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Abstract 

  

The purpose of this research was to evaluate the capability and performance of the University of 

South Florida’s (USF) Human Exposure Chamber (HEC) using aerosols in the thoracic range.  

The goals of this research were two-fold: to obtain an average particle size of 10 µm (thoracic-

size range) inside the chamber during dust production and to test for evenness of dust 

concentration within the chamber.  The USF HEC can be used for studies using gases and/or 

particulates.  The chamber measurements are 4.16 ft x 2.67 ft x 6.75 ft, for a total volume of 75 

ft3 or 2.13 m3.  This research has public health significance since outdoor air pollution is found 

most commonly in the thoracic size range; future studies with the HEC could focus on the impact 

of outdoor air pollution on human subjects under various exposure conditions, and various 

particle size ranges.  Soda lime glass beads were used in this study due to their uniformity in 

shape and size.  A Wright Dust Feeder (WDF) was used to generate the glass beads aerosol in 

the chamber.  Nitrogen gas and HEPA-filtered fresh air were used to transport the aerosol 

through the system and into the chamber.  A total of nine different chamber configurations were 

made in order to increase the average particle size closer to the goal of 10 µm.  Chamber 

reconfiguration provided statistically significant effect on increasing particle size with the 

exception of two intermediate settings.  It was concluded that aerosol distribution within the 

chamber was even during operation of the chamber, and modification steps utilized in the study 

provided size distribution within +/- 6% of the target particle size.  
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Introduction 

 

Purpose of the Study 
 

The purpose of this study was to enhance the capabilities of a whole-body human exposure 

chamber (HEC) to generate consistently an even distribution of particles in the thoracic size 

range.  The chamber is located in the Breath Laboratory of the Sunshine Education and Research 

Center at the University of South Florida’s (USF’s) College of Public Health.  Previous work has 

been conducted with this chamber to generate particles in the respirable range.   

 

Research Hypotheses 
 

For average particle size distribution at each reconfiguration step: 
 

Ho: There is no statistical difference between the thoracic-fraction size distribution 
obtained with each configuration of the aerosol generation system. 

 
H1: There are statistical differences between the thoracic-fraction size distribution 
obtained with each configuration of the aerosol generation system. 

 

For evenness of concentration across the chamber: 

Ho: There is no statistical difference between total aerosol concentrations obtained by 
aerosol sampling for each cassette within the chamber. 

 
H1: There are statistical differences between total aerosol concentrations obtained by 
aerosol sampling for each cassette within the chamber. 
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Aerosols: Background 
 

Aerosols are solid or liquid particles suspended in gas, and the term ‘aerosol’ includes both the 

particles and the gas in which they are suspended.  The particle size range of aerosols can be 

anywhere from 0.002 to greater than 1000 micrometers (µm) (Hinds, 1999).  A particle’s size 

can be measured physically or dynamically (McClellan & Henderson, 1995).  Physical particle 

size relates to a particle’s geometry whereas dynamic size includes aerodynamic and mobility 

diameters (McClellan & Henderson, 1995).  A particle’s aerodynamic diameter (dae)  is the 

diameter at which a spherical particle with a density of 1 g/cm3 has the same settling velocity as 

the particle in question (Hinds, 1999).  The mobility diameter of a particle is the diameter at 

which a spherical particle has the same dynamic mobility as the particle in question.  This 

dynamic mobility can be defined as particle velocity divided by resistance force (McClellan & 

Henderson, 1995). 

 

Types of Exposure Chambers 
 

There are two categories of exposure chambers: whole body and nose only.  Nose only is 

preferred because it prevents exposure through the skin and ensures that dust exposure is only 

through inhalation.  In this study we are concerned with whole body exposure, and will therefore 

be using a human exposure chamber.  The chambers described below are also human exposure 

chambers. 

 
Inhalation challenge human exposure chambers can be divided into three types based on the 

method of delivery and particle size of the delivered agent.   Static exposure systems utilize a 

finite amount of the agent in the chamber that is added at the beginning of the test.  This can 
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result in a depletion of oxygen concentration, increase in the temperature in the chamber, and 

change in the concentration of the agent.  Recirculating exposure systems have a closed-loop 

agent delivery.  The recirculation does not remove water (H2O) or carbon dioxide (CO2), and 

also depletes the concentration of the aerosol;  after exposure begins, no further aerosol is added, 

therefore a steady concentration within the chamber cannot be maintained (McClellan & 

Henderson, 1995).  The third type is a dynamic system where dust-laden air is continuously 

introduced and exhausted from the chamber.  Although using a whole-body exposure chamber is 

preferable and more comfortable for human subjects, there are some disadvantages of using such 

a system (Hammad & Pieretti, 2011).  Exposing a subject’s entire body to a given aerosol 

increases the chances that the material will be dermally absorbed or ingested instead of inhaled.  

Therefore it can be difficult to determine if a subject’s health effects are due to inhalation of the 

material or ingestion/absorption.  This type of chamber also leads to greater losses of the test 

material than head-only or nose-only inhalation systems, since each chamber run uses much 

more material than will be inhaled by a potential subject.   

 

In a static or recirculating exposure chamber, the concentration is continuously decreasing.  

However in a dynamic system, there is an initial rise in test material when the aerosol generator 

is first engaged before reaching a theoretical equilibrium (McClellan & Henderson, 1995).  

Knowing the rate of this generation, the air flow rate, and the volume of the exposure system 

allows researchers to predict what the concentration (C) of the test material will be at equilibrium 

(Hammad & Pieretti, 2011).  This is accomplished using Equation 1.  

 

Equation 1 

 

Q

G
C =
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Where, 

C = concentration 
G = generation rate of test material  
Q = average flow rate of the exposure system  
 

A unitless factor known as the “K” value, which ranges from 1 to 10, is often included in this 

equation to account for incomplete mixing (ACGIH, 2004).  With the inclusion of the “K” value, 

Equation 1 becomes: 

Equation 2 

 

Where a “K” value of 1 denotes complete, instantaneous mixing, with the other variables defined 

as they were in Equation 1. 

 

In order to determine the concentration after a certain time has elapsed within the chamber (C2), 

assuming initial concentration (C1) is equal to 0, Equation 3 is used. 

 

 

Equation 3 

Where, 

Q’ = effective ventilation (flow) rate 

∆t = change in time 

With all other variables as they were in Equations 1 and 2.  In Equations 1 and 2, “Q” is the 

actual ventilation rate in Equation 3 whereas “Q’” is the effective ventilation (or flow) rate.  This 

effective rate is calculated by dividing the actual ventilation rate by “K.”  After aerosol 
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generation has ceased, the concentration within the exposure room will decrease over a period of 

time.  This rate of decrease can be expressed as follows: 

 

Equation 4 

 

Where, “C1” is the concentration of the test material at the end of aerosol generation.  With all 

other variables as they were in Equations 1, 2, and 3. 
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Literature Review 

 

Health Effects of Air Pollution 

Aerodynamic behavior of particles, subsequent deposition in the respiratory tract, and the effect 

on human health is largely determined by particle size.  Deposition of particles in the respiratory 

system is often divided into three different fractions: inhalable, thoracic, and respirable (Hinds, 

1999; Linnainmaa et al., 2007).  Tables 1-3 display the collection efficiencies representative of 

the three mass fractions (ACGIH, 2015).   

 

Table 1: ACGIH Inhalable Fraction 

Particle  
Aerodynamic  

Diameter 
(µm) 

Inhalable 
Particulate  

Matter (IPM)  
Fraction Collected 

(%) 

0 100 

1 97 

2 94 

5 87 

10 77 

20 65 

30 58 

40 54.5 

50 52.5 

100 50 
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Table 2: ACGIH Thoracic Fraction 

Particle  
Aerodynamic  

Diameter 
(µm) 

Thoracic 
Particulate  

Matter (TPM)  
Fraction Collected 

(%) 

0 100 

2 94 

4 89 

6 80.5 

8 67 

10 50 

12 35 

14 23 

16 15 

18 9.5 

20 6 

25 2 

 

 

Table 3: ACGIH Respirable Fraction 

Particle  
Aerodynamic  

Diameter 
(µm) 

Respirable 
Particulate  

Matter (RPM)  
Fraction Collected 

(%) 

0 100 

1 97 

2 91 

3 74 

4 50 

5 30 

6 17 

7 9 

8 5 

10 1 

 

An average adult inhales approximately 20 m3 of air each day (Curtis et al., 2006).  With such a 

large volume of inhaled air, a slight change in outdoor air composition can have large health 
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effects.  Categories of health effects from air pollution are often grouped based on the affected 

organ system: respiratory effects, cardiovascular effects, cancer, reproductive/developmental 

effects, mortality, infection, etc. 

