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ABSTRACT 

 

Increasing vehicle dependence in the United States has resulted in substantial 

emissions of traffic-related air pollutants that contribute to the deterioration of urban air 

quality. Exposure to urban air pollutants trigger a number of public health concerns, 

including the potential of inequality of exposures and health effects among population 

subgroups. To better understand the impact of traffic-related pollutants on air quality, 

exposure, and exposure inequality, modeling methods that can appropriately characterize 

the spatiotemporally resolved concentration distributions of traffic-related pollutants need 

to be improved.  These modeling methods can then be used to investigate the impacts of 

urban design and transportation management choices on air quality, pollution exposures, 

and related inequality.  

This work will address these needs with three objectives: 1) to improve modeling 

methods for investigating interactions between city and transportation design choices and 

air pollution exposures, 2) to characterize current exposures and the social distribution of 

exposures to traffic-related air pollutants for the case study area of Hillsborough County, 

Florida, and 3) to determine expected impacts of urban design and transportation 

management choices on air quality, air pollution exposures, and exposure inequality. 

To achieve these objectives, the impacts of a small-scale transportation 

management project, specifically the ’95 Express’ high occupancy toll lane project, on 

pollutant emissions and nearby air quality was investigated. Next, a modeling method 
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capable of characterizing spatiotemporally resolved pollutant emissions, concentrations, 

and exposures was developed and applied to estimate the impact of traffic-related 

pollutants on exposure and exposure inequalities among several population subgroups in 

Hillsborough County, Florida. Finally, using these results as baseline, the impacts of 

sprawl and compact urban forms, as well as vehicle fleet electrification, on air quality, 

pollution exposure, and exposure inequality were explored. 

Major findings include slightly higher pollutant emissions, with the exception of 

hydrocarbons, due to the managed lane project. Results also show that ambient 

concentration contributions from on-road mobile sources are disproportionate to their 

emissions. Additionally, processes not captured by the CALPUFF model, such as 

atmospheric formation, contribute substantially to ambient concentration levels of the 

secondary pollutants such as acetaldehyde and formaldehyde. Exposure inequalities for 

NOx, 1,3-butadiene, and benzene air pollution were found for black, Hispanic, and low 

income (annual household income less than $20,000) subgroups at both short-term and 

long-term temporal scales, which is consistent with previous findings. Exposure 

disparities among the subgroups are complex, and sometimes reversed for acetaldehyde 

and formaldehyde, due primarily to their distinct concentration distributions. Compact 

urban form was found to result in lower average NOx and benzene concentrations, but 

higher exposure for all pollutants except for NOx when compared to sprawl urban form. 

Evidence suggests that exposure inequalities differ between sprawl and compact urban 

forms, and also differ by pollutants, but are generally consistent at both short and long-

term temporal scales. In addition, vehicle fleet electrification was found to result in 

generally lower average pollutant concentrations and exposures, except for NOx. 
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However, the elimination of on-road mobile source emissions does not substantially 

reduce exposure inequality. 

Results and findings from this work can be applied to assist transportation 

infrastructure and urban planning. In addition, method developed here can be applied 

elsewhere for better characterization of air pollution concentrations, exposure and related 

inequalities. 
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CHAPTER 1  

PROBLEM STATEMENT 

 

Rapid urban growth has been observed around the world (Cohen, 2004). After 

2020, all world population growth is predicted to occur exclusively in urban areas 

(United Nations, 2008). The United States is no exception to this global phenomenon. 

From 1980 to 2010, the US urban population increased by 49%, the area of urbanized 

land increased by 108%, but the total US population increased by only 36%. In fact, 98% 

of US population growth from 2000-2010 occurred in an urban area (U.S. Census 

Bureau, 1983, 2013). 

Urban growth has resulted in increasing dependency on motor-vehicles, and 

drastically increased distance travelled by motor-vehicles, quantified by Vehicle Mileage 

Travelled (VMT). Figure 1.1 shows the trend of US population, number of registered 

vehicles, and total vehicle mileage travelled from 1980 to 2010. In 30 years, the number 

of registered motor-vehicles increased by 55%, while the US population increased by 

only 36%. Additionally, total vehicle mileage travelled increased by 108%, three times 

the population increase. 

The substantial increase of vehicle mileage travelled has led to significant 

emissions of traffic-related pollutants, which are major contributors to total air pollutant 

emissions (Colvile et al., 2001; Mage et al., 1996). Data from US Environmental 

Protection Agency (USEPA)’s 2008 National Emission Inventory (NEI) show that 62% 
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of Nitrogen Oxides (NOx), 86% of Carbon Monoxide (CO), and 46% of Volatile Organic 

Compounds (VOC) emissions came from mobile sources (U.S. Environmental Protection 

Agency, 2013). 

 
Figure 1.1. Trend of US population, number of registered vehicles and total VMT from 

1980 to 2010 (Federal Highway Administration, 2013). For comparison purposes, data 

were normalized to 1980 values. 

 

Traffic-related pollutants significantly contribute to the deterioration of air quality 

in urban areas and the associated adverse health outcomes due to exposure to urban air 

pollution. The Health Effects Institute (HEI) estimated that over 50% of the cancer cases 

resulting from air pollution exposure can be attributed to mobile source Hazardous Air 

Pollutants (HAPs) (HEI Panel on the Health Effects of Traffic-Related Air Pollution, 

2010). Some sensitive groups, such as children and the elderly, are especially at risk to 

urban air pollution (Andersen et al., 2012; Brook et al., 2010; Morgenstern et al., 2008; 

Schultz et al., 2012). 

The environmental inequalities of exposure to air pollution has been well 

documented (National Research Council, 2004; O'Neill et al., 2003; U.S. Department of 

Transportation, 1997; US Department of Health and Human Services, 2000). More 

specifically, minority population subgroups such as black, Hispanic, and low income 
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groups have been found to be disproportionately exposed to air pollution, and 

consequently suffer from more adverse health outcomes due to this exposure (Keating, 

2004; The American Lung Association, 2001). This increased exposure could be 

attributed to the tendency for minorities to reside closer to major roadways with the 

largest traffic volume (Chakraborty, 2009). This issue has been well recognized, and 

taking actions to reduce environmental inequalities related to air pollution exposure were 

deemed necessary by a number of governing agencies (National Research Council, 2004; 

O'Neill et al., 2003; U.S. Department of Transportation, 1997; U.S. Department of Health 

and Human Services, 2000). 

To understand the impact of traffic-related pollutants on air quality, pollution 

exposure, and exposure inequalities, spatially and temporally resolved pollutant 

concentrations must be appropriately estimated (Denby et al., 2011; Isakov et al., 2007). 

Air quality monitoring activities could provide accurate ambient concentration levels for 

pollutant of interest. However, it can be cost-prohibitive when spatiotemporally resolved 

data are needed. In addition, monitoring techniques cannot be applied to hypothetical 

scenarios, given their diagnostic nature. Mechanism based air quality modeling methods 

are cost-effective, and can be readily applied to answer ‘what-if’ questions (Jerrett et al., 

2005). Currently, these preferred modeling approaches for on-road mobile sources are 

limited, due to the inadequate characterization of important parameters affecting 

emissions, such as vehicle speed (Bai et al., 2007). A lack of balance between detailed 

emission representation and practical computational burdens also hinders current 

modeling approaches (Hatzopoulou, 2008). 
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Transportation infrastructure expectedly impacts traffic characteristics on 

roadways, and consequently emissions of traffic-related pollutants. Past studies have 

suggested that small scale transportation management, such as managed lane projects that 

encourage ride sharing, could help reduce pollutant emissions from on-road mobile 

sources (Boriboonsomsin & Barth, 2008; Shewmake, 2012; U.S. Environmental 

Protection Agency, 1998). However, studies on this subject have been limited, and the 

results are still inconsistent (Dowling et al., 2005; Lee et al., 2009; You et al., 2010). The 

mechanisms of how small scale transportation management impacts the emissions of 

traffic-related pollutants and air quality are still unclear. 

At larger scale, the replacement of gasoline/diesel powered vehicles with electric 

vehicles, known as “vehicle fleet electrification”, is known to reduce pollutant emissions 

from on-road mobile sources, while increasing emissions from power generation units 

(Electric Power Research Institute, 2007; Huo et al., 2010; Stephan & Sullivan, 2008). 

Evidence suggests potential air quality benefits from vehicle fleet electrification (Alhajeri 

et al., 2011), despite the shift in emissions. However, studies regarding the impact of 

vehicle fleet electrification on air quality and exposures are limited. 

In addition, past studies have suggested that urban form could have a significant 

impact on on-road mobile source emissions and resulting air quality (Geurs & Wee, 

2006; Kahyaoğlu-Koračin et al., 2009; Stone et al., 2007, 2009). While recognizing 

accurate characterization of urban form involves the consideration of many factors, such 

as morphology of the city, design of transportation infrastructure, and land use policy 

(Miranda et al., 2008), many studies have utilized simplified representations, such as the 

sprawl and compact urban forms. Characterized by scattered, stripped development and 
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extensive development of low density residential units (Ewing, 1997), the sprawl urban 

form is generally believed to encourage the usage of private motor-vehicles, while 

discouraging the use of public transit. Therefore, an increase in vehicle miles travelled 

and related mobile source emissions is associated with sprawl urban forms (Song et al., 

2008). On the contrary, compact urban growth, which can be characterized by high 

density development in or near current urban centers with the implementation of mixed 

land use policies (Ewing et al., 2002), has been advocated by many urban planners to 

reduce travel distances and motor-vehicle dependency, encourage public transit, and 

therefore decrease mobile source air pollution emissions (Stone et al., 2007). However, 

findings on whether compact growth form could lead to improved air quality in urban 

areas have been inconsistent (Hixson. et al., 2012). The mechanisms of how urban form 

impacts air pollution concentrations, and consequently human exposures to pollution, are 

still largely unclear. Evidence suggests that population subgroups experience different 

types of impacts resulting from urban growth (Frumkin et al., 2004), but studies have not 

examined how urban growth may impact air pollution exposure inequalities among 

subgroups, especially those who are currently experiencing disproportionate exposures. 

Here, the overarching goal of this work was to improve understanding of how to 

design sustainable cities that both reduce exposures to traffic-related air pollutants and 

distribute the burden of remaining exposures equitably. The specific objectives of this 

dissertation were to: 

1. Improve modeling methods for investigating interactions between city and 

transportation design choices and air pollution exposures. A particular focus 
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was on improving methods for estimating spatiotemporal resolved emissions, 

concentrations, and exposures. 

2. Characterize current exposures and the social distribution of exposures to 

traffic-related air pollutants for the case study area of Hillsborough County, 

Florida. The scientific questions included are as follows: Are historical 

disadvantaged race/ethnicity groups disproportionately exposure in the Tampa 

area? Are groups know to be susceptible to air pollution health outcomes 

disproportionately exposed? Are inequalities in the Tampa area consistent 

with those in previous case study areas? Do the inequalities differ 

substantially between specific pollutants? Do they change substantially with 

temporal scale (e.g. acute versus chronic exposures)? Which emission sources 

contribute the most the exposure and exposure inequalities?  

3. Determine expected impacts of urban design and transportation management 

choices on air quality, air pollution exposures, and exposure inequality. The 

scientific questions included are as follows: Is compact growth expected to 

reduce concentrations and exposures to traffic-related pollutants? Is the 

impact expected to be similar for all pollutants and time scales? How may 

compact growth versus sprawl growth affect exposure inequality? Are small 

scale transportation management options, such as managed lanes, potential 

mitigating options? How may large-scale transportation management option, 

such as vehicle fleet electrification, impact air quality and exposures? 

The research presented here is divided into three components, attempting to 

address the scientific questions mentioned above. First, the impact of a small-scale 
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transportation management project on pollutant emissions and nearby air quality was 

investigated using the “95 Express” managed high occupancy toll lane project as an 

example. Second, spatiotemporally resolved pollutant concentrations were estimated for 

the Tampa area by applying a developed air quality modeling method that is capable of 

characterizing detailed on-road mobile source emissions. Air pollution exposure and 

exposure inequality among chosen population subgroups were estimated using the 

modeled concentrations. Third, the impact of sprawl, compact urban forms, and vehicle 

fleet electrification, on emissions, pollutant concentrations, air pollution exposure and 

exposure inequalities were explored by using results from the second component of this 

research as a baseline. Details of each component are presented in the following chapters. 
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CHAPTER 2  

LITERATURE REVIEW 

 

2.1. Introduction 

With increasingly stringent regulations on point source emissions and increasing 

motor-vehicles dependency, on-road mobile source emissions have become one of the 

major contributors to urban air pollution and its consequent adverse health effects (HEI 

Panel on the Health Effects of Traffic-Related Air Pollution, 2010). Urban areas, due to 

their high population and motor-vehicle density, are focal points for on-road mobile 

source emissions and pollution exposure. 

Another issue associated with air pollution exposure in urban areas is 

environmental inequalities related to air pollution exposure among different population 

subgroups (O'Neill et al., 2003). Some subgroups were found to have greater health risks 

due to exposure to higher pollution concentrations (Keating, 2004; The American Lung 

Association, 2001). This issue has been well recognized by both academia and 

governmental agencies (National Research Council, 2004; U.S. Department of 

Transportation, 1997; US Department of Health and Human Services, 2000). 

Recently, an increasing amount of research have focused on the impact on the 

impact of urban form on air quality, and have shown that urban planning toward certain 

urban forms, such as compact and sprawl urban form, could significantly impact urban 

air quality and human exposure to air pollution (Geurs & Wee, 2006; Kahyaoğlu-Koračin 
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et al., 2009; Stone et al., 2007, 2009). Evidences from previous studies also suggest that 

different population subgroups may be impacted differently (Grineski et al., 2007). 

Although many definitions exist, compact urban form is usually characterized by 

concentrated, high density and continuous development on already developed areas, 

combined with implementation of mixed land use policies. On the contrary, sprawl urban 

form is usually associated with extensive developments on raw lands, low density, and 

scattered and highly segregated developments (Bechle et al., 2011; Ewing, 1997). 

Compact urban form is popular among urban planners as it has been shown to pose less 

impacts on agricultural lands, wetlands,  and conserve green spaces (Westerink et al., 

2012), reduce energy and water use (Chang et al., 2010; Ewing & Rong, 2008). Previous  

studies suggest that compact and sprawl urban forms indirectly impact urban air quality, 

pollution exposure, and exposure inequalities by affecting urban inhabitants’ relocation 

(Grineski et al., 2007), travel behavior, motor-vehicle dependency, public transit usage, 

and the adoption of non-motor-vehicle based travel modes such as walking and biking 

(Boarnet & Crane, 2001).  

This chapter provides a synthesis of previous literature regarding the impact of 

compact and sprawl urban forms on urban air quality, air pollution exposure and 

environmental inequalities related to exposure, with an emphasis on public health 

impacts. Future research needs are identified and discussed. Further, air quality modeling 

tools that could be used to improve our understandings on this topic are critically 

reviewed, and the needs for model improvements are discussed.  
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2.2. Impact of Urban Form on Air Quality and Exposure 

Figure 2.1 illustrates the pathway for human exposure to pollutants as influenced 

by compact and sprawl urban development forms. Pollutant emissions, especially on-road 

mobile source emissions, are directly impacted by urban forms. After being released into 

the air, pollutants may undergo physical and chemical processes, and the amount of 

pollutant that is airborne is characterized by concentrations. Human exposure to 

atmospheric pollutants may result in a myriad of health effects. Meanwhile, each step of 

the pathway is impacted by human activities. For better understanding, the impact of 

urban forms on urban air quality and exposures are discussed at each step along the 

pathway. 

Figure 2.1 Pathway of how urban form impact human exposures 

 

2.2.1. Impact of Urban Form on Pollutant Emissions 

Previous studies have shown that urban forms have direct impacts on air pollutant 

emissions. Findings from previous studies regarding the relationships between urban 

form and air pollutant emissions are rather consistent: compact urban forms were 

generally found to have less total and on-road mobile source emissions than sprawl 

(Borrego et al., 2006; Ridder et al., 2008; Frank et al., 2000; Kahyaoğlu-Koračin et al., 

2009; Liu, 2003; McDonald-Buller et al., 2010; Niemeier et al., 2011; Song et al., 2008; 
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Stone et al., 2007, 2009). Stone et al. (2009) suggested that the effect of aggressive 

compact policy on reducing on-road mobile source emissions is even comparable with 

replacing all light duty vehicles with hybrid-electric vehicles. 

The reduction of on-road mobile source emissions associated with compact urban 

form may be explained by reduced vehicle mileage travelled. Briefly, due to the 

“compactness” of urban area and mixed land uses, vehicle usage and average length of 

vehicle trips are expected to be lower and smaller than in sprawl urban form (Ewing & 

Cervero, 2001, 2010; Frank & Engelke, 2005; Handy, 2005; Salon et al., 2012; Williams 

& Wright, 2007). In addition, some studies also pointed out that compact urban form 

impacts transportation infrastructure not only by expanding the capacity of roadway 

network, but also by promoting the usage of public transit systems, and encouraging non-

motor-vehicle based travel behaviors, such as walking and biking (Schwanen et al., 2001; 

Schwanen et al., 2004), which also lead to reduced vehicle mileage travelled. However, 

these effects were seldom considered in past literatures regarding the impact of urban 

forms on pollutant emissions. 

One interesting finding is that the majority of studies focused on a few pollutants: 

PMs (PM10 or PM2.5), ozone and its pre-cursors (NOx, NO2 and VOC). While these 

pollutants are certainly important, there are other important pollutants as well, such as the 

Urban Air Toxics (UAT). USEPA (Environmental Protection Agency) has pointed out 

that urban air toxics are the “greatest threats to public health in urban areas” in the US 

(U.S. Environmental Protection Agency, 2008b). Exposure to urban air toxics have been 

shown to be associated with many severe health effects including cancer (Agency for 

Toxic Substances and Disease Registry, 2007; National Toxicological Program, 2010, 
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2011), with mobile source air toxics being associated with greater the 50% of cancer 

cases resulting from air pollution (HEI Panel on the Health Effects of Traffic-Related Air 

Pollution, 2010). The importance of urban air toxics warrants more attention. 

Compact urban form has been found to alter the spatial distribution of emissions 

(Borrego et al., 2006). In compact urban form, anthropogenic air pollution emissions, 

including on-road mobile source emissions, were found to be concentrated in populated 

urban areas. Borrego et al. (2006) estimated that compact urban form would have less 

“per person” emissions of NOx and VOC than sprawl, but the maximum emission per 

area values were in fact much higher. The spatially re-distributed emissions could have 

significant effect on subsequent steps along the pathway (Figure 2.1).  

Many studies focused specifically on estimating air pollutant emissions under 

sprawl and urban forms have concluded that compact urban form lead to better air quality 

due to lower pollutant emissions. However such conclusions may be pre-mature, and 

more investigations on the subsequent steps of the pathway may be needed. 

2.2.2. Impact of Urban Form on Air Pollution Concentrations 

Many studies have examined how compact and sprawl urban form impact air 

pollutant concentrations (Borrego et al., 2006; Ridder et al., 2008; Hixson et al., 2010, 

2012; Kahyaoğlu-Koračin et al., 2009; Martins, 2012; McDonald-Buller et al., 2010; 

Song et al., 2008). The findings, however, are complex and mixed.  

Compared to sprawl, compact urban form was generally found to have overall 

lower pollutant concentrations in the study domain, due primarily to lower pollutant 

emissions. This finding applies for primary pollutants such as PM10, secondary pollutants 

such as ozone, and pollutants that have both significant primary and secondary 
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contributions (herein referred as “intermediate pollutants”), such as NO2 and PM2.5 

(Bechle et al., 2011; Ridder et al., 2008; Hixson et al., 2012; Kahyaoğlu-Koračin et al., 

2009; Martins, 2012; Schweitzer & Zhou, 2010). However, spatial distribution of 

pollutant concentrations, are different for each pollutants. 

For primary pollutants, which were mainly released into the atmosphere rather 

than formed through reactions, urban centers tend to have higher pollutant concentrations 

in compact urban form (Hixson et al., 2010; Martins, 2012). This observation is expected 

as concentrations of primary pollutants are expected to be higher near emissions sources, 

whereas in compact urban form, pollutant emissions are concentrated in urban centers 

due to concentrated human activities. In sprawl urban form, since emissions are scattered 

distributed, such spatial pattern will not be as apparent, although pollutant concentrations 

are also elevated near sources. 

For secondary pollutants such as ozone, which are mainly formed in the 

atmosphere, urban centers do not always have the highest pollutant concentrations. For 

example, Martins (2012) found the highest ozone concentration areas are located 

downwind of emissions. Song et al. (2008) found higher ozone concentrations in 

suburban areas in compact urban form, but not urban cores. Such observations are due to 

the nature of secondary pollutants, whose concentrations levels are mainly determined by 

atmospheric reactions and meteorological conditions. 

In addition, due to the non-linear relationships between concentrations of 

secondary pollutants and emissions, emission reduction of pre-cursor species does not 

guarantee reduction of pollutant concentrations. For example, Grabow et al. (2012) found 

reducing on-road mobile source emissions in urban areas could help to reduce ozone 
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concentrations in downwind rural areas, but not in all urban areas. The relationships 

between concentrations of ozone, VOC, and NOx may help explain this finding (Godish, 

2004). In VOC limited regime, where VOC concentrations are relatively low and NOx 

concentrations are high, reduction of NOx emissions alone could decrease NOx 

concentrations, but may lead to higher ozone concentrations.  

For intermediate pollutants, such as PM2.5, near source impact and atmospheric 

formations are both important. Due to contributions from primary emissions, pollutant 

concentrations are expected to be higher near sources with substantial emissions, for 

example, urban centers in compact urban form. When transported away from emissions 

sources, pollutant concentrations are then determined by its fate in the atmosphere. 

Hixson et al. (2010) found PM2.5 concentrations at urban centers are higher in compact 

than sprawl urban form, mainly due to increased emissions of primary PM components, 

such as elemental carbon (EC) and organic carbon (OC). Areas other than urban centers 

have higher PM2.5 concentrations in sprawl urban form than compact, secondary PM 

components such as nitrate and ammonium ion, contribute to this pattern.  

Overall, compact urban form are consistently found to have lower domain 

averaged pollutant concentrations, but the impact of urban forms on the spatial 

distribution of pollutant concentrations are complex and differ by pollutants. No 

generalizable mechanisms regarding how urban form impact pollutant concentration 

distributions are available.  

Further, transportation infrastructure may also impact the complex relationship 

between urban form and pollutant concentrations. Clark et al. (2011) found that public 

transit supplies are associated with lower population weighted PM2.5 concentrations. The 
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observed association is plausible as public transit has been commonly associated with 

reduce vehicle trips and vehicle mileage travelled (Litman, 2013), which in turn lead to 

lower on-road mobile source emissions. 

2.2.3. Impact of Urban Forms on Air Pollution Exposures 

Exposure is a consequence of the colocation of humans and pollutants. Even the 

highest pollutant concentrations would be harmless unless exposed to human. A lower 

domain averaged pollutant concentration cannot be translated directly into lower 

population exposure, and the spatial distribution of populations have to be considered 

jointly.  

As discussed in previous sections, concentrations of primary and intermediate 

pollutants are expected to be higher in urban centers in compact urban form. 

Unfortunately, urban centers also have densely distributed populations. The colocation of 

population and increased pollutant concentration may lead to higher human exposure to 

these pollutants for compact urban form. For example, Hixson et al., (2010) found higher 

population weighted exposure for primary components of PM2.5 in compact urban form. 

In addition, Martins (2012) found higher human exposure to PM10 in compact urban 

form, despite domain averaged concentrations being actually lower.  

For secondary pollutants, human exposures to air pollution may potentially be 

lower in compact urban form, as higher concentrations are not expected near sources with 

substantial emissions of pre-cursor species (i.e. populated urban centers in compact urban 

form). This assumption is supported by the findings from Hixson. et al. (2012) and Song 

et al. (2008). In Borrego et al. (2006), the results clearly shows more people are exposed 

to higher concentrations of ozone in sprawl urban form. However, results from other 
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studies did not suggest significantly lower human exposure to secondary pollutants in 

compact urban forms, or even the opposite. Ridder et al., (2008) and Martins, (2012), 

found that human exposure to ozone in compact and sprawl urban forms differs by little. 

Additionally, McDonald-Buller et al. (2010), Schweitzer and Zhou, (2010), found that 

human exposure to ozone are actually higher in compact urban form.  

Although seemingly contradictory, both findings are plausible. As discussed in 

previous section, the spatial distributions of secondary pollutants are mainly determined 

by local meteorological conditions and the fate of the selected pollutant in the 

atmosphere. The non-linear relationships between emissions and pollutant concentrations 

of secondary pollutants, combined with distinct meteorological conditions at different 

study areas, allow for these different findings. It seems that the impact of compact or 

sprawl urban forms on human exposure to secondary pollutants differs case by case, 

which suggest our lack of understanding regarding the mechanisms behind such 

observations. 

Human exposures to intermediate pollutants in compact and sprawl urban forms 

are even more complex, and it is again not surprising to see different findings. Hixson et 

al., (2010) found similar PM2.5 exposures for compact and sprawl urban forms. In a 

follow up study, Hixson et al., (2012) showed that although domain averaged PM2.5 

concentrations are lower in compact urban forms than sprawl, population weighted PM2.5 

concentrations are higher in compact urban form. Similar findings are also found by 

Clark et al., (2011) and Schweitzer & Zhou (2010).  

Although many studies have suggested potentially aggravated air quality in 

different urban forms, few studies have attempted to explore potential strategies to 
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alleviate air pollution exposures in compact urban forms. Hixson. et al. (2012) showed 

that mid-density compact development could lead to better air quality than high density. 

However findings from this study are rather restricted to the study area (San Joaquin 

Valley, CA) and study pollutant (PM2.5), and may not be generalizable to other areas and 

other pollutants. Similarly, Marshall et al., (2005) suggested that compact urban 

development form could have decreased human exposure (inhalation to pollution) when 

the rate of emission increase is much smaller than the rate of population density increase 

(as represented by density-emissions elasticity factor). This finding may apply only for 

primary pollutants but may not be valid for secondary or intermediate pollutants. 

Overall, compact urban form has the potential to increase human exposure to 

primary air pollutants, due to the colocation of increased pollutant emissions and high 

population density in urban centers. However findings for secondary and intermediate 

pollutants are mixed and may even be contradictory. Further studies are needed to better 

understand how urban forms impact air pollution exposure, as well as potential strategies 

to alleviate air pollution exposures. 

Further, it was noted that virtually all of the studies did not investigate air 

pollution exposures at multiple temporal scales, although it is well known that the spatial 

distribution of short term air pollution concentrations may be distinct from long term 

concentrations. The importance of spatiotemporal variation of air pollution 

concentrations in exposure assessment have been noted in many studies (Ghosh et al., 

2012; Li et al., 2013; Wu et al., 2011). More studies on this subject are needed. 



 

18 
 

2.2.4. Impact of Urban Form on Exposure Inequalities 

Environmental inequalities regarding air pollution exposure is another well 

recognized issue related to urban air pollution (National Research Council, 2004; O'Neill 

et al., 2003; U.S. Department of Transportation, 1997; US Department of Health and 

Human Services, 2000). Inequalities, including inequalities related to air pollution 

exposure, need to be recognized and treated with caution during development. However, 

only a few studies have investigated how compact or sprawl urban form impact exposure 

inequalities (Ridder et al., 2008; Fan & Song, 2009; Schweitzer & Zhou, 2010). 

Evidence from previous studies suggest that urban growth may impact the 

relocation of different population subgroups, and hence may change the distribution of 

exposures among different subgroups (Grineski et al., 2007). Historically, Caucasians and 

people with high socioeconomic status have tended to relocate to suburban areas during 

urban development, whereas minority and poor people have tended to stay closer to urban 

centers (Frumkin et al., 2004). Ridder et al., (2008) found that people moving to suburban 

areas during urban growth may experience decreased air pollution exposure, and people 

staying in urban centers may be exposed to higher pollutant concentrations. In addition, 

Fan and Song (2009) found sprawl urban form lead to larger mortality gaps between 

urban and suburban areas. These findings suggests potentially aggravated inequalities 

during urban growth.  

Schweitzer and Zhou (2010) combined Smart Growth American (SGA) indices, 

which was developed to quantify the degree of compact growth, with measured ozone 

and PM2.5 concentrations at regulatory monitors to investigate the associations among 

urban form, pollution exposure and exposure inequalities. African Americans, Asian 



 

19 
 

ethnic minorities, and poor households were found to be exposed to higher pollutant 

concentrations. However no conclusive evidences were found for the associations 

between smart growth American indices and inequalities. One possible explanation 

maybe that air pollution exposures among subgroups were not well captured by 

regulatory monitoring activities (Stuart et al., 2009).  

Much of studies mentioned above are focused on one or two pollutants, and are 

based upon statistical regression method or modeled pollutant concentrations at coarse 

spatial resolution. The limited literature on this topic, as well as the importance of 

environmental inequalities regarding air pollution, warrants more studies in this area. 

2.2.5. Summary of Literature Review Findings and Research Needs 

Overall, the number of studies attempting to understand the impact of 

transportation infrastructure and urban form on air quality, exposure and exposure 

inequalities are still limited. Much of these studies suggest compact and sprawl urban 

forms could have significant effect on air pollution emissions, pollutant concentrations 

and human exposures. Specifically: a) Compact urban form was found to reduce pollutant 

emissions, which may result in lowered domain average pollutant concentrations than 

sprawl. However compact urban form also altered the spatial distribution of emissions 

toward populated urban centers; b) Due to the altered emission distributions in compact 

urban form, concentrations of primary and intermediate pollutants may increase in urban 

centers, leading to potentially higher population exposure to these pollutants than sprawl 

urban form, although domain averaged concentrations could be lower; c) The impact of 

altered emission distributions on secondary pollutants are more complex and may differ 

by pollutants. Generally, higher concentrations of secondary pollutants are expected away 
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from sources with substantial emissions; d) Findings regarding the impact of urban forms 

on concentration distributions and exposures to secondary and intermediate pollutants are 

inconsistent. Mechanism and magnitude of the impacts are still unclear; e) Studies on the 

impact of compact and sprawl urban form on inequalities related to air pollution exposure 

are limited and preliminary, but evidences suggest potentially aggravated inequalities 

during urban growth. 

To better understand the impact of urban forms on air quality, the following 

research needs are identified: a) Studies are needed to investigate how transportation 

infrastructure impact pollutant emissions and concentrations; b) Further studies are 

needed regarding how urban forms impact air pollution exposure, and inequalities related 

to exposure; c) Potential strategies to alleviate air pollution exposures needs to be 

developed; d) More pollutants, especially urban air toxics, needs to be assessed. In 

addition, multiple temporal scales need to be considered to appropriately characterize air 

pollution exposure. 

2.3. Review of Urban Scale Exposure Estimation Models 

Numerous methods have been developed to characterize pollutant concentrations 

and human exposures to air pollution in past literatures. Some of them were briefly 

reviewed previously (Kingham & Dorset, 2011; Steinle et al., 2013; Zou et al., 2009). 

Ideally, measurement of pollutant concentrations that an individual is exposed to (Steinle 

et al., 2013), or the individual biological outcomes due to pollution exposure (Vineis & 

Husgafvel-Pursiainen, 2005), would provide the most accurate information regarding 

personal exposures to air pollution. However, it is cost-prohibitive to do so when an 

entire urban area is the study area and exposure metrics are needed at varying temporal 
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scales. In addition, hypothesized development strategies cannot be tested and compared 

with measurement technique. Hence, exposure estimation models are used. 

The purpose of this section is to review and identify appropriate exposure 

estimation models for the investigation of the impact of urban forms on urban air quality, 

human exposure and exposure inequalities. Jerrett et al. (2005) reviewed some of the 

models that could be used to estimate pollution exposures at urban scale. This following 

sections builds upon Jerrett et al. (2005), incorporated emerging models and categorize 

air quality models into five categories: empirical/statistic based models, chemical 

transport models, computational fluid dynamics models, street canyon models and hybrid 

models. Each category is briefly described, corresponding advantages and disadvantages 

of each type of model are discussed and evaluated using the established criteria. Needs 

for model improvements are also presented. 

2.3.1. Empirical/Statistic Based Models 

In empirical/statistic based models, exposures (or associations between exposure 

and outcomes) are either estimated empirically, or derived from statistical methods 

including regression, interpolation or extrapolation. There are mainly three types of 

models that falls under this category: a) land use regression; b) proximity based model; 

and c) spatiotemporal data interpolation or extrapolation.  

2.3.1.1. Land Use Regression 

Land Use Regression (LUR) models estimate pollutant concentrations by 

assuming concentrations at chosen locations are statistically associated with “predictor” 

attributes (variable) of surrounding areas. As indicated by the name, the predictor 

variables are mostly land use type, nearby roadway, and traffic characteristics. However, 
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other attributes not related to land use can also be used, such as wind field (Arain et al., 

2007). Pollutant concentration data can be used in model development as well as model 

evaluation. The concentration data can be obtained from regulatory monitoring network 

(Saori et al., 2009), special sampling campaigns (Henderson et al., 2007), or even 

estimation from other models (Mölter et al., 2010; Wilton, 2011) (which will form a 

hybrid model, as discussed in section 2.3.5). Studies where land use regression models 

were applied were reviewed previously (Hoek et al., 2008; Ryan & LeMasters, 2007). 

Generally, land use regression models could provide highly spatially resolved 

pollutant concentration distributions for exposure estimation purposes. However, as 

pointed out in Hoek et al. (2008), due to its empirical nature and lack of mechanisms, the 

generalizability of land use regression model is limited: a model that is developed for one 

area may not be suitable for estimating pollutant concentrations in another area (Jerrett et 

al., 2005; Wu et al., 2011). Applying land use regression model on alternative 

development scenarios with distinct spatial land use type distributions may also trigger 

concerns regarding its validity. Further, land use regression models lack the capability of 

resolving pollutant concentrations at various temporal scales (Hoek et al., 2008). Some 

studies attempted to improve the prediction capability of temporal pollutant 

concentrations variations for land use regression models by applying temporal profiles 

(Ghosh et al., 2012; Rose et al., 2010) or Bayesian maximum entropy methods (Jerrett et 

al., 2012), but such applications are rather preliminary. Therefore, land use regression 

model alone may not be suitable for investigating the impact of different urban forms on 

air quality and human exposure. 
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2.3.1.2. Proximity Based Model 

Proximity based models generally do not estimate pollutant concentrations. 

Instead, proximities of the study subject to emission sources, and the outcomes of interest 

(concentrations, health outcomes etc.), are analyzed to investigate their statistical 

associations. Conclusions may be drawn from the results of statistical analysis. Examples 

of proximity based models could be found in the work of Allen et al., (2009), where the 

associations between residential proximity to major roads and the incidence of aortic 

atherosclerosis were evaluated.  

Generally, proximity based models assume the outcome measures are associated 

with the proximity to emissions sources, which may not hold for secondary pollutants 

such as ozone. In addition, due to lack of mechanisms and distinct characteristics of 

different emission sources, the generalizability of proximity based models are 

questionable. Hence it may not be appropriate to apply proximity based models alone for 

investigating the impact of different urban forms on air quality and human exposure. 

2.3.1.3. Spatiotemporal Data Interpolation or Extrapolation 

In this method, pollutant concentrations at desired locations or time periods are 

estimated by interpolation or extrapolation of available sparse concentration data. Popular 

spatial interpolation or extrapolation methods including kriging (Mercer et al., 2011; 

Whitworth et al., 2011), splines and inverse distance weighting (Brauer, 2008). Temporal 

concentration interpolation or extrapolation, however, are less well studied. Historically, 

preliminary models, such as stochastic models (Milionis & Davies, 1994), were used. 

However, new, sophisticated models have emerged with the capability to account for 

both spatial and temporal pollutant concentration variations, such as those base on 
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Bayesian maximum entropy, two-stage models, and hierarchical models (Li et al., 2013; 

Yu et al., 2009).  

Spatiotemporal data interpolation or extrapolation models could provide highly 

spatially and temporally resolved pollutant concentration distributions, which are desired 

for exposure estimation. However, the interpolated (or extrapolated) concentration field 

could be substantially different depending on the method used (Wong et al., 2003), and 

accuracy of the concentration field are somewhat questionable (Whitworth et al., 2011). 

Further, no pollutant concentration data are readily available in alternative future 

scenarios, which limit the usage of spatiotemporal data interpolation or extrapolation 

models for investigating impacts of urban forms on air quality and human exposure. 

2.3.2. Chemical Transport Models 

Differencing from empirical/statistic based models, which are essentially 

diagnostic and lack prognostic capabilities, chemical transport models are developed 

based upon atmospheric physics and chemistry, and pollutant concentrations are 

estimated at desired locations using both emission and meteorological data in the study 

domain. Chemical transport models do not attempt to solve for meteorological fields, the 

data are usually obtained from meteorological observations or other models such as 

weather forecasting models. There are mainly three types of models that fall under this 

category: a) steady-state Gaussian plume models; b) non-steady state Lagrangian models; 

and c) Eulerian grid chemical transport models. Details of each type of model are 

discussed below.  
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2.3.2.1. Steady-State Gaussian Plume Models 

Steady-state Gaussian plume models have the longest history in regulatory air 

quality modeling, and are still extensively used in source-specific regulatory modeling 

practices. These models are normally characterized by: a) Assumption of homogeneous 

distributions of meteorological conditions (such as wind speed, wind directions etc.) in 

the study domain; b) No memory effect. Spatial distribution of pollutant concentrations in 

previous time step has no effect on concentrations in the next time step; and most 

importantly, d) Pollutant concentrations are estimated by Gaussian plume formulations. 

Within the pollutant plume, vertical and horizontal pollutant concentration profiles are 

characterized by Gaussian distributions.  

Many steady-state Gaussian plume models are available and numerous studies 

have utilized these models to estimate pollutant concentration distributions (Batterman et 

al., 2010; McConnell et al., 2010; Bin Zou et al., 2009). Examples of steady-state 

Gaussian plume models are AERMOD (and its predecessor ISC) (U.S. Environmental 

Protection Agency, 2004b), CALINE (Benson et al., 1989) and ADMS-URBAN 

(Cambridge Environmental Research Consultants, 2010).  

Steady-state Gaussian plume models could provide concentration estimates at 

very fine spatial resolutions down to several tens of meters. Geometry of emission 

sources, can be accurately represented in the model. This configuration is ideal for 

characterizing pollutant concentration near roadways, which is important as substantially 

higher concentrations can be found near roadways (Cook et al., 2008). 

However, due to its homogeneous meteorological field assumption and Gaussian 

plume formulation, steady-state Gaussian plume models may not be suitable for areas 
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with complex meteorological conditions (such as coastal areas with land sea breeze) or 

complex terrain features. In addition, since these models generally incorporates very 

simple chemical reaction formulas such as zero or first order decay, the lack of adequate 

chemistry algorithms could be problematic for secondary or intermediate pollutants. 

2.3.2.2. Non-Steady State Lagrangian Chemical Transport Models 

In non-steady state Lagrangian chemical transport models, pollutants are 

represented as either air parcels (puff) or particles. The model tracks the movements of 

the pollutants both spatially and temporally, using gridded 3-dimensional meteorological 

datasets. Examples of non-steady state Lagrangian models are CALPUFF (pollutants are 

represented as puff) (Scire et al., 2000), HYSPLIT (Draxler et al., 2012) and FLEXPART 

(pollutants are represented as particle) (Stohl et al., 2011). Many studies have used non-

steady state Lagrangian models to estimate pollutant concentration distributions 

(Ghannam & El-Fadel, 2013; Halse et al., 2013; MacIntosh et al., 2010; Yim et al., 

2010). Sometimes, non-steady state Lagrangian models and steady-state Gaussian models 

are collectively called dispersion models. 

