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ABSTRACT 

 

This investigation assesses the role of poly(ADP-ribose) polymerase in ethanol-mediated 

hepatotoxicity using the untransfected HepG2 hepatocellular carcinoma line, an established, 

well-characterized toxicological model. HepG2 cells were treated with ethanol at concentrations 

between 100 mM and 800 mM, and assessed for markers of cytotoxicity. PARP-1 activity in 

total cell protein lysates was quantified as a proxy of apoptotic induction at six hours. Our results 

demonstrated a 1.43-fold AST activity increase in culture medium isolates of cells exposed to 

800 mM without significant effect on cellular viability. PARP-1 activity varied greatly and re-

sults for enzyme activity remained inconclusive. The results suggest a high degree of insensitivi-

ty to ethanol toxicity and nuclear enzyme activity, demonstrating the metabolic irrelevance of 

untransfected HepG2 in ethanol toxicosis. There is a need to characterize phase 1 metabolic en-

zyme expression profiles relevant to ethanol for CYP2E1 and ADH pathways to facilitate com-

parisons across toxicological models using transfected, as well as the untransfected HepG2 mod-

el. 
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CHAPTER ONE: 

INTRODUCTION 

 

Ethanol 

Ethanol (Ethyl alcohol; CAS No. 64-17-5) is a widely consumed neurologic and hepatic 

toxicant. According to a Substance Abuse and Mental Health Services Administration report 

(2012), approximately 23.6% of adults admitted engaging in at least one binge drinking event 

within the past year. At high doses, the requirement of hepatic detoxification increases substan-

tially, as does the risk of neurotoxicity and hepatotoxicity acetaldehyde and reactive by-products 

(Reviewed in Albano et al., 2006). Pathological features of hepatic intoxication range from 

acute, transient steatosis (Lipid accumulation in hepatocytes), steatohepatitis (Lipid accumula-

tion with cytokine-mediated inflammation), and cellular death, to more chronic, permanent mani-

festations, such as fibrosis and cirrhosis; such entities are aggregated into the pathological cate-

gory called alcohol-induced liver disease (Goldin et al., 1993; Reviewed in Lucey et al., 2009; 

Massey & Arteel, 2012). An accepted theory in alcohol-induced liver injury pathogenesis in-

volves a two-stage mechanism consisting of sensitization, e.g., reduction in endogenous antioxi-

dant or suppression repair mechanisms, and subsequent priming resulting in a macrophage-

mediated inflammatory response; such responses can lead to cellular damage or death (Takeya-

ma et al., 1996; Tsukamoto et al., 2001). Attention on ethanol-mediated hepatotoxicosis has fo-

cused on mediators of oxidative stress originating from two general pathways: the indirect for-

mation of reactive oxygen and nitrogen species as a byproduct of phase I metabolism, and direct 
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metabolism of ethanol to acetaldehyde–an electrophilic species which forms biomolecule ad-

ducts when detoxification does not occur (Tsukamoto et al., 2001). The role of reactive oxidative 

species in ethanol toxicosis has been demonstrated by the work of Di Luzio (1963). In attempting 

to further elucidate the mechanisms and biological consequences of ethanol-mediated hepatotox-

icity in vivo and in vitro, models have facilitated characterization of clinically-relevant pathogen-

esis (Ambadath et al., 2010; Carter & Wands, 1988; Di Luzio, 1958, 1963; Garcia-Ruiz et al., 

1994; Navasumrit et al., 2000; Rodeiro et al., 2008; Susin et al., 1999; Reviewed in Higuchi et 

al., 1996; Hoek & Pastorino, 2002). One of the models utilized as an in vitro model for ethanol-

induced hepatotoxicity is the HepG2-an immortalized hepatocellular carcinoma cell line derived 

from a 15 year old Caucasian male with variable retention of putative biophysical functions of 

the originating parenchyma (Knowles et al., 1980). 

 

The HepG2 Model 

Since the establishment of the HepG2 cell line, the HepG2 model continues to appreciate 

utilization in toxicological testing. Early reports by Neuman and colleagues (1993) using this 

model demonstrated detectable toxicosis at clinically relevant serum concentrations, e.g., above 

40 mM, in accordance with other studies (Guitierrez-Ruiz et al., 1999; Kurose et al., 1997), 

while others reported similar toxicosis as low as 1 mM (Castaneda & Kinne, 2000, 2001; Cas-

taneda & Rosin-Steiner, 2006). Simultaneously, the differential expression of constitutive phase I 

metabolic enzymes was recognized, notably with some batches demonstrating significantly de-

creased expression levels of alcohol dehydrogenase (ADH; E.C. 1.1.1.1) and the ethanol-

inducible cytochrome P450 2E1 (CYP2E1; E.C. 1.14.14.1) isozyme (Coon & Koop, 1987; 

Hasumura et al., 1975; Rodriguez-Antona et al., 2002; Tam, 1992). In compensation, 



3 

Cederbaum’s group established a stable transfected HepG2 subtype with an attenuated CYP2E1 

mRNA transcription profile (Dai et al., 1993). Ethanol-inducible, dose-dependent CYP2E1 

mRNA transcriptional up-regulation was confirmed in accordance with physiologically-relevant 

MEOS levels and restored ethanol sensitivity to their HepG2 model, thus, implying sufficient 

contribution of CYP2E1 in oxidative stress-mediated hepatotoxicosis (Carroccio et al., 1994; 

Cederbaum, 2011; Ingelman-Sundberg et al., 1993). Direct comparisons of the CYP2E1 trans-

fected and untransfected HepG2 models have attributed the untransfected HepG2 model as in-

sensitive to ethanol-mediated cytotoxicity (Wu & Cederbaum, 1996, 1999), despite data suggest-

ing a significant contribution of alcohol dehydrogenase to ethanol metabolism (≥50%). Under 

high doses, CYP2E1 becomes transcriptionally up-regulated and metabolizes the majority of the 

remaining ethanol fraction, albeit with an ethanol-specific Km approximately 10-fold lower than 

that of ADH; catalase contributes an almost negligible fraction but does indeed participate. All 

three metabolic pathways produce acetaldehyde as well as reactive byproducts implicated in oxi-

dative stress (Teschke et al., 1976). 

ADH and CYP2E1 are responsible for reactive oxygen species (ROS) generation dose-

dependently (Szuster-Ciesielska et al., 2008; Wu & Cederbaum, 1996) with resultant reductions 

in endogenous antioxidant pools, such as reduced glutathione (GSH), and formation of lipid pe-

roxidation (Devi et al., 1993; Gutierrez-Ruiz et al., 1999; Kang et al., 2011; Khanal et al., 2009; 

Kurose et al., 1997). Further in vivo evidence demonstrates significant ethanol dose-dependent 

metabolically-derived inhibition of catalase and CuZn-superoxide dismutase (SOD) by superox-

ide and hydrogen peroxide, respectively, as well as acetaldehyde-mediated SOD inhibition in 

hepatocytes (Balasubramaniyan et al., 2007; Das et al., 2010; Ingelman-Sundberg & Johansson, 

1984; Kono & Fridovich, 1982; Yang et al., 2008). One report did not confirm this observation 
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(Peng et al., 2010). The data imply ROS generation occurs irrespective of hepatocyte model 

source so long as ROS generation occurs, and, thus, an inherent physiological phenomenon re-

producible both in vivo and in vitro. Together, these results suggest firstly, ethanol administration 

can result in ROS generation and hepatotoxicosis under physiological conditions, and, secondly, 

that the integrity of constitutive phase I enzyme metabolic profile dictates the extent to which 

damage occurs along a constant administered dose. Therefore, the potential for ROS-mediated 

oxidative stress shall depend on the basal metabolic profile of the HepG2 model tested. 

The work of Hewitt and Hewitt (2004) has illustrated phenotypic variations across 

batched HepG2 cells which can account for some variability in between group toxicological 

endpoint heterogeneity. Collectively, although CYP2E1 mRNA expression tends to be low, basal 

expression may vary significantly between batches of cells and dependent upon culturing condi-

tions, e.g., time from isolation to exposure, plating time, passage number, etc.; problems shared 

similarly by primary hepatocyte isolates (Richert et al., 2006). Thus, unwarranted assumptions 

regarding the metabolic phenotype between batched HepG2 cells can be erroneous, and, as such, 

the degree of separation from primary hepatocyte isolates and in vivo models cannot be de-

nounced unless either genotypic expression profiles or phenotypic proxies of pertinent metabolic 

enzymes have been demonstrated (Hart et al., 2010; Hewitt & Hewitt, 2004).  