 

Curtis, et al. published a summary of recent research (from 1995 – 2005) on outdoor air 

pollution’s many adverse health effects.  They categorized human health effect data into eight 

major organ systems: respiratory, cardiovascular, cancer, reproductive and developmental, 

neurological, mortality, infection, and other.  Respiratory effects comprise the majority of studies 

on outdoor air pollution.  Examples of respiratory effects include asthma and COPD, especially 

in children and elderly populations, and several studies noted a correlation between increasing 

levels of outdoor particulate matter with a cut-point of 10 µm in aerodynamic diameter (thoracic 

fraction) and increased hospital admissions for these conditions (2006).  There have also been 

studies that found a dose response relationship between thoracic fraction particle levels and 

bronchitis based on emergency room visits (Peel et al., 2005).  Important contributors to outdoor 

air pollution respiratory health effects are traffic emissions, industrial pollution, 

mold/pollen/bioaerosols, biomass burning, and sand exposure (Delfino, 2002; From et al., 1992; 

Gyan et al., 2005; Koenig et al., 1997; Johnston et al., 2002; Larson et al., 1993; Koryeni-Both & 

Juncer, 1997; Lierl & Hornung, 2003; Targonski et al., 1995; Torigoe et al., 2000; Viswanathan 

et al., 2006).   

 

Particle pollution, even at levels below the standards set by the Environmental Protection 

Agency (EPA) (listed below in Table 4), can also increase the risk of heart-related illness (EPA, 

1990).  Studies have found that even short term exposure to traffic pollution can trigger heart 
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attacks and that risk of cardiovascular disease from air pollution is particularly strong for 

women, diabetics and the elderly (Curtis et al., 2006).   

 

Table 4: EPA National Ambient Air Quality Standards for Particle Pollution 

Pollutant  Primary/Secondary Averaging 

Time 

Level 

Particle 

Pollution 

Dec 14, 

2012 

PM2.5 primary Annual 12 µg/m3 

secondary Annual 15 µg/m3 

primary and  

secondary 

24-hour 35 µg/m3 

PM10 primary and 

secondary 

24-hour 150 µg/m3 

 

Studies conducted in Europe and the United States have found that individuals exposed to higher 

levels of outdoor PM2.5 and PM10 are at a higher risk of developing lung cancer (Vineis et al., 

2004).  With regards to reproductive/developmental effects, a study conducted by Woodruff et 

al. on 4 million US infants found that increased levels of PM10 were associated with increased 

death rates from sudden infant death syndrome (SIDS)(1997).  Another study also found higher 

rates of preterm births in areas with increased PM10 outdoor air levels (Sagiv et al., 2005). 

 

Two large studies monitored the mortality/morbidity of 43 million European city dwellers and 50 

million US city dwellers in response to the outdoor PM10 concentration (Katsouyanni, 

Touloumi, & Samoli, 2001; Atkinson, Anderson, & Sunyer, 2001; Samet, Dominici, Curriero, 

Coursac, & Zeger, 2000; Zanobetti & Schwartz, 2005).  The researchers found that each 10 

µg/m3 increase of concentration of PM10 resulted in the daily mortality increasing 0.6% in 

Europe and 0.5% in the US.  This increase in PM10 also produced statistically significant 
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increases in hospital admissions for COPD and heart disease (Katsouyanni et al., 2001; Atkinson 

et al., 2001; Samet et al., 2000; Zanobetti & Schwartz, 2005). 

 

Curtis et al. concluded their review by praising the development of “environmental chambers to 

measure the respiratory effects of typical ambient levels of outdoor air pollution on humans 

(2006).”   

 

Other Exposure Chamber Studies 
 

A pioneering study using a whole body exposure chamber was conducted by Avol et al. in 1979.  

Epidemiologic studies before this point had linked sulfate aerosols to an increase in acute 

respiratory morbidity.  However, these studies had been unsuccessful in identifying what specific 

pollutant was responsible for this increase.  In Avol et al. study, human subjects were exposed to 

ammonium sulfate, ammonium bisulfate, and sulfuric acid at levels which would be considered 

“worst case” for the Los Angeles, California area (Avol et al., 1979).  Subjects were exposed in 

groups to 100 µg/m3 of ammonium sulfate, 85 µg/m3 of ammonium bisulfate, and 75 µg/m3 of 

sulfuric acid.  The particle concentrations and size distributions were based on the highest value 

obtained from several 2-hour filter samples taken in the Los Angeles Basin.  The subjects were 

required to perform baseline pulmonary function tests immediately upon entering the chamber, 

and then exercised on stationary bicycles for the first 15 minutes of every 30 minutes.  The entire 

exposure lasted two hours.   

 

The chamber used by Avol et al. was a dynamic system constructed from stainless steel, and it 

was continuously supplied with 14 m3 of air each minute.  A portion of this air was rerouted to a 
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mixing plenum, where it was combined with the agents before entering the chamber through a 

perforated ceiling.  Uniform air distribution was accomplished by having an increased pressure 

in the air space above the perforated ceiling.  Aerosol was generated using two banks of 

“Babington-type nebulizers” that were able to maintain mass concentrations between 10 to 1,000 

µg/m3.  The aerosol concentration was monitored by an electrical aerosol analyzer and an optical 

particle counter.  An air parcel was inside the chamber for an average of five minutes before 

being exhausted.  Samples were also collected using a cascade impactor (Sierra Instruments 

215S).  The filter was removed immediately following sampling, and then underwent gravimetric 

and chemical analyses.  Pulmonary function tests were performed after the 2-hour exposure to 

detect the presence of any short-term adverse effects.  A one-way repeated-measures analysis of 

variance (ANOVA) was performed for the pulmonary function data to determine if there were 

differences among baseline measurements.  Two-way repeated measures ANOVAs were done 

for the complete set of data.  Results found little to no adverse health effects from the two hour 

chamber exposure (Avol et al., 1979).  Repeatability was not addressed in this study.  

 

Liden et al. designed a whole-body chamber for human dermal absorption and lung challenge 

tests (1998).  They recognized the value of a chamber’s controlled environmental conditions for 

studying respiratory health effects.   This is of particular importance when it comes to allergen 

studies, which have been known to have problems reproducing the same effect on subject after 

subject.  Up to this point, environmental chambers mostly had been constructed to be used with 

gases only.  It was possible to use the chamber in Liden et al.’s study, however, for both gases 

and particles, much like the chamber used in this study.  Initial tests were performed with wheat 

flour, a well-known occupational allergen.  The researchers chose stainless steel for constructing 
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the exposure chamber because it is inert to most experimental atmospheres, long-lasting, and will 

not build up an electrostatic charge.  Three of the chamber’s walls, the roof, and the floor were 

constructed of stainless steel while the front wall was built from glass in order to observe test 

subjects during experimentation and reduce subject discomfort.  The chamber measured 1.8 m x 

1.5 m x 2.1 m, for a total volume of 5.7 m3.  This exposure room was connected to another space 

known as a “sluice” that measured 1.8 m x 0.9 m x 2.1 m that housed a hand shower and 

draining gutter.  The hand shower was used to clean the exposure chamber in between 

experiments.  The exposure chamber also contained ports that made it possible to connect 

sampling devices outside of the chamber to measure the concentration inside.  These ports also 

could be used to supply fresh air for respiratory consumption, limiting allergen exposure to the 

skin only.   

 

Air was taken from the room outside of the system and supplied to the exposure chamber with a 

centrifugal fan, after first being passed through Camfil Airopac CPM60 and CPM95 microfilters 

(Liden et al., 1998).  The flow of air from the main air supply and secondary air supply produced 

an exchange rate of 6-12 air changes per hour in the chamber.  The air then moved from the 

chamber to the sluice, where it was passed through another microfilter before being exhausted 

from the system.  The exposure room was under higher pressure than the sluice (+2 Pa), which 

was under less pressure (- 1 Pa) than the outside air.  This arrangement prevented the chamber 

from being contaminated from the sluice or outside air, and also prevented the sluice air from 

leaking into the outer room.  The inclusion of a “forced exhaust” was a thoughtful addition on 

behalf of the researchers.  This feature is installed in the air delivery system and can be activated 
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in cases where the exposure room air must be quickly evacuated.  The researchers emphasized 

that all components in this air delivery system were easy to dismantle, replace, and clean.   

