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ABSTRACT 

Introduction: The widely-supported vascular depression hypothesis is underspecified with 

respect to cognitive mechanisms by which high cerebrovascular burden (CVB) and 

neuropathology relate to depressive symptoms.  Integration of the vascular depression hypothesis 

with the CaR-FA-X model, a framework of affect regulation mechanisms, suggest that 

Rumination (R) and executive dysfunction (X) may increase due to altered recruitment of the 

dorsolateral prefrontal cortex resulting from high CVB and underlying neuropathology. This 

process would contribute to depressive symptomatology among older adults with high CVB.  

The progression of examined hypotheses included mediation models examining mechanistic 

relationships between predictors (CVB, DLPFC activation), cognitive correlates (rumination, 

executive functioning), and affective outcomes (depressive symptoms).  

Method: A sample of 52 community-dwelling, stroke-free, individuals over the age of 70, 

without history of severe mental illness, dementia, or severe cognitive impairment, completed 

the Ruminative Responses Scale, provided self-reported cerebrovascular burden data (cardiac 

disease, hypertension, diabetes, high cholesterol), and completed executive function tasks 

(Stroop, Flanker) while their hemodynamic response was measured using fNIRS. The Geriatric 

Depression Scale was used to assess depressive symptomatology. Prefrontal cortical recruitment 

was assessed using functional near-infrared spectroscopy (fNIRS). 

Results: A progression of conventional and bootstrapped regression-based models broadly 

supported relationships between CVB and depressive symptoms, but not between DLPFC 

activation and depressive symptoms.  No mechanistic relationships were found, with respect to 

analyses testing prospective cognitive mediators. 
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Conclusions: Primary findings from this study indicate that cerebrovascular burden predicts 

depressive symptomatology among older adults and is related to a reduction in inhibitory control 

ability. Further, these findings inform CVB measurement and mental health implications of 

contrasting approaches to CVB measurement. A primary contribution of this thesis is that results 

appear to support utilization of fNIRS, a low-cost and accessible neuroimaging paradigm, for the 

study of lateralized cognition among older adults.  
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CHAPTER 1: INTRODUCTION 

At the present, the U.S. Census Bureau Population Division (2014) estimates that of the 

318.9 million people residing in the United States, 44.7 million are over the age of 65. It is 

anticipated that this number will double to about 88.5 million older adults by the year 2050 

(Shrestha & Heisler, 2011). The projected increase of older adults is not unique to the United 

States, as the population in the majority of countries shows a similar trend. According to the 

United Nations, Department of Economic and Social Affairs Population Division (2015), the 

current world population of 901 million adults 60 years and older is projected to increase to 2.1 

billion by 2050.  In this population of older adults, depression has been shown as one of the 

leading causes of physical and mental decline (Blazer, 2003), with 3.0-4.5% of older adults in 

the United States currently affected by the disorder (Eden, Maslow, Le, & Blazer, 2012). Every 

year, the incidence of new depression cases is 0.15%, though the incidence and prevalence 

increase two-fold between the ages of 70-85 years (Krishnan, 2002; Teresi, Abrams, Holmes, 

Ramirez, & Eimicke, 2001). Additionally, the rate of women affected is two times higher than 

men.  

 

Risks and Epidemiology of Depression 

Major depressive disorder among older adults has been linked to a number of key risk 

factors common within the aging population. Poor sleep quality, health, perception of health, and 

prior depression also increase the likelihood of late life depression (Cole & Dendukuri, 2003). 

The increased rate of depression in women as compared to men may be attributed to the greater 

number of women who outlive their partner. Rates also differ depending on settings, with about 
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10-12% of elderly patients within a hospital setting for medical or surgical services reporting 

depression. This rate is lower in primary-care patients, ranging from to 6-9% (Alexopoulos, 

2005; Blazer, 2003). Long-term follow-up studies reported that 23-31% of patients with 

depression experienced remission, while 44-52% of patients partially recovered and 17-33% 

experienced a severe chronic course (Beekman et al., 2002).  

Late-life depression is also a key prognostic indicator for a variety of adverse health 

outcomes, such as decreased quality of life (Post, 1962; Saracli et al., 2015), frailty (Paulson & 

Lichtenberg, 2013b), heart disease (Musselman, Evans, & Nemeroff, 1998), and stroke (Pan, 

Sun, Okereke, Rexrode, & Hu, 2011) with each outcome often resulting in higher rates of non-

suicide mortality (Schulz et al., 2000; Schulz, Drayer, & Rollman, 2002). Suicide risk is also 

common in the elderly population as cases of suicide mortality are nearly twice as frequent than 

in the general population, with nearly 80% of these cases experiencing mood disorders (Chan, 

Chiu, Lam, Wong, & Conwell, 2014). Depression has also been shown to lead to cognitive 

impairment, mimicking dementia. Termed pseudodementia, those with this condition experience 

memory deficits, executive function deficits, and deficits in speech and language domains; 

however, cognition typically returns to premorbid functioning following successful treatment of 

depression (Kang et al., 2014; Kral & Emery, 1989). Older adults also face increased risk of 

activities of daily living (ADL) impairment due to a greater likelihood of disability (Barry, 

Allore, Bruce, & Gill, 2009; Bruce, Seeman, Merrill, & Blazer, 1994; Lichtenberg, Gibbons, 

Nanna, & Blumenthal, 1993).  
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Vascular Depression 

Beyond the previously mentioned risk factors, high cerebrovascular burden (CVB), or 

burden on the vasculature of the brain, has been distinguished as a significant risk factor for 

depression in late life.  Referred to as “vascular depression,” this syndrome consists of 

cerebrovascular risk factors that “predispose, precipitate, and perpetuate” the development of 

depressive symptomatology among older adults (Alexopoulos et al., 1997). It has been theorized 

that vascular depression occurs when CVB induces neurological deterioration in the white matter 

of the brain, causing white matter hyperintensities (WMH). These WMH interrupt neurological 

pathways involved with cognitive functions including both emotional regulation and executive 

functioning. During the early stage of this disease is when depressive symptomatology begins to 

develop (Paulson & Lichtenberg, 2013a). Factors including hypertension, diabetes, and cardiac 

disease lead to increased white matter hyperintensities beyond what is expected as a result of 

typical aging (Raz, Ghisletta, Rodrigue, Kennedy, & Lindenberger, 2010). A common 

contributor to cerebrovascular burden is hypertension. Defined as diastolic pressure above 90 

mm Hg and systolic blood pressure and above 160 mm Hg (Beevers, 2014; Beevers, Lip, & 

O'Brien, 2001), consistently high blood pressure has been shown to have deleterious effects on 

the brain. Similar findings have been demonstrated in older adults with diabetes, where MRI 

results showed the brains of patients with diabetes were significantly more atrophied. 

Additionally, diffusion tensor imaging (DTI) showed that patients with diabetes had reduced 

fractional anisotropy for total white matter and increased mean diffusivity for the bilateral 

hippocampus, dorsolateral prefrontal cortex (DLPFC), left posterior cingulate, and right 

putamen, which indicates demyelination and axonal loss (Falvey et al., 2013). Further, MacFall 

and colleagues (2001) demonstrated that left orbitofrontal cortex lesions, which is associated 
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with emotion regulation, relate to increased risk of developing depression. Specifically, these 

effects have been identified in the form of structural damage (Gąsecki, Kwarciany, Nyka, & 

Narkiewicz, 2013), white matter hyperintensities (Gunning-Dixon & Raz, 2000; Raz, Rodrigue, 

& Acker, 2003), and vascular dementia (Posner et al., 2002).  

The aforementioned irregularities within the brain are not without consequence. 

Specifically, processing speed and working memory, both of which are related to the prefrontal 

cortex (PFC), exhibit particularly noticeable impairment (Gąsecki et al., 2013; Raz et al., 2003). 

It is important to note that the impairment associated with these processes was similar between 

individuals with untreated hypertension and medically treated hypertension as both experience 

relatively similar impairment (Raz et al., 2003). Increased WMH have been shown to disrupt 

processes that rely on executive functioning in older adults (Aizenstein et al., 2002), with 

deleterious effects on inhibitory control behaviors (Murphy et al., 2007) compared to those with 

reduced amounts of WMH. 

Various neuroimaging studies have shown the limbic-cortical-striatal-pallidal-thalamic 

circuits (LCSPT) to be associated with emotional regulation and related behaviors (Phillips, 

Drevets, Rauch, & Lane, 2003). These circuits include the connections between numerous 

structures within the brain including the orbitomedial prefrontal cortex (OMPFC), amygdala, 

subiculum, ventromedial striatum, mediodorsal and midline thalamic nuclei and ventral pallidum 

(Öngür, Ferry, & Price, 2003). Disruptions in the OMPFC network, caused by WMH, have been 

shown to result in depressive symptoms due to interferences in synaptic transmission (Drevets, 

Gadde, Krishnan, & Ranga, 2004). The visceromotor network, which is associated with 

emotional regulation, has also been shown to be disrupted by WMH. (Drevets, Price, & Furey, 

2008). Further, disrupted medial prefrontal cortex (MPFC) and limbic structure functioning are 
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associated with mood-related disturbances such as emotional processing dysregulation, cognitive 

performance, neurotransmission, autonomic regulation, and neuroendocrine responses (Drevets 

et al., 2008).  Older adults with a greater quantity of hyperintensities tend to exhibit greater 

numbers of depressive symptoms than those with fewer or no hyperintensities (Coffey, Figiel, 

Djang, & Weiner, 1990). Likely the consequence of these microvascular changes, disruption in 

the frontal subcortical white matter results in the expression of depressive symptoms. 