Non-steady state Lagrangian models can also provide pollutant concentration 

estimates at very fine spatial resolutions and accurately represent the geometry of 

emission sources. In addition, they have the capability to characterize the impact of 

spatially varying meteorological fields and complex terrain features on pollutant 

concentration distributions. Although atmospheric chemistry is still not comprehensively 

characterized by non-steady state Lagrangian models, these models generally contain 

simplified reaction algorithms. Hence these models can not only be applied on pollutants 

that are largely inert, but also on pollutants whose reactions can be appropriately 
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represented by simplified chemistry. For investigating the impact of urban forms on air 

quality and human exposure, non-steady state Lagrangian models are reasonable 

candidate models. 

2.3.2.3. Eulerian Grid Chemical Transport Models 

Instead of tracking the movement of pollutants spatially and temporally 

(Lagrangian approach), Eulerian grid chemical transport models discretize the study area 

into grid cells, solving for pollutant concentrations in each cell from groups of mass 

balance equations. Within each grid, concentrations are represented as homogeneously 

distributed. Many Eulerian grid models that focused specifically on air pollution 

modeling have been developed, including CMAQ (Community Modeling and Analysis 

System, 2010), CAMx (ENVIRON International Corporation, 2011) and UCD (Held et 

al., 2005).  

Studies that used Eulerian grid chemical transport models are generally focused 

on a large areas, such as regional (Hixson et al., 2010), national (Davidson et al., 2007), 

or even global scales (Lin et al., 2012). Eulerian grid chemical transport models are 

designed to handle complicated atmospheric chemical reactions and long range pollutant 

transportations, and are used by the majority of studies regarding impacts of urban forms 

on air quality and human exposures, mainly due to the nature of the study pollutants. As a 

tradeoff, Eulerian grid models are usually very data and computationally expensive, and 

the spatial resolution of the estimated pollutant concentrations are rather limited, mostly 

rangeing from 4 km to 25 km (Ridder et al., 2008; Hixson et al., 2010, 2012; Martins, 

2012). The relatively coarse spatial resolution of the concentrations may trigger concerns 

regarding exposure misclassification. 
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For pollutants with complex chemistries, Eulerian grid chemical transport models 

are desired, but for pollutants that are largely inert, and pollutants with rather simple 

chemistries, other models such as non-steady state Lagrangian models are also suitable. 

In addition, non-steady state Lagrangian models are able to provide spatially resolved 

pollutant concentration distributions, which are desired for exposure estimations. 

2.3.3. Computational Fluid Dynamics Models 

Chemical transport models only solve for continuity (mass balance) equations, 

and rely on observations or numerical weather forecasting models for meteorological 

data. Computational fluid dynamics models take steps further, deriving meteorological 

fields within the model itself by solving additional equations such as momentum and 

energy equations. Naturally, computational fluid dynamics are even more computational 

expensive than chemical transport models. GEOS-CHEM (Yantosca et al., 2012), 

WRF/CHEM (Peckham et al., 2011) and GATOR-GCMOM (Jacobson, 2012) are 

examples of computational fluid dynamics models. These models are normally applied at 

very large scales from regional to global.  

Recently, a few new studies have started to apply computational fluid dynamic 

models to model urban air pollution at neighborhood scales (down to a few kilometers) 

(Tong et al., 2011; Wang et al., 2013; Wang & Zhang, 2009), and new models were 

developed, such as the Comprehensive Turbulent Aerosol Dynamics and Gas Chemistry 

(CTAG, formally named CFD-VIT-RIT (computational fluid dynamic-vehicle induced 

turbulence-road induced turbulence)). Pollutant concentration distributions at extremely 

high spatial and temporal scales can be estimated by this model. However, field 
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applications of such models are preliminary and the size of the modeling domain is very 

limited, mainly due to the complexity involved and excessive computational burden. 

2.3.4. Street canyon models 

Street canyon models is a special model category that cannot be simply 

categorized into any of the three categorizes discussed above. These models are designed 

to estimate pollutant concentration distributions in street canyons, which refers to urban 

street with buildings at each side. Vardoulakis et al. (2003) provides a review on some of 

the street canyon models used previously. Examples of street canyons models include 

OSPM (Berkowicz, 2000), SEP-SCAM (Papathanassiou et al., 2008) and STREET-BOX 

(Mensink & Lewyckyj, 2001).  

A wide range of methods were used to characterize the distribution of pollutant 

concentrations in street canyons, ranging from empirical expressions (Weber et al., 2013) 

to complicated computational fluid dynamics modeling (Kwak & Baik, 2012). Although 

street canyon models are normally applied at spatial scale of street block levels, they can 

be extended to larger scale to estimate pollutant concentrations and human exposures 

(Jensen et al., 2009; Mensink & Cosemans, 2008; Pénard-Morand et al., 2010). 

Street canyon models are suitable for small urban areas that are highly developed 

and have many high-rise buildings. However, the applications of street canyon models in 

air pollution exposure estimation are still limited. No applications have been found where 

street canyon models are applied for a relatively large urban areas.  

2.3.5. Hybrid models 

When a single model is insufficient, two or more air quality models can be 

combined to form a hybrid model to fulfill the needs. Note that here the term “hybrid” is 



 

30 
 

defined differently from Jerrett et al. (2005), where “hybrid” refers to the combination of 

air quality models with concentration measurement data, which were used to evaluate or 

calibrate air quality models. Here, hybrid model specifically refers to the integration of 

two or more air quality models. The integrated models could be any of the air quality 

models discussed above. Some of the hybrid models were briefly described in Touma et 

al. (2006). 

The purpose of model integration, and the role the integrated model serves, varies 

from case to case. For example, Hoek et al. (2002) applied inverse distance weighting on 

measurement data obtained from regulatory monitoring network to derive regional 

background of pollutant concentrations. A simple LUR model was then used to provide 

urban background pollutant concentrations, and finally a proximity based approach was 

applied to determine exposure status. Mölter et al. (2010) and Wilton (2011) incorporated 

concentration estimates from chemical transport models to calibrate land use regression 

models. Kassteele et al. (2009) applied spatial interpolation model on outputs from 

chemical transport models and found that application of the hybrid models could 

substantially improve the prediction of spatial concentration distributions. 

Many studies have incorporated Eulerian grid chemical transport models with 

either steady-state Gaussian plume models or non-steady-state Lagrangian chemical 

transport models (two of the latter are collectively called dispersion models) (Beevers et 

al., 2012; Cook et al., 2008; Isakov et al., 2007; Isakov et al., 2009; Stein et al., 2007). As 

discussed previously, Eulerian grid models contains detailed chemistry algorithms which 

are critical for pollutants with complex chemistry and significant secondary 

contributions, however spatial resolutions of the concentration estimates from these 
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models are usually limited. Dispersion models, although generally lacking detailed 

chemistry, have the capability to estimate spatially resolved concentration data.  

To appropriately characterize pollutant concentrations and air pollution exposures 

for different pollutants, atmospheric chemistry is needed, especially for pollutants with 

substantial atmosphere formations such as acetaldehyde and formaldehyde. In addition, 

concentration estimates have to be spatially resolved to avoid potential exposure 

misclassification bias (Denby et al., 2011; Isakov et al., 2007). The hybrid model formed 

by Eulerian grid chemical transport models with dispersion models combines the 

advantages of the two types of models, and could appropriately address these needs.  

Two approaches have been used to combine Eulerian grid chemical transport 

models with dispersion models (Touma et al., 2006): a) Direct coupling of two models; 

and b) Blend concentration estimates from two models. These two approaches are 

discussed briefly below: 

2.3.5.1. Direct Coupling of Two Models 

In this type of model, Eulerian grid chemical transport models are directly 

coupled with dispersion models. In each time step, the dispersion model estimates 

pollutant concentration distributions within each Eulerian model grid. The coupled 

dispersion models could be based on steady-state Gaussian models such as ADMS 

(Beevers et al., 2012), or non-steady-state Lagrangian models such as SCICHEM 

(Karamchandani et al., 2012) or the plume-in-grid module in CMAQ (Community 

Modeling and Analysis System, 2010). 

Benefits of such configurations are: a) Outputs from both models are combined at 

every time step, no post-processing are needed; b) Eulerian grid model could directly 
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provide concentrations of the reactant species and chemical reaction parameters to 

dispersion models, which can then be used by dispersion models to characterize pollutant 

reactions within grid. Technically, this approach could improve the performance of 

dispersion models, especially for reactive pollutants. However, one major tradeoff of 

such hybrid models is the intensive computational requirement, which may restrict the 

temporal coverage of the hybrid model. 

Human exposure to air pollution may be distinct at different temporal scales, 

hence exposure estimation needs to be performed at multiple temporal scales. For this 

purpose, concentration estimates obtained from air quality models should cover a 

relatively large time period. Due to the restricted temporal coverage, direct couple of 

Eulerian chemical transport models with dispersion models may not be suitable for 

investigating the impact of urban forms on air quality and human exposure. 

2.3.5.2. Blend Concentration Estimates From Two Models 

In this configuration, Eulerian grid chemical transport models and dispersion 

models are executed individually, and their concentration estimates are blended together 

afterward. Example applications including combine modeling results from CMAQ model 

and AERMOD model (Cook et al., 2008; Lobdell et al., 2011), or extended to HYSPLIT 

model (Stein et al., 2007). The blending methods includes simple adding up (Cook et al., 

2008; Lobdell et al., 2011), and combining background concentration from Eulerian grid 

models with local concentration variability derived from dispersion models (Isakov et al., 

2007). 

This approach is relatively easier to implement when compared with coupled 

models. However there are issues with the blending process. First, double counting may 
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occur when emissions from the same area were included in both Eulerian grid models and 

dispersion models. Stein et al. (2007) estimated that the effect of double-counting 

accounts for approximately 10% of the total pollutant concentrations using benzene as an 

example. However this percentage may be highly depended on the characteristics of the 

pollutant of interest. A zero-out approach could be applied to avoid double-counting. In 

this approach, Eulerian models are executed twice, with and without the emissions 

included in dispersion models, and the true background concentrations can then be 

derived. However this approach is apparently computational intensive. Second, similar 

with coupled models, Eulerian grid models and dispersion models are fundamentally 

different at every aspect including model design and model formulation. Hence 

mismatching spatial concentration variability may occur, and this issue has not been 

adequately addressed in the scientific literature. 

2.3.6. Summary of Model Review Findings 

Air quality models that can be applied to estimate pollutant concentration 

distributions at urban scale were categorized into five categories: empirical/statistic based 

models, chemical transport models, computational fluid dynamics models, street canyon 

models and hybrid models, and each of the categories were critically reviewed regarding 

their applicability for the investigation of the impacts of urban forms on air quality and 

human exposures. 

Overall, empirical/statistic based models are found to be less suitable, mainly due 

to their diagnostic nature and lack of generalizability. Computational fluid dynamics 

models are prognostic, but may be too data and computational intensive to use. Street 
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canyon models are also excluded since it is designed for small urban areas with many 

high-rise buildings.  

Among chemical transport models, steady-state Gaussian plume models and non-

steady-state Lagrangian chemical transport models could provide spatially resolved 

pollutant concentrations, which are desirable for exposure estimation purposes, but they 

generally lack adequate chemistry when applying for secondary pollutants. Eulerian grid 

chemical transport models have the capability of characterizing detailed atmospheric 

chemistry but usually estimate pollutant concentrations at coarse spatial resolutions. 

Hybrid models that combine Eulerian grid chemical transport models with either steady-

state Gaussian plume models or non-steady-state Lagrangian chemical transport models 

could combine the advantages of these models and hence are preferred. In addition, 

blending concentration estimates from two model during post-processing is technically 

feasible for the purpose of exposure estimation at multiple temporal scales, and hence is 

the preferred method for combining Eulerian grid chemical transport models with 

dispersion models. However, there are still technical issues regarding the data blending 

process and further studies may be needed. 

2.4. Summary of Literature Review 

Overall, the number of studies focused on impacts of urban design forms on air 

quality, exposure, and especially inequality regarding pollution exposures are still 

limited. Evidences suggest compact urban form could lead to less pollutant emissions 

than sprawl urban form. However the impacts of different urban forms on air pollution 

exposure seem to differ by pollutants and sometimes contradictory findings were found. 
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The mechanisms of how urban forms (as well as transportation managements) impact air 

quality, related exposure and inequalities are still largely unclear. 

Additionally, to better understand the impact of urban design forms and 

transportation managements on air quality, exposure and inequality, a method that is 

capable of capturing high spatial and temporal resolution distribution of pollutant 

concentrations are needed. In addition, the method should be able to appropriately 

combine non-steady-state Lagrangian and Eulerian grid chemical transport models at 

multiple scales to incorporate the advantages of both models. 
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CHAPTER 3  

AIR QUALITY IMPACT OF HIGH-OCCUPANCY TOLL LANE PROJECT 

 

Note:  Much of the ideas and displays in this chapter have been published as a research 

project report for the National Center for Transit Research on which the author of this 

dissertation is a co-author (Stuart et al., 2010).  Here, the components that I performed 

that contribute to the dissertation objectives are compiled and discussed. 

 

3.1. Introduction 

Due to rapid urban growth and increasing motor-vehicle dependency, vehicle 

mileage travelled in the US has increased dramatically. This in turn has led to a 

substantial increase in emissions from mobile sources, which are now a major contributor 

to total air pollutant emissions (Mage et al., 1996). In addition, mobile source emissions 

pose significant threats to human health. Previous studies have shown that over 50% of 

cancer cases due to exposure to air pollution are attributable to mobile source Hazardous 

Air Pollutants (HAPs) (HEI Panel on the Health Effects of Traffic-Related Air Pollution, 

2010).  

Transportation infrastructure directly affects traffic characteristics on roadways 

which will consequently impact on-road mobile source emissions. Past studies suggest 

that changes in transportation infrastructure such as construction of high-occupancy 

vehicle lanes encourage ride sharing, which would ultimately reduce the total vehicle 
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mileage travelled and help to reduce on-road mobile source emissions (Boriboonsomsin 

& Barth, 2008; Shewmake, 2012; U.S. Environmental Protection Agency, 1998). These 

findings suggest the possibility of alleviating the issue of on-road mobile source 

emissions by changing current transportation infrastructure, however studies on this topic 

have been sparse and the results are rather inconsistent (Dowling et al., 2005; Lee et al., 

2009; You et al., 2010). 

Similarly to high-occupancy vehicle lanes, managed high occupancy/toll (HOT) 

lanes also encourage carpooling. High occupancy/toll lanes also generate revenue; hence 

they are of significant interest around the US. Despite this, studies regarding the air 

quality impact of high occupancy/toll projects are again scarce (Kall et al., 2009). Further 

studies are needed to better understand how pollutant emissions and air quality in 

surrounding areas were impacted by such transportation infrastructure changes. 

Here, we assessed the air quality impact of a high-occupancy toll lane project 

which was implemented by the Florida Department of Transportation in 2009, known as 

the ‘95 Express’ project. The project is located on the I-95 corridor between Miami and 

Fort Lauderdale (Figure 3.1) and consisted of three phases. Air quality impacts of phases 

1A and 1B were studied. One existing high-occupancy vehicle lane was converted to two 

high-occupancy toll lanes and the number of general purpose lanes was kept the same. 

Public transit services including regular buses and Bus Rapid Transit (BRT) were also 

provided on the new high-occupancy lanes. 

Baseline air quality before implementation of the high-occupancy toll lane project 

was first assessed by analyzing the trend of pollutant concentrations and the Air Quality 

Index (AQI) in two counties where the project was located: Broward and Miami-Dade 
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County. Emissions of the chosen pollutants, including carbon monoxide (CO), nitrogen 

oxides (NOx), particulate matter (PM), hydrocarbons (HC), and selected mobile source 

air toxics were estimated. Dispersion modeling was then performed to evaluate the 

impact of the project on pollutant concentrations near the corridor. Details of each step 

are presented in following sections. 

 
Figure 3.1 Location and three phases of the managed high-occupancy toll lane project 

 

3.2. Baseline Air Quality Based on Measurement Data 

Baseline air quality prior to the implementation of the high-occupancy toll lanes 

was evaluated for air pollutants including CO, nitrogen dioxide (NO2), ozone (O3) and 

particulate matter (PM) and selected mobile source air toxics including benzene, 

acetaldehyde, and 1,3-butadiene, alongside the air quality index. Pollutant concentration 

data from January 2000 to June 2009 and air quality index values for the same time 

period were collected from air quality monitoring reports (Table 3.2) and the AQS (air 

quality system) database from the U.S. Environmental Protection Agency (EPA). The 

collected data were cross-validated and compiled. Regulatory monitoring stations where 

pollutant concentration data were collected are listed in Table 3.1. Distances of these 
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monitors to Interstate-95 are also listed. Trends found in the compiled pollutant 

concentrations and index values are discussed in the following sections. 

3.2.1. Criteria Air Pollutants 

Six common air pollutants including CO, lead (Pb), NO2, O3, PM (specifically 

PM2.5: PMs that have diameters less than 2.5 µm, and PM10: PMs that have diameters less 

than 10 µm) and sulfur dioxide (SO2), are collectively called Criteria Air Pollutants 

(CAP). These Criteria Air Pollutants are ubiquitously found across the continental US 

and are considered to pose a threat to human health and public welfare. Concentration 

threshold standards of these pollutants were specified in the National Ambient Air 

Quality Standards (NAAQS) (U.S. Environmental Protection Agency, 2012b). Four of 

these pollutants: CO, NO2, O3 and PM (including both PM10 and PM2.5), were selected 

in this study. Lead and SO2 were not included as they are not considered significant 

pollutants in the study area. 

3.2.1.1. Carbon monoxide 

Carbon monoxide (CO) is a gaseous pollutant that is both odorless and colorless. 

Once entering the human body, CO will bind to hemoglobin and consequently diminish 

the oxygen delivering capability of the blood. This effect can be fatal when 

concentrations of CO are high. Some population subgroups including children and people 

who suffer from cardiovascular disease are at greater risk (Allred et al., 1989).  In the US, 

86% of CO emissions in the US come from mobile sources and its concentration is 

expected to be higher near major roadways (U.S. Environmental Protection Agency, 

2013). The current regulatory concentration standard for CO is 35 ppmv (maximum 1 

hour) and 9 ppmv (8 hour average), with no exceedance allowed. 
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Table 3.1 List of regulatory monitoring stations where pollutant concentration data were collected 
county station ID address abbreviation distance to I-95 CO NO2 O3 PM10 PM2.5 Other 

Broward 12-011-0010 Lincoln Park Elementary Sch. (Nw Corner) Lincoln Park 0.1 mile 00-09   00-09   

Broward 12-011-0011 1800 Sw 4th Avenue, Fort Lauderdale SW 4th Ave 1.4 miles    00-07   

Broward 12-011-0031 12600 West Sample Road W Sample 9.9 miles  00-09 00-09    

Broward 12-011-0033 3211 College Ave, Vista View Park Vista 10.6 miles   09  09  

Broward 12-011-1002 3205 Sw 70th Avenue SW 70th Ave 4.3 miles    00-09 00-09 00-09 

Broward 12-011-1201 2900 S. University Dr. S Univ 5.1 miles 00-06      

Broward 12-011-2003 1951 Ne 48th St NE 48th St 1.6 miles   00-09    

Broward 12-011-2004 851 Sw 3 Avenue Pompano Beach SW 3 Ave 0.5 mile 00-09   00-09 00-09 00-08 

Broward 12-011-3002 2701 Plunkett Street Hollywood Plunkett St 0.4 mile 00-09   00-09 00-09 00-08 

Broward 12-011-5001 3701 North State Road 207 N State RD 2.6 miles 00-04      

Broward 12-011-5002 11251 Taft Street Pembroke Pines Taft St 8.2 miles    00-02   

Broward 12-011-5005 4010 Winston Park Blvd Winston  3.3 miles    00-09  00,02-09 

Broward 12-011-6002 1200 Nw 72 Avenue Plantation NW 72 Ave 4.6 miles    00-01   

Broward 12-011-7002 301 Ne 12th Street NE 12th St 0.9 mile    00   

Broward 12-011-8002 7000 N. Ocean Drive Ocean Dr 3.5 miles  00-09 00-09    

Miami-Dade 12-086-0020 7100 Nw 36th St. NW 36th St 6.0 miles    00-03  02-05 

Miami-Dade 12-086-0021 Krome Ave Thompson Pk Krome Ave 14.8 miles   00-03    

Miami-Dade 12-086-0027 Rosenstiel School Rosenstiel 2.9 miles  00-09 00-09    

Miami-Dade 12-086-0029 19590 Old Cutler Rd-Perdue Med. Center Perdue Med 13.5 miles   00-09   02-05 

Miami-Dade 12-086-0030 Everglades NP Everglades 38.8 miles   00-04    

Miami-Dade 12-086-0031 16000 South Dixie Highway S Dixie Hw 12.1 miles 00-09      

Miami-Dade 12-086-0033 7700 Nw 186 Street PF 7.3 miles     05-09  

Miami-Dade 12-086-0034 Nw Corner Of Intersection Of Sw 88 St  & N Kendall Dr SW 88 St 12.7 miles 05-09      

Miami-Dade 12-086-1016 Nw 20 St And 12 Ave,Fire Station MF 0.1 mile    00-09 00-09  

Miami-Dade 12-086-1019 2201 Sw 4 St SW 4 St 2.1 miles 00-09      

Miami-Dade 12-086-3001 6400 Nw 27th Ave. NW 27th Ave 2.3 miles    00-03   

Miami-Dade 12-086-4002 Metro Annex 864 Nw 3rd Street Annex 0.3 mile 00-09 00-09    02-03 

Miami-Dade 12-086-6001 Fire Station 325 Nw 2nd St HF 25.6 miles    00-03 00-09  
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Hourly concentrations of CO were collected from five monitoring stations, one 

located in Broward County and four in Miami-Dade County (Figure 3.2). Two stations in 

Broward County, namely S Univ and N State RD, and one station in Miami-Dade 

County, namely SW 88 St, discontinued CO monitoring activities in 2006, 2004 and 2005 

respectively. Thermo Electron/Thermo Environmental instruments model 48 series gas 

filter correlation ambient CO analyzers were used by all monitoring stations to measure 

hourly CO concentrations continuously. Three stations in Broward County (SW 3 Ave, 

Lincoln Park, and Plunkett St) and one station in Miami-Dade County (Annex) are 

located in close proximity to I-95. Among them, Annex station is located close to where 

the high-occupancy lane project was implemented. 

Table 3.2  List of collected air quality monitoring reports and data availability 

agency report availability 

Florida Department of Environmental 

Protection (FDEP) 

Annual Air Monitoring Report  2000-2006 

Quick Look Report  2000-2009 

Broward County Environmental 

Protection and Growth Management 

Department (EPGMD) 

Environmental Benchmarks 

Report 
2000-2008 

Miami-Dade County Department of 

Environmental Resources Management 

(DERM) 

Ambient Air Monitoring 

Report  
2000-2007 

 

Figure 3.3 provides trends of the highest 1 hour and highest 8 hour CO 

concentrations in the two counties. For comparison purposes, regulatory standards of CO 

are also shown in the figure. The measured highest CO concentration is 7.5 ppmv 

(Lincoln Park site, 2000) in Broward and 11.9 ppmv (Annex site, 2004) in Miami-Dade 

County. Both of the concentration values are well below the previously mentioned 

corresponding standards. 
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Figure 3.2 CO monitoring stations in Broward and Miami-Dade County. Location of the 

high-occupancy toll lane project (phase 1A and 1B) are bolded. 

 

 
  

 

 
Figure 3.3 Trend of the highest 1 hour and highest 8 hour CO concentrations in Broward 

and Miami-Dade County. Trend of county average concentrations are shown in solid 

lines. 
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From 2000 to 2009, a declining trend can be observed for the highest 1 hour CO 

concentrations in both counties. County average CO concentrations dropped from 5.14 

ppmv (2000) to 2.1 ppmv (2009) in Broward County, and from 6.23 ppmv (2000) to 2.45 

ppmv (2009) in Miami-Dade County. Regarding the highest 8 hour concentrations, a 

similar declining trend can be observed although in this case with more fluctuations. The 

county average highest 8 hour CO concentrations decreased from 3.34 ppmv (2000) to 

1.43 ppmv (2009) in Broward and from 3.86 ppmv (2000) to 1.83 ppmv (2009) in 

Miami-Dade County. 

3.2.1.2. Nitrogen dioxide 

Nitrogen Dioxide (NO2) is light brown in color. It is highly reactive in the 

atmosphere and contributes to the formation of ground level ozone which is detrimental 

to human health. Adverse health effects associated with NO2 exposure include irritation 

to the respiratory tract and increased incidents of acute respiratory diseases in susceptible 

groups (Denison, 2000). A significant proportion of NO2 is formed through quick 

oxidization of nitrogen oxide (NO) primarily emitted during fuel combustion. Hence 

higher NO2 concentrations are expected to be found not directly adjacent to major 

roadways, but a short distance away. The current regulatory standard for NO2 is 0.053 

ppmv (annual average) and 0.1 ppmv (98th percentile of 1 hour concentrations, averaged 

over 3 years). 

NO2 concentrations were measured at two monitoring stations in Broward and 

two stations in Miami-Dade County (Figure 3.4). Thermo Environmental Instruments 

model 42 series chemiluminescence NO-NO2-NOx analyzers were used at these stations 
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to collect hourly ambient NO2 concentrations. In addition, Figure 3.5 shows the trend of 

the highest 1 hour and annual average NO2 concentrations for the two counties. 

 
Figure 3.4 NO2 monitoring stations in Broward and Miami-Dade County. Location of the 

high-occupancy toll lane project (phase 1A and 1B) are bolded. 

 

 
Figure 3.5 Trend of the highest 1 hour and annual average NO2 concentrations in 

Broward and Miami-Dade County. Note that for the highest 1 hour NO2 concentrations 

plot, concentrations shown are the highest 1 hour NO2 concentrations, but NAAQS levels 

shown are referring to 3 year average of the highest 1 hour NO2 concentrations. Hence 

they are not directly comparable. 

 

The highest measured annual average NO2 concentration was 0.01 ppmv (Ocean 

Dr site, 2000) in Broward and 0.016 ppmv (Annex site, 2001) in Miami-Dade County, 

both of the values are below regulatory standard (0.053 ppmv). From 2000 to 2009 the 

annual average NO2 concentrations in both counties were declining with minor 

fluctuations. A similar magnitude of decrease was observed in both counties: a 36% 
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decrease from 0.0097 ppmv (2000) to 0.0061 ppmv (2009) in Broward, and a 39% 

decrease from 0.011 ppmv (2000) to 0.0067 ppmv (2009) in Miami-Dade. 

There are measured concentration values that are larger than 0.1 ppmv for the 

highest 1 hour NO2 concentrations. Specifically, the highest values are 0.16 ppmv (Ocean 

Dr site, 2007) in Broward and 0.42 ppmv (Annex site, 2004) in Miami-Dade. However, 

the observed exceedance does not necessarily imply regulatory non-attainment, as the 

highest 1 hour NO2 concentration standard established in NAAQS is the 98th percentile of 

hourly concentrations and averaged over three years. Regarding the trend of highest 1 

hour NO2 concentrations, no apparent tendency can be observed.  

3.2.1.3. Ozone 

Ozone is a gaseous pollutant that is colorless but with a strong odor. When 

present in the stratosphere, ozone absorbs a significant portion of the incoming high 

frequency ultraviolet light from the sun, which may be harmful to human health under 

direct exposure. Ground level ozone however is a secondary pollutant formed in the 

atmosphere from complex reactions involving nitrogen oxides (NOx) and volatile organic 

compounds (VOCs) with the presence of sunlight. Ground level ozone is the main 

component of urban smog, and repeated exposure may increase the risk of illnesses of the 

respiratory system including lung damage and permanent scar on lung tissues (Denison, 

2000). 

As of April 24, 2009, NAAQS set the highest 1 hour and the 4th highest 8 hour 

concentration standards for ozone. The number of days with the highest 1 hour ozone 

concentrations over 0.12 ppmv may not exceed 1 in one year, the 3-year average of the 

4th highest daily maximum 8 hour average ozone concentrations measured at each 
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monitor over each year may not exceed 0.075 ppmv. The 1 hour ozone standard was 

revoked by the EPA on April 25, 2009. Standards for 8 hour ozone concentrations were 

also revised, changing from 0.08 ppmv to 0.075 ppmv since May 27, 2008. 

Figure 3.6 provides locations of ozone monitoring stations in Broward and 

Miami-Dade County. As of 2009, there are four active stations in Broward County: W 

Sample, Vista, NE 48th St and Ocean Dr, among which Vista station was established in 

2009. Miami-Dade County has two stations still under operation: Rosenstiel and Perdue 

Med station. Ozone monitoring activities have been discontinued at Krome Ave and 

Everglades stations since 2003 and 2004, respectively. Thermo Electron/Thermo 

Environmental instruments 49 series photometric ambient ozone analyzer (Method 047) 

was used to collect hourly ozone concentration data by all stations except Everglades 

station in Miami-Dade County, where Monitor Labs/Lear Siegler model 8810 

photometric ozone analyzer was used. 

Trends of the highest 1 hour and the 4th highest 8 hour ozone concentrations in 

Broward and Miami-Dade County are shown in Figure 3.7. There are substantial 

fluctuations and no apparent trend can be observed. In Broward County, the measured 

highest 1 hour and 8 hour ozone concentrations are 0.11 ppmv (Ocean Dr site, 2001, 

2006 and 2008) and 0.077 ppmv (Ocean Dr site, 2006), respectively. Both of the 

concentration values are below NAAQS standards. In Miami-Dade County, the measured 

highest 1 hour ozone concentration is 0.119 ppmv (Rosenstiel and Perdue Med sites, 

2001), only slightly below the standard (0.12 ppmv). Regarding the highest 8 hour ozone 

concentrations in Miami-Dade, some of the measured values exceed 0.08 ppmv (0.084 

ppmv, Krome Ave, 2001 and 0.081 ppmv, Rosenstiel, 2006). The observed exceedance 
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does not necessarily imply regulatory non-attainment as the metric used in the standard is 

the 4th highest daily maximum 8-hour average ozone concentrations averaged over three 

years. 

 
Figure 3.6 Ozone monitoring stations in Broward and Miami-Dade County. Location of 

the high-occupancy toll lane project (phase 1A and 1B) are bolded. 

 

 
Figure 3.7 Trend of the highest 1 hour and 4th highest 8 hour ozone concentrations in 

Broward and Miami-Dade County. 
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3.2.1.4. Particulate matter 

Particulate matter (PM) generally refers to very small solid particles or liquid 

droplets which are suspended in the air and vary greatly in diameter, shape and 

constitutive components. Particulate matter is usually categorized into PM10 and PM2.5, 

the former referring to particulate matter with aerodynamic diameter larger than 2.5 µm 

and smaller than 10 µm, and the latter referring those with aerodynamic diameter smaller 

than 2.5 µm. Particulate matter with a diameter larger than 10 µm may be largely filtered 

in the nasal region of the human respiratory tract. PM2.5 and smaller particles may 

penetrate into the lung (Hinds, 1999). Particulate matter has been found to be associated 

with various negative health effects ranging from increased symptoms of respiratory 

ailments to premature death for susceptible populations such as those with pre-existing 

cardiovascular or lung diseases (Denison, 2000). Particulate matter has both significant 

primary and secondary contributions; concentrations of PM10 are generally higher near 

emission sources (such as roadways), but concentrations of PM2.5 are generally higher at 

downwind locations. As of 2009, the regulatory standard for PM10 is 150 µg/m3 (24 hour 

average). The standard may not be exceeded more than once per year based upon a 3 year 

average. The standard for PM2.5 is 15 µg/m3 (annual average) and 35 µg/m3 (24 hour 

average). The former refers to the 3 year average of annual PM2.5 concentrations and the 

latter refers to the 3 year average of the 98th percentile of 24 hour PM2.5 concentrations. 

The primary standard for annual average PM2.5 concentrations was revised in 2012 and 

lowered to 12 µg/m3. 

As of 2009 there were ten monitoring stations collecting concentrations of 

particulate matters in Broward County (Figure 3.8), among them six are still under 
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operation: Lincoln Park, SW 70th, SW 3rd Ave, Plunkett St, Winston and Vistas. In 

Miami-Dade County, there are currently three active particulate matter monitoring 

stations: PF, MF, and HF. Monitoring activities have been discontinued since 2003 at 

NW 27th Ave and NW 36th St stations.  

 
Figure 3.8 Particulate matter monitoring stations in Broward and Miami-Dade County. 

Location of the high-occupancy toll lane project (phase 1A and 1B) are shown in bolded. 

 

For particulate matters, different samplers were established for various purposes 

(Table 3.3 and Table 3.4) and different sampling techniques may also be used. For 

regulatory purposes, samplers that use federal reference manual filter methods, such as 

method 062 and 063 for PM10; and method 118 for PM2.5, were established. Collected 

concentration data from these samplers were used to justify regulatory attainment 

decisions. For quality assurance purposes, co-located samplers were established which 

may be located within the same monitoring station as the regulatory samplers and use the 

same equipment and sampling techniques. 

Manual sampling methods normally require the particulate matter to be filtered 

and collected for 24 hours. To obtain more temporally resolved concentration data 

samplers that use continuous monitoring methods were established, such as method 079 
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for PM10 and method 702 for PM2.5. In addition, speciation samplers were created to 

provide detailed speciation data for particulate matters. 

Table 3.3 List of particulate matter monitoring stations in Broward and Miami-Dade 

County, and corresponding sampling techniques 

county & pollutant ID abbreviation sampling method technique 

Broward 

(PM10) 

12-011-0010 Lincoln Park 062 Manual 

12-011-0011 SW 4th Ave 062 Manual 

12-011-1002 SW 70th Ave 
N/A Manual-2 

062 Manual 

12-011-2004 SW 3 Ave 
062 Manual 

079 Continuous 

12-011-3002 Plunkett St 
062 Manual 

079 Continuous 

12-011-5002 Taft St 062 Manual 

12-011-5005 Winston  062 Manual 

12-011-6002 NW 72 Ave 062 Manual 

12-011-7002 NE 12th St 062 Manual 

Miami-Dade 

(PM10) 

12-086-0020 NW 36th St 063 Manual 

12-086-1016 MF 
063 Manual-2 

063 Manual 

12-086-3001 NW 27th Ave 063 Manual 

12-086-6001 HF 063 Manual 

Broward 

(PM2.5) 

12-011-0033 Vista 702 Continuous 

12-011-1002 SW 70th Ave 

118 Manual-2 

118 Manual 

810 Speciation 

702 Continuous 

12-011-2004 SW 3 Ave 118 Manual 

12-011-3002 Plunkett St 118 Manual 

Miami-Dade 

(PM2.5) 

12-086-0033 PF 118 Manual 

12-086-1016 MF 

118 Manual-2 

118 Manual 

702 Continuous 

810 Speciation 

12-086-6001 HF 
118 Manual 

702 Continuous 

 

Figure 3.9 shows the trends of the highest 24 hour PM10 concentrations in the two 

counties from 2000 to 2009. The highest measured concentration is 122 µg/m3
 (Plunkett 
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St, 2007) in Broward County and 64.5 µg/m3
 (NW 27th Ave, 2003 and MF, 2009) in 

Miami-Dade County. Both of the values are below the regulatory standard (135 µg/m3). 

No apparent temporal trend can be observed for the highest 24 hour PM10 concentrations 

in the two counties due to substantial fluctuations. 

Table 3.4 Equipment and methods used in particulate matter sampling 

 

sampling 

method type of method equipment used 

PM10 062 Reference Wedding & Associates/Thermo Environmental Instruments 

Inc. Model 600 PM10 Critical Flow High-Volume Sampler 

063 Reference Sierra-Andersen/General Metal Works Model 1200 PM10 

High-Volume Air Sampler System 

079 Equivalent Thermo Scientific TEOM® 1400AB PM10 Ambient 

Particulate Monitor or Rupprecht & Patashnick TEOM® 

Series 1400 and Series 1400a PM10 Monitors 

PM2.5 118 Reference Rupprecht & Patashnick Partisol®-Plus Model 2025 

Sequential Air Sampler or Thermo Scientific Partisol-Plus 

2025 Sequential Air Sampler 

702 Non-Reference TEOM Gravimetric PM2.5 Sharp Cut Cyclone (SCC) 

monitor with correction factor 

810 Non-Reference Met-One speciation samplers (SASS) with Teflon filters 

 

 

 
Figure 3.9 Trends of the highest 24 hour PM10 concentrations in Broward and Miami-

Dade County. County averaged data are shown in solid lines. 
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Figure 3.10 Trends of the 98th percentile of 24 hour and annual average PM2.5 

concentrations in Broward and Miami-Dade County. County averaged data are shown in 

solid lines. 

 

Figure 3.10 provides trends of the 98th percentile of 24 hour PM2.5 concentration 

and annual average concentrations in Broward and Miami-Dade County. The highest 

measured annual average PM2.5 concentration is 10.5 µg/m3 (SW 70th Ave site, 2007) in 

Broward and 12.8 µg/m3 (MF site, 2006) in Miami-Dade, which are below the 2009 

regulatory standard of 15 µg/m3. The highest values of the 98th percentile of 24 hour 

average PM2.5 concentrations between 2000 to 2009 is 37.6 µg/m3 (SW 70th Ave site, 

2007) in Broward and 28.7 µg/m3 (MF site, 2007) in Miami-Dade. The measured value 

of 37.6 µg/m3 in Broward County slightly exceeds the regulatory standard of 35 µg/m3, 

which does not necessarily imply regulatory non-attainment for the same reasons 

discussed for ozone. Although the measured PM2.5 concentrations are generally lower in 

2009 than 2000 in both counties, no apparent temporal trend can be observed. 
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3.2.2. Selected Mobile Source Air Toxics 

Mobile source air toxics (MSATs) are a subset of Hazardous Air Pollutants 

(HAPs); the latter refers to over 180 air pollutants that are not regulated by National 

Ambient Air Quality Standards, but have been defined in the Clean Air Act as they may 

also cause serious health or environmental effects. As implied by their name, mobile 

source air toxics have substantial vehicular emission contribution, and hence can be 

affected significantly by transportation infrastructure changes. Here three mobile source 

air toxics were selected: 1,3-butadiene, acetaldehyde and benzene. All of them are human 

carcinogens (Agency for Toxic Substances and Disease Registry, 2007, 2009; National 

Toxicological Program, 2011). No regulatory environmental concentration standards are 

defined in the national ambient air quality standards for the three selected pollutants. 

Table 3.5 List of mobile source air toxic monitoring stations and available data period 

County Station ID Abbreviation 1,3-Butadiene Acetaldehyde Benzene 

Broward 12-011-1002 SW 70th Ave 02-09 05-07 00-09 

Broward 12-011-2004 SW 3 Ave 02-08 02-03 00-08 

Broward 12-011-3002 Plunkett St 02-08  00-08 

Broward 12-011-5005 Winston  02-09  00, 02-09 

Miami-Dade 12-086-0020 NW 36th St 02-05  02-05 

Miami-Dade 12-086-0029 Perdue Med 02-05  02-05 

Miami-Dade 12-086-4002 Annex  02-03  

 

Table 3.5 provides a list of monitoring stations where concentrations of the 

selected mobile source air toxics were collected. In Miami-Dade County measurement of 

mobile source air toxics was discontinued in 2006, and as such no data are available after 

this time. Typically pollutants were first captured in canisters then transferred to 

laboratories and analyzed using techniques such as Gas Chromatography/Mass 

Spectrometry (GC/MS) or Gas Chromatography/Flame Ionization detection (GC/FID). 
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3.2.2.1. 1,3-Butadiene 

Under exposure to 1,3-butadiene, irritation to skin, eyes or the respiratory tract is 

possible. It is also a known human carcinogen (by inhalation). Occupational exposure to 

1,3-butadiene has been found to correspond to increased incidences of leukemia and 

respiratory, bladder, stomach, and lymphato-hematopoietic cancers (Agency for Toxic 

Substances and Disease Registry, 2009). 