 

A RBG 1000 aerosol generator was used since this device is preferred for aerosols, such as 

wheat flour, that cannot be easily packed (Liden et al., 1998).  Dry powder is placed in a 

reservoir within the generator and a rotating brush above the reservoir coupled with a high-

velocity air stream removes and blows the aerosol upwards.  Liden et al. originally tried using a 

Wright Dust Feed for aerosol generation, but found that the device altered the wheat flour 

particle size distribution.  They hypothesized that this was due to the packing and scraping 

required when using the Wright Dust Feed and switched to the RBG 1000 aerosol generator.  As 

aerosol leaves the generator, it was passed through a neutralizer tube which contained a krypton 

85 source.  It was then mixed turbulently with clean air before entering downward into the 

exposure chamber.  Mixing within the chamber was optimized by having a turbulent flow and by 

inserting a cone into the duct, forcing air to radially disperse.  Spatial variability was measured 

by using multiple sampling devices in different locations within the chamber.  

 

Total dust and respirable dust samples were conducted on 37 mm membrane filters.  The Casella 

AMS950, a direct-read instrument, also was used to measure dust concentration (Liden et al., 

1998).  This instrument is based on infrared light scattering, and was calibrated against the total 

dust samplers.  Personal Inhalable Dust Spectrometer (PIDS) cascade impactors were used to 

determine particle size distribution and the impactor plates were coated with 10% apiezone in 

toluene. 
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The concentration of wheat flour aerosol remained at a fairly constant 5 mg/m3 for a two hour 

duration (Liden et al., 1998).  It was determined that there was a greater percentage of inhalable 

particles in the chamber than in the real-world bakery environment.  The researchers measured 

the temporal variation by calculating the coefficient of variation (CV) between readings taken 

every five minutes during one hour of exposure.  This resulted in a CV range of 7-11% 

corresponding to a concentration of 4.2-5.1 mg/m3.  Spatial variation was calculated by running 

tests with and without human subjects, comparing the concentration results.  No difference 

between spatial variation with and without a subject in the chamber was found.  Particle size 

distribution results from the PIDS impactor indicated greater amounts of fine particles than 

commonly found in real-world bakery settings.  However the researchers point out that this may 

become an advantage when performing future lung challenge studies since the potentially 

harmful fraction is increased. 

 

 In 2006, the same system was used to study temporal variations and spatial distribution within 

the chamber (Lundgren, 2006).  A heated mannequin was also introduced in lieu of human 

subjects for these initial chamber studies.  Several different agents were used: wheat flour, glove 

powder, cornstarch and pinewood dust.  Temporal and spatial distributions were found to be less 

than 10% when close to the breathing zone and only slightly higher further away from the 

mannequin.  The variability between each exposure session was also less than 10%.  The 

aerodynamic particle size distribution curves were comparable to those found in occupational 

environments.  
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A study conducted by Lauralynn Taylor and her colleagues at The University of North Carolina 

(UNC) at Chapel Hill attempted to develop an exposure chamber for low-level concentration 

endotoxin exposures (2000).  Goals of the study included construction of a chamber that allowed 

for thorough dust mixing, development of a dust generation system that was able to maintain 

concentrations at 250 µg/m3, and verification that the aerosol prepared for generation had a 

respirable size distribution and endotoxin concentration of 1300-1700 ng endotoxin/ ng dust.  

Enterobacter agglomerans was the origin of the endotoxin selected for the study, and this 

endotoxin was added as a coating onto cellulose dust. 

 

The researchers constructed a 6.27 m3 HEC as a partition off of an existing dust room at the 

UNC Chapel Hill Aerosol Laboratory.  The chamber was constructed of sealed cinder block and 

Plexiglas, with glass windows to help prevent subject claustrophobia.  Using an Aridata 

Multimeter Series 4800 (Shortridge Instrument Inc, Scottsdale, AZ), the researchers made sure 

that the chamber air exchange rate was at least 10 air exchanges per hour at all times.  Air 

turbulence and uniform distribution were achieved using a fan.  Air was exhausted to the outside 

atmosphere after being passed through a filter. 

 

Cellulose was chosen as the carrier aerosol for the endotoxin because of its minimal health 

effects at low concentrations.  The cellulose was heated to 100°C for one hour prior to sampling 

in order to verify that no additional endotoxins were present on the aerosol prior to the adhesion 

of E. agglomerans endotoxin.  The endotoxin was added to the cellulose aerosol using an 

acetone absorption process.  An aerosolized sample of the cellulose-endotoxin conglomerate was 

analyzed by light microscopy using a Porton graticule in order to confirm the respirable size 
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distribution of the material.  Endotoxin content was confirmed using the Limulus Amebocyte 

Lysate (LAL) assay (Bio-Whittaker, Walkersville, MD). 

 

Aerosol was dispersed using a dry aerosol generator in order to preserve the original particle size 

and endotoxin content.  The dust feeder was a 6 cm diameter cylinder that was open at both ends, 

rotating freely on a 20.3 cm diameter rotating turntable.  The turntable groove was uniformly 

filled with powder and dispersed using an aspirator. 

 

The researchers cleaned the chamber between every run before re-coating the chamber walls 

with a thin layer of dust.  Coating the chamber walls helped reduce the time for the dust 

concentration within the chamber to stabilize.  This coating was developed by running the dust 

generator for approximately two hours.  The researchers argue that without this “wall 

conditioning,” injected aerosol particles would be attracted to the chamber surfaces and not stay 

suspended within the chamber’s atmosphere. 

 

Each chamber run was approximately four hours.  Sampling equipment included three filters for 

total dust and a cascade impactor containing nine filters.  A portable continuous aerosol monitor 

(PCAM) (Model 151, PPM Inc, Knoxville, TN) monitored the dust inside the chamber during 

each run.  This instrument was able to provide real time measurements of dust concentration 

while the exposure was taking place.  A modified method of the NIOSH 0500 method for total 

dust was used, collecting the samples at a flow rate of 10.5 L/min.  The cascade impactor 

sampled at a flow rate of 6.8 L/min.  The types of filters were also switched for each chamber 

run in order to determine which type of filter would be the most effective for endotoxin recovery.  
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Five filter types were used: gelatin, glass fiber, mixed cellulose ester, polyvinylchloride, and 

zeta.  Filters that underwent gravimetric analysis were housed in a filter desiccator in order to 

control any potential moisture absorption. 

 

The researchers achieved the three initial goals of the study:   

- They were able to construct a HEC that had proper ventilation (11.5 air changes per 

hour), tolerated several washings, and was cost-effective.    

- Dust was successfully generated and maintained at approximately 250 µg/m3.  A one-

factor ANOVA determined that the difference between the average dust concentrations of 

each chamber run was not statistically significant at a 95% confidence interval. 

- The endotoxin concentration was within the respirable size range and was maintained 

between approximately 1300 and 1700 ng endotoxin/ mg dust.   

Taylor et al. emphasized the need for continued studies on an exposure chamber before using it 

for human testing. 

 

Suarez et al. set out to construct a single-pass, 10 m3 stainless steel chamber in order to test the 

short-term effects of airborne contaminants (2005).  The goal of this investigation was to develop 

a HEC that was somewhat inexpensive (~$330,000) and simple to design and build, yet provided 

the proper facilities needed to do short-term aerosol testing.  These criteria were satisfied by 

constructing the chamber as a single-pass system with no contact heating or cooling elements.  

The chamber could be operated in vapor-only mode or in a vapor + particulate mode, using 

environmental tobacco smoke (ETS).  The respirable fraction of suspended particulate matter, 

which the researchers considered anything less than 10 µm in diameter, was measured using a 
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tapered element oscillating microbalance (TEOM).  This article did a thorough job explaining the 

operating principles for vapor only and vapor + particulate exposure, as well as the development 

of an economical yet effective environmental chamber, but fell short when it came to thoroughly 

explaining the actual particulate measurement process and the instrumentation involved.  They 

also failed to mention the spatial variability of the test material within the exposure chamber.  

During testing, the chamber was kept at 40% relative humidity (RH), 22.6°C, with an air flow 

rate of approximately 1055 liters/min.  The aerosol was generated by having a human subject 

smoke a cigarette within the chamber.  The researchers were aiming for a desired particle 

concentration of 100 µg/m3 and were able to achieve this concentration 90% to 95% of the time 

during chamber runs.  Also discussed was the inclusion of an antechamber, or mixing room, 

which they note will expand the range of challenge agents that can be studied with the chamber.  

