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ABSTRACT 
 

The neuropsychological theory known as COVIS (COmpetition between Verbal and Implicit 

Systems) postulates that distinct brain systems compete during category learning. The explicit 

system involves conscious hypothesis testing about verbalizable rules, while the implicit system 

relies on procedural learning of rules that are difficult to verbalize. Specifically from a 

behavioral approach, COVIS has been supported through demonstrating empirical dissociations 

between explicit and implicit learning tasks. The current studies were designed to gain deeper 

understanding of implicit category learning through the implementation of a subjective measure 

of awareness, Meta d’, which until now has not been validated within a COVIS framework. Meta 

d’ is a measure of metacognitive accuracy. This is the ability to assess the accuracy of one’s own 

performance. These three experiments evaluated the use of Meta d’ as a valid predictor of task 

performance within a two structure perceptual categorization task. Experiment 1 focuses on 

using Meta d’ to parse out dissociations between awareness and performance through the 

phenomenon of Blind Sight and Blind Insight. Experiment 2 and 3 utilize a motor response 

mapping disruption to observe predicted decrements to the implicit learning system. Experiment 

3 utilizes functional Near Infrared Spectroscopy (fNIRS) to measure hemodynamic changes in 

the Prefrontal Cortex as a function of category structure.  Across the 3 experiments, Meta d’ in 

conjunction with decision bound model fits were used to make accurate predictions about the 

differences in performance throughout implicit and explicit categorization tasks.  These 

collective results indicate that metacognitive accuracy, an implicit structure, was highly sensitive 

to a whether a person is using the correct rule strategies through the task. 
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CHAPTER 1: INTRODUCTION TO CATEGORIZATION 
 

Categorization is a pervasive aspect of human perception and cognition and, as such, it 

has long been a topic of debate among philosophers and scientists. Across the generations, 

several theories of categorization have developed to parse out the cognitive, perceptual, and 

neurobiological processes involved. To understand the most prominent theories of today, it is 

necessary to understand the historical evolution of the field.  

The oldest theory of categorization, Classical Theory, was founded on the idea that every 

category is made up of common properties. These properties are both necessary to the category 

and sufficient for its representation (Smith & Medin, 1981). In time, Classical Theory began 

receiving criticism for oversimplification. Not all exemplars in a category contain the same 

properties. Additionally, the theory did not account for typicality or goodness. Typicality and 

goodness relate to the idea that certain category members are more typical, and therefore better 

examples, despite possessing the same ‘necessary and sufficient features’ as other examples 

(Smith & Medin, 1981). For instance, a golden retriever is a more typical example of a dog than 

a chihuahua. Research found that in category learning tasks, the most typical exemplars result in 

more accurate and faster responses than less typical examples (Rips, Shoben, & Smith, 1973). 

Based on this research, a new theory on categorization, Prototype Theory, began taking shape.  

Prototype Theory gained traction with its ability to account for typicality effects (Rosch, 

1973). Prototype Theory proposes that a category’s mental representation is distributed around 

the most typical category member. This theory accounted for much of past criticism of classical 

theory in that it did not rely on a set of specific properties. Instead, the theory states that category 
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membership is determined based on similarity to the prototype. The more similar to the 

prototype, the more typical the category example. However, as with any scientific theory, there 

are criticisms of prototype theory. The primary concern with prototype theory is the reliance on a 

single prototype representation (Smith & Medin, 1981). Single prototype representation became 

increasingly problematic as research surfaced showing it was possible for multiple category 

exemplars to produce similar task performance (Medin & Schaffer, 1978). For example, in 

addition to the golden retriever, a labrador is also a typical exemplar for dogs. It is likely that 

participants would classify these two prototypical breeds of dog more quickly than a less typical 

breed. Additionally, prototype theory relies on ‘similarity’ without providing an operational 

definition or set of criteria for measuring it. Allowing for these developments, Exemplar theory 

evolved out of Prototype Theory.  

Exemplar theory is an instance-based theory proposing that each decision engages a 

large-scale comparison of the stimulus to every previously encountered category exemplar stored 

in memory (Medin & Schaffer, 1978). Like prototype theory, this relies on similarity. However, 

exemplar theory has also been subject to criticism. It is unlikely that each classification judgment 

involves a global comparison to every single experienced exemplar stored in memory.  

General Recognition Theory (GRT) is - like prototype theory - an abstraction-based 

category learning theory.  However, it does not possess the same reliance on similarity-based 

reasoning. It is based on a perceptual space mapping instead of relying on memory 

representation of exemplars. This theory, also known as decision bound theory, postulates that 

participants learn the decision bound dividing the categories without activating exemplar or 

prototype memories (Ashby & Gott, 1988). The assumption is that participants divide a 
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perceptual stimulus space into response regions; the division is represented by the decision 

bound. On each trial, the participant discerns the appropriate response region based on the 

stimulus’ relationship to the decision bound and makes the corresponding response.  

COVIS 
Ashby and colleagues (1998) used the foundations of General Recognition theory to 

create a categorization theory with a neuropsychological basis. The theory, called COVIS 

(Competition between Verbal and Implicit Systems), suggests that there are separate learning 

systems mediating explicit and implicit learning (Ashby, Alfonso-Reese, Turken, & Waldron, 

1998). COVIS predicts that the explicit system is often given preference, despite not always 

being optimal to the task, causing competition between the systems.  

The explicit learning system relies on a neural network comprised of the prefrontal 

cortex, anterior cingulate, head of the caudate nucleus, hippocampus, as well as other medial 

temporal lobe structures (Ashby & Maddox, 2011). Explicit-rule learning is primarily mediated 

by the prefrontal cortex. COVIS posits that potential rules are held in working memory to be 

evaluated until there is sufficient support for a rule switch or the current rule is verified through 

corrective feedback. Over the course of the task, many different rules could be created and tested 

before participants settle on the best accuracy maximizing rule (Ashby & Maddox, 2005).  The 

explicit learning system is often tested using rule-based categorization tasks. Rule-based tasks 

are explicit in nature, considered easy to verbalize, and learned through hypothesis testing. For 

example, as seen in Figure 1 (left), it is possible for participants to use a criterion only based on 

length, while completely ignoring angle, to perform accurately on the task. 
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Figure 1. Stimulus values for both RB and II category structures 

Scatterplots show stimulus values for both RB (left) and II category structures (right). The solid 
lines represent the accuracy maximizing decision bound for each structure 

 

In contrast, the implicit learning system relies on basal ganglia structures for rule 

learning. The switch between potential rules is said to be specifically mediated by the head of the 

caudate nucleus (Ashby & Maddox, 2011). The implicit system relies on slow stimulus-response 

learning that is not consciously accessible to the explicit reasoning system. Implicit category-rule 

learning is an incremental and procedurally based process. Participants in implicit-rule learning 

tasks can achieve a high level of performance despite an inability to verbally state the rule. 

Implicit learning is often assessed through information-integration tasks. These tasks are unique 

in that accuracy is maximized only when the participant pulls information from two or more 

stimulus components, or dimensions (Figure 1, right). Traditionally, these types of rules are 

much more difficult, if not impossible, to verbalize. Numerous studies suggest that despite being 

unable to describe the rule verbally, participants can still achieve the same levels of accuracy as 
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with the rule-based categories provided enough experience (Ashby & Maddox, 2005; Ashby, 

Maddox, & Bohil, 2002). 

The two-system debate 
 The theory of COVIS, like any scientific theory, is controversial and frequently debated 

among the different camps within categorization research. Despite significant evidence 

suggesting separate system contributions to learning (Ashby et al., 1998), popular theories of 

categorization, namely prototype and exemplar, are based on the single system theory, and retain 

support among many cognitive psychologists. Within single system theories, implicit and 

explicit tasks are treated the same, despite the significant behavioral (Ashby, Ell, &Waldron, 

2003; Maddox, Bohil, & Ing, 2004) and neurophysiological (Ashby et al., 1998) data suggesting 

otherwise (Ashby & Maddox, 1998).  

Specifically from a behavioral approach, COVIS has been supported through 

demonstrating empirical dissociations between explicit and implicit learning tasks. Traditionally, 

this is done through various manipulations including feedback structure, response format, 

working memory load changes, secondary stressors, and many more. For example, Markman, 

Maddox, and Worthy (2009) demonstrated that through the introduction of a social pressure to 

an explicit categorization task, they were able to see significant performance deficits (i.e., 

choking under pressure). However, these deficits were not seen within the implicit task 

condition; surprisingly, the pressure actually improved performance. This is just one example of 

how these manipulations were used to consistently and reliably demonstrate behavioral 

differences between explicit and implicit learning tasks (Ashby & Maddox, 2011).  
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To date, COVIS is one of the only categorization theories that can make predictions 

based on the structures of the brain, allowing it to account for a much broader range of data 

(Ashy & Maddox, 2011).  COVIS research is supported by numerous studies using populations 

with documented brain region injuries and various physical and mental health disorders such as 

Parkinson’s disease, PTSD, ADD, and Schizophrenia. These neuroimaging studies offered 

converging evidence of separate systems mediating implicit and explicit category learning 

(Gluck & Poldrack, 2008). This allows for predictions to be made about which regions of the 

brain could be active during different types of learning tasks.  