Compelling evidence for this relationship includes the finding that deep white matter 

hyperintensities indicate the presence of vascular depression within older populations with a 

perfect sensitivity of 1.00 and a specificity of .95 (Sneed, Rindskopf, Steffens, Krishnan, & 

Roose, 2008).  

Tenants of vascular depression theory are further supported by clinical evidence. Mast 

and colleagues reported that the presence of two or more cerebrovascular risk factors is 

associated with significant increases in depressive symptomatology at 18-month follow-up 

(Mast, Azar, & Murrell, 2005; Mast, Yochim, MacNeil, & Lichtenberg, 2004; Paulson, Bowen, 

& Lichtenberg, 2014). Longitudinal follow-up supports that finding with additional results 

showing that patients were five times more likely to exhibit depressive symptoms when two or 

more cerebrovascular risk factors were present compared to zero or one cerebrovascular risk 

factor (Mast, Neufeld, MacNeill, & Lichtenberg, 2004). Although these studies present 

compelling evidence, other findings do not support the vascular depression hypothesis (Lyness et 

al., 1999). 
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Functional Near-Infrared Spectroscopy 

In recent years the use of fNIRS has become increasingly popular due to many 

advantages over other neuroimaging methods including affordability, portability, and reduced 

artifacts due to movement. fNIRS monitors brain activity by measuring changes in oxygenated 

(O2Hb) and deoxygenated hemoglobin (HHb), similarly to fMRI (Herrmann, Ehlis, & Fallgatter, 

2003). Because near-infrared light ranges between 700-900 nm, it is able to pass through most of 

the tissue at the scalp and reach the cerebral cortex. When the photons reach the cerebral cortex, 

chromophores within both O2Hb and HHb absorb the energy to varying degrees as O2Hb is 

slightly paramagnetic, and HHb is highly paramagnetic. That is, HHb absorbs less energy than 

O2Hb (Bren, Eisenberg, & Gray, 2015; Pauling & Coryell, 1936).  Photons that are not absorbed 

follow a banana-shaped path and return to the surface of the scalp where they are measured by 

photoreceptors (Gratton, Maier, Fabiani, Mantulin, & Gratton, 1994). The concentration can then 

be determined using the modified Beer-Lambert law (Villringer & Chance, 1997). In regards to 

measurement, fNIRS has been shown to have good temporal resolution within the millisecond 

range, though spatial accuracy and depth are somewhat limited (Villringer & Chance, 1997). 

In studies that utilize fNIRS, differences in activation between patients with depression 

(MDD) and healthy controls (HC) have been found. In response to threatening or positive 

stimuli, patients with MDD showed hyperactivation in prefrontal regions including both the 

middle frontal gyrus, which includes the DLPFC, and the inferior frontal gyrus (Matsubara et al., 

2014). Additional research comparing patients with MDD to HC showed that in MDD patients, 

the level of O2HB increase in the frontal lobe was significantly lower in comparison to HC 

during the Halstead-Retain FAS verbal fluency task and the same task using different letters. 
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When comparing the two groups at baseline, however, no significant differences in activation 

were present (Herrmann, Ehlis, & Fallgatter, 2004; Noda et al., 2012). 

 

The CaR-FA-X Model 

Depressive symptomatology has been identified as significantly and directly impairing to 

an individual’s specific memory recall ability. This change, described as the Overgeneral 

Autobiographical Memory (OGM) phenomenon, is expressed by the tendency to recall specific 

memories in a broad or general fashion. Williams and Colleagues (2007) demonstrated that 

OGM is more prevalent in individuals with depression than those who are not depressed. Further, 

this phenomenon has been identified as a risk factor for the onset and course of depression. The 

maintenance of depression is also largely related to the extent of OGM. In a sample of 

psychiatric inpatients (age range 18-65) beginning treatment with initial scores on the Beck 

Depression Inventory II indicating severe depression (M = 29.70, SD = 11.00), those with lower 

rates of OGM were more likely to have fewer depressive symptoms, whereas the quantity of 

these symptoms remained stable when OGM was high (Hermans et al., 2008).   

 The mechanisms underlying OGM were partially explained by Conway and Pleydell-

Pearce (2000) who described this process as a functional avoidance technique to distance oneself 

from the effects of discomforting emotional memories. Because this only partially explains the 

underpinnings of OGM, Conway and Pleydell-Pearce’s hypothesis was developed further into a 

comprehensive model termed the CaR-FA-X Model. This model conceptualizes the OGM as 

three distinct processes: capture and rumination, functional avoidance, and impaired executive 

control (Williams et al., 2007).  
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 When in the process of retrieving a memory that encompasses personal concerns or self-

representation, attention can remain fixated on the general concept behind the memory instead of 

retrieving the specific event. In other words, the memory retrieval process becomes captured 

(Ca) and prevents the individual from proceeding beyond the OGM and can trigger rumination 

(Williams et al., 2007). Rumination (R), which is tied closely to capture, is the attentional focus 

on one’s depressive symptoms and their implications. These negative thought processes are self-

focused and repetitive in nature, and have a likelihood to develop into a fixation on general 

memories (Sutherland & Bryant, 2007).  Other findings demonstrate how the manipulation of 

rumination influences OGM, suggesting that rumination may be a mediating factor or 

mechanism in the retrieval of overgeneralized memories (Sutherland & Bryant, 2007). When the 

memory retrieval process is captured, this occurs as an apparent attempt to prevent the 

recollection of specific memories that may illicit undesired emotional responses (Sumner, 2012).  

 Functional avoidance (FA), the second mechanism that comprises the CaR-FA-X model, 

is the process of passively avoiding the retrieval of specific memories to aid in regulation of 

emotions. Considered an avoidance strategy, it is thought that recalling memories in this more 

generalized manner reduces the strain brought about by the memory of the specific event itself 

(Watson, Berntsen, Kuyken, & Watkins, 2013; Williams et al., 2007). Although it is thought to 

be an avoidance strategy developed to deal with trauma experienced early in life, over time the 

use of functional avoidance tends to extend to beyond specific traumatic memories to any 

specific memories as a result of consistent reinforcement (Conway & Pleydell-Pearce, 2000; 

Sumner, 2012; Williams et al., 2007).   

 The final mechanism Williams and colleagues (2007) proposed to underlie 

overgeneralized memories is impaired executive control (X). Executive control is largely 
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responsible for inhibition (Baldo, Shimamura, Delis, Kramer, & Kaplan, 2001), working 

memory and information updating (Piolino et al., 2010), selective attention and the ability to 

maintain attention (Alvarez & Emory, 2006), goal-directed behavior, and verbal proficiency 

(Sumner, 2012; Sumner et al., 2014). Sumner and colleagues (2014) demonstrated that verbal 

fluency and brooding, described as analytical rumination, affect the degree of specificity of a 

given memory based on whether the individual had a history of major depressive disorder. Those 

with a history of major depressive disorder engaged in more brooding, although autobiographical 

memory specificity increases as well. In a collaborative effort, the aforementioned processes 

facilitate the retrieval of specific memories. Further, a disruption in any one CaR-FA-X process 

increases the likelihood that the intended specific memory will not be located, resulting in the 

recollection of an overgeneralized memory instead. 

 
Primary Goals 

Obvious parallels exist between the CaR-FA-X literature and the vascular depression 

literature.  Both lines of study examine mechanisms by which depressive symptoms emerge and 

are sustained, and both address the connection between executive functions and depression.  

Despite these obvious parallels, they coexist as unconcatenated distinct research domains. The 

present synthesis suggests a broader theoretical framework may relate these areas of work. With 

(a) CVB resulting in the development of white matter hyperintensities, and (b) frontostriatal 

white matter implicated in mood regulation as well as executive functioning behaviors including 

inhibitory control, deficiencies in these processes may lead to a dysregulation of the mechanisms 

described in the CaR-FA-X model. From this broad theoretical framework, several testable 

hypotheses emerge. CVB will predict depressive symptomatology, decreases in specific aspects 

of executive functioning such as inhibitory functioning, increased rumination, and OGM in 
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adults 70 years of age and older. Further, inhibitory functioning will predict rumination, while 

both inhibition functioning and rumination will also predict depression. 

 

Hypotheses 

The goal of this thesis was to examine the relationships among inhibitory functioning, 

rumination, depression and neurovascular response in older adults with cerebrovascular burden. 

 

Hypothesis 1:  

1a) Within adults over the age of 70 years, high CVB will predict depressive 

symptomatology, decreased executive functioning, and increased rumination.  

Hypothesis 2:  

2a) Hemodynamic response, reflecting the magnitude of DLPFC and orbitofrontal 

pole oxygenated and deoxygenated hemoglobin during inhibitory control tasks, 

will positively predict depression. 

2b) Hemodynamic response, as characterized in the prior hypothesis, will positively 

predict executive functioning. 

