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ABSTRACT
Limnoperna fortunei (L. fortunei) is one of the most abundant freshwater
bivalves in southeast Asia, with wide-ranging direct and indirect impacts
on ecosystems. To estimate material flows in the habitats of L. fortunei, a
combination of stable-isotope and fatty-acid analyses were applied to
assess the feeding spectrum of L. fortunei in southern China. Using the
isotope-mixing model, the contribution proportions to the diet of
L. fortunei were estimated as 19.8%–28.2% for plankton, 57.6%–65.2% for
particulate organic matter (POM) and 10.2%–21.1% for sediment organic
matter. We conclude that POM is the principal food source of L. fortunei.
The d13C enrichment of fixed carbon from POM to L. fortunei was 0.67%–
2.41%. Based on the fatty acid data, it was estimated that L. fortunei
consumed or selectively accumulated Chlorophyceae, Cryptophyceae,
Dinophyceae, bacteria and terrestrial organic matter. The feeding
spectrum of L. fortunei is similar to that of Dreissena polymorpha. We
suggest that L. fortunei is able to differentiate suitable food items using
chemical cues and the surface properties of particles.
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Introduction

The bivalve mussel, Limnoperna fortune (L.fortunei), is a benthic suspension feeder with a
widespread distribution in fresh waters of Southeast Asia and South America (Paolucci et al. 2010;
Zhang et al. 2014; Zhang et al. 2015). Adults of L.fortunei are able to firmly attach to hard substrata
using the byssus (Nishino 2012). The density of L.fortunei is extremely high, reaching 10,000 indi-
viduals m¡2 near the bank of the Xizhijiang River, southern China (Xu et al. 2009). With individual
filtration rates up to 350 mL h¡1, L.fortunei has a marked effect on suspended and sediment organic
matter (SSOM), which modified the nutrient supply (Boltovskoy et al. 2009; Di Fiori et al. 2012).
Therefore, L.fortunei provides an important link between SSOM and consumers in fresh water. Con-
sequently, to understand the energy and material flows in the habitats of L.fortunei, it is necessary to
clarify the composition of diet of this species.

Physical methods to determine the diet of bivalves include analysis of stomach contents and fae-
cal pellets (Lehane and Davenport 2004). Stomach-contents analysis of L.fortunei living in the Mid-
dle Paran�a River indicated that the main food ingested comprised plankton, particularly
Euglenophyta, Rotifera, Chydoridae and Bosminidae (Molina et al. 2010). However, this method
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did not identify which dietary items were assimilated and can provide only rough estimates of recent
feeding activity (seconds to hours) (Kang et al. 1999). More recently, biochemical methods, such as
the analysis of stable isotopes or fatty acids, have been used with considerable success in determining
the diet of bivalves (K€urten et al. 2013; Najdek et al. 2013; Braeckman et al. 2015). Stable-isotope
analysis is a useful approach for identifying the food sources assimilated by bivalve mussels (Vaughn
and Hakenkamp 2001). Consumers typically contain more heavy isotopes than is present in their
diets, with stepwise heavy-isotope enrichment occurring at each trophic level (Peterson and Fry
1987). The ratio of 13C/12C (d13C) is preferentially used as a dietary tracer because there is little frac-
tionation (ca. 1.0%) between the consumer and its food sources (Asante et al. 2010; Sun et al. 2012).
In contrast, the method of using fatty acids as dietary tracers in aquatic ecosystems relies on the
observation that different primary producers (e.g. diatoms, dinoflagellates, bacteria) generally have
specific fatty-acid profiles in their biomass. Furthermore, these fatty acid profiles tend to be trans-
ferred conservatively and thus are present in consumers’ tissues in an unchanged form (Shin et al.
2008). Therefore, it is possible to distinguish dietary and non-dietary compounds in the body of a
consumer via fatty-acid analysis. These new approaches are therefore able to improve the accuracy
of information on the diet of L.fortunei. Such information is essential for understanding energy and
material flows in the habitats in which it occurs.

Bivalves are considered to be herbivores and it is assumed that plankton, particulate organic mat-
ter (POM) and sediment organic matter (SOM) are the main components of their diet (Molina et al.
2010; Zhao et al. 2013). In this work, we used a combination of stable-isotope and fatty-acid analyses
to evaluate the contribution of plankton, POM and SOM to the diet of L.fortunei. Using these data,
we assessed the feeding spectrum of L.fortunei in the Xijiang River, southern China.