Figure 3.11 shows the highest 24 hour and annual 1,3-butadiene concentrations 

measured in the two counties. The measured highest 24 hour 1,3-butadiene 

concentrations are 1 ppb (Plunkett site, 2003) in Broward County and 0.9 ppb (Perdue 

Med site, 2003) in Miami-Dade County. The highest annual average 1,3-butadiene 

concentrations are 0.13 ppb (Plunkett site, 2003) in Broward County and 0.11 ppb (NW 

36 AVE site, 2005) in Miami-Dade County. 

 
Figure 3.11 Trends of the highest 24 hour and annual average 1,3-butadiene 

concentration in Broward and Miami-Dade County. 

 

A generally declining trend can be observed for the highest 24 hour and annual 

1,3-butadiene concentrations in Broward County. In Miami-Dade County, data are only 

available from 2002 to 2005, and no apparent trend can be observed. 
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3.2.2.2. Acetaldehyde 

Acetaldehyde is widely used as industrial solvent, it is volatile and highly 

flammable. Short term exposure to acetaldehyde may cause irritation to skin, eyes and 

respiratory tracts. The measured highest 24 hour and annual average acetaldehyde 

concentrations in two counties are shown in Figure 3.12. Only a few data points are 

available from 2000 to 2009 and no trend can be inferred. It is worth noting that in 2006 

an abrupt increase of the highest 24 hour acetaldehyde concentration was observed at the 

SW 70th Ave site in Broward County, the reason remains unknown. 

 
Figure 3.12 Trends of the highest 24 hour and annual average acetaldehyde 

concentration in Broward and Miami-Dade County. 
 

3.2.2.3. Benzene 

Under room temperature benzene is a clear liquid with a sweet odor. It is also 

volatile and highly flammable. Benzene is primarily used as a solvent and is mainly 

produced from petroleum products. As a known human carcinogen, chronic exposure to 

benzene may cause blood disorders and damage immune system (Agency for Toxic 

Substances and Disease Registry, 2007). 

Figure 3.13 provides the highest 24 hour and annual average benzene 

concentrations in Broward and Miami-Dade County from 2000 to 2009. The measured 
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highest 24 hour average benzene concentrations are 6.3 ppb (Plunkett site, 2003) in 

Broward County and 1.3 ppb (NW 36 AVE site, 2002) in Miami-Dade County, while the 

measured highest annual average benzene concentrations are 1.6 ppb (Plunkett site, 2003) 

in Broward and 0.53 ppb (NW 36 AVE site, 2005) in Miami-Dade County. Substantial 

concentration variability are observed in the multi-year results for benzene. Although no 

apparent trend can be observed, the average benzene concentration from 2005 to 2009 is 

lower than that from 2000 to 2004. 

 

Figure 3.13 Trends of the highest 24 hour and annual average benzene concentration in 

Broward and Miami-Dade County. 

 

3.2.3. Air Quality Index 

Air Quality Index (AQI) is a comprehensive index (ranging from 0 to 500) 

calculated based on the measured pollutant concentrations of criteria air pollutants 

including CO, NO2, O3, PM and SO2. It is used to conceptually represent air quality, with 

a value of 100 generally corresponding to NAAQS standard for criteria air pollutants. Six 

distinct levels were designated to the air quality index: good, moderate, unhealthy for 

sensitive groups, unhealthy, very unhealthy and hazardous. These levels and their 

interpretations are provided in Table 3.6. 
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Historical air quality index values in Broward and Miami-Dade County were 

retrieved from the Broward County Environmental Protection and Growth Management 

Department (EPGMD) and Miami-Dade County Department of Environmental Resources 

Management (DERM). Trends found in the air quality index are shown in Figure 3.14. In 

both counties “good” air quality days dominate, with an average of 11% “moderate” days 

and 0.5% “unhealthy for sensitive groups” days in Broward County, and an average of 

9% “moderate” days and 0.4% “unhealthy for sensitive groups” days in Miami-Dade 

County. There are only 3 “unhealthy” days (2 in 2007 and 1 in 2001) observed in 

Broward County, accounting for only 0.1% of the total observations. Overall these results 

suggest slightly better air quality in Miami-Dade than Broward County. 

Table 3.6 Air quality index levels and interpretation 

air quality index levels 

of health concern 
value interpretations 

good 0-50 
air quality is considered satisfactory, and air 

pollution poses little or no risk. 

moderate 51-100 

air quality is acceptable; however, for some 

pollutants there may be a moderate health 

concern for a very small number of people who 

are unusually sensitive to air pollution. 

unhealthy for sensitive 

groups 
101-150 

members of sensitive groups may experience 

health effects. the general public is not likely to 

be affected.  

unhealthy 151-200 

everyone may begin to experience health effects; 

members of sensitive groups may experience 

more serious health effects.  

very unhealthy 201-300 
health alert: everyone may experience more 

serious health effects. 

hazardous > 300 
health warnings of emergency conditions. the 

entire population is more likely to be affected. 

*Source: http://airnow.gov/index.cfm?action=static.aqi 

 

http://airnow.gov/index.cfm?action=static.aqi
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Figure 3.14 Trend of air quality index in Broward and Miami-Dade County. 

 

3.2.4. Summary of Baseline Air Quality Findings 

Available data on pollutant concentration levels and values for the four criteria air 

pollutants (CO, NO2, PM (PM10 and PM2.5) and O3), three mobile source air toxics (1,3-

butadiene, acetaldehyde and benzene), and air quality index were collected for the time 

period 2000 to 2009. The collected data were compiled, multi-year trends were plotted 

and compared against the national ambient air quality standards (when available). 

Overall the measured ambient concentration levels of CO and PM10 in the two 

counties are below the National Ambient Air Quality Standards. Some values of fourth 

highest 8 hour O3, as well as 98th percentile of 24 hour PM2.5 concentrations exceed the 

corresponding standard slightly, however the observed exceedance do not necessarily 

imply regulatory non-attainment due to the different metrics used. 

Regarding temporal trends of pollutant concentrations, declining concentrations 

are observed for CO, NO2 and 1,3-butadiene, as well as benzene, in Broward County. No 

apparent trend can be observed for the other pollutants. In addition, the air quality index 

suggests slightly better air quality regarding criteria air pollutants in Miami-Dade than 

Broward County. In both counties, only a very small number of days from 2000 to 2009 
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can be categorized as “unhealthy for sensitive groups” and even fewer days are 

considered “unhealthy”; the latter occurs in Broward County only. 

3.3. Emission Estimation 

Changes in pollutant emissions from the study corridor due to implementation of 

the high-occupancy toll lane project are critical for assessing the impact of the project on 

air quality. Here pollutant emissions from the corridor were estimated by combining 

traffic data estimated by a traffic micro-simulation model CORSIM (CORridor-

microscopic SIMulation) (McTrans, 2008) with emission factors estimated by the 

MOBILE6.2 model (U.S. Environmental Protection Agency, 2004a). The MOBILE6.2 

model is designed specifically for estimating on-road mobile source emissions from 

vehicles, and has been widely used by federal, state, regional and local level planning 

agencies and organizations in many applications related to mobile source emissions 

estimation. Data from the CORSIM model were provided by the Center for Urban 

Transportation Research (CUTR) at the University of South Florida. Five pollutants: CO, 

NOx, PM10, benzene and HC were selected as the study pollutants. Methods and results of 

emission estimation are provided in following sections. 

3.3.1. Emission Factor Estimation 

To be consistent with the CORSIM model, vehicle type distributions used in the 

CORSIM (Table 3.7) model were mapped to the MOBILE6.2 vehicle type distributions 

(Table 3.8). The method used for mapping the two vehicle type distributions is provided 

in Table 3.9. Three vehicle type distributions were mapped, corresponding to the before 

scenario (before implementation of the high-occupancy toll lane project), general purpose 
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lanes in the after scenario (after implementation of the high-occupancy toll lane project) 

and high-occupancy toll lanes in the after scenario. 

Table 3.7 Vehicle type distributions used in the CORSIM model 

vehicle type CORSIM vehicle type ID fleet composition 

passenger car 
1 25% 

2 75% 

truck 

3 31% 

4 36% 

5 24% 

6 9% 

carpool 
8 25% 

9 75% 

 

Table 3.8 Vehicle type distributions used in the MOBILE6.2 model 

MOBILE6.2 vehicle class ID MOBILE6.2 vehicle class description 

1 LDV Light-Duty Vehicles (Passenger Cars) 

2 LDT1 Light-Duty Trucks 1 

3 LDT2 Light-Duty Trucks 2 

4 LDT3 Light-Duty Trucks 3 

5 LDT4 Light-Duty Trucks 4 

6 HDV2B Class 2b Heavy-Duty Vehicles 

7 HDV3 Class 3 Heavy-Duty Vehicles 

8 HDV4 Class 4 Heavy-Duty Vehicles 

9 HDV5 Class 5 Heavy-Duty Vehicles 

10 HDV6 Class 6 Heavy-Duty Vehicles 

11 HDV7 Class 7 Heavy-Duty Vehicles 

12 HDV8A Class 8a Heavy-Duty Vehicles 

13 HDV8B Class 8b Heavy-Duty Vehicles 

14 HDBS School Buses 

15 HDBT Transit and Urban Buses 

16 MC Motorcycles 

 

Transit buses were not included in the CORSIM simulation for the before 

scenario. To account for emissions from buses, bus populations on the corridor were 

obtained and integrated into the CORSIM vehicle type distribution by adjusting the 

population fractions of the other vehicle types proportionally. In the CORSIM modeling 
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for the after scenario, General Purpose Lanes (GPL) and high-occupancy toll lanes were 

modeled separately and transit buses were assumed to be running on high-occupancy toll 

lanes only. Vehicle type distribution data from 29 counting sites located on the ramps of 

the I-95 modeling section were also obtained and compared with the vehicle distribution 

assumption used in the CORSIM model for verification purposes, and they were found to 

be similar. 

Table 3.9 Mapping of CORSIM vehicle type distributions to MOBILE6.2 vehicle type 

distributions 

CORSIM 

vehicle 

class ID 

corresponding 

MOBILE6.2 vehicle 

classes 

vehicle fleet composition 

before scenario 

all lanes  

after scenario  

general purpose 

lanes 

high-occupancy 

toll lanes 

1, 2, 8,9 
LDV, LDT1, LDT2, 

LDT3 LDT4 
95.86% 96.00% 95.60% 

3 HDV2B - HDV7 1.24% 1.24% 1.23% 

4, 5 HDV8A 2.40% 2.40% 2.39% 

6 HDV8B 0.36% 0.36% 0.36% 

7 HDBS, HDBT 0.15% 0.00% 0.42% 

 

The mapped vehicle type distributions were then further allocated to each 

MOBILE6.2 vehicle type using default 2009 VMT distribution data within MOBILE6.2 

(U.S. Environmental Protection Agency, 2001, 2004a). Results of the allocated vehicle 

type distributions are shown in Table 3.10.  

Only freeway links were included in the CORSIM simulation. In order to be 

consistent with the CORSIM model, an external “VMT by facility” file was applied to 

the MOBILE6.2 model to allocate all vehicle mileage travelled data to freeway links. 

Further, to reflect average speed distributions on each link and their temporal variations, 

external “Speed VMT” files were created for each link and were included in MOBILE6.2 

modeling for individual links. CORSIM simulated link speed for four rush hours (7-9 am 
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and 3:30-5:30 pm) and speed data were averaged to obtain hourly speed information for 

these times. Speed at other hours were assumed to be 55 mph, the speed limit on the 

corridor. 

Table 3.10 Allocated vehicle type distributions 

MOBILE6.2 

vehicle class 

ID 

MOBILE6.2 

default 2009 

VMT distribution 

before scenario 

fleet composition 

after scenario fleet composition 

general 

purpose lanes 

high-occupancy 

toll lanes 

1 36.69% 40.27% 40.33% 40.16% 

2 8.69% 9.54% 9.55% 9.51% 

3 28.94% 31.76% 31.81% 31.68% 

4 8.92% 9.79% 9.80% 9.76% 

5 4.10% 4.50% 4.51% 4.49% 

6 3.89% 0.72% 0.72% 0.71% 

7 0.38% 0.07% 0.07% 0.07% 

8 0.32% 0.06% 0.06% 0.06% 

9 0.24% 0.04% 0.04% 0.04% 

10 0.87% 0.16% 0.16% 0.16% 

11 1.03% 0.19% 0.19% 0.19% 

12 1.12% 2.40% 2.40% 2.39% 

13 3.98% 0.36% 0.36% 0.36% 

14 0.20% 0.10% 0.00% 0.28% 

15 0.10% 0.05% 0.00% 0.14% 

16 0.54% 0.00% 0.00% 0.00% 

 

Fuel and meteorological parameters used in the MOBILE6.2 estimation were 

extracted from the NCD (National Mobile Inventory Model (NMIM) County Database) 

database (U.S. Environmental Protection Agency, 2005a). Default data were used for 

other data such as the diesel sale fraction distributions among vehicle types. 

MOBILE6.2 modeling were performed for both the before and after scenarios. In 

the after scenario, general purpose lanes and high-occupancy toll lanes were modeled 

separately to account for differences in vehicle fleet composition. Emission processes that 

could occur on freeways were included. Specifically the included emission processes are 
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running exhaust, running evaporative emissions and seven types of particulate matter 

emissions: exhausted SO4, exhausted lead, organic carbon and elemental carbon from 

diesel vehicle exhausts, total carbon, brake-wear PMs and tire-wear. 

Emission factors were estimated for all vehicles, as well as for buses alone. The 

estimated emission factors were resolve by year, month, pollutant and link. Overall, over 

100,000 emission factors were estimated, and all emissions factors show a consistent 

decreasing trend since year 2005. 

3.3.2. Annual Traffic Extrapolation 

As previously mentioned, CORSIM simulated traffic volume data for 4 rush hours 

in one typical day. The data were extrapolated to other hours of the day and further 

extrapolated to a whole year for emission estimation purposes. Diurnal (diurnal profile by 

hour) and monthly (annual profile by month) traffic variation profiles were applied 

during this extrapolation. The profiles (Figure 3.15) differ at northbound and southbound 

I-95, and they were derived from hourly vehicle counting data obtained from one traffic 

monitoring site located on I-95 (site ID: 860331), approximately 5 miles away from the 

north end of the modeling section of I-95. 

 
Figure 3.15 Diurnal and monthly traffic variation profiles used in traffic volume 

extrapolation. 
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On-road mobile source emissions for each link were estimated by multiplying the 

emission factor by the length of the corresponding link and extrapolated daily total traffic 

volume for that link. Monthly and annual emissions were calculated by aggregating these 

estimated daily emissions. 

3.3.3. Emission Estimation Results 

Pollutant emissions were calculated for five consecutive years from 2005 to 2009. 

As an example, results for the year 2009 are provided in Table 3.11. The estimated total 

emissions for CO, NOx, benzene and PM10 increase slightly with the implementation of 

the high-occupancy toll lane project. The magnitude of this increase ranges from 0.6% 

for benzene to 3.4% for CO. Total emissions for HC decreased slightly by 1.5%. 

Emissions from buses show a consistent decrease with implementation of the high-

occupancy toll lane project, with largest decrease for benzene (14.3%) and smallest 

decrease for NOx (0.7%). 

Table 3.11 Estimated annual emissions for year 2009 

pollutants 
before scenario 

total 

after scenario 

total 

before scenario 

buses alone 

after scenario 

buses alone 

CO 6657 6892 2.12 1.91 

NOx 623.2 640.4 14.27 14.17 

PM10 20.28 20.69 0.25 0.24 

benzene 12.58 12.65 0.0024 0.0021 

HC 604.1 595.0 0.22 0.2 

 

3.3.4. Discussions of Emission Estimation 

The patterns of estimated emission changes are similar to that found in Kall et al. 

(2009), where slightly increased emissions of CO, NOx and PM10 and slightly decreased 

emissions of HC were observed due to the implementation of a high occupancy toll lane 
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project on I-85 near Atlanta, GA. To better understand the observed emission changes in 

this study, individual factors affecting the results of estimation are discussed. 

On-road mobile source emissions from the corridor are mainly determined by two 

contributing parameters: vehicle mileage travelled on the corridor and emission factors. 

The former were estimated by the CORSIM model and the latter were estimated by the 

MOBILE6.2 model. Table 3.12 provides a comparison of the percentage changes in 

annual emissions, emission factors and annual total average vehicle mileage travelled for 

2009 both before and after implementation of the high-occupancy toll lane project. The 

CORSIM estimated total vehicle mileage travelled increased by approximately 2% in the 

after scenario. Average emission factors for CO, NOx and PM10 also increased slightly in 

the after scenario. The increase for both contributing parameters led to an increase in 

annual emissions for these pollutants. For HC, the average emission factor decreases by a 

larger magnitude (-3.7%) than the increase in vehicle mileage travelled (2%), which 

results in overall decrease in annual HC emissions. The average emission factor for 

benzene is slightly lower in the after scenario, yet the relatively larger increase in vehicle 

mileage travelled leads to an overall small increase in annual emissions. 

Table 3.12 Percentage changes (after scenario versus before scenario) in annual 

emissions, emission factors and annual total mileage travelled for year 2009. 

pollutant 

annual 

emissions 

emissions 

factors 

annual vehicle 

mileage travelled 

CO 3.50% 1.20% 

2% 

NOx 2.80% 1.30% 

PM10 2.00% 0.74% 

benzene 0.54% -1.70% 

HCs -1.50% -3.70% 

* Change in emissions factors were estimated based on simple 

average emission factors across all links. 
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To further understand the observed change in emission factors, a sensitivity 

analysis was performed for CO, NOx and HC to evaluate the speed-emission factor 

relationship in the MOBILE6.2 model. The results are shown in Figure 3.16. The 

relationships for CO and NOx are ‘V’ shaped, with lowest emission factors observed at 

approximately 30 mph. A constantly declining pattern is observed for HC. Simulation 

results from the CORSIM model suggest that with implementation of the high-occupancy 

toll lane project average travelling speeds on the study corridor are expected to increase 

from approximately 20-30 mph to 45-50 mph. The increased travelling speed will lead to 

decreased emission factors for HC, but not for CO and NOx due to their unique speed-

emission factor relationships. 

 

Figure 3.16. Speed-emission factor relationships in the MOBILE6.2 model 

 

Regarding emissions from buses, decreases were observed for all pollutants. 

Similarly to the previous results, bus emissions are also impacted by changes in vehicle 

mileage travelled and emission factors. Despite this, the speed-emission factor 

relationship for buses is different to that shown in Figure 3.16, hence the direction of 
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change in these bus emissions does not remain the same as previously found when the 

project is implemented. 

The results contribute to the field of study by showing that transportation 

infrastructure changes (such as the construction of high occupancy toll lanes similar to 

the one found in this study) could improve the performance of the network, including 

increasing travelling speed and reducing travelling time. However, the impact of such 

changes on pollutant emissions from on-road mobile sources are rather more complex, 

due primarily to the non-linear relationships between emission factors and vehicle speed. 

When vehicle mileage travelled was held constant, improvement in roadway performance 

does not necessarily lead to decreased emissions. 

3.3.5. Limitations and Uncertainties in Emission Estimation 

It has to be noted that there are substantial amount of uncertainties involved in the 

emissions estimation. One of the largest uncertainty may be came from the CORSIM 

modeled traffic characteristics (vehicle volumes). The CORSIM results suggest a 3.1% 

increase in vehicle mileage travelled for northbound I-95 and a 1.9% increase for the 

southbound direction. These CORSIM estimated changes may not fully account for 

vehicle volume changes on the corridor due to implementation of the managed lane 

project. Furthermore, changes of traffic characteristics on surrounding transportation 

networks were not modeled by the CORSIM, pollutant emissions from these roadways 

may also impact the air quality in surrounding areas. 

There are also limitations in the estimated emission factors. The MOBILE6.2 

model which was used to derive the emission factors in this study was not designed to 

capture microscopic vehicle behaviors such as acceleration and deceleration, and these 
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vehicle behaviors may be important at the roadway link level. In addition, evaluations of 

the MOBILE6.2 model have shown that the uncertainties within the estimated emission 

factors for NOx and HC range from 20% to 55% (Committee to Review EPA’s Mobile 

Source Emissions Factor (MOBILE) Model, 2000). The estimated range of uncertainties 

are large than the estimated change in pollutant emissions. 

Vehicle fleet composition may also affect the estimated emissions. It is well 

known that some vehicle categories such as heavy duty vehicles and buses on average 

emit more pollutants than other vehicles such as passenger cars. Recall that the vehicle 

fleet compositions used in the CORSIM model were mapped to the MOBILE6.2 vehicle 

classes; the mapping process may lead to further uncertainties. Additionally, vehicle fleet 

composition in the MOBILE6.2 modeling was held constant temporally, which may 

impact the estimated total amount of emissions as temporal variations of fleet 

composition are not accounted for. Furthermore, the CORSIM model data provided 

assumed that no bus ridership and carpooling changes would occur due to 

implementation of the high occupancy toll lane project, yet one of the designed purposes 

of this project is to encourage the use of buses and carpooling. The total vehicle mileage 

travelled could be reduced if this purpose is fulfilled.  

The extrapolated traffic volume is another uncertainty in emission estimation. By 

simply applying traffic variation profiles the extrapolated traffic volume may not be fairly 

representative. Other uncertainties include the 55 mph speed assumption for roadway 

links and the mapping method use in vehicle type distributions. 
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3.3.6. Summary of Emission Estimation Findings 

Emissions from the study corridor of five selected pollutants: CO, NOx, PM10, 

benzene and HC, were estimated for both before and after the implementation of the 

high-occupancy toll lane project. The MOBILE6.2 model was used to estimate link level 

emission factors for the corridor, which were then combined with traffic data estimated 

by the CORSIM model to calculate pollutant emissions. 

Results show a slight emission increase for CO, NOx, PM10 and benzene, and a 

slight decrease for HC following implementation of the project. Pollutant emissions from 

transit buses consistently decrease for all five pollutants. Increased vehicle mileage 

travelled, as well as changes in emission factors, contribute to the observed changes in 

pollutant emissions. The change in emission factors can be explained by the speed-

emission factor relationships used for different pollutants in the MOBILE6.2 model. 

Emission estimation results of this study are consistent with previous literature 

(Kall et al., 2009). The results for all vehicles suggest that transportation infrastructure 

changes may improve performance of the roadway network, but not necessarily lead to 

reduced on-road mobile source emissions. 

3.4. Dispersion modeling  

The impact of the high-occupancy toll lane project on pollutant concentration 

levels was estimated through dispersion modeling. A steady state Gaussian dispersion 

model, AERMOD, was employed. Phases 1A and 1B of the project, the same sections as 

for emission estimation, were included in the modeling. Three pollutants: benzene, CO 

and NOx were selected as the study pollutants. Inputs to the AERMOD model include 
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meteorological data, receptor locations, and emission data. Details of these inputs are 

provided below. 

3.4.1. Meteorological Data 

Based on recommendations from the Environmental Protection Agency (U.S. 

Environmental Protection Agency, 2005b), five consecutive years (2005-2009) of 

meteorological data were collected and used in the AERMOD modeling. Two types of 

meteorological data were considered: surface observation data and upper air sounding 

data. 

Surface observation data includes temperature, wind and cloud cover information 

collected at ground level. The surface observation data collected are 2005-2009 

Integrated Surface Hourly Database (ISH/ISD/ISHD) measured at the Miami 

International Airport. Data were retrieved from NCDC (National Climatic Data Center) 

(ftp://ftp.ncdc.noaa.gov/pub/data/noaa) and are in TD-3505 format. 

Upper air sounding data includes pressure, temperature, relative humidity and 

wind information at different elevations above ground. The 2005-2009 upper air 

sounding data were also collected at Miami International Airport station, and were 

retrieved from the NOAA/ESRL Radiosonde Database (http://www.esrl.noaa.gov/raobs/). 

3.4.2. Receptor locations 

For dispersion models such as AERMOD, a receptor is a user specified location 

where pollutant concentrations will be estimated. The receptors used in dispersion 

modeling consisted of two networks (Figure 3.17): a 5 km spaced network that covers all 

of Broward County and the upper part of Miami-Dade County, and a more densely 

distributed receptor network located near the modeled corridor. For the latter network 

ftp://ftp.ncdc.noaa.gov/pub/data/noaa
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horizontal distances between receptors and the corridor were set to 100 m, 500 m, 1000 

m, 2000 m, 3000 m, 4000 m and 5000 m, and vertical distances between the two rows of 

receptors are 500m. 

 
Figure 3.17 Receptors networks used in dispersion modeling. 

 

3.4.3. Source Specification 

The corridor was modeled as area sources (roadways are represented by 

rectangles) in AERMOD, and each link was modeled individually. Coordinates of all 

links were extracted from the CORSIM model and converted to UTM coordinates. The 

width of each area source was calculated by multiplying the number of lanes by the width 

of each lane. A maximum aspect ratio of 10 was applied to each source; a value of 10 is 

recommended by the USEPA (U.S. Environmental Protection Agency, 2004b) for 

dispersion modeling practices as sources with an aspect ratio larger than 10 may generate 

distorted and unrealistic concentration distributions near emission sources. Area sources 

were further split to ensure appropriate aspect ratios under 10. 
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Previously estimated pollutant emissions as described earlier were averaged to 

calculate seasonally and diurnally varied emission rates for each area source. Emission 

scaling factors were also estimated for each source and applied in the modeling. 

3.4.4. Other Parameters 

Other parameters including initial vertical dispersion parameter (σz) and surface 

characteristics were specified for the AERMOD model. The initial vertical dispersion 

parameter (σz) is used to represent initial mixing of the pollutants such as mechanically 

induced mixing on roadways (U.S. Environmental Protection Agency, 2004b). A value of 

2 was assigned based on past literature (Venkatram et al., 2009). Surface characteristics 

including noontime albedo, Bowen ratio and surface roughness length are used to 

estimate boundary layer parameters, which are vital for pollutant dispersion. Noontime 

albedo refers to the percentage of incoming solar radiation that is being reflected by the 

ground at noontime. The Bowen ratio is defined as the ratio of upward sensible heat flux 

and latent heat flux and is an indicator of the moisture content at the surface. The surface 

roughness length is the height at which the wind speed is assumed to be zero to account 

for the effect of surface roughness. Ranges of the three parameters, as well as their 

selected values, are presented in Table 3.13. Values for each parameter were chosen 

based upon recommendations from previous literature (U.S. Environmental Protection 

Agency, 1999, 2004b). 

Hourly pollutant concentrations were estimated for the three selected pollutants: 

benzene, CO and NOx, from 2005 to 2009 for both the before and after scenarios. The 

highest and second highest 1 hour and 8 hour, as well as the annual average pollutant 

concentrations were calculated at each receptor. 
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Table 3.13 Ranges and chosen values of surface characteristics parameters 

parameters  range chosen value 

albedo 0.1 (thick forests) - 0.65 (fresh snow) 0.16 

Bowen ratio  0.1 (over water) - 10.0 (desert) 1 

surface roughness 

length  
0.01 m (calm water) - 1 m (forest or urban area) 1 

 

3.4.5. Results of Dispersion Modeling 

To evaluate the performance of the AERMOD model, the modeled highest 1 hour 

and 8 hour CO concentrations between 2005 and 2008 were compared with measured 

concentrations at the Annex monitoring station (Table 3.14), which is located in close 

proximity to the modeled corridor. The modeled highest 1 hour CO concentrations are 

close to the measured concentrations in all four years, however the modeled highest 8 

hour CO concentrations are significantly lower than the measured values. As a primary 

pollutant with substantial mobile source contributions, CO concentrations at short term 

temporal metrics such as 1 hour are expected to be impacted significantly by nearby 

traffic, especially at rush hours. For longer term pollutant concentrations, contributions 

from other emissions (not modeled by AERMOD) are expected to be important. This 

may help explain why the modeled highest 1 hour CO concentrations are close to 

measured values but the modeled highest 8 hour CO concentrations are somewhat lower. 

Overall, performance of the AERMOD model is considered reasonable. 

Table 3.14 Comparisons between the modeled and measured highest 1-hour and highest 

8 hour CO concentrations at Annex monitoring station. Measured concentrations are 

shown within parentheses. 

 modeled and measured CO concentrations (µg/m3) 

 2005 2006 2007 2008 

highest 1 hour 627 (725) 581 (575) 478 (437) 378 (322) 

highest 8 hour 137 (288) 150 (230) 99 (242) 106 (242) 
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Figure 3.18. Modeled spatial distributions of the highest 1 hour, highest 8 hour and 

annual average (across all five years) concentration distributions for benzene, CO and 

NOx in the before scenario. 

 

Figure 3.18 shows examples of the modeled spatial distribution of pollutant 

concentrations. Concentration plots shown in the figure include the highest 1 hour, 

highest 8 hour and annual average (across all five years) concentration distributions for 

benzene, CO and NOx. Spatial distributions are similar for each of the modeled 

concentrations, with higher concentrations found near the modeled corridor and 

decreasing concentrations corresponding to increasing distances from the corridor. 

Concentration distributions in the after scenarios are similar and hence are not shown 

here. Additionally, Figure 3.19 provides the trends of domain averaged pollutant 

concentrations of the three selected pollutants from 2005 to 2009. The domain averaged 
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pollutant concentrations show a steady decrease from 2005 to 2008, but a slight increase 

in 2009. Meteorological conditions in 2009, specifically a larger number of hours with 

calm winds, may be responsible for the observed concentration increase here. 

 
Figure 3.19. Trends of the domain averaged pollutant concentrations from 2005 to 2009. 

All concentration values shown are normalized to concentration values in 2005. 

 

Changes in pollutant concentrations after implementation of the high-occupancy 

toll lane project are shown in Figure 3.20. Throughout the majority of the modeling 

domain pollutant concentrations are seen to increase slightly when the project is in place. 

Decreased concentrations were observed only at the northern end of the corridor. Spatial 

re-distribution of pollutant emissions as a result of changing vehicle mileage travelled 

may be responsible for the observed concentration decrease in this region. 

Table 3.15 provides a summary of the estimated pollutant concentrations for both 

the before and after scenarios. The modeled concentrations of CO (both 1 hour and 8 

hour average) are below regulatory standards for corresponding times. Note that 

regulatory standards are available for NO2 but not for NOx. Assuming standard 

temperature and atmospheric pressure, the national ambient air quality standards for NO2 

are equivalent to 100 and 188 µg/m3 at annual and 1 hour averaging time respectively. In 
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both the before and after scenarios the modeled annual average NOx concentrations are 

below the converted annual average NO2 concentration standards, but the modeled 

maximum 1 hour NOx concentrations exceed the corresponding NO2 standard. The 

fraction of NOx that is NO2 varies substantially, hence the observed exceedance does not 

necessarily imply regulatory non-attainment. 

 
Figure 3.20 Changes in pollutant concentrations (after-before) after implementation of 

the high-occupancy toll lane project. 

 

Table 3.16 provides the changes in domain average pollutant concentrations after 

implementation of the high-occupancy toll lane project. The highest 1 hour and annual 

average pollutant concentrations increase slightly in the after scenario compared to the 
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before scenario. The highest 8 hour CO and NOx concentrations also increase, but a 

decrease is seen for benzene. 

Table 3.15 Summaries of the modeled benzene, CO and NOx concentrations for both 

before and after scenario. Modeled pollutant concentrations in the after scenario are 

shown within parentheses. 

 concentrations (µg/m3) 

pollutant NAAQS levels 
highest 1 hour highest 8 hour 

annual 

average 

benzene not applicable 

0.03 – 9.4 

(0.03 – 9.3) 

0.005 – 3.9 

(0.005 – 3.7) 

8.0e-5 – 0.4 

(8.0e-5 – 0.4) 

CO 
40,000 (highest 1 hour) 15 – 6100 

(15 - 6200) 

3 - 2,100 

(3 – 2,100) 

0.04 - 200 

(0.05 - 230) 10,000 (highest 8 hour) 

NOx not applicable* 

1.5 - 440 

(1.5 - 450) 

0.3 - 170 

(0.3 - 168) 

0.004 - 19 

(0.004 - 19) 

* National Ambient Air Quality Standards for NO2 are equivalent to 100 and 188 µg/m3, 

at annual and 1 hour averaging time 

 

Table 3.16 Changes in domain average pollutant concentrations after implementation of 

the high-occupancy toll lane project. 

  concentrations (µg/m3) 

pollutant highest1-hour  
highest 

8-hour  

annual 

average 

benzene 0.0006 -0.0013 0.0001 

CO 18 4.9 3.1 

NOx 1.1 0.27 0.033 

 

3.4.6. Discussion of Dispersion Modeling 

The chosen pollutants included in dispersion modeling are largely inert and only 

on-road mobile source emissions from the corridor were included. Hence pollutant 

concentrations are expected to be higher near the corridor, as shown in Figure 3.18. In 

addition, results of emission estimation show slightly increase for benzene, CO and NOx 

emissions, and therefore generally increased pollutant concentrations are expected in the 

after scenario.  
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Implementation of the high occupancy toll lane project also leads to spatial re-

distribution of the vehicle mileage travelled. At the northern end of the corridor, vehicle 

mileage travelled was reduced and shifted toward the south, resulting in lower pollutant 

emissions here which in turn leads to lower pollutant concentrations nearby in the after 

scenario. 

3.4.7. Limitations and Uncertainties in Dispersion Modeling 

It would seem that pollutant emissions from the corridor impact the results of 

dispersion modeling and contribute most to the inherent level of uncertainty. In addition, 

the model selection may lead to further uncertainties. Specifically, the chosen AERMOD 

model is a steady-state Gaussian plume model and lacks the ability to characterize 

spatially varying meteorological conditions which may ultimately impact the modeling 

results. 

Buildings also impact pollutant concentrations in surrounding areas by interfering 

with or inhibiting pollutant transport. Most of the buildings near the study corridor are 

low in height, but some high-rise buildings, especially those located in extensively 

urbanized areas such as along Miami Beach, could impact pollutant concentration 

distributions nearby.   

3.4.8. Summary of Dispersion Modeling Findings 

The impact of the corridor on air quality before and after the implementation of 

the managed lane project was estimated using the Gaussian dispersion model AERMOD. 

Changes in pollutant concentrations of benzene, CO and NOx were estimated. 

Comparisons between the modeled and measured CO concentrations at the Annex 

monitoring stations suggest reasonable model performance. The modeled CO 
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concentrations are substantially lower than the regulatory concentrations established in 

the National Ambient Air Quality Standard. Regarding the spatial distribution of 

pollutants, higher concentrations were found near roadways, with decreasing 

concentrations corresponding to increasing distance from the corridor. For the majority of 

the modeling domain a slight increase in pollutant concentrations was found after 

implementation of the high-occupancy toll lane project. Contrarily, at the northern end of 

the corridor, concentration decreases were observed. Spatial re-distribution of pollutant 

emissions is likely to be responsible for such decrease. 

Overall the high-occupancy toll lane project appeared to lead to increased 

pollutant concentrations across the majority of the modeling domain and decreased 

concentrations at northern end of the corridor, although the magnitude of the 

concentration changes was relatively small. It needs to be noted that emission estimation 

contributes most significantly to the uncertainties prevalent in dispersion modeling. 

3.5. Conclusion On the Air Quality Impact of the I-95 Managed Lane Project 

On-road mobile sources are major contributors to air pollutant emissions. 

Transportation projects may substantially influence traffic patterns and hence may 

consequently impact on-road mobile source emissions, as well as air quality nearby. Here 

air quality impacts of the “95 Express” managed high-occupancy toll lane project (Phases 

1A and 1B) were assessed. First, ten years (2000-2009) worth of data on pollutant 

concentrations for four criteria air pollutants (CO, NO2, PM (PM10 and PM2.5) and O3) 

and three mobile source air toxics (1,3-butadiene, acetaldehyde and benzene) alongside 

the air quality index were collected for Broward and Miami-Dade County, where the 

project was implemented. The collected data were compiled and multi-year trends of the 



 

80 
 

pollutant concentrations were analyzed. Following this, pollutant emissions from the 

corridor were estimated for five selected pollutants: CO, NOx, PM10, benzene and HC by 

combining outputs from a traffic micro-simulation model CORSIM (CORridor-

microscopic SIMulation) with emission factors estimated by the MOBILE6.2 model. 

Dispersion modeling was then performed using the AERMOD model to estimate 

pollutant concentrations in the study domain due to emissions from the corridor, for 

periods both before and after implementation of the project. Changes in pollutant 

concentrations, as well the spatial distribution of these concentrations, were evaluated. 

The collected pollutant concentration data from regulatory monitoring stations 

show that the measured ambient concentration levels of CO and PM10 in the two counties 

are below the values established by the National Ambient Air Quality Standards. In some 

years the highest 1 hour NO2, fourth highest 8 hour O3, as well as 98th percentile of 24 

hour PM2.5 concentrations were seen to exceed their corresponding standards slightly. 

From 2000 to 2009, declining trends were observed for concentrations of CO, NO2, and 

1,3-butadiene in the two counties, and benzene in Broward County only. No clear trend 

can be observed for the other pollutants. Regarding the air quality index, values of the 

index suggest slightly better air quality in Miami-Dade than Broward County (regarding 

criteria air pollutants). In both counties, only a very small number of days from 2000 to 

2009 can be categorized into index levels lower than “moderate”. 

The estimated on-road mobile source emissions from the corridor show increased 

emission increases for CO, NOx, PM10 and benzene, but decreased for HCs, after 

implementation of the high-occupancy toll lane project. Emissions from buses 

consistently decrease for all pollutants. Change in total vehicle mileage travelled, as well 
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as changes in emission factors, contribute to the observed emission changes. However, it 

needs to be mentioned that substantial uncertainties were involved in emission 

estimation. Mostly from vehicle mileage travelled data estimated by CORSIM model and 

emission factors estimated by MOBILE6.2 model 

Dispersion modeling was then performed for benzene, CO and NOx to estimate 

pollutant concentration levels in the study domain, which were attributable to emissions 

from the corridor, for the periods both before and after implementation of the project. 

Results show slightly increased pollutant concentrations within the majority of the study 

domain as the result of the project. Concentration decreases were observed at the northern 

end of the corridor which was assumed to be due to the re-distribution of pollutant 

emissions. Overall, the results suggest no substantial impact of the managed lane project 

on air quality nearby. 

Finally, this study also demonstrates that although changes in transportation 

infrastructures could lead to improved performance in terms of higher vehicle travelling 

speed and reduced congestion and travelling time, the improved performance does not 

necessarily result in less on-road mobile source emissions. Rather, these are determined 

by vehicle mileage travelled as well as the relationships between vehicle speed and 

emissions.  
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CHAPTER 4  

SPATIOTEMPORAL DISTRIBUTIONS OF AMBIENT OXIDES OF NITROGEN, 

RESIDENTIAL EXPOSURES, AND EXPOSURE INEQUALITY IN THE TAMPA 

AREA 

 

Note: This is an Author's Original Manuscript of an article whose final and definitive 

form, the Version of Record, has been published in the Journal of the Air and Waste 

Management Association [2013] [copyright Taylor & Francis], available online at: 

http://www.tandfonline.com/[10.1080/10962247.2013.800168] 

 

4.1. Introduction 

Eliminating inequalities in exposures and impacts of air pollutants is a goal in 

fields from public health and air quality management, to transportation engineering and 

urban planning (National Research Council, 2004; U.S. Department of Transportation, 

1997; US Department of Health and Human Services, 2000).  Air pollution in urban areas 

has important health impacts (Cohen et al., 2004), particularly for children (American 

Academy of Pediatrics Committee on Environmental Health, 2004).  Previous work 

indicates that exposures and impacts are disproportionate for some disadvantaged 

population groups, including blacks, Hispanics, and low-income earners (Payne-Sturges 

& Gee, 2006; Perlin et al., 1999). Recent work has begun to recognize the effects of 

urban design on emissions (Stone et al., 2007), exposure (Hixson et al., 2010; Schweitzer 
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& Zhou, 2010), and subgroup inequalities (Frumkin et al., 2004).  However, the strength 

and shape of the relationships between urban form, air quality, and environmental 

inequality is poorly understood, but both appear to differ by pollutant type (Marshall, 

2008) and scale of study (Buzzelli & Jerrett, 2007).   