  Despite the growing evidence in support of a separate systems theory of learning, there is 

a notable gap in the literature when it comes to the subjective experience. To my knowledge, 

there are very few studies that integrate subjective measures of awareness into a COVIS-based 

categorization learning task.  In an effort to bridge this gap, pilot data was collected using an 

adaptation of a subjective measure of rule awareness, Scott and Dienes (2005) implicit 

attribution scale, in combination with our traditional two structure categorization framework 

(Wismer, Zlatkin, & Bohil, 2016). Participants completed an explicit (rule-based) or implicit 

(information integration) task. They were asked to group perceptual stimuli (lines of varying 

length and orientation) into a category A or category B, based on an unknown predetermined set 

of rules. Corrective feedback was used to help participants learn the rule as they completed the 

task. After each trial, participants were asked to attribute their decision response to one of 3 

designations: Guessing, Intuition, or Rule. Participants in the rule-based, explicit condition 

overwhelmingly attributed their decisions to Rule. In the information-integration, implicit, task 
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participants attributed their decisions to intuition significantly more than those in the Rule-based 

condition (Figure 2).  

  

Figure 2 Wismer et al., 2016 pilot data 

This Figure shows the pilot data from Wismer et al., 2016. Figure 2 (left) shows RB participants 

overwhelming attributing rule (grey circles). Figure 2 (right) shows II participants selecting 

intuition (orange triangles) significantly more than those in the RB condition. 

 

These results show that not only do participants possess some level of knowledge 

awareness, but they believe they are employing unique strategies for each learning task. This 

strongly suggests that the differences between the Implicit and Explicit learning tasks are evident 

in the subjective data, as well as the well-established behavioral and neurophysiological results. 

These pilot results demonstrate the potential of subjective measures to support the separate 

systems theory of category learning.  For these reasons, it is a notable gap in the literature, that 

once rectified could potentially bolster and expand on the COVIS paradigm. For these reasons, 

the potential usefulness of subjective measures of awareness within a categorization framework 

must be further explored.  
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CHAPTER 2: MEASURING IMPLICIT LEARNING 
 

COVIS relies on the concept of competition between the systems. Inherent to this theory 

is the idea that while the explicit and implicit learning systems are separate, they interact and 

trade off on decisional influence on a trial by trial basis. Implicit learning theories attribute a 

great deal to processes that are difficult to directly measure, such as awareness. Traditionally, 

implicit learning has been measured through objective means such as accuracy and reaction time. 

However, pilot research suggests that these traditional methods leave out vital information on 

introspective changes that occur throughout a learning task (Wismer et al., 2016; Zlatkin et al., 

2016). Integrating subjective measures into the paradigm can shed valuable insight into the 

underlying strategies employed throughout this competition process. Despite their prevalence in 

the overarching field of implicit learning, subjective measures have yet to be used to assess 

categorization learning within the COVIS framework. I believe that integrating these proven 

subjective measures to traditional categorization paradigms is the next step to further 

understanding separate system contributions. 

Subjective Measures of Implicit learning 
 

Cognitive learning paradigms such as artificial grammar learning (AGL), serial response 

time (SRT), and perceptual categorization are commonly used within implicit learning research. 

Within the AGL and SRT frameworks, subjective measures of awareness have long been used to 

assess implicit learning, despite their absence in other areas of learning research. Subjective 

measures of awareness serve to address the underlying knowledge and strategies used throughout 

an implicit learning task, where it is often assumed the knowledge is unconscious and 

inaccessible. Essentially, they are designed to parse out the difference between ‘knowing that we 
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know’ and ‘knowing what we know’ (Reber, 1967). These measures are often paired with 

objective measures of performance such as accuracy or reaction time.  

Criteria 
Of course, not all measures are equal, and it is necessary to assess the quality of a 

subjective measure. Dienes and Colleagues (1995) created two criteria, the ‘zero-correlation 

criterion’, and the ‘guessing criterion’ to assess the quality of a subjective measure. Each of these 

criteria test for the levels of conscious and unconscious processing (Dienes, Altmann, Kwan, & 

Goode, 1995). The Zero-Correlation criterion is met when there is little to no correlation between 

the objective measure of performance and the subjective measure (self-reported awareness or 

task confidence), across varying degrees of difficulty. A positive correlation between these 

variables would indicate that there is a measurable amount of conscious awareness contributing 

to performance. Similarly, for the ‘guessing criterion,’ performance is assessed in cases where 

participants claim to be guessing (i.e., they believe they are answering at random). It can be 

assumed that if performance is at chance, there is no knowledge (conscious or otherwise) 

contributing to the responses. In instances where participants claim to be guessing but perform 

above chance, it is possible to conclude that they are relying on some form of unconscious 

knowledge. The most promising scale is the one that (a) shows better correlation than others 

between performance and awareness at varying levels of difficulty (the zero-correlation 

criterion), and (b) shows the least above-chance performance for trials on which participants 

believe they are guessing (the guessing criterion). 

Measures 
Some widely used subjective measures include the perceptual awareness scale (PAS), 

post- decision wagering (PDW), and confidence ratings (CRs). Each of these scales can be tested 
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using the zero correlation and guessing criterion and have been validated to assess the difficult to 

verbalize underlying levels of task awareness.  

Perceptual Awareness Scale 
Ramsay and Overgaard (2004) developed the Perceptual Awareness Scale (PAS) to 

describe the quality of a visually presented stimulus set. The PAS originated out of a participant 

generated scale. Participants were shown a stimulus set made up of various shapes and colors, 

asked to report all features, and to report degree of clearness of the experience. They were only 

instructed to use a scale going from ‘no experience at all’ to ‘clear image’ and were free to 

structure their own scales otherwise. Nearly all participants utilized a 4-point scale with levels 

approximating ‘no experience', ‘brief glimpse’, ‘almost clear image’, and ‘absolutely clear 

image’. This formed the basis for the Perceptual Awareness Scale, which provides a deeper look 

at the conscious experience of the participant across the task. 

This style of awareness scale has been adapted across several different paradigms of 

research. One adaptation, the Implicit Attribution Scale (Dienes & Scott, 2005), takes a similar 

approach, but with a less fluid, predetermined grading. This scale requires the participant to 

make trial-by-trial assessments on the bases of their judgements, using a fixed five-point scale; 

1- Guess, 2- intuition, 3- pre-existing knowledge, 4- Rules, and 5- Memory. Attributing trial 

decisions to guess indicates that the participant had seemingly no basis or reasoning for that 

judgement, as if they had just flipped a coin. Attributing intuition indicates that the participant 

was somewhat confident in the decision, but they could not specifically explain why it was 

correct. Attributing preexisting knowledge indicates that the judgment was based on knowledge 

they possessed prior to the task, and not gained from the training phase. This attribution is not 

relevant within paradigms of category learning in which abstract category structures are created 
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to purposely avoid pre-existing knowledge, and thus has been removed when adapted to these 

types of paradigms (Wismer et al., 2016). The rules attribution indicates a participant felt they 

based their answer on a distinct rule or set of rules acquired throughout the duration of the task, 

and they could verbalize these rules if asked. The memory attribution indicates the participant 

felt they based their response on specific stimulus information stored in memory. Intuition 

judgment responses were indicative of structural knowledge being more unconscious, or implicit. 

The rules and memory responses were indicative of explicit, and likely conscious, structural 

knowledge being used. 

Dienes and Scott (2005) validated the Implicit Attribution Scale as a means of parsing out 

a participant’s unconscious and conscious structural knowledge throughout an artificial grammar 

learning task. They took several steps to assess the validity of this scale. First, they integrated the 

well-used and validated measure of confidence ratings to compare. Secondly, they introduced 

manipulation checks, though the use of secondary tasks that interrupted conscious knowledge. 

This allowed them to make predictions on what types of knowledge the IAT should pick up on. 

These efforts provided converging evidence that the IAS was measuring what they intended.  

Post-decision wagering              
Post-decision wagering (PDW) is a relatively new measure of task awareness (Persaud, 

Mcleod, & Cowey, 2007). A task using PDW requires that after task completion, either at a trial 

level, block, or full duration, participants place ‘wagers’ on whether they performed the task 

correctly. This wagering relies on the confidence of the participants without explicitly asking 

them to report their awareness through introspection. According to Persaud and colleagues 

(2007), they simply perform a task that necessitates awareness of their own capabilities to be 

completed successfully. The researchers used a dichotomous form of wagering, with participants 
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being able to place either a low or high wager on one of two possibilities. The degree to which a 

participant uses advantageous wagering to maximize gains (betting high after a correct decision, 

or low after an incorrect decision) is assumed to be indicative of conscious experience. For 

example, in a poker game, if someone knows that they have a good hand, they are more likely to 

place a high bet. Based on the PDW theory, the possibility to win (real or imaginary) currency 

provides participants with an incentive to reveal any conscious knowledge they may possess. In 

the same vein, failure to wager advantageously should reflect an absence of awareness. The 

additional motivation of reward could potentially make this a more exhaustive measure 

(Sandberg, Timmermans, Overgaard, & Cleeremans, 2010).  

PDW scales have been consistently shown to be a valid subjective measures of 

knowledge awareness. Dienes and Seth (2009) put the PDW method to the test by comparing 

results from both PDW and verbal confidence rating on the same Artificial Grammar learning 

task. They found that PDW results correlate with those of the verbal confidence ratings, with 

each scale possessing its own strengths. Additionally, PDWs have become a popular subjective 

measure of implicit learning, partly due to the entertainment factor of the ‘gambling’ component. 

Several studies have utilized this method to assess underlying knowledge awareness (Haider, 

Eichler, and Lang, 2011; Pasquali, Timmermans, and Cleeremans

Confidence Ratings 
Confidence ratings (CRs) can be used to assess perception itself, where participants 

directly rank confidence in perceiving something (Cheesman & Merikle, 1986), or to assess 

knowledge of task performance, where they rank their confidence in whether they made the 

correct decision. In the former style, CRs work similarly to a PAS. In the second case, CRs used 

as a metacognitive judgment in which participants are requires to evaluate their own 
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performance in a discrimination task (Dienes et al., 1995). CRs can be assessed on a variety of 

different scales, however, they commonly begin with ‘guessing’ or ‘no confidence’ in the as the 

lowest level. These scales can be dichotomous in nature, such as ‘guess/know’, as well as 

gradual scales. CRs are advantageous in that participants are directly asked to reflect on their 

conscious experience. 