Materials and methods

Sample collection and preparation

Triplicate samples of the plankton, POM and SOM were collected monthly between March and
November 2013. The sampling site (23�08 01200 N, 112�48 0700 E) (Figure 1) is locate at the Xijiang River

Figure 1. Sampling site (23�08 01200 N, 112�48 0700 E) locating at the Xijiang River is about 140 kilometres from seaport. The Xijiang
River cover a full distance of over 2214 kilometres.
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(south China), and its riverbed is rock based. The water quality of sampling site belong to Class I of the
Surface water Environmental Quality Standard (2002). Samples of plankton were collected with a net
of 60 mm mesh by repeated multiple horizontal short duration tows (5–10 min) carried out between
2–8 m depth. About 30 L of fresh water were collected and stored in acid-cleaned polyethylene bottles
to obtain samples of POM. SOM samples were collected at depths of 8–10 m via the sediment corer
(300 mm in diameter, PC-300, Mooring Systems Inc., Cataumet, MA). Adult L.fortunei (�22 mm)
were collected from the riverbed at same site using SCUBA at depths of 2–10 m. All samples were
immediately stored at 4 �C before being transported to the laboratory.

In the laboratory, samples of plankton were freeze-dried, ground into powder using a pestle and
mortar, and stored in acid-cleaned polyethylene bags at ¡80 �C. For samples of POM, water sam-
ples were pre-sieved through a 200 mm mesh net to remove large particles and then filtered using
Whatman GF/F glass fibre (pre-combusted at 550 �C for 5 h). The filter papers were rinsed with
ultrapure water, freeze-dried and stored in acid-cleaned polyethylene bags at ¡80 �C. Samples of
SOM were freeze-dried, sieved through a 300 mm stainless steel screen, homogenised and stored in
acid-cleaned polyethylene bags at ¡80 �C. After depuration in filtered water for 24 h, samples of
L.fortunei tissues were dissected with a plastic knife and rinsed with ultrapure water.

For each analysis, 10 individuals of L.fortunei were pooled, freeze-dried, homogenised, and stored
in acid-cleaned polyethylene bags at ¡80 �C.

Stable-isotope analyses

For stable-isotope measurements, plankton, POM and SOM samples were acidified with 10% HCl,
rinsed with distilled water and oven-dried at 40 �C for 24 h, to remove carbonates (Deniro and
Epstein 1978). When production of CO2 bubbles ceased, the samples were dried and stored in acid-
cleaned polyethylene bags. For analysis, about 1 mg of the powdered sample was packed into a 4 £
6-mm tin capsule.

Samples were combusted in an elemental analyser (Vario MICRO cube, Elementar Analysensys-
teme GmbH, Lagensebold, Germany) attached to an isotope-ratio mass spectrometer (MAT 253,
Thermo Fisher Scientific, Waltham, MA) to determine 13C /12C. The value of d13C was expressed as
the deviation from a standard in parts per thousand (%) according to the following equation: d13C
= [(Rsample/Rstandard)¡1] £ 1000 where R is the corresponding ratio of 13C /12C. Carbon values were
referenced to standard Pee Dee Belemnite (PDB). Measurements were made with a precision of
approximately 0.2%.

Fatty acid analyses

Lipids were extracted from plankton, POM, SOM and L.fortunei samples following the method of
Folch et al. (1957) and Zhao et al. (2013). Lipids were extracted ultrasonically for 10 min using a sol-
vent mixture (two parts chloroform to one part methanol). The lower chloroform phase containing
lipids was collected and separated further by centrifugation. The lipid extracts were saponified,
transmethylated, separated and purified to transform fatty acids to fatty-acid methyl esters
(FAMEs). FAMEs were analysed using a gas chromatograph (GC-9A; Shimadzu, Tokyo, Japan) on
a DB-FFAP capillary column (30 m £ 0.32 mm internal diameter, 0.25 mm film). Hydrogen was
used as the carrier gas. The injector temperature was 250 �C. FAMEs were identified by comparing
their retention times with those of standards.

Data analyses

Statistical analyses were performed using SPSS software (Version 19.0; SPSS, Chicago, IL). Signifi-
cant differences (P < 0.05) in d13C were tested using Student’s t-test and one-way analysis of
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variance (ANOVA). For fatty acid data, means, standard errors (SE) and Fisher’s least significant
difference (LSD) post-hoc tests were calculated conventionally.