To better understand the complexity involved, there is a need to characterize 

distributions of urban air pollutants at high spatial resolution and for multiple temporal 

scales.  The relative contributions of different source types to exposures are also needed.  

Mechanistic air quality modeling is one useful method for estimation at multiple spatial 

and temporal scales.  However, methods for estimating concentrations and evaluating 

model performance at high resolution, while limiting computational burden, still need 

further development.   

The work described here is part of a study of concentrations of several urban air 

pollutants in the Tampa area, using both measurement and modeling (Evans & Stuart, 

2009; Fridh & Stuart, 2012; Stuart et al., 2009; Stuart & Zeager, 2011).  Here, we discuss 

the development and initial application of a modeling system used to estimate spatially-

resolved NOx distributions and to study impacts of spatial and temporal variability in 

concentrations on inequalities in exposure. Estimates of concentration and ambient 

residential exposure are presented.  Model performance as a function of temporal scale is 

explored. Finally, we discuss results and implications for social inequality and urban 

design in the study area and beyond. 

4.2. Study Area and Scope 

The study area of Hillsborough County Florida, where Tampa is located, is shown 

in Figure 4.1. Tampa is part of a fast growing metropolitan region on the west coast of  



 

84 
 

 
Figure 4.1 The study area (Hillsborough County) and the five surrounding counties in the 

emissions domain, including source and monitoring locations for NOx. The inset provides 

the study area in the context of the state of Florida.  The dashed line box outlines the 

meteorological domain. Sources:  county boundary and roadway GIS shapefiles (Florida 

Department of Transportation); point source coordinates (2002 National Emissions 

Inventory); monitor coordinates (US Environmental Protection Agency Air Quality 

System Data Mart). 

 

Florida with a variety of air pollution sources and a diverse residential population 

(Stuart et al., 2009). A focus on the county, rather than the metropolitan area, allows a 

large mix of land uses for study of social inequality and urban design. We chose oxides 

of nitrogen (NOx) as the focus pollutant here because it is a common urban pollutant and 

has detailed evaluation data available, including data from our previous measurement 

study (Stuart & Zeager, 2011). Further, NO2 , a component of NOx, is used as a surrogate 

for the complex mix of traffic pollution in health outcomes analyses (HEI Panel on the 

Health Effects of Traffic-Related Air Pollution, 2010).  It also has established National 

Ambient Air Quality Standards (NAAQS), and has been associated with respiratory 

responses for susceptible individuals, particularly children, even at levels below the 
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NAAQS (U.S. Environmental Protection Agency, 2008a).  Due to the availability of 

emissions data from the US National Emissions Inventory for a time frame comparable to 

detailed US census data (from 2000), we chose 2002 as a baseline study year to represent 

near current era effects. 

4.3. Methods 

4.3.1. Estimation of NOx Emissions 

On-road mobile sources and stationary point sources for Hillsborough County and 

five surrounding counties (see Figure 4.1) were modeled here.  Estimation methods are 

provided below.  

4.3.1.1. On-road Mobile Sources 

Two approaches are generally used to estimate on-road mobile source emissions, 

bottom-up and top-down approaches (Cook et al., 2006). In a bottom-up approach, 

emissions from roadway links are estimated from traffic activity data.  Generation of 

high-resolution emissions is data intensive and computationally cumbersome for large 

roadway networks.  M. Hatzopoulou and Miller (2010) applied a bottom-up method for 

the Greater Toronto area, but her temporal modeling domain was limited by the large 

number of sources.  In a top-down approach, the domain is split into spatial zones, with 

total domain emissions allocated using spatial surrogates (such as population density or 

roadway density). The top-down approach requires less input data and fewer 

computational resources, but introduces error associated with the surrogate. Kinnee et al. 

(2004) developed a hybrid method;  a bottom-up approach was applied for major 

interstates and a top-down method was applied for the remaining roadways. However, 

Kinnee’s method used sources with large aspect ratios (some over 100), which exceeds 
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that recommended (10) in dispersion model guidance (see e.g. U.S. Environmental 

Protection Agency (2004b)).  Here, we developed and applied a method that builds on the 

above approaches. 

Roadway data, including locations, attributes, and annual average daily traffic 

counts were extracted from Florida Department of Transportation files (Florida 

Department Of Transportation, 2002).  Available link attributes include traffic count, 

roadway function class, maximum speed, number of lanes, and median width.  Roadways 

in Hillsborough County were categorized into two classes, those with traffic count data 

(called major roads here) and those without (minor roads). This results in a similar 

classification to that of primary roadways, defined by the Census Bureau (census feature 

class codes between A10 and A28) (U.S. Census Bureau, 2010).  A bottom-up approach 

was used to estimate emissions from major roads; a top-down approach was used for the 

remaining on-road mobile emissions. 

Hourly running emissions for major roadway links (EM in g per hr), were 

calculated as: 

,M hl hl l hlE A L F  

where Ahl is the estimated hourly traffic count for hour h and link l (vehicles per hr), Ll is 

the length of link l (miles), and Fhl  is the emissions factor (g per vehicle mile). Hourly 

traffic counts on each link were estimated by summing the average daily traffic counts for 

each link over the year (i.e. multiplying by 365 days) and then distributing the annual 

traffic count to each hour of the year using aggregate profiles of the annual (varying by 

month) and diurnal (varying by hour) cycle of traffic for the county; annual and diurnal 

profiles were derived from hourly data at all county traffic counting sites.   Emission 
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factors were estimated using the MOBILE6.2 model, using default vehicle distributions.  

192 emission factors were calculated to account for differences by month and for all 

combinations of roadway function class and speed.  Monthly fuel parameters, 

temperature, and humidity were extracted from the National Mobile Inventory Model 

County Database (U.S. Environmental Protection Agency, 2005a).   

When aggregated, major roadway emissions accounted for 79% of the total 

county emissions from on-road mobile sources in the National Emissions Inventory. For 

the remaining emissions, a top-down estimation approach was applied. The remaining 

emissions in the county (ER,T) were spatially allocated to a grid with 1 km resolution 

based on minor roadway density (Saide et al., 2009).  Annual remaining emissions (ER in 

g per yr) for each grid cell (j) were calculated as: 

, ,

ljl
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where Llj is the length of each minor roadway link l in cell j. ER,t is the county total 

remaining emissions. Hourly emissions for each cell were estimated using the same 

profiles discussed above. 

For the five surrounding counties in the emissions domain, a top-down method 

was applied for all on-road mobile source emissions. As high resolution is not needed 

outside the focus area, a 5 km resolution grid was used.  Annual emissions (EX in g per 

yr) in each external grid cell (k) were spatially allocated as: 
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where LP,lk is the length of each primary roadway link l in grid cell k, LO,lk is the length of 

each other roadway link, EP,T is total primary roadway emissions, and EO,T  is total other 
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roadway emissions.  The calculation was done on a county basis. The contribution of 

primary versus other roadways to total on-road mobile emissions in the National 

Emissions Inventory was assumed to be the same as for Hillsborough County (79% and 

21%, respectively).  We treat the two classes separately because primary roadways are 

expected to have more emissions. Hourly emission rates for each cell were estimated 

using the same temporal profiles discussed above. 

4.3.1.2. Stationary Point Sources 

Forty eight stationary point sources in the six county area were included.  

Together, they emit over 95% of point source emissions in the National Emissions 

Inventory for the area. Annual emission rates were taken directly from the inventory.  

Temporal allocation factors based on source classification code were applied to 

determine hourly emissions; factor profiles define variations by month, by day of the 

week, and by hour of the day (U.S. Environmental Protection Agency, 2007a).  

4.3.2. Dispersion Modeling for Concentrations 

To estimate the spatial distribution of NOx concentrations in Hillsborough 

County, the CALPUFF dispersion model was used.  CALPUFF is an established 

Gaussian puff model that represents the release, transport and dispersion of pollutants 

from multiple sources (Scire et al., 2000). CALPUFF is particularly useful under 

conditions where the steady-state assumptions of plume dispersion break down (U.S. 

Environmental Protection Agency, 2005b).  Tampa is a coastal city with a complex and 

temporally varying wind field associated with the sea breeze.  Methods used to model 

NOx dispersion with CALPUFF are discussed below. 
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4.3.2.1. Source Parameters 

Detailed source information, including geographic location and release 

parameters (e.g. release height, extent, temperatures, velocity), are required for dispersion 

modeling.  Specific parameters used for each source type are described here; for all other 

parameters, we used the default values. Overall, hourly emissions and source parameters 

for 5200 major roadway link sources, 3000 grid-based area sources of other mobile 

emissions, and 48 stationary point sources were modeled. 

For major roadway links, we used an area source representation with roadway 

links re-discretized to ensure a maximum aspect ratio of 10.  The approach was based on 

recommendations in dispersion model guidance (see e.g. U.S. Environmental Protection 

Agency (2004b)) and sensitivity testing we performed to ensure applicability to 

CALPUFF.  We calculated the area source width as the number of lanes multiplied by the 

lane width (assumed to be 3.65 m (Kinnee et al., 2004)) plus the median width (provided 

with the road data).   For the other source parameters, we used an effective release height 

of 1.5 m, an effective rise velocity of 0.5 m/sec (Kalthoff et al., 2005), and an effective 

radius calculated by assuming area equivalence.  For the effective release temperature, 

we used the diurnal cycle of monthly-average hourly ambient temperature in 

Hillsborough County from the National Mobile Inventory Model (U.S. Environmental 

Protection Agency, 2005a). The initial vertical dispersion length was treated as a 

calibration parameter.  It was adjusted to obtain results (at a collocated receptor) 

comparable to the measured monthly means from a regulatory monitoring site (Gandy: 

27°53'32" N, 82°32'19" W, one of the two NOx monitoring sites in the county).  
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Ultimately, a value of 100 m was used for links located near downtown Tampa 

(approximately 12 km2), and 30 m was used elsewhere.  

Other roadway emissions (minor roadways in county and all on-road mobile 

sources in surrounding counties) were treated as gridded area sources, with dimension 

equal to those used to estimate emissions. Other parameters were set to the same values 

used for major roadways.  For stationary sources, the required point-source data are 

tabulated in the National Emissions Inventory.  A vertical momentum flux factor of one 

(Scire et al., 2000) was used.  

4.3.2.2. Meteorological and Geophysical Data. 

A full year (2002) of meteorological data with one hour temporal resolution and 4 

km spatial resolution were used to drive CALPUFF. CALPUFF-ready meteorological 

(and geophysical) data for the domain were obtained in pre-processed form from 

VISTAS (Visibility Improvement State and Tribal Association of the Southeast). Details 

of the meteorological pre-processing from MM5 data are provided in (TRC 

Environmental, 2007).  We performed no re-interpolation of the data.  To capture re-

circulation of pollutants due to the land-sea breeze in the area, we ran CALPUFF 

simulations with a meteorological domain that extended 60 km to each side of 

Hillsborough County (shown in Figure 4.1). 

4.3.2.3. Model Execution and Post-Processing 

Hourly ground-level concentrations were calculated for a 68 by 68 km2 receptor 

grid with 1 km spatial resolution covering Hillsborough County plus two discrete 

receptors at the county measurement sites.  NOx was treated as a non-reactive tracer, with 

no deposition processes enabled.  Temporal summary values at receptor sites were 
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calculated via post-processing.  These included weekly and monthly averages, and annual 

cumulative distribution statistics.  We used values on the receptor grid to generate spatial 

fields, and for spatial interpolation (using kriging in ArcGIS) to categorical fields 

(contours). 

4.3.2.4. Model Evaluation.   

Evaluation against two types of measurement data was performed.  For evaluation 

of temporal performance, we compared model results with measurements at the two 

regulatory monitors in the county (Gandy and Simmons Park), which provide hourly-

resolved data for the model year.  For spatial evaluation, we compared modeled fields 

with data from a passive sampling field campaign that measured NO2 at 75 locations in 

the county over one week in March 2008 (Stuart & Zeager, 2011). The location of all 

monitors using in the evaluation are provided in Figure 4.1.   

4.3.3. Analysis of Exposures and Inequality 

Modeled spatial distributions of NOx were compared with that of residential block 

group data from the 2000 US census (Florida Geographic Data Library, 2012). We 

focused on population subgroups representing a few categories of race-ethnicity (black, 

Hispanic, white), economic status (annual income categories ranging from less than 

$20,000 to greater than $100,000), and age (less than 5, between 5 and 65, and greater 

than 65 years). Race-ethnicity and economic status have been associated with air 

pollution exposure inequalities (Mennis & Jordan, 2005), while young children and older 

adults are susceptible to effects of air pollution (Sacks et al., 2011).  Exposure analyses 

were performed using three summary statistics of the cumulative temporal distribution of 



 

92 
 

hourly concentration (annual average, 98th percentile, and maximum), to represent 

chronic to acute exposures.   

For each statistic, we assessed exposure inequalities between subgroups in three 

ways.  First, we calculated a population-weighted average exposure (X) for each 

subgroup (i) as: 

j i

i

j

i

j

C p
X

P
  

where the concentration field was divided into discrete intervals with index j;  for 

example, we used seven intervals with a 5 µg/m3 increment for the annual average field.  

Cj is the midpoint value in interval j,  pij is the population (number) of subgroup i residing 

in the spatial area of interval j, and Pi is the total population of subgroup i in the county.  

We calculated the pij from census data using ArcGIS tools to determine the overlapping 

areas for block groups with concentration intervals. Population-weighted subgroup 

exposures were then compared. 

Second, we used the subgroup inequality index (Stuart et al., 2009) to explore 

trends in inequality as a function of concentration. The index (I) is defined as: 
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The term pij / Pj represents the fraction of the population living within an area j that is 

categorized as subgroup i.  Fi is the fraction the subgroup comprises of the total county 

population. The index measures the degree to which a subgroup is disproportionately 

residing in a particular area compared to a larger whole (the county). Positive values 

indicate disproportionately high representation in the area. Stuart et al. (2009) provide 

discussion of the index applied to source proximity areas.  Here, we measure inequalities 
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for concentration areas, by defining the area j as that with concentrations greater than 

cutoff value j (defined by a contour line). 

Finally, to assess the statistical significance of disproportionate exposures and 

linear trends, we performed Cochran-Armitage trend testing.  A test was performed on 

the population of each subgroup (and the remaining population in a concentration interval 

area) versus the concentration interval category level (with the midpoint as the score 

value).  The null hypothesis is that there is no trend in subgroup population fraction with 

increasing concentration. SAS (version 9.3, SAS Institute Inc. (2011)) was used for 

statistical testing. 

4.4. Results  

4.4.1. Model Performance 

Figure 4.2 shows box plots of the annual distribution of hourly concentration at 

each regulatory monitoring site, along with the summary statistics used for exposure 

analyses.  The measured temporal distributions are represented well by the modeled 

values at both sites.  A good match is seen for the central tendency statistics (annual 

median and mean), quartiles of the cumulative distribution, and for the 5th and 95th 

percentiles. The simulated annual average concentration at both monitoring sites is within 

8% of the measured values. Model performance declines somewhat for the highest 

values.  The simulated 98th percentile values are within 1% and 30% of those measured, 

at the Gandy and Simmons sites, respectively.  The percent differences for the maximum 

one-hour concentrations are 35% and 42%, respectively.  

Although model results represent annual cumulative distribution statistics well, 

we do not expect to match the hour by hour concentrations, due to the stochastic nature of  
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Figure 4.2  Cumulative distribution box plots of the measured and modeled hourly NOx 

concentrations for year 2002 at the two regular monitoring sites in the county, Gandy 

(monitor ID: 12-057-1065-42602-1) and Simmons Park (12-057-0081-42602-1). 

Simmons was purely an evaluation site, while monthly average data at Gandy were used 

to calibrate the initial vertical dispersion parameter. Values for hours with no 

measurement data have been excluded. 

 

the problem and uncertainties in the hourly allocation of emissions.  However, we are 

interested in the limits of model performance at increased temporal resolution, as they 

inform use of temporal averages to estimate exposure.  Figure 4.3 shows scatter plots of 

paired monthly and weekly averages of the modeled versus measured data.  All modeled 

monthly averages are within a factor of two of the measured values, while 90% of the 

modeled weekly averages are within that factor, indicating reasonable model 

performance.  U.S. Environmental Protection Agency (2009) discusses this and other 

model performance metrics).  Table 4.1 provides additional metrics of performance for 

each averaging period.  Results are consistent with degraded performance as the temporal 

resolution of the matching increases.  Figure 4.4 shows a time series comparison for the 

weekly averages.  The model follows many fluctuations of the measured values, but does 
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not capture the highest winter values. A histogram of residuals (not shown) indicates a 

relatively normal distribution, but with an extreme value for the highest measurement in 

January.  

 
Figure 4.3 Modeled versus measured NOx concentrations for average (a) monthly and (b) 

weekly values in 2002. The solid (1:1)  line indicates a perfect match between measured 

and modeled values. The dotted (1:2 and 2:1) lines indicates a factor of 2 between the 

measured and modeled concentrations.  Filled circles indicate Simmons Park data; open 

squares indicate Gandy data. 

 

Table 4.1 Model performance as a function of temporal averaging period 

evaluation statistic 
averaging period 

month week 

normalized bias (%) 1.0% 4.0% 

bias (µg/m3) -1.1 -1.2 

root mean squared error (µg/m3) 6.0 9.7 

absolute average gross error (µg/m3) 4.4 6.3 

residual standard deviation (µg/m3) 5.9 9.6 

Pearson correlation  0.70 0.51 

 

Spatial performance is usually difficult to assess, due to lack of data at high 

spatial resolution.  We compared the spatial footprint of modeled concentrations to 

measurement data from a previous NO2 field campaign with measurement at 75 locations 

(shown in Figure 4.1). The comparison is not direct due to the mismatch in the temporal 

period (the data is for a one week average during spring 2008) and pollutant focus (NOx  
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Figure 4.4. Trends of weekly average NOx concentrations for the modeled and measured 

data in 2002. a) provides the comparison at the Gandy site, and b) provides the 

comparison at Simmons Park. Simmons was purely an evaluation site, while monthly 

average data at Gandy were used to calibrate the initial vertical dispersion parameter. 

 

versus NO2).  Nonetheless, the same spatial pattern is qualitatively observable (see Stuart 

& Zeager (2011) for a measurement plot).  Quantitatively, the Pearson correlation 

between measured and modeled values at the measurement locations was 0.72, 0.68, and 

0.58, respectively, for each of the three temporal distribution statistics used for exposure 

analyses (annual, 98th percentile, and maximum).  The model results capture a large 

proportion of the spatial variability measured during the field campaign, with better 

closure between modeled and measured data for the annual average. 

4.4.2. Spatial Distributions of Concentration and Source Contributions 

Table 4.2 provides spatial statistics for modeled NOx in the study area.  Annual 

average values varied by up to an order of magnitude between grid locations.  Levels at 

all locations were below the annual average National Ambient Air Quality Standard 

(NAAQS) level for NO2 (equivalent to 100 µg/m3 at standard ambient temperature and 
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pressure), but the 98th percentile value exceeds the new hourly NAAQS for NO2 (equal 

to188 µg/m3) in a small area where ground-level point-source emissions are high.  The 

fraction of NOx that is NO2 varies, but has been found to be about 0.8 on average in the 

Tampa area (Poor, 2008).  Applying this fraction, we estimate that a few hourly NO2 

concentrations in 2002 in some areas may have been above the hourly NAAQS level. 

(Note that the hourly NO2 NAAQS standard did not exist in 2002). 

Table 4.2 Spatial statistics of NOx concentration (µg/m3) in 2002 

spatial statistic 
temporal statistica  

average 98th percentile maximum 

domain average 12 69 254 

standard deviation 5 24 122 

range 5 - 44 36 - 231 100 - 1591 

aThese refer to summary statistics of the annual distribution 

of hourly values in 2002. 

Figure 4.5 provides the spatial distributions of annual average, 98th percentile, and 

maximum NOx concentrations.  All distributions have the general pattern of a highs 

focused primarily over central Tampa, where three major interstate highways converge, 

the roadway network is dense, and a few point sources are located.  Overall, the spatial 

distributions are highly correlated.  Pairwise Pearson correlations are 0.95 (annual 

average versus 98th percentile), 0.80 (98th percentile versus maximum), and 0.75 (annual 

average versus maximum).  However, differences are also observed. The highest annual 

average concentrations are along the interstate highways, particularly near the Tampa 

International Airport, with local highs along other roadways visible.  The spatial 

distributions of 98th percentile and maximum concentration also show local highs along 
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large roads and roadway intersections.  However, the highest values are seen near to a 

few point sources near a major port facility (Port Sutton).    

 
Figure 4.5 Modeled spatial distributions of NOx concentration (µg/m3) in Hillsborough 

County in 2002 for three statistics of the temporal distribution of hourly values, 

specifically (a) annual average, (b) 98th percentile and (c) maximum values.  The 

resolution shown is that of the model output (1 km2).  Filled circles indicate point 

emission sources of NOx, and major roadways are shown as black lines. Sources of 

mapping data are provided in the Figure 4.1 caption. 

 

Table 4.3 Contributions of each source category to emissions and concentrations of NOx 

in 2002 

source category 
emissions 

contribution 

concentration contributionb 

average 
98th 

percentile 
maximum 

major roadways in the study 

area 
12% 35% 31% 40% 

minor roadways in the study 

area 
3% 6% 5% 6% 

externala on-road mobile sources 30% 22% 15% 13% 

stationary point sources  55% 37% 49% 41% 

aThe term external refers to sources in the five counties surrounding Hillsborough 

County. bThe average, 98th percentile, and maximum refer to summary statistics of the 

2002 annual distribution of hourly concentrations for Hillsborough County. 

 

Table 4.3 provides a summary of source contributions to emissions and 

concentrations. On-road mobile source emissions within Hillsborough County 

contributed 15% of the NOx emissions in the six county area, however they contribute 
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41%, 36%, and 46% of the annual average, 98th percentile, and maximum concentrations, 

respectively. The contribution of in-county major roadways to annual average 

concentrations was approximately three times their contribution to emissions.  The 

contribution of in-county minor roadways to concentrations was also greater (by two 

times) than that to emissions, but they only contribute a small fraction overall.  

Conversely, point sources throughout the domain contributed over half of the total 

emissions, but were only responsible for around 40% of the concentrations.  

4.4.3. Average Exposures and Inequalities 

Table 4.4 provides estimated population-weighted group average exposures to 

NOx for racioethnic, income, and age subgroups. Among racioethnic groups, estimated 

average exposures for black residents were highest, followed by Hispanic residents.  

Whites had the lowest average exposures. Both the black and Hispanics subgroups had 

average exposures higher than the overall county average (12 - 15% and 3 - 6% higher, 

respectively), while the average exposure of white residents was slightly lower than the 

county average (2 - 3%).  Qualitative differences were consistent for all temporal 

statistics of concentration studied (annual average, 98th percentile, and maximum). A 

similar inequality was found for income groups.  Residents with annual incomes less than 

$20,000 had the highest average exposures.  However, the average exposure for the 

lowest income subgroup was not as high as that for the black subgroup.  (Note that any 

individual could be categorized in both these groups.) Average exposures decreased with 

increasing income, achieving the county average for income between $40,000 and 

$60,000. Average exposures for the highest income group (greater than $100,000) was 

6% less than the county average.  Differences by age were much smaller and largely 
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indistinguishable.  However, residents older than 65 years had slightly higher than 

average exposures (0 - 2%). 

Table 4.4  Estimated group-average exposure to NOx for racioethnic, income, and age 

categories 

population subgroup 

group average exposure (μg/m3)a 

average 
98th 

percentile 
maximum  

race or ethnicity 

black 19.9 102 395 

Hispanic 18.2 94.5 356 

white 16.6 88.6 335 

     

annual income 

(thousands  

of dollars) 

less than $20 18.6 96.3 361 

$20 to $40 17.8 93.0 349 

$40 to $60 17.2 90.5 343 

$60 to $100 16.3 87.3 332 

more than $100 16.2 86.3 326 

     

age  

(years) 

more than 65 17.3 92.5 347 

less than 5 17.2 90.7 345 

5 to 65 17.2 90.6 344 

    

county average 17.2 90.8 344 
aAverage, 98th percentile, and maximum refer to summary statistics of the 2002 annual 

distribution of hourly concentrations for Hillsborough County, from which exposures 

were estimated. 

 

Figure 4.6 provides plots of the subgroup inequality index as a function of 

concentration.  The index measures the degree of disproportionate representation of a 

subgroup in a defined area (defined here as the area with concentration exceeding a cutoff 

value).  For annual average concentrations, index values are positive and increase as 

concentration increases for the black, Hispanic, and lowest income (less than $20,000) 

resident groups, as well as young children (less than 5 years).  In areas with the highest 

concentrations (greater than 35 μg/m3), the highest index value was observed for blacks; 

the value (0.5) indicates that the fraction of blacks living in these areas is approximately 
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three times (100.5) their fraction in the county overall.  The fraction of the lowest income 

group in high concentration areas is approximately 2 times that in the county.  For the age 

category, index values are very close to zero until the highest concentrations are reached 

(greater than 30 µg/m3).  For these high areas, children less than 5 years are 

overrepresented. 

 
Figure 4.6 Estimated subgroup inequality index for selected populations as a function of 

NOx concentration in 2002. The index is calculated as Iij = log [(pij / Pj) / Fi].  The term 

pij / Pj is the fraction of the population, Pj, living within the concentration area, j, that is 

categorized as subgroup i.  Fi is the fraction of the total county population that is that 

subgroup.  Marker location on the concentration axis indicates the lower limit 

concentration value (i.e. the contour line value) used to define area j for each index 

calculation. An index value of 0.3 means that the fraction of people who are that 

subgroup living where levels are greater than the concentration cutoff value is 100.3 (or 

2) times their fractional representation in the county. An index value of -0.3 indicates that 

the fraction is 10-0.3 (or 1/2) that in the county. Row headings provide the category of 

population subgroup studied. The column headings indicate the temporal distribution 

statistic used to quantify concentration.  Income amounts are in units of thousands of 

dollars per year; age is in units of years. 
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Conversely, the index is negative and generally becomes more negative as the 

annual average concentration increases for the white and highest income groups.  In areas 

with highest concentrations, the fraction of white and highest income (greater than 

$100,000) residents is only half and less than half, respectively, of their fraction in the 

county.  The index value for residents aged older than 65 years is also negative for 

concentrations greater than 35 μg/m3, but is slightly positive between 20 and 35 μg/m3.  

The group average (over all concentrations, Table 4.3) remains higher than the county 

average due to larger total population numbers in this mid-range. 

For the short-term concentration statistics (98th percentile and maximum), the 

results are more variable than for annual averages.  Trends in index value with increasing 

concentration are similar to those seen for the annual average, up until the highest two or 

three concentration levels.  For these, the trend was often not monotonic and sometimes 

fluctuated between positive and negative values.  Notably, the index value for blacks for 

the highest concentration hours (98th percentile and maximum) was negative; i.e., this 

group was underrepresented in areas with the highest hourly values. 

Results of Cochran-Armitage trend testing are shown in Table 4.5.  Large 

negative test z-values support the alternative hypothesis of a statistically significant 

increasing linear trend in subgroup population fraction with increasing concentration for 

blacks and Hispanics, and a decreasing trend for whites.  For income, results indicate an 

increase in population fraction with concentration for income categories less than 

$40,000, and a decrease for incomes over $40,000. Z-values for the age groups were 

small in magnitude, but indicate a slightly increasing trend for residents aged older than 

65 years, and a decreasing trend for those ages 5 to 65 years. (Note that the test weighs 
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data from the lower concentration intervals more than from the high concentration 

intervals because there are may more people overall in the low intervals.) The trend test 

results were consistent irrespective of the concentration measure used (annual, 98th 

maximum) to define the concentration intervals. 

Table 4.5  Cochran-Armitage trend test z statistic values 

population subgroup 

z-statistic valuea 

average 
98th 

percentile 
maximum  

race or ethnicity 

black -206 -217 -210 

Hispanic -85 -79 -56 

white 178 183 171 

     

annual income 

(thousands  

of dollars) 

less than $20 -76 -77 -55 

$20 to $40 -30 -30 -19 

$40 to $60 13 13 6.2 

$60 to $100 59 58 38 

more than $100 51 53 42 

     

age  

(years) 

more than 65 -8.9 -29 -7.7 

less than 5 (0.3) (1.3) (-0.5) 

5 to 65 7.2 23 6.7 
aValues in parentheses were not statistically significant (p-value greater than 0.05).  All 

others values had p-values less than 0.0001. Average, 98th percentile, and maximum 

refer to summary statistics of the 2002 annual distribution of hourly concentrations for 

Hillsborough County. 

 

4.5. Discussion 

4.5.1. Inequalities in Exposure to Air Pollution 

This study extends our previous work using complementary methods (Evans & 

Stuart, 2009; Fridh & Stuart, 2012; Stuart et al., 2009; Stuart & Zeager, 2011) on air 

pollution concentrations, exposures, and exposure inequality in the Tampa area. Here, we 

contribute results based on highly-resolved estimates of NOx concentrations through use 

of dispersion modeling.  The results provide evidence for disproportionately high 
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residential exposures to NOx (and potentially other traffic-related pollutants) for the 

black, Hispanic and low income population subgroups, particularly for chronic 

exposures.  For the long-term (annual) average concentration, we found inequalities that 

persist across concentration levels (and hence sub-county spatial scales).  Inequalities 

were also apparent across the temporal statistics considered (representing chronic to acute 

exposures).  However, for the short-term measures (98th percentile and maximum 

concentration), inequalities varied substantially and even reversed at the highest 

concentration levels. Inequalities between age groups were small and nonlinear with 

concentration. However, we did see suggestive evidence of disproportion exposure of 

young children to the highest concentrations.  These results provide a unique examination 

of differences and consistency in disparties across multiple time scales and concentration 

levels. 

4.5.2. Attribution of Concentrations and Effects to Emission Sources 

One explanation for disproportionately high exposures of disadvantaged groups to 

urban pollution is the tendency of these groups to live (and attend schools) in close 

proximity to roads with high traffic volumes (Green et al., 2003).  Studies have also 

found disproportionate contributions to ambient concentrations from on-road mobile 

sources (Leksmono et al., 2006), and from area sources generally (Irwin & Brown, 1985).  

Our results support disproportionate contributions from on-road mobile source emissions 

to NOx across temporal scales.  We found contributions of roads in the study area to 

concentrations to be two to three times greater than their contributions to emissions. The 

influence was greatest for the long-term (annual) average, but persisted across the 

temporal statistics studied.  However, stationary sources also contribute to 
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concentrations, particularly for the short-term measures (98th percentile and maximum).  

Hence, both types of sources need to be well-characterized for intra-urban exposure 

estimation; a focus on roadway sources may be warranted for chronic exposures, while 

point sources cannot be neglected for acute exposures.  

4.5.3. Differences in Spatial Concentration Distributions by Time Scale 

Many studies have modeled spatial distributions of air pollution and applied the 

results for exposure estimation (Jerrett et al., 2005).  Differences in spatial distributions 

for distinct time scales are seldom discussed. Here, the spatial fields of NOx were 

correlated for the three temporal statistics studied (annual average, 98th percentile, and 

maximum), but differences were apparent.  A roadway dominated pattern (highs 

surrounding roads) was clear, particularly for the annual average, but highs near point 

sources emerge for the high hour fields.  Hence, the temporal statistic selected for 

exposure and effects analyses may be important.  As effects may be due to acute or 

chronic exposures (or both) (HEI Panel on the Health Effects of Traffic-Related Air 

Pollution, 2010), multiple temporal measures may be needed.  Further, exposure 

estimation methods that explicitly resolve temporal variations are needed.  Many 

approaches, such as proximity-based methods and land use regression, do not account 

well for temporal variations. Modeling used to represent short-term exposures should 

evaluate results for short-term measures.  We were not able to fully capture the highest 

statistics of the measured cumulative frequency distribution (98th percentile and 

maximum).  However, the 95th percentile values, and weekly and monthly averages, were 

represented quite well.   Further, this work demonstrates the importance of considering 

the stochastic nature of concentrations, by assessing concentrations and exposures in a 
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probabilistic manner (e.g. using cumulative distribution statistics).  However, more work 

is needed to develop and evaluate methods that represent exposures for multiple time 

scales.  

4.5.4. Implications for Urban Design 

Past studies suggest that compact urban form with mixed land-use may reduce on-

road mobile emissions when compared with sprawl growth (Kahyaoğlu-Koračin et al., 

2009; Stone et al., 2007).   Reductions in emissions may not necessarily reduce human 

exposure (Schweitzer & Zhou, 2010) or exposure inequality.  Results here suggest that 

co-location of populations and concentrations is complex and changes with temporal 

scale.  However, results are consistent with the current focus on mobile sources 

emissions, particularly for long-term exposures.  Policies that remove motor-vehicle 

emissions from areas where people, particularly blacks and low income earners, live and 

spend time are suggested.  These could include avoiding high density populations for new 

road construction (Chakraborty, 2009), promotion of electric vehicles for urban core use 

(including for public transit), and promotion of the human-powered travel modes (biking 

and walking).  However, motor vehicle emissions nearby must also decrease as these 

modes increase; otherwise, activity exposures and exposure inequality may increase.   

4.5.5. Limitations 

One of the largest sources of uncertainty in air pollution modeling is emissions 

information.  To model spatiotemporal distributions of concentration, detailed assignment 

of traffic activity is needed.  We applied scaling profiles for the annual and diurnal 

cycles, derived from aggregated local traffic count data, to estimate hourly emissions.  

This approach does not represent all variability, particularly differences between 
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weekdays and weekends (e.g. Fujita et al. (2003)), and between roadways. Travel 

demand modeling may be an improved approach for spatiotemporal allocation of traffic 

activity (Hatzopoulou & Miller, 2010). Nonetheless, our evaluation suggests that we have 

represented temporal variations reasonably down to weekly resolution.  We also capture 

up to the 95th percentile summary statistic of the cumulative distribution of hourly values 

well, with somewhat degraded performance for the highest hour values (98th percentile 

and maximum). Hence, exposure results based on the high hour values are less certain 

than those based on the annual average, and should be viewed primarily as illustrative of 

potential differences in patterns.   

Emission factors also provide a source of error. We disaggregated emission 

factors by month (representing changes in meteorology and fuel parameters), roadway 

function class, and speed category.  Dependence on speed is a known source of error as 

the relationship between emissions and speed is largely empirically derived (Brzezinski 

et al., 2001).  Further, we used maximum speeds due to data availability.  Bai et al. 

(2007) suggested a speed adjustment based on traffic volume, which was not applied 

here.  Additionally, local deviations from default county distributions of vehicle type and 

age can impact emissions factors (Lindhjem et al., 2012).  Finally, we used MOBILE6.2 

rather than the MOVES estimator, which has replaced MOBILE6.2 since this work 

began.  In a recent study of two metropolitan areas, Lindhjem et al. (2012) found 

differences in NOx emissions estimated using MOVES versus MOBILE6.  More inter-

comparison work is needed to fully evaluate the differences and their general 

implications.  
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Other sources of error are the spatial allocation of other roadway emissions, 

source parameters, and missing emission sources.  Spatial allocation of minor road 

emissions (and other vehicle emission such as hot soak and cold start emissions) was 

based on minor roadway density, one of a few possible surrogates (e.g. Saide et al. 

(2009)).  The surrogate choice is not expected to impact concentrations much, as these 

emissions are small.  However, allocation of emissions to 1x1 km2 grid cells could dilute 

their modeled contribution.  Results may also be limited by missing sources. Exclusion is 

due to lack of data (for sources missed by the national inventory) or modeling tractability 

(for diffuse and minor sources).  Together, the emissions included here account for 76% 

of the total NOx emissions in the 2002 National Emission Inventory for the domain.  Due 

to the likely small magnitude of missing sources, we do not expect substantial impacts on 

concentrations or exposures; however, impacts cannot by ruled out. 

Dispersion modeling assumptions and other types of data can also lead to 

uncertainties in concentration results.  Meteorological data can be a source of error.  We 

used a full year of data, and therefore expect high fidelity in the temporal representation.  

However, the data used have a spatial resolution of 4 km, which is limited for 

representing differences at 1 km resolution.  Further, chemical reaction and deposition 

processes were not included. These processes are not expected to influence the high 

concentration areas near sources (due to time scales longer than that for dilution (Seinfeld 

& Pandis, 1997)), but exclusion could lead to overestimation of concentrations overall.  

Finally, the initial vertical dispersion length parameter for road link area sources is 

uncertain; it depends on many factors including traffic-induced turbulence and nearby 

structure heights (Rao et al., 1979; U.S. Environmental Protection Agency, 2004b).  
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Here, we use it as a calibration parameter; this improves model results, but limits their 

generalizability.   

Uncertainties are also present in the exposure estimation.  Accurate and precise 

estimation of personal exposures requires spatiotemporal matching of a person's location 

and the pollutant concentrations in their breathing zone.  Ideally, this would include 

characterizing spatiotemporal population activity patterns and pollutant levels in non-

ambient microenvironments (inside homes, schools, workplaces, vehicles, etc.).  

Although we are currently working on path-following exposure estimation (Gurram et al., 

2012), we do not disaggregate these elements here.  Instead, we use residential locations 

and ambient concentration to represent population location and exposure concentration, 

respectively.  Furthermore, for subgroup exposures, we assume that demographic 

characteristics are homogeneously distributed within a census block group, due to the 

resolution of the census data.  Temporally, we specifically consider multiple statistics of 

the concentration distribution, improving upon most current studies.  Nonetheless, we are 

only simulating one year of data for both population residence location and 

concentrations. Both of these distributions change in time.  Notably, emissions of NOx 

from the 2008 National Emissions Inventory for Hillsborough County are 46% lower that 

in 2002.  This same percentage decrease is seen in emissions estimates for the US as a 

whole between 2012 and 2002 (U.S. Environmental Protection Agency, 2012a).  Hence, 

the exposures and their social distribution found here may not represent current or future 

exposures. 

To study the social distribution of exposure, we used a few approaches.  There are 

many methods and indices used to investigate inequality; several reviews on the subject 
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have been written (e.g. Levy et al. (2006)).  The metrics used here allow us to compare 

exposures between groups and explore changes with concentration. However, we do not 

quantify the processes that lead to unequal outcomes or address the fairness of 

inequalities. 

We note that this work characterizes NOx concentrations and exposures in the 

Tampa area.  Although NOx has been used as a surrogate to represent the complex mix of 

primary pollution from traffic, results are not applicable to pollutants formed in the 

atmosphere (secondary pollutants), such as ozone.  Further, results are specific to the 

Tampa area and the time period of the data used for estimation (early 2000s); they 

contribute a case study to the body of knowledge across localities and times. 

4.6. Conclusions  

We modeled NOx concentrations in 2002 and estimated residential exposures for 

the Tampa area at high spatiotemporal resolution. Implications for social inequality and 

urban design were discussed.  Contributions include the description of a hybrid approach 

for estimating link-level roadway emissions that allows characterization of concentrations 

at high spatiotemporal resolution while limiting computational resource needs.  

Differences in concentration fields, source contributions, exposures, and inequality across 

multiple temporal scales are presented.  This focus is fairly novel, as many exposure 

methods do not explicitly consider time scale.  Further, we present a detailed evaluation 

of model performance across temporal scales, adding knowledge on limitations and 

robustness of exposure estimation using dispersion modeling. Findings and conclusions 

suggested by this work are the following: 
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1. Spatial distributions of NOx were highly correlated, but have differences, for the 

three statistics of the cumulative temporal distribution studied (maximum hour, 

98th percentile hour, and annual average). 

2. Contributions of on-road mobile sources to ambient NOx concentrations in 2002 

were disproportionate to their emissions.  Point sources contributions are also 

substantial; their influence is more evident for the high hour (maximum and 98th 

percentile) fields. 

