systems theories of category learning. 

 Second, the first two experiments build on the knowledge base of how decisional 

elements are utilized in category learning. The results of Experiment 1 and 2 provide additional 

support for the differential processing of base-rate and payoffs in categorization. Criterion 

shifting was greater in response to base-rate change than payoff change, mirroring the results of 

previous work in stationary conditions (Maddox & Bohil, 1998, 2003). In addition, the results 

provided some evidence in support of enhanced analogical transfer in response to gradual change 

in base-rate conditions. This pattern of results provides additional support for the implicit 

learning of base-rates (Wismer & Bohil, 2017) whereas costs and benefits are believed to be 

reasoned about more explicitly.  

 Third, the results of Experiments 3 and 4 provide additional qualitative distinctions 

between what is believed to be implicit and explicit learning in categorization. Analogical 

transfer occurred in both RB and II categories, although in II categories it was precluded by an 

initial accuracy decrement in abrupt change conditions. Gradual change and alerting supported II 

analogical transfer, whereas change characteristics had little effect on RB analogical transfer 

since no initial accuracy decrement was observed, as expected. This opens up the question of 
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exactly how gradual a change needs to be to support analogical transfer in II category learning, 

as well as if it can support transfer to other types of II category changes as well. 

Practical Applications 

 Overall, the results of Experiments 1 through 4 suggest that the type of change referred to 

as “virtual concept drift” in machine learning, or “analogical transfer” in categorization, can be 

successfully adapted to by human observers. Tasks that involve components believed to be 

linked to implicit learning (e.g., as with base-rates or II categories) may be enhanced if change 

occurs slowly and if the learner is made aware to the possibility of change. Alerts do not seem to 

be necessary in tasks mediated by explicit learning where the change is large enough to be 

noticed (i.e., unexpected uncertainty; Yu & Dayan, 2005).  

 The development of decision aids in different contexts might be able to focus support in 

areas of the most need. With respect to the types of change investigated in this dissertation, this 

means tasks that require a focus on costs and benefits over accuracy or tasks invoking procedural 

learning. Particularly when changes of smaller magnitudes can be expected in a decision 

environment, alerts provided by machine learning algorithms may provide the learner with 

insight into when a change in strategy is needed. However, more work is needed before this type 

of information can be reliably provided for decision support. 

Future Work 

 The categorical change framework established in this dissertation opens the door for 

many future research opportunities. One important consideration in the future will be to 

understand the effect of other types of change on category learning (i.e., “real” concept drift). 

Analogical transfer is only one small piece of the puzzle. Additionally, Webb et al. (2016) 

identified other important quantitative characteristics of concept drift that are of relevance to 
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category learning. The first is the magnitude of change. The magnitude of RB and II category 

change in the present work was lower than that of Casale et al. (2012), providing one possible 

explanation for why II analogical transfer was found in the present work but not in Casale et al. 

(2012). A related metric is the severity of the concept drift, defined as the percentage of the 

stimulus space in which new stimulus-to-response mappings are created. The greater the severity 

of change, the more re-learning that needs to occur. Finally, a few researchers have investigated 

periodic changes (Navarro et al., 2013) or the possibility of multiple changes over time 

(Summerfield et al., 2011). Each of these components of concept drift provide interesting 

applications in category learning. The analysis of change effects can further strengthen our 

understanding of category learning, criterion lability, and a deeper look into the cognitive 

processes underlying change adaptation.   
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APPENDIX B: INFORMED CONSENT FORM 

 

 

 



 

153 
 

 

Characterization of Perceptual Category Learning 

Informed Consent  

Principal Investigator:   Andrew Wismer, M.A.  

Faculty Advisor: Corey Bohil, Ph.D.  

Investigational Site(s):  University of Central Florida, Department of Psychology 

Introduction:  Researchers at the University of Central Florida (UCF) study many topics.  
To do this we need the help of people who agree to take part in a research study.  You are 
being invited to take part in a research study which will include about 1000 people at UCF.  
You have been asked to take part in this research study because you are a college age 
individual. You must be 18 years of age or older, and have normal or corrected to normal 
vision, to be included in the research study.   

The person doing this research is Andrew Wismer (University of Central Florida – 

Department of Psychology). Because the researcher is a doctoral student, he is being guided 
by Dr. Corey Bohil, a faculty advisor in the Department of Psychology.  

What you should know about a research study: 

• Someone will explain this research study to you.  

• A research study is something you volunteer for.  

• Whether or not you take part is up to you. 

• You should take part in this study only because you want to.   

• You can choose not to take part in the research study.  

• You can agree to take part now and later change your mind.  

• Whatever you decide it will not be held against you. 

• Feel free to ask all the questions you want before you decide. 
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 1 of 2     
University 

of Central 

Florida IRB  
IRB NUMBER: SBE-16-

12432 
IRB APPROVAL DATE: 

11/02/2017 
IRB EXPIRATION DATE: 

11/01/2018 
Purpose of the research study:  The purpose of this study is to explore how people can 
learn to classify patterns into different categories. This is important because it is the kind 
of judgment made on a daily basis by people such as medical personnel and baggage x-
ray screeners. The cognitive abilities involved in this particular task are common to a 
wide range of tasks. 

What you will be asked to do in the study: Participants will view a set of stimuli (e.g., 
lines) on a computer monitor and on each trial will be asked to make a judgment based on 
the features of the pattern. Participants will learn to determine what the patterns indicate 
(e.g., Category A or B). The entire experiment should take no more than 60-120 minutes 
to complete, depending on the amount of SONA credit you signed up for. If you signed up 
for 1 credit, the study will take no longer than 60 minutes. If you signed up for 2 credits, 
the study will take no longer than 120 minutes. 

Location: The study will be conducted in the psychology building in PSY305, PSY303L, 
or PSY303K.   

Time required:  We expect that you will be in this research study for one hour (per SONA 
credit) and will require only one session in the lab.  

Risks: There are no reasonably foreseeable risks or discomforts involved in taking part in 
this study.  

Compensation or payment:  Students will receive course credit through the SONA 
system.  

Anonymous research:  This study is anonymous.  That means that no one, not even 
members of the research team, will know that the information you gave came from you. 

Study contact for questions about the study or to report a problem: If you have 
questions, concerns, or complaints, or think the research has hurt you, talk to Andrew 
Wismer, Graduate Student, Department of Psychology at 
andrew.wismer@knights.ucf.edu, or Dr. Corey Bohil, Faculty Supervisor, Department of 
Psychology at (407) 823-2755 or by email at corey.bohil@ucf.edu.  
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IRB contact about your rights in the study or to report a complaint:    Research at the 
University of Central Florida involving human participants is carried out under the 
oversight of the Institutional Review Board (UCF IRB). This research has been reviewed 
and approved by the IRB. For information about the rights of people who take part in 
research, please contact: Institutional Review Board, University of Central Florida, Office 
of Research & Commercialization, 12201 Research Parkway, Suite 501, Orlando, FL 
32826-3246 or by telephone at (407) 823-2901. You may also talk to them for any of the 
following:  

• Your questions, concerns, or complaints are not being answered by the 
research team. 
• You cannot reach the research team. 
• You want to talk to someone besides the research team. 

• You want to get information or provide input about this research.  

2 of 2 
University 

of Central 

Florida IRB  
IRB NUMBER: SBE-16-

12432 
IRB APPROVAL DATE: 

11/02/2017 
IRB EXPIRATION DATE: 

11/01/2018 
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