To evaluate the relative contributions of plankton, POM and SOM to the diet of L.fortunei, the
isotope-mixing model (Philips 2001) was used with slight modifications. The fractionation of d13C
values for bivalves was set at 0.8 in the model (Fukumori et al. 2008), defined as follows: d13CLf =
fpl(d

13Cpl+0.8)+fp(d
13Cp+0.8)+fs(d

13Cs+0.8) where the subscripts Lf, pl, P and S refer to L.fortunei,
plankton, POM and SOM, respectively, and fpl, fp and fs are the fractional contributions of plankton,
POM and SOM, respectively.

Fatty acids that are commonly used as biochemical markers for particular taxonomic groups that
occurred in our study are shown in Table 1.

Results

Characteristics of stable carbon isotopes in plankton, POM, SOM and L.fortunei

Mean d13C values for plankton, POM, SOM and L.fortunei tissue sample are shown in Table 2. Sig-
nificant differences in d13C values were observed among plankton, POM, SOM and L.fortunei sam-
ples (one-way ANOVA, P < 0.05). The d13C values varied between ¡23.38% and ¡20.68% for
plankton, between ¡23.52% and ¡20.99% for POM, and between ¡26.72% and ¡19.30% for
SOM. The d13C values for L.fortunei ranged from ¡21.62% to ¡19.91%.

Contribution of plankton, POM and SOM to the dietary regime of L.fortunei

The relative contributions of plankton, POM and SOM in the diet of L.fortunei, calculated using the
isotope-mixing model, are presented in Figure 2. The contribution of POM to the carbon content of
L.fortunei ranged between 57.6% and 65.2%, which was significantly higher than that of plankton
(19.8%–28.2%) and SOM (10.2%–21.1%) (t-tests, P < 0.05).

Table 1. Fatty acids as biochemical markers of certain taxonomic groups that occur in the Xijiang River, southern China. SFAs,
MUFAs, PUFAs and BrFAs refer to saturated fatty acids, monounsaturated fatty acids, polyunsaturated fatty acids and branched
fatty acids, respectively. DHA refers tor C22:6(n-3) and EPA refers to C20:5(n-3).

Group Fatty acid markers References

Chlorophyceae C18:2(n-6); C18:3(n-3); C16 PUFAs n-3 and n-6 Viso and Marty 1993
Napolitano 1999
Petkov and Garcia 2007

Cryptophyceae Simultaneous occurrence of C18:3(n-3) and C18:4(n-3);
C20:5(n-3); C22:6(n-3)

Desvilettes et al. 1997

Dijkman and Kromkamp 2006
Brett et al. 2009
Guevara et al. 2011

Dinophyceae C18:4(n-3); C22:6(n-3); C16:1(n-7)/C16:0 < 1; DHA/EPA > 1 Napolitano 1999
Berg�e and Barnathan 2005
Zhao et al. 2013

Bacillariophyceae C16 PUFAs n-4; C16:1(n-7)/C16:0 > 1; DHA/EPA< 1 Shin et al. 2000
Dijkman and Kromkamp 2006
Prato et al. 2012
Zhao et al. 2013

Cyanobacteria C18:3(n-3) or 18:3(n-6) Gugger et al. 2002
Heterotrophic bacteria BrFAs 15-17 and C18:1(n-7) Napolitano 1999

Green and Scow 2000
Decomposed material C18:0 Hama 1999
Plant detritus particle C20 and C22 SFAs Shorland 1963

Napolitano 1999
Copepoda C20 and C22 MUFAs Hagen 1993

Kattner et al. 2007
Terrestrial organic matter

P
C18:2(n-6) + C18:3(n-3)> 2.5 Zhao et al. 2013
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Fatty acid profiles of plankton, POM, SOM and L.fortunei