Recent analyses investigating HepG2 expression profiles by differential microarray and 

qualitative real-time polymerase chain reaction have indeed confirmed numerous samples with 

significantly reduced CYP2E1 and ADH mRNA expression profiles compared to hepatocyte 

isolates, fresh hepatocellular carcinoma isolates, and the immortalized HepaRG cell line (Costan-

tini et al., 2013; Guo et al., 2011; Hart et al., 2010). Two profiles displayed significant reduction 

in both phase I enzyme mRNA (Guo et al., 2011; Hart et al., 2010), while Costantini and col-
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leagues (2013) did not directly report ethanol-dependent metabolic enzyme characterization; 

HepG2 mRNA expression among several genes involving cell cycle, signaling, and DNA re-

sponse collectively exhibited 2646 significantly down-regulated and 3586 significantly up-

regulated genes compared to hepatocytes. Of note, however, the precision genetic variation, and, 

thus, the absolute ratio of up-regulated or down-regulated genes, shall depend on the genotypic 

profile of the underlying control hepatocytes (Ponsoda et al., 2001; Rogue et al., 2012). Contem-

porary studies have not fully characterized phenotypic variability within the HepG2 model, and 

whether attenuation of CYP2E1 and ADH expression profiles through transfected, or co-

transfected, cells may be appropriate for a particular application (Hewitt & Hewitt, 2004). De-

spite suggested variation, several studies continue to utilize the HepG2 model both transfected 

with CYP2E1 and/or ADH, as well as those not designated as transfected, with variable metabol-

ic success. 

Several recent studies utilizing HepG2 model not designated as transfected (Herein: non-

designate HepG2) with either CYP2E1 or ADH have contributed evidence suggesting a thera-

peutic role of antioxidants or oxidative species-quenching mechanisms in abrogating ethanol-

mediated toxicosis (Farshori et al., 2013; Kang et al., 2011; Kumar et al., 2011; Reddy et al., 

2008; Senthil Kumar et al., 2012), while other have focused on elucidating subcellular interac-

tions among apoptotic and necrotic machinery in dictating ethanol-induced cellular fate (Bal-

asubramaniyan et al., 2007; Gutierrez-Ruiz et al., 1999, 2001; Szuster-Ciesielska et al., 2008; 

Yang et al., 2008). Studies have reported detectable toxicosis at concentrations ranging between 

100 mM (Senthil Kumar et al., 2012) and 300mM (Farshori et al., 2013) to greater than 500 mM 

for one study (Kang et al., 2011), demonstrating highly variable toxic thresholds. Across the 

aforementioned studies, proxies of toxicosis have remained relatively consistent in characterizing 
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cytotoxicity markers including, but not limited to: quantification of endogenous antioxidants 

utilizing total GSH or GSH/GSSG ratio; cellular viability via trypan blue exclusion, Annexin V,  

propidium iodide, and Hoechst staining; plasma membrane integrity via quantification of aspar-

tate aminotransferase (AST), alanine aminotransferase (ALT), γ-glutamyltranferase (GGT); mi-

tochondrial membrane electrochemical gradient potential via JC-1, rhodamine 123, and Ca
2+

 

quantification; and oxidative stress biomarkers via malondialdehyde formation, thiobarbituric 

acid reactive substances assessment, and NO production. Notably, these methods are also con-

sistent with those assessing transfected HepG2 cells, conferring a degree of comparability across 

studies. With respect to AST leakage, all studies mentioned utilizing the non-designate HepG2 

model, with the exception of Gutierrez-Ruiz and colleagues (1999), demonstrated significant 

dose-dependent elevations of AST activity at 24 hours post exposure to ethanol. Though the 

magnitude of AST activity increases depend on treatment conditions and individual variation, 

studies in vivo have confirmed hepatic pathogenesis of high acute ethanol doses via AST libera-

tion from serum samples (Ambadath et al., 2010; Cederbaum, 2011; Das et al., 2010). Together 

with ALT and lipid peroxidation products, AST has been noted as a stable and sensitive marker 

of hepatotoxicity in vivo and in vitro (Cohen & Kaplan, 1979; Meagher et al., 1999). Conclusive-

ly, some non-designate HepG2 cells have exhibited cytotoxicity generally homologous to those 

of transfected HepG2 and animal models. 

An early report by Di Luzio (1963) exhibited the therapeutic role of antioxidants in atten-

uating acute ethanol-induced hepatotoxicosis in vivo, implicating oxidative stress as an etiologi-

cal factor in the pathogenesis of steatosis and hepatocyte injury; results from this study assisted 

in focusing the therapeutic paradigm towards oxidative species quenching. Other markers and 

cytotoxic mechanisms of ethanol toxicosis focus on inflammatory mediators and allow diversifi-
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cation of ethanol-mediated mechanistic hepatotoxicity, especially in vivo; nevertheless, this as-

pect shall not be further addressed in this study. As such, a fundamental link between un-

quenched ROS-mediated oxidative stress and DNA lesions, e.g., single strand breaks, in vivo and 

in vitro demonstrated the requirement of repair machinery induction following high acute ethanol 

dosing. As general repair enzymes respond to DNA lesions, one enzyme remains of particular 

concern in contemporary repair signaling and nucleosome modification (Navasumrit et al., 

2000). 

 

Poly(ADP-Ribose) Polymerase 

The poly(ADP-ribose) polymerase (PARP) family includes 18 known members, exhibit-

ing immense variation in molecular weight, domain composition, cellular function, and localiza-

tion, are phylogenetically linked by a conserved ADP-ribosylating catalytic domain, (Reviewed 

in Ame et al., 2004; Hassa & Hottiger, 2008). PARP-1 [E.C. 2.4.2.30], the most abundant iso-

form found within the nucleus, has received considerable attention for its role in transcriptional 

regulation (Frizzell et al., 2009; Ju et al., 2004; Krishnakumar et al., 2008, 2010b; Wacker et al., 

2007), chromosome structure modification (Huletsky et al., 1989; Lonskaya et al., 2005; Tulin & 

Spadling, 2003), metabolism and homeostasis (Bai et al., 2011; Luo & Kraus, 2012), stalled rep-

lication fork reinitiation (Bryant et al., 2009; de Murcia et al., 1983; Simbulan-Rosenthal et al, 

1998), and cellular signaling and cycling (Monaco et al., 2005). In addition to the catalytic do-

main, PARP-1 contains putative domains exemplifying its role in regulated DNA repair. Two 

zinc finger domains have been implicated in localizing PARP-1 to DNA lesions, while simulta-

neously delineating DNA damage type (single- versus double-strand breaks) for initiating lesion-

specific repair pathways (Ahel et al., 2008; Ali et al., 2012; Eustermann et al., 2011; Ikejima et 
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al., 2009; Langelier et al, 2011; Pion et al, 2003). A third zinc domain has a distinct function 

with possible interdomain interactions for modulating catalysis, DNA binding, transactivation 

(Langelier et al., 2008, 2010; Lilyestrom et al., 2010; Tao et al., 2008). A BRCA-like automodi-

fication domain allows self-post-translational ADP-ribosylation for regulating hetero-ADP-

ribosylation (D’Amours et al, 1999), while a WGR [tryptophan-, glycine-, and arginine-rich] 

domain, of unknown specific function, is imperative for catalysis (Altmeyer et al., 2009). To-

gether, the WGR and ART (ADP-ribose transferase) domains compose the catalytic domain nec-

essary for core interaction with DNA; this composite of domains phylogenetically distinguishes 

PARP-1 from the other isozymes of the poly(ADP-ribose) polymerase family (Ruf et al, 1996, 

1998). 