2c) The relationship between hemodynamic response and depression will be mediated 

by executive functioning. 

Hypothesis 3:  

3a) Hemodynamic response will positively predict depression. 

3b)  Hemodynamic response will positively predict rumination. 

3c) The relationship between hemodynamic response and depression will be mediated 

by rumination. 
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CHAPTER 2: METHODS 

Participants 

The current study recruited 52 participants over 70 years of age from the Learning 

Institute For Elders (LIFE) group at the University of Central Florida (UCF), as well as from the 

surrounding community. A direct analogue of the proposed research could not be identified in 

the extant literature, though a conceptually similar study examining the relationships between 

rumination, depression, and size of the DLPFC was used to estimate sample size required for the 

proposed research (Wang et al., 2015).  Based on reported Wang et al.’s (2015) findings, a 

sample size of 32 was necessary to provide an 80% probability of identifying an indirect effect 

with r2=.16.  Selected participants were drawn from the larger Vascular Aging Study.  Selected 

participants included those who are self-reportedly right-hand dominant, have normal or 

corrected to normal vision, speak English as a native language, have no reported developmental 

or neurological disorders, no history of head trauma or cerebrovascular events, and are not 

currently taking medications (narcotic, sedatives, anti-epileptic) that may interfere with cognitive 

ability. Additionally, the Telephone Interview for Cognitive Status (TICS) was used to rule out 

the presence of moderate to severe dementia. Participants provided informed consent in 

accordance with the procedures of the University of Central Florida Institutional Review Board. 

 

Measures 

A participant questionnaire was used to collect demographic information including age, 

gender, ethnicity, race, and socioeconomic status. Additionally, participants were asked 

questions regarding activities of daily living (ADLs), self-rated quality of sleep and sleep habits. 

The cerebrovascular burden of each participant was measured using self-reported diabetes, chest 
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problems cardiac disease, and high cholesterol. A composite score for self-reported 

cerebrovascular burden was then calculated by summing the CVB self-report responses and 

converting the total into a z-score. 

Telephone Interview for Cognitive Status-Modified (TICS-M):  This 11 item test is 

slightly modified from the older TICS measure is an interview designed for assessing an 

individual’s levels of orientation, language, registration, memory, spelling, and calculation in 

person or by telephone (Brandt, Spencer, & Folstein, 1987). The maximum possible score is 35, 

with scores below 11 suggesting clinically significant cognitive impairment. The TICS has high 

test–retest reliability and is generally sensitive to cognitive impairment (Desmond, Tatemichi, & 

Hanzawa, 1994). Modeled after the Mini Mental State Examination (MMS), and containing two 

questions from the MMS, TICS scores are highly correlated with MMS scores (.94) 

Additionally, TICS has a sensitivity is 94% and specificity of 100%. Test-retest reliability over a 

six-week period was reported at .97, and intraclass correlation coefficient was .99. (Brandt et al., 

1987).  

Geriatric Depression Scale (GDS): This 30-item scale requires participants to indicate 

their level of depressive symptomatology by responding ‘yes’ or ‘no’ to each question. The GDS 

has an alpha coefficient of 0.92, as well as a sensitivity of 84.2% and a specificity of 72.7% for 

major depressive disorder among older adults when the cutoff score is 11 (Lach, Chang, & 

Edwards, 2010). 

Ruminative Responses Scale (RRS): This 22-items scale evaluates the degree to which an 

individual engages in ruminative thinking. Each item of this scale can be rated one of four items, 

ranging from 1 (Almost Never) to 4 (Almost Always). Overall, this task has demonstrated an 

alpha coefficient of 0.90, test-retest reliability of 0.67 over a one-year period, and acceptable 
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convergent and predictive validity  (Gonzalez, Nolen-Hoeksema, & Treynor, 2003; Nolen-

Hoeksema, Larson, & Grayson, 1999).  

Wide Range Achievement Test IV: Reading Test (WRAT IV): The Reading Recognition 

subtest of the Wide Range Achievement Test, Fourth edition (Dell, Harrold, & Dell, 2008) 

includes identifying letters and correctly pronouncing a series of words. The reading subtest of 

the WRAT IV has a reported internal consistency ranging from .92 to .98. The reliability of the 

measure is also supported by the alternate form coefficient at .95, and alternate-form reliability 

at .88. In terms of validity, the WRAT IV has been shown to correlate from low to moderate with 

Wechsler Scales of Intelligence between full-scale IQ and subtest scores ranging from .57 (for 

spelling) and .72 (for reading).  

The Neuropsychological Assessment Battery: Executive Functions Module (NAB): The 

Executive Functions module consists of Mazes, Judgment, Word Categories, and Word 

Generation. The Mazes task, a timed planning task, requires participants to complete a series of 

mazes from start to finish without lifting their pencil from the paper, and it has an alpha 

coefficient of .78 in adults between the ages 70-97 years (White & Stern, 2003). Judgment 

consists of 10 daily activity judgment questions pertaining to home safety, health, and medical 

issues, and has an alpha coefficient of .45 within the same age range. In the Word Categories 

task, participants are given photographs and information about six people, and are asked to create 

different two-group categories based on that information. Average inter-rater reliability for this 

task was .97. This primary function if Word Categories is to measure concept formation, 

cognitive response sets, mental flexibility, and generativity.  For the Word Generation subtest, 

participants are given two minutes to create as many three-letter words from a list of letters 

presented. Letters cannot be used twice within the same word, and they must not be proper 
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nouns. Word Generation is used as a measure of verbal fluency and generativity. This task has an 

alpha coefficient of .64. Overall, this module has a moderately high correlation with the WAIS-

III comprehension subtest, as well as acceptable overall reliability with alpha coefficients 

ranging from .43 to .64, and the generalizability coefficient is .83.  

Halstead-Retain Neuropsychological Test Battery: Trail Making Test (TMT) is designed 

to evaluate neuropsychological functioning and condition of the brain and the nervous system. 

The test is intended for individuals 15 years and older and is administered as Part A and Part B.  

For Part A, participants are asked to draw lines connecting consecutively numbered circles on a 

worksheet. Part B asks that the subject connect consecutively numbered and lettered circles by 

alternating between the numbers and letters. The test-retest reliability is adequate for Part A, 

ranging from .36 to .79, and Part B, ranging from .44 to .89. In addition, inter-rater reliability 

was .94 for Part A, and .90 for Part B (Reitan, 1958). 

Autobiographical Memory Test (AMT) measures the degree of specificity to which an 

individual recalls autobiographical memories based on single-word prompts. Participants are 

prompted to recall an event that a specific cue reminds them of, and then asked to rate the 

vividness of the memory on a scale from 1 to 5 and the pleasantness of the memory on a scale 

from 1 to 5. The alpha coefficient for the AMT is 0.77 (Griffith et al., 2009). 

Functional Near-Infrared Spectroscopy (fNIRS) is a non-invasive imaging technology 

designed to evaluate oxygen levels and changes in the prefrontal cortex through the use of near 

infrared light and sensors that are applied to the head of the research subject. Neural responses in 

PFC will be measured using a functional Near-Infrared Spectroscopy (fNIR) system. fNIRS is a 

brain imaging technology similar to fMRI, as it measures the blood oxygenation level dependent 

(BOLD) signal. This occurs by measuring the changes in oxygenation levels of tissue within the 
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cortex. A 22 optode system with 8 sources and 8 detectors designed by NIRx Medical 

Technologies, LLC (the NIRSport 88 system) will be used. Participants wear a LED-based 

sensor cap, which is connected to the fNIRS device. The sensor cap contains optode connection 

points, and ultrasound gel is applied to the interior of the connection points to increase signal 

strength. Though the fNIRS is capable of measuring the majority of the cortex, the activity of 

specific regions of interest that will be spatially localized include dorsolateral PFC (Brodmann 

Areas 9 & 46), anterior PFC (BA 10), and part of inferior frontal gyrus (BA 45). The use of 

functional near infrared spectroscopy (fNIRS) allows the ratio of O2Hb to blood volume within 

the brain to be measured by using light in the near-infrared range between 700 nm and 900 nm to 

measure physiological changes within the optical composition of these tissues (Bunce, Izzetoglu, 

Izzetoglu, Onaral, & Pourrezaei, 2006). Using fNIRS during executive functioning tasks, 

Prakash and colleagues (2009) and Zysset and colleagues (2007) revealed that older adults 

demonstrate large increases in activation during the interference condition within the left 

dorsolateral prefrontal cortex (DLPFC), or Brodmann’s Areas (BA) 6 and 9 and in the left 

inferior frontal gyrus (BA 6). While connected to fNIRS, participants will complete tasks 

including the Flanker task and Stroop test programmed using the software E-Prime 2.0 

Professional. 