The proportions of 45 prominent FAs in the samples of plankton, POM, SOM and L.fortunei are
shown in Table 3. The level of saturated fatty acids (SFAs) was highest in SOM (49.73%), followed
by POM, plankton and L.fortunei. Among SFAs, C14:0, C16:0 and C18:0 dominated in all samples,
although their ratios significantly differed among the samples (one-way ANOVA, P < 0.05). Mono-
enoic acids (MUFA) ranged between 21.85% and 29.99% in the samples and were primarily repre-
sented by C16:1(n-7 + n-9), C18:1(n-7), C18:1(n-9), C20:1(n-9) and C22:1(n-9). However, MUFA
profiles differed among L.fortunei and their food items. L.fortunei had highest level of C18:1(n-7)
and C20:1(n-9), while plankton, POM and SOM showed significantly higher levels of C16:1(n-7 +
n-9) and C22:1(n-9). The levels of polyunsaturated fatty acids (PUFA) varied from 11.23% to
33.93% of the samples. The lowest value for PUFA was found in SOM, while the highest value was
in L.fortunei tissue. Dominant PUFAs, shown in bold in Table 2, were particularly represented in
some taxonomic groups. Branched fatty acids (BrFAs) comprised mostly 15-iso, 16-iso, 16-anteiso
and 17-iso and their levels varied from 2.45% to 13.64% of the samples. The levels of 15-iso and 17-
iso were significantly higher in SOM than in the other samples (Table 3).

Table 1 lists the fatty acid biomarkers that were used to identify the food sources of L.fortunei. Com-
pared to its food items, the L.fortunei samples contained higher levels of biomarkers for Cryptophyceae
(C18:4(n-3), C20:5(n-3) and C22:6(n-3); Figure 3(b)) and Dinophyceae (C18:4(n-3), C22:6(n-3), C16:1

Table 2. d13C values (%) for the plankton, POM, SOM and L.fortunei tissues in the Xijiang River between March and November in
2014. POM, particulate organic matter; SOM, sediment organic matter. d13C values (%) are means § SD (n = 3).

Plankton POM SOM L.fortunei

Mar ¡21.74(0.40) ¡20.99(0.26) ¡22.87(0.25) ¡19.81(0.06)
Apr ¡23.38(0.43) ¡22.14(0.51) ¡22.65(0.30) ¡20.87(0.03)
May ¡21.81(0.70) ¡21.05(0.25) ¡26.17(0.21) ¡20.38(0.11)
Jun ¡22.86(0.34) ¡23.52(0.56) ¡26.72(0.20) ¡21.62(0.18)
Jul ¡20.68(0.71) ¡23.97(0.47) ¡22.88(0.22) ¡21.56(0.23)
Aug ¡20.87(0.45) ¡23.55(0.60) ¡21.92(0.20) ¡21.59(0.16)
Sep ¡21.46(0.54) ¡21.92(0.30) ¡19.30(0.23) ¡19.83(0.03)
Oct ¡22.21(0.44) ¡21.75(0.21) ¡20.36(0.18) ¡19.91(0.24)
Nov ¡20.77(0.79) ¡21.64(0.28) ¡19.63(0.21) ¡19.39(0.15)

Figure 2. Contributions (%) of plankton, particulate organic matter (POM) and sediment organic matter (SOM) to the diet of L.for-
tunei in the Xijiang River between March and November 2014.
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(n-7)/C16:0 = 0.19, DHA/EPA = 1.28; Figure 3(c)). In contrast, higher level of biomarkers for Chloro-
phyceae (C18:3(n-3) and C16:4(n-3); Figure 3(a)), Bacillariophyceae (C16:2(n-4), C16:3(n-4), C16:1
(n-7)/C16:0 = 0.19, DHA/EPA = 1.28; Figure 3(d)), cyanobacteria (C18:3(n-3) in Figure 3(e)), decom-
posed material (C18:0; Table 3) and plant detritus (C20:0 and C22:0; Figure 3(g)) were found in the food
items of L.fortunei.

Table 3. Fatty acid profiles (%) of plankton, POM, SOM and L.fortunei in the Xijiang River (mean § SD, n = 3). Values indicate con-
centration (%), while ‘n.d’ and ‘tr.’ mean non-detected and trace, respectively. Fisher’s LSD test was used to compare the fatty acids
indicated in bold among samples; values labelled with the same letter are not significantly different (P < 0.05). POM, particulate
organic matter; SOM, sediment organic matter. SFAs, saturated fatty acids; MUFAs, monounsaturated fatty acids; PUFAs, polyunsat-
urated fatty acids; BrFAs, branched fatty acids.