The initial report by Chambon and colleagues (1963) describes the necessity for both 

DNA and oxidized nicotinamide-adenine dinucleotide (NAD
+
) in PARP-1 activation, resulting in 

the formation of polymerized ribose residues-a process called poly ADP-ribosylation. Later stud-

ies revealed the necessity for a nucleic store of adenine triphosphate (ATP) in cell sustainability 

during ADP-ribosylation, especially after widespread DNA lesion formation (Benjamin et al., 

1980a, 1980b; Berger, 1985; Durkacz et al, 1980; Juarez-Salinas et al., 1979; Kameshita et al., 

1984; Satoh et al., 1994). Under basal levels of endogenous DNA damage, PARP-1 acts as a 

DNA nick sensor generally through recognition of non-B-type DNA conformations to initiate 

transient repair (Lonskaya et al., 2005). Translocalization to nicks has been attributed to the in-

herently flexibility of nicked strands, otherwise stereochemically prevented by unstressed, B-

type DNA, and affords a mechanistic explanation of PARP-1’s sensitivity in localization to dam-

aged nucleotides or nucleosome constituents (Le Cam et al., 1994). Consequently, transient his-

tone ADP-ribosylation electrochemically promotes an open DNA conformation, enabling access 
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by repair machinery, such as XRCC1 for base excision repair, MRE11 for nucleotide excision 

repair, and Ku70 for non-homologous end-joining (Bouchard et al., 2003; Caldecott, 2003; El-

Khamisy et al., 2003; Mathis & Althaus, 1987; Pleschke et al., 2000; Schreiber et al., 2002; 

Veuger et al., 2004). To limit aberrant overactivation, the highly ubiquitous PARP-1 remains 

predominantly latent until activation, which, when activated by post-translational modification, 

can reach levels 500-fold of the basal level and effectively precluded the requirement of tran-

scriptional up-regulation during cytotoxic stress (David et al., 2009; Haince et al, 2008; Hassa & 

Hottiger, 2008; Ju et al., 2004; Ludwig et al., 1988; Tulin & Spradling, 2003; Zaremba et al., 

2009). Therefore, negative regulation of PARP is necessary to discourage over-activation and 

energy depletion. 

Internuclear NAD
+
 levels are replenished partially by endogenous nicotinamide cycling 

and utilization competition, while regulatory mechanism buffer against instances of depletion; 

for example, endogenous intranuclear production of NAD
+
 is constrained by NMNAT-1, while a 

few nuclear enzymes compete for free NAD
+
, e.g., SIRT1 and PARP-1 (Bai et al., 2011; Berger 

et al., 2007; Kolthur-Seetharam et al., 2006; Revollo et al., 2004; Zhang et al., 2009). When 

DNA damage occurs, PARP-1 and DNA-PK competitively bind DNA lesions, limiting PARP-1 

lesion localization and ADP-ribosylation activation (D’Silva et al., 1999; Masson et al., 1998; 

Veuger et al., 2004). Post-translation modification by protein kinase C and through the IGF-I 

associated ERK cascade results in decreases in PARP activity (Bauer et al. 1992; Beckert et al., 

2006; Tanaka et al., 1987). Nicotinamide, the catalysis by-product of ADP-ribosylation, acts as a 

strong negative-feedback by transient, reversible inhibition of PARP (Hageman & Stierum, 

2001; Zhang & Kraus, 2009). Interestingly, an important ADP-ribose acceptor is the PARP-1 

BRCA domain which ablates ADP-ribosylation, limiting excessive enzyme activation and, sub-
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sequently, leading to a negative regulatory quiescent PARP-1 state (Adamietz, 1987; D’Amours 

et al., 1999; de Murcia et al., 1983; Fontan-Lozano et al., 2010; Happel & Doenecke, 2009; Ka-

waichi et al. 1981; Messner et al., 2010; Ogata et al., 1981; Virag & Szabo, 2002). Under cir-

cumstances favoring ADP-ribosylation, poly(ADP-ribose) glycohydrolase (PARG; E.C. 

3.2.1.143) hydrolyzes ADP-ribose from acceptor proteins, such as PARP-1, thus, functionally 

linking PARG in PARP-1 activation (Erdelyi et al., 2009; Frizzell et al., 2009). While both 

PARG and ADP-ribose hydrolase (ARH3) have been shown to hydrolyze ADP-ribose polymers 

within the nucleus and cytoplasm, polymer hydrolysis remains imperative for restoration of an 

unstressed ante-lesion, B-type conformation (de Murcia et al., 1986; Niere et al., 2012; Oka et 

al., 2006). New evidence suggest an ever-increasing role of PARP-1 not only in general repair 

enzyme recruitment, but in selective orchestration of base excision repair (BER), non-

homologous end joining (NHEJ), or homologous recombination (HR), depending on nick char-

acteristics (Audebert et al, 2004; Frank-Vaillant & Marcand, 2002; Hochegger et al., 2006; Mao 

et al., 2011; McCabe et al., 2006; Saberi et al, 2007; Wang et al, 2006). Also, maintaining integ-

rity of nucleosomes has been suggested as histones, which are targets of oxidizing species, have 

been shown to exhibit preferential resistance to ADP-ribosylation by PARP-1 unless oxidatively 

damaged; histone ADP-ribosylation increases their affinity for proteolytic destruction by 20S 

(Catalgol et al., 2010; Mayer-Kuckuk et al., 1999; Ullrich et al. 1999a, 1999b, 2000; Ullrich & 

Grune, 2001). Oxidative stress is a natural occurrence with sufficient reserve capacity to protect 

the cell under low level oxidative stressor situations; however, under heavy oxidation, the effects 

can overwhelm repair mechanism reserves and lead to deleterious effects. 

While oxidative stress-mediated cytotoxicity has been demonstrated to activate PARP-1, 

overactivation of by extensive oxidative stress may precipitate depletion of nuclear NAD
+
 and 
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ATP (Berger et al., 1986; Carson et al, 1988; Filipovic et al. 1999; Ha & Snyder, 1999; 

Schraufstatter et al., 1986; Sims et al., 1981, 1983; Virag et al. 1998a, 1998b; Yamamoto et al., 

1981; Zhang et al., 1994). Nitric oxide, produced from inducible nitric oxide synthase, can fol-

low oxidative stress events resulting in the evolution of peroxynitrite-a known oxidative stress 

mediator shown also to contribute to DNA damage and PARP-1 overactivation (Cuzzocrea et al., 

1998; Koh et al., 2005). While cellular death from PARP-mediated energy depletion has been an 

attractive mechanism (Benjamin et al., 1980a; Berger, 1985), research has offered evidence sug-

gesting that energy depletion is not sufficient in causing PARP-mediated death, but rather nucle-

ar translocation of mitochondrial apoptosis-inducing factor (AIF), an inner mitochondrial mem-

brane embedded flavoprotein, remains paramount in completing the parthanatos pathway-a re-

cently recognized cellular death subtype (Andrabi et al., 2006, 2008; David et al., 2009; Galluzzi 

et al., 2012; Pospisilik et al., 2007; Wang et al., 2011). Previous reports have attributed cellular 

death via necrosis (Filipovic et al., 1999; Ha & Snyder, 1999; Simbulan-Rosenthal et al., 1998). 

It is now known that parthanatos has subtle, but distinct, morphological manifestations delineat-

ing it from apoptosis and necrosis; however, mechanistic cross-talk exists, including a late in-

flammatory response with apoptotic machinery induction. For example, parthanatos requires AIF 

translocation for causing DNA fragmentation and condensation, but late caspase-3 activation 

occurs, and is a suggestive biomarker of apoptosis (Robaszkiewicz et al., 2012; Yu et al., 2002, 

2006). Mechanistically, AIF translocation must commence only after a specific course of events. 

First and foremost, the formation of the mitochondrial permeability transition pore (MPT)-a 

complex of proteins forming a transmembrane conductance pore-assembles after ablation of the 

mitochondrial transmembrane potential (ΔѰm), calcium influx, and energy production secession 

(Bernardi, 1992; Bernardi et al., 1994; Crompton, 1999). AIF was shown to constrain a putative, 
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high affinity ADP-ribose binding domain, functionally linking PARP-1 activation, AIF, and par-

thanatos progression (Alano et al., 2004; Hong et al., 2004; Ye et al., 2002). Andrabi and col-

leagues (2006) demonstrated that ADP-ribose polymers of considerable length have been shown 

to directly induce ADP-ribose-bound AIF-dependent cellular death. Preceding translocation, the 

hydrophobic AIF anchor must be cleaved, though source of cleavage is not known exactly, and 

the role of calpain in AIF solubilization during parthanatos has been precarious (Otera et al., 

2005; Susin et al., 1999; Vosler et al., 2009; Wang et al., 2009). Negative regulation of PARP-1-

mediated AIF translocation by PARG was demonstrated using PARG knockout mice, which 

were rescued by the PARG wild-type phenotype (Zhou et al., 2011). Alternately, administration 

of PARP inhibitors have been shown to shunt the parthanatos pathway while simultaneously 

conserving nucleic energy stores, especially when ADP-ribosylation activity abrogation reaches 

90% or above (Satoh et al., 1994). 