This room was used to introduce the test material.  With the antechamber, which was an 

additional 5 m3, the researchers were able to control the volume or mass of total vapor or 

particulate that entered the main chamber. 

 

Eduard et al. discussed how beneficial an inhalation chamber can be to gain information on 

exposure-response relationships (2008).  This type of information is usually obtained through 

epidemiological and animal studies.  Their design criteria were very similar to the current 

project: they wanted to generate aerosols in the thoracic range with “a temporal and spatial 

variability of coefficient of variation < 10%.”  They aimed for an exposure duration of two hours 

and concentrations of fused aluminum oxide particles of at least 4 mg/m3.  The chamber used by 

the researchers was 16 m3 and was constructed of acid-proof steel.  The chamber has two glass 

doors and two windows constructed from polycarbonate.  The tests were run at the lowest flow 
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rate to achieve a high concentration of the aerosol inside the chamber.  The aerosol was 

generated using a fluidized bed generator, and the aerosol was then neutralized using a 

radioactive source.  If the generator was operated with a cyclone, it was possible to adjust the 

particle size. 

 

Once testing began, the researchers discovered a few problems with their design and 

experimental methods (Eduard et al., 2008).  Dust started accumulating on the surface of the 

fluidized bed due to the shape of the flow obstructer beneath the bed plate.  Tests were then done 

with different shaped flow obstructers until they reached a final design that gave the best mixing.  

They also encountered unexpected particle deposition in the upper section of the elutriator and in 

the inlet of the cyclone when concentrations greater than 1 mg/m3 was reached.  This deposition 

was reduced by applying vibration during the aerosol generation process using a pneumatic 

vibrator on the outside of the elutriator. 

 

The experiment then progressed with human subjects in the chamber and a target concentration 

of 4 mg/m3 (Eduard et al., 2008).  They were able to reach the target concentration when the 

chamber was empty and also when the volunteer would enter the chamber and do two, 15-minute 

rounds of exercises on a stationary bike inside the chamber.   

 

Results indicated that the particle mean diameter generated without the cyclone was 5.7 µm and 

the particle mean diameter with a cyclone was 2.9 µm (Eduard et al., 2008).  The concentration 

of aerosols was 5.4% lower in the corners of the chamber than in the center and there were also 

statistically significant differences in other positions. 
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Prior research on the HEC used in this report was conducted by Hammad and Pieretti at the 

University of South Florida (2011).  The first part of their research documents the performance 

of the chamber with gas phase agents.  A separate report was prepared on the performance of the 

chamber with respirable particulate phase agents.   

 

The researchers used CO2 for evaluation of its performance, measuring the flow of gas entering 

the chamber with a dry-gas meter.  Background CO2 concentrations were measured before each 

chamber run and were accounted for during the generation measurements.  A rotameter was also 

used to ensure that the flow rate of CO2 into the chamber was consistent.   Infrared instruments 

(Metrosonic aq-5000) were used to measure CO2 levels.  Buildup and decay patterns were 

measured in different areas of the exposure chamber.  By examination of several consecutive 

patterns of buildup and decay for each chamber run, the researchers were able to predict the 

performance of the system.  The CO2 was generated at rates of 4.8, 8.5, and 11 L/min.  The 

observed levels of CO2 were very close to expected, and varied from the predicted 

concentrations by 0.62%-1.74%.  These data support the conclusion that the exposure chamber 

system is reliable to use for inhalation challenge procedures for gases.  

 

Other peer-reviewed articles concerning the performance and use of exposure chambers include 

those by Phalen (1976), Hammad et al. (1985), Rudell et al. (1996), Kimmel & Reboulet  (1998), 

O’Shaughnessy et al. (2003), Gao et al. (2007), Wong (2007), and Shimada et al. (2009).  
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Experimental Methods 

 

Chamber Specifications 
 

The Plexiglas human exposure chamber was developed and used for studies using gases and/or 

particulates.  It measures 4.16 ft x 2.67 ft x 6.75 ft, for a total volume of 75 ft3 or 2.13 m3.  

Negative pressure operation at 4 inches of water ensures that contaminants do not leak into the 

room containing the chamber.  The system can maintain a flow rate of approximately 34 cfm (1 

m3/min).   

 

Figure 1 depicts a schematic diagram of the chamber set up for particle generation, with the 

arrows representing the direction of air flow (Hammad & Pieretti, 2011).  Room air is introduced 

through a HEPA filter and combines with dust-laden air in order to push the aerosol through the 

system and into the chamber.  Air is exhausted through a HEPA filter.  The filter is used to 

ensure that the air leaving the chamber does not contain any particulates used in the experiment.  

Particle monitoring devices are located within the chamber. 
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Figure 1: Diagram of Inhalation System 

 

 

Exposure Chamber Components 

A SpiralTM SL4P2 air blower is used to move air in the HEC.  The blower is able to move a 

maximum of 2 m3/min.  An air bypass is set up before the blower, and is used to control and 

regulate the flow rate of air into the chamber.   

 

The measurement of air flow through the chamber is accomplished using orifice meters.  Orifice 

meters are constructed using a one and a half inch diameter PVC duct and a plate.  The plate has 

an orifice drilled into it that is one inch in diameter; air passes through this orifice and contracts 

the air flow.  The point of contraction is known as the Vena Contracta.  The orifice meters are 

connected to a Magnehelic gauge, which measures the pressure change before and at the Vena 

Contracta.  This difference in pressure relates to the air flow rate.  The orifice meters are 
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calibrated using a Micro-Pitot tube (Hinds, 1999) and a calibration curve was constructed for 

each orifice meter.  One orifice meter was installed at the air intake (after a HEPA filter) and 

another was installed before the air blower.   

 

Supply and exhaust air are filtered by High Efficiency Particulate Air (HEPA) filters.  Three 

filters are used throughout the system.  The first filter is positioned at the air intake of the HEC, 

which prevents particles from entering the system.  The second HEPA filter is positioned after 

the chamber in order to collect aerosol before it enters the air blower.  A third HEPA filter is 

used to collect the aerosol in the dust bypass. 

 

Characteristics and Generation of Experimental Aerosol 

The aerosol to be used in this research is a fine soda-lime glass particulate. (Baron, 1994).  The 

typical composition of soda lime glass is silica (60-75%), soda (12-15%), and lime (5-12%).  The 

addition of soda reduces the melting point of the glass, making the material more “manageable”, 

but less durable.  This leads to the addition of the limestone, which increases the glass hardness 

and durability.  The aerosol was purchased in narrow size categories from Fiber Optic Center, 

Incorporated (New Bedford, MA), and is spherical in shape.  Figure 2 shows a photomicrograph 

of soda lime glass beads obtained by light microscopy. 



 

Figure 2: Photomicrograph

 

The uniformity of shape and size, as well as dispersibility were the reasons 

glass beads.  Availability of an exposure chamber that is able to generate size

would be beneficial for future studies assessing/evaluating human response to air pollution, 

which is normally in the thoracic fractio

 

The glass beads can be dispersed as a dry powder using the Wright Dust Feed

Incorporated, Waltham, MA).  Aerosol

press for consistency, and a scraper blade 

material, which is then transported into the test chamber by compressed 

been used to generate several types of dust in previous investigations including silica, fly ash, 
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Photomicrograph of soda lime glass beads between 1 µm and 1 mm 

The uniformity of shape and size, as well as dispersibility were the reasons for the selection of

exposure chamber that is able to generate size-specific particulate 

would be beneficial for future studies assessing/evaluating human response to air pollution, 

thoracic fraction size range.   

The glass beads can be dispersed as a dry powder using the Wright Dust Feed (WDF) (BGI 

Aerosol is packed into a cylinder using a two-ton Ann Arbor 

and a scraper blade in the cylinder slowly removes layers of the packed 

material, which is then transported into the test chamber by compressed nitrogen.

been used to generate several types of dust in previous investigations including silica, fly ash, 

m and 1 mm (2014) 

the selection of 

specific particulate 

would be beneficial for future studies assessing/evaluating human response to air pollution, 

(WDF) (BGI 

ton Ann Arbor 

ly removes layers of the packed 

nitrogen.  The WDF has 

been used to generate several types of dust in previous investigations including silica, fly ash, 
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and abrasive blasting substitutes (Hammad et al., 1987; Abdel-Kader & Hammad, 1987).  A 

diagram of the WDF is displayed in Figure 3. 