3. The black, lowest income (less than $20 K), and Hispanic subgroups were likely 

exposed to disproportionately high average NOx at their residences.  The white 

and the highest income (greater than $100K) subgroups were found to be 

disproportionately un-exposed. 

4. Persistent exposure inequalities were found across temporal scales, with generally 

increasing inequalities as NOx level increased.  However, the relationship is 

complex; it reversed for the highest concentration hours for some groups (notably 

blacks). 

5. Decreased overall emissions may not decrease population exposures or improve 

exposure equality.  Urban planning should focus on designs, infrastructure, and 

policies that reduce on-road mobile source emissions in areas with high density of 

disadvantaged subgroups. 

The methods and results presented here can be used for study of impacts of urban 

growth on health and to improve urban planning toward more equitable and sustainable 

design.  Our current work is focused on applying and improving these methods to other 
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urban pollutants, particularly air toxics, for both near current era and potential future 

urban forms.
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CHAPTER 5  

EMISSIONS, CONCENTRATIONS, EXPOSURES, AND EXPOSURE INEQUALITY 

FOR MULTIPLE TRAFFIC-RELATED AIR POLLUTANTS IN THE TAMPA AREA 

 

5.1. Introduction 

Although NOx is an established surrogate for multiple traffic-related air 

pollutants, we are also interested in investigating and comparing patterns of emissions, 

concentrations, and exposures for other select air toxic pollutants. Here we investigate 

four additional pollutants for the same study period: 1,3-butadiene, benzene, 

acetaldehyde and formaldehyde. These pollutants are among the 33 urban air toxics 

(UAT), which have been shown to significantly impact human health and public welfare 

in urban areas of the US (U.S. Environmental Protection Agency, 2008b). They are also 

mobile source air toxics (MSAT) (ENVIRON International Corporation, 2006) and have 

substantial mobile source contributions. Further, these four pollutants are all known 

human carcinogens (Agency for Toxic Substances and Disease Registry, 2007; National 

Toxicological Program, 2010, 2011), and long-term exposure to these pollutants may 

increase the risk of cancer. In addition, formaldehyde and acetaldehyde have substantial 

contributions from secondary formation in the atmosphere, while 1,3-butadiene and 

benzene are primary pollutants.  

Furthermore, during the course of this study the MOBILE6.2 model for on-road 

mobile source emissions used in Chapter 4 was replaced by the Motor Vehicle Emission 
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Simulator (MOVES) model (U.S. environmental Protection Agency, 2010b).  Hence, I 

re-estimated NOx emissions, concentrations, and exposures using the new model.  

5.2. Overview of Method 

Figure 5.1 illustrates an overview of the methods used to estimate air pollution 

exposure and exposure inequalities. First, emissions of the five selected pollutants were 

estimated for the study area. The estimated emissions were consequently applied to 

calculate spatiotemporal resolved pollutant concentrations, which were then combined 

with demographic data to estimate human exposure to air pollution and exposure 

distributions among chosen population subgroups. Details of each steps are presented 

separately in following sections.  

 

Figure 5.1 Overview of the methods 

 

5.3. Emission Estimation 

Emissions of the five selected pollutants were estimated for the Tampa area. Five 

emission categories were included in emission estimation: stationary point, on-road 

mobile, non-road mobile, non-point and biogenic emissions. Methods and results for each 

of the emission categories were provided below. 
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5.3.1. Methods of Emission Estimation 

The study area here is similar as in Chapter 4. Pollutant emissions within 

Hillsborough County, where Tampa is located, as well as 50 km outside the county, were 

included. 50 km is a commonly recognized distance beyond which the impacts of directly 

emitted pollutants are expected to be small. Location of the domain for emissions 

estimation is shown in Figure 5.2. Size of the domain is 160 km by 160 km. Emissions 

from 12 counties within the emission domain were included in emission estimation. 

Estimation methods for each of the emission category are described below. 

 
Figure 5.2 Domain of emissions estimation. 

 

5.3.1.1. On-Road Mobile Sources 

A similar hybrid method as used in Chapter 4 was applied for on-road mobile 

source emissions. Within Hillsborough County, all roadways are divided into two 

categories: major roadways and minor roadways (Figure 5.3). Major roadways are roads 

with traffic count (annual average daily traffic (AADT)) data available in 2002, and all 
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other roads are classified as minor roadways. Different approaches were applied for 

major and minor roadways. 

 
Figure 5.3 Major and minor roadways in Hillsborough County, FL, and annual average 

daily traffic on major roadway links 

 

5.3.1.1.1. Major roadways within Hillsborough County 

A detailed bottom-up approach was applied on major roadways in Hillsborough 

County, as emissions from these roadways are expected to be substantial and have 

significant impacts on nearby pollutant concentrations. Generally, emissions from 

individual major roadway links are estimated by: 

, , , ,l h l h l s h lE T F L  

where: El,h is the estimated on-road mobile source emissions (grams per hour) for link l at 

hour h; Tl,h is traffic volume (vehicles per hour) on link l at hour h; Fl,s,h is the emission 

factor (grams per mile per vehicle) for link l at hour h at average speed s. It is an 
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estimation of the average amount of pollutant emissions from vehicles travelling certain 

distances on roadways; and 𝐿𝑙 is the length (mile) of link l.  

Length of individual roadway link was calculated from Geographic Information 

Systems (GIS) data obtained from the Florida Department of Transportation (Florida 

Department Of Transportation, 2002). Traffic volume (vehicles per hour) on major 

roadway links were estimated for each link and each hour by applying temporal traffic 

variation profiles on annual average daily traffic for the corresponding link. There are 

four profiles used: annual profile by month, weekly profile by day, weekday diurnal 

profile by hour, and weekend diurnal profile by hour (Figure 5.4). These profiles were 

derived from hourly traffic counting data within Hillsborough County, which were also 

obtained from the Florida Department of Transportation (Florida Department Of 

Transportation, 2002). 

Here, MOVES (instead of the MOBILE6.2 model) was used to estimate emission 

factors, using a more sophisticated method (Figure 5.5). In this method, hourly average 

travelling speeds on each major roadway link were first calculated, and emissions factors 

were then estimated using MOVES model. By applying the estimated speed information, 

appropriate emission factors were assigned to corresponding roadway links. Hourly 

resolved link emissions were then calculated using the estimated link volume and 

emission factors.  

First, two roadway link characteristics were identified for each major roadway 

link: area type and roadway type. Area type refers to the type of surrounding areas 

(urban, rural etc.) where the link is located, and roadway type refers to the function class 

(freeway, collectors etc.) of the corresponding roadway link. These attributes were 
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obtained from Tampa Bay Area Regional Transportation Authority (TBARTA) and were 

used by the Tampa Bay Regional Planning Model (TBRPM), which is the designated 

travel demand model for transportation planning in the Tampa Bay area (Gannett 

Fleming Inc, 2010). For convenience, area and roadway types as defined in the TBRPM 

model are herein referred as TBRPM area and roadway types. Appendix A-1 and A-2 

provides complete lists of the TBRPM area and roadway types used in this study.  

 
Figure 5.4 Temporal traffic variation profiles used to estimate hourly traffic volumes on 

each roadway link. Traffic volume shown are relative to mean traffic volumes at 

corresponding temporal scales. 

 

 
Figure 5.5 Overview of the methods for estimating on-road mobile source emissions for 

major roadway links. 
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Additional link characteristics, including number of lanes and median width, were 

also identified for all major roadway links. This information was also obtained from the 

Florida Department Of Transportation (2002). Roadway mileage markers were used as 

criteria for determining the attributes, and links were further divided when necessary. For 

example, if one roadway link starts from mileage 1 and ends at mileage 2, however there 

are two lanes at each direction from mileage 1 to 1.5 but there are three lanes at each 

direction from mileage 1.5 to 2. In this case, the roadway link is broke into two links at 

mileage 1.5 to ensure consistent attributes along the link.  

Roadways with steep curves and complex geometries are consist of many short 

links. Modeling of these short links individually can be very computational expensive. 

Considering computational tractability, a regression algorithm was applied to reduce the 

total number of links. Specifically, the developed algorithm will attempt to linearly fit a 

regression line along the same roadway with as many links as possible, as long as the 

maximum error (perpendicular distances of each link nodes to the regressed line) are 

within the threshold of 20 m. “Nodes” refer to the two end points of each link. When the 

threshold was not exceeded, original roadway links were replaced with the regressed line. 

The total number of links was reduced by approximately 1/3 by applying this algorithm, 

which saved approximately 2000 CPU hours for dispersion modeling. 

As shown in Chapter 3, speed of vehicles travelling on each link is important as 

vehicular emissions varies at different speeds. Unfortunately detailed speed information 

at link level are normally not readily available. Past studies have relied on travel demand 

models for such information; however, the temporal coverage of travel demand models 

are generally limited.  
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In this study, I developed a method that can be readily applied to estimate hourly 

resolved speed information for individual roadway links. Specifically, average travelling 

speeds were estimated by applying the Bureau of Public Roads (BPR) function, which is 

a widely used empirical function to estimate vehicle speed on roadways: 
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where Sl,h is the estimated average speed for link l in hour h; Sl,f is the free flow speed for 

link l; Vl,h is the traffic volume on link l in hour h; Cl is the roadway capacity for link l; αl 

and βl are corresponding parameters for link l;  

Free flow speed (Sl,h), αl and βl for each link are determined by the combination of 

TBRPM area and roadway types of the corresponding link. This information was also 

extracted from the Tampa Bay Regional Planning Model. Look-up tables for freeway 

flow speed and the two parameters are provided in Appendix A-3 and A-4.  

Information on roadway capacity (Cl) of each link was obtained from the 2009 

FDOT Quality/Level of Service Handbook (Florida Department of Transportation, 2009). 

In this handbook, a different area and roadway classification method was used. For 

convenience, these area and roadway types are herein referred as LOS handbook area and 

roadway types. Appendix A-5 and A-6 provides lists of the LOS handbook area and 

roadway types.  

TBRPM area and roadway types of each link were first mapped to the LOS 

handbook area and roadway types, using methods provided in Appendix A-7 and A-8. 

Link capacity was then obtained from a capacity look-up table (Appendix A-9), which 

was extracted from the 2009 FDOT Quality/Level of Service Handbook. In accordance 
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with the handbook, capacity adjustments were also performed for certain links, as listed 

in Appendix A-8. Linear interpolation or extrapolations were performed when the 

number of lanes did not match the look-up table. 

Table 5.1 Mapping method from Florida Department of Highway Safety and Motor 

Vehicles (FHSMV) vehicle types to MOVES vehicle types 
FHSMV vehicle 

type 
description 

Mapped to MOVES vehicle 

type 

Passenger cars 

Passenger cars < 2499 lbs 

21 

Passenger cars between 2500 and 3499 lbs 

Passenger cars > 3500 lbs 

Antique passenger cars 

Lease vehicles 

semi annual lease 

passenger car 

short term leasea 31+32 

Buses, 

ambulances and 

hearses 

Buses > 9 passenger 

41+42+43 Buses, half year, > 9 passenger 

Buses, unknown 

Ambulances and hearsesb 

31+32 Trucks (exclude 

tractors)c 

Trucks (exclude tractor) - < 1999 lbs 

Trucks (exclude tractor) - 2000-3000 lbs 

Trucks (exclude tractor) - > 3001 lbs 

Trucks (exclude tractor) - antique 

Mobile home and 

park trailers 

Mobile home - military 

Excludedd 

Mobile home 

Park trailer 

5th wheel trav trailer < 35 ft 

5th wheel trav trailer > 35 ft 

Trailers 

Private trailer < 500 lbs 

Private trailer > 500 lbs 

Trailer for hire < 1999 lbs 

Trailer for hire >= 2000 lbs 

Semi trailer - flat 

Semi trailer - permenant 

 

aAssumed to be truck rentals; bassumed to be light trucks (including vans); cThese are private owned light 

duty trucks; dthese are excluded because they either have no engine or not running on road; eThis item was 

excluded due to insufficient information and small number of vehicles; 
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Table 5.1 (continued) Mapping method from Florida Department of Highway Safety and 

Motor Vehicles (FHSMV) vehicle types to MOVES vehicle types 
FHSMV vehicle 

type 
description 

Mapped to MOVES vehicle 

type 

Motorcycles 

Motorcycles 

11 Moped/motorized bike 

Antique motorcycle 

Demonstrators 
Demonstrators - Dealer plates 

Excludedd 
Boat trailer 

Truck tractors 

truck tractor forestry, full year 

51+52+53+61+62 

truck tractor forestry, half year 

GVW truck/tractor, full year  

GVW truck/tractor, half year  

GVW truck/tractor, wrecker  

tractor crane  

Excludedd 

other vehicles 

miscellaneous base tax fees  

horseless carriage  

goat Excludede 

x-series exempt  

See section 3.2.1.2.1 government vehicles 

miscellaneous 

non-resident military 

transporter 61+62 

trucks, agriculture use  51+52+53 

All other vehicles Excludede 

recreational 

auto - motorcoach < 4499 lbs 
54 

auto - motorcoach >= 4499 lbs 

camp trailer  Excludedd 

aAssumed to be truck rentals; bassumed to be light trucks (including vans); cThese are private owned light 

duty trucks; dthese are excluded because they either have no engine or not running on road; eThis item was 

excluded due to insufficient information and small number of vehicles; 
 

In addition to hourly link speed and volume data, emission factors (grams per 

vehicle per mile) were estimated using the MOVES model and organized as a look-up 

table. Appropriate emission factors for individual links were retrieved from the look-up 

table based on combinations of link characteristics such as roadway type, area type and 

speed.  
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MOVES model was executed under the county scale. Three sets of data were 

prepared using local specific information for the MOVES model: vehicle population (also 

referred to as source type population in MOVES), vehicle mileage travelled (VMT) 

distribution by MOVES vehicle and roadway types, and meteorological data. Defaults 

were applied for other required input datasets such as ramp fraction, vehicle age 

distribution and fuel properties. 

Vehicle population data were obtained from the Florida Department of Highway 

Safety and Motor Vehicles (FHSMV) (Florida Department of Highway Safety and Motor 

Vehicles, 2002, 2003). The raw data, which was provided by fiscal year, were averaged 

to obtain population data for calendar year 2002. In addition, FHSMV uses a different 

vehicle classification system (herein referred as FHSMV vehicle types), which were 

mapped to aggregated MOVES vehicle types (herein referred as MOVES vehicle types). 

Appendix A-10 listed the vehicle types as used by the MOVES model, and Table 5.1 

provides list of FHSMV vehicle types and the mapping method applied here. 

During the mapping process, three FHSMV vehicle types were treated specially: 

X-series exempt vehicles, government vehicles and non-resident military vehicles. X-

series exempt vehicles are vehicles owned by churches and non-profit organizations, and 

government vehicles are “yellow tag” vehicles owned by the government. The fleet 

compositions of these two categories were assumed to be 50% passenger cars (MOVES 

ID 21, see Appendix 10) and 50% light trucks (MOVES ID 31+32), given no further 

information available. Non-resident military vehicles are vehicles owned by military 

personnel stationed in the study area and are resident of another state. This category was 

assumed to be 84% passenger cars and 16% light trucks. Total vehicle population of 
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these three categories account for less than 0.5% of the total vehicle population for the 

whole county. Hence these simplified assumptions are not expected to significantly 

impact vehicle fleet compositions. 

The mapped vehicle populations for each aggregated MOVES vehicle type 

category were then distributed to each specific MOVES vehicle type using MOVES 

default population data for Hillsborough County, assuming same fractions within each 

aggregated vehicle type.  

The second input dataset to the MOVES model is vehicle mileage travelled data 

and its distribution by MOVES vehicle and roadway types (See Appendix A-11 for a list 

of roadway types). There are five components of the vehicle mileage travelled and 

distribution data: annual total vehicle mileage travelled by vehicle class, vehicle mileage 

travelled fraction distribution by month, weekday, hour, and also by MOVES roadway 

type. County total vehicle mileage travelled data for 2002 were available from Florida 

Department of Transportation (Florida Department of Transportation, 2003), and data are 

provided for different area and roadway types. However, the area and roadway 

classification method used in the report (herein referred as VMT area and roadway types) 

are different from those as in the MOVES model. The method used to map VMT area 

and roadway types to MOVES roadway types are provided in Table 5.2. The same 

vehicle mileage travelled distribution by MOVES roadway type were applied for all 

MOVES vehicle types, given no further information available. Regarding the temporal 

variation of vehicle mileage travelled data, the four temporal traffic variation profiles 

derived previously were applied. 
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The third input dataset to the MOVES model is meteorological data including 

diurnal temperature and humidity data for 12 months. These data were extracted from the 

NMIM (National Mobile Inventory Model) model (U.S. Environmental Protection 

Agency, 2005a) NCD (NMIM County Database) database.  

Table 5.2Mapping method from VMT area and roadway type to MOVES roadway types. 

 VMT area types 

 rural small urban large urbanized 

interstate RR UR UR 

turnpike & freeway NONE NONE UR 

other principal arterials RU UU UU 

minor arterials RU UU UU 

urban major collector RU UU UU 

rural minor collector RU NONE NONE 

locals RU UU UU 

*Urban restricted (UR), rural restricted (RR), urban unrestricted 

(UU) and rural unrestricted (RU) roads. NONE indicates that there 

are no roads with such combination  
 

Overall, approximately 6 million emission factors were estimated. Appropriate 

emission factors for each link were then retrieved from these emission factors based on a 

combination of link characteristics including roadway type, area type and speed. The 

MOVES model uses a different definition of area and roadway types. Hence the Tampa 

Bay Regional Planning Model (TBRPM) area and roadway types were mapped to 

MOVES roadway types during the assignment of emission factors. The mapping method 

is provided in Appendix A-12. In addition, MOVES emission factors were resolved by 

speed bins with 5 mph interval. When the estimated link speed fell between two speed 

intervals, linear interpolations were performed. Finally, hourly link emissions were 

calculated by combining emission factors, link length and hourly link volume for the 

corresponding link. 
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5.3.1.1.2. Minor roadway emissions in Hillsborough County 

For minor roadways within Hillsborough County that have no traffic counting 

data available, a top-down approach was applied. First, the MOVES model was used to 

estimate total on-road mobile source emissions for Hillsborough County. Emissions from 

major roadways were subtracted from the estimated total. The remaining emissions were 

spatially allocated to a 1 km by 1 km grid network overlaid on Hillsborough County 

using proportionally to total minor roadway length in each grid cell.  

5.3.1.1.3. On-road mobile source emissions in surrounding 

counties 

For on-road mobile source emissions in surrounding counties, a similar top-down 

approach was used. There are two considerations for choosing this approach. First, 

emissions from surrounding counties are not expected to substantially impact spatial 

concentration distributions as those major roadways within Hillsborough County, hence 

there is no need to accurately characterize the geometry of roadways. Second, the 

detailed bottom-up approach is very data and computation intensive and it may be 

impractical to apply bottom-up approach to all counties. 

The MOVES models were first used to estimate total on-road mobile source 

emissions for 11 counties included in emission estimation (Figure 5.3). Input datasets to 

the MOVES model were prepared in the same way as described above. Then, the 

estimated county total emissions were divided into two parts: emissions from primary 

roadways and emissions from secondary roadways. Here, primary roadways refer to 

roadways with census feature class codes between A10 and A28 (U.S. Census Bureau, 

2010) and all other roads are classified as secondary roadways. Emission fractions of the 
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two categories are assumed to be the same as the fraction of emissions between major 

and minor roadways within Hillsborough County. Finally, grid networks were overlaid 

on these counties and on-road mobile source emissions were allocated to the grid 

network. Emissions from primary roadways were allocated proportionally to total 

primary roadway length in each grid cell, and emissions from secondary roadways were 

allocated proportionally to total secondary roadway length in each grid cell. 

Two grid networks were used in the spatial allocation of on-road mobile source 

emissions (Figure 5.6). A 5 km by 5 km grid network was used for benzene, 1,3-

butadiene and NOx. For acetaldehyde and formaldehyde, a 1 km by 1 km grid network 

was used for the purpose of combining CMAQ data (see section 5.4.1.7). The four 

temporal traffic variation profiles used for major roadway were also applied to estimate 

hourly resolve emissions. 

5.3.1.2. Stationary point sources 

Stationary point sources are generally industrial stacks. Here, stationary point 

emissions were modeled for acetaldehyde, formaldehyde and NOx. Point emissions of 

1,3-butadiene and benzene were excluded due to their small contribution to the total 

amount (less than 1%). Considering computational tractability, a total of 35 point sources 

were included for acetaldehyde, 60 for formaldehyde and 159 for NOx. Emissions from 

these sources contribute to more than 98% of total emissions from point sources. 

Locations of these sources are shown in Figure 5.7. Most of the stationary point sources 

are located in Hillsborough, Pinellas and Polk counties, and many are clustered around 

the Tampa Bay area. 
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Figure 5.6 Two different grid networks used to allocate on-road mobile source emissions. 

a) shows grid network for 1,3-butadiene, benzene and NOx; and b) shows grid network 

for acetaldehyde and formaldehyde. 

 

 
Figure 5.7 Stationary point sources of acetaldehyde, formaldehyde and NOx included in 

the modeling 

 

Characteristics of these stationary point sources, including location, annual 

emission, stack height and diameter, exit gas temperature and velocity, and rain hat 

information, were obtained from the 2002 National Emission Inventory (NEI) (U.S. 
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Environmental Protection Agency, 2006). Temporal variations of emissions were 

characterized by four profiles: annual profile by month, weekly profile by day and diurnal 

profile by hour (different for weekday and weekend days). These profiles were obtained 

from U.S. Environmental Protection Agency (2007a). Different factors were assigned to 

individual point source based on its corresponding source classification code. Hourly 

emission rates were estimated for each point source.  

5.3.1.3.  Biogenic emissions 

Biogenic emissions are emissions emitted from natural sources such as forests. 

These emissions are significant for acetaldehyde and formaldehyde, and are neglected for 

the other three pollutants due to the small amount of emissions. Annual total biogenic 

emissions of formaldehyde were obtained from the 2002 National Emission Inventory. 

Emissions for acetaldehyde are not directly available, but they are assumed to be the 

same as formaldehyde since their emission factors are identical in the BEIS (Biogenic 

Emission Inventory System) model (U.S. Environmental Protection Agency, 2010a), 

which is the model used to generate biogenic emissions for the 2002 National Emission 

Inventory. 

To account for temporal variations of biogenic emissions, two variation profiles 

were applied: annual profile by month and diurnal profile by hour. The annual profile 

was derived directly from national emission inventory data. The diurnal profile was 

derived from outputs of a standalone version of the BEIS model (version 2.3).  

Three datasets were prepared for the BEIS model: temperature, cloud cover and 

PAR (Photosynthetically Active Radiation) data. Temperature data were extracted 

directly from the database of NMIM model. Cloud cover data were extracted from 
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surface meteorological observation data from VISTAS (Visibility Improvement State and 

Tribal Association of the Southeast) for 2002 (Morris et al., 2007). Hourly cloud cover 

data were extracted from two stations located within Hillsborough County (World 

Meteorological Organization (WMO) ID 722110 and 747880), and averaged at each 

hour. Photosynthetically active radiation refers to solar radiation absorbed by plants that 

are used in photosynthesis. Diurnal photosynthetically active radiation for 12 months in 

2002 were estimated by: 

, , ,h m h m P m PP S f F  

where Ph,m is the estimated photosynthetically active radiation for hour h in month m (µ 

mol m-2s-1); Sh,m is the solar radiation intensity at hour h in month m (W/m2); fP,m is the 

fraction of incoming solar radiations that is photosynthetically active radiation in month 

m; and FP is a conversion factor (4.57 µ mol s-1 W-1) (Escobedo et al., 2009).  

Solar radiation intensity (Sh,m) were obtained from National Solar Radiation 

Database (NSRD) (National Renewable Energy Laboratory, 2007).  Hourly radiation data 

from two stations located within Hillsborough County (world meteorological 

organization ID 722021 and 722110) for 2002 were extracted and averaged at each hour. 

𝑓𝑃,𝑚 were retrieved from Global Terrestrial Observing Network (GT-NET) Fraction of 

Absorbed Photosynthetically Active Radiation (FAPAR) satellite observation data. 

Monthly data in 25 grid cells covering Hillsborough County were extracted and averaged 

at each month. 

The estimated diurnal profile by hour for 12 months were averaged to obtain a 

single diurnal emission variation profile. Figure 5.8 provides the final diurnal profiles 

applied in emissions estimation, together with the annual profile by month derived from 
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monthly biogenic emission data within the 2002 National Emission Inventory. Biogenic 

emissions are the highest in summer time at annual scale, and are the highest around 3 

pm at daily scale. 

 
Figure 5.8 Derived annual profile by month and diurnal profile by hour for estimating 

hourly biogenic emissions. Emission shown in the figure are relative to average 

emissions at corresponding temporal scales 

 

Biogenic emissions of acetaldehyde and formaldehyde were spatially allocated to 

1 km grid network as shown in Figure 5.6, proportionally to forest land area (km2) within 

each grid cell. Land use data containing the spatial distribution of forest were retrieved 

from Southwest Water Management District. The developed annual profile by month and 

diurnal profile by hour were applied to estimate hour resolved emissions.  

5.3.1.4. Non-road mobile and non-point emissions 

Non-road mobile emissions refer to emissions from motor engines running off-

road, such as lawn mowers, recreational watercrafts etc. Non-point emissions refers to 

emissions from sources that are characterized as an “area” such as landfills. The annual 

total amount of non-road and non-point emissions are available from the 2002 National 

Emissions Inventory, and were spatially allocated to the two grid networks as shown in 

Figure 5.6. Each source category contains thousands of emissions records, organized by 

Source Classification Codes (SCC), corresponding to emissions from different processes, 
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such as emissions from farming equipment, dry cleaning equipment, or recreational 

watercrafts. A total of 76 spatial surrogates were used during the spatial allocation. Each 

surrogate is a spatial metric based upon which fractions of emissions within each grid cell 

can be calculated and allocated. Examples of surrogates including forest land area, 

industrial land area, and population within each grid cell. The surrogates were manually 

derived using data obtained from EPA (U.S. Environmental Protection Agency, 2007b). 

For the forest area surrogate, data retrieved from Southwest Water Management District 

were used as they contained more detailed information. Appropriate surrogates were 

assigned corresponding to the source classification codes of each emission records, using 

recommendations from the EPA (U.S. Environmental Protection Agency, 2007b).  

Regarding the temporal variation of non-point and non-road emissions, four 

profiles were applied: annual profile by month, weekly profile by day and diurnal profiles 

by hour (weekday and weekend days). These profiles were also obtained from the EPA, 

and different profiles were assigned corresponding to the source classification codes of 

each record (U.S. Environmental Protection Agency, 2007a) .  

NOx emissions from commercial marine vessels and marine ports were treated 

specially (no special treatment for other pollutants). NOx emission data from Jungers et 

al. (2006) were used instead of data from the 2002 National Emissions Inventory. The 

data from Jungers et al. (2006) were calculated using a detailed bottom-up approach 

based on detailed marine vessel activities, whereas emissions for the 2002 National 

Emissions Inventory for Hillsborough County were calculated by allocating estimated 

national level (whole US) emissions using a simplified top-down allocation approach. 

Therefore data from Jungers et al. (2006) are considered more representative.  
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Annual NOx emissions from commercial marine vessels and marine ports were 

spatially allocated to emission grid cells as shown in Figure 5.9. Grid networks shown in 

the left are for benzene, NOx, and 1,3-butadiene, while grid network to the right are for 

acetaldehyde and formaldehyde (see Figure 5.6). Constant temporal emission profiles 

were applied for emission from commercial marine vessels and marine ports. 

5.3.2. Results of Emission Estimation  

Figure 5.10 shows the estimated on-road mobile source emissions from major 

roadway links for the five selected pollutants. For comparison purposes, annual average 

daily traffic for 2002 are also shown in the figure. Major Interstates including I-75, I-4 

and I-275 have the highest traffic volume. Traffic volumes are concentrated in downtown 

Tampa area, where the three interstates merges. The spatial distribution of pollutant 

emissions varies slightly for different pollutants, but generally follow the same pattern as 

annual average daily traffic. The highest emissions are found along the major interstates. 

NOx emission estimation results using MOBILE6.2 model are similar and hence are not 

shown. 

 
Figure 5.9 Emission grids where commercial marine vessels and marine ports emissions 

were allocated. a) shows the emission grids for 1,3-butadiene, benzene and NOx; b) 

shows emission grids for acetaldehyde and formaldehyde. 
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Figure 5.10 Estimated major roadway link emissions for NOx, 1,3-butadiene, benzene 

acetaldehyde, and formaldehyde. Annual average daily traffic are also shown. 

 

Table 5.3 shows the estimated total on-road mobile source emissions for 12 

counties (Hillsborough and 11 surrounding counties). Emission estimates from the 2002 

National Emission Inventory (NEI) were also listed for comparison purposes. NOx 

emission estimated by MOVES model is 79% higher than data from the inventory, which 

used MOBILE6.2 model. The estimated emission is also higher (21%) for acetaldehyde, 

but are lower for the rest air toxics. County specific emissions are shown in Table 5.4. 

Table 5.3 Estimated annual total on-road mobile source emissions for 12 counties 

pollutant 
annual emissions (metric tons) 

MOVES 2002 NEI 

1,3-butadiene 291 355 

acetaldehyde 423 349 

benzene 2500 3060 

formaldehyde 961 1020 

NOx 197000 110000 
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Table 5.4 County total on-road mobile source emissions for 2002 as estimated by 

MOVES model and in the 2002 National Emission Inventory 

pollutant county 

annual emissions 

(metric tons) pollutant county 

annual emissions 

(metric tons) 

MOVES 2002 NEI MOVES 2002 NEI 
N

O
x
 

Desoto 1556 1045 

1
,3

-b
u

ta
d

ie
n

e 

Desoto 1.5 3 

Hardee 1727 613 Hardee 1.5 1.7 

Hernando 5831 3338 Hernando 7.8 9.2 

Hillsborough 44366 23175 Hillsborough 62.3 78.2 

Lake 9339 3828 Lake 13.1 10.6 

Manatee 14615 6278 Manatee 28.2 18.6 

Orange 39484 22182 Orange 56.7 76.8 

Pasco 12921 8476 Pasco 19.7 24.8 

Pinellas 26947 18257 Pinellas 49.6 67.2 

Polk 21511 12138 Polk 26.7 36.1 

Sarasota 13444 7386 Sarasota 20.3 22.6 

Sumter 5290 3285 Sumter 3.7 5.9 

b
en

ze
n

e 

Desoto 12.5 25.7 
ac

et
al

d
eh

y
d

e 
Desoto 3.1 3.1 

Hardee 12.2 14.4 Hardee 3.1 1.7 

Hernando 67.1 78.4 Hernando 11.7 9.4 

Hillsborough 534 674 Hillsborough 93.1 76.1 

Lake 112.2 90.3 Lake 19.5 10.9 

Manatee 240.5 160.4 Manatee 36.2 18.8 

Orange 486.7 667.7 Orange 83.2 74.1 

Pasco 169.2 212.5 Pasco 27.9 25 

Pinellas 433.3 581.9 Pinellas 60.5 64.4 

Polk 225.4 310.5 Polk 44.7 36.3 

Sarasota 175.7 195.7 Sarasota 28.3 22.6 

Sumter 30.4 48.3 Sumter 8.2 6.7 

fo
rm

al
d

eh
y

d
e 

Desoto 6.9 8.9     

Hardee 7 5.1     

Hernando 26.4 27.4     

Hillsborough 212.9 222.4     

Lake 44 31.7     

Manatee 82 54.7     

Orange 187.9 216.3     

Pasco 63 72.7     

Pinellas 139.8 188.4     

Polk 100.7 105.7     

Sarasota 63.9 66     

Sumter 18.3 19.3     
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Figure 5.11 shows the allocated emissions at two grid networks. The emissions 

include minor roadway emissions within Hillsborough County, on-road mobile source 

emissions in other counties, non-road, non-point and biogenic emissions. For NOx, 1,3- 

butadiene and benzene, urbanized areas generally have higher pollutant emissions, 

especially in downtown Tampa, Pinellas County, and the Brandon area. Rural areas 

generally have lower pollutant emissions. Emissions from shipping lanes are visible for 

NOx, acetaldehyde and formaldehyde, and marine port emissions can clearly be seen for 

acetaldehyde and formaldehyde. 

 
Figure 5.11 Allocated emissions for NOx, 1,3-butadiene, benzene, acetaldehyde and 

formaldehyde. Emissions shows are metric tons (annual total) per square kilometers. 

 

Table 5.5 and Figure 5.12 provides a summary of emissions for each category that 

was included in the modeling. It can be seen that emission distributions among different 

categories vary for different pollutants. Generally, point sources contribute to a small 

percentage of emissions, except for NOx, for which 32% emissions are from point 

sources. On-road mobile sources (major roadways and other on-road mobile sources) 
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contribute substantially (over 50%) to their corresponding anthropogenic emissions 

(excluding biogenic emissions). For acetaldehyde and formaldehyde, biogenic emission 

contribute to 72% and 51% to their total emissions included in the study area. Non-road 

mobile sources also have important emission contributions, with highest percentage of 

27% for 1,3-butadiene and smallest percentage of 10% for acetaldehyde. 

Table 5.5 Emission summary for stationary point, on-road mobile, non-point, non-road 

and biogenic emissions included in the model 

 annual emissions (metric tons) 

 1,3-butadiene acetaldehyde benzene formaldehyde NOx 

point N/A 8.8 N/A 22.2 87100 

major roadways 18.9 28.7 162 65.8 19200 

other on-road* 193 115 1660 262 121000 

non-road 106 94.7 883 226 32810 

non-point 76.7 12.5 636 56.8 9310 

biogenic N/A 659 N/A 659 N/A 

Total 395 919 3340 1290 269000 

* Other on-road emissions refers to the combination of minor roadway emissions within 

Hillsborough County and all on-road mobile source emissions in surrounding counties 

that are included in the modeling. 
 

Figure 5.12 Percentage of emissions from each category for the five selected pollutants. 
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5.3.3. Discussion of Emission Estimation  

On-road mobile, stationary point, non-road mobile, non-point and biogenic 

emissions of the five chosen pollutants were estimated for the study domain. As shown in 

Figure 5.12, the estimated amount of emissions from different emission categories show 

significant contributions from mobile source emissions (including both on-road and non-

road mobile sources). More than 50% of anthropogenic emissions in the modeling 

domain were from mobile sources. These results further confirmed the importance of 

urban growth forms regarding air pollution concentration and exposures, as urban growth 

forms may have significant impacts on the amount and spatial distributions of mobile 

source emissions (see Chapter 2). 

In this study on-road mobile source emissions were estimated using MOVES 

model for 12 counties included in the modeling domain. The 2002 National Emissions 

Inventory (NEI) contains estimated on-road mobile source emissions for these counties, 

but data from the inventory were not used as they were estimated using the MOBILE 

series model, which is the precedent model of MOVES. Comparison between the 

estimated emissions using MOVES model and data from the inventory shows that the 

estimated emissions using MOVES model for 12 counties are substantially higher for 

NOx (+79%) and acetaldehyde (+21%), and are lower for 1,3-butadiene (-18%), benzene 

(-18%) and formaldehyde (-6%). Similar differences were also found in other studies 

(Fujita et al., 2012; Indiana Department of Environmental Management, 2012; 

Pennsylvania Department of Environmental Protection, 2013). This finding suggests that 

data for on-road mobile source emissions in the 2002 national emissions inventory may 



 

139 
 

be outdated, and also justified the use of MOVES model for on-road mobile source 

emission estimations. 

The estimated emissions include all five emission categories in the 2002 National 

Emission Inventory, such comprehensive coverage on emissions are seldom found in past 

studies that uses non-steady state Lagrangian chemical transport models. In this study, a 

full sets of tools were developed for automated emission estimation purposes, and to my 

knowledge, no similar tools are currently available for non-steady state Lagrangian 

chemical transport models.  

It is commonly recognized that average vehicle travelling speed substantially 

impact emissions from motor-vehicles (Bai et al., 2007). However detailed speed 

information are normally not readily available. When estimating on-road mobile source 

emissions, the US Environmental Protection Agency recommends using output from 

travel demand models to characterize speed for roadways (Hatzopoulou & Miller, 2010; 

U.S. environmental Protection Agency, 2012c; Wang et al., 2009). However producing 

such output data could be costly. Further, travel demand models generally do not attempt 

to model large time spans, hence their outputs are temporally restricted. In this study, an 

innovative speed estimation approach was developed by adopting the Bureau of Public 

Roads (BPR) function, which are commonly used in the field of transportation modeling. 

Spatiotemporal resolved speed information were estimated at roadway link level. This 

approach can be readily applied in other areas to better characterize the impact of speed 

on on-road mobile source emissions. 
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5.3.4. Limitations and Uncertainties of Emission Estimation 

In emission estimations for on-road mobile source emissions from major 

roadways, hourly traffic volume on individual roadway links were estimated by 

temporally interpolating annual average daily traffic data on each link. The interpolated 

traffic volume data may not accurately represent actual traffic volume on roadway links.  

Emission factors and county total on-road mobile source emissions estimated by 

MOVES model may also contain uncertainties. Specifically, three datasets were prepared 

for MOVES using local representative data, and defaults were applied for other required 

datasets such as vehicle age distribution, which may impact the estimated emissions and 

emission factors. In addition, hourly link speeds were calculated in this study to 

characterize the impact of vehicle travelling speed on emissions. A single average speed 

was estimated at each hour for each link, which was then used to retrive appropriate 

emission factors. It was recommended that to apply a “speed profile”, rather than a single 

speed value, to better characterize the impact of speed on emission (U.S. environmental 

Protection Agency, 2012c). However this approach was not applied due to lack of 

information.  

When estimating biogenic emissions, an old but standalone version of BEIS 

model (version 2.3) was used. The latest version of BEIS model (version 3.12) was built 

into SMOKE (Sparse Matrix Operator Kernel Emissions) model, which is an emission 

processing software designed for CMAQ model (University of North Carolina at Chapel 

Hill, 2010). However it is infeasible to run SMOKE model due to lack of data. In 

addition, it was assumed all biogenic emissions were from forests while spatially 

allocating biogenic emissions. Other plant areas such as lawns may also contribute to 
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biogenic emissions, and they were neglected. However, emissions from these plant areas 

are not expected to be substantial. 

5.4. Concentration Estimation 

The estimated pollutant emissions, together with chemistry data, meteorological 

data and output data from the CMAQ model, were used to calculate ambient 

concentration levels of the five selected pollutants in Hillsborough County, FL. The 

CALPUFF model was used to estimate ambient pollutant concentrations due to local 

emissions. For acetaldehyde and formaldehyde, the CALPUFF estimated pollutant 

concentrations were further combined with concentration estimated from the CMAQ 

model to account for atmospheric formations of acetaldehyde and formaldehyde. 

Methods used in concentration estimation are presented below, followed by results and 

discussion.  

5.4.1. Methods of Concentration Estimation 

5.4.1.1. Source Specifications 

First, CALPUFF model was used to estimate the spatial and temporal distribution 

of concentrations for the five selected pollutants. For major roadway sources within 

Hillsborough County, each link was modeled individually as an area source (a rectangle). 

The use of area source representation for roadways is commonly found in previous 

studies (Cook et al., 2008; Isakov & Venkatram, 2006; Stein et al., 2007). The widths of 

the area sources for major roadway links are calculated as: 

l l lw m n w   

where wl is the width of the area source for link l; ml is the median width of link l; nl is 

the number of lanes for both directions on link l; and w, the width of each lane, is 



 

142 
 

assumed to be 3.65 m (Kinnee et al., 2004). A maximum aspect ratio of 10 was applied 

for each area source. This value is recommended for dispersion modeling (U.S. 

Environmental Protection Agency, 2004b). The total number of sources generated for 

major roadways are approximately 4800.  