 

HepG2, the Role of PARP, and Ethanol-Mediated Toxicity 

In correlating ethanol toxicosis, oxidative stress, the HepG2 hepatocellular carcinoma 

model, and PARP-1 activity attenuation, Cherian and colleagues (2008) have demonstrated 

PARP activation with subsequent ADP-ribosylation in cultured fetal cortical neurons upon ad-

ministration with ethanol. Late induction of caspase-3 did not inhibit PARP-1 activation below a 

threshold precluding significant histone ADP-ribosylation six hours post dose. A previous report 

in isolated macrophages demonstrated a dose-dependent cleavage of PARP-1. Conferring late 

apoptotic machinery induction; however, ADP-ribosylation, a proxy of PARP-1 activity, was not 

measured (Brown et al., 2007). Since hepatic mitochondrially-generated reactive species and 

acetaldehyde can definitively elicit DNA damage in vivo and in the HepG2 model resultant of 
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ethanol administration (Cederbaum et al., 2011; Navasumrit et al., 2000), the activation and 

characterization of PARP-1 in the HepG2 model has not been elucidated completely. Inhibition 

of PARP has been shown to rescue cells from death under circumstances of ischemic-reperfusion 

injury and excitotoxicity affording evidence for the role of PARP inhibition of attenuating acute 

oxidative damage (Eliasson et al., 1997; Endres et al., 1997; Zhang et al., 1994). The current 

investigation aims to assess the feasibility of utilizing the non-transfected HepG2 model as a 

model of ethanol-mediated hepatotoxicosis and the role of PARP-1 therein. Additionally, more 

evidence regarding the metabolic relevance of the HepG2 model shall be generated to exemplify 

the reproducibility of ethanol-mediated toxicosis as demonstrated by contemporary literature. 
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CHAPTER TWO: 

METHODS 

 

Cell Culture 

HepG2 human hepatocellular carcinoma cell line was obtained from the American Type 

Culture Collect (ATCC) (Manassa, VA) and cultured at 37° C and 5% CO2 under humidified 

conditions. Complete supplemented medium consisted of Debulcco’s Modified Essential Medi-

um (Corning, Manassa, VA) containing 10% fetal bovine serum (ATCC), 10 mM HEPES buffer 

(Sigma, St. Louis, MO) and 100U/mL and100mg/mL of penicillin and streptomycin, respective-

ly (ATCC). Supplemented medium was changed every two to three days. At 80-90% confluence, 

cells were subcultured by light trypsinization [0.1% Trypsin EDTA in PBS (Corning)] for 4 

minutes at 37 °C after brief washing with phosphate buffered saline without calcium or magnesi-

um (Corning). Trypsinization was stopped with one to two volumes of supplemented medium 

and separated by centrifugation at 250 x g for four minutes; thereafter, the supernatant was aspi-

rated and the cells reconstituted in supplemented medium for subsequent plating in tissue-culture 

treated plates for either propagation or experimentation at known concentrations. Subculturing 

occurred every four to six days-the time necessary to reach confluence. HepG2 cells used for 

experimentation fell within the 6
th

 and 12
th

 passage in order to ensure consistency and to resist 

time-dependent genotype variation. Exposure periods to either vehicle or ethanol commenced 

only after allowing the cells to reattach overnight. 
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Treatment 

HepG2 cells were plated in either 6-well flat-bottom plates at 100,000 cells (Corning) or 

in 96-well flat-bottom plates (Celltreat, Shirley, MA) at 2,500 cells per well and allowed to at-

tach overnight in both circumstances. In preparing for experimentation, the supplemented medi-

um was aspirated which was followed by subsequent addition of vehicle (Supplemented medi-

um) or supplemented medium containing a predetermined concentration of USP grade 200 proof 

ethanol (Concentrations: 50-800µM, as specified). Both controls and exposed cells were incubat-

ed for 6 hours prior to preparation of PARP-1 lysates and 24 hours for assessing MTT and AST. 

The exposure chamber was preloaded with 200-proof ethanol to restrict ethanol volatilization 

from experimental medium in accordance with previous reports (Devi et al. 1993; Heitman et al. 

1987; Maffi et al., 2008). Doses for ethanol exposure, unless otherwise specified, include: 0mM, 

100mM, 300mM, 600mM, and 800mM. Etoposide, supplied by Trevigen (Gaithersburg, MD), 

was used as positive apoptosis control and was added to supplemented medium at a concentra-

tion of (50 µM). HepG2 cells were assessed for establishing ethanol-mediated dose-responses 

according to cellular viability, aspartate aminotransferase (Cytotoxicity marker), and PARP acti-

vation. 

 

Cytotoxicity Assessment 

Direct cytotoxicity of cells post ethanol exposure was assessed by trypan blue exclusion 

or MTT cell proliferation assay (Cayman Chemical, Ann Arbor, MI) per (Devi et al., 1993; 

Mosmann, 1983). After exposure to ethanol in 6-well or 96-well plates, the vehicle or exposure 

medium was aspirated and snap frozen for quantifying AST activity. For trypan blue exclusion, 

HepG2 cells were disaggregated using soft trypsinization and reconstituted in 1000µL supple-



16 

mented medium. A 50 µL aliquot was combined in a 1:1 ratio with trypan blue (0.1% trypan blue 

in PBS; Corning) for dye exclusion viability assessment via hemacytometer. Except for two 

samples, a minimum of 500 cells were counted (Exceptions: 488 cells [50 mM] and 252 cells 

[100 mM]). Alternatively, HepG2 viability was performed by adding 10µL of 10 mg/L 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) solution in 90µL supplemented 

medium (A 10% solution) via manufacturer’s instructions (Santa Cruz Biotechnology, Santa 

Cruz, CA). After incubation for two hours, the medium was aspirated via pipette, and the insolu-

ble formazin was solubilized in 200 µL of dimethyl sulfoxide (Sigma) and read at 570 nm. Via-

bility, in both cases, was normalized against the control and presented as percent of cells live. A 

six-point standard curve was utilized in order to quantify samples. Results of the MTT were not 

significantly impacted by varying concentrations of ethanol in media. 

AST (Aspartate aminotransferase), a known biomarker for cytotoxicity, was measured as 

a proxy of hepatotoxicity as a result of ethanol exposure. Post exposure, vehicle and exposure 

media was collected and stored at -20° C until analysis which typically occurred within 24 hours. 

Quantification was performed in replicates of five using an AST colorimetric endpoint kit 

(TECO Diagnostics, Anaheim, CA) per manufacturer’s instructions according to the method 

described by Reitman and Frankel (1957). However, the assay was down-sized stoichiometrical-

ly in order to facilitate assay performance in 96-well assay plates and read via spectrophotometer 

at 530 nm. The results were represented as total international units of AST per cells plated based 

on an established standard curve from a calibrator supplied by the manufacturer. Addition of 

ethanol to media did not significantly impact results of AST quantification in absence of HepG2 

cells (Data not shown). 
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ALT (Alanine-aminotransferase) is also a biomarker of hepatotoxicity, is widely used in 

analytical chemistry. The medium was prepared similar to the procedure outlined for AST. Post 

exposure, vehicle and exposure media were collected and centrifuged to isolate pure medium 

from the insoluble fraction. The media supernatant were then extracted and stored at -20° C until 

analysis which occurred within 24 hours. Quantification was performed in triplicate using an 

ALT colorimetric endpoint kit (TECO Diagnostics, Anaheim, CA) per manufacturer’s instruc-

tions; however, the assay conditions were downsized in order to process samples in 96-well as-

say plates and read via spectrophotometer at 505 nm. The results were represented total interna-

tional units of ALT per cells plated based on a calibrator provided by the manufacturer. Addition 

of ethanol to media did not significantly impact results of ALT quantification in absence of 

HepG2 cells (Data not shown). This biomarker was ultimately cancelled due to confounding 

from medium containing 36 millimoles sodium pyruvate, a constituent necessary for indirectly 

measuring ALT via the prescribed commercial assay kit. 