 

 

Figure 3: Diagram of Wright Dust Feed Mechanism (Hinds, 1999) 

 

The aerosol is moved into the chamber by compressed nitrogen gas.  The dust feeder can be set 

at various rotations per minute (RPM) settings in order to control the aerosol concentration 

entering the chamber.  RPM settings used in this experiment were 0.4 and 0.8.  The WDF was 

started 15 minutes before air enters the chamber, and a bypass was used during that time to 
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ensure that the aerosol is being generated evenly once it is allowed into the chamber.  The glass 

beads are mixed with air in a dust mixing chamber (5 liter volume) constructed from PVC.  

 

Aerosol Measurement 

Monitoring devices usually used in an HEC include those which measure air flow, temperature, 

particle-size distribution, and concentration. 

 

Before performing tests with a human exposure chamber, researchers need to ensure that the unit 

does not leak air in or out and is able to maintain a stable concentration.  It is also important to 

know how much of the agent is expected to be lost between generation and delivery into the 

chamber and also if it is uniformly dispersed inside the chamber.  The performance of the 

chamber used in this research has been previously tested and shown to have uniform dust and gas 

concentrations (Hammad & Pieretti, 2011).  This consistency depends on the pattern of air flow 

through the chamber.   

 

Aerosol concentration and consistency of its generation was determined using aerosol sampling 

cassettes.  Particle concentration was determined by gravimetric methods, which are a common 

type of analysis for concentration when working with solid particles.  Analysis was performed 

following the National Institute for Occupational Safety and Health’s (NIOSH) Manual of 

Analytical Methods for Particulates Not Otherwise Regulated, Total Dust 0500.  One of the 

limitations of using gravimetric analysis is that the concentration is not known until after the 

chamber run is complete.  Therefore, aerosol concentration and particle size were also measured 

using two direct-read devices: a Tapered Element Oscillating Microbalance (TEOM) (Thermo 
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Fisher Scientific, Waltham, MA) and the QCM Cascade Impactor (California Measurements, 

Sierra Madre, CA).   

 

The TEOM is a continuous sampler that consists of a substrate that is positioned on the end of a 

tapered, hollow tube (Baron, 1994).  This tube is oscillated and particle-laden air is drawn 

through the filter before flowing through the tube.  The frequency of the sampler decreases as 

particle accumulation increases.  Measuring this frequency change provides an accumulated 

mass value.  The TEOM displays a 10 minute average concentration (in µg/m3), with an update 

every 2 seconds.  With a TEOM sampler, possible gravimetric analysis errors such as filter 

handling are eliminated.  The sampler is one of the most accurate direct-reading instruments for 

particulate mass in part due to its lower resonant frequency and vibrational motion that is parallel 

to the surface (Baron, 1994). 

 

The 10-stage QCM Cascade Impactor (Model PC-2) has an aerodynamic diameter cut point 

range of 0.05 to 25 µm.  The device is manufactured by California Measurements and operates at 

a 2 L/min flow rate.  A printout of particle size distribution and mass concentration of ten size 

fractions is provided automatically after each sampling event. 

 

Generation consistency was determined by conducting repeated chamber runs, documenting the 

concentrations and size-distribution.  Using direct-read instruments provided better results with 

regards to the consistency of concentration of aerosol generation.  
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System Configurations 

Several modifications were applied to the exposure chamber set up throughout this research, with 

a goal to generate particles in the thoracic-size range.  Although the soda lime glass beads used 

for chamber runs were purchased in the several size ranges, the size of generated aerosol in the 

chamber in the initial stages was much smaller than the target size.  The modifications to achieve 

the target size are divided into numerical steps so that they can be easily referenced and 

explained throughout this research.  A minimum of three sampling runs were conducted for each 

modification before moving to another configuration. 

 

Step 1: Removal of the vertical elutriator & elimination of 6 ft of PVC pipe 

The vertical elutriator used in previous studies (See Figure 1) was removed from the set up in 

order to allow larger-size particles to enter the chamber.  After several runs with this initial set 

up, the average particle diameter was still lower than desired.  It was hypothesized that moving 

the aerosol generation closer to the chamber entry would increase particle size, since it would 

prevent larger particles from getting collected in the PVC pipe en route to the chamber.  

Decreasing the travel distance for the aerosol would actually increase the amount actually getting 

in to the chamber.  The pipe containing fresh filtered room air and dust-laden nitrogen gas was 

approximately 12 feet long from the generator to the ‘T’ section of PVC in Figure 4.  The PVC 

pipe containing the aerosol was shortened by approximately 6 feet.  The room air was introduced 

directly into the ‘T’ after traveling through the first orifice meter, as shown in Figure 4.   
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Figure 4: T-Shape Configuration 

 

Step 2: Mixing chamber positioned horizontally 

In the second configuration, the mixing chamber was positioned horizontally.  Although the 

length of the piping had been reduced, the particle size reaching the chamber was still relatively 

smaller than expected. 

 

Step 3: Placing mixing chamber directly over dust generator/RPM Reduction 

The mixing chamber was moved closer to the aerosol generation in order to eliminate losses in 

the system.  A new end cap was designed so that the dust-laden nitrogen entered at the bottom of 

the mixing chamber (Figures 5 and 6).  A second hose nozzle was added to the bottom cap in 

order to connect another nitrogen tank and double the amount of gas entering the mixing 

chamber.  It was hypothesized that with more gas pushing the aerosol upwards and towards the 

chamber, particles with a larger diameter would be carried more readily to the chamber.  The 

RPM of the Wright Dust Feed was also reduced from 0.8 to 0.4 to decrease particle 

clumping/agglomeration encountered during aerosol generation. 



 

Figure 5: New End Cap with Second Nozzle for Additional Nitrogen

Figure 6: New End Cap with Second Nozzle for Additional Nitrogen 
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New End Cap with Second Nozzle for Additional Nitrogen, Side View

End Cap with Second Nozzle for Additional Nitrogen - Underside

 

, Side View 

 

Underside 



 

Step 4: Additional clean air  

A high flow pump with an air flow rate of 53 liters/min was attached to the bottom of the mixing 

chamber and the additional nitrogen

movement of the larger-size particles.  

four small nozzles encircling a larger, central 

clean air was distributed between the four

from the generator was attached to the central nozzle.  

 

Figure 7: End Cap Reconfigured with Four Perimeter 
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flow rate of 53 liters/min was attached to the bottom of the mixing 

nitrogen was eliminated, in order to further promote the upward 

size particles.  The mixing chamber end cap was re-designed to have 

encircling a larger, central nozzle (Figures 7 and 8).  The extra 53 L/min of 

clean air was distributed between the four perimeter nozzles, and the dust-laden nitrogen tubing 

was attached to the central nozzle.   

: End Cap Reconfigured with Four Perimeter Nozzles

flow rate of 53 liters/min was attached to the bottom of the mixing 

urther promote the upward 

designed to have 

.  The extra 53 L/min of 

laden nitrogen tubing 

 

Nozzles for Clean Air 



 

Figure 8: End Cap Reconfigured with Four Perimeter 

Figure 9: Shortened Tubing from W
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p Reconfigured with Four Perimeter Nozzles for Clean Air 

 

Shortened Tubing from Wright Dust Feed to End Cap

 

for Clean Air Inside View 

 

to End Cap 



 

Step 5: Increasing glass beads to a nominal size of

Larger size particles (7-15 µm batch

the chamber.  Chamber runs were now conducted using the 

original 3-12 µm batch that was previously used.  

 

A mannequin (Allen Display, Midlothian, VA)

runs during this step to investigate its effect on the evenness of 

simulate the presence of a test subject in the chamber.  

displayed in Figure 10.  The mannequin does not contribute to the efforts to increase particle 

size, therefore it was simply included in Step 5 and not given

Mannequin measurement specifics are listed in Appendix D

Figure 
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Increasing glass beads to a nominal size of 7-15 µm  

atch) were used to increase the size of the particle generated in 

hamber runs were now conducted using the larger soda glass beads instead of the

previously used.   

A mannequin (Allen Display, Midlothian, VA) was also seated inside the chamber 

during this step to investigate its effect on the evenness of aerosol concentration and also to 

simulate the presence of a test subject in the chamber.  A front and side view of the mannequin is 

The mannequin does not contribute to the efforts to increase particle 

simply included in Step 5 and not given its own configuration

ecifics are listed in Appendix D.    