For other emission sources, including minor roadways within Hillsborough 

County, on-road mobile sources in surrounding counties, non-point, non-road mobile 

sources and biogenic sources, the emission grids (Figure 5.6) were modeled as area 

sources. Overall, there are approximately 4800 area sources for 1,3-butadiene, benzene 

and NOx, and 5300 area sources for acetaldehyde and formaldehyde.  

The same effective release height (1.5 m) and effective rise velocity (1.5 m/s) as 

used in Chapter 4 were used in dispersion modeling. The initial vertical dispersion 

parameter (σz) was used in model calibration. A value of 100 m was assigned to area 

sources located in the downtown Tampa area and 30 m was assigned to other area 

sources. Some of the recommendations for initial vertical dispersion parameters are 

provided by U.S. Environmental Protection Agency (2004b). The use of 100 m and 30 m 

for initial vertical dispersion parameters are justifiable for two reasons: a) Many high-rise 

buildings are located in downtown Tampa, these buildings will lead to substantial vertical 

mixing, hence a higher value of initial vertical dispersion parameter is needed; b) The 

chosen values of 30 m and 100 m are still within a reasonable range. 

5.4.1.2. Terrain and Meteorological Data Preparation 

Meteorological data are critical in dispersion modeling as it directly impacts how 

pollutants are transported in the atmosphere. In this study, the CALMET model was used 

to generate a new meteorological dataset for CALPUFF. CALMET is the meteorological 
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processor for CALPUFF. It has the capability to produce three-dimensional 

meteorological field data (such as wind and temperature) by incorporating multiple 

datasets such as geophysical, surface and upper air observations, precipitation, and 

outputs from other numerical meteorological models.  

The size of the selected meteorological domain is 400 km by 400 km, centered in 

Hillsborough County. This was to capture the re-circulation of pollutants due to land sea 

breeze, which is common in coastal area such as the Tampa area. In this study, seven 

datasets were input into the CALMET model: terrain elevation, land use and land cover, 

surface meteorological observation, upper air sounding, precipitation, buoy data and 

output data from MM5 (Fifth-Generation Penn State/NCAR Mesoscale Model) (Dudhia 

et al., 2005). Among these datasets, surface meteorological observation, upper air 

sounding, and precipitation data were obtained from VISTAS (Visibility Improvement 

State and Tribal Association of the Southeast) (Morris et al., 2007). Below a brief 

description of the other datasets are provided. 

Two datasets were used to generate terrain elevation data for CALMET: SRTM1 

(Shuttle Radar Topography Mission, version 2.1) (http://dds.cr.usgs.gov/srtm/) and 

USGS90 (U.S. Geological Survey) DEM (Digital Elevation Models) data 

(http://edc2.usgs.gov/geodata/index.php). Resolution of the data is 1 arc second 

(approximately 30 m) for SRTM1 and 3 arc seconds (approximately 90 m) for USGS90. 

Missing values were found for SRTM1 data at some areas in the northern part of the 

domain, and the missing data were replaced with USGS90 data. The study area is a 

coastal area. To correct any potential errors in the collected terrain data regarding the 

shape of coastlines, another dataset that contains accurate representations of coastline 
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shapes, the GSHHS (Global Self-consistent, Hierarchical, High-resolution Shoreline 

Database) (http://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html) was applied. The 1992 

National Land Cover Database (NLCD) (http://www.mrlc.gov/), with 30 m resolution, 

was used to generate land use and land cover data for CALMET.  

Buoy data refer to data obtained from buoys deployed in the sea, which collect air 

and water temperatures, as well as wind and wave parameters. Eight buoy stations were 

identified for 2002 and data from these buoys were collected from the National 

Oceanographic Data Center (NODC) (http://www.nodc.noaa.gov/) and the National Data 

Buoy Center (NDBC) (http://www.ndbc.noaa.gov/). The collected data were further 

processed for CALMET using the BUOY processor, which is part of the CALMET 

model. 

The collected meteorological observation data (surface and upper air) are at 

discrete locations. Outputs from numerical meteorological models provide continuous 

meteorological field information that is important for dispersion modeling. Here, output 

from MM5 model was obtained from VISTAS (Visibility Improvement State and Tribal 

Association of the Southeast) and were further processed using CALMM5, which is a 

processor designed to extract MM5 data to be used by CALMET model. Spatial and 

temporal resolution of the raw MM5 data is 12 km and 1 hour. 

The CALMET model was then used to generate a meteorological dataset for 

CALPUFF. Spatial and temporal resolution of the generated dataset is 1 km and 1 hour. 

The generated data were also compared with an evaluation dataset provided by VISTAS 

(Visibility Improvement State and Tribal Association of the Southeast), which has 4 km 

spatial resolution and 1 hour temporal resolution. The evaluation dataset were produced 
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externally by CALMET. Comparisons indicate limited improvements for the new 

datasets over the evaluation dataset, which was mainly due to the spatial resolution of 

MM5 data used. In addition, the new meteorological dataset requires massive 

computational resources, which limited its usage. Therefore, the evaluation dataset were 

used in dispersion modeling, and the newly generated new dataset was not used. 

5.4.1.3. Chemical Deposition Parameters 

After being released into the atmosphere, pollutants also undergo removal 

processes including dry and wet deposition. Dry deposition is the removal of pollutants 

when they come into contact with the surface (earth surface or plant cover), and wet 

deposition refers to the removal of pollutants through precipitation. 

In CALPUFF model, five parameter determines pollutant removal through dry 

deposition: diffusivity, alpha star, reactivity, Henry’s law constant and mesophyll 

resistance. CALPUFF default dry deposition parameters for NOx was used. Parameters 

for 1,3-butadiene, benzene and formaldehyde were obtained from Traisantikul (2008). 

Regarding acetaldehyde, its diffusivity was estimated as (Lyman et al, 1990): 
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where D is the estimated diffusivity for acetaldehyde (cm2/s); T is temperature, which 

was assumed to be 298.15 K; P is atmospheric pressure, which was assumed to be 1 atm; 

MA and MB is the molecular weight of the air (28.97 g/mol) and acetaldehyde (44.05 

g/mol); VA and VB is the molar volume of the air (20.1 cm3/mol) and acetaldehyde (46.4 

cm3/mol).  
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Alpha star (α*) is the solubility enhancement factor as a result of aqueous phase 

dissociation of the pollutant. It was assumed to be 1. Reactivity parameters of 

acetaldehyde was assumed to be 10. Henry’s law constant was obtained from R. Sander 

(1999) and converted to dimensionless (gas/liquid). Mesophyll resistance was calculated 

as (Wesely, 1989; Traisantikul, 2008): 
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where Rm is the estimated mesophyll resistance for acetaldehyde (s/m); H is Henry’s law 

constant; f0 is a constant. It is 1.0 for ozone, titanium tetrachloride and divalent mercury; 

0.1 for nitrogen oxide and 0 for other substances. Here the value 0 is used. 

Table 5.6 Dry and wet deposition parameters for the five selected pollutants 

 NOx 1,3-butadiene acetaldehyde benzene formaldehyde 

diffusivity (cm2/s) 1.7E-1 1.01E-01 1.28E-01 8.96E-02 1.72E-01 

alpha star 1 1 1 1 1 

reactivity 8 10 10 10 10 

mesophyll resistance 

(s/cm) 
5 6.09E+03 8.59E-04 1.64E+02 9.41E-03 

henry’s law coefficient 

(dimensionless) 
3.5 8.50E+00 2.92E-03 2.29E-01 1.31E-05 

liquid precipitation 

scavenging coefficient 

(1/s) 

0 6.37E-03 2.19E-06 1.72E-04 9.86E-09 

frozen precipitation 

scavenging coefficient 

(1/s) 

0 0 0 0 0 

 

Two parameters determine the wet deposition of pollutants in CALPUFF model: 

scavenging coefficients for liquid precipitation, as well as frozen precipitations. Unit of 

the coefficients is 1/s. Default parameters for NOx were used. Scavenging coefficients of 

liquid precipitation for other pollutants were estimated by simple scaling from the 

coefficient of SO2 using their corresponding Henry’s law constant. Frozen precipitation 



 

147 
 

coefficients were set to 0 since no frozen precipitation occurred in the study area in 2002. 

The estimated dry and wet deposition parameters are provided in Table 5.6. 

5.4.1.4. Chemical Reaction Mechanisms 

To account for atmospheric reactions of the chosen pollutants, the default reaction 

algorithm MESOPUFF II was applied for NOx. In the MESOPUFF II algorithm, the loss 

rates of NOx is statistically determined by a combination of conditions such as solar 

radiation intensity, temperature, atmosphere stability class, background ozone 

concentration and NOx concentration (Scire et al., 2000). Monthly averaged ammonia 

concentrations needed for the chosen algorithm were extracted from CMAQ data 

obtained from Community Modeling and Analysis (CMAS) 

(http://www.cmascenter.org/), and hourly background ozone concentrations were 

provided by the Visibility Improvement State and Tribal Association of the Southeast 

(VISTAS). 

For other pollutants, diurnal loss rates were applied. The loss rates were manually 

calculated considering reactions listed in Table 5.7. The selection of reaction pathways 

were based on the fate of each pollutant in the atmosphere (Finlayson-Pitts & Pitts, 1999; 

Jacobson, 2005; Seinfeld & Pandis, 1997). 

Table 5.7 Reactions included for the 1,3-butadiene, benzene, acetaldehyde and 

formaldehyde 

 OH radical NO3 radical ozone photolysis 

1,3-butadiene     

acetaldehyde     

benzene     

formaldehyde     

 

http://www.cmascenter.org/
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For radical and ozone reactions, fractional loss rates (percentage per hour) at 

every hour of the year were calculated by assuming pseudo-first order reaction within 

each hour: 
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where lp,h is the loss rate of pollutant p at hour h; and tp,h is the e-folding time (hour) of 

pollutant p at hour h due to atmospheric reactions; r is the current reactant with which 

pollutant p reacts; n is the total number of reactants; kp,r is the reaction rate constant 

(cm3molecules-1s-1) for the reaction between pollutant p and reactant r; and Cr,h is the 

concentration of reactant r (molecules/cm3) at hour h. 

Table 5.8 Reaction rate constants for radical and ozone reactions 

 reaction rate constants (cm3molecules-1s-1) 

 OH radical NO3 radical ozone 

1,3-butadiene 6.66E-11 1.00E-13 6.30E-18 

acetaldehyde 1.50E-11 2.40E-15  

benzene 1.30E-12   

formaldehyde 8.50E-12 5.80E-16  

 

Hourly concentrations of hydroxyl radical (OH) and ozone were extracted from 

CMAQ data obtained from Community Modeling and Analysis (CMAS) 

(http://www.cmascenter.org/). Concentrations of nitrate radical (NO3) were interpolated 

using sine curve and assuming 20 pptv concentration at midnight (12 am) (Yvon et al., 

1996) and 0 pptv at mid-day (12 pm). Reaction rate constants for radical and ozone 

reactions were obtained from a number of sources (Agency for Toxic Substances and 

Disease Registry, 2007, 2009; Finlayson-Pitts & Pitts, 1999; Jacobson, 2005; Liu et al., 

1999; Sander et al., 2011; Seinfeld & Pandis, 1997) and are shown in Table 5.8. 

http://www.cmascenter.org/
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Photolysis reactions were also considered for acetaldehyde and formaldehyde, and hourly 

rate constants were calculated using methods from Finlayson-Pitts and Pitts (1999): 

     ,p h hk F      

where kp,h is the estimated photolysis rate constant (s-1) for hour i; λ is the wavelength of 

incoming solar radiation (nm); ϕ(Δλ) is the primary quantum yield of pollutant molecules 

averaged over Δλ; σ(Δλ) is the absorption cross section (cm2) of the pollutant, averaged 

over Δλ; Fh(Δλ) is the actinic flux (cm-2s-1) at hour h, summed over Δλ; The wavelength 

interval (Δλ) used in the calculation is 2 nm and the range of wavelengths used in the 

calculation are 296-332 nm and 296-360 nm for acetaldehyde and formaldehyde, 

respectively. The same method was also used in CMAQ model for the calculation of 

photolysis rate constants (Byun & Schere, 2006). 

The actinic flux reflects how much energy is available in the incoming solar 

radiation to pollutant molecules. Data on actinic flux were obtained from (Finlayson-Pitts 

& Pitts, 1999), and were adjusted using hourly solar zenith angle data obtained from 

National Solar Radiation Database by linear interpolation. Quantum yield and absorption 

cross section data were obtained from (Sander et al., 2011). 

The calculated hourly loss rates were then averaged for three time periods: 

January to February, March to October and November to December, for computational 

tractability. The calculated diurnal loss rates are shown in Figure 5.13.  

For all pollutants, the highest loss rates are observed around 1-2 pm within each 

time period. Among the three time periods, March to October has the highest rates. 

Reactions with the OH radical are responsible for such observations, as the 

concentrations of OH radical is highly related with the intensity of solar radiations. For 
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1,3-butadiene, slightly higher loss rates were observed at midnight, due to its reaction 

with NO3 radicals at night. Among the three pollutants, benzene is the least reactive; 

hence, the lowest loss rates are observed. The estimated loss rates for the four pollutants 

are equivalent or on the same order of magnitude as those documented in previous 

literatures (Millet et al, 2010; Lowe & Ulrich, 1983; Dollard et al, 2001; Rasmussen & 

Khalil, 1983) 

 
Figure 5.13 Estimated diurnal loss rates of four pollutants. 

 

5.4.1.5. Receptor Specifications 

A receptor is a user specified location where pollutant concentrations will be 

estimated. For 1,3-butadiene, benzene and NOx, hourly pollutant concentrations were 

modeled at 1 km receptor grids covering Hillsborough County, as well as at the centroid 

of 795 census block groups in Hillsborough County, for the entire year of 2002. 

Concentrations at the locations of monitoring stations of corresponding pollutants were 

also modeled for the purpose of model evaluation. For acetaldehyde and formaldehyde, 

the 1 km receptor grids were extended to cover all CMAQ grids that entirely or partially 
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overlaid on Hillsborough County. The two receptors networks used in CALPUFF 

modeling were shown in Figure 5.14. Different receptor networks for acetaldehyde and 

formaldehyde were used for the purpose of combining CALPUFF results with pollutant 

concentrations estimated by CMAQ model (see section 5.4.1.7).  

 
Figure 5.14 Receptor grids used in CALPUFF modeling. 

 

5.4.1.6. Model Execution 

Due to the large amount of emissions sources, the whole modeling process was 

split into 447 cases, which were executed in parallel on the high performance computing 

cluster at University of South Florida: the CIRCE. The results were combined afterward. 

For pollutants other than NOx, the whole year were also split into 3 time periods 

(January-February, March-October, and November-December) and the previously 

developed reaction loss rates were applied. A two days overlapping time were applied 

between time periods for model spin up purposes.  

Hourly NOx concentrations were measured by two regulatory monitoring stations 

in Hillsborough County in 2002: Gandy (monitor ID: 12-057-1065-42602-1) and 
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Simmons Park site (monitor ID: 12-057-0081-42602-1) (Figure 5.15). Monthly averaged 

NOx concentration measured at Gandy site were used to calibrate the CALPUFF model, 

by adjusting the initial vertical dispersion parameter. The model is considered calibrated 

until CALPUFF estimate NOx concentrations (monthly average) at the Gandy site are 

comparable with measured concentrations. 

 
Figure 5.15 Location of regulatory pollutant monitoring sites located within 

Hillsborough County as of 2002. 

 

5.4.1.7. Combining Background Concentrations 

For acetaldehyde and formaldehyde, CALPUFF modeled pollutant concentrations 

were combined with hourly concentrations from the CMAQ model to account for 

contributions to pollutant concentrations from other processes not modeled by the 

CALPUFF model, such as atmospheric formation of pollutants.  

As discussed in Chapter 2, two approaches have previously been used to blend 

concentration estimates from Eulerian grid chemical transport models with dispersion 

models: simple addition (Cook et al., 2008; Lobdell et al., 2011), and combination of 

background concentrations from Eulerian grid models with local concentration variability 
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derived from dispersion models (Isakov et al., 2007). The approach of simple addition 

has double-counting issues, but there are also substantial uncertainties in the second 

approach, due partially to fundamentally different designs of the two types of models. In 

this study, a new empirical based method was developed and applied.  

First, in hour h, average concentrations as modeled by CALPUFF across all 

CALPUFF receptors (Ch,p), as well as average concentrations as modeled by CMAQ 

across all CMAQ grid cells covering Hillsborough County (Ch,q), are calculated: 
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where Ch,p,r is the pollutant concentration as modeled by CALPUFF at CALPUFF 

receptor r in hour h, n is the total number of CALPUFF receptors; Ch,q,g is the pollutant 

concentration as modeled by CMAQ in CMAQ grid cell g in hour h; and m is the total 

number of CMAQ grid cells; 

Generally, spatial averages from the CALPUFF model are expected to be lower 

than those from the CMAQ model because CMAQ modeling included emissions from 

outside of the CALPUFF modeling domain, as well as atmospheric formations of 

pollutants. However, these conditions may not always be met here because of the 

following reasons: a) CALPUFF and CMAQ models have fundamentally different model 

design. Although results from the two models are expected to be consistent at larger 

temporal scale (such as annual average), inconsistent results may occur at very short 

temporal scale (such as hourly); b) On-road mobile source emissions were estimated by 

MOVES model in this study (see section 5.4.1.1), whereas in CMAQ modeling, on-road 
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mobile source emissions were estimated by MOBILE series model. Comparison show 

significant differences between the modeling results (Table 5.3). The differences in 

emissions may also lead to higher concentration estimates from CALPUFF model.  

For hours when spatially averaged concentrations from CALPUFF are larger than 

that for CMAQ, no blending is performed and CALPUFF estimated pollutant 

concentrations are used as final concentrations. For other hours, spatially averaged 

CALPUFF concentrations were first subtracted from CMAQ spatial averages, and the 

differences were then spatially distributed to each CMAQ grid cell proportional to 

CMAQ estimated concentrations in corresponding grid cells. Third-order local 

polynomial interpolation was then used to estimate adjusted CMAQ concentrations at 

each CALPUFF receptor location, assuming the distributed CMAQ concentrations are 

originally at the centroids of the CMAQ grid cells. The interpolated concentrations 

represent the concentrations of the pollutants that were not captured by the CALPUFF 

model, i.e., due to impact of emissions from outside of CALPUFF modeling domain and 

atmospheric formations. Finally, the interpolated CMAQ concentrations were combined 

with CALPUFF modeled pollutant concentrations at each receptor. This approach was 

applied for acetaldehyde and formaldehyde, and for all hours included in CALPUFF 

modeling (whole year of 2002).  

5.4.1.8. Model Evaluation 

The modeled pollutant concentrations were compared with measured pollutant 

concentrations at Simmons Park regulatory monitoring sites to evaluate the performance 

of the model. NOx was chosen as the evaluation species due to the availability of hourly 

measurement data.  
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Figure 5.16 Box plot of measured and modeled hourly NOx concentration distributions at 

Simmons Park regulatory monitoring site 

 

Figure 5.16 provides a box plot of the modeled and measured hourly NOx 

concentration distributions at the Simmons Park monitoring site. The CALPUFF model 

reasonably captured the statistical distributions of hourly NOx concentrations, specially 

the four quartiles, as well as the 98th percentile of concentration distributions. 

Pollutant concentrations at different temporal scales are needed to appropriately 

characterize both short-term and long-term air pollution exposures. Additional statistics 

are provided in Table 5.9 to further evaluate the performace of CALPUFF model at three 

different temporal scales: monthly average, weekly average and hourly concentrations.  

The calculated values of biases are all negative, indicating that the CALPUFF 

model slightly underpredicts NOx concentrations. Magnitude of normalized bias, root 

mean squared error, standard deviation of residuals and absolute average gross error 

increases steadily from monthly to hourly metric, indicating more “spread out” 
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distributions of prediction error, and suggesting degrading model performance with 

increasing temporal resolution. In addition, the decreasing correlation coefficient 

indicates that less variations in NOx concentrations were captured by CALPUFF model 

with increasing temporal resolution.  

Table 5.9 Performance of the CALPUFF model at three temporal scales 

statistics monthly  weekly  hourly  

bias (µg/m3) -0.71 -0.77 -0.78 

normalized bias (%) -0.3% 2.1% 35% 

root-mean-squared error (µg/m3) 3.1 6.1 22 

standard deviation of residuals  (µg/m3) 3.0 6.0 22 

absolute average gross error  (µg/m3) 2.7 4.1 12 

correlation coefficient (R) 0.84 0.54 0.31 

 

Overall, best model performance is observed for monthly scale. Model 

performance generally degrades with the increase of temporal resolution. This result is 

expected as numerous factors impact short term air pollution concentrations, hence it is 

infeasible for air quality models to accurately capture pollution concentration variations 

at very high temporal resolutions given its near stochastic nature. 

 
Figure 5.17 Scatter plots of the measured versus modeled NOx concentrations at three 

temporal scale. 

 

In air quality modeling, it is generally recognized that model performace is 

considered reasonable when the modeled concentrations are within a factor of two of the 
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measured concentrations. Figure 5.17 provides scatter plots of the measured and modeled 

NOx concentrations at monthly and weekly temporal scale at the Simmons Park site. The 

dashed line indicates a 1:1 match and the solid lines indicate a 1:2 or 2:1 ratio between 

the modeled and measured NOx concentrations. The percentages of measured NOx 

concentrations that are within a factor of two of the modeled concentrations are 100% for 

monthly and 92% for weekly scales, and suggest good model performance. 

5.4.2. Results of Concentration Estimation 

5.4.2.1. Estimated NOx Concentrations 

Spatial distributions of the estimated annual average, 98th percentile of hourly and 

highest 1 hour NOx concentrations are shown in Figure 5.18. Also shown in Figure 5.18 

are the previously modeled NOx concentration distributions, for which only stationary 

point and on-road mobile source emissions were included, in which the MOBILE6.2 

model was used to estimate on-road emissions from major roadways. Further, Figure 5.19 

provides population density distributions of black, white population subgroups, as well as 

annual household income less than $20,000 and more than $100,000 population 

subgroups.  

The modeled pollutant concentrations are generally higher in the updated 

modeling results, due primarily to the inclusion of more emission sources (non-road, non-

point and biogenic sources). At annual average and 98th percentile temporal scales, both 

previously modeled and the updated NOx concentration distributions show roadway 

dominated patterns. In previous modeling results, the modeled highest NOx 

concentrations at all three temporal scales are found near the downtown Tampa area, 

whereas in the updated modeling results, the highest NOx concentrations are also found 
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near the Tampa International Airport area. The including of non-road mobile source 

emissions from airports likely contribute to this observations. At the highest 1 hour 

temporal scale, no apparent spatial patterns can be observed due primarily to large 

amount of uncertainties involved in short-term pollutant concentrations. In addition, the 

modeled highest NOx concentrations are co-located with highest population density of 

some population subgroups such as black and the lowest income subgroup (annual 

household income less than $20,000) (Figure 5.19), and hence these population 

subgroups are potentially exposed to higher NOx concentrations.  

 
Figure 5.18 CALPUFF modeled annual average, 98th percentile and highest 1 hour NOx 

concentrations in the Tampa area (Hillsborough County, FL). Previous modeling results 

including only stationary point and on-road mobile source emissions are also shown. 

Maps were generated using kriging from concentration data at CALPUFF receptors. 

 

Table 5.10 shows a summary of NOx concentrations in previous modeling results 

and updated modeling results. NOx concentrations in the updated modeling results are 

generally higher and show more variations. The National Ambient Air Quality Standard 

(NAAQS) sets regulatory standards for NO2. Assuming standard ambient temperature 

and pressure, the standards for NO2 are equivalent to 100 µg/m3 and 188 µg/m3, at annual 
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and 98th percentile temporal scales. At both temporal scales, the domain averaged NOx 

concentrations in the updated modeling are below NAAQS standard, but concentrations 

at some of the receptor locations exceeded the standard (Figure 5.20). These receptors are 

located near Tampa International Airport and Port Sutton area, where non-road emissions 

are high. However it needs to be noted that here the modeled NOx concentrations are 

compared with national ambient air quality standards for NO2, and NOx is comprised of 

NO and NO2. A previous study (Poor, 2008) has estimated a fraction of NOx that is NO2 

at 0.8 in the Tampa area. 

 
Figure 5.19 Population density distributions (year 2000) in census block groups for 

black, white, annual household income less than $20,000 (income < 20K) and more than 

$100,000 (income > 100K) population subgroups. 

 

Table 5.10 Summaries for NOx concentrations in previous modeling results and updated 

modeling results. 

spatial statistic 
temporal statistic 

annual average 98th percentile highest 1 hour 

domain average 14(12) 72(69) 262(254) 

standard deviation 7(5) 32(24) 150(122) 

range 4-138(5-44) 25-524(36-231) 67-2738(100-1591) 

* Concentration values shown in parentheses are results from previous modeling 
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Figure 5.20 Locations of receptors with modeled NOx concentrations exceed NAAQS 

NO2 standards. 

 

5.4.2.2. Estimated 1,3-butadiene and Benzene Concentrations 

The spatial distributions of estimated 1,3-butadiene and benzene concentrations at 

annual and highest 1 hour temporal scales are shown in Figure 5.21. Additionally, 

summaries for modeled 1,3-butadiene and benzene concentrations are provides in Table 

5.11. Unlike NOx, 1,3-butadiene and benzene were not included in previous modeling.  

Table 5.11 Summaries for modeled 1,3-butadiene and benzene concentrations 

spatial statistic 

1,3-butadiene benzene 

temporal metrics (µg/m3) temporal metrics (µg/m3) 

annual average highest 1 hour annual average highest 1 hour 

domain average 0.012 0.24 0.19 3.4 

standard deviation 0.007 0.18 0.085 1.8 

range 0.003-0.21 0.04-4.8 0.07-2.0 1.1-45 

 

Regarding the spatial distributions of 1,3-butadiene and benzene concentrations, 

the roadway dominated pattern can still be observed, although not as apparent as that for 

NOx. Highest pollutant concentrations are also found near the airport area at the annual 



 

161 
 

temporal scale, and no apparent spatial patterns can be observed at the highest 1 hour 

temporal scale. 

 

 
Figure 5.21 CALPUFF modeled annual average and highest 1 hour 1,3-butadiene and 

benzene concentrations in the Tampa area (Hillsborough County, FL). Maps were 

generated using kriging from concentration data at CALPUFF receptors. 

 

5.4.2.3. Estimated Acetaldehyde and Formaldehyde Concentrations 

For acetaldehyde and formaldehyde, a special approach was used to estimate their 

concentrations (see section 5.4.1.7), where CALPUFF modeled pollutant concentrations 

were combined with CMAQ data to account for contributions from processes not 

modeled by CALPUFF, such as atmospheric formations. Figure 5.22 provides spatial 

concentration distributions of the two pollutants. Both concentrations as modeled by 

CALPUFF model, and estimated final pollutant concentrations are shown in the Figure. 

Summaries of the modeled pollutant concentrations are provided in Table 5.12 and Table 

5.13.  
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Spatial distributions of CALPUFF modeled acetaldehyde and formaldehyde 

concentrations show similar patterns: at annual temporal scale, generally higher pollutant 

concentration are found in urbanized areas, and contributions from major roadways are 

visible. No spatial patterns can be observed for highest 1 hour temporal scale.  

Table 5.12 Concentration summaries for the modeled acetaldehyde concentrations 

spatial statistic 
CALPUFF1 (µg/m3) Combined2 (µg/m3) 

average maximum average maximum 

domain average 0.068 1.6 2.0 8.4 

standard deviation 0.022 0.48 0.16 1.3 

range 0.02-0.4 0.68-8.4 1.64-2.4 6.3-12.4 
1Pollutant concentrations as modeled by CALPUFF; 2Combined 

pollutant concentrations from both CALPUFF and CMAQ model 

 

Table 5.13 Concentration summaries for the modeled formaldehyde concentrations 

spatial statistic 
CALPUFF1 (µg/m3) Combined2 (µg/m3) 

average maximum average maximum 

domain average 0.098 2.1 1.8 8.4 

standard deviation 1.047 1.05 0.11 1.8 

range 0.03-0.9 0.74-57 1.5-2.5 5.2-57 
1Pollutant concentrations as modeled by CALPUFF; 2Combined 

pollutant concentrations from both CALPUFF and CMAQ model 

 

After combining with CMAQ data, spatial concentration distributions of the two 

pollutants were changed substantially, especially for acetaldehyde. Concentration levels 

of the two pollutants were also significantly elevated (Table 5.12 and Table 5.13). These 

observations indicate that processes not modeled by the CALPUFF model (mainly 

atmospheric formations) contribute substantially to acetaldehyde and formaldehyde 

concentrations. This finding confirms the necessarily of combining CMAQ data with 

CALPUFF modeling results in this study. 
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5.4.3. Discussion of Concentration Estimation 

The estimated pollutant concentration distributions for 1,3-butadiene, benzene and 

NOx (updated modeling results) (Figure 5.18, Figure 5.21 and Figure 5.22) at different 

temporal scales show generally higher pollutant concentrations at urbanized areas such as 

downtown Tampa, Pinellas County, and Sarasota County. These areas are co-located with 

highest population density of some subgroups such as black and the lowest income 

subgroup, hence these subgroups are potentially exposed to higher pollutant 

concentrations. Regarding the spatial distribution of pollutant concentrations, the 

distributions change at different temporal scales. This finding suggest different patterns 

for acute and chronic exposures to air pollution, and pollutant concentration variations at 

multiple temporal scales should be appropriately characterized for the purpose of 

exposure estimation. Some air quality modeling methods, such as proximate based 

methods and land use regression, may not be able to appropriately capture pollutant 

concentration variation at multiple temporal scales; hence, caution should be taken when 

applying these methods for exposure estimation. 

For acetaldehyde and formaldehyde, pollutant concentrations at their spatial 

distributions differs before and after combining with CMAQ data (Figure 5.22). The 

observed changes suggest atmospheric formations contribute substantially to 

acetaldehyde and formaldehyde concentrations. This finding is expected as the two 

chosen aldehydes are highly reactive in the atmosphere, and significant fractions of the 

two pollutants were formed in the air rather than directly emitted (Finlayson-Pitts & Pitts, 

1999). The finding further stressed the importance of atmosphere chemistry when 

modeling for reactive pollutants such as acetaldehyde and formaldehyde. 
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Figure 5.22 Annual average and highest 1 hour acetaldehyde and formaldehyde 

concentrations in the Tampa area (Hillsborough County, FL), as modeled by CALPUFF 

and combined with CMAQ data. 

 

5.4.4. Limitation and Uncertainties of Concentration Estimation 

Meteorological data used in dispersion modeling could contribute to uncertainties 

in the estimated pollutant concentrations. The meteorological data were obtained from 
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Visibility Improvement State and Tribal Association of the Southeast (VISTAS). MM5 

model outputs with 12 km spatial resolution were used to develop this dataset, which may 

not be sufficient to capture variation of meteorological field at 1 km resolutions. Further, 

meteorological observations, including surface measurements and upper air soundings, 

were blended into the dataset using the CALMET model, but this approach is not 

recommended (U.S. Environmental Protection Agency, 2009). Sensitivity analyses were 

performed, and the “blending” done by CALMET were found to impact modeling results 

(although the impact is generally small).  

The approach used to combine CALPUFF modeling results with CMAQ data also 

contributes to uncertainties. As described in section 5.4.1.7, the approach used has not 

been rigorously evaluated. Other approaches have been tested, including inverse distance 

weighting and those based on geostatistics such as kriging. However they are either 

impractical or unable to produce convincing results. Discussion of the issues in 

combining spatially incompatible data are provided in Cressie et al. (2009). In addition, 

Li et al. (2013) presented a promising hierarchical model, which could contribute to part 

of the solution. 

Other limitations include the use of simplified chemistry algorithm and the 

blending of CALPUFF and CMAQ data. The chemical loss rates used were calculated by 

considering several reaction pathways, which are not as conclusive as the chemistry 

algorithm implemented in Eulerian grid models such as carbon-bound IV. In calculations 

for photolysis, no cloud attenuations were considered and hence the calculated loss rates 

for photolysis may be overestimated.  
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5.5. Exposure and Inequalities Estimation 

The estimated pollutant concentrations at multiple temporal scales were combined 

with 2000 census demographic data to estimate air pollution exposure, and exposure 

inequalities among different population subgroups. The chosen subgroups include 

race/ethnicity (black, Hispanic and white), age (age less than 5, between 5 and 65 and age 

more than 65 years old) and annual household income groups (less than $20,000, 

between $20,000 and $40,000, between $40,000 and $60,000, between $60,000 and 

$100,000 and more than $100,000). Methods and results of exposure and inequality 

estimation are presented in following sections. 

5.5.1. Method of Exposure and Inequalities Estimation 

Human exposure to air pollution, and exposure inequalities were estimated at 

census block group level. First, concentrations of the five selected pollutants were 

calculated at each census block group, using the previously estimated concentration data 

at CALPUFF receptor locations. For block groups with area less than 1 square 

kilometers, concentration estimates from receptor located at their centroids were assigned 

the corresponding block group. For block groups with area larger than 1 square 

kilometers, average concentrations were calculated from 1 km spaced receptor grids that 

are located within the corresponding block group.  

The calculated block group concentrations were then combined with 2000 census 

data obtained from Florida Geographic Data Library (FGDL) (http://www.fgdl.org), 

using two metrics to quantitatively assess air pollution exposure and exposure 

inequalities: population weighted exposure and subgroup inequality index. The subgroup 

inequality index is estimated as: 

http://www.fgdl.org/
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Where Ii,j,c is the estimated subgroup inequality index for subgroup i that live in 

area j within concentration interval c; pi,j is the population of subgroup i that live in area j 

within concentration interval c; Pj,c is the total population in area j within concentration 

interval c; and Fi is the fraction the subgroup i of total county population. A positive 

index value suggests potential inequalities for the chosen subgroup i at corresponding 

concentration intervals. Air pollution exposure and exposure inequalities were estimated 

for each pollutant individually and the results are provided below. 

5.5.2. Results of Exposure and Inequalities Estimation 

5.5.2.1. Exposure and Inequalities for NOx 

Table 5.14 provides the estimated population weighted exposure to NOx air 

pollution for the chosen subgroups at three temporal scales. Among all subgroups, the 

black subgroup is exposed to the highest NOx concentrations: 15% higher exposure than 

county average in annual and 98th percentile temporal scales and 22% higher in the 

highest 1 hour scale. The subgroup with the lowest income (less than $20,000) is exposed 

to the second highest NOx concentrations at three temporal scales. Among race/ethnicity 

category, the white subgroup has the lowest NOx exposure. Among income category, 

exposures show general decreasing trend with the increase of annual household income; 

although, exposures for the subgroup with the second highest income ($60,000-$100,000) 

are lower than that for the highest income subgroup. NOx exposures for all age subgroups 

are generally close to the county average, with slightly higher exposures observed for 

people with older age (> 65). 
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Figure 5.23 Population distributions of the chosen race/ethnic, age and income 

subgroups for annual average, 98th percentile of hourly and maximum 1 hour NOx 

concentrations. 
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Figure 5.23 shows the population distribution of chosen subgroups at different 

NOx concentration intervals. Black and Hispanic subgroups tend to live in areas with 

higher NOx concentration and consistently have positive and generally increasing 

subgroup inequality indices with the increase of NOx concentrations, while the estimated 

index value for white subgroup is consistently negative. Estimated subgroup inequality 

index for age subgroups are generally close to zero, although slightly positive index 

values are observed for subgroup with age more than 65 at the highest NOx concentration 

interval. Among the income category, the fraction of population that are in higher 

concentration areas tend to decrease with increasing income; hence, the estimated 

inequality indices shows an overall decreasing trend with the increase of income. 

Table 5.14 Population weighted exposure to NOx for chosen subgroups 

subgroups 
temporal metrics (µg/m3) 

annual 98th percentile highest 1 hour 

race/ethnicity 

black 19.9 102 375 

Hispanic 18.4 95 323 

white 16.6 86 294 

age 

age > 65 17.5 90 318 

age < 5 17.0 89 307 

age between 17.2 89 306 

annual household < 20K 18.8 96 339 

income 20K - 40K 17.9 92 320 

 40K - 60K 17.2 89 304 

 > 100K 16.7 85 292 

  60K - 100K 16.3 85 288 

county average 17.2 89 308 

 

Overall, the estimated population weighted exposure (as well as subgroup 

inequalities index) shows that black, Hispanic subgroups and the subgroup with the 

lowest income (less than $20,000) are disproportionately exposed to NOx air pollution, 

while white and higher income subgroups (between $60,000-$100,000 and more than 
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$100,000) are disproportionately not exposed. Exposure inequalities for age categories 

are small, with slightly higher exposure observed for elder subgroup (age > 65). 

5.5.2.2. Exposure and Inequalities for 1,3-butadiene and benzene 

Table 5.15 shows estimated population weighted exposures to 1,3-butadiene and 

benzene for chosen population subgroups. Population distribution and corresponding 

subgroup inequality indices are provided in Figure 5.24 and Figure 5.25. Overall, 

distributions of population-weighted exposures among subgroups, as well as estimated 

inequality index for different subgroups are similar with those for NOx. The same 

population subgroups (black, Hispanic and lowest income subgroups) were also found to 

be disproportionately exposed to 1,3-butadiene and benzene air pollution, and white and 

higher income subgroups are found to be disproportionately not exposed. 

Table 5.15 Population weighted exposure to 1,3-butadiene and benzene for chosen 

subgroups 

    1,3-butadiene benzene 

subgroups 
temporal metrics(µg/m3) temporal metrics(µg/m3) 

annual highest 1 hour annual highest 1 hour 

race/ethnicity 

black 0.020 0.42 0.28 4.85 

Hispanic 0.018 0.35 0.26 4.27 

white 0.016 0.31 0.23 3.88 

Age 

age < 5 0.017 0.33 0.24 4.05 

age between 0.017 0.33 0.24 4.03 

age > 65 0.017 0.33 0.24 4.13 

annual household < 20K 0.018 0.38 0.26 4.51 

income 20K - 40K 0.017 0.34 0.25 4.21 

 40K - 60K 0.017 0.32 0.24 3.99 

 60K - 100K 0.016 0.30 0.23 3.79 

  > 100K 0.016 0.30 0.24 3.94 

county average 0.017 0.33 0.24 4.05 
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Figure 5.24 Population distributions of the chosen race/ethnicity, age and income 

subgroups for annual average and maximum 1 hour 1,3-butadiene concentrations. 

 

5.5.2.3. Exposure and Inequalities for acetaldehyde and formaldehyde 

For acetaldehyde and formaldehyde, different patterns in population weighted 

exposures (Table 5.16) and inequality indices (Figure 5.26 and Figure 5.27) were 

observed. Specifically, population weighted exposure for the two pollutants at both 

temporal scales show relatively smaller variations among the chosen subgroups. For 

acetaldehyde, no apparent and consistent trend in inequality index can be observed for 

any subgroup. For formaldehyde, reverse inequalities are sometimes observed. For 

example, at highest 1 hour temporal scale, black, Hispanic and the lowest income 

subgroups are disproportionately not exposed to formaldehyde air pollution while white 
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and the two of the highest income subgroups are disproportionately exposed. The distinct 

spatial distribution of acetaldehyde and formaldehyde concentrations (see section 5.4.2.3) 

contribute to such observations. 

 
Figure 5.25 Population distributions of the chosen race/ethnic, age and income 

subgroups for annual average and maximum 1 hour benzene concentrations. 

 

5.5.3. Discussion of Exposure and Inequality Estimation 

Inequalities were found for black, Hispanic and lowest income subgroups (annual 

household income less than $20,000) regarding NOx, 1,3-butadiene and benzene air 

pollution; meanwhile white and the two highest income subgroups (between $60,000 to 

$100,000 and greater than $100,000) were found to be disproportionately not exposed to 
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these three pollutants. However, rather complex, and sometimes even reversed exposure 

patterns were found for acetaldehyde and formaldehyde. 