 

Poly(ADP-ribose) Polymerase Activity 

Poly(ADP-ribose) polymerase-1 activity was measured from cell lysate protein using a 

PARP-1 colorimetric assay kit (Trevigen) per manufacturer’s instructions. Vehicle and exposure 

medium were removed, and HepG2 cells were washed twice briefly with ice-cold DPBS to elim-

inate any residual medium. 100 µL of cold cell lysate solution containing diluted (1X) PARP 

buffer (Trevigen), Triton-X100 (Sigma), 0.4M NaCl, and a protease inhibitor cocktail (Sigma) 

was added and incubated on ice for 30 minutes with a brief, 10 second mixing period via tapping 

at 5 minute intervals. Recovery of cellular lysates from the 96-well tissue treated plates was 

complete with little remaining residue. As per manufacturer’s instructions (Trevigen), the sam-
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ples were homogenized via vortexing without centrifugation to relieve the insoluble fraction. 

Sample protein concentration was determined using a Pierce BCA colorimetric kit (Pierce, Rock-

ford, IL) with aliquoted samples diluted 1:10 in deionized water via manufacturer’s instructions. 

Samples were performed in duplicate and read via spectrophotometer at 562 nm. Cell lysate 

stock was stored at -80° C until performance of PARP apoptosis assay according to manufactur-

er’s instructions. Relative PARP-1 activity per sample was standardized by using 20 µg protein 

lysate per well after subtracting the calculated bovine serum albumin concentration, a lysis blank 

during BCA quantification provided a concentration per cell lysate solution; each sample quanti-

fied PARP activity in duplicate and read via spectrophotometer at 450 nm. Relative PARP activi-

ty was quantified against known concentration of PARP enzyme activity based on an established 

standard curve using PARP enzyme provided by the manufacture, and reported as total PARP 

activity (miliunits [mU] per 20 ng protein). 10 µM Etoposide served as positive control of 

PARP-1 cleavage and inactivation. 

 

Spectrophotometric Quantification 

Assays requiring assessment of colorimetric endpoints (AST, ALT, BCA, MTT, and 

PARP) were quantified using the µQuant Spectrophotometer (BioTek, Winooski, VT) with the 

KC-Junior Analytical software (BioTek). Each colorimetric endpoint was assessed at the wave-

length suggested by the manufacturer as mentioned above. 

 

Statistical Analysis 

Statistical analysis was performed utilizing the software program SAS version 9.3 by per-

forming an ANOVA test. Individual comparisons between treatments were made via independ-
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ent samples Student’s T-test. Statistical significance was determined when the probability of 

attaining the measured statistic fell below 5.0 % (p ≤ 0.05). Adjustment for multiple comparisons 

was made via Tukey’s adjustment. 
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CHAPTER THREE: 

RESULTS 

 

Cytotoxicity: A Summary 

Considering the assays utilized in assessing cytotoxicity, a general trend can be dis-

cerned: the insensitivity of the HepG2 model towards ethanol toxicosis. Two distinct biological 

markers of toxicity were employed in order to elucidate the extent of cellular death. Firstly, and 

most importantly, cellular viability was assessed using two methods of analysis including trypan 

blue exclusion and the mitochondrial succinate dehydrogenase-dependent MTT reduction assay. 

Neither of these two assays demonstrated significant dose-dependent loss in cellular viability, 

though weak trend associations are implied. Secondly, the quantitative assessment of hepatic 

cytotoxicity biomarkers liberated in the vehicle and treatment medium was utilized in providing 

proxy evidence of cellular damage and membrane degradation. Alanine aminotransferase pro-

vides a sensitive measure of hepatotoxicity; however, logistical issues precluded continued utili-

zation of this enzyme in accurately assessing a toxicological endpoint. Aspartate aminotransfer-

ase activity quantification demonstrated consistent exhibition of a relevant toxic endpoint. A 

dose-response relationship was observed with AST activity levels in sample culture medium with 

respect to ethanol concentration, albeit under high, clinically-irrelevant doses. Lastly, in as-

sessing the activity of poly(ADP-ribose) polymerase under the aforementioned challenge, an 

inverse dose-dependent relationship was demonstrated which was credited to systematic error, 
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thus, weakening the observed association between PARP-1 activity modulation and ethanol con-

centration. 

 

Toxicological Endpoints 

Cellular Viability 

Preliminary trypan blue exclusion assessment showed an insignificant decreasing trend in 

viability over an increasing ethanol dose. The subtle decreasing trend was observed over ethanol 

doses ranging between 50 mM and 200 mM, such that at 200 mM, a 3% decrease in viability 

comparative to the control group was demonstrated (Data not shown). Therefore, the dose was 

extended to 800 mM in order to encompass higher orders of dose magnitude with a shift from 

trypan blue exclusion to MTT. Implementation of cytotoxic quantification via MTT reduction 

facilitated increased statistical power for committing erroneous false negatives regarding viabil-

ity. Each sample was normalized against the control by expressing viability as a percent of the 

control whose viability was arbitrarily set to 100% as was performed for trypan blue exclusion. 

Similar to the trypan blue exclusion assessment, MTT reduction demonstrated a non-

significant trend of decreased viability over ethanol doses. However, the highest dose (800 mM) 

was required to achieve 95% viability. No statistical decreases or increases in cytoviability were 

observed, despite observation of slight increases in MTT reduction at the dose groups 300 mM 

and 600 mM, corresponding to 108.7% and 108.1%, respectively. An initial insignificant viabil-

ity drop at 100 mM (97.7% of control) was also observed. Only the etoposide-treated group ex-

hibited significant cellular death reaching 71.0% viability as normalized against the control (p ˂ 

0.01) [Figure 1]. These results suggest that, even under high doses, those far above clinical rele-
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vance, insignificant effects on HepG2 viability were noted, implying a substantial insensitivity to 

ethanol relative to cellular viability during experimentation. 

 

Alanine Aminotransferase (ALT) 

Exposure of HepG2 to increasing doses of ethanol resulted in an insignificant dose-

dependent decrease in alanine aminotransferase activity (Data not shown). As ALT serves as a 

specific proxy of hepatotoxicity, these results suggest decreased cytotoxicity with incremental 

increases in ethanol dose; these results were indeed remarkable. Consideration of the analytical 

chemical technique of the ALT assay kit allows elucidation of the unexpected observed results, 

which have been deemed erroneous for the following reason.  

The ALT colorimetric endpoint assay kit utilizes an indirect method of assessing ALT ac-

tivity quantification by assuming minimal contribution of both L-alanine and α-ketoglutarate in 

serum, or in this case medium. Liberation of ALT from hepatocytes into the medium can be 

quantified by the catalytic formation of pyruvate from the two aforementioned substrates by en-
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Figure 1. Cellular Viability. Cellular viability was assessed for HepG2 cells 24 hours after dosing with ethanol or 

etoposide (Positive apoptosis control). The mean viability was plotted with respective standard deviation (Error 

bars). No statistical differences were observed between ethanol groups in comparison to the control, though a slight 

negative trend was noted beginning at 800mM. The etoposide group was statistically lower than control (p ˂ 0.01). 
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dogenously-derived ALT. In order to quantify ALT activity, the catalysis product pyruvate un-

dergoes acid-catalysis with 2,4-dinitrophenylhydrazine to form 2-4-dinotrophenyl-hydrozone, 

which is not produced endogenously, and absorbs as the colorimetric reporter wavelength of 505 

nm recommended by the manufacturer. Since the basal Dulbecco's Modification of Eagle's Me-

dium (DMEM) is supplemented with 4.5 g/L sodium pyruvate which, when formulated to a 

complete supplemented medium, approximately equates to 36 mM pyruvate. Pyruvate in the 

medium may lead to erroneously elevated ALT values for all samples, even among the highest 

dose concentration which was, during this was assay, 200 mM. With a decreasing viability, or 

reduced metabolic capacity, the pyruvate within the supplemented medium will not be consumed 

at the same rate as the controls (0 mM). As pyruvate concentration in the medium is high (36 

mM), detection of differences of endogenously-derived, ALT-mediated pyruvate generation may 

not kinetically be independent from the initial concentration, especially since kinetic rate con-

stants are dependent upon initial concentration of pyruvate. Therefore, the initial rate of pyruvate 

production under timed conditions may lead to an erroneous bias of results. This may account for 

the remarkable results observed, especially since neither dose group exhibited significant ALT 

elevations. With such high initial concentrations of pyruvate, and natural variability in L-alanine 

and α-ketoglutarate catalysis by ALT, the results can be biased towards the null. Therefore, the 

accuracy of estimating ALT activity in medium cannot be attributed to ALT activity alone, and 

utilization of the ALT colorimetric endpoint assay as a cytotoxic biomarker was not retained for 

further analysis. 
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Aspartate Aminotransferase (AST) 