Ziori and Dienes (2006) sought to validate confidence ratings as a reliable subjective 

measure of learning. Through pairing CRs with free verbal reports and object performance 

ratings they were able to ascertain that CRs followed the same qualitative pattern indicating 

construct validity. Additionally, they found that confidence ratings were more sensitive to 

awareness shifts than verbal reports. 

Meta d’ 
Meta d’ is a measure derived from confidence ratings and used to assess a participant’s 

metacognitive accuracy. Metacognitive accuracy is the ability to assess the accuracy of one’s 

own performance (Scott, Dienes, Barret, Bor, & Seth, 2014). Quantitatively this is assessed 

through the relationship between judgement accuracy and confidence accuracy; Meta d’ is a 

measure of this relationship. Meta d’ is increasingly seen within Artificial Grammar Learning 

(AGL) research.  AGL research focuses on implicit learning of grammar strings. Participants 

must categorize grammar strings as either grammatical or ungrammatical based on a set of 

predetermined rules. Meta d’ is a measure of how accurately a participant’s confidence ratings 

predict task accuracy (Maniscalco and Lau, 2012). Quantitatively this is assessed through the 

relationship between judgement accuracy and confidence accuracy. Judgement accuracy is the 

type 1 task while confidence accuracy, or metacognitive accuracy, represents the type 2 task. 

Meta d’ measures type 2 sensitivity, or metacognitive sensitivity, calculated through a ratio 
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(Meta d’/d’). If Meta d’ = d’ the participants would be considered at ideal performance 

(Maniscalco & Lau, 2012). Meta d’ is reminiscent of signal detection theory in that it uses 

confidence ‘hits’ or ‘false alarms’ to compute the correlation between a participant’s accuracy 

and their self-reported rankings. If a participant is correctly expressing high confidence in 

accurate decisions, or low confidence in incorrect decisions, they possess metacognitive 

accuracy, and will display a high Meta d’ score. Those participants who express confidence in 

incorrect trials, or low confidence in correct trials would have a low Meta d’. Meta d’ is gaining 

popularity as measure of metacognitive sensitivity within implicit learning tasks (Maniscalco & 

Lau, 2012; Scott et al., 2014; Rausch & Zehetleitner, 2016). 

 

Graded versus dichotomous self-report 

Significant research within the field of Artificial Grammar Learning (AGL) supports the 

idea that awareness during implicit learning tasks is graded, not dichotomous (Sandberg et al., 

2010). This is evident through the validation of graded subjective awareness scales such as the 

Perceptual Awareness Scale (Ramsay & Overgaard, 2004) and the Implicit Attribution Scale 

(Dienes & Scott, 2005).  
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CHAPTER 3: EXPERIMENTS 
 

Research suggests both conscious and unconscious contributions to performance on 

implicit learning tasks. Despite their lack of use thus far within COVIS research, initial pilot data 

suggests that subjective measures of awareness could be a promising addition to the paradigm. 

Wismer and colleagues (2016) demonstrated clear differences in how participants verbalized or 

acknowledged their strategies between explicit and implicit tasks when using a subjective 

Implicit Attribution Scale. These results, in addition to the significant behavioral and 

neurophysiological data, serve as converging evidence supporting the separate system theory of 

category learning. Up until this point, there have been few attempts to integrate this type of 

measure within a categorization framework. This is clearly a significant gap in the COVIS 

literature. I believe that this offers the opportunity to provide significant converging evidence for 

the COVIS paradigm. I seek to demonstrate the usefulness of subjective measures, in tandem 

with behavioral and neurophysiological measures, in parsing out the underlying strategies and 

processes of implicit and explicit category learning.   

The research will be carried out within the GRT framework, utilizing both an explicit 

rule-based and implicit information-integration decision bound approach. The studies will utilize 

simple perceptual stimuli made up of lines that vary in length and angle of orientation from trial 

to trial. The categories are based on those created by Ashby and Waldron (1999) and are 

composed of numerous category examples preventing memorization as a response strategy. On 

each trial of the category learning experiment, participants will be presented with a stimulus, 

sampled from one of the two categories, and must determine the category to which the stimulus 
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belongs. Corrective feedback will be presented following each response, which provides the 

basis for learning the accuracy-maximizing decision rule.   

Experiment 1: Blind Sight and Insight in Categorization 
 

Rationale 
According to COVIS, the implicit and explicit learning systems interact and compete for 

decisional control on each trial. Despite both systems always being active, this competition 

causes strategy switches over trials as participants test potential rules. Significant research shows 

that participants utilize different strategies and possess varying levels of strategy awareness when 

decisions are mediated by each of these learning systems (Wismer et al., 2016; Zlatkin, Patel, 

Wismer, Bohil, 2016). This decoupling of knowledge awareness and task performance has been 

termed blind sight and blind insight within the Artificial Grammar Learning literature. However, 

these phenomena have yet to be specifically examined within a categorization paradigm. Blind 

Sight occurs when participants achieve above chance accuracy on a task but are not able to 

verbalize or accurately assess their performance (Dienes, et al., 1995). In these instances, both 

the Guessing Criterion and the Zero Correlation Criterion would be satisfied.  In a sense, they are 

‘blind’ to their own knowledge or strategies used to accomplish the task.  

Blind insight is the complementary phenomenon that has been shown to occur when 

participants who perform at chance possess high metacognitive accuracy (Scott et al., 2014). 

This is viewed as the reverse of Blind sight. Metacognitive Accuracy occurs when the Zero 

Correlation Criterion is violated, meaning that participants achieve a high correlation between 

their confidence and their decision accuracy, despite doing poorly in the task. For example, Scott 

and colleagues (2014) asked participants to group grammar strings as belonging to grammar A or 
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grammar B in an Artificial Grammar Learning task. They measured both judgement accuracy 

and metacognitive accuracy (Meta d’). The results indicated that participants expressed high 

confidence in their correct trials and low confidence in their incorrect trials. In instances of Blind 

Insight, participants seem to possess a degree of awareness of their own poor performance, 

indicating some level of implicit knowledge of the category structures. I am interested in whether 

these phenomena can be seen within a decision bound categorization paradigm, and therefore 

offering further support to the separate systems explanation of COVIS.  

Method 
Participants 

 

 For this experiment, I collected a total of 65 participants. This number is based on 

pilot data (Wismer et al., 2016) which showed clear differences between the RB and II 

conditions. All participants were recruited through the University of Central Florida’s online 

research hub (from Sona Systems) and received course credit for participation. 

Variables and Measures 
 

 The independent variable is category structure (RB or II). The dependent variables are 

decision accuracy and metacognitive accuracy. Decision accuracy was recorded for each trial 

and averaged within each block. Metacognitive accuracy was computed using trial accuracy and 

confidence ratings to create a Meta d’ score for each participant for each block.  

Procedure 
 

For this experiment, a two-category structure, between-subject categorization task was 

used. Participants were placed within either an explicit rule-based or implicit information-
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integration task utilizing two dimensional stimuli made up of lines of varying length and 

orientation. The experiment was presented on a desktop computer and programmed using 

MATLAB. The study is made up of six blocks of 80 trials each. There were four blocks of 

training, followed by two test blocks (Figure 3). In the training blocks, participants were 

presented with a stimulus sampled from one of the two category structures and required to 

classify it as either category A or category B. This method required participants to press a key 

labeled ‘A’ to classify a stimulus as category A and a key labeled ‘B’ to classify a stimulus as 

category B. Responses needed to be made within five seconds, during which the stimulus 

remained on the screen.  Immediately following the response, corrective feedback was presented 

(‘Correct-this is A/ Incorrect-this is B’).  The two test blocks followed, utilizing the same 

stimuli-response method, however, there was no feedback provided in these blocks. Instead, 

participants were prompted to rate their decision confidence on a 1-5 scale (1 being very unsure/ 

5 very confident) immediately following decision response on number keys indicated on the 

keyboard. Two test blocks were used to ensure that there were enough trials to measure learning 

patterns.   
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Figure 3 Experiment 1 Design 

This Figure indicates the task structure for each trial in training and test blocks respectively 

Results 
I expected that learners (>55% accuracy) in both the RB and II category structures would 

possess high Meta d’ scores. However, despite this overall prediction, I also made predictions 

based on individual differences in awareness. I hypothesized that more participants would 

display blind sight in the II structure, compared to the RB structure. Participants qualify as 

having blind sight if they achieve high performance despite low Meta d’. I based these 

predictions on previous research in this area showing participants in an implicit task can perform 

well despite not being able to verbalize or otherwise express their strategies.  

Additionally, I predicted that some participants, despite being labeled ‘non-learners’, will 

possess higher than random Meta d’ in the II structure, indicating the occurrence of blind insight. 

I do not expect this effect in the RB structure. I expected that RB non-learners would have low 

Blocks 5-6 
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accuracy paired with low Meta d’. However, if incidents of blind insight do occur within RB 

non-learners, it could potentially be an indicator of participants using suboptimal implicit 

strategies for an explicit task.  

Traditionally, RB tasks are considered easy to verbalize and are learned using explicit 

(consciously aware) category structure knowledge (Ashby & Maddox, 2005), for these reasons, I 

believe it is unlikely to see the same dissociations between awareness and performance that I 

predict in the II category structure. 

Accuracy 

Classification accuracy across blocks can be seen in Figure 4. Accuracy was condensed to 

provide more stable estimates of performance, from six 80 trial blocks, to three 160 trial blocks. 