Flanker Task: This measure of inhibitory control includes a control condition and an 

experimental condition.  All participants are administered both conditions.  While completing the 

control condition, the participants will be asked to respond to the directionality of a single large 

bold arrow by pressing the corresponding keyboard key. If the arrow is pointing to the left, the 

participant would respond by pressing the ‘D’ key with their left index finger. If the arrow is 

pointing to the right, the participant would respond by pressing the ‘K’ key with their right index 
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finger.  While completing the experimental condition, participants’ attention will be directed 

towards a series of five arrows presented on a computer screen. The participant is asked to press 

a button indicating the direction of the center arrow (left or right). Some trials will present 

arrows pointed in congruent directions (e.g. <<<<<). In other trials, peripheral arrows will point 

in the contradictory direction (e.g. <<><<). This task is alternated in brief blocks with a control 

task in which the respondent is asked to judge the direction of a single arrow with no distractor 

stimuli. Instructions are presented on screen and are self-paced. After reading the instructions, a 

fixation cross appears for 20000ms before the practice trial begins. The practice block consists of 

14 trials (7 control and 7 experimental stimuli) each appearing for 5000ms each with a 1000ms 

fixation cross in between. Feedback consisting of correct, incorrect, or no response is also 

provided following each practice stimuli. Once the practice block has been completed, the 

control and experimental blocks follow. There are four control blocks and four experimental 

blocks, with each block beginning with a 20000ms fixation cross to allow the BOLD signal to 

stabilize. Control (Figure 1) and experimental (Figure 2) blocks are composed of 12 trials, with 

each trial presenting for 3000ms and a 1000ms fixation cross between each trial.  

Stroop Test: This task consists of four counterbalanced conditions. In the Block A, 

participants must respond to the color of the text shown by pressing the corresponding key. For 

this condition, the target text is “******” and can appear as the color red, green, or blue. In the 

Block B, participants must respond by responding to the word being presented. There are three 

potential targets, red, green, and blue. All targets in this condition are presented as black text. In 

the Block C, red, green, and blue are possible target words, and each word presented is colored 

congruently (e.g. the word red colored red). Finally, in Block D red, green, and blue are possible 

target words, but two-thirds of the targets are colored incongruently (e.g. the word red colored 
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green) and one-third of the targets are congruent with participants responding to the text. The 

four blocks are counterbalanced, and each block begins with self-paced instructions. Following 

the instructions, there is a practice specific to the type of trials that will be shown in that block. 

Each practice trial is shown for 5000ms each, with feedback and a 1000ms fixation cross 

between each trial. A 20000ms fixation cross is shown prior to the experimental trials beginning. 

Blocks A, B, and C consists of 24 trials lasting 3000ms each, with a 1000ms fixation cross 

between each trial while Block D consists of 36 trials (Figure 3).  

 

Procedure 

Individuals who responded to the study advertisement were contacted initially over the 

telephone, at which point they completed a brief screening questionnaire as well as the TICS-M 

to determine eligibility for the study. Those who were eligible were then scheduled to come to 

the UCF psychology clinic for testing. Once a participant arrived for the testing session, the 

consent form was explained, including that $20 compensation for participating would be given at 

the completion of the session, and any questions the participant had were clarified. Further, if the 

participant met criteria for the fNIRS portion of the session, they were offered an opportunity to 

complete that portion of the testing and explained that an additional $10 would be provided for 

this component. Thus, participants included in the proposed research that included the fNIRS 

component all received $30 compensation for their participation. 

After completing the consent process, the participant was asked a range of questions that 

comprise numerous measures, including demographic information, the GDS as a measure of 

depression, and RRS as a measure of rumination. The participant then completed the WRAT-IV 

Reading subtest, a measure of word reading typically interpreted as a gross indicator of 
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premorbid intellectual functioning, the executive functions module of the NAB and TMT as 

measures of executive functioning, and then the AMT as a measure of memory specificity. 

Physiological data such as height, weight, and blood pressure, were also collected. The final 

portion of testing included two measures of executive functioning, the Stroop and Flanker tasks, 

using the E-Prime. If the participant agreed to the fNIRS portion of the testing, the tasks were 

completed while connected to the fNIRS device. Those who did not meet eligibility requirements 

or preferred not to be connected to the fNRIS device completed the tasks outside of the fNIRS 

device. Finally, each participant was thanked for participating and compensated accordingly. 

 

Statistical Methods 

Examination of primary hypotheses required considerable data preparation.  To include 

executive functioning in the models, a composite score was calculated by converting the reaction 

time of each experimental condition of the executive functioning tasks (TMT-B, Stroop, and 

Flanker) into a Z-score, and then summing standardized scores across executive functioning 

measures to allow for the creation of a composite variable. Similarly, a composite variable 

representing cerebrovascular burden was generated by summing values reflecting self-reported 

endorsement of diabetes, hypertension, cardiac disease, or history of cerebrovascular events. 

Continuous variables were also converted to full-sample z-scores. 

FNIRS data were analyzed using NIRSLab in conjunction with SPM12. The approach of 

NIRSLab uses a general linear model-based method along with atlas-based mapping of the brain 

to reflect the data accurately. Data representing neurovascular activation was generated during 

administration of the Flanker and Stroop tasks described above, as these tasks are designed to 

require inhibitory control. Based on the block design described above, fNIRS-measured O2Hb 
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and HHb produced a series of values representing response to task demands associated with the 

inhibitory control condition. The values from channels 1, 2, and 3 were averaged and the values 

from channels 20, 21, and 22 were averaged to produce values representing fNIRS-measured 

O2Hb and HHb for each participant’s LDLPFC and RDLPFC respectively.  

To examine the data based on this study’s aims and hypotheses, mediation analyses were 

bootstrapped with bias-correction as described by Efron & Tibshirani (1986). Bootstrapping, 

which draws a specified number of observations with replacement from the original data, 

requires a minimum of 32 participants to achieve a power of 0.8. This study drew 5,000 

observations (Fritz & MacKinnon, 2007) from the original sample (N = 52) through resampling 

and replacement. An additional advantage of bootstrapping is that this analytic method does not 

require the assumptions of normality and homogeneity to be met by the sample. Mediation 

models were completed using the Process add-on to SPSS 22, which include preconfigured 

variations of moderation and mediation models (Hayes, 2017). Model 4 of Process, the simple 

mediation model, was used to address each specific aim of this study. Each model was 

completed twice, once including the LDLPFC and once including the RDLPFC. In model A of 

Figure 4, the total effect represents the relationship between LDLPFC and RDLPFC O2Hb and 

depression (pathway c) prior to examining whether the latent variable for executive functioning 

serves as a significant mediator of the relationship. Direct effects represent the regression 

coefficients across model A for O2Hb and EF (pathway a), and also EF predicting depression 

after controlling for O2Hb (pathway b). The direct effect of O2Hb predicting depression after 

controlling for the potential mediation of EF and/or rumination is considered as a separate effect 

(pathway c’).  
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In model B of Figure 4, the total effect represents the relationship between LDLPFC and 

RDLPFC O2Hb and depression (pathway c) prior to examining whether rumination serves as a 

significant mediator of the relationship. Direct effects represent the regression coefficients across 

model B for O2Hb and rumination (pathway a), and also EF and rumination predicting 

depression after controlling for O2Hb (pathway b). The direct effect of O2Hb predicting 

depression after controlling for the potential mediation of EF and/or rumination will also be 

considered as a separate effect (pathway c’). Indirect effects will be examined by accounting for 

the residual difference of the magnitude between the direct effect of O2Hb, depression, and the 

inclusion of each mediating variable, EF and rumination respectively. 

Finally, to calculate effect ratios, the indirect effect was divided by the total effect. Doing 

so provided an estimated proportion for each significant total effect due to the mediating paths. 
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CHAPTER 3: RESULTS 

Demographics  

The total sample consisted of 52 participants, which had an average age of 76.40 (SD = 

4.60), was largely female (63.46%), and predominantly White/Caucasian (90.39%). The sample 

was well-educated (M = 16.46, SD = 2.94 years) with an interquartile income range of 

$42,500.00 and a median income of $62,500.00. Approximately 12% of the sample had GDS 

scores that fell above the cutoff score of 11. The mean number of endorsed comorbidities (high 

blood pressure, problems with heart and circulation, chest problems, and problems with diabetes) 

was 1.02 (SD = 1.20). A subset of 33 participants completed the fNIRS protocol, which 

generated data on hemodynamic response during executive functioning tasks described below. 

Demographically those individuals were similar to those from the full sample as illustrated in 

Table 1. 

 

Cognitive Performance 

 Inhibitory control was evaluated based on total reaction time in milliseconds for correct 

trials only with complete Flanker, Stroop, and Trails B data for 45 participants (see Figure 5 for 

participant allocation). Reaction time on Flanker task hard blocks (M = 1,035.40, SD = 238.10), 

Stroop incongruent block (M = 1,354.20, SD = 258.70), and Trails B (M = 94.61, SD = 35.87) 

were used to create a Z-score for each task, and a composite score representing inhibitory control 

was created by adding together the three z-scores.  

 Paired samples t-tests showed significant differences between Flanker easy and hard 

condition accuracy (t(44) = -2.19, p = .033) and reaction time (t(44) = 15.34, p < .001) as well as 

Stroop color (easy) and incongruent (hard) condition accuracy (t(44) = -2.36, p = .022) and 
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reaction time (t(44) = 9.38, p < .001). Significant differences were not observed when comparing 

oxygenated blood flow during the Flanker easy and hard conditions or the Stroop easy and hard 

conditions, and deoxygenated blood flow also did not differ significantly between the conditions. 