Aspartate aminotransferase activity serves as a biomarker of cytotoxicity and was as-

sessed also using an indirect method according to the methods ascribed. Quantification of AST 

using medium isolates from samples after incubation of 24 hours was reported in international 

Units per treatment sample cell count (2,500). Each sample was performed in replicates of four 

(n = 4). To confirm the relative AST activity irrespective of plating density, two dose groups 

composed of three controls (0 mM) and three treatments (800 mM) of ethanol were plated in 6-

well plates at 100,000 cells per well; each dose was plated in triplicate (n = 3). A four-point 

standard curve served as assurance of reagent condition, sample precision, and optical density 

linearity across the inclusive AST activity range. However, the calibration standard correspond-

ing to zero AST IU/2,500 cells was subsequently dropped due to a systematic depression in AST 

activity for the remaining three calibration standards. These results suggest the possibility of 

AST calibration standard degradation as the recommended utilization of calibration standards 

should commence within five days post reconstitution-the assay was performed within one week 

after the ascribed expiration date. In any case, degradation occurred systematically, thus, unaf-

fecting relative effect, e.g., percent or fold versus control. In order to quantify the relative preci-

sion of calibration standards, a three-point linear curve was established excluding the zero cali-

bration point. The high coefficient of determination (R
2 

= 1.0) demonstrated high precision and 

reagent stability over calibration standards suggesting similar stability may be afforded to the 

samples. Conclusively, the systematic depression observed among the calibration standards 

demonstrates a systematic depression in total AST activity within the entire sample pool without 

deleteriously affecting inter-sample relative AST comparisons; therefore, comparisons among 

groups can be made in relative AST effect without the presence of deleterious confounding. It 
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must be noted that the overall AST activity was depressed when quantified against the supplied 

standard. However, this does not present deleterious effects on data interpretation as relative per-

centage changes are not affected, nor comparisons against normal/abnormal clinical value ranges 

are to be made. Comparative analyses in relating AST activity per treatment group illuminate 

relative effects of ethanol and etoposide against the control group. 

Comparison across dose groups resulted in a statistically significant dose-related increase 

in AST activity with respect to ethanol concentration (p ˂ 0.01) [Figure 2]. An insignificant in-

verse dose-related trend was observed for the mean AST level between the 100 mM and 300 mM 

dose groups, credited to natural inter-sample variable. The AST activity trend began to become 

positively correlated with ethanol beginning with the 600 mM dose group, though comparison of 

the 600 mM group against the control group did not reach significance. Among the 800 mM dose 

group, a statistically significant 43.5% increase in AST activity was detected above control (Stu-

dent’s t-test; p ˂ 0.001). Etoposide, the positive apoptotic control, exhibited a higher cytotoxicity 

biomarker level with an increase of 67.3% above the control, equally as significant as the 800 

mM group. A significant increase in AST was observed between 600 mM and 800 mM, signify-

ing a threshold of toxicity above 600 mM. These results indicate the necessity for a large dose in 

order to induce significant cytotoxicity in the tested HepG2 cells. Even at the 800 mM dose, de-

creases in cellular viability were not demonstrated by MTT reduction, suggesting that apical 

signs of ethanol-mediated toxicosis had indeed begun without significant morphological disrup-

tion affecting cellular or mitochondrial integrity. 

The magnitude of relative affect (AST activity percent increase or decrease relative to the 

controls for the 800 mM dose group) between the two plating schemes was relatively homolo-

gous: 43.5% increase for AST IU/2,500 cells versus 51.1% increase for AST IU/100,000 cells. 
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These results suggest that, though the absolute AST IU/cell activity may vary depending on plat-

ing density, though the relative effect of ethanol did not vary substantially under the aforemen-

tioned conditions. 

 

Poly(ADP-ribose) Polymerase Activity 

Protein isolates were prepared from 2,500 cells plated in a 96-well plate after the six hour 

ethanol exposure. After exposure, the cells were briefly washed twice in ice-cold working PBS 

and lysed with a prepared lysis buffer supplemented with Triton X-100. Protein lysates were then 

quantified using the methods described above whereby the amount of purified cellular protein 

required for conducting the PARP activity assay was standardized at 20 nanograms per reaction. 

A four-point PARP activity standard curve was established in order to cover the range of optical 

densities exhibited by the complete set of samples. As the calibration standard deviated from 
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Figure 2. Aspartate Aminotransferase Activity.  AST activity was quantified in medium isolates as a proxy of cyto-

toxicity dependent upon the dose of ethanol and etoposide. The mean of five samples was plotted with respective 

standard deviations (Error bars). An insignificant decreasing dose was observed up to 300 mM ethanol; at 600 mM, 

AST activity returned to control levels which continued to statistical significance at 800 mM (p ˂ 0.001). Etoposide 

treatment was equally significant (p ˂ 0.001) and exceeded the 800 mM ethanol dose AST level. 
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linearity considerably, the line of best fit assumed the natural log transformation of along the x-

axis (PARP activity in mU/20 ng), while transformation was not performed along the y-axis (Op-

tical density). The natural log transformed fitted line resulted in a high coefficient of determina-

tion (R
2 

= 0.9981) and conferring a more precise quantification of PARP activity as a function of 

optical density. 

Mean active PARP activity, expressed as mU/20 ng protein, decreased with increasing 

dose [Figure 3]. The decrease in activity initially became significant at the 300 mM ethanol dose 

group with more pronounced decreases to 46.5% of control at the 800 mM dose group (p ˂ 0.01). 

Dose groups 300 mM and 600 mM each equally exhibited activity approximately 61.7% of the 

control (p ˂ 0.05). Interestingly, the application of etoposide, a known AIF-mediated apoptosis 

inducer, insignificantly reduced the active PARP activity to 76.1% of the control (p > 0.05) 

which was approximately equivalent to the 100 mM dose group. These results are perplexing as 

etoposide characteristically results in apoptosis initiation and subsequent caspase-3-dependent 

PARP-1 cleavage to the inactive 24 kDa and 89 kDa fragments. Of note, however, neither lysis 

cocktail nor assay buffer blank exhibited substantial optical density readings, thus demonstrating 

that the presence of albumin was an insignificant source of non-specific binding. Since the con-

tribution of protein from the cell lysate was controlled at 20 nanograms of protein per assay well, 

and the activity of PARP-1 in the excess of NAD
+
 and activated DNA is substantial under physi-

ological conditions, these results may confirm isolation of a conformationally-active PARP-1 

enzyme as reported by the high colorimetric chromophore optical density. Unfortunately, these 

observations cannot be confirmed without sensitive qualitative proteomic testing procedures. 

In order to characterize one possible source of explaining the variation in PARP activity 

quantification, the most pertinent factor potentially affecting the data was determined to be order 
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of sample addition to the reaction well during the initial stages of conducting the PARP activity 

assay. ADP-ribosylation occurs at initial onset when adding the assay substrate reagent, the sec-

ond constituent of the ADP-ribosylation step, to the ELISA plate, and is sensitive to time and 

procedural diversions. As such, plotting the sequence of reagent addition resulted in a significant 

time-dependent linear correlation with PARP-1 activity (R
2
 = 0.5314) [Figure 4]. These data 

explain that 53.1% of the variation in the linear model can be explained by sequential addition of 

the reagents during assay execution, corresponding to significant contribution of the model varia-

tion by confounding. Therefore, it is highly likely that associations between PARP-1 activity and 

ethanol-concentration cannot be separated from confounding arising from the aforementioned 

source. Thus, statistical associations linking ethanol concentration and PARP-1 activity cannot 

be determined with certainty. 