The first two blocks are training blocks and block 3 is a test block.  

 

Figure 4 Experiment 1: Accuracy across blocks 

Accuracy across blocks for both RB (blue) and II (orange) category structures shows the effect 

of asymptotic equivalence between structures. 
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There was a significant main effect of block on accuracy, F(2,126) = 20.02, p <.001, 

partial η² = .241, with accuracy increasing across blocks for both RB and II structures. This 

categorization task was designed under the assumption that both task conditions are roughly the 

same level of difficulty, as indicated by equivalent performance after learning reaches asymptote. 

The lack of a significant main effect of condition on accuracy, F(1, 63) = 0, p = .989, partial η² 

= .000, verifies that the category structures achieved asymptotic equivalence. As shown in Figure 

4, both RB and II conditions reach around 70% accuracy by the final block. There was a 

significant interaction between block and condition, F(2, 126) = 4.75, p <.05, partial η² = .070. 

This is evident from the non-overlapping learning curves presented for RB and II accuracy. 

Pairwise comparisons show significant changes in accuracy from block 1 (M= .62) to 2 (M=.71) 

for RB (p<.001), however, a significant change does not occur for the II condition until block 2 

(M= .65) to block 3 (M= .71, p<.01). Traditionally, as replicated here, explicit learning occurs 

earlier in the task and presents as a spike, then plateaus. In contrast, implicit learning has been 

shown to occur much more gradually across a task duration.  

Meta d’ 

Confidence ratings from each trial in the test block (N=160) were transformed into a 

single Meta d’ score using hit rate (HR) and false alarm rates (FAR). To preserve as much 

information as possible from the 1-5 confidence rating scale, a median-split frequency analysis 

was applied to each participant’s responses to determine whether rankings were coded as a high 

confidence or low confidence. A hit occurred when a participant made a correct categorization 

response and rated their confidence as high. A false alarm occurred when a participant rated their 

confidence as high despite giving the incorrect categorization response for that corresponding 
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trial. A participant’s hit rate is the proportion of hit responses in a block (Nhits/160). The 

proportion of false alarms in a block is the False alarm rate (NFA/160). These proportions were 

used to find Meta d’ for each participant during the test block 3.  

The formula for Meta d’ is a modification of the standard d’ formula used within signal detection 

theory.  

Meta d’ = ZHit - ZFA 

When compared across all participants, there was no significant difference in the Meta d’ 

scores of RB and II, t(63)= .181, p= .857. Participants were grouped as either learners or non-

learners based in accuracy criterion of 55% (learners > 55% > non-learners). Comparisons 

between the learner and non-learner groups revealed a significant difference between groups on 

Meta d’. Non-learners (M= 1.22) had significantly lower Meta d’ scores than those of learners 

(M= 1.89) t(63)= 8.798, p<.001. This is in line with my prediction that learners in both 

conditions would have high Meta d’ scores. 

Blind Sight 

To examine variations in awareness at the individual level, I searched for incidents of 

blind sight within the data. A participant qualified as having blind sight by being a learner (>55% 

test accuracy) in conjunction with a low Meta d’ score (Meta d’ < 1). While there were cases of 

blind sight in both conditions, there were significantly greater proportion of blind sight in the II 

(.19, N= 7) condition compared to the RB (.05, N= 2) condition (z=1.65, p<.05). This supports 

my hypothesis that there would be a higher likelihood of dissociations between performance and 

awareness in the II condition.  
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Blind insight 

To look for incidents of blind insight, a series of comparisons were done within only the 

non-learner group. Despite there being no significant difference in accuracy between RB and II 

non-learners, there was a significant difference in Meta d’, t(23)=3.64, p < .01. As evident in 

Figure 5, II non-learners show greater accuracy at predicting their own performance than non-

learners in the RB condition, indicated by the significantly higher Meta d’ despite equivalent 

accuracy. This is evidence of implicit knowledge influencing behavior despite it not yet being 

discernable in task accuracy.  

  

Figure 5 Experiment 1: Meta d’ Non-learners 

This Figure displays the block 3 accuracy and Meta d’ for non-learners in each category 

structure. There were no differences between accuracy in the RB and II structure (blue), 

however, II Meta d’ was significantly higher (orange).  
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Modeling 

I fit decision bound models to the data to instantiate and test hypotheses on decision 

strategies used throughout the task (Table 1). These models use maximum-likelihood estimation 

to estimate parameters of the user’s decision rule along one or more dimensions to describe their 

performance. For example, these models indicate whether a participant is using the correct or 

incorrect 1-dimensional bound, or if they are integrating information from both dimensions. RBx 

and RBy are selective attention models in that accurate performance only requires the participant 

to attend to one dimension. Use of selective attention rules implies the participant is using 

conscious knowledge of the rule. FRB and GLC are information integration models (Figure 6). 

Table 1 Summary of decision bound models 

 

 

 

 

 

 

 

 

 

 

Model Slope Intercept Decision Bound 

RBx infinite (vertical) free 1D, vertical 

RBy  0 free 1D, horizontal 

FRB Optimal Free 1D for RB, slope 

= 1 for II 

General Linear Classifier free free 1D for RB, slope 

= 1 for II 

Optimal Optimal Optimal  1D for RB, slope 

= 1 for II 

Random Responder n/a n/a n/a 
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To perform well on an information-integration task, participants must pull information 

from multiple dimensions. Therefore, using one of these integration rules suggests a participant 

is relying on the implicit learning system. The random-responder model was fit to the data with 

the intention of serving as a criterion for grouping non-learners and learners. Pairing these 

modeling results with the performance data and Meta d’ scores allows assessment of the 

accuracy of each individual’s learning strategies, and further understanding of the relationships 

between objective performance and subjective experience throughout the learning task. For 

example, if a participant used a correct 2D integration bound, but possessed a low Meta d’ it 

could be indicative of blind sight.  

 

Figure 6 Decision Bounds by Model type 

This figure shows examples of decision bound models for the information-integration category 

structures (left) and selective attention rule-based category structures (right). 

 

The random-responder model corresponded highly with the accuracy criterion of 55% for 

learners/non-learners. However, the random responder model was not consistently effective at 
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detecting non-learners who perseverated on one response throughout the task (i.e. pressing A 

repeatedly for every trial regardless of stimulus presentation). For this reason, as noted above, 

the accuracy criterion was a more useful grouping criterion for learners/non-learners than the 

random responder model.  

These decision bound models were used to group participants based on whether they 

were optimal-learners, sub-optimal learners, or non-learners. Optimal-learners in the RB 

condition were those who achieved greater than 55% accuracy and were best fit by the OPT, or 

RBy RBy model. This indicated that they were utilizing a one dimensional bound (selectively 

attending to one dimension) required to do well on the task. All non-learners were classified best 

by the random responder model for RB. Those participants who achieved above chance 

performance (>55% accuracy) but were still best fit by the random responder model were 

considered sub-optimal learners.   

Optimal-learners in the II condition were those best fit by the OPT, FRB or GLC models. 

Both the FRB and GLC are integration models, meaning that the decision bound utilizes 

information from both the length and orientation dimensions. II participants who were best fit by 

RBy, RBx were classified as sub-optimal. RBy and RBx are selective attention models and 

indicate that a participant was only utilizing one dimension in order to perform the task, which is 

a sub-optimal strategy within the II task. An example would be paying attention to whether the 

line was short or long and disregarding orientation. It is still possible to achieve above chance 

accuracy using an incorrect 1D rule in the II task. Participants in this case (best fit by RBx or 

RBy) were considered sub-optimal learners, as they achieved above chance accuracy while using 

a less than optimal strategy.  
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Accuracy by modeling comparisons 
 

 As described above, results from fitting the computational models to individual-

participant response data were used to separate participants into three groups based on the type 

of model (decision bound) they were best fit by throughout the task: optimal-learners, sub-

optimal learners, and non-learners. Accuracy comparisons were made using these new 

distinctions. A repeated-measures 2 (category structure) x 4(block) x 3(model grouping) 

ANOVA was run to examine the effects of model group on accuracy.  This relationship between 

accuracy and model grouping between the two category structures is displayed in Figure 7. 

A significant effect for model grouping on accuracy was shown F(2, 60) = 77.73, p<.001, 

partial η² = .722. Pairwise comparisons indicate that collapsed across structures, optimal-learners 

(M= .78) had significantly higher accuracy than both the sub-optimal learners (M= .62) and the 

non-learners (M= .52, p< .001). Pairwise comparisons showed the difference between sub-

optimal learners and non-learners was less pronounced, but still approached significance 

(p=.055).  
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Figure 7 Accuracy by model group across structures 

This figure shows accuracy broken down by model group across category structure. There were 

no RB Sub-optimal learners and therefore that group is not represented on the figure. 

 

 There was a significant interaction between the effect of block and model group on 

accuracy F(2,60)=9.00, p<.001 partial η² =.231. There was not a significant interaction between 

structure, model group and block, however, pairwise comparisons showed distinctions in the 

timeline of learning across structures, even when in the same model group. Within both the RB 

and II structures there were significant differences for optimal-learners across block 1 (MRB= .71, 

MII=.71) and 2 (MRB= .83, MII= .75), p<0.001), indicating that they were already learning the rule 

early on. Within the RB optimal-learners, there was no significant difference across blocks 2 

(M=.84) and 3 (M=.84), indicating a plateau in accuracy. In contrast, within II optimal-learners 

there is still a significant change between blocks 2 (M= .77) and 3 (M= .81), indicating the 

slower learning curve. Interestingly, there were no significant changes across blocks 1 (M= .65), 

2 (M= .57), or 3 (M= .63) for II sub-optimal learners. This suggests that despite achieving above 
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chance performance, that learning for those using sub-optimal rules was slower and more gradual 

than that of the II optimal-learners.  