To examine whether oxygenated or deoxygenated blood flow related to task performance, 

a series of linear regressions were conducted. Results indicated that oxygenated blood flow in the 

RDLFPC during the Flanker easy condition predicted accuracy during that condition (β = -.41, t 

(31) = -2.48, p = .019; F (1, 31) = 6.16, p = .019), with an R2 of .166. Results also indicated that 

deoxygenated blood flow in the LDLPFC during the Stroop incongruent (hard) condition 

predicted both accuracy (β = -.40, t (31) = -2.31, p = .029; F (1, 31) = 5.33, p = .029, R2 = .160), 

and reaction time (β = .52, t (31) = 3.25, p = .003; F (1, 31) = 10.55, p = .003, R2 = .274) during 

that condition. These results support the rationale for the proposed hypotheses, as findings 

suggest a relationship between blood flow and task performance.  

 

Cerebrovascular Burden 

 Hypotheses that high cerebrovascular burden would predict depressive symptomatology, 

decreased executive functioning, and increased rumination (hypothesis 1) were examined using a 

progression of regression analyses. Results indicated that self-reported CVB predicted depressive 

symptomatology (β = .29, t (51) = 2.18, p = .034), but did not predict executive functioning (β = 

-.61, t(45) = -1.61, p = .069), or rumination (β = .19, t(51) = 1.40, p = .168). Given that CVB 

predicted depressive symptomatology, previous findings indicating an effect of CVB on blood 

flow, and the relationship between hemodynamic response and cognitive performance, this 

indicates further support for the proposed mediation models. 
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Mediation: fNIRS, Executive Functioning, and Depression 

The remaining hypotheses were tested using a subset of 31 participants from the sample 

who completed the functional near-infrared spectroscopy (fNIRS) portion of testing. To examine 

the hypothesis that fNIRS hemodynamic response of the DLPFC during inhibitory control tasks 

would positively predict depression (hypothesis 2a), executive functioning reaction time 

(hypothesis 2b) and that the relationship between hemodynamic response and depression would 

be mediated by executive functioning (hypothesis 2c), mediation analyses were conducted using 

Model 4 in Process (Hayes, 2017). Models were run eight times, first with oxygenated blood 

flow in the RDLPFC during the Flanker task, oxygenated blood flow in the LDLPFC during the 

Flanker task, oxygenated blood flow in the RDLPFC during the Stroop task, and with 

oxygenated blood flow in the LDLPFC during the Stroop task. These models were then run 

again, but examining deoxygenated blood flow instead. Results of the mediation, which can also 

be found in Tables 2 and 3, indicated that depressive symptomatology was not predicted by oxy-

Hb in the RDLPFC during Flanker (β = -2657.79, SE = 1790.35, p = .148), oxy-Hb did not 

predict executive functioning (β = -6385.93, SE = 4149.03, p = .134), and executive functioning 

did not mediate the relationship between oxy-Hb and depression (β = -3296.57, SE = 1839.96, p 

= .084). Similarly, LDLPFC oxy-Hb during Flanker did not predict depressive symptomatology 

(β = -1986.46, SE = 2582.24, p = .448), or executive functioning (β = -5868.66, SE = 5962.90, p 

= .333), and executive functioning did not mediate the relationship between LDLPCF oxy-Hb 

flow and depression (β = -2427.71, SE = 2627.92, p = .363). 

Results of the mediation indicated that depressive symptomatology was not predicted by 

oxy-Hb in the RDLPFC during Stroop (β = 19.05, SE = 85.70, p = .826), oxy-Hb did not predict 

executive functioning (β = -275.95, SE = 185.99, p = .149), and executive functioning did not 
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mediate the relationship between oxy-Hb and depression (β = 7.38, SE = 90.25, p = .936). 

Similarly, LDLPFC oxygenated blood flow during Stroop did not predict depressive 

symptomatology (β = -262.03, SE = 3225.09, p = .936), or executive functioning (β = -9799.79, 

SE = 7023.51, p = .174), and executive functioning did not mediate the relationship between 

LDLPCF oxy-Hb and depression (β = -744.19, SE = 3376.97, p = .827). 

 To examine the hypothesis that oxygenated hemodynamic response of the DLPFC during 

inhibitory control tasks would positively predict depression (hypothesis 3a), rumination 

(hypothesis 3b) and that the relationship between oxy-Hb and depression would be mediated by 

rumination (hypothesis 3c), mediation analyses using Model 4 in Process (Hayes, 2017) were 

also used. As with the previous hypotheses, all models were run for the RDLPFC and LDLPFC 

for both the Flanker and Stroop tasks. Results of the mediation indicated that depressive 

symptomatology was not predicted by Flanker oxy-Hb in the RDLPFC (β = -1,611.04, SE = 

1,610.80, p = .325), oxy-Hb did not predict rumination (β = -1,812.24, SE = 1,965.39, p = .364), 

and rumination did not mediate the relationship between oxy-Hb and depression (β = -919.52, SE 

= 1,468.87, p = .536). Similarly, LDLPFC oxygenated blood flow did not predict depressive 

symptomatology (β = -1,835.07, SE = 1,779.50, p = .310), or rumination (β = -1,474.32, SE = 

2,186.99, p = .505), and rumination did not mediate the relationship between LDLPCF oxy-Hb 

and depression (β = -1,270.89, SE = 1,608.04, p = .436).  

Similarly, results of the mediation indicated that depressive symptomatology was not 

predicted by oxy-Hb in the RDLPFC during the Stroop task (β = 32.13, SE = 80.82, p = .694), 

oxy-Hb did not predict rumination (β = 43.56, SE = 99.96, p = .666), and rumination did not 

mediate the relationship between oxy-Hb and depression (β = 15.71, SE = 72.99, p = .831). 

Similarly, LDLPFC oxy-Hb did not predict depressive symptomatology (β = 853.60, SE = 
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2219.02, p = .703), or rumination (β = 94.17, SE = 2753.08, p = .973), and rumination did not 

mediate the relationship between LDLPCF oxy-Hb and depression (β = 817.90, SE = 1992.99, p 

= .685). 

The previously described analyses were also run for deoxygenated blood flow as well. 

Results for HHb followed a similar pattern to those reported for models including O2Hb and can 

be found in Tables 4 and 5. 

In addition to these analyses, recent findings (Diamond, 2013; Nigg, 2000; Sánchez-

Cubillo et al., 2009) suggested that auxiliary analyses were indicated, and therefore a number of 

post-hoc tests were run examining Stroop and Flanker performance separately instead of as part 

of a composite score for inhibitory control. Similarly to the previous analyses, hemodynamic 

response in the RDLPFC and LDLPFC were examined separately to determine if there was a 

mediating effect of either Stroop or Flanker correct trial reaction time (RT) on the relationship 

between hemodynamic response and depression. Mediation analyses using Model 4 in Process 

(Hayes, 2017) were used, and results indicated that depressive symptomatology was not 

predicted by oxy-Hb in the RDLPFC during Flanker (β = -1,570.02, SE = 1,578.81, p = .328), 

oxy-Hb did not predict Flanker RT (β = 200.03, SE = 2,087.32, p = . 924), and Flanker RT did 

not mediate the relationship between oxy-Hb and depression (β = -1,611.04, SE = 1,610.80, p = 

.325). Similarly, LDLPFC oxy-Hb during Flanker did not predict depression (β = -1,525.23, SE 

= 1,766.41, p = .395), oxy-Hb did not predict Flanker RT (β = 1,609.45, SE = 2,290.37, p = 

.488), and Flanker RT did not mediate the relationship between oxy-Hb and depression (β = -

1,835.07, SE = 1,779.50, p = .310) 

Further analyses indicated that depressive symptomatology was not predicted by 

hemodynamic response in the RDLPFC during Stroop (β = 17.36, SE = 92.42, p = .852), oxy-Hb 
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did not predict Stroop RT (β = -158.20, SE = 85.69, p = .075), and Stroop RT did not mediate the 

relationship between oxy-Hb and depression (β = 19.05, SE = 85.70, p = .826). Similarly, 

LDLPFC hemodynamic response during Stroop did not predict depression (β = -460.07, SE = 

3,502.06, p = .897), oxy-Hb did not predict Stroop RT (β = -6,291.64, SE = 3199.13, p = .059), 

and Stroop RT did not mediate the relationship between oxy-Hb and depression (β = -262.03, SE 

= 3225.08, p = .936) 

 

Correlation: Cerebrovascular Burden, CaR-FA-X, and fNIRS 

Finally, a bivariate correlation analysis was conducted to evaluate how the variables 

included in these analyses (e.g., self-reported CVB, CaR-FA-X, fNIRS) are related. Results can 

be found in Table 7, and indicate that self-reported CVB was positively correlated with 

depression (r = .29, p = .03), and Flanker RT (r = .35, p = .01), and depression correlated 

positively with rumination (r = .63, p < .001). In regard to executive functioning, the easy (color) 

condition of the Stroop correlated positively with the Flanker easy RT (r = .45, p = .002), RT on 

the hard (incongruent) condition of the Stroop (r = .59, p < .001), RT on the hard condition of 

the Flanker (r = .38, p = .009), Trail Making Test B (TMTB) time (r = .52, p < .001), fNIRS 

O2Hb activation in the RDLPFC on the hard Flanker condition (r = .39, p = .025), and negatively 

correlated with accuracy on the easy condition of Stroop (r = -.43, p = .002). RT on the easy 

condition of the Flanker was positively correlated with both the hard Flanker RT (r = .86, p < 

.001), and TMTB time (r = .35, p = .01).  