Fatty acid Plankton POM SOM L.fortunei

C14:0 13.64 (1.08) b 5.10 (0.23) c 6.53 (0.52) cd 2.10 (0.07) hi
C15:0 0.85 (0.12) 1.15 (0.06) 0.91 (0.34) 0.57 (0.03)
C16:0 12.38 (0.85) c 24.52 (1.46) a 22.65 (2.80) a 28.92 (1.14) a
C17:0 0.62 (0.09) 1.91 (0.35) 7.69 (1.03) 1.41 (0.20)
C18:0 7.96 (1.32) d 4.83 (0.71) cd 7.86 (1.41) c 2.36 (0.35) gh
C20:0 2.07 (0.21) hij 3.35 (0.93) ef 2.72 (0.40) fghi 0.32 (0.06) j
C22:0 0.36 (0.09) 0.80 (0.23) 1.37 (0.51) n.d.
P

SFAs 37.88 (2.68) 41.66 (2.27) 49.73 (3.84) 35.68 (1.36)
C14:1(n-5) 0.45 (0.02) n.d. n.d. n.d.
C16:1(n-5) 0.33 (0.04) n.d. n.d. 0.18 (0.02)
C16:1(n-7 + n-9) 16.88 (0.57) a 9.75 (0.36) b 10.83 (0.69) b 5.73 (0.20) d
C17:1(n-9) n.d. n.d. n.d. 0.31 (0.06)
C18:1(n-5) 0.15 (0.02) n.d. n.d. 0.23 (0.05)
C18:1(n-7) 1.91 (0.07) ij 4.08 (0.25) cde 2.75 (0.42) fgh 5.69 (1.35) d
C18:1(n-9) 1.52 (0.13) jk 10.55 (0.62)b 2.31 (0.58) ghij 5.30 (1.21) de
C20:1(n-7) 0.18 (0.05) n.d. n.d. 0.57 (0.14)
C20:1(n-9) 0.62 (0.15) k 1.74 (0.35)gh 0.85 (0.25) jk 2.65 (0.37) gh
C22:1(n-9) 4.15 (0.62) f 3.87 (1.28)de 5.11 (0.95) de 0.87 (0.26) ij
C22:1(n-11) n.d. n.d. n.d. 0.39 (0.12)
P

MUFAs 26.19 (1.75) 29.99 (1.86) 21.85 (2.16) 21.92 (1.25)
C16:2(n-4) 1.95 (0.12) ij 1.50 (0.37) gh 0.60 (0.30) jk 0.45 (0.02) j
C16:3(n-3) 1.36 (0.06) tr. tr. 0.81 (0.19)
C16:3(n-4) 2.20 (0.42) hij 1.60 (0.21) gh 1.80 (0.42) ghij tr.
C16:4(n-3) 1.25 (0.12) 0.80 (0.15) 1.05 (0.11) n.d.
C18:2(n-4) 0.24 (0.05) n.d. n.d. 0.19 (0.01)
C18:2(n-6) 3.03 (0.29) gh 1.95 (0.40) gh 1.02 (0.58) hijk 4.16 (1.43) ef
C18:3(n-3) 3.73 (0.09) fg 1.68 (0.57) gh 0.97 (0.30) ijk 1.04 (0.35) ij
C18:3(n-6) 0.33 (0.05) n.d. n.d. 0.25(0.01)
C18:4(n-3) 1.78 (0.23) ij 2.60 (0.25) fg n.d.k 3.49 (0.36) fg
C20:2(n-6) 0.43 (0.02) 0.53 (0.10) tr. 0.35 (0.03)
C20:2(n-9) 0.27 (0.08) n.d. n.d. 0.35 (0.04)
C20:3(n-3) n.d. n.d. n.d. 0.18 (0.03)
C20:3(n-6) 0.15 (0.02) n.d. n.d. 0.23 (0.02)
C20:4(n-3) 0.51 (0.03) n.d. n.d. 0.77 (0.08)
C20:4(n-6) 2.01 (0.62) ij 0.84 (0.39) h 1.58 (0.65) hijk 4.65 (1.17) def
C20:5(n-3) 5.23 (0.39) e 4.72 (0.51) cd 3.37 (1.40) fg 7.35 (0.76) c
C22:3(n-9) n.d. n.d. n.d. 0.58 (0.05)
C22:4(n-6) n.d. n.d. n.d. 0.15 (0.02)
C22:5(n-3) 0.28 (0.07) 0.67 (0.31) n.d. 0.55 (0.12)
C22:5(n-6) n.d. n.d. n.d. 0.21 (0.07)
C22:6(n-3) 2.68 (0.11) hi 1.75 (0.68) gh 0.84 (0.15) jk 9.43 (0.29) b
P