Meta d’ by modeling comparisons 
 

A 2 (structure) x 2(model group) ANOVA was run to examine the effects of model group 

on Meta d’.  There was a significant main effect of model group on Meta d’ F(2, 60) = 44.78, 

p<.001, partial η² = .559. Optimal-learners (M= 1.94) had significantly higher Meta d’ scores 

than both the suboptimal-learners (M=.68) and non-learners (M=.131). There was not a 

significant interaction between model group and structure on Meta d’, F(1, 60) = .200, p = .657, 

partial η² = .003. 

Discussion 
 The primary goal of experiment 1 was to validate the use of a novel measure of 

subjective awareness, Meta d’, within a categorization framework to examine the relationship 

between awareness and task performance. I predicted that Meta d’ would vary as a function of 

task performance, with lower Meta d’ being seen for non-learners and high Meta d’ for learners 

across structures. The data supported this, indicating that overall, Meta d’ is a good predictor of 

accuracy within a categorization framework. 

 Previous use of subjective awareness scales in implicit learning research have revealed 

the phenomenon of blind insight and blind sight. The secondary goal of experiment 1 was to use 

Meta d’ as a means to determine if these phenomena could be replicated within a perceptual 

categorization task. Participants qualified as having blind sight if they achieved high 

performance, despite low Meta d’. Results supported my hypothesis that more participants would 

display blind sight in the II structures, compared to the RB structures. These results are in line 
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with implicit learning theories that describe information-integration tasks as unconscious and 

non-verbalizable. This indicated that Meta d’ provided valuable information about differences in 

implicit and explicit learning previously unexplored within the COVIS categorization 

framework.  

Meta d’ also proved useful in determining cases of blind insight among the non-learners. 

I predicted that some participants, despite being labeled ‘non-learners’, would possess higher 

Meta d’ in the II structure, indicating the occurrence of blind insight. Results supported this 

hypothesis, with II non-learners having significantly higher Meta d’ scores compared to RB.  

Further parsing out the data using decision bound models allowed me to make predictions 

on Meta d’ based on whether participants were in optimal or suboptimal model groups. There 

was evidence to suggest that Meta d’ is sensitive enough to show variations across modeling 

groups, however, these interpretations are limited in that there were no sub-optimal learners in 

the RB structure. Experiment 2 expands on the usefulness of Meta d’ and provides a wider range 

of manipulations.  

Experiment 2: Motor Response Mapping Disruption 
 

Rationale 
Many COVIS studies equate implicit learning with procedurally learned response encoding 

(e.g., consistent response button location learning). This effect has been shown through the 

manipulation of response location mapping in various ways.  Research suggests that changes or 

interference with the motor response patterns of an implicit task can negatively influence implicit 

learning. Ashby, Ell, and Waldron (2003) found that by switching response key locations they 

could disrupt learning in an information-integration task, but not in a rule-based task. COVIS 
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attributes implicit learning to the perceptual mapping of stimuli to response locations. Therefore, 

by removing the associated response positions, it is possible to significantly interfere with 

implicit learning strategies. Maddox, Bohil, and Ing (2004) expanded upon this by going one 

step further. Instead of just switching the response mapping, they designed an experiment that 

removed it entirely. Traditionally, research in this area is conducted using a forced-choice 

method, where participants are required to press a key designated for Category A or a key 

designated for Category B on a keyboard. Research suggests that this style of response allows 

participants to encode responses to a consistent location (e.g., A is right key, B is left key), 

enabling a stronger implicit connection to the categories (Ashby, Ell, &Waldron, 2003).  

Maddox and colleagues (2004) utilized a variable response mapping condition that had 

participants answer, ‘yes or no’ on designated keys on a keyboard (e.g., ‘is this an A?”), instead 

of traditional A or B, while categorizing perceptual stimuli in RB or II tasks. This prevented a 

consistent stimulus mapping and greatly reduced implicit learning in II conditions. This change 

had no effect on the rule-based conditions. 

Experiment 2 was designed to parse out the contributions of response location encoding on 

the implicit learning system, specifically when this procedural encoding system is disrupted.   I 

was interested in further exploring where and how these changes interfere with the implicit 

learning process.  

Method 
Participants 

 

For this experiment, I collected a total of 159 participants (NRB_AB= 41; NRB_YN=41; 

NII_AB= 40; NII_YN= 37).  I conducted a power analysis using the effect size from Maddox, Bohil, 
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and Ing’s 2004 study on variable response mapping due its similar design. The recommended 

sample size was 30 per cell based on statistical test ANOVA: Fixed effects, special, main effects 

and interactions; alpha = .05, power = .8, effect size = .535, # groups = 2). All participants were 

recruited through the University of Central Florida’s online research hub (from Sona Systems), 

and received course credit for participation 

Variables and Measures 
 

The independent variables are category structure (RB or II) and motor response mapping 

condition (A/B or yes/no). The dependent variables are decision accuracy and Meta d’. Decision 

accuracy was recorded for each trial and averaged across block. Meta d’ was computed using the 

same method described in experiment 1. 

Procedure 
 

For the purposes of this experiment, a between subjects two-structure category task, like 

that of experiment 1, was used. The experiment was presented on a desktop computer and 

programmed using MATLAB. The experiment was made up of six blocks of 80 trials each. The 

experiment alternated between training and test blocks (three of each). Participants were placed 

within either an explicit rule-based, or implicit information-integration task.  However, I also 

added a motor response disruption condition, which relied on a variable response mapping 

method, in addition to the typical A or B response control condition. Those participants placed in 

the variable response mapping condition were asked to categorize simple perceptual stimuli as 

either category A or B, however, this condition used a ‘yes/no' response method. Participants 

were presented with a stimulus from one of the two category structures, followed by a prompting 
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question of “Is this an A?” or “Is this a B?” They were required to press a key denoting ‘Yes’ or 

a key denoting ‘No’. The question asked on each trial was randomized, preventing participants 

from mapping the response locations consistently. Training block trials presented a stimulus, 

required a classification response, and then provided immediate corrective feedback on each 

trial. Test block trials presented the stimulus, required a classification response, and then 

immediately asked participants to rate their decision confidence on a 5-point scale (1 being very 

unsure/ 5 being very confident). The control condition utilized the same ‘A or B’ response 

method used in experiment 1. 

 I predicted that those in the disrupted Yes/No condition for II category structure would 

sufferer a major impairment in learning, resulting in lower accuracy, lower Meta d’ and less 

optimal learning strategies. This is based on the procedurally learned motor response encoding 

associated with implicit learning (Maddox et al., 2004). By removing the potential for consistent 

response mapping, I expected that the implicit learning system would be limited. I expected that 

this difference would be present in the II structures, but not within RB structures, due to previous 

research indicating that explicit tasks do not have the same reliance on procedural motor 

response location encoding. Therefore, it was expected that participants in the RB category 

structure would have high performance and high Meta d’ across both the AB and disrupted YN 

conditions.  

I expected that participants in the II structure, disrupted motor response mapping 

condition (II_YN) would exhibit lower Meta d’ (e.g., less accurate at assessing their own 

performance), than those in the control condition (II_AB).  I expected this subjective measure of 

implicit learning to mirror other validated behavioral measures across similar task conditions. 
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Additionally, I expected to see more incidents of sub-optimal learning strategies in the II 

structures. As in experiment 1, I expected to see a dissociation in performance and awareness in 

the II structure, evident through blind insight and blind sight. 

Results 
Accuracy 

 

Accuracy across the three test blocks for both RB and II can be seen in Figure 8. There 

was a significant main effect of block on accuracy F (2, 310) = 35.101, p <.001, partial η² = 

.185. Accuracy significantly increased from block 1 (M= .612), block 2 (M= .679), and block 3 

(M=.695). There was not a significant interaction between block and structure, F(2,310)= .116, 

p= .890, partial η²  = .001. There was not a significant interaction between block and response 

method, F(2,310)= .057, p = .945 partial η² = .001. There was a significant main effect of 

structure F(1, 155) = 6.178, p <.05, partial η² = .038. Accuracy was higher in the RB conditions 

(M=.69) than in the II conditions (M=.63). There was not a significant main effect of response 

method, F(1, 155)= 1.987, p = .161, partial η² = .017. There were no significant differences 

between the RB_YN (M= .66), II_AB (M= .63) and II_YN (M= .67) conditions. However, the 

RB_AB (M= .73) condition showed significantly higher accuracy than the RB_YN (p <.05) and 

the two II structure conditions (p<.01). This is counter to my expectation that there would be no 

difference between the two response methods in RB. There was no interaction between structure 

and response method on accuracy F(1,155) = 2.632, p = .107, partial η² = .017.  
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Figure 8 Accuracy by condition 

This figure shows the accuracy across the three test blocks for each of the four category 

structures. RB_YN was significantly higher than the other three. 

 

Meta d’ 
 

Confidence ratings were transformed into Meta d’ scores for each of the three test blocks. 

This was done using the same method described in experiment 1. Results indicated a significant 

main effect of block on Meta d’ F (2, 310) = 36.342, p <.001, partial η² = .190. Consistent with 

the pattern shown in experiment 1 data, Meta d’ increased across blocks for all conditions. 

Pairwise comparisons revealed significant changes from blocks 1 (M= .60) to 3 (M= 1.17) for all 

conditions, however, the II_YN condition did display the smallest increase. This is potential 

evidence of a disruption in metacognitive accuracy and is explored further in the breakdown by 

learners and non-learners below. There was no significant interaction between block and 

structure on Meta d’, F(2, 310)= .325, p =.723, partial η² =.002. There was also no significant 
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interaction between block and response method, F(2, 310) = .552, p= .576, partial η² = .004. 