Stroop RT on the hard (incongruent) condition was positively correlated with TMTB (r = 

.36, p = .01), fNIRS HHb activation in the LDLPFC on the hard (incongruent) Stroop condition 

(r = .52, p = .003), fNIRS activation in the RDLPFC on the hard condition of the Flanker task (r 
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= .44, p = .01), and negatively correlated with accuracy during the Stroop hard (incongruent) 

condition (r = -.31, p = .03). TMTB time was negatively correlated with accuracy on the easy 

(color) condition of the Stroop (r = -.37, p = .011) and fNIRS HHb activation in the LDLPFC on 

the hard condition of the Flanker task (r = -.37, p = .036). It was also positively correlated with 

fNIRS O2Hb activation in the LDLPFC during the Stroop task (r = .40, p = .025), with O2Hb 

activation in the RDLPFC during the hard condition of the Flanker task (r = .40, p = .021), and 

with fNIRS HHb activation in the LDLPFC on the Stroop task (r = .51, p = .003) 

Accuracy on the Stroop easy (color) condition of the task was negatively correlated with 

fNIRS HHb activation in the LDLPFC (r = .42, p = .020), while accuracy on the Stroop hard 

(incongruent) condition was negatively correlated with fNIRS HHb activation in the LDLPFC. 

Accuracy on the Flanker easy condition, however, was negatively correlated with fNIRS O2Hb 

activation in the LDLPFC during the easy condition of the Flanker (r = -.41, p = .019) as well as 

during the hard condition in both the LDLPFC (r = -.40, p = .022) and RDLPFC. (r = -.38, p = 

.029).  
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CHAPTER 4: DISCUSSION 

Primary findings from this study partially supported initial hypotheses and are consistent 

with recent findings from a subset of the sample used in the current study. Self-reported 

cerebrovascular burden predicted depressive symptomatology, though executive functioning and 

rumination did not. The hypothesis that executive functioning mediated the relationship between 

hemodynamic response-assessed measures of prefrontal recruitment during executive 

functioning tasks and depression was not supported. Similarly, the hypothesis that rumination 

mediated the relationship between hemodynamic response and depression was not supported.  

Ancillary analyses, however, indicated a number of relationships that support initial 

hypotheses and may inform future research, though these analyses should be interpreted with 

caution due to the number of comparisons run and therefore increased potential for family-wise 

error. Among older adults in this sample, high CVB related to slower response times on 

measures of inhibitory control. This is consistent with previous research suggesting that among 

older adults, higher CVB negatively affects executive functioning performance (Mast et al., 

2008; Mast, Yochim, et al., 2004; Raz et al., 2003). It is important to note that as described 

previously self-reported CVB instead of physiological indicators of CVB were used in these 

analyses and when physiological indicators were used, they did not predict depressive 

symptomatology. One possible explanation for this occurrence is that a number of the 

physiological indicators of CVB (e.g., heart rate, blood pressure, blood oxygenation) are health 

conditions that can be treated. As these health conditions are more state-like, whether they fall 

within normal ranges or not can be dependent on medication adherence and whether the 

participant has taken the medication the day of testing. Many participants whose physiological 

indicators of CVB fell within normal limits also endorsed some of the self-reported indicators of 
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CVB and also reported taking medication to control the previously described health conditions. It 

is possible that other physiological indicators of CVB that were not measured as a part of this 

study, such as intima-media thickness or arterial stiffness, may be better indicators of vascular 

health that could be comparable to those that are self-reported.    

Executive functioning RT was also correlated with O2Hb fNIRS response in the RDLPFC 

and HHb fNIRS response in the LDLPFC. Further, negative relationships were found between 

executive functioning accuracy and LDLPFC and RDLPFC O2Hb and HHb. These findings are 

consistent with and extend work by Laguë-Beauvais and colleagues (2013) who found 

recruitment and lateralization differences between younger (19 – 36 years) and older (59 – 69 

years) adults on inhibitory control tasks. Although what they considered as older adults was 

much younger than the older adults enrolled in the present study, our results indicate that the 

dispersion of activation during inhibitory control tasks continues to occur as well. The 

consistency between the patterns of hemodynamic response suggests that fNIRS could be a 

viable option for use with the older adult population. The fNIRS device is much less expensive 

than other neuroimaging modalities, easier to maintain, and ferrous metals (e.g., pacemakers, 

dental implants) do not affect the quality of the signal, and as such may be more accessible in 

clinical settings. Although this seems promising, follow-up work is needed to ensure that 

measurement of the hemodynamic response is comparable to that of other modalities, such as 

fMRI.  

Despite null findings for a portion of the proposed hypotheses, this project accomplished 

the goal of connecting clinically-defined vascular burden (Mast, Neufeld, et al., 2004; Mast, 

Yochim, et al., 2004; Paulson et al., 2014) with the increased endorsement of depressive 

symptomatology. Further, this study provides key information that further supports the CaR-FA-



30 

X model, in that the proposed link between CVB and rumination has been demonstrated. In 

combination with other emerging research (Herrera, 2017), these findings do support the 

conceptual integration of the vascular depression hypothesis with the CaR-FA-X model.  Further 

work along these lines may lead to the refinement of existing psychotherapies, such as 

reminiscence therapy, that employ reminiscence of specific memories as a therapeutic device. 

Additionally, such findings may contribute to identification of emerging psychotherapeutic 

interventions. A third possibility is that particular treatments may be uniquely suited to varying 

depression presentations (ruminative, dysexecutive, etc.).  

In combination with other emerging work, these results also inform our understanding of 

CVB measurement and mental health implications of contrasting approaches to CVB 

measurement. Past treatment of self-report and physiological CVB measures has resulted in 

conflicting findings throughout the literature. Results of this thesis suggest that future research 

should include both physiological and self-report CVB measures to help us better understand 

these differences. This concept was demonstrated in the current study when examining other 

aspects of the CaR-FA-X model. Specifically, cerebrovascular burden was found to map onto 

rumination when using self-reported measures but not physiological measures. This approach 

was also supported by recent emerging research that showed self-reported CVB was a stronger 

predictor of depressive symptomology and even autobiographical memory then physiological 

CVB (James, Brush, Herrera, & Paulson, 2018). 

Because fNIRS has not been used commonly to date with older adults, the extent to 

which CVB and aging may potentially interfere with measurement accuracy is unknown. We 

know from studies employing MRI that cortical thickness is reduced in the presence of both 

CVB (Leritz et al., 2011) and healthy aging (Raz et al., 2010). Given these changes in thickness 
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coupled with the limited penetration depth of fNIRS, the question of impact on blood flow 

detection is warranted and requires validation within an older adult population. Future studies 

could employ simultaneous fMRI and fNIRS paradigms to compare signal detection between the 

two modalities. Doing so would potentially promote use of fNIRS for the clinical identification 

and characterization of vascular neuropathology without the need for MRI, which, given its cost 

and inaccessibility for reasons discussed previously, would provide significant benefit to this 

population. Further, it would allow for the identification of novel neuropsychiatric intervention 

targets. As it was mentioned previously, it is possible that indicators of CVB may also influence 

the degree to which O2Hb and HHb are detected. One such factor not examined during the 

course of this study was arterial stiffness, though it has been demonstrated as another predictive 

indicator of cardiovascular health beyond that of even other physiological measures (Hansen et 

al., 2006). Because there are currently no medications that increase arterial flexibility (Quinn, 

Tomlinson, & Cockcroft, 2012), it is likely that arterial stiffness would be representative of its 

actual current state and remain relatively consistent across measurements. As such, future 

research could incorporate the use of an Arteriograph as a physiological measure to identify 

CVB and potentially determine whether arterial stiffness affects blood flow detection.   

 

Limitations 

A potential limitation to the current study was the conceptualization of inhibitory control. 

In the current study, inhibitory control was represented by a composite variable that included the 

reaction time on the Stroop Test, Flanker, and Trail Making Test B. Although these tasks have 

generally been described as executive control tasks, they may be measuring different aspects of 

executive control. Specifically, the Stroop Test has been described as an interference control task 
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instead of an inhibitory control task (Nigg, 2000), while the Flanker and TMTB tasks have been 

described as requiring inhibitory control over selective attention (Diamond, 2013; Sánchez-

Cubillo et al., 2009). This may be an important distinction to make when examining executive 

dysfunction in vascular depression, as Friedman and Miyake (2004) have demonstrated that the 

ability to stop unwanted intrusive thoughts relies significantly on interference control instead of 

inhibitory control. This may also in part be due to the Stroop Test’s incorporation of the verbal 

executive component while the Flanker and TMTB include either little or no verbal engagement. 

Despite the strong correlations between each task, the subtle distinction between these tasks may 

suggest that not only do these tasks not represent inhibitory control well and that interference 

control should be considered separately from inhibitory control when examining vascular 

depression. 

Another limitation was that the sample included in this study might not be representative 

of the older adult population. Despite recruitment being open to the community, the current 

sample included many participants who achieved high levels education, remain both physically 

and mentally active, and engage with the community on a regular basis. As such, minorities were 

generally underrepresented in the sample. Another additional factor that was not accounted for 

was participant medication use, as medications that may have had an effect on depressive or 

cardiovascular symptomatology were not taken into account.  