Figure 10: Mannequin Inside Chamber 

to increase the size of the particle generated in 

soda glass beads instead of the 

was also seated inside the chamber for several 

concentration and also to 

A front and side view of the mannequin is 

The mannequin does not contribute to the efforts to increase particle 

configuration step.  

 



 

 

Step 6: Slanted PVC configuration 

The T-shaped junction where clean air was combined with the glass beads and entered the 

chamber was changed to a ‘Y’ configuration

that the aerosol would have a smoother path 

loss on the PVC pipe due to impaction 

Figure 11: Slanted

 

Step 7: Elimination of Tygon tubing on WDF/Wider PVC opening

The Tygon tubing connecting the Wright Dust Feed to the bottom of the mixing chamber was 

eliminated in order to reduce particle loss along the sides of the tubing.  

Wright Dust Feed was inserted directly into the bottom of the mixing chamber.  

nozzle inside the bottom of the end cap was 

move upwards into the system.  Figure 12 displays the wide
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: Slanted PVC configuration  

shaped junction where clean air was combined with the glass beads and entered the 

configuration, as depicted in Figure 11.  This change w

smoother path from the junction into the chamber, 

impaction where the clean air meets the dust-laden air

Slanted Junction Where Clean Air Meets Dust-Laden Air

tubing on WDF/Wider PVC opening 

tubing connecting the Wright Dust Feed to the bottom of the mixing chamber was 

in order to reduce particle loss along the sides of the tubing.  The nozzle on the 

Wright Dust Feed was inserted directly into the bottom of the mixing chamber.  

inside the bottom of the end cap was enlarged in order to induce larger particulate to 

Figure 12 displays the wider PVC opening leading into the 

shaped junction where clean air was combined with the glass beads and entered the 

.  This change was made so 

 reducing wall 

laden air. 

 

Air 

tubing connecting the Wright Dust Feed to the bottom of the mixing chamber was 

nozzle on the 

Wright Dust Feed was inserted directly into the bottom of the mixing chamber.  The center 

particulate to 

r PVC opening leading into the 



 

mixing chamber.  Figure 13 is an enlarged image depicting the WDF nozzle inserted directly into 

the bottom of the end cap through a rubber stopper.

Figure 12

Figure 13: WDF Fe
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mixing chamber.  Figure 13 is an enlarged image depicting the WDF nozzle inserted directly into 

the bottom of the end cap through a rubber stopper. 

12: WDF Feeding Directly into End Cap 

: WDF Feeding Directly into End Cap - Enlarged Image

mixing chamber.  Figure 13 is an enlarged image depicting the WDF nozzle inserted directly into 

 

 

Enlarged Image 
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Step 8: Heated glass beads  

To decrease possible particle agglomeration due to humidity, the glass beads were heated in an 

oven at approximately 125° C overnight before being packed into the Wright Dust Feed cylinder. 

 

Step 9: Increasing glass beads to a nominal size of 25 µm 

In the last step, a batch of glass beads with a 25 µm nominal size was used instead of the 7 – 15 

µm beads used previously. 

 

Analysis of Data 
 

The average particle size distribution comparisons were performed using the geometric means of 

particle sizes obtained through the software program, DPlot (HydeSoft Computing, LLC, 

Vicksburg, MS).  The Shapiro-Wilk test was used to confirm each configuration step’s 

normality. 

 

The Shapiro-Wilk test for normality was also used on the data representing evenness of 

concentration across the chamber.  The sampling cassettes were divided into different groupings 

and compared using the student’s t-test.  The normality assumption was violated for one cassette 

group (Group D), so the Non parametric Wilcoxon Rank Sum test was used for all comparisons 

with this group.   
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Results and Discussion 

 

 

Results have been categorized into two main sections.  Section A displays data for the average 

particle size distribution for each configuration step of the chamber setup.  Section B displays 

data for the evenness of concentration within the chamber.   

 

The obtained data showed that the HEC dust generation system was capable of increasing the 

size of particulates on a consistent basis, and the thoracic size-fraction was produced.  Spatial 

and temporal variability was minimal, as shown in the results below. 

 

An average particle size distribution was determined for each reconfiguration step of the 

chamber setup.  Each reconfiguration step followed a normal distribution based on the Shapiro-

Wilk test for normality.  The result was nine different averages, which were compared using the 

Welch-Satterthwaite t-test.   

 

Section A: Particle Size Distributions  
 
The purpose of this research was determining the average particle size at each configuration, in 

order to ultimately reach the thoracic size of 10 µm.  All statistics and comparisons were 

performed using the geometric means of particle size obtained through the software program, 

DPlot (See Appendix F).  Examination of Figure 14 indicates that each configuration increased 
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the mass median diameter (MMD) in the desired direction.  Table 5 displays the mass median 

diameter in micrometers obtained at each configuration step, as well as a step description. 

 

Figure 14: Average Particle Diameter Obtained for Each Step 

 

 
Table 5: Mass Median Diameter (MMD) Obtained for each Chamber Configuration Step 

Step  MMD (µm) Step Description 

1 2.42 removal of Vertical Elutriator 

2 3.34 mixing chamber positioned horizontally 

3 5.29 mixing chamber over top generator/rpm reduction 

4 7.61 additional clean air (53 L/min) 

5 8.14 larger (7-15 µm) dust 

6 8.90 slanted PVC configuration 

7 9.44 eliminated Tygon on WDF 

8 8.48 heated glass beads 

9 8.75 larger (25 µm) dust 
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The next measure was to calculate the statistical significance between each step.  Each step was 

considered “normal” based on the Shapiro-Wilk test for normality, shown in Table 6, therefore 

parametric statistics were used.   

 

Table 6: Tests for Normality for each Configuration Step 

Step 

Shapiro-

Wilk  

Statistic 

(W) 

Shapiro-

Wilk  

p-value 

Normal 

Based on 

Shapiro-

Wilk? 

Kolmogorov-

Smirnov 

Statistic (D) 

Kolmogorov-

Smirnov 

p-value 

Normal Based 

on Kolmogorov-

Smirnov? 

1 0.95 0.73 Yes 0.19 >0.15 Yes 

2 0.82 0.12 Yes 0.25 >0.15 Yes 

3 0.88 0.25 Yes 0.23 >0.15 Yes 

4 0.82 0.05 Yes 0.32 0.02 NO 

5 0.80 0.06 Yes 0.31 0.31 Yes 

6 0.93 0.45 Yes 0.18 >0.15 Yes 

7 0.95 0.58 Yes 0.27 >0.15 Yes 

8 0.84 0.17 Yes 0.28 >0.15 Yes 

9 1.00 1.00 Yes 0.26 >0.15 Yes 

 α = 0.05    
  

 

  

The null hypothesis was rejected because there were statistical differences between the size 

distributions obtained with certain configurations of the HEC.  Table 7 displays the comparisons 

between each configuration step, and states if each comparison was statistically significant or 

not.  Although the steps may appear correlated on first glance, they do not always have an 

intrinsic order (i.e.: step 1 does not cause step 2), therefore each reconfiguration step was treated 

as an independent sample and not correlated.  T-tests were performed for each reconfiguration 

step comparison.  In order to use a t-test, normality, independence, and homoscedasticity (equal 

variances) were assumed.  There were two comparisons which were non-significant: step 6 to 7 

and step 8 to 9.  The most likely explanation for this non-significance is that the chamber system 
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was beginning to approach a ceiling limit of the size it was capable of producing.  With the 

experimental set up it was not possible to increase the size beyond what has been obtained.  The 

difference between step 5 and 6 (changing to a slanted PVC configuration) produced the smallest 

p-value and therefore could be thought of as the step having the most impact in terms of 

increasing the average particle diameter. 

 

 

Table 7: Statistical Comparison Between Each Configuration – Independent Samples t-test 

Step Comparison p-value > 
Statistically 
Significant? 

1 and 2 0.004 Yes 

2 and 3 0.006 Yes 

3 and 4 0.004 Yes 

4 and 5 0.016 Yes 

5 and 6 0.001 Yes 

6 and 7 0.342 No 

7 and 8 0.035 Yes 

8 and 9 0.780 No 

 

Section B: Distribution of Concentration across the Exposure Chamber 
 

Twelve total dust sampling cassettes were suspended from the ceiling of the HEC using Tygon 

tubing, 4.5 feet above the chamber floor.  Figure 15 provides a plan view of the chamber 

displaying the cassette positions.  The numbers in Figure 15 correspond to the sampler numbers 

themselves and have no further significance.  The chamber was divided into different groups (A-

E) in order to test for the evenness of concentration.  These groupings are displayed in Figures 16 

and 17. 
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Figure 15: Plan view of Chamber with Numbered Cassette Locations 
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Figure 16: Plan View of Chamber Showing Groups A and B 
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Figure 17: Plan View of Chamber Showing Groups C, D, and E 

 

In order to make sure that there was not any one filter influencing the average concentration too 

far in either direction, the concentrations for each filter number were normalized to the mean and 

averaged over six runs.  These normalized values are given in Table 8.  This procedure was 

utilized to eliminate the effect of daily variability in aerosol concentration. 