PUFAs 27.43 (1.72) 18.64 (2.23) 1.23 (0.93) 33.93 (2.40)
14-iso 0.32 (0.06) n.d. 1.60 (0.45) 0.19 (0.04)
14-antiiso 0.20 (0.08) n.d. 0.95 (0.40) 0.37 (0.12)
15-iso 0.15 (0.01) 0.55 (0.12) 3.37 (0.55) 0.28 (0.05)
16-iso 0.42 (0.15) 0.36 (0.10) 2.11 (0.30) 1.39 (0.22)
16-antiiso 0.15 (0.01) 0.47 (0.31) 1.38 (0.50) 0.31 (0.06)
17-iso 1.21 (0.30) jk 3.52 (0.20) ef 4.23 (0.80) ef 0.47 (0.05) j
P

BrFAs 2.45 (0.37) 4.90 (1.65) 13.64 (2.43) 3.01 (1.02)
Total 93.95 (2.91) 95.19 (3.23) 96.45 (3.85) 94.54 (2.45)
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Figure 3. Fatty acid biomarkers in plankton, POM, SOM and in L.fortunei tissues in the Xijiang River. a, Chlorophyceae; b, Crypto-
phyceae; c, Dinophyceae; d, Bacillariophyceae; e, Cyanobacteria; f, heterotrophic bacteria; g, plant detritus particle; h, Copepoda.
Column shading: white, plankton; grey, POM; diagonal, SOM; cross-hatch, L.fortunei, tissues.
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Discussion

In the present study, the d13C signatures of plankton, POM and SOM were significantly different.
These distinct signatures made it possible to calculate the relative contributions of plankton, POM
and SOM to the diet of L.fortunei using a mixing model. These calculations indicated that L.fortunei
primarily feeds on POM, followed by plankton and SOM (Figure 2). Previous studies on the feeding
ecology of bivalves indicated that Pinctada fucata martensii obtained 78% (Kanaya et al. 2005) and
Ruditapes philippinarum 61.0% (Fukumori et al. 2008) of their carbon from POM in their natural
habitats. Our results are consistent with their conclusion that POM is the principal food source of
bivalves. The stable-isotope approach assumes a fixed isotopic enrichment between the bivalve and
its food items. Ruditapes philippinarum, Mactra veneriformis and Nihonotrypaea japonica were
reported to be enriched by 0.6%–2.0% for d13C relative to POM (Yokoyama et al. 2005). Therefore,
our observation of the d13C enrichment of L.fortunei relative to POM (0.67%–2.41%) (Table 1) is
consistent with those findings.

However, plankton, POM and SOM are heterogeneous mixtures of phytoplankton, bacteria, ben-
thic microalgae and other OM (Dalsgaard et al. 2003). The isotopic signatures of these sources often
overlap in natural conditions, making it difficult to separate specific components (Phillips and Gregg
2003). Primary producers, such as diatoms, dinoflagellates and bacteria, are characterised by distinct
fatty-acid profiles (Kharlamenko et al. 2001). Therefore, these profiles can be used to identify the rel-
ative contribution of each component to the plankton, POM and SOM mixtures.

According to the fatty acid profiles of L.fortunei food items (Figure 3), plankton, POM and SOM
differ in the percentages of several fatty acid markers, indicating high levels Chlorophyceae, Crypto-
phyceae, Bacillariophyceae and cyanobacteria in plankton, high levels of plant detritus in POM, and
high levels of heterotrophic bacteria and Copepoda in SOM. Although the dominant taxa in the
phytoplankton were Chlorophyceae, Cryptophyceae, Dinophyceae and Bacillariophyceae, fatty acid
markers of these algae were not abundant in plankton, and were particularly scarce in POM. The
relatively low proportion of algal biomass in the water column is a possible explanation of this result.
The higher percentages of SFAs (C18:0, C20:0 and C22:0) and BrFAs in POM and SOM suggest that
they contain high proportions of detrital particles derived from plant debris, pseudofaeces, faeces
and other molluscan excreta (Makhutova et al. 2011).