In addition, another variable that was not included in the current study but has been 

demonstrated as an influential factor likely preceding the CaR-FA-X model is sleep. Recent 

emerging work suggests that sleep quality predicts both rumination and depression, and these 

relationships are moderated by inhibitory control (Brush et al., 2018). As such, including sleep in 
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the CaR-FA-X model may be imperative to understand the mechanisms underlying vascular 

depression in older adults.  

 

Implications and Directions for Future Research 

Findings of this study indicate support for two aspects of the CaR-FA-X model, 

rumination and executive control, as mechanisms largely responsible for the development of 

vascular depression in older adults. The current study not only further elucidated the role of 

various cognitive constructs in the development of depression and addressed some important 

measurement issues that will facilitate research on these constructs.  This work also began to 

demonstrate the potential usefulness of fNRIS as a means of measuring differences in the 

hemodynamic response related to depression instead of costly and highly restrictive fMRI.  

Future research should address previously described limitations such as recruiting a more 

diverse sample to allow for better generalization, examine these mechanisms in clinical groups as 

well as within a younger adult population, and include additional executive functioning measures 

that test interference control to more accurately assess its role in developing depression.  

Further research contributing to the understanding of vascular depression and the clinical 

use of fNIRS will allow for the development of targeted and cost-effective treatments for late-life 

depression. 
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Table 1: Demographic Data 

Variable 
Mean (SD) or % 

(Unless indicated otherwise) 
 (N = 52) (N = 33) 
Age 76.40 (4.60) 77.19 (4.38) 
Gender (Female) 63.46% 67.70% 
Race 

 
 

White 90.39% 90.30% 
Hispanic/Latino 7.69% 6.50% 
Native American 1.92% 3.20% 

Education Level (Years) 16.46 (2.94) 16.07 (2.42) 
Income (Interquartile Range)˨ $42,500.00 $45,000.00 
Marital Status 

 
 

Married 55.77% 48.40% 
Divorced 17.31% 22.60% 
Widowed 26.92% 29.00% 

Employment Status 
 

 
Employed Part-Time 5.77%  
Retired 94.23% 100.00% 

Handedness (Right) 92.31% 93.50% 
Number of People in Household 

 
 

One - I live alone 36.54% 38.70% 
Two 61.54% 58.10% 
Five 1.92% 3.20% 

Depressive Symptomatology (GDS) 6.23 (4.10) 5.97 (3.30) 
Heart rate 71.67 (13.71) 74.00 (15.76) 
Oxygen Saturation 95.02 (5.43) 93.70 (5.57) 
Systolic Blood Pressure 134.77 (16.63) 134.23 (18.38) 
Diastolic Blood Pressure 71.58 (10.05) 68.87 (9.02) 
Self-Reported Health Complaints˧˧ 

 
 

High Blood Pressure 40.39% 45.16% 
Heart and Circulation Problems 19.23% 22.58% 
Chest Problems 9.62% 16.12% 
Diabetes 19.23% 22.58% 

˧ Income Amount in U.S. Dollars 
˧˧ Health Complaints During the Past Year 
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Table 2: Regression Results for the Mediation of the Effect of Oxy-Hb on Depression by Executive Functioning 

Model Estimate SE p 
    
O2Hb Flanker RDLPFC fNIRS   Depression (c) -2657.79 1790.35 .148 

O2Hb Flanker RDLPFC fNIRS  ExF (a) -6385.93 4149.03 .134 
ExF  Depression (b) -.10 .08 .210 
O2Hb Flanker RDLPFC fNIRS  Depression (c’) -3296.57 1839.96 .084 

    
O2Hb Flanker LDLPFC fNIRS   Depression (c) -1986.46 2582.24 .448 

O2Hb Flanker LDLPFC fNIRS  ExF (a) -5868.66 5962.90 .333 
ExF  Depression (b) -.08 .08 .350 
O2Hb Flanker LDLPFC fNIRS  Depression (c’) -2427.71 2627.92 .363 

    
O2Hb Stroop RDLPFC fNIRS    Depression (c) 19.05 85.70 .826 

O2Hb Stroop RDLPFC fNIRS  ExF (a) -275.95 185.99 .149 
ExF  Depression (b) -.04 .09 .636 
O2Hb Stroop RDLPFC fNIRS  Depression (c’) 7.38 90.25 .936 

    
O2Hb Stroop LDLPFC fNIRS     Depression (c) -262.03 3225.09 .936 

O2Hb Stroop LDLPFC fNIRS  ExF (a) -9799.79 7023.51 .174 
ExF  Depression (b) -.05 .09 .580 
O2Hb Stroop LDLPFC fNIRS  Depression (c’) -744.19 3376.97 .827 

    
    
*p< .05; ** p <.01; *** p <.001   
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Table 3: Regression Results for the Mediation of the Effect of Oxy-Hb on Depression by Rumination 

Model Estimate SE p 
    
O2Hb Flanker RDLPFC fNIRS  Depression (c) -1611.04 1610.80 .325 

O2Hb Flanker RDLPFC fNIRS  Rum (a) -1812.24 1965.39 .363 
Rum  Depression (b) .38 .13 .007** 
O2Hb Flanker RDLPFC fNIRS  Depression (c’) -919.52 1468.87 .536 

    
O2Hb Flanker LDLPFC fNIRS  Depression (c) -1835.07 1779.50 .310 

O2Hb Flanker LDLPFC fNIRS  Rum (a) -1474.32 2186.99 .505 
Rum  Depression (b) .38 .13 .007** 
O2Hb Flanker LDLPFC fNIRS  Depression (c’) -1270.89 1608.04 .436 

    
O2Hb Stroop RDLPFC fNIRS  Depression (c) 32.13 80.82 .694 

O2Hb Stroop RDLPFC fNIRS  Rum (a) 43.56 99.96 .666 
Rum  Depression (b) .38 .14 .009** 
O2Hb Stroop RDLPFC fNIRS  Depression (c’) 15.71 72.99 .831 

    
O2Hb Stroop LDLPFC fNIRS  Depression (c) 853.60 2219.02 .703 

O2Hb Stroop LDLPFC fNIRS  Rum (a) 94.17 2753.08 .973 
Rum  Depression (b) .38 .13 .009** 
O2Hb Stroop LDLPFC fNIRS  Depression (c’) 817.90 1992.99 .685 

    
    
*p< .05; ** p <.01; *** p <.001   
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Table 4: Regression Results for the Mediation of the Effect of Deoxy-Hb on Depression by Executive Functioning 

Model Estimate SE p 
    
HHb Flanker RDLPFC fNIRS   Depression (c) -2080.78 2337.97 .381 

HHb Flanker RDLPFC fNIRS  ExF (a) -6690.60 5365.96 .222 
ExF  Depression (b) -.08 .08 .313 
HHb Flanker RDLPFC fNIRS  Depression (c’) -2626.67 2395.64 .282 

    
HHb Flanker LDLPFC fNIRS   Depression (c) -2944.16 6074.52 .631 

HHb Flanker LDLPFC fNIRS  ExF (a) -8427.20 14084.77 .554 
ExF  Depression (b) -.07 .08 .403 
HHb Flanker LDLPFC fNIRS  Depression (c’) -3510.14 6139.30 .572 

    
HHb Stroop RDLPFC fNIRS    Depression (c) 61.41 126.42 .630 

HHb Stroop RDLPFC fNIRS  ExF (a) -209.74 283.13 .465 
ExF  Depression (b) -.04 .08 .649 
HHb Stroop RDLPFC fNIRS  Depression (c’) 53.15 129.49 .685 

    
HHb Stroop LDLPFC fNIRS     Depression (c) -1965.99 4627.33 .674 

HHb Stroop LDLPFC fNIRS  ExF (a) -18494.10 9852.47 .071 
ExF  Depression (b) -.06 .09 .486 
HHb Stroop LDLPFC fNIRS  Depression (c’) -3135.02 4954.46 .532 

    
    
*p< .05; ** p <.01; *** p <.001   
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Table 5: Regression Results for the Mediation of the Effect of Deoxy-Hb on Depression by Rumination 

Model Estimate SE p 
    
HHb Flanker RDLPFC fNIRS  Depression (c) -1436.87 2221.31 .523 

HHb Flanker RDLPFC fNIRS  Rum (a) -1405.69 2710.37 .607 
Rum  Depression (b) .39 .13 .006** 
HHb Flanker RDLPFC fNIRS  Depression (c’) -889.09 1995.04 .659 

    
HHb Flanker LDLPFC fNIRS  Depression (c) -1674.35 2086.38 .428 

HHb Flanker LDLPFC fNIRS  Rum (a) -8.71 2565.92 .997 
Rum  Depression (b) .40 .13 .005** 
HHb Flanker LDLPFC fNIRS  Depression (c’) -1670.91 1853.72 .375 

    
HHb Stroop RDLPFC fNIRS  Depression (c) 73.92 122.36 .551 

HHb Stroop RDLPFC fNIRS  Rum (a) 108.35 151.04 .479 
Rum  Depression (b) .37 .14 .010** 
HHb Stroop RDLPFC fNIRS  Depression (c’) 33.39 111.43 .767 