Table 5.16 Population weighted exposure to acetaldehyde and formaldehyde for chosen 

subgroups 

    acetaldehyde formaldehyde 

subgroups 
temporal metrics(µg/m3) temporal metrics(µg/m3) 

annual highest 1 hour annual highest 1 hour 

race/ethnicity 

black 2.06 8.48 1.85 7.46 

white 2.04 8.48 1.82 7.96 

Hispanic 2.02 8.13 1.81 7.55 

age 

age > 65 2.06 8.27 1.83 8.03 

age < 5 2.04 8.52 1.83 7.87 

age between 2.04 8.49 1.82 7.84 

annual household < 20K 2.04 8.34 1.83 7.63 

income  20K - 40K 2.04 8.37 1.82 7.75 

 40K - 60K 2.04 8.43 1.82 7.86 

 60K - 100K 2.04 8.50 1.82 7.98 

  > 100K 2.02 8.39 1.81 7.82 

county average 2.04 8.47 1.83 7.86 

 

These observations are mainly due to spatial distributions of the estimated 

pollutant concentrations (see section 5.4.2). The spatial distributions of NOx, 1,3- 

butadiene and benzene concentrations show generally higher concentrations in urbanized 

areas such as near downtown Tampa and the Tampa International Airport, where 

pollutant emissions are high. Hence similar inequalities were found. The CALPUFF 

modeled acetaldehyde and formaldehyde concentrations also show similar patterns as the 

other pollutants; the spatial distributions were substantially altered after combining with 

CMAQ data. Therefore lead to more complex findings regarding exposure and exposure 

inequalities. 

The inequalities found for NOx, 1,3-butadiene and benzene air pollution are 

consistent with other studies focused on the same area (Chakraborty, 2009; Chakraborty 
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& Bosman, 2010; Stuart et al., 2009), although different methods were employed in these 

studies. Findings for acetaldehyde and formaldehyde contribute to our understandings 

regarding the exposure inequalities in the Tampa, FL by showing different and 

sometimes even reversed inequality patterns, suggesting the importance of including 

multiple pollutants during exposure and inequality assessments. 

 
Figure 5.26 Population distributions of the chosen race/ethnicity, age and income 

subgroups for annual average and maximum 1 hour acetaldehyde concentrations. 

 

5.5.4. Limitation and Uncertainties in Exposure and Inequality Estimation 

Air pollution exposures estimated in this study are residential exposures based on 

modeled ambient pollutant concentrations. Accurate representation of personal exposure 

to air pollution requires consideration of human activity patterns and pollutant 
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concentration variations in different micro-environments. However, these factors were 

not included in this study. In addition, pollutant concentration variations within each 

census block group were not modeled here. 

 
Figure 5.27 Population distributions of the chosen race/ethnicity, age and income 

subgroups for annual average and maximum 1 hour formaldehyde concentrations. 

 

There are uncertainties in the categorization of population subgroups. 

Specifically, there are overlapping in the category definition for race/ethnicity groups. A 

subset of the population may be both white and Hispanic, and they were included in both 

subgroups. Additional analysis are suggested for future work. 

Similar with Chapter 4, human activity patterns and pollutant concentration 

variability at micro-environments were not incorporated into the exposure estimation in 
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this study. Residential exposures were estimated instead. Further, while estimating air 

pollution exposures for one chosen population category (race/ethnicity, age or income 

category), the other categories were not controlled. More rigorous statistical analysis and 

tests are suggested for future work. 

5.6. Overall Summary and Conclusions 

In this study, human exposure to air pollution, and exposure inequalities among 

chosen race/ethnicity, age and income subgroups were estimated for five selected 

pollutants : 1,3-butadiene, acetaldehyde, benzene, formaldehyde and NOx. First, pollutant 

emissions from five emission categories were estimated for the study area. 

Spatiotemporal distributions of pollutant concentrations were then estimated using the 

CALPUFF, a non-steady state Lagrangian chemical transport model, and output data 

from CMAQ, a Eulerian grid chemical transport model. The estimated pollutant 

concentrations were combined with demographic data to estimate air pollution exposure 

and exposure inequalities among chosen population subgroups. Findings from this work 

are as follows: 

1. Compared with on-road mobile source emissions estimated using MOBILE6.2 

model, the MOVES estimated emissions are substantially higher for NOx, higher 

for acetaldehyde and lower for 1,3-butadiene and formaldehyde. 

2. The spatial distributions of CALPUFF modeled pollutant concentrations show 

similar patterns, with higher concentrations generally found in urban areas and 

lower concentrations generally found in rural areas. 
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3. At different temporal scales, the CALPUFF modeled pollutant concentrations 

show different spatial patterns. The impact of roadways are observable at annual 

average temporal scale, this pattern diminishes with increasing temporal scales. 

4. For acetaldehyde and formaldehyde, processes not included in CALPUFF 

modeling, including atmospheric formation and long range transportation of 

pollutants, contribute substantially to pollutant concentrations. 

5. Inequalities were found for black, Hispanic and low income (annual household 

income less than $20,000) population subgroups regarding NOx, 1,3-butadiene 

and benzene. Complex, and sometimes even reversed exposure patterns were 

found for acetaldehyde and formaldehyde, due primarily to their distinct spatial 

distribution of estimated concentrations. 
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CHAPTER 6  

POTENTIAL IMPACTS OF FUTURE URBAN FORM AND VEHICLE FLEET 

ELECTRIFICATION ON AIR POLLUTANT EMISSIONS, CONCENTRATIONS, 

AND EXPOSURES IN THE TAMPA AREA 

 

6.1. Introduction 

The question of which urban form best accommodates the rapid expansion of 

cities whilst maintaining environmental sustainability has been extensively discussed in 

the field of urban planning. Despite this, it was not until recently that researchers started 

to notice the impact of urban forms on urban air quality (Breheny, 1996). Appropriate 

and accurate characterization of urban forms involves the consideration of many factors 

such as morphology of the city, design of transportation infrastructure and land use policy 

(Miranda et al., 2008), amongst others. While recognizing the complexity of urban forms, 

past studies make use of simplified approaches to assess their impact on air quality 

(Borrego et al., 2006; Ridder et al., 2008; Frank et al., 2000; Kahyaoğlu-Koračin et al., 

2009; Liu, 2003; McDonald-Buller et al., 2010; Niemeier et al., 2011; Song et al., 2008; 

Stone et al., 2007, 2009). Generally, two urban forms have received the most attention: 

sprawl and compact urban form. 

As discussed in Chapter 2, many previous studies have suggested that sprawl and 

compact urban forms may have a significant impact on urban air quality. This is due 

primarily to changes in the total amount of emission, as well as the spatial distributions of 



 

179 

 

these emissions. Many studies have found that overall pollutant emissions are lower in 

compact than sprawl urban form, however the colocation of pollutant emissions and 

human population in compact urban form may lead to potentially higher pollution 

exposures for pollutants with substantial primary contributions. On the other hand, sprawl 

urban forms may lead to less human exposure to air pollution, despite higher overall 

pollutant emissions (Hixson. et al., 2010, 2012; Song et al., 2008). The mechanisms by 

which urban forms impact urban air pollution are still poorly understood.  

Past studies are also insufficient regarding how urban forms impact air pollution 

exposure, particularly disproportionate distribution of exposures among different 

population subgroups. In addition, although many have pointed out that human exposure 

to air pollution may be higher in compact urban form, few studies have taken a step 

further to investigate potential strategies to alleviate this exposure. 

To address these issues, I investigated the emissions of five selected pollutants: 

1,3-butadiene, benzene, NOx, acetaldehyde and formaldehyde, in potential future sprawl 

and compact urban forms. Spatial concentration distributions of these pollutants were 

estimated through dispersion modeling. Human exposures to air pollution, as well as 

exposure distributions among race/ethnicity, age and income population subgroups, were 

then estimated and compared. Furthermore, the effects of vehicle fleet electrification on 

pollutant emissions, concentration distributions and air pollution exposures were also 

estimated to evaluate the use of vehicle fleet electrification as a potential strategy to 

alleviate air pollution exposure in compact urban form. 
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6.2. Scope of Study 

Similar with the modeling study for the year 2002 (see Chapter 4), the focus area 

of this study is the Tampa, FL area, a populated metropolitan region with a diverse 

population and well known sprawl development patterns (Glaeser et al., 2001; Stuart et 

al., 2009). The same five pollutants: 1,3-butadiene, benzene, NOx, acetaldehyde and 

formaldehyde, were selected as the focus pollutants, as they have significantly impact on 

human health and public welfare in urban areas in the US (Agency for Toxic Substances 

and Disease Registry, 2007; National Toxicological Program, 2010, 2011; U.S. 

Environmental Protection Agency, 2008a, 2008b), and also have substantial mobile 

source contributions (ENVIRON International Corporation, 2006). The same population 

subgroups were also used in this study: including race/ethnicity (black, Hispanic and 

white), age (age less than 5, between 5 and 65 and age more than 65 years old) and 

annual household income groups (less than $20,000, between $20,000 and $40,000, 

between $40,000 and $60,000, between $60,000 and $100,000 and more than $100,000).  

Future scenarios were developed based upon the One Bay visioning plan (One 

Bay, 2010), the data for which were provided by the Tampa Bay Regional Planning 

Council (TBRPC). The One Bay visioning plan contains four alternative planning 

scenarios for seven counties around the Tampa Bay area in 2050: a “business as usual” 

sprawl growth scenario; a compact growth scenario designed based on “transient oriented 

development”; a scenario designed to conserve water resources and wildlife habitats in 

the area; and a fourth scenario designed based on previously collected public inputs. One 

Bay is a collaborative organization formed by several metropolitan planning 
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organizations around the Tampa Bay area and the One Bay visioning plans are 

considered influential.  

The sprawl and compact scenarios in the One Bay visioning plan were chosen for 

this study. In addition, a vehicle fleet electrification scenario (hereinafter referred to as 

the electric vehicle scenario) was also created, which is based on compact urban form, 

but with all on-road vehicles replaced by electric vehicles. The selection of vehicle fleet 

electrification as the potential strategy to alleviate air pollution exposure in compact 

urban form is based on the fact that on-road mobile sources were found to contribute to 

inequalities regarding air pollution exposure in the Tampa area (Chakraborty, 2009). 

Modeling results for the year 2002 (see Chapter 4) were used as the baseline scenario. 

The visioning plan contains predicted land use in the year 2050 for both sprawl 

and compact scenarios. Seven counties around the Tampa Bay area were included: 

Hernando, Hillsborough, Manatee, Pasco, Pinellas, Polk and Sarasota County. The same 

roadway network was used as in the baseline scenario (see Chapter 4). 

Figure 6.1 provides comparisons of re-developed land area and land use types in 

the sprawl and compact scenarios. Overall there are 15 land use types in the visioning 

plan (Appendix B-1). In the sprawl scenario, a substantial amount of new developments 

are low-density residential areas, and these new developments spread throughout the 

whole region included in the visioning plan. For the compact scenario, medium density 

residential areas dominate the new developments, with significantly fewer low-density 

residential areas. The developments in the compact scenario are also concentrated in 

current urban centers and along major interstates, especially in Hillsborough, Pinellas and 

Sarasota County.  
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Figure 6.1 Re-developed land area and land use types in sprawl and compact scenarios.  

 

To estimate pollutant concentrations in the future scenarios, emissions of the five 

selected pollutants were first projected to 2050 for each scenario; The CALPUFF model 

was used to estimate pollutant concentrations in Hillsborough County (where Tampa is 

located), following which the estimated pollutant concentrations were combined with 

projected demographic data to estimate air pollution exposure, as well as exposure among 

chosen population subgroups. Details of each step are provided in the following sections. 

6.3. Emission Estimation for Future Scenarios 

Table 6.1 Types of emissions estimated for each scenario 

 sprawl scenario compact scenario electric vehicle scenario 

on-road mobile projected projected excluded 

stationary point projected projected projected 

off-road mobile projected same as sprawl same as sprawl 

non-point projected projected same as compact 

biogenic projected projected same as compact 

 

Pollutant emissions from five source categories were projected to the year 2050: 

on-road mobile sources, stationary point sources, non-point, off-road mobile and biogenic 

sources (Table 6.1). On-road mobile source emissions were excluded for the electric 

vehicle scenario as the vehicle fleet is assumed to contain 100% electric vehicles. 
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Stationary point source emissions were projected for the three different scenarios 

individually. Off-road mobile source emissions were kept the same for all three scenarios, 

and non-point and biogenic emissions were projected for the sprawl and compact 

scenarios.  

6.3.1. Methods of Emission Estimation for Future Scenarios 

6.3.1.1. On-road Mobile Source Emissions 

Travel demand models, combined with emission factor estimation model, have 

been used in many previous studies to estimate future on-road mobile source emissions 

(Ridder et al., 2008; Hixson et al., 2010; Song et al., 2008). However, no travel demand 

model outputs are available for the One Bay visioning plans. Hence, a top-down 

approach was developed and applied. First, county total on-road mobile source emissions 

in the future scenarios were estimated using the MOVES model. The estimated total 

emissions were then spatially allocated based on spatial surrogates developed based on 

multiple linear regressions. Regarding temporal variation of on-road mobile source 

emissions, the same traffic variation profiles as used in the baseline scenario were 

applied. 

6.3.1.1.1. County Total On-road Mobile Source Emissions 

County total on-road mobile source emissions were estimated for all seven 

counties included in the One Bay visioning plan. Two input datasets were prepared for 

the MOVES model: vehicle population in each county and county total vehicle mileage 

travelled for different vehicle types. 

Vehicle populations for each MOVES vehicle class were extrapolated from the 

baseline scenario (2002) to 2050 using populations in each county. County population in 
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the year 2002 was calculated based on interpolation of 2000 and 2010 census data, and 

2050 populations in each county were calculated based on One Bay visioning data: 

 
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where Pc,s is the predicted population in 2050 in county c for scenario s; pH is average 

person per household, assumed to be 2.46, as defined in the One Bay visioning data; k is 

land use types as defined in the One Bay visioning plan, and there are 15 different land 

use types; Lc,k,s,u is the total land areas (acres) of land use type k in county c of scenario s 

that is already developed to some extent in the baseline scenario, but with no further 

developments in the future scenarios; Hk,u is the household density (households per acre) 

for land use type k that is already developed to some extent but with no further 

developments in the future scenarios; Similarly, Lc,k,s,d is the total land area (acres) of land 

use type k in county c of scenario s that is newly or re-developed in the future scenario; 

and Hk,d is the household density (households per acre) for land use type k that is re-

developed in the future scenario. All of the data mentioned above were obtained from the 

One Bay visioning plan. 

Total vehicle mileage travelled for all seven counties combined are available from 

the visioning data, but not for each county individually. The total vehicle mileage 

travelled was allocated to each county based on total vehicle trips generated in 

corresponding counties, which were calculated by  
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where Tc,s is the predicted vehicle trips generated in 2050 in county c for scenario s; m is 

the building types associated with land use type k as defined in the One Bay visioning 
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plan. Each land use type contains a subset of the 32 building types. A complete list of the 

building types is provided in Appendix B-2, and assumptions of building type 

distributions for different land use types are provided in Appendix B-3; fk,m is the fraction 

of building type m that is associated with land use type k; and Tk,m is the vehicle trip 

generation rate (trips per acre) for building type m that is associated with land use type k. 

A list of vehicle trip generation rates for each building types is also provided in Appendix 

B-4. 

All other MOVES input data were kept the same as in the baseline scenario, 

except for fuel properties and meteorological data. The fuel data used are based on the 

year 2012, given that no further information are available beyond 2012. Meteorological 

data used are 30 year averaged meteorological parameters. The developed data were 

input into the MOVES model and county total on-road mobile source emissions for the 

sprawl and compact scenarios were estimated. 

6.3.1.1.2. Spatial Allocation of On-road Mobile Source Emissions 

The estimated county total on-road mobile source emissions for all five pollutants 

were spatially allocated to emission grids as shown in Figure 6.2. The grid spacing is 1 

km covering Hillsborough County, and 5 km elsewhere. The same grid network was used 

in the baseline scenario for 1,3-butadiene, benzene and NOx. Spatial surrogates used to 

allocate on-road mobile source emissions were developed based on multiple linear 

regression using data in Hillsborough County from the baseline scenario. 

In the baseline scenario, on-road mobile source emissions in Hillsborough County 

were estimated at each major roadway link, as well as at 1 km spacing grid cells covering 
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Hillsborough County. The estimated emissions from major roadway links were first 

distributed into the 1 km grid cells by: 
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where Em,i is the distributed emissions in grid cell i that are from major roadway links 

(tons per year); n is the number of major roadway links that are within grid cell i; Al,i is 

the area (m2) of the area source for link l that is within grid cell i. Methods for generating 

the area sources are described in Chapter 4; Al is the area (m2) of the area source for link 

l; and 𝐸𝑙 is pollutant emissions (tons per year) from link l;  

 
Figure 6.2 Grid network for allocating emissions from on-road mobile sources, non-road 

mobile sources, non-point sources and biogenic sources. 

 

Total on-road mobile source emissions within all 1 km grid cells covering 

Hillsborough County were calculated, and the 1 km grid cells were re-grouped into three 

categories: all grid cells, the subset of the grid cells containing freeway links, and the 

subset not containing freeway links. Five regression equations (corresponding to five 

pollutants) were developed for each group of grid cells. The dependent variable used is 
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pollutant emissions (tons per year) in each grid cell, and candidate predictor variables are: 

major roadway length (km), minor roadway length (km), and area of seven aggregated 

land use types (km2) (Table 6.2). These variables were selected as roadway length and 

land use types are correlated with air quality and have been frequently used in land use 

regression models related to air quality modeling (Hoek et al., 2008). Land use type 

classifications were chosen to be in consistent with the One Bay visioning data, and also 

accounted for limitations of the land use data in the baseline scenario. 

Table 6.2 Seven land use types used in deriving multiple regression functions as in the 

One Bay visioning data 

aggregated  

land use ID land use type description 

1 commercial, downtown center, office park, activity center, town center 

2 medium density residential area, village center 

3 downtown residential, development center, high density residential area 

4 commerce park 

5 public institutional 

6 low density residential area 

0 all other land use types 

 

Land use data for 2000 in the seven counties were retrieved from the Southwest 

Florida Water Management District (SWFWMD). The land use type classifications used 

in the SWFWMD data are based on the Florida Land Use and Cover Classification 

System (FLUCCS) and they were mapped to the land use classification system used in 

the One Bay visioning data. Table 6.3 shows the mapping method used. The mapped land 

use data, together with roadway network data obtained from the Florida Department Of 

Transportation (2002), were spatially intersected with the 1 km grids as mentioned 

previously to calculate lengths of major and minor roadway, and areas of different land 

use types in each grid cell. The statistical computing package R (R Development Core 

Team, 2013) was then used to derive all multiple linear regression equations.  
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The developed equations were applied to predict the spatial surrogates for the 

allocation of on-road mobile source emissions for all counties in the future scenarios 

using the following: 
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where Si,c is the calculated spatial surrogate for allocating on-road mobile source 

emissions in grid cell I and county c; qc is the total number of grid cells that covers 

county c; Ep,i is emissions in grid cell i as predicted by regression equations. Note that the 

predicted emissions in each grid cell are not actual emissions used in subsequent 

modeling, they are rather “relative” emissions used to derive spatial surrogates to allocate 

the previously estimated county total emissions. Different regression equations were used 

to calculate Ep,i depending on grid cell location and whether the corresponding grid cell 

contained freeways. Specifically, for grid cells which are within Hillsborough County 

and also containing freeways, regression equations developed specifically for this group 

of grid cells were applied; for other grid cells within Hillsborough County but not 

containing freeways, another sets of regression equations developed for this group of grid 

cells were used. For the remaining grid cells, the last sets of regression equations, which 

were developed for all grid cells combined, were applied. 

The county total on-road mobile source emissions estimated for all counties in the 

future scenarios were next allocated to the emission grids (Figure 6.2) using the 

developed surrogates. For grid cells located in Hillsborough County that contain 

freeways, emissions were further allocated to area sources of major roadways located 

within corresponding grid cells. Specifically, the predicted on-road mobile source 

emissions in grid cells that containing freeways were first divided into two parts: 
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emissions that come from major roadways and emissions that come from minor 

roadways. The proportion of emissions coming from major and minor roadways varied 

across grid cells and were assumed to be the same as in the baseline scenario. Then, 

emissions from major roadways were allocated to area sources of major roadways using 

area (m2) of the area sources as surrogate.  

Table 6.3 Seven land use types used in deriving multiple regression functions as in the 

FLUCCS data 

Florida Land Use and Cover Classification 

System land use description 
FLUCCS Code 

aggregated  

land use ID 

urban and built-up - commercial and services 1400 1 

urban and built-up - residential, medium density 1200 2 

urban and built-up - residential, high density 1300 3 

urban and built-up - industrial 1500 4 

urban and built-up - institutional 1700 5 

urban and built-up - residential, low density 1100 6 

all other land use types 0 

 

6.3.1.2. Stationary Point Source Emissions 

For NOx, the same stationary point sources as modeled in the baseline scenario 

were used for the future scenarios. More point sources for acetaldehyde and 

formaldehyde were included in future scenarios than the baseline scenario due to larger 

emission estimation domain in the future scenarios. Point source emissions of NOx, 

acetaldehyde and formaldehyde were included, however point source emissions for 1,3-

butadiene and benzene were not included due to their small contributions to total 

emissions. Other source parameters such as stack height and exit velocity were assumed 

to be the same as in the baseline scenario. 

In the baseline scenario, over 90% of the pollutant emissions from stationary 

point sources were emitted by electricity generation units. The California Emission 

Forecasting System (CEFS) contains projected point source emissions from electricity 
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generation units for future years, and the results were used in Hixson et al. (2010, 2012). 

In the California Emission Forecasting System, point source emissions were projected for 

each generation unit individually based on the types of boiler used in the corresponding 

unit, however this approach is not applicable in this study due to lack of data. A 

simplified alternative approach was developed and applied.  

In this study, point source emissions in the future scenarios were extrapolated 

using increased electricity demand (incremental electricity demand compared with the 

baseline scenario) for the three future scenarios using: 

,i s sE D e  

where Ei,s is the increased total pollutant emissions (tons/year) due to increased electricity 

demand in the whole study domain; Ds is the increased electricity demands (GWh/year) 

in future scenarios in the study domain; and e is the estimated pollutant emission rates 

(tons/GWh) for point sources, which varies by pollutants. Methods for estimating the 

increased electricity demands and pollutant emission rates from point sources are 

provided below. 

6.3.1.2.1. Increased Electricity Demand in Future Scenarios 

Increased electricity demands for the sprawl and compact scenarios are available 

from the One Bay visioning data. Note that in the electric vehicle scenario, electricity 

demands will be further increased due to vehicle fleet electrification. The electricity 

demand for the electric vehicle scenario was estimated as: 
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where De is the increased electricity demand (Wh/year) in the electric vehicle scenario; 

Dc is the increased electricity demand (Wh/year) in the compact scenario (available from 
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the One Bay visioning data); v is the Highway Performance Monitoring System vehicle 

type as described in Chapter 3; Dv is the average electricity consumption for vehicle type 

v (Wh/mile); and Mv is total vehicle mileage travelled (miles/year) for vehicle type v.  

Assumed electricity consumptions (Dv) for each vehicle type are shown in Table 

6.4. The electricity consumptions were estimated as follows: First, for motorcycle and 

passenger cars, electricity consumptions were calculated based on technical specifications 

of available electric vehicles including Zero DS electricity motorcycle and Tesla Model 

S; For the rest vehicle types, average vehicle weights were first assigned to each MOVES 

vehicle type, and a 0.065 Wh/mile/lb electricity consumption factor was applied to 

calculate average electricity consumptions for each MOVES class. The vehicle weights 

were best estimates based on descriptions of vehicle types provided in the MOVES and 

MOBILE6.2 models (U.S. Environmental Protection Agency, 2004a, 2010b). The 0.065 

Wh/mile/lb electricity consumption factor was calculated based on the electricity 

consumptions for passenger cars. Despite these simplified assumptions, the calculated 

electricity consumptions are equivalent or comparable to previous estimates (Alhajeri et 

al., 2011; Electric Power Research Institute, 2007). Finally, the estimated electricity 

consumptions were further aggregated to High Way Performance Monitoring System 

(HPMS) vehicle types, as the vehicle mileage travelled data are stratified by HPMS 

vehicle types. 

6.3.1.2.2. Pollutant Emission Rates for Point Sources 

Pollutant specific emission rates (e, tons/GWh) for point sources were estimated 

by: 
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where u is an index for point source with data available, and r is the total number of point 

sources; Gu is the gross load of corresponding point sources (GWh/year); and Eu is 

pollutant emissions from corresponding point sources (tons/year). Information on gross 

loads were retrieved from the Environmental Protection Agency’s air markets programs 

(http://ampd.epa.gov/ampd/), along with annual emissions of NOx. Available information 

on annual emissions of acetaldehyde and formaldehyde from point sources with gross 

load information available were obtained by cross-referencing the gross load data with 

annual emission data from the 2002 National Emission Inventory, using the Facility 

Registry Identifier of each source. 

Table 6.4 Assumed vehicle weights and electricity consumptions for each vehicle type 

MOVES 

vehicle 

type ID vehicle type description Wh/mile 

weight 

(lb) 

HPMS 

vehicle 

type ID Wh/mile 

11 motorcycle 100 400 10 100 

21 passenger car 300 4600 20 300 

31 passenger truck 390 6000 
30 460 

32 light commercial truck 520 8000 

41 intercity bus 1300 20000 

40 1300 42 transit bus 1300 20000 

43 school bus 1300 20000 

51 refuse truck 1300 20000 

50 1700 
52 single unit short-haul truck 1950 30000 

53 single unit long-haul truck 2275 35000 

54 motor home 1300 20000 

61 combination short-haul truck 3250 50000 
60 3600 

62 combination long-haul truck 3900 60000 

 

The estimated pollutant emission rates, together with increased electricity 

demands in the three future scenarios, were combined to calculate increased total 

pollutant emissions in the study domain. The calculated total emissions were then evenly 

distributed to all point sources that were included in the modeling. 

http://ampd.epa.gov/ampd/
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6.3.1.2.3. Diurnal Vehicle Charging Profiles 

Electric vehicles need to be charged frequently. When charging, electric vehicles 

draw electricity from the power grid, which impacts the load of electricity generation 

units and consequently impacts emissions from power plants, as well as the temporal 

distribution of emissions. To account for the impact of electric vehicle charging on the 

temporal distribution of emissions, temporal vehicle charging profiles were developed 

and applied. The profiles reflect temporal variations of the amount of electricity 

consumed by the charging of electric vehicles. 

 
Figure 6.3 Developed temporal vehicle charging profiles and traffic volume variation 

profiles. 

 

In earlier studies, charging of electric vehicles were assumed to occur from 10 pm 

to 6 am, or 10 pm to 10 am, or 10 pm to 8 am (Alhajeri et al., 2011; Electric Power 

Research Institute, 2007; Stephan & Sullivan, 2008), however these  profiles may not be 

representative as they were arbitrarily determined. In this study, the temporal charging 

profiles of electric vehicles were assumed to be inversely correlated with the temporal 
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variations of traffic volume on roadway networks (see Chapter 4). Figure 6.3 shows the 

developed temporal vehicle charging profiles and traffic variation profiles. 

For the sprawl and compact scenarios, hourly emission rates from stationary point 

sources were calculated using temporal allocation factors obtained from the 

Environmental Protection Agency (U.S. Environmental Protection Agency, 2007a). For 

the electric vehicle scenario, stationary point source emissions were divided into two 

parts: increased emissions due to vehicle fleet electrification and all other emissions. 

Hourly emission rates were estimated separately for the former and the latter by applying 

the developed vehicle charging profiles and temporal allocation factors from the 

Environmental Protection Agency, respectively. The calculated hourly emission rates 

were then combined afterward. 

6.3.1.3. Non-Road, Non-Point and Biogenic Source Emissions 

Non-road, non-point and biogenic source emissions were also projected to 2050 

for the future scenarios (Table 6.1), and spatially allocated to the emission grids as shown 

in Figure 6.2. For the majority of non-road mobile sources, the NMIM (National Mobile 

Inventory Model) model was used to estimate pollutant emissions in the future scenarios, 

with default activity data applied. Non-road mobile source emissions from three specific 

categories were estimated separately: aircraft, commercial marine vessels and 

locomotives, as they were not included in NMIM model. Aircraft and locomotive 

emissions were extrapolated to 2050 based on population, and commercial marine vessel 

emissions were extrapolated using the predicted annual total cargo weights handled by 

the Port of Tampa, which is the largest marine port in the study domain. Cargo weights in 

2002 were obtained from the Tampa Port Authority, and a 1.5% annual growth rate was 
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applied to cargo weights from 2010 to 2050. This growth rate was obtained from the 

strategic plan of the Tampa Port Authority (Norbridge Inc, 2011).  

Annual total non-point source emissions in the baseline scenario were 

extrapolated to 2050 using 9 surrogates. Appendix B-5 provides a detailed list of the 

emissions and corresponding surrogate used. The surrogates were assigned based on the 

nature of the emission. Sources listed in Appendix B-5 account for over 98% of all non-

point source emissions in the baseline scenario. Population was used to extrapolate the 

remaining 2% emissions. 

Forest area was used to extrapolate biogenic emissions from the baseline scenario 

to the year 2050. Forest area in the future scenarios, as well as the other surrogates 

applied for non-point source emissions, were developed from the One Bay visioning data. 

Forest areas in the baseline scenario were calculated from land use data obtained from the 

Southwest Florida Water Management District. 

In addition to total emissions, spatial distributions of pollutant emissions are also 

affected by urban growth. Similarly to the baseline scenario (see Chapter 4), spatial 

allocation surrogates were developed and applied for non-road, non-point and biogenic 

emissions. These surrogates were developed based upon the One Bay visioning data, as 

well as data for the baseline scenario. Appendix B-6 provides a list of the spatial 

surrogates developed for future scenarios and the corresponding method used to derive 

the surrogates. In each grid cell the surrogate value was calculated as surrogate 

metric/control total. The same method was applied for the sprawl and compact scenarios. 

The spatial surrogates used in the electric vehicle scenario are the same as in the compact 
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scenario. Regarding temporal distribution of the emissions, the same temporal profiles as 

used in the baseline scenario were used. 

6.3.2. Results and Discussion of Emission Estimation for Future Scenarios 

6.3.2.1. Estimated County Total On-road Mobile Source Emissions 

Table 6.5 shows the estimated total on-road mobile source emissions in the sprawl 

and compact scenarios for all seven counties included in the One Bay visioning plan. 

Emissions in the baseline scenario were also included for comparison purposes. Detailed 

estimates for each county are listed in Appendix B-7. Compared to the baseline scenario, 

the estimated 1,3-butadiene, benzene and NOx emissions in the future scenarios are 

substantially lower. Emissions of formaldehyde also decreased, but by a relatively 

smaller magnitude. Relative to the baseline scenario, while acetaldehyde emissions from 

the compact scenario show a 20% decrease, emissions from the sprawl scenario actually 

show a 2% increase, attributable to the higher vehicle mileage travelled in the sprawl 

scenario. Of the two future scenarios, the sprawl scenario consistently show higher on-

road mobile source emissions than the compact scenario, especially for NOx, for which 

emissions from the former are 40% higher than the latter. This observation is expected as 

the total vehicle mileage travelled in the sprawl scenario is 36% higher than the compact 

scenario (based on the One Bay visioning data). The estimated changes of on-road mobile 

source emissions from the baseline to the future scenarios are consistent with other 

studies where the MOVES model was used (Atlanta Regional Commission, 2010; 

Federal Highway Administration, 2012). 

Figure 6.4 provides additional comparisons of the estimated county total on-road 

mobile source emissions between the sprawl and compact scenarios (county total  
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Table 6.5 Estimated total on-road mobile source emissions for baseline, sprawl and 

compact scenarios for all seven counties included in One Bay visioning plan 

pollutant 

annual emissions (metric tons) 

baseline sprawl compact 

NOx 139635 51604 36646 

1,3-butadiene 214.5 74.7 64.8 

benzene 1845 452 394 

acetaldehyde 302.5 308.9 241.0 

formaldehyde 688.7 620.7 456.6 

*In electric vehicle scenario, vehicle fleet are 

assumed to be 100% electric vehicles and hence 

there are no on-road mobile source emissions 

 

 
Figure 6.4 Comparison of county total on-road mobile source emissions in seven 

counties included in One Bay visioning plan. County total emissions in the baseline 

scenario were set to 1 for all pollutants. 

 

emissions in the baseline scenario were set to 1 for all pollutants). On-road mobile source 

emissions of all pollutants from the compact scenario are consistently higher in 

extensively developed counties including Hillsborough, Pinellas and Sarasota County. 

Emissions from the sprawl scenario are higher in the relatively less developed counties 

including Hernando, Manatee, Pasco and Polk County. These results are also expected as 

in the compact scenario the majority of urban development occurs in areas which have 
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already been extensively developed, hence these areas are the ones which show an 

increase in emissions. On the other hand, in the sprawl scenario, urban development 

occurs more frequently in rural undeveloped areas, hence emissions from these rural 

areas will be the ones to increase. 

6.3.2.2. Allocated On-road Mobile Source Emissions 

The estimated county total on-road mobile source emissions were spatially 

allocated using spatial surrogates derived by multiple linear regression. The derived 

regression equations are shown in Table 6.6 through Table 6.8. All variables in the 

derived equations have significant p values of less than 0.05, as well as favorable 

adjusted R2 values. Based on the derived equations, land use type 1 (see Table 6.2) is a 

strong predictor for on-road mobile source emissions. 

Table 6.6 Parameters of the developed regression equations for grid cells within 

Hillsborough County and contains freeways 

 

major roadway 

length (km) 

minor roadway 

length (km) 

aggregated land use type ID 
adjusted R2 

0 (km2) 1 (km2) 

1,3-butadiene 2.45E-02† 6.12E-03† 1.82E-02* 7.69E-02* 0.75 

benzene 2.11E-01† 5.23E-02† 1.56E-01* 6.69E-01* 0.75 

NOx 2.40E+01† 4.48E+00† 2.06E+01† 5.81E+01* 0.82 

acetaldehyde 3.74E-02† 8.90E-03† 2.88E-02* 1.23E-01* 0.72 

formaldehyde 8.56E-02† 2.04E-02† 6.59E-02* 2.81E-01* 0.72 
*p < 0.05; †p < 0.001 

 

Table 6.7 Parameters of the developed regression equations for grid cells within 

Hillsborough County that do not contain freeways 

 

major 

roadway 

length (km) 

minor 

roadway 

length (km) 

aggregated land use type ID adjusted 

R2 0 (km2) 1 (km2) 3 (km2) 5 (km2) 

1,3-butadiene 1.56E-02† 5.02E-03† -7.30E-04† 2.99E-02† 3.36E-03† 4.43E-03* 0.97 

benzene 1.34E-01† 4.31E-02† -6.28E-03† 2.56E-01† 2.88E-02† 3.81E-02* 0.97 

NOx 1.53E+01† 2.89E+00† -6.61E-01† 2.81E+01† 3.17E+00† 4.24E+00* 0.94 

acetaldehyde 2.34E-02† 7.46E-03† -1.07E-03† 4.43E-02† 4.92E-03† 6.62E-03* 0.97 

formaldehyde 5.36E-02† 1.70E-02† -2.46E-03† 1.01E-01† 1.13E-02† 1.52E-02* 0.97 

*p < 0.05; †p < 0.001 
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The allocated on-road mobile source emissions for NOx in the sprawl and 

compact scenarios, as well as differences between the two scenarios, are shown in Figure 

6.4. Spatial distributions of the allocated on-road mobile source emissions for the other 

pollutants are similar and hence are not shown here. Within Hillsborough County, in both 

sprawl and compact scenarios, emissions from the grid cells that containing freeways are 

clearly visible on the map, especially around major interstates such as I-275 and I-4. The 

spatial distributions of emission differences suggest generally higher emissions in 

Hillsborough, Pinellas and Sarasota County in compact scenario, and lower emissions in 

other counties. Such results are reasonable as the predicted populations in Hillsborough, 

Pinellas and Sarasota County are higher in the compact scenario, which lead to higher on-

road mobile source emissions.  

Table 6.8 Parameters of the developed regression equations for all emission grid cells 

 

major 

roadway 

length (km) 

minor 

roadway 

length (km) 

aggregated 

land use 

type ID 

 

1 (km2)  
adjusted 

R2 

1,3-butadiene 2.88E-02† 5.08E-02† 2.20E-02† 0.82 

benzene 2.47E-01† 4.36E-02† 1.90E-01† 0.82 

NOx 2.94E+01† 2.98E+00† 1.56E+01† 0.81 

acetaldehyde 4.39E-02† 7.53E-+03† 3.26E-02† 0.80 

formaldehyde 1.01E-01† 1.72E-02† 7.48E-02† 0.80 
*p < 0.05; †p < 0.001 

 

6.3.2.3. Estimated Stationary Point Source Emissions 

The estimated annual total pollutant emissions from stationary point sources for 

the three future scenarios, as well as for the baseline scenario, are shown in Table 6.9. 

Emissions in the future scenarios are substantially higher than in the baseline scenario. 

Compared to the sprawl scenario, total emissions for all three pollutants are smaller in the 

compact scenario, yet are approximately 35% higher in electric vehicle scenario. These 
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results again are expected as the projected electricity demand is higher in the sprawl 

scenario than the compact scenario, and is even higher in the electric vehicle scenario due 

to vehicle fleet electrification. 

 
Figure 6.5 Spatial distributions of the allocated NOx on-road mobile source emissions, 

and differences of the allocated emissions in seven counties for both sprawl and compact 

scenario. Unit of the values shown in the figure is metric tons/km2. Upper figures show 

emissions in all counties, and lower figures show emissions in Hillsborough County. 

Differences were calculated by subtracting grid cell emissions of the sprawl scenario 

from the compact scenario (compact-sprawl). Spatial distributions of the allocated on-

road mobile source emissions for other pollutants are similar and hence are not shown. 

NO on-road mobile source emissions in electric vehicle scenario. 

 

Table 6.9 Stationary point source emissions in the baseline and three future scenarios 

 annual stationary point source emissions (metric tons) 

 baseline sprawl compact electric vehicle 

NOx 87100 200000 162000 268000 

acetaldehyde 8.8 18 14 24 

formaldehyde 22 42 35 56 

*Note that fewer point sources were included in the baseline scenario for acetaldehyde 

and formaldehyde due to smaller emission estimation domain 

 

Figure 6.6 shows spatial distributions of stationary point source emissions for 

NOx, acetaldehyde and formaldehyde. Point sources with the highest NOx emissions are 

found in Hillsborough County and are located around the Tampa Bay. For formaldehyde, 

most of the point sources are located within Hillsborough and Pinellas County. Point 



 

201 

 

sources for acetaldehyde are scattered and sources with the highest emissions are located 

in Polk, Manatee and Pasco County. The spatial distributions of stationary point source 

emissions do not vary substantially among three scenarios. 

6.3.2.4. Estimated Non-Road, Non-Point and Biogenic Emissions 

Table 6.10 provides the estimated total non-road, non-point and biogenic 

emissions in all counties included in the One Bay visioning plan for the future scenarios. 

Emissions from the electric vehicle scenario are very similar to those found in the 

compact scenario and hence are not shown here. Comparing the sprawl and compact 

scenarios, emissions of benzene and NOx are higher in the former and emissions of the 

other three pollutants are, although very similar, slightly higher in the latter.  

Further, Figure 6.7 provides comparisons of the total non-road mobile, non-point 

and biogenic emissions in the baseline, compact and sprawl scenario. For clarity, 

emissions of acetaldehyde and formaldehyde shown in the figure only included emissions 

from Hillsborough County due to different emission grids used in the baseline and the 

future scenarios. Note that non-road mobile source emissions were assumed to be the 

same for all three future scenarios hence the differences in emissions are affected by non-

point and biogenic emissions. 