There was a significant main effect of structure, F (1, 155) = 6.529, p < .05, partial η² = .512. 

Meta d’ was higher in the RB structures (M=1.13) than in the II structures (M=.75) There was no 

significant main effect of response method on Meta d’, F(1, 155)= 1.184, p=.278, partial η² = 

.008. As predicted, there was no significant difference between the Meta d’ of RB_AB (M= 1.30) 

and RB_YN (M=.96). Contrary to predictions, there were also no significant differences between 

RB_YN and II_YN (M= .77) or II_AB (M=.72) and II_YN. There was no significant interaction 

between structure and response method on Meta d’, F (1,155) = 2.011, p = .158, partial η² = 

.013. 

To better explore the interaction of Meta d’ on structure and response method participants 

were grouped as either learners or non-learners using the same criteria as experiment 1 (<.55% 

accuracy). A 2(structure) x 2 (response method) x 3(block) ANOVA was conducted using 

learners only. There was a significant effect of block on Meta d’, F(2, 212) = 45.396, p<.001, 

partial η² = .300. There was not a significant interaction between block and structure, F(2,212) = 

.865, p = .571, partial η² = .008.  There was no significant interaction between block and 

response method, F(2,212)= .562, p = .571, partial η² = .005. There was a significant effect of 

structure on Meta d’ in learners, F(1,106)= 12.987, p <.001, partial η² = .109. Meta d’ was 

higher in the RB conditions (M=.1.63) than in the II conditions (M=.1.09). There was not a 

significant effect of response method, F(1,106)= 3.076, p= .082, partial η² = .109, or a 

significant interaction between structure and response method, F(1,106)= 2.988, p=.087, partial 

η² = .027.   RB_AB learners (M= 1.91) had significantly greater Meta d’ than RB_YN (M=1.36), 

II_AB (M= 1.16), and II_YN (M= 1.13). However, planned comparisons revealed that II_YN is 
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the only condition not to have a significant increase of Meta d’ between blocks 2 and 3 (Figure 

9). This does provide some support to the hypothesis of disrupted implicit knowledge. The 

II_YN participants seem to be showing less improvement in predicting their own performance 

compared to the non-disrupted control (II_AB) and RB conditions.  

 

Figure 9 Meta d’ by block across conditions  

This figure shows the increase of Meta d’ across blocks for all 4 conditions. Significant changes 
from block 3 to 4 are denoted with a star.  

 

Blind Sight 

 I examined variations in awareness at the individual level by searching for incidents of 

blind sight within the data. As in experiment 1, a participant qualified as having blind sight by 

being a learner (>55% test accuracy) in conjunction with a low Meta d’ score (Meta d’ < 1). 

Results indicated that there were significantly greater proportion of participants displaying 

blindsight across the two RB conditions (.05) compared to both II (.29), z= 4.83 p<.01. 

Additionally, there were significantly greater proportion of blind sight cases in II_YN (.30) 

compared to RB_YN (.09) (z= 2.35, p<.05). This also held true for the AB condition with II_AB 
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(.175) having a greater proportion of blind sight than RB_AB (0) conditions z= 3.79, p<.01 

(Figure 10).  This data supports my hypothesis that there would be a greater dissociation between 

awareness and performance in II conditions, resulting in a higher proportion of blind sight. 

 

Figure 10 Blind sight by structure and condition 

 

Blind Insight 

There were no significant differences between the Meta d’ values of RB_AB (M= -.13) 

and II_AB (M= -.20), t(22)= .615, p=.55.The difference between the Meta d’ of non-learners in 

the YN condition were also nonsignificant, t (21) = 1.95, p= .06, with the RB_YN (M= -.10) 

Meta d’ being lower than that of the II_YN (M=.07) condition. 

Modeling 
 

I fit all individual response data using the same computational models utilized for 

experiment 1. Participants were grouped as optimal learners, sub-optimal learners, and non-

learners and a 2 (structure) x 2(response method) x 3 (block) x 3 (model group) ANOVA was 
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conducted on the data. There was a significant effect on Meta d’ for model group F (1, 148) = 

57.04, p<.001, partial η² = .435. Collapsed across conditions, optimal learners (M= 1.37) had 

significantly greater Meta d’ than both sub-optimal learners (M= .89) and non-learners (M=.04). 

There was a significant interaction between model group and block F (4, 296) = 15.197, p<.001, 

partial η² = .161. Planned comparisons revealed that there was a significant difference in the 

Meta d’ of optimal and sub-optimal rule users in block 3 (with higher Meta d’ for optimal 

learners) for all conditions, with the exception of II_YN (p=.09), as evident in Figure 11. This 

provides further evidence of an implicit disruption of metacognitive accuracy, supporting my 

predictions.  
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Figure 11 Meta d’ by block across conditions  

This figure shows the increase of Meta d’ across blocks for all 4 conditions.  

 

Discussion 
The primary objective of experiment 2 was to examine the relationship between 

awareness and performance in an implicit task under the manipulation of a disruption to the 

procedurally based motor response mapping. Previous research (Maddox et al., 2004) 

demonstrated a severe impairment to implicit learning when motor response mapping was 

removed and replaced with a Yes/No variable response method. My attempts to replicate these 

findings with the addition of a subjective measure, Meta d’, were not successful. There was no 
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significant difference in accuracy between the II_AB condition, using a consistent motor 

response mapping method, and the II_YN condition, using the disrupted variable response 

mapping method. This was contrary to my predictions on performance based on condition. One 

potential explanation for this unexpected result is that the introduction of a confidence rating 

scale after each trial allowed participants more time to think about each trial, by requiring the 

stimuli to be held in working memory throughout the rating phase. This would introduce some 

level of explicit processing, therefore negating any potential implicit decrement if participants 

utilized selective attention rules. As it is possible to achieve above chance performance on an II 

task using selective-attention rules, this could explain the lack of performance decrement within 

the II_YN condition.  Further investigation into the effects of a confidence scale on 

categorization learning is needed.   

Despite the failure to replicate the implicit learning disruption, interesting effects 

emerged when examining the difference in Meta d’ across these manipulations. There is reason 

to suggest that while there was no visible decrement to type 1 task performance (accuracy) in 

II_YN due to the response method manipulation, there seems to be a metacognitive accuracy 

impairment as seen in the Meta d’ scores between conditions. Meta d’ scores for those in the 

II_YN condition with disrupted variable response mapping had significantly lower Meta d’ than 

the RB counterparts. This suggests there is a disruption in the implicit awareness of category 

structure. RB_YN participants were significantly better at predicting their own performance. 

This effect was further supported when I looked for cases of blind sight among the groups. There 

were significantly more participants experiencing blind sight in the II_YN condition compared to 
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the RB_YN. This supports my hypothesis that there would be a greater dissociation in awareness 

and performance in the II conditions, particularly II_YN.  

Meta d’ proved even more informative when looked at across groups designated by 

computation modeling fits. Decision bound models allowed me to group participants as either 

optimal-learners, suboptimal-learners, or non-learners. Meta d’ proved a sensitive measure of 

metacognitive accuracy, with differences between the three model groupings being significant 

across both structures. This showed that there is a great deal of information being missed out on 

when performance is just assessed at the accuracy level. This provides further evidence 

supporting the use of Meta d’ as a valid means of assessing metacognitive accuracy through a 

perceptual categorization task. Additionally, Meta d’ varied uniquely across category structures, 

providing valuable information in support of the COVIS model of implicit and explicit learning.   

Experiment 3: Motor Response Mapping Disruption with fNIRS 
 

Rationale 
 As previously emphasized, COVIS is the only categorization learning theory that 

integrates a neurophysiological component allowing for predications based on brain structure. 

The lack of subjective measures being used within the COVIS literature means that no one has 

looked at the neurophysiological changes associated with implicit and explicit learning in 

combination with confidence ratings as a measure of task awareness. I seek to rectify this gap.  

Method 
Experiment 3 was a replication on the design of experiment 2, with a neurophysiological 

expansion. Due to the greater trial count necessary for a neuroimaging experimental design, I 

utilized a within subjects two-structure categorization task with participants completing both the 
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RB and II structure tasks. Experiment 3 utilized only the disrupted variable response mapping 

method (Yes/No responding, no A/B responding conditions). The experiment was presented on a 

desktop computer and programmed using MATLAB. 

Participants 
 

I conducted a power analysis using the effect size from Maddox, Bohil, and Ing’s 2004 

study on variable response mapping due its similar design. The recommended sample size was 

30 based on statistical test ANOVA: Fixed effects, special, main effects and interactions; alpha = 

.05, power = .8, effect size = .535, # groups = 2). For this experiment, I collected a total of 42 

participants. Of these participants, 33 yielded useable fNIRS data. Nine participants were 

removed due to poor or incomplete data. All participants were recruited through the University 

of Central Florida’s online research hub (from Sona Systems) and received course credit for 

participation. Participants were screened for handedness, only right-handed participants were 

used.  

Variables and Measures 
 

The independent variable was category structure (RB/ II). The dependent variables were 

decision accuracy, Meta d’, and hemodynamic response in the PFC. Metacognitive accuracy 

(Meta d’) was computed using the same method described for both experiment 1 and 2.  