Taken together, the insensitivity of the HepG2 model in ethanol-mediated toxicosis does 

not represent a clinically-relevant toxicological endpoint, thus, conclusions regarding ethanol-

mediated PARP-1 activity cannot be drawn. 
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Figure 3. Poly(ADP-ribose) Polymerase Activity. Protein isolates were tested in order to quantify intact PARP-1 

activity in screening for apoptosis. PARP activity is expressed as micro units PARP-1 per 20 nanograms protein 

(mU/20 ng protein); standard deviations are denoted with error bars. A dose-dependent relationship in PARP-1 activ-

ity was observed related to ethanol, but this this association was later credited to systematic error (See discussion). 

This becomes apparent with the medial position of etoposide within the range of activity. Statistical designations are 

as follows: * (p ˂ 0.05); ** (p ˂ 0.01). 
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CHAPTER FOUR: 

DISCUSSION 

 

Poly(ADP-ribose) polymerase has been demonstrated to activate and ribosylate ethanol 

challenged DNA to isolated neuronal cells in vitro at 15 minutes and peaking around four hours 

with significant ADP-ribose residues detected at six hours; the time-point utilized for the current 

investigation (Cherian et al., 2008). The extra two hours allowed for increased time for metabo-

lism and reactive species and DNA damage occurrence. Numerous reports have demonstrated 

reactive species formation during hepatic ethanol metabolism, especially considering by-

products of the microsomal oxidative pathway member CYP2E1, though alcohol dehydrogenase 

can also result in the formation of oxidative species (Balasubramaniyan et al., 2007; Cederbaum, 

2011; Di Luzio, 1963; Kurose et al., 1997; Yang et al., 2008). With increasing dose, the induc-

tion of CYP2E1 leads to the formation metabolically-derived hydroxyl radicals, further promot-

ing hydrogen peroxide and superoxide formation and oxidative DNA lesion accumulation. En-

dogenous production of nitric oxide, necessary in biosignaling and vasodilation, can interact with 

superoxide to generate the strong oxidative species peroxynitrite; this phenomenon has been 

demonstrated to induce PARP activity (Cuzzocrea et al., 1998). Incidentally, acetaldehyde for-

mation exacerbates oxidative stress potential through the inhibition of catalase, thus decreasing 

endogenous superoxide quenching capability. Taken together, increased production, with simul-

taneous inhibition of superoxide quenching, potentiates the probability of oxidative stress-

generated mitochondrial dysfunction, DNA damage, and lipid peroxidation, while causing dis-
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ruption of cellar processes and activation of DNA repair mechanisms, e.g., PARP activation 

(Kono & Fridovich, 1982; Koh et al., 2005). 

Extensive xenobiotic insult to DNA has been an attractive model of elucidating the 

mechanism by which PARP is both characterized and exploited for therapeutic attenuation of 

certain diseases. For example, treatment of cells with hydrogen peroxide over-activates PARP-1 

leading to endogenous NAD
+
 depletion and energy crisis resulting in cellular death (Eliasson et 

al., 1997; Schraufstatter et al., 1986; Ullrich et al., 1999; Yu et al., 2006). Though the status of 

ADH and CYP2E1 was uncharacterized in the HepG2 in the current investigation, significant 

decreases in cellular viability at moderate to high ethanol doses were not observed suggesting 

low ROS generation activity from either metabolic enzyme. Nevertheless, the results were in 

accordance with previous observations. Kang and colleagues (2011) demonstrated that insignifi-

cant cellular death occurred among dose groups at or below 500 mM, and that the threshold of 

toxicity was assumed to fall between 500 mM and 1000 mM for their HepG2 batch. Our obser-

vations extended the mid-range dosage to include 600 mM and 800 mM, of which neither detect-

ed significant viability losses as measured by MTT. A trend towards such a decrease was initially 

observed with trypan blue exclusion, though these preliminary results may require confirmation 

to rebuke or confirm the negative results obtained by MTT reduction. 

Morphological analysis was not included within the data set, but ethanol doses resulted in 

overt cellular membrane shrinkage whose extent was qualitatively dose-dependent. The 800 mM 

group appeared similar, though not as extensively damaged, as the etoposide-treated group. 

Since apical morphology alone cannot estimate underlying molecular pathogenesis, these re-

marks are left excluded from the results but remain worthy of consideration for further experi-
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mentation. Other methods of subcellular morphological assessment, e.g., hematoxylin and eosin 

or periodic acid-Schiff staining, may help elucidate a qualitative assessment of gross pathology. 

Consistent with several other reports utilizing the HepG2 model, ethanol did elicit leak-

age of aspartate aminotransferase dose-dependently. AST and ALT have been implied in as-

sessing clinical ethanol toxicosis, particularly for chronic cirrhosis (Cohen & Kaplan, 1979; Nal-

pas et al., 1984). Of note, however, is the emphasis in Cohen and Kaplan’s mention of bi-

omarkers in post-necrotic cirrhosis. Xenobiotic-induced necrosis can follow extensive damage, 

particularly when repair mechanisms cannot adequately compensate for DNA damage or fill the 

energy depletion gap (Eguchi et al., 1997; Leist et al., 1997). Since studies related to PARP 

overactivation have displayed depletion of intracellular NAD
+
 and subsequent depletion of ATP 

stores, the underlying energy crisis precludes the induction of active cellular death programs and 

may shift the balance to a necrotic-like death (Filipovic et al., 1999; Tentori et al., 2001). Energy 

depletion and cellular death attributed to PARP-1 overactivation have been associated with de-

tectable quantitative increases in AST activity. This observation was confirmed in the current 

investigation, and is congruence with previous studies, albeit at orders of magnitude lower than 

those previously reported at lower ethanol doses (Kumar et al., 2011). For previous studies, lev-

els above 80 mM did elicit significant AST activity in culture medium compared to controls, 

suggesting a clinically-relevant toxic threshold (Gutierrez-Ruiz et al., 1999; Neuman et al., 

1993). Previous trials in the current investigation began with a dose range between 50 mM and 

200 mM, within which significant increases in biomarkers of cytotoxicity were not detected. 

Other studies observed 2-fold to 6-fold increases in AST activity at modest ethanol doses above 

levels attained in the current investigation at considerably higher doses (Kumar et al., 2011; 

Senthil Kumar et al., 2012). Interestingly, all of the aforementioned studies did utilize HepG2 
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cells that were neither designated as transfected nor characterized for CYP2E1 or ADH mRNA 

transcription status. Consequently, these cells cannot be assumed to be a subtype of the parent 

HepG2 lineage with attenuated metabolism. In mentioning this, work by Wu & Cederbaum 

(1996) compared the untransfected line against the transfected line, noting ethanol insensitivity 

exhibited by the untransfected cells. Results obtained in the current study were place within this 

spectrum of complete ethanol insensitivity and sensitive, though nearer complete insensitivity, 

especially at doses below 800 mM. In any case, the AST biomarker of cytotoxicity was dose-

dependent and may be attributed to the effective dose of ethanol. 

An in vivo study by Cederbaum (2011) characterizing the role of CYP2E1 in ethanol 

hepatotoxicity demonstrated as serum AST activity increase between 50% and 100%, similar to 

those obtained in the current study, albeit at a substantially lower dose. Pathological lesions in 

the in vivo study exemplified focal necrosis, rather than a caspase-dependent apoptotic pathway. 