 
Table 8: Filter Concentrations Normalized to the Mean 

Filter 

Run 1  

(µg/m
3
) 

Run 2 

(µg/m
3
) 

Run 3 

(µg/m
3
) 

Run 4 

(µg/m
3
) 

Run 5  

(µg/m
3
) 

Run 6  

(µg/m
3
) 

Average 

Filter 

Conc 

1 0.96 1.01 1.00 0.97 1.17 1.14 1.04 

2 1.17 1.22 1.00 1.24 0.93 0.98 1.09 

3 1.23 1.01 0.95 1.05 0.96 0.99 1.03 

4 0.99 1.13 0.94 0.84 0.89 1.05 0.97 

5 1.18 1.06 0.95 1.00 1.08 1.13 1.07 

6 0.91 0.95 0.97 1.00 1.01 1.13 1.00 

7 0.94 0.90 0.94 1.04 1.06 1.01 0.98 

8 1.09 0.72 1.05 0.93 1.12 0.97 0.98 

9 0.57 0.99 1.08 0.92 0.97 0.92 0.91 

10 0.97 1.12 1.05 1.09 1.08 0.96 1.05 

11 0.98 0.86 1.08 1.10 0.98 0.89 0.98 

12 1.00 1.03 0.99 0.82 0.76 0.82 0.90 

Avg 1.00 1.00 1.00 1.00 1.00 1.00 

SD 0.17 0.13 0.05 0.12 0.11 0.10 
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The average filter concentrations from Table 8 were assigned to their respective cassette 

numbers in the plan view of the chamber (Figure 18).  The plan view with the numbered cassette 

locations is also displayed for reference. 

 

 
 

Back  Back  

              

0.98 0.91 0.98   8 9 11 

         

0.98 1.05 0.90 7 10 12 

         

1.04 1.03 1.07 1 3 5 
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                  Door        Door 

Figure 18: Chamber Diagram Showing Normalized Filter Concentrations 

 
 

Table 9 displays the test for normality for the evenness of concentration data.  The Shapiro-Wilk 

(SW) p-value was used instead of the Kolmogorov-Smirnov (KS) p-value because it performs 

better at a smaller sample size, and the KS statistic has less power and tends to get locked at a 

certain point.   
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Table 9:  Test for Normality: Evenness of Concentration 

Cassette 

Group 

Sample 

Size (N) 

Shapiro-

Wilk  

Statistic 

(W) 

Shapiro-

Wilk  

p-value 

Normal 

Based 

on 

Shapiro-

Wilk? 

Kolmogorov-

Smirnov 

Statistic (D) 

Kolmogorov-

Smirnov 

p-value 

Normal Based 

on 

Kolmogorov-

Smirnov? 

A 36 0.97 0.32 Yes 0.15 0.04 NO 

B 36 0.97 0.49 Yes 0.08 >0.15 Yes 

C 24 0.96 0.41 Yes 0.10 >0.15 Yes 

D 24 0.91 0.04 NO 0.15 >0.15 Yes 

E 24 0.97 0.73 Yes 0.11 >0.15 Yes 

α = 0.05 

 

Although most of the comparisons between cassette groups within the chamber displayed in 

Table 10 had no statistically significant difference, the difference between Group A and B was 

slightly significant (p-value: 0.049, α = 0.05). The difference is so small and cannot be readily 

explained, especially since it appeared only in this pattern of analysis.  There may be slight 

variability between the A and B pattern as the dust is descending from the top of the chamber.  

All other comparisons, including individual comparisons of all twelve cassettes, were not 

statistically significant.  The presence of a mannequin during Step 4 had no effect on the 

concentration distribution, based on a t-test comparison between data with and without the 

mannequin present.  This is a favorable outcome when looking ahead to future work in the 

chamber with human subjects. 

 

Table 10: Statistical Comparison of Open Face Cassette Patterns 

Comparison            p-value > Statistically Significant? 

Group A and B 0.049 yes 

Group C and D* 0.429 no 

Group C and E 0.341 no 

Group D* and E 0.916 no 

All Cassettes 0.3941 no 

α = 0.05     
*Non parametric Wilcoxon Ranks Sum test used due to violation of normality 
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Figure 19 depicts a Quantile plot for the Group A vs Group B sections of the chamber.  Quantile 

plots provide a visual representation of the information previously given in Table 10.  The figure 

has two data sets, depicting how closely those data sets follow a common distribution.  In each 

graph there is a 45˚ reference line; data sets that come from populations with common 

distributions, and therefore are not statistically significant, will have points that fall closely to the 

reference line.  If the points are farther away from the reference line, this would indicate that the 

two data sets are derived from populations with different distributions and may be statistically 

significant. (NIST/SEMATECH, 2012). 

 
 

 
Figure 19: Comparison Quantile Plots for Groups A and B 

 
 
 
Table 11 displays the average dust concentration for different chamber configurations as 

obtained by gravimetric analysis.  The average concentration was not the best indicator of how 

well each chamber reconfiguration worked in getting towards the goal of a 10 µm average 
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particle size.  As additional air was added, the average concentration would increase, most likely 

because more dust was being carried into the chamber due to the increased flow.  However as 

larger dust sizes were used, the concentration fell again; it was speculated that the dust size 

became too large to be carried through the system and there was an increase in sedimentation and 

impaction.  Tracking the concentration value was helpful during the runs themselves; using the 

real-time TEOM as the chamber was operating gave immediate feedback on how the chamber 

was functioning.  A dramatic change in average concentration would indicate a failure within the 

system (i.e.: broken pump, blockage, generator malfunction, etc), and could be addressed 

immediately.  The average dust concentration data for the TEOM is provided in Appendix H.   

 

 
Table 11: Average Dust Concentrations Corresponding to Chamber Configurations, Obtained by 
Gravimetric Analysis 

Step  Avg Conc (µg/m
3
) Step Description 

1 285.48 removal of vertical elutriator & PVC elimination of 6 ft 

2 221.79 mixing chamber on its side 

3 424.60 mixing chamber over top generator/rpm reduction 

4 1901.68 additional clean air (53 l/min) 

5 2207.53 larger (7-15 µm) dust 

6 1856.93 slanted PVC configuration 

7 1568.10 eliminated Tygon on WDF 

8 1472.23 baked beads overnight 

9 803.85 larger (25 µm) dust 

  

 

 

 

  



47 

 

 
 
 
 
 

Conclusions  

 

Research Hypotheses 
 

For average particle size distribution at each reconfiguration step: 
 

Ho: There is no statistical difference between the thoracic-fraction size distribution 
obtained with each configuration of the aerosol generation system. 

 
H1: There are statistical differences between the thoracic-fraction size distribution 
obtained with each configuration of the aerosol generation system. 

 

For evenness of concentration across the chamber: 

Ho: There is no statistical difference between total aerosol concentrations obtained by 
aerosol sampling for each cassette within the chamber. 

 
H1: There are statistical differences between total aerosol concentrations obtained by 
aerosol sampling for each cassette within the chamber. 

 

 

Particle Size Distribution: Major Findings 
 

The HEC is a useful tool for aerosol research, and can hopefully provide valuable data in future 

air pollution research as well.  For the average particle size distribution at each reconfiguration 

step, the null hypothesis was rejected: particles approaching 10 µm can be successfully generated 

in the HEC.  Statistically significant increases in size were observed in 7 of the 9 chamber 

reconfiguration steps.  This indicates that the increasing size of particles entering the chamber 

was directly related to the different chamber configurations.  It was important to introduce the 

changes to the chamber configuration in small increments to prevent the possibility of sudden 

change in particle size beyond 10 µm entering the chamber.  The desired particle sizes in this 
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study are restricted to a certain size range of health significance, and larger particles are not of 

interest within the scope of this study.   