    
HHb Stroop LDLPFC fNIRS  Depression (c) 737.26 2068.17 .724 

HHb Stroop LDLPFC fNIRS  Rum (a) -1030.00 2557.91 .690 
Rum  Depression (b) .39 .13 .008** 
HHb Stroop LDLPFC fNIRS  Depression (c’) 1134.38 1855.23 .546 

    
    
*p< .05; ** p <.01; *** p <.001   
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Table 6: Bivariate Correlation Analysis of CaR-FA-X Components and Oxy-Hb 

 

CVB-
SR GDS RRS 

Stroop 
Easy 
RT 

Flanker 
Easy 
RT 

Stroop 
Hard 
RT 

Flanker 
Hard 
RT 

TMTB 
RT 

Stroop 
Easy 
Acc 

Flanker 
Easy 
Acc 

Stroop 
Hard 
Acc 

Flanker 
Hard 
Acc 

Left 
DLPFC 

Oxy 
Stroop 
Hard 

Right 
DLPFC 

Oxy 
Stroop 
Hard 

Left 
DLPFC 

Oxy 
Stroop 
Easy 

Right 
DLPFC 

Oxy 
Stroop 
Easy 

Left 
DLPFC 

Oxy 
Flanker 

Easy 

Right 
DLPFC 

Oxy 
Flanker 

Easy 

Left 
DLPFC 

Oxy 
Flanker 

Hard 

CVB-SR -                                     
GDS .29* -                                   

RRS .19 .63*** -                                 

Stroop Easy RT .22 .29* .26 -                               

Flanker Easy RT .25 .12 .22 .45** -                             

Stroop Hard RT .10 .12 .14 .59*** .24 -                           

Flanker Hard RT .35* .09 .19 .38** .86*** .20 -                         

TMTB RT .12 .07 .12 .52*** .35* .36* .23 -                       

Stroop Easy Acc .13 .10 .09 -.43** -.25 -.18 -.18 -.39* -                     

Flanker Easy Acc -.11 .05 .12 -.02 .24 -.11 .28 -.16 .09 -                   

Stroop Hard Acc -.01 .09 .21 -.20 -.20 -.31* -.20 -.27 .05 -.04 -                 

Flanker Hard Acc .02 -.01 -.05 -.25 -.13 -.07 -.01 -.25 -.09 -.06 .10 -               
Left DLPFC Oxy 

Stroop Hard -.02 .07 .01 .26 .11 .20 .18 .40* .21 -.06 -.08 -.01 -             
Right DLPFC Oxy 

Stroop Hard .21 .07 .08 .33 .13 .32 .11 .28 -.13 -.06 -.10 -.06 .22 -           
Left DLPFC Oxy 

Stroop Easy -.23 .07 .15 .18 -.22 .03 -.19 -.21 -.03 .08 .09 .08 .27 .08 -         
Right DLPFC Oxy 

Stroop Easy .03 .06 .07 .23 -.19 .21 -.20 -.14 -.02 -.01 .04 .00 -.09 .42* .55** -       
Left DLPFC Oxy 

Flanker Easy .01 -.30 -.10 -.25 -.06 -.04 -.19 .02 -.02 -.41* -.25 .06 -.35 -.34 -.16 -.14 -     
Right DLPFC Oxy 

Flanker Easy -.28 -.19 -.23 -.13 -.07 -.05 -.16 .02 -.04 -.10 .02 .11 .01 .71*** -.07 -.14 .28 -   
Left DLPFC Oxy 

Flanker Hard .05 -.18 -.12 -.07 -.14 .23 -.12 -.21 .13 -.40* -.31 .04 -.41* -.37* -.11 .05 .62*** .07 - 
Right DLPFC Oxy 

Flanker Hard -.08 -.18 -.16 .39* -.02 .44* -.08 .40* -.02 -.38* -.08 .05 .49** .47** .01 .36* -.20 .12 -.10 

*p< .05; ** p <.01; *** p <.001   
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Table 7: Bivariate Correlation Analysis of CaR-FA-X Components and Deoxy-Hb 

 

CVB-
SR GDS RRS 

Stroop 
Easy 
RT 

Flanker 
Easy 
RT 

Stroop 
Hard 
RT 

Flanker 
Hard 
RT 

TMTB 
RT 

Stroop 
Easy 
Acc 

Flanker 
Easy 
Acc 

Stroop 
Hard 
Acc 

Flanker 
Hard 
Acc 

Left 
DLPFC 
Deoxy 
Stroop 
Hard 

Right 
DLPFC 
Deoxy 
Stroop 
Hard 

Left 
DLPFC 
Deoxy 
Stroop 
Easy 

Right 
DLPFC 
Deoxy 
Stroop 
Easy 

Left 
DLPFC 
Deoxy 
Flanker 

Easy 

Right 
DLPFC 
Deoxy 
Flanker 

Easy 

Left 
DLPFC 
Deoxy 
Flanker 

Hard 

CVB-SR -                                     
GDS .29* -                                   

RRS .19 .63*** -                                 

Stroop Easy RT .22 .29* .26 -                               

Flanker Easy RT .25 .12 .22 .45** -                             

Stroop Hard RT .10 .12 .14 .59*** .24 -                           

Flanker Hard RT .35* .09 .19 .38** .86*** .20 -                         

TMTB RT .12 .07 .12 .52*** .35* .36* .23 -                       

Stroop Easy Acc .13 .10 .09 -.43** -.25 -.18 -.18 -.39* -                     

Flanker Easy Acc -.11 .05 .12 -.02 .24 -.11 .28 -.16 .09 -                   

Stroop Hard Acc -.01 .09 .21 -.20 -.20 -.31* -.20 -.27 .05 -.04 -                 

Flanker Hard Acc .02 -.01 -.05 -.25 -.13 -.07 -.01 -.25 -.09 -.06 .10 -               
Left DLPFC Oxy 

Stroop Hard .05 -.19 .02 -.23 -.22 .16 -.25 -.16 -.30 -.31 -.27 .08 -             
Right DLPFC Deoxy 

Stroop Hard -.26 -.12 -.16 -.03 .02 .09 -.07 -.02 -.08 -.02 .02 .09 .07 -           
Left DLPFC  Deoxy 

Stroop Easy .20 -.14 -.00 -.21 -.21 .15 -.12 -.37* .15 -.11 -.18 -.05 .77*** -.03 -         
Right DLPFC  Deoxy 

Stroop Easy -.128 -.12 -.09 .22 .15 .24 .02 .21 .14 .06 .02 .02 -.27 .73*** -.23 -       
Left DLPFC  Deoxy 

Flanker Easy -.27 .10 .15 .19 -.14 .00 -.13 -.08 -.01 .12 .08 .08 -.25 -.05 -.30 .10 -     
Right DLPFC  Deoxy 

Flanker Easy -.12 .01 -.06 .13 -.16 .05 -.21 -.01 .05 .04 .07 -.01 .15 .51** .15 .61*** .27 -   
Left DLPFC  Deoxy 

Flanker Hard -.15 .07 -.08 .36 .23 .52** .15 .51** -.42* -.12 -.40* .04 -.55*** .05 -.84*** .25 .23 -.21 - 
Right DLPFC  Deoxy 

Flanker Hard .25 .11 .13 .22 .05 .15 .09 .20 -.14 -.08 -.10 -.07 -.07 -.88*** -.10 -.44 .11 -.32 .20 

*p< .05; ** p <.01; *** p <.001 
   
  

  



42 

 

APPENDIX B: FIGURES 
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Figure 1: Summary of the Flanker easy condition paradigm 

The figure presents an example of a left and right trial. The directionality of each trial is random, and 
participants report the direction the arrow is pointing via keyboard button press (‘D’ if pointing left, ‘K’ 
if pointing right). The time listed below each picture indicates the duration the stimulus or fixation is on 
screen. Each block consists of 12 trials is followed by a 20000ms fixation cross before proceeding to the 
experimental condition.  
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Figure 2: Summary of the Flanker experimental condition paradigm.  

The figure presents an example of a congruent and incongruent trial. The directionality of each trial is 
random, and participants report the direction the arrow is pointing via keyboard button press (‘D’ if 
pointing left, ‘K’ if pointing right). The time listed below each picture indicates the duration the stimulus 
or fixation is on screen. Each block consists of 12 trials is followed by a 20000ms fixation cross before 
proceeding to the easy condition. 
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Figure 3: Summary of the Stroop paradigm.  

The figure presents an example of the four different blocks. The presentation of each block is 
counterbalanced, and participants are instructed to report either the color of the text or what the text says 
via keyboard button press (‘8’ if Red, ‘9’ if Green, or ‘0’ if Blue). The time listed below each picture 
indicates the duration the stimulus or fixation is on screen. The incongruent block consists of 36 trials, 
while the other three blocks consists of 24 trials. Prior to the start of every block, a 20000ms fixation 
cross is presented.  
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Figure 4: Hypothesized mediation effects of executive function (inhibitory control) on the relationship 
between fNIRS response (O2Hb and HHb) and depression (Model A), and hypothesized mediation effects 
of rumination on the relationship between hemodynamic response and depression (Model B). 
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Figure 5: Consort diagram depicting participant inclusion. 
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