Under these conditions, oxidative stress was implied as the inducer of cellular death. Should the 
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Figure 4. Poly(ADP-ribose) Polymerase Activity as a Function of Sequence. PARP-1 activity assessed by ELISA 

was analyzed previously to show an association due to dose. Subsequently, a sequential-association was observed in 

observed. Therefore, the PARP-1 activity was plotted relative to reagent addition revealing a high correlation (Coef-

ficient of determination = 0.5314). Therefore, the variability of PARP-1 activity in the linear model measured could 

be explained by sequence alone, thus limiting strength of association with ethanol dose. The trend was significant (p 

˂ 0.001). 
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HepG2 cells utilized in the current study lack physiologically-relevant ADH and CYP2E1 phe-

notypic expression, an almost complete insensitivity to ethanol-mediated hepatotoxicity would 

result. Although the obtained results generally signify low activity of constitutive phase I ethanol 

metabolism, assumptions of CYP2E1 and ADH phenotype across other batches cannot be made 

without proper characterization. Simply assuming a lack of CYP2E1 activity in the HepG2 mod-

el has proven erroneous due to several positive ethanol-sensitive antioxidant studies. Conse-

quently, our observations are not congruent with the baseline HepG2 ethanol-sensitivity exempli-

fied the current literature utilizing antioxidants as protective agents in ethanol-mediated hepato-

toxicity using the HepG2 model (Farshori et al., 2013; Kumar et al., 2011; Reddy et al., 2008; 

Senthil Kumar et al., 2012). Should the previous positive studies utilized a subtype of the HepG2 

model with an attenuated phenotypic profile, comparison would be unwarranted. On such sub-

jects, the current study can only afford more evidence that suggests the lack of sensitivity to eth-

anol and that the characterization of underlying CYP2E1 and ADH activities should be per-

formed prior to experimentation. Since the expression of these two metabolic enzymes have been 

demonstrated to critically affect oxidative-stress mediated cellular death pathways during ethanol 

toxicosis, their status is important for comparing past and current literature. Furthermore, as the 

activation of poly(ADP-ribose) polymerase depends upon the generation of oxidative species and 

DNA lesions, functionally linking ADH and CYP2E1-dependent ethanol metabolism with 

PARP-1 overactivation and consequential NAD
+
/ATP depletion requires further investigation for 

possibly clinical relevance and biochemical mechanism elucidation. 

In quantifying the active PARP in cellular lysates, the decreasing trend over ethanol dose 

groups was concluded as dependent upon sequence of reagent addition, rather than ethanol dose. 

This observation has implications for the integrity of the HepG2 hepatocellular carcinoma line as 
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a model for ethanol-mediated toxicosis. Assuming a low degree of non-specific binding, the lin-

ear correlation of ADP-ribosylation may be indicative of similar PARP activity across dose 

groups and etoposide as a function of time. After adjustment for protein concentration, even the 

etoposide-treated cells did not exhibit significant ADP-ribosylation ablation, despite significant 

etoposide-mediated decreases in cellular viability and increases in AST activity. Under apoptotic 

conditions, caspase-3 cleaves PARP into the inactive 89 kDa and 24 kDa fragments (Chaitanya 

et al., 2010; Kaufman et al., 1993; Lazebenik et al., 1994; Los et al., 1997; Nicholson et al., 

1995; Simbulan-Rosenthal et al., 1998), thus, exemplifying that etoposide-treated cells could 

theoretically exhibit very low or negligible PARP activity following PARP-1 inactivation but 

halts after cleavage. As counter evidence, etoposide treatment did not ablate PARP-1 activity at 

15 hours in one study suggesting late apoptosis may not result in significant cleavage of PARP in 

vitro, though this seems unlikely given the well-characterized toxicodynamics of etoposide (Sol-

dani et al., 2001). The obtained results may possibly supply evidence that AIF-induced cellular 

death may not be suppressed at other points along the apoptotic pathway, especially at the initial 

onset. This observation would be in congruence with observations made by Cherian and col-

leagues (2008) in their investigation of PARP-1 induction by ethanol in neuronal cells. Early 

cellular death in vitro may differ from in vivo by residual cytokine- or chemokine-mediated ef-

fects of the overlaying parenchymal and stromal cells. In any case, treatment groups may not 

accurately be assessed for PARP cleavage status due to confounding demonstrated, and resulting 

in insufficient evidence for drawing conclusions on cellular death pathways during this investiga-

tion. 

In the cases of extensive oxidative stress and subsequent energy depletion, PARP largely 

avoids caspase-mediated cleavage resulting in transient stabilization in vitro (Yu et al., 2002, 
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2006). This can lead to overactive PARP-1 enzyme signaled by extensive ADP-ribose polymer 

formation, ADP-ribose polymer translocation to the mitochondria, AIF nuclear translocation, and 

the initiation of parthanatos. Energy depletion alone has not been demonstrated sufficient in ini-

tiating pathogenesis leading to cellular death, though this has been credited rather to the depolar-

ization of the mitochondrial membrane voltage potential (ΔѰm) and subsequent mitochondrial 

permeability transition pore formation (Andrabi et al., 2006; Hong et al., 2004). Significant AST 

activity signifies mitochondrial dysfunction and cytotoxicity. Mitochondrial injury was not con-

firmed as per the results of the MTT viability assay during investigation. As MTT reduction to 

formazin relies on the mitochondrial succinate dehydrogenase enzyme, the cellular membrane 

may have been disrupted to a limited extent by oxidation; however, succinate dehydrogenase 

activity was not significantly suppressed to restrict MTT reduction in ethanol-treated cells. Thus 

the damage induced by ethanol treatment in our investigation may not have been enough to dis-

sipate the ΔѰm and induce parthanatos and subsequent viability losses. The progression of the 

parthanatos pathway cannot be inferred by the given data, especially the extent of radical for-

mation from ethanol-dependent metabolism, and shall require more sensitive methods to fully 

characterize subcellular interactions. 

While characterization of PARP in the HepG2 model is required to properly place etha-

nol-mediated hepatotoxicosis and PARP activity within a framework of clinical relevance, the 

high degree of insensitivity of the HepG2 cells under investigation may preclude its utilization in 

elucidating the PARP’s role in hepatotoxicity from some oxidative-stress-generating toxicants, 

especially considering differential involvement of constitutive phase I metabolic enzymes, such 

as ADH and CYP2E1. Characterization of basal metabolic activity would supply the most perti-

nent assurance of phase I oxidative stress generation, but may not assure physiologically-relevant 
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intoxication response cascade initiation. For example, effects of ethanol in the co-transfected 

HepG2 model did not inhibit the activation of the JAK-STAT pathway, a phenomenon con-

firmed in fresh rat hepatocyte isolates (Chen et al., 2001). Interestingly, cultured hepatocytes 

showed similar insensitivity to ethanol-induced STAT3 inhibition similar to the co-transfected 

HepG2 model. STAT3 inhibition was restored with administration of acetaldehyde, suggesting 

reductions in metabolism as a function of duration of time in culture irrespective of underlying 

metabolic capacity. A model assumed to retain germinal metabolic activity may indeed depreci-

ate such metabolic capacity over time. Quantitatively addressing uncertainty in the model meta-

bolic profile can increase comparability among studies investigating ethanol-mediated hepato-

toxicity in vitro. 
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CHAPTER FIVE: 

CONCLUSION 

 

This investigation attempted to assess the role of poly(ADP-ribose) polymerase in etha-

nol-mediated hepatotoxicity using the HepG2 model, an established, well-characterized toxico-

logical model. Several recent studies have utilized this model for therapeutic application of anti-

oxidants in attenuating ethanol-mediated hepatotoxicosis. The assessment of the model in clini-

cal relevance cannot be debated. Additionally, the characterization of PARP’s role in ethanol-

induced hepatotoxicity was undertaken. A significant trend in one cytotoxicity biomarker, aspar-

tate aminotransferase, was observed, albeit only at ethanol concentrations far above clinical rele-

vance. Assessment of viability did not reveal significant cellular viability losses compared to 

controls. Finally, PARP activity in isolated cell lysates did not yield information affording char-

acterization for PARP’s role in ethanol-mediated hepatotoxicosis. High variability in ethanol 

sensitivity in the HepG2 model may mask potential physiological phenomena, thus, precluding 

its utilization in toxicological studies. Transfection may only partially restore some metabolic 

pathways of physiological systems, but may lack representation of the underlying cytotoxic re-

sponse to ethanol given an unknown degree of separation from hepatocytes in vivo. Therefore, 

genotypic or phenotypic characterization of metabolic enzymes may increase comparability 

across ethanol toxicological testing using the HepG2 hepatocellular carcinoma line, but the mod-

el may still be inappropriate for characterizing the role of PARP in ethanol-mediated hepatotoxi-

city.   
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