The fatty acid compositions of various bivalve taxa are highly variable. As in other freshwater
bivalve, e.g. D. polymorpha and D. bugensis (Makhutova et al. 2011), L.fortunei possesses high levels
of C20:5(n-3) and C22:6(n-3), which are considered physiologically crucial and probably are conser-
vatively retained in tissues relative to other compounds (Gladyshev et al. 2011; Kelly and Scheibling
2012). In addition, many researchers emphasised the importance of the ratio C22:6(n-3)/C20:4(n-6)
for the growth and reproduction of the zoobenthos (Ahlfren et al. 2009). Data collected from the lit-
erature (Makhutova et al. 2011) indicated values for the C22:6(n-3)/C20:4(n-6) ratio in D. polymor-
pha and D. bugensis of 1.44 and 1.49, respectively, and in Potamocorbula amurensis the ratio was ca.
2 (Canuel et al. 1995). In the present study, the ratio in L. fortunei was somewhat higher (2.02;
Table 3).

Algal fatty acids are used as energetic resources and are catabolised in animal tissues (Brett and
Goldman 2006; Gladyshev et al. 2011). The percentage of C18:2(n-6) (Figure 3a), an essential fatty
acid synthesised by algae (Maria-Jos�e et al. 2010), was higher in L.fortunei than in its food items.
Likewise, percentages of the essential fatty acid, C18:4(n-3), which was abundant in Cryptophyceae
and Dinophyceae (Gugger et al. 2002; Maria-Jos�e et al. 2010), was also higher in L.fortunei (Table 3).
Apparently, L.fortunei consumed or selectively accumulated C18:2(n-6) and C18:4(n-3) from cer-
tain algae species, i.e. Chlorophyceae, Cryptophyceae and Dinophyceae. In contrast, Bacillariophy-
ceae are abundant in plankton, POM and SOM, but are deficient in L.fortunei (Figure 3(d)).
Nevertheless, we could not estimate the consumption of Bacillariophyceae by L.fortunei by using
fatty-acid markers because bivalves are reported to preferentially store fatty acids from Bacillario-
phyceae as triacylglycerols and to use them for catabolism (Gladyshev et al. 2011). Heterotrophic
bacterial fatty acids are reported to be a significant source of organic carbon and nitrogen for some
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bivalve molluscs (Nichols and Garling 2000). Bacterial taxa differ markedly in fatty markers (Napo-
litano 1999), e.g. bacterial i17:0 and 17:0 for sulfate-reducing bacteria, and C18:1(n-7) for cyanobac-
teria, sulphur-oxidising and aerobic bacteria. Thus, L.fortunei in the present paper apparently
consumed the latter bacteria, which usually dwell in the water column. Decomposed material, par-
ticles of plant detritus and copepods can also be potential food sources for L.fortunei but the high
percentage of their fatty acid markers in plankton, POM and SOM, and low levels in L.fortunei indi-
cated that L.fortunei did not prefer these food items. The high level of the biomarkers of terrestrial
OM in L.fortunei (Table 3) suggest the indirect assimilation of terrestrial OM via heterotrophic bac-
teria, but could also result from the direct assimilation of terrestrial OM using cellulase and hemicel-
lulase in this species (Mcleod and Wing 2009).

According to the fatty-acid marker analyses, L.fortunei preferred planktonic algae and bacteria.
This feeding spectrum is similar to that of D. polymorpha (Cole and Solomon 2012; Makhutova
et al. 2013) and could be explained in terms of active selection, more efficient assimilation of the
selected diet from POM and/or preferential ingestion. Although some bivalve species appear to cap-
ture their diet indiscriminately (Ward et al. 1997), L.fortunei is able to differentiate between suitable
and unsuitable particles by gill sorting mechanisms. This selection mechanism appears not to be
based on particle size but on chemical cues and their surface properties (Wong and Cheung 1999).

Conclusions

The feeding spectrum of L.fortunei in the Xijiang River in summer was described. Using the isotope-
mixing model, the relative contributions to the diet of L.fortunei were estimated as 19.8%–28.2% for
plankton, 57.6%–65.2% for POM and 10.2%–21.1% for SOM. Fatty acid biomarkers specific to
Chlorophyceae, Cryptophyceae, Dinophyceae, heterotrophic bacteria and terrestrial OM were iden-
tified in the tissues of L.fortunei, indicating that there were substantial algal, bacterial and terrestrial
inputs into the diet of L.fortunei. However, the present study did not include the winter months.
The possibility of seasonal variation in the levels of plankton, POM and SOM in the water column
should be addressed in future research.
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