Procedure 
 

This experiment was made up of four blocks of 160 trials each. Each block contained 

alternating sets of category learning trials and basic perceptual baseline measurement trials 

(classifying lines as blue or yellow). Like in experiment 2, there were alternating training and 
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test blocks. Based on the accuracy plateauing after block 4 in experiment 2, only 4 blocks were 

used for this experiment. This reduction in blocks allowed me to keep each session under 3 

hours, as it was within subjects. Training block trials presented a stimulus, required a response, 

and then provided immediate corrective feedback. This corrective feedback provided the basis 

for learning the accuracy maximizing rule. Test blocks presented a stimulus, required a response, 

and then immediately asked participants to rate their decision confidence on a 5-point scale (1 

being very unsure/ 5 being very confident). There was a jittered ITI, averaging four seconds, due 

to the design required for neuroimaging. I collected neurophysiological data using functional 

Near Infrared Spectroscopy, with a focus on the Prefrontal Cortex (details provided below).  

Functional Near Infrared Spectroscopy 
 

I evaluated task-related differences in prefrontal cortex activity using functional near 

infrared spectroscopy (fNIRS). fNIRS neuroimaging is comparable to functional magnetic 

resonance imaging (fMRI); both measure hemodynamic changes (the Blood Oxygen Level 

Dependent, or BOLD, response; Cui, Bray, Bryant, Glover, & Reiss, 2011) in response to neural 

activity. However, fNIRS measures changes in light absorption while fMRI measures changes in 

magnetic properties of hemoglobin.  Despite a weaker signal to noise ratio than fMRI, fNIRS 

measurements correlate strongly with fMRI measurements across a large range of cognitive tasks 

(Cui et al., 2011).  

fNIRS sources send pulses of near-infrared light into the top layer of the cortex through 

the scalp. Detectors collect the amount of light reflected back to the surface. The light absorption 

rate differs for oxygenated and deoxygenated hemoglobin, and therefore provides an indication 

of neural activity changes.  
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Figure 12 fNIRS cap and probe layout 

Figure 12 (left) depicts a participant wearing an fNIRS cap (from NIRx Medical 

Technologies, LLC). The topographic image (right) shows a probe mapping used to measure 

activity in the prefrontal cortex.  

 

fNIRS is portable and relatively non-invasive, allowing for research to take place in a 

greater variety of operational environments. Generally, the lightweight headgear consists of 

flexible caps or bands with re-configurable light sources and detectors (Figure 12). Participants 

report that the caps are snug fitting but with little discomfort. Trained researchers can complete 

the fNIRS set-up process in approximately 20 minutes.  

fNIRS is relatively robust to movement artifacts, in contrast to fMRI which requires 

complete immobility of study participants. fNIRS is also relatively unobtrusive. It is silent and is 

highly tolerable to participants. fNIRS has been validated as an effective tool for studying both 

normal brain function and a variety of pathologies within a diverse range of populations, 

including sensitive populations such as older adults and young children (Ferrari & Quaresima, 

2012). 
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fNIRS data acquisition.   

Specific to my study, neuroimaging data was acquired using a 20-channel functional 

near-infrared spectroscopy system from NIRx Medical Technologies, LLC (NIRSport 88 

system).  Eight light sources and eight detectors combine to provide 20 measurement channels 

located over the prefrontal cortex.  Source LEDs emit near-infrared light at wavelengths of 

760nm and 850nm.  The sampling rate for fNIRS data acquisition is 7.81Hz.  Data was collected 

using NIRStar acquisition software (http://nirx.net/nirstar-1).fNIRS channels measure task-

related concentration changes in oxy Hb, Hb, and total hemoglobin. For the proposed study, 

measurement channels recorded bilaterally over superior frontal gyrus (Brodmann area 8), 

dorsolateral prefrontal cortex (DLPFC; BA 9), anterior PFC (APFC, BA10), ventrolateral PFC 

(VLPFC; inferior frontal gyrus, BA 45), and middle frontal gyrus (BA 46).  

Figure 13 fNIRS data collection channel layout.   

Red circles represent optode locations. Green circles represent detector locations. Blue lines 

indicate the data collection channels created by each Source /Detector pair.   
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There are substantial differences in the anatomical brain structures between participants. 

Without structural MRI scans, the localization to Brodmann areas is only approximate. To 

minimize inaccuracies, participants were measured and fitted with caps sized to provide a snug 

fit. Cap placement used anatomical landmarks based on the international 10-20 system 

commonly used for EEG data collection. 

Preprocessing 

Several preprocessing filters were applied to the data before statistical analysis. Spike 

artifacts and discontinuities are detected and eliminated automatically using NIRSLab analysis 

software. A low pass filter was applied to reduce interference from heart rate and respiration. 

Finally, a motion artifact reduction filter was applied. After preprocessing, raw optical data 

values were transformed into estimates of oxygenated hemoglobin (oxyHb) concentration 

changes using the modified Beer-Lambert Law (MBLL) in nirsLAB v2016.01 

(http://nirx.net/nirslab-1). Subjects with greater than 50% channel oversaturation were eliminated 

from the analysis due to poor signal quality.  

General linear model analysis 

 I conducted a general linear model analysis, using nirsLAB’s version of SPM8 (Bang et 

al., http://www.fil.ion.ucl.ac.uk/spm/software/spm8/2016). At the individual subject level 

analysis (level 1), I included regressors for training phase and testing phase for each of the 4 

blocks. For each individual data set, a canonical HRF was convolved with a boxcar function to 

model task-related activity.  I removed serial correlation by precoloring with a Gaussian kernel 

(FWHM = 4s). Regression ß values estimated during level 1 SPM were extracted to be used for 

statistical comparisons at the group level in SPSS. 

http://nirx.net/nirslab-1
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In conjunction with the predictions from Experiment 2 for accuracy and confidence, I 

expected that participants would exhibit higher PFC activation in the II structure due to the 

motor disrupted response method (Yes/No), compared to the RB structure.  I believe that by 

disrupting the motor response location encoding (an implicit structure), it would force 

participants to fall back on the less optimal explicit learning system to complete the task. I 

expected this to result in a longer sustained activation pattern throughout the test blocks of the 

task (mostly visible in terms of higher PFC activation in the final test block in the Yes/No 

condition) (see Figure 14). I believe this would add to the separate systems debate by showing 

coinciding changes in confidence and BOLD response due to implicit disruptions, findings 

primarily supported by behavioral accuracy data up until now. These predictions are in part 

based on the procedurally learned motor response encoding associated with implicit learning 

(Maddox et al., 2004), as well as numerous studies showing neurophysiological dissociations 

between implicit and explicit learning tasks (Ashby & Maddox, 2005). By removing the 

potential for consistent response mapping, I predicted that the participant will be forced to fall 

back on a less optimal explicit learning strategy, therefore resulting in a greater working memory 

load, indicated through sustained activation throughout the task.  
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Figure 14 PFC activation predictions 

The red line is representing PFC activation for the II condition. It is predicted that II activation 

will remain high across the task due to the interference in motor response encoding severely 

disrupting learning. The blue dashed line represents RB activation, which is predicted to be 

unaffected by the motor response disruption and drop drastically upon learning the rule. 

Results 
Accuracy 

 

Accuracy across blocks for both RB and II category structures can be seen in Figure 15. 

This includes all participants for each structure. There was significant main effect of block on 

accuracy F (3,96) = 17.403, p<.05, partial η² = .352.  
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Figure 15 Accuracy by Structure across blocks 

 

There was not a main effect of structure, F(1, 32) = .937, p=.34, partial η² = .028 The 

predicted interaction between structure and block approached significance, F(3, 96)= 2.41, 

p=.084, partial η² = .180. Pairwise comparisons revealed that there were significant changes for 

the RB structure between block 1(M= .58) and block 3 (M=.65, p <.05)), and block 3 and 4 (M= 

.71, p<.01). There were no significant changes between blocks 3 and 4 in the II structure. This 

indicates that there was much less learning across II overall. This supports my hypothesis that the 

disrupted motor mapping would impair implicit learning in the II structure but not effect RB 

performance. This matches my initial hypothesis about these conditions and replicates Maddox 

and colleague’s 2004 study. 
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When broken up into learners and Non-learners, based on the same 55% accuracy 

criterion used in previous experiments, the accuracy trends remain the same. This break down 

can be seen in Figure 16. 

 

Figure 16 Accuracy by category structure and learner/non-learner designation 

 

Meta d’ 
  

 Confidence ratings were transformed into Meta d’ scores for both test blocks (block 2 and 

4). This was done using the same method described in experiment 1 and 2. A 2 (structure) by 2 

(block) ANOVA was conducted and indicated a significant main effect of block on Meta d’ F(1, 

32) = 21.120, p <.01, partial η² = .398. Meta d’ increased across blocks for both category 

structures (Figure 17). This is consistent with the results of experiment 1 and 2. There was a 

marginally significant main effect for structure, F(1,32) = 4.075, p= .052, partial η² = .113, with 

the RB structure (M = .989) have greater meta d’ than that of the II structure (M= .685). This is 

in support of my hypothesis of the II structure performance suffering a decrement due to the use 
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of variable response mapping. There was not a significant interaction between category structure 

and block, F(1, 32) = .001, p= .4975, partial η² = .000.  

 

Figure 17 Meta d’ across blocks for each of the category structures. 

Blind Sight 

I examined variations in awareness at the individual level by searching for incidents of 

blind sight within the data. As in experiment 1 and 2, a participant qualified as having blind sight 

by being a learner (>55% test accuracy) in conjunction with a low Meta d’ score (Meta d’ < 1). 

Results indicated that there were significantly greater proportion of participants displaying blind 

sight across the II structure (.44) compared to the RB structure (.12), z= -2.99 p<.01. 

Blind Insight 

Because the experiment was within subjects the breakdown based on accuracy resulted in 

comparison groups that did not consistently contain the same subjects for RB and II structures.  