 

Evenness of Concentration: Major Findings 
 

With regards to the evenness of concentration within the chamber, the null hypothesis was 

upheld: other than a slightly borderline difference between Group A and B, there was no 

significantly statistical difference between the total dust concentrations obtained for each cassette 

within the chamber.  Even when a mannequin was placed inside the chamber to simulate the 

presence of a human subject, there was no significant change in the evenness of concentration.   

 

Study Strengths and Limitations 
 

This research has helped to establish the USF Human Exposure Chamber’s capability to produce 

particle sizes in the thoracic-range, and has also shown the system is proficient in producing an 

even concentration throughout the chamber interior.  Incremental changes to the system’s overall 

configuration were paramount in order to gradually approach the desired particle size without 

overshooting the mark, resulting in a strong correlation between configurations and increasing 

particle size.  The research performed in this investigation can now be added to previous work 

that has shown the chamber’s ability to produce particles in the respirable size range.  Having an 

HEC able to consistently and evenly generate particles in both size ranges is very useful when 

marketing the system for future aerosol and air pollution studies. 

 

The generated particle size plateaued at 10 um, indicating that this is the maximum size to 

possibly achieve with the current experimental set up without a major re-engineering of the 
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chamber.  Positioning the dust generator directly on the top of the chamber will reduce the travel 

path through PVC piping and eliminate possible bends in the piping system.  Other future 

modifications could include using a different generation method.  The main limitation of the 

HEC used in this research is that it is built to only contain one human subject, either sitting, 

standing, or riding an exercise bike. 

 

Public Health Implications and Future Directions 
 

Now more than ever, disease-prevention efforts are conducted on a global scale.  Having a 

healthy outdoor environment is crucial to not only having a healthy workforce, but a healthy 

population as a whole.  The WHO has reported that environmental factors are responsible for 

almost 25% of all deaths and the “total disease burden”.  Many of the diseases which contribute 

the largest burden to this total, for instance lower respiratory infections, are also some of the 

most preventable. Lower respiratory infections can be attributed to environmental causes nearly 

20% of the time in developed countries and 42% in developing nations.  A 2008 EPA survey 

found that approximately 127 million people residing in the US lived in counties that exceeded at 

least one of the National Ambient Air Quality Standards (NAAQS).  A human exposure chamber 

like the one used in this investigation is very valuable for conducting further research on particle 

pollution, which is an important NAAQS (EPA, 2008). 

 

Exposure chambers can also be beneficial when conducting allergen exposure investigations and 

studies relating to allergies and asthma.  A study recently published in September 2016 

conducted field clinical trials of pollen allergy using a mobile human exposure chamber 

(Zuberbier et. al, 2016).  Another study investigated the efficacy of an oral medication in treating 

house dust mite allergic rhinitis by using a human exposure chamber.  Researchers determined 
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that using a HEC was useful in establishing a dose-dependent effect, and are planning on 

conducting further investigation of this problem (Roux et. al, 2016).  Having a HEC whose 

performance capabilities have been well-established will allow for a broad range of public health 

research areas.  

 

Typical outdoor air pollution can be categorized primarily as thoracic-size range.  Having an 

HEC such as the one used in this investigation that can consistently generate particles in this size 

range allows for future air pollution studies.  The chamber is large enough to fit a human subject, 

as well as an exercise bike to simulate work.  Air pollution studies using human subjects within 

the chamber could provide valuable data on health-related issues associated with exposure to 

airborne particulates.  This research has shown this chamber’s utility in studying and assessing 

air quality. Future investigations can use this chamber to better understand individuals’ responses 

to thoracic-sized particle pollutants, as well as the conditions in which people live and breathe. 
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Appendix A: Rotameter Calibration 

 

Glass Ball  

(Rot 

Reading) 

St Steel  

(Rot 

Reading) 

Mass Flow 

 Meter 

(L/min) 

28 18 4.51 

35 27 6.57 

38 28 6.85 

60 33 8.39 

75 43 10.9 

90 52 13.55 

110 63 17.1 

140 81 22.69 

  100 28.84 

  120 36.79 
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Appendix B: Critical Orifice Calibrations 
 

    Calibration #1 Calibration #2 Calibration #3   

Pump Tube # 

Avg of 5 

Readings  

(L/min) 

Avg of 5 

Readings  

(L/min) 

Avg of 5 

Readings  

(L/min) 

Standard  

Deviation 

3/4 hp 1 3.337 3.343 3.364 0.0142 

3/4 hp 2 2.958 2.891 3.369 0.2588 

3/4 hp 3 3.338 3.349 3.376 0.0196 

3/4 hp 4 3.951 3.966 4.000 0.0251 

3/4 hp 5 3.932 3.926 3.968 0.0227 

3/4 hp 6 3.938 3.947 3.985 0.0249 

1/6 hp 7 2.749 2.747 2.762 0.0081 

1/6 hp 8 2.775 2.772 2.766 0.0046 

1/6 hp 9 2.685 2.718 2.713 0.0178 

1/6 hp 10 2.691 2.718 2.669 0.0245 

1/6 hp 11 2.673 2.67 2.656 0.0091 

1/6 hp 12 2.715 2.713 2.698 0.0093 
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Appendix C: Determination of Size Distribution of Glass Beads by Light Microscopy 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 

 

 

  

  

Cumulative Percent Less Than Stated Size 

Cumulative Percent Less Than Stated Size 
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Appendix D: Mannequin Measurements 

 

 
 
 

Height 73 1/2" 

Neck 13 1/2" 

Shoulders 18 1/2" 

Chest 39 1/4" 

Bicep 13 5/8" 

Waist 30 1/2" 

Hip  39 1/2" 

Thigh 21 1/2" 

Calf 16 1/4" 

Inseam 34" 

Sleeve 35" 

Outside Foot 
Measurement 15 1/5" 

Foot Style Abstract 
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Appendix E: Particle Size Distribution for Each Reconfiguration Step 
 

 

Step 

1 

  

GM  

(µm) 2.00 2.10 2.40 2.40 2.70 2.90           

  GSD 2.19 2.26 2.17 2.33 1.88 2.43           

Step 

2 

  

GM  

(µm) 2.74 3.00 3.00 3.07 3.20             

  GSD 1.97 1.77 1.90 1.98 1.83             

Step 

3 

  

GM  

(µm) 4.17 4.58 4.7 7.4 5.29 5.6           

  GSD 1.89 1.85 2.01 1.99 1.67 1.57           

Step 

4  

  

GM  

(µm) 7.56 6.86 7.58 7.74 7.67 7.61 7.8 8.01       

  GSD 1.34 1.63 1.36 1.48 1.39 1.40 1.47 1.48       

Step 

5 

  

GM  

(µm) 8.41 7.66 7.66 8.31 8.50 8.27 7.84 7.85 8.36 8.43 8.10 

  GSD 1.39 1.42 1.42 1.51 1.48 1.45 1.38 1.45 1.50 1.42 1.41 

Step 

6 

  

GM  

(µm) 9.53 8.87 8.70 9.13 8.68 8.91 8.49 8.76 8.78 9.11   

  GSD 2.16 1.55 1.48 1.57 1.49 1.60 1.41 1.47 1.48 1.54   

Step 

7 

  

GM  

(µm) 8.60 10.08 9.63                 

  GSD 1.51 1.54 1.67                 

Step 

8 

  

GM  

(µm) 8.27 8.15 8.70 8.60 8.68             

  GSD 1.41 1.49 1.45 1.44 1.38             

Step 

9 

  

GM  

(µm) 9.5 8                   

  GSD 1.55 2.46                   
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Appendix F: An Example of a DPlot graph as Determined by Impactor 
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Appendix G: MSDS for Soda Lime Glass Beads  
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Appendix H: TEOM Data vs Gravimetric Data for Average Particle Concentration 
 
 
The TEOM is a real-time sampling instrument that was used during each chamber run in this 

research.  The average particle concentration was obtained through the TEOM and also through 

gravimetric analysis of total dust cassettes (NIOSH Manual of Analytical Methods – Particulates 

Not Otherwise Regulated, Total 0500).  The average particle concentrations were not of primary 

importance for the purposes of this investigation, but have been listed in the table below for 

reference.   

 
 

Step 

Avg Conc  

TEOM 

(µg/m
3
) 

Avg Conc 

Gravimetric 

(µg/m
3
) 

1 250.25 285.48 

2 212.44 221.79 

3 290.40 424.6 

4 1668.42 1901.68 

5 2384.05 2207.53 

6 1944.50 1856.93 

7 1538.11 1568.1 

8 1287.57 1472.23 
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