As a result, I decided to compare groups using a nonparametric statistical test. A Mann-Whitney 

U test indicated that the Meta d’ distributions between RB non-learners (M = -0.07) and II non-
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learners (M = 0.16) were not significantly different (Mann–Whitney U = 2, n1 = 10 n2 = 6, P = 

0.183 two-tailed).  

Modeling 
 

I fit all individual response data using the same computational models utilized for 

experiment 1 and 2. Within each structure, participants were grouped as optimal-learner, sub-

optimal learner, or non-learner. A break-down of accuracy by model group (Figure 18)   

demonstrates the effect using a sub-optimal rule has on performance within each category 

structure.  

  

Figure 18 Accuracy by model group for RB and II category structures 

 

Meta d’ also varies as a function of model group, consistent with the results shown in 

experiment 1 and 2. The break-down of Meta d’ across the two test blocks within the RB and II 

category structures can be seen in Figure 19. Because the experiment was within subjects the 

breakdown based on model fits resulted in comparison groups that did not consistently contain 

the same subjects for RB and II structures.  As a result, I decided to compare groups using a 

nonparametric statistical test. A Mann-Whitney U test indicated that the Meta d’ distributions of 
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the RB Optimal rule users differed significantly from that of the II optimal rule users (Mann–

Whitney U = 2, n1 = 23 n2 = 2, P < 0.01 two-tailed). There was not a significant difference 

between structures at the sub-optimal level. This is further support of an implicit disruption being 

evident at the metacognitive level.  

  

Figure 19 Meta d’ by Model Group in both the RB and II category structures. 

 

fNIRS 
 

 Based on general linear model analysis described above, ß values estimated 

during level 1 SPM at the individual participant level were extracted to be used for statistical 

comparisons at the group level in SPSS. A within subjects repeated measure 2 (structure) x 4 

(block) x 20 (nirs channel) ANOVA was conducted on the ß values of optimal and sub-optimal 

rule users. There was not a main effect of structure, F(1, 32) = .370, p = .934, partial η² = .011. 

There was not a significant main effect for block, F(3, 96) = .161, p= .922, partial η² = .005. 

There was not a significant main effect of channel, F(19, 608) = .585, p<.052, partial η² = .018.  
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There was a significant interaction between structure and block, F(3, 96) = 3.079, p<.05, partial 

η² = .088. Pairwise comparisons revealed that in the RB structure, there was a significant 

decrease in activation occurring across blocks. Differences between the RB and II structures 

were most pronounced during the training blocks, with activation for the II structure being higher 

than the RB structure when collapsed across the two training blocks (MII-MRB= 3.50E-5). 

 To assess my hypotheses on the differences in Optimal and Sub-Optimal activation 

across RB and II structures, I conducted two separate 2 (Optimal vs. Sub-Optimal) x 4 (Block) 

ANOVAs. Within the RB structure, there was a marginally significant main effect for model 

group,  F(1, 31) = 3.957, p = .056, partial η² = .056 with the activation of Optimal rule users 

being significantly lower than that of Sub-Optimal rule users. Within the II structure, there was 

not a significant main effect for model group, F(1, 31) = .851, p = .363, partial η² = .027. Across 

both structures there was generally higher PFC activation for sub-optimal rule users who are still 

trying to learn the rule. However, within the II condition, the difference between optimal and 

sub-optimal activation was much less pronounced, with more channels maintaining high 

activation across task duration compared to RB (Figure 20). These results support my hypothesis 

that there would be higher sustained activation throughout the task duration for the II structure 

due to the implicit learning disruption.  
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Figure 20 Difference scores for Optimal and Sub-optimal ß values in each category structure 

 

Discussion 
The primary goal of experiment 3 was to replicate the implicit learning decrement shown 

by Maddox and colleagues (2004), along with observing the associated relationship between 

performance, subjective awareness (Meta d’) and neurophysiological data. This was supported, 

with performance and Meta d’ in the RB structures being significantly higher than that of the 

disrupted II condition. Meta d’ proved, as in Experiment 1 and 2, to be a valid predictor of both 

task performance and decision bound rule use. There were no significant differences in the 

number of cases of blind insight across category structures. This is in line with my predictions, as 

I expected to see Meta d’ suffer decrements along with performance due to the variable response 

mapping disruption.  

fNIRS comparisons between the ß values of each structure indicate higher PFC activation 

for II structure compared to RB, particularly within the training blocks with traditional 

categorization design. This supports my hypothesis of higher sustained activation across blocks 

due to an implicit learning decrement. Further comparisons on modeling groups indicated that 
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there were significant differences in the RB structure between the ß values of Optimal and Sub-

optimal rule users, with Optimal rule users displaying a decrease in activation across blocks. This 

difference was not significant between Optimal and Sub-Optimal rule users in the II category 

structure. This supports the hypothesis that the variable response mapping method disrupted 

implicit learning structures. Overall, these neurophysiological results support the hypothesis that 

there is higher PFC activation associated with sub-optimal strategy use. This corresponds to the 

effect shown with Meta d’, with Sub-Optimal rule users having lower Meta d’ than Optimal rule 

users.  

General Discussion 
 

COVIS gains empirical validation through the demonstration of dissociations between 

explicit and implicit learning. Understanding the conditions in which these two learning systems 

are different and being able to consistently and reliably replicate these behavioral differences is 

critical to supporting the separate systems theory of category learning.  Despite the evidence in 

support of the separate systems theory to learning, there was a clear gap in the literature when it 

comes to subjective experience. There were very few examples of subjective measures of 

awareness being integrated within a COVIS based categorization learning task. The goal of this 

series of experiments was to rectify this gap by conceptualizing and applying a measure of 

metacognitive accuracy to a two-structure categorization framework. I believed that the addition 

of Meta d’ would allow a greater range of predictions to be made on the differences between 

explicit and implicit learning.  

Combined results from experiment 1, 2 and 3, are supportive of Meta d’ being useful 

within a COVIS framework. Meta d’ corresponded highly with accuracy on both Rule-Based and 
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Information Integration categorization structures across all three experiments. In addition to its 

strong relationship with task accuracy, the Meta d’ measure was sensitive enough to show 

significant changes based on a participant’s use of Optimal or Sub-Optimal decision bounds. 

This data supports the use of a subjective awareness scale as a predictor of overall task 

performance. 

There is also reasonable evidence to suggest that participants possess some awareness of 

the success/failure of their own strategies, given the relationship between decisions bound 

models and Meta d’. This was most evident across the II conditions, with there being a greater 

dissociation between a participant’s task performance and their metacognitive accuracy. It is 

possible that implicit learning does not occur as linearly as explicit learning, with implicit 

category knowledge influencing confidence before it appears in response accuracy.  This was 

evident through the significant difference in proportion of blind sight within RB and II 

structures. Blind sight, or the phenomenon of high performance despite low metacognitive 

accuracy, was seen significantly more within the II condition, compared to RB in experiments 1, 

2, and 3. Overall the occurrence of blind sight and blind insight within the II category structures, 

and not the RB, supports my hypothesis that there would be a greater dissociation between 

awareness and performance for II structures. RB category structures rely on explicit category 

rule knowledge and therefore result in a more consistent and positive relationship between 

awareness and performance.  

I was unable to replicate a disruption to the implicit system via removing motor response 

mapping within experiment 2. One possible explanation for this could be that adding the 

subjective measure immediately following each trial allowed for explicit processing to occur due 
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to the stimuli being held in working memory during the confidence rating period. Confidence 

scales are not frequently used within the COVIS framework and therefore the full implications of 

such a manipulation are not well known. This explanation is supported through the fNIRS data in 

experiment 3 which showed interruptions to the expected activation patterns during the test 

blocks with confidence ratings. Predicted differences between RB and II activation were 

observed within the training blocks only. I believe this is further evidence that the confidence 

ratings interfered with the categorization task to some degree. Despite this, there were some 

unique interactions when comparing the II conditions within both experiments 1 and 2 with Meta 

d’ scores, i.e., several of the predicted patterns held in subjective data across structures and 

model groupings. 

Experiment 3 allowed me to examine the relationship between performance, Meta d’, and 

prefrontal cortex activation. There were promising trends that corresponded to my theoretical 

predictions, particularly within the differences between Optimal and Sub-Optimal rule users that 

encourages the use of these two measures together within a categorization learning framework.  

Conclusions 
Across the 3 experiments, I was able to use Meta d’ in conjunction with decision bound 

model fits to make predictions of performance throughout implicit and explicit categorization 

tasks.  These collective results indicate that metacognitive accuracy, an implicit structure, was 

sensitive to whether a person is using the correct decision bound. This provides useful 

information about the strategies employed through an implicit task that have previously been 

described as difficult to verbalize and inaccessible.  Meta d’ provides previously unavailable 

information on a participant’s awareness and strategy use throughout a task. The fact that Meta 
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d’ displayed variations unique to each category structure in response to various manipulations 

indicates that it could be a useful measure to integrate into COVIS tasks upon further validation.  

The COVIS framework allowed me to evaluate Meta d’ within both explicit and implicit 

structures. Previous studies on the validity of Meta d’ as a measure of implicit learning did not 

possess this duality, and therefore the measure had not been fully tested within an explicit 

learning framework. Despite its usefulness in assessing my predictions, Meta d’ proved 

problematic in its current operational definition as a measure of implicit learning. Specifically, 

the ability of Meta d’ to be sensitive to variations within a rule-based task, in addition to the task 

conditions with implicit disruptions, indicate that Meta d’ can’t exclusively be considered an 

indication of implicit learning, as it is also apparently sensitive to explicit learning. Future 

research should focus on exploring the robustness of Meta d’ as a predictor of implicit and 

explicit learning across various manipulations, such as category discriminability and variations in 

working memory demands. Relying on behavioral performance data alone would fail to explore 

the nuances of this type of category learning. 
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