Table 6.10 Non-road, non-point and biogenic emissions for the three future scenarios. 

  
aggregated annual non-road, non-point  

and biogenic emissions (metric tons) 

  sprawl compact 

1,3-butadiene 124 128 

benzene 1640 1400 

NOx 51200 47000 

acetaldehyde 2650 2740 

formaldehyde 3230 3350 
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The estimated non-road, non-point and biogenic emissions for 1,3-butadiene, 

acetaldehyde and formaldehyde are lower in the future scenarios than in the baseline 

scenario. Benzene and NOx emissions in some counties in the sprawl scenario are higher 

than the baseline. More specifically, benzene emissions from the sprawl scenario are 

higher in Hernando, Pasco and Polk County, and NOx emissions are higher in Hernando 

and Manatee County. Closer examination of the data indicates that the higher non-point 

source emissions in these counties, the result of extensive development of industrial, 

commercial and commerce park land use, are responsible for the observed higher 

emissions in the sprawl scenario.  

 
Figure 6.6 Spatial distribution of point source emissions of NOx, acetaldehyde and 

formaldehyde for the three future scenarios. Stationary point sources for 1,3-butadiene 

and benzene were not included in the modeling. 
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Between the two future scenarios, emissions of 1,3-butadiene, acetaldehyde and 

formaldehyde are very similar, with generally slightly higher emissions in the compact 

scenario. Similarly to the baseline scenario, biogenic sources dominate acetaldehyde and 

formaldehyde emissions in the future scenarios. In the compact scenario, more vegetated 

land was conserved and hence biogenic emissions for acetaldehyde and formaldehyde are 

greater. For 1,3-butadiene, non-point source emissions from prescribed forest burning 

and managed logging debris burning are substantial. With more forested land area in the 

compact scenario, 1,3-butadiene emissions from these sources are expected to be higher.  

Figure 6.8 shows spatial distributions of the estimated non-road, non-point and 

biogenic emissions of the five selected pollutants in the sprawl and compact scenarios. 

The spatial distribution patterns vary for different pollutants. 

 
Figure 6.7 Comparison of total non-road mobile, non-point and biogenic emissions 

(normalized to emissions in baseline scenario) in the baseline, compact and sprawl 

scenario. Emissions in the baseline scenario were set to 1 for all pollutants. Acetaldehyde 

and formaldehyde emissions shown in the figure only included emissions from 

Hillsborough County. 
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Figure 6.8 Spatial distributions of the allocated non-road, non-point and biogenic 

emissions, and differences in emissions between sprawl and compact scenarios. Unit of 

the values shown in the figure is metric tons/km2. Differences were calculated by 

subtracting grid cell emissions of the sprawl scenario from the compact scenario 

(compact-sprawl). 

 

In both sprawl and compact scenarios, the highest 1,3-butadiene emissions are 

found in the vicinity of airports: the Tampa International Airport and MacDill Air Force 
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Base. Emissions from commercial marine vessels are not visible on the map. Comparing 

the two future scenarios, spatial distributions of 1,3-butadiene emissions show slightly 

higher emissions in developed areas, such as areas near downtown Tampa. 

For benzene, pollutant emissions are generally higher in urbanized areas for both 

scenarios, with more concentrated emissions in the compact scenario. Compared to the 

sprawl scenario, benzene emissions in the compact scenario are higher in urbanized area 

such as Tampa, Pinellas County and Bradenton, and slightly lower in other locations. 

Emissions from marine vessels are noticeable on the map, and emissions from airports 

are not as apparent as for 1,3-butadiene. 

Airport emissions of NOx are also visible on the map, but the highest NOx 

emissions are found near major marine ports such as the Port of Tampa and the Port of 

Manatee, suggesting contributions from commercial marine vessels. Emissions from 

shipping lanes within Tampa Bay are also visible. Differences in emissions between the 

two scenarios show generally higher NOx emissions in urbanized areas and along major 

interstates, and slightly lower emissions elsewhere. 

The spatial distributions of acetaldehyde emissions are dominated by biogenic 

emissions: higher emissions are generally found in forested areas rather than urbanized 

areas. Within Hillsborough County, grid cells with the highest emission differences are 

scattered, rather than concentrated in urbanized areas as with benzene. NOx emissions 

from marine ports and shipping lanes are also clearly visible on the map. Similarly to 

acetaldehyde, formaldehyde emissions are also dominated by biogenic sources, with 

greater proportions of airport emissions. 
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6.3.3. Discussion of Emissions Included in Dispersion Modeling 

Emissions discussed above are total pollutant emissions estimated for all seven 

counties included in the One Bay visioning plan. Note that similarly to the baseline 

scenario, pollutant emissions within 50 km of the boundary of Hillsborough County were 

included in subsequent air quality modeling, and pollutant emitted beyond the 50 km 

limit were excluded as they are considered to not significantly impact pollutant 

concentrations within Hillsborough County. Table 6.11 provides summaries of the 

emissions that were included in dispersion modeling from different categories. Total 

pollutant emissions in Hillsborough County, and 1,3-butadiene, benzene and NOx 

emissions in the baseline scenario were also listed for comparison purposes.  

Table 6.11 Summary of the emissions included in dispersion modeling. 

    annual emissions (metric tons) 

    on-road stationary point non-road non-point biogenic total 

NOx 

compact 34300 162000 28300 13100  237000 

sprawl 48100 200000 28100 16800  293000 

electric vehicle  268000 28300 13100  310000 

baseline 140000 87200 32800 9310  269000 

1,3-butadiene 

compact 60.4   46.5 40.7   148 

sprawl 69.5  46.1 36.3  152 

electric vehicle   46.5 40.7  87.2 

baseline 212  106 76.7  395 

benzene 

compact 368  328 775  1470 

sprawl 421   325 971   1720 

electric vehicle   328 775  1100 

baseline 1822  883 636  3340 

acetaldehyde 

compact 224 14.3 137 59.8 744.8 1180 

sprawl 286 17.8 135 58.7 645.5 1140 

electric vehicle   24.2 137 59.8 744.8 965 

formaldehyde 

compact 425 34.5 303 296 744.8 1800 

sprawl 575 42.2 300 276 645.5 1840 

electric vehicle   56 303 296 744.8 1400 

*acetaldehyde and formaldehyde emissions in the baseline scenario were not listed due to different domain for 

emission estimation. 
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Compared to the baseline scenario, total 1,3-butadiene and benzene emissions in 

the future scenarios are lower, and NOx emissions are higher. This observation is due to 

substantially increased point source emissions. As a result of increased electricity 

demand, point source emissions were approximately doubled in the compact and sprawl 

scenarios than the baseline scenario, and tripled in the electric vehicle scenario. For NOx, 

emissions from stationary point sources accounted for 32% of the total emissions in the 

baseline scenario, and these respectively doubled or tripled stationary point source 

emissions lead to increased total emissions in the future scenarios. The impacts on 

acetaldehyde and formaldehyde are small, as emissions from stationary point sources 

only account for a small fraction (less than 5%) of their total emissions.  

Between the compact and sprawl scenarios, total emissions of all pollutants 

except for acetaldehyde are higher in the latter. The implementation of vehicle fleet 

electrification reduces emissions for 1,3-butadiene, benzene, acetaldehyde and 

formaldehyde. Of all the scenarios, total NOx emissions are the highest in the electric 

vehicle scenarios. 

As discussed in Chapter 2, the vast majority of past studies regarding the impact 

of urban forms on air quality have found lower pollutant emissions in compact than 

sprawl urban form (Borrego et al., 2006; Ridder et al., 2008; Frank et al., 2000; 

Kahyaoğlu-Koračin et al., 2009; Liu, 2003; McDonald-Buller et al., 2010; Niemeier et 

al., 2011; Song et al., 2008; Stone et al., 2007, 2009). Similar findings were also found 

here, with the exception of acetaldehyde. Here discrepancy in the case of acetaldehyde is 

reasonable as biogenic sources dominate acetaldehyde emissions in the study area. In the 

compact scenario, more forested land area is conserved which consequently leads to 
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higher biogenic emissions. Biogenic emissions of formaldehyde are also higher in the 

compact scenario than the sprawl scenario, however the total emissions were ultimately 

lower as this increase was offset by reduced on-road mobile source emissions of 

formaldehyde. These findings suggest compact urban form may leads to lower 

anthropogenic pollutant emissions than sprawl urban form, but for pollutants with 

substantial biogenic source contributions, different results may be found. 

Table 6.12 Summary of the emissions in Hillsborough County for three future scenarios. 

  annual emissions (metric tons) 

  on-road point non-road non-point biogenic total 

NOx 

compact 11700 69700 7350 3960  92700 

sprawl 9780 79100 7350 3760  100000 

electric vehicle  95900 7350 3960  107000 

baseline 44400 50900 9290 1630  106000 

1,3-butadiene 

compact 18.0  16.2 1.7  35.9 

sprawl 15.0  16.2 1.5  32.8 

electric vehicle   16.2 1.7  17.9 

baseline 62.3  28.7 1.4  92.4 

benzene 

compact 116  108 247  471 

sprawl 96.5  108 238  443 

electric vehicle   108 247  355 

baseline 534  218 110  863 

acetaldehyde 

compact 71.0 4.3 73.5 8.5 145.6 303 

sprawl 59.3 5.7 73.5 11.7 126.4 277 

electric vehicle  8.1 73.5 8.5 145.6 238 

baseline 93.1 1.6 74.6 4.5 402.6 576 

formaldehyde 

compact 145 9.29 167 23.5 145.6 490 

sprawl 121 12.2 167 26.7 126.4 453 

electric vehicle  17.2 167 23.5 145.6 354 

baseline 213 3.6 175 14.4 402.6 809 

 

In Hillsborough County alone (Table 6.12), for the compact scenario, total 

emissions are lower for NOx and higher for the other pollutants. For all emissions 

included in dispersion modeling, again for the compact scenario, the total emissions are 

higher for acetaldehyde and lower for the other pollutants. These variations in emissions 
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are the results of spatial development differences between the sprawl and compact urban 

forms. More developments occur in Hillsborough County under compact urban form and 

hence lead to generally higher pollutant emissions within the county, although total 

emissions in the study area may be lower.  

 
Figure 6.9 Fraction of emissions from different emission categories in the three scenario 
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Figure 6.9 provides fractions of emissions from different emission categories in 

the three scenarios. In the sprawl and compact scenarios, the fractions of emissions are 

similar for each category. On-road mobile sources dominate 1,3-butadiene emissions, 

accounting for over 40% of the total. For benzene on the other hand, over 50% of 

emissions were from non-point sources. Stationary point sources emitted the majority of 

NOx, and for both acetaldehyde and formaldehyde, biogenic emissions dominate, with 

on-road mobile sources contributing the most to their anthropogenic emissions. 

In the electric vehicle scenario, non-road, non-point and biogenic emissions 

remained the same as in the compact scenario, and on-road mobile sources emissions 

were completely eliminated due to vehicle fleet electrification. Fractions of emissions 

from the different emission categories thus changed accordingly. For 1,3-butadiene, non-

road mobile source emissions now dominate, and for NOx, stationary point sources now 

account for an even higher fraction of emissions (87%). 

6.3.4. Limitations and Uncertainties in Emission Estimation 

Emission estimates for stationary point sources may contain the largest 

uncertainties. In the future scenarios, point source emissions were estimated by 

extrapolating from the baseline scenario using the projected electricity demands. The 

average emission rates (tons of emissions per GWh of load) in the future scenarios were 

assumed to be the same as in the baseline scenario (2002). In practice, the emission rates 

in the future scenarios are expected to be lower due to improved technology and stringent 

regulations on power generation units. As an example, the California Emission 

Forecasting System predicts that NOx emissions from stationary point sources would 

decrease from 2000 to 2020, despite that electricity demands may increase.  
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Uncertainties also exist in the estimated total on-road mobile source emissions, as 

well as the spatial distributions of these emissions. Total vehicle mileage travelled in the 

whole study domain were allocated to each county based on estimated vehicle trips 

generated in corresponding counties. Individual travel behaviors such as trip length and 

trip frequency may vary under different urban forms (Milakis et al., 2008), however such 

effects were not included in this study due to lack of information. Spatial distributions of 

on-road mobile source emissions were predicted to the future scenarios using multiple 

linear regression, and no travel demand analysis were performed. In addition, no roadway 

network expansions were included in the One Bay visioning plan, nor in the emission 

estimation.  

In this study, non-road mobile source emissions were estimated using the NMIM 

model and default activity data were applied for both the compact and sprawl scenarios. 

The default data may not accurately reflect off-road motor-engine activities in each 

county, especially under different urban forms. 

6.3.5. Summary and Conclusion of Emission Estimation 

To summarize, on-road mobile, stationary point, non-road, non-point and 

biogenic emissions of five selected pollutants, 1,3-butadiene, benzene, NOx, acetaldehyde 

and formaldehyde, were estimated for the three hypothetical future scenarios: sprawl, 

compact and an electric vehicle scenario. The MOVES model was applied to estimate 

future on-road mobile source emissions using extrapolated vehicle population and vehicle 

mileage travelled data. Spatial distributions of on-road mobile source emissions were 

estimated using multiple linear regressions. Pollutant emissions from stationary point 

sources were extrapolated to the future scenarios using predicted electricity demand data, 
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and temporal variations of point source emissions in the electric vehicle scenario were 

adjusted based on derived electric vehicle charging profiles. For non-point source 

emissions, 9 surrogates were used to extrapolate the baseline emissions to the year 2050. 

The NMIM model was used to calculate non-road mobile source emissions, and biogenic 

emissions were projected to the future scenarios based on forest area. 

Compared to the baseline scenario (2002), the estimated on-road mobile source 

emissions in the future scenarios are substantially lower for 1,3-butadiene, benzene and 

NOx. They are also slightly lower for formaldehyde, and acetaldehyde in the compact 

scenario, but slightly higher for acetaldehyde in the sprawl scenario. Between the two 

future scenarios, sprawl scenario consistently show higher on-road emissions due to 

higher predicted vehicle mileage travelled. Due to distinct development patterns, on-road 

emissions of all pollutants are higher in developed counties in the compact scenario, and 

higher in relatively less developed counties in the sprawl scenario.  

The extrapolated stationary point source emissions are substantially higher in all 

three future scenarios than the baseline scenario. Point source emissions are the highest in 

the electric vehicle scenario due to vehicle fleet electrification, followed by sprawl, with 

the compact scenario show the lowest point source emissions. It does however needs to 

be noted that the predicted emissions from stationary sources are expected to be 

overestimated. The results for point sources represent what would happen if the 

emissions rates from power plants were not reduced.  

Total emissions from non-road, non-point and biogenic sources are lower for 1,3-

butadiene, acetaldehyde and formaldehyde in the future scenarios, due primarily to less 

forested areas. Emissions for benzene and NOx are comparable with the baseline 
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scenario, and may even be higher in some counties. Industrial, commercial and 

residential stationary fuel combustions contribute to benzene and NOx emissions. 

Overall, the total amount of pollutant emissions included in dispersion modeling 

in the compact scenario are lower for 1,3-butadiene, benzene, NOx and formaldehyde, but 

higher for acetaldehyde due to more forested land areas in the compact scenario. The 

findings suggest compact urban form may lead to less anthropogenic emissions, but 

contributions from biogenic sources may be substantial which could lead to higher total 

emissions. In Hillsborough County alone, total emissions in the compact scenario are 

lower for NOx but higher for the other pollutants. The inconsistency in the direction of 

change in emissions may be caused by the different spatial development patterns in the 

two scenarios.  

Regarding the fractions of emissions from each of the five emission categories, in 

the sprawl and compact scenarios, emissions were dominated by on-road, non-point and 

stationary point sources for 1,3-butadiene, benzene and NOx, respectively. In addition, 

on-road mobile sources also contribute most significantly to anthropogenic emissions of 

acetaldehyde and formaldehyde. After eliminating on-road mobile source emissions in 

the electric vehicle scenario, non-road sources are responsible for the most 1,3-butadiene 

emissions. In all three scenarios, biogenic sources emitted the most acetaldehyde and 

formaldehyde emissions.  

6.4. Concentration Estimation 

Similarly to the baseline scenario, the non-steady-state Gaussian dispersion model 

CALPUFF was used to estimate concentrations of the five selected pollutants due to local 

emissions. However, no model output data from Eulerian grid models are available for 
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the future scenarios, hence no further concentration adjustments such as “blending” were 

performed for acetaldehyde and formaldehyde.  

6.4.1. Methods of Concentration Estimation 

The same meteorological data as used in the baseline scenario were used for the 

future scenarios. Model configurations including reaction parameters, dry and wet 

deposition parameters were also kept the same as in the baseline scenario. The three 

future scenarios were modeled separately. For computational tractability, the whole 

CALPUFF modeling was split into 867 cases with each case executed individually and 

the results were later aggregated.  

6.4.2. Results and Discussion of Concentration Estimation 

6.4.2.1. Modeled NOx Concentrations 

Table 6.13 provides modeled concentration summaries for the highest 1 hour, 98th 

percentile of hourly and annual average NOx concentrations for the sprawl, compact and 

electric vehicle scenarios. For comparison purposes, concentration summaries in the 

baseline scenario are also provided. Spatial distributions of the modeled NOx 

concentrations are shown in Figure 6.9. Compared to the baseline scenario, the modeled 

NOx concentrations are generally higher in the three future scenarios with the exception 

of the compact scenario at annual average scale. The modeled lower NOx concentrations 

may be explained by the disproportionately small contributions of stationary point source 

emissions to NOx concentrations (see section 5.5.2.1).  

Among three scenarios, the electric vehicle scenario consistently shows the 

highest NOx concentrations at all temporal metrics, followed by sprawl and then compact 

scenario with the lowest concentrations. The direction of concentration changes across 
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the three scenarios are consistent with the directions of emission changes as discussed 

previously. 

Table 6.13 Concentration summaries for the modeled highest 1 hour, 98th percentile of 

hourly and annual average NOx concentrations for the sprawl, compact, electric vehicle 

and the baseline scenarios 

    concentrations (µg/m3) 

    sprawl compact electric vehicle baseline 

highest 1 hour 

range 95-45700 79-30800 144-122000 67-2740 

average 433 352 695 262 

std. 1200 812 2600 150 

98th percentile 

range 41-2800 33-1900 55-5340 25-524 

average 98 83 136 72 

std. 94 69 167 32 

annual average 

range 7-220 5-154 9-378 4-138 

average 17 14 21 14 

std. 12 9 17 7 

*std.: standard deviation 

 

Assuming standard ambient temperature and pressure, the National Ambient Air 

Quality Standard (NAAQS) standards for NO2 are equivalent to 100 µg/m3 and 188 

µg/m3, at annual and 98th percentile temporal scale. The modeled average NOx 

concentrations are below the NO2 standard at two temporal scales, but the modeled 

highest NOx concentrations at some receptors exceeded the standard. For all three 

temporal metrics, the highest NOx concentrations are found near Port of Tampa and 

above the intersections of I-4 and I-75, where a fugitive point source is located. The term 

“fugitive” refers to the unintended release of pollutants from non-designated release 

points (such as stacks), mainly from industrial processes. Fugitive emissions are normally 

released at near ground level and hence may impact air pollution concentrations at 

ground level. The Port of Tampa area has substantial NOx emissions from commercial 

marine vessels, and also with a few major point sources located nearby. Regarding the 
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mentioned fugitive point source, although the amount of emissions from the specific 

point source is relatively small compared to other major sources (Figure 6.6), it still 

contributes to nearby NOx concentrations due to its fugitive nature. The impacts of on-

road mobile source emissions are not clearly observed from Figure 6.10, owing to 

significantly lower emissions in the future scenarios. 

 
Figure 6.10 Modeled highest 1 hour (1st 1h), 98th percentile of hourly and annual 

average NOx concentrations in the sprawl, compact and electric vehicle scenarios. 

 

Comparing between scenarios (Figure 6.11), contributions of point sources to 

NOx concentrations are apparent. Note that emissions from marine vessels were held 

constant in the three scenarios, hence they do not contribute to concentration changes 

among scenarios. Between the sprawl and the compact scenarios, NOx concentrations are 

lower in the majority of the domain for all temporal metrics in the compact scenario than 

the sprawl scenario, and the largest concentration differences are found near Port of 
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Tampa, as well as near the fugitive point source mentioned previously. Between the 

electric vehicle and the compact scenarios, NOx concentrations are higher in most areas 

of the study domain in the former, with the highest differences again found in the same 

areas as above. 

 
Figure 6.11 Concentration differences between the sprawl and compact, and between the 

compact and electric vehicle scenarios for highest 1 hour, 98th percentile and annual 

average NOx concentrations. 

 

Overall, the modeling results suggest that stationary point sources contribute 

substantially to the modeled NOx concentrations, as well as the observed concentration 

differences between scenarios. Such results are expected as point sources dominate NOx 

emissions in all three scenarios (Figure 6.9). It is necessary to note that NOx emissions 

from stationary point sources are likely to be overestimated. Considering NOx alone, air 
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quality in Hillsborough County is better in the compact urban form than in the sprawl 

urban form, primarily due to the predicted lower electricity consumptions (which lead to 

lower point source emissions) in this County. However, air quality benefits arising from 

complete elimination of on-road mobile source NOx emissions through vehicle fleet 

electrification are overcome by the substantially increased stationary point source 

emissions, and overall led to worse air quality in the electric vehicle scenario 

6.4.2.2. Modeled 1,3-butadiene Concentrations 

Table 6.14 provides concentration summaries for the modeled highest 1 hour and 

annual average 1,3-butadiene concentrations for three future scenarios and again for 

comparison, the baseline scenario. Compared to the baseline, the modeled 1,3-butadiene 

concentrations are substantially lower in the future scenarios, mainly due to reduced 

emissions (Table 6.11). Among the three future scenarios, 1,3-butadiene concentrations 

are slightly higher in the compact than sprawl scenarios at both temporal scales. Although 

total 1,3-butadiene emissions included in the whole modeling domain is 3% lower in the 

compact scenario (Table 6.11), emissions in Hillsborough County alone increased by 

approximately 10% (Table 6.12) which resulted in the observed concentration increase. 

Average 1,3-butadiene concentrations are the lowest in the electric vehicle scenario. 

Figure 6.12 provides spatial distributions of the modeled highest 1 hour and 

annual average 1,3-butadiene concentrations in the three future scenarios. The highest 

1,3-butadiene concentrations are generally found near airports such as Tampa 

International Airport and MacDill Air Force Base, suggesting concentration contributions 

from airport emissions. Although not as apparent, contributions from on-road mobile 

sources are also visible in annual average 1,3-butadiene concentration distributions for 
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the sprawl and compact scenarios, where increased concentrations can be found near 

major roadways. As shown in Table 6.11, on-road mobile sources emitted more 1,3-

butadiene than non-road mobile sources (which include airport sources). Despite this, 

airport emissions are concentrated in certain locations, whereas on-road mobile sources 

are relatively sparsely distributed, hence the impact of airport emissions appear more 

prevalent in the results.  

Table 6.14 Concentration summary for the modeled highest 1 hour and annual average 

1,3-butadiene concentrations for sprawl, compact and electric vehicle scenario 

    concentrations (µg/m3) 

    sprawl compact electric vehicle baseline 

highest 1 hour 

range 0.022-0.24 0.02-0.28 0.013-0.23 0.04-4.8 

average 0.076 0.089 0.049 0.24 

std. 0.038 0.049 0.031 0.18 

annual average 

range 0.0013-0.011 0.0012-0.013 0.0006-0.0091 0.003-0.21 

average 0.0041 0.0044 0.0021 0.012 

std. 0.0017 0.0022 0.0011 0.007 

*std.: standard deviation 

 

 
Figure 6.12 Modeled highest 1 hour (1st 1h) and annual average 1,3-butadiene 

concentrations in sprawl, compact and electric vehicle scenarios. 
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The modeled concentration differences for 1,3-butadiene between future scenarios 

are shown in Figure 6.13. Concentrations are higher in the majority of Hillsborough 

County in the compact scenario. The spatial patterns of the differences in 1,3-butadiene 

concentration essentially follow emission differences as shown in Figure 6.8, suggesting 

non-point sources contribute to the observed differences. Compared to the compact 

scenario, 1,3-butadiene concentrations are lower near major roadways, due to elimination 

of on-road mobile source emissions. 

 
Figure 6.13 Concentration differences between sprawl and compact, and between 

compact and electric vehicle scenarios for highest 1 hour and annual average 1,3-

butadiene concentrations. 

 

For 1,3-butadiene, air quality in Hillsborough County is better in sprawl urban 

form than compact urban form, although the amount of total 1,3-butadiene emissions 

included in dispersion modeling is lower in the compact scenario. The spatial re-

distribution of 1,3-butadiene emissions may be responsible for such observations. In 

addition, the modeling results show that through vehicle fleet electrification, air quality in 

Hillsborough County could be improved. 
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6.4.2.3. Modeled Benzene Concentrations 

A summary of the modeled benzene concentrations in the baseline and three 

future scenarios are shown in Table 6.15. Generally, benzene concentrations are lower in 

future scenarios than in the baseline. Among the future scenarios, benzene concentrations 

are the highest in the sprawl scenario, followed by the compact scenario and finally are 

the lowest in the electric vehicle scenario. Total emissions of benzene included in 

dispersion modeling are also ranked in the same order (Table 6.11).  

Table 6.15 Concentration summary for the modeled highest 1 hour and annual average 

benzene concentrations for the sprawl, compact and electric vehicle scenario 

    concentrations (µg/m3) 

    sprawl compact electric vehicle baseline 

highest 1 hour 

range 0.69-5.6 0.50-6.23 0.40-5.17 1.1-4.5 

average 1.7 1.8 1.4 3.4 

std. 0.78 0.97 0.8 1.8 

annual average 

range 0.036-0.23 0.030-0.26 0.02-0.21 0.07-2.0 

average 0.094 0.091 0.066 0.19 

std. 0.033 0.041 0.031 0.085 

*std.: standard deviation 

 

Spatial distributions of the modeled benzene concentrations are shown in Figure 

6.14, and concentration differences between scenarios are shown in Figure 6.15. 

Generally, benzene concentrations are higher near downtown and Port of Tampa in all 

scenarios. Compared to the sprawl scenario, the averaged benzene concentration across 

all receptors is lower in the compact scenario, but is higher in the left portion of 

Hillsborough County. The observed higher benzene concentrations in the compact 

scenario is contributed by higher benzene emissions in Hillsborough County (Table 6.12 

and Figure 6.8). Comparing the electric vehicle and compact scenarios, benzene 
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concentrations are lower in all of Hillsborough County, due to elimination of on-road 

mobile source emissions. 

 
Figure 6.14 Modeled highest 1 hour (1st 1h) and annual average benzene concentrations 

in sprawl, compact and electric vehicle scenarios. 

 

 
Figure 6.15 Concentration differences between sprawl and compact, and between 

compact and electric vehicle scenarios for highest 1 hour and annual average benzene 

concentrations. 

 

Overall the average benzene concentration in Hillsborough County is lower in the 

compact scenario than the sprawl scenario, but this concentration is higher in some 



 

223 

 

regions of Hillsborough County. The observed higher benzene concentration areas are 

populated census block groups, which could result in higher human exposure to benzene 

in the compact scenario. In addition, vehicle fleet electrification would lead to lower 

average benzene concentration across the whole Hillsborough County region, and hence 

benzene exposure in the electric vehicle scenario is expected to be lower than in the 

compact scenario. 

6.4.2.4. Modeled Acetaldehyde and Formaldehyde Concentrations 

Both acetaldehyde and formaldehyde have substantial biogenic emissions. As 

shown in Table 6.11 and Table 6.12, the total acetaldehyde emission included in the 

modeling is slightly higher (3%) in the compact than the sprawl scenario, compared to 

slightly lower (-2%) for formaldehyde. In Hillsborough County alone, total acetaldehyde 

and formaldehyde emissions are 10% and 8% higher in the compact than sprawl scenario 

respectively. Regarding the modeled average pollutant concentration levels, results for 

both acetaldehyde and formaldehyde are higher in the compact scenario than the sprawl 

scenario (Table 6.16 and Table 6.17). The increased pollutant emissions in Hillsborough 

County in the compact scenario are responsible for these higher concentration levels. Due 

to elimination of on-road mobile source emissions, average acetaldehyde and 

formaldehyde concentrations in the electric vehicle scenario are found to be lower than in 

the compact scenario.  

Figure 6.16 shows the modeled highest 1 hour and annual average acetaldehyde 

and formaldehyde concentrations in the three future scenarios, despite the fact that 

biogenic emissions dominate total emissions for the two pollutants, the highest pollutant 

concentrations are not found near forested areas. Specifically, highest acetaldehyde 
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concentrations are found near the Port of Tampa area, where marine vessel emissions are 

high (Figure 6.8). For formaldehyde, the highest concentrations are not only found near 

the same port area, but also are found near the locations of some point sources (Figure 

6.5). Biogenic emissions are sparsely distributed across the whole modeling domain, and 

although the total amount of emissions are high, the per-area emission rates of biogenic 

sources are relatively low. 

Table 6.16 Concentration summary for the modeled highest 1 hour and annual average 

acetaldehyde concentrations for sprawl, compact and electric vehicle scenario 

    concentrations (µg/m3) 

    sprawl compact electric vehicle baseline 

highest 1 hour 

range 0.43-4.7 0.44-4.86 0.4-4.3 0.68-8.4 

average 0.87 0.94 0.8 1.6 

std. 0.42 0.42 0.38 0.48 

annual average 

range 0.021-0.15 0.02-0.15 0.016-0.14 0.02-0.4 

average 0.045 0.048 0.037 0.068 

std. 0.014 0.015 0.012 0.022 

*std.: standard deviation. Baseline concentrations are those modeled directly by 

CALPUFF 

 

Table 6.17 Concentration summary for the modeled highest 1 hour and annual average 

formaldehyde concentrations for sprawl, compact and electric vehicle scenario 

    concentrations (µg/m3) 

    sprawl compact electric vehicle baseline 

highest 1 hour 

range 0.56-88 0.7-77 0.47-82 0.74-57 

average 1.6 1.8 1.4 2.1 

std. 2 1.8 2.3 1.1 

annual average 

range 0.03-0.56 0.047-0.55 0.021-0.54 0.03-0.9 

average 0.075 0.12 0.057 0.098 

std. 0.03 0.045 0.027 1 

*std.: standard deviation. Baseline concentrations are those modeled directly by 

CALPUFF 
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The modeled concentration differences between the future scenarios for 

acetaldehyde and formaldehyde at two temporal scales are shown in Figure 6.17. 

Comparing the sprawl and compact scenarios, concentrations of both pollutants are 

higher in the majority of Hillsborough County in the latter. At the highest 1 hour 

temporal scale, the highest concentration differences are scattered and no apparent 

patterns can be observed between pollutants, although it is worth noting that some of the 

highest concentration differences correspond to low residential areas in the sprawl 

scenario (Figure 6.1). At the annual average temporal scale, the highest concentration 

changes can be observed near the downtown area, with some slightly less evident but still 

observable changes along major roadways, suggesting contributions from on-road mobile 

sources. Between the electric vehicle scenario and the compact scenario, acetaldehyde 

and formaldehyde concentrations are generally lowered across the whole County in the 

former. The increased point source emissions of acetaldehyde did not substantially 

impact acetaldehyde concentrations. At the highest 1 hour temporal scale, the impacts of 

point sources on concentrations of formaldehyde can be observed, however the impacts 

are mainly localized to a few point sources and are relatively small.  

Overall, regarding acetaldehyde and formaldehyde, air quality in Hillsborough 

County is better in the sprawl than the compact scenario, due mainly to spatial re-

distribution of pollutant emissions. With the elimination of on-road mobile source 

emissions, concentrations of acetaldehyde and formaldehyde were lowered in the electric 

vehicle scenario compared to the compact scenario, suggesting improved air quality with 

the implementation of vehicle fleet electrification. 
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Figure 6.16 Modeled highest 1 hour (1st 1h) and annual average acetaldehyde and 

formaldehyde concentrations in sprawl, compact and electric vehicle scenarios. 

 

6.4.3. Discussion of Concentration Estimation Findings 

Using the CALPUFF model, the spatial distributions of pollutant concentrations 

in Hillsborough County were estimated for the three future scenarios. Restricted by the 

nature of the CALPUFF model, atmospheric formations of pollutants were not modeled, 

and as such the estimated pollutant concentrations are due to local emissions. Therefore, 

all pollutants are essentially modeled as primary pollutants in this study. 



 

227 

 

 
Figure 6.17 Concentration differences between sprawl and compact, and between 

compact and electric vehicle scenarios for highest 1 hour and annual average 

acetaldehyde and formaldehyde concentrations. 

 

Most previous studies regarding the impact of urban forms on pollutant 

concentrations have found lower average pollutant concentrations in compact than sprawl 

urban form, for both primary pollutants and pollutants with substantial secondary 

contributions (Bechle et al., 2011; Ridder et al., 2008; Hixson. et al., 2012; Kahyaoğlu-

Koračin et al., 2009; Martins, 2012; Schweitzer & Zhou, 2010). The findings are mainly 
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due to lower total pollutant emissions estimated in compact urban forms. For primary 

pollutants, urban centers were found to exhibit concentrated and increased emissions 

under compact urban form which consequently lead to higher concentrations in these 

urban centers (Hixson et al., 2010; Martins, 2012). 

In this study, comparing the sprawl and compact scenarios, higher average 

pollutant concentrations were found in the compact scenario for 1,3-butadiene, 

acetaldehyde and formaldehyde. The findings are not contrary to but rather consistent 

with earlier literatures as pollutant concentrations were estimated for Hillsborough 

County only, which is a one of the most urbanized regions of all seven counties included 

in the One Bay visioning plan. As mentioned previously, concentration levels of primary 

pollutants were also found to be higher in urban centers in compact urban form. 

Regarding NOx and benzene, average pollutant concentrations are lower in the 

compact than sprawl scenario. Spatially, benzene concentrations in urbanized areas in 

Hillsborough County are generally higher in the compact than sprawl scenario (Figure 

6.15), while concentrations in the remaining regions are generally lower. Despite this, for 

NOx, pollutant concentrations are consistently lower across the whole county in the 

compact than sprawl scenario (Figure 6.11), particularly near downtown Tampa area, 

where the largest concentration differences were found.  

The results for NOx adds to the present range of knowledge in the field by 

demonstrating that concentrations of primary pollutants are not guaranteed to be higher in 

urban centers in the compact urban form. Rather, these pollutant concentrations may 

depend on the type of dominant emissions sources, as well as the locations of these 

emission sources. 
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In this study, the majority of NOx emissions were from point sources, and some of 

the point sources with the highest emissions were located near downtown Tampa area. 

Due to the predicted lower electricity consumptions, point source emissions are lower in 

the compact scenario, which in turn lead to lower NOx concentrations nearby. For other 

pollutants, on-road, non-road or non-point source emissions contribute most to pollutant 

concentrations. Since emissions from these sources tend to be greater and concentrated 

around urban centers in compact urban form, higher pollutant concentrations are expected 

in the compact than sprawl scenario around these urban centers. Again, it needs to be 

noted that the estimated NOx emissions from stationary point sources may be 

overestimated. 

The modeling results suggest that with vehicle fleet electrification, concentration 

levels of 1,3-butadiene, benzene, acetaldehyde and formaldehyde could be lowered, 

whereas concentrations of NOx may be increased due to increased point source 

emissions. Hence, the impacts of vehicle fleet electrification on air quality are rather 

pollutant specific, and may not be always beneficial.  

6.4.4. Limitations and Uncertainties in Concentration Estimation 

There are several important limitations to the modeling of pollutant 

concentrations for the future scenarios. First, due to data availability, the CALPUFF 

modeled acetaldehyde and formaldehyde concentrations were not combined with any 

Eulerian model outputs as in the baseline scenario. A substantial amount of acetaldehyde 

and formaldehyde are formed in the atmosphere rather than directly emitted (Finlayson-

Pitts & Pitts, 1999), but these concentrations cannot be captured by the CALPUFF model.  
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A second limitation is the less explicit representation of major roadways. In the 

baseline scenario, all major roadways were modeled on a link by link basis. However in 

future scenarios only freeways were modeled link by link and all other major roadways 

were modeled as area sources. Hence, the near road impact of those links not modeled 

explicitly may not be accurately captured. 

6.4.5. Summary and Conclusions 

Using dispersion modeling, concentrations of five selected pollutants (NOx, 1,3-

butadiene, benzene, acetaldehyde and formaldehyde) were estimated for three future 

scenarios (sprawl, compact and electric vehicle scenario) at multiple temporal scales. 

Average concentrations and the spatial distribution of concentrations were compared to 

evaluate the impact of different urban forms and vehicle fleet electrification on air 

quality.  

The modeling results show lower average pollutant concentrations of NOx and 

benzene, and higher average concentrations of the other three pollutants in the compact 

than the sprawl scenario. Spatially, 1,3-butadiene, acetaldehyde and formaldehyde 

concentrations in the compact scenario are higher in the majority of Hillsborough 

County; benzene concentrations are higher in urbanized areas and NOx concentrations are 

consistently lower across the whole county.  

The findings for 1,3-butadiene, benzene, acetaldehyde and formaldehyde are 

consistent with past studies. Findings for NOx suggest that concentration levels of 

primary pollutants may not necessarily be higher in urban centers in compact urban form, 

and they rather these concentrations depend on the dominant emissions sources and their 

locations. 
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In addition, vehicle fleet electrification was found to result in lower concentration 

levels of 1,3-butadiene, benzene, acetaldehyde and formaldehyde, but higher 

concentration levels of NOx in the whole county. The increased point source emissions of 

NOx are responsible for these observed concentration increases. Overall, the impacts of 

vehicle fleet electrification on air quality are pollutant specific, and may not always be 

beneficial. 

6.5. Exposure Estimation in Future Scenario 

The CALPUFF modeled pollutant concentrations in the three future scenarios 

were combined with projected population data to estimate human exposures to air 

pollution in future scenarios. Results for the different scenarios were compared to 

evaluate the impact of urban form and vehicle fleet electrification on air pollution 

exposure.  

6.5.1. Methods of Exposure Estimation 

First, block group level population distributions in the future scenarios were 

estimated. Population weighted exposures were then calculated for three scenarios and 

comparisons were performed. 

Block group populations in the future scenarios were estimated by combining 

populations in the baseline scenario with estimated population changes in the 

corresponding block group, which were calculated in a similar way to the calculation for 

county total populations described in section 5.3.1.1.1: 
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where Pb,s is the population change in block group b for scenario s; pH is average person 

per household (2.46 person per household); k is land use types as defined in the One Bay 
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visioning plan; Lb,k,s,u is the total land area (acres) of land use type k in block group b in 

scenario s that is already developed to some extent in the baseline scenario, but with no 

further development in future scenarios; Hk,u is the household density (households per 

acre) for land use type k that is already developed to some extent but with no further 

development in future scenarios; Lb,k,s,d is the total land area (acres) of land use type k in 

block group b of scenario s that is newly or re-developed in the future scenario; and Hk,d 

is the household density (households per acre) for land use type k that is re-developed in 

the future scenario. 

6.5.2. Results and Discussion of Exposure Estimation 

Table 6.18 provides the estimated population exposures to the five selected 

pollutants in the three future scenarios. The county average human exposures are higher 

in the sprawl than compact scenarios for NOx, but are lower for the other four pollutants. 

The findings for 1,3-butadiene, benzene, acetaldehyde and formaldehyde are consistent 

with previous studies, where higher human exposures to primary pollutants are found in 

compact urban form (Hixson et al., 2010; Martins, 2012). This is mainly due to the co-

location of populated areas and areas with higher pollutant concentrations.  

Table 6.18 Estimated population weighted exposure to the five chosen pollutants in the 

future scenarios. 

  population weighted exposure (µg/m3) 

 highest 1 hour annual average 98th percentile 

  spr com elec spr com elec spr com elec 

NOx 547 457 991 19 18 27 116 109 186 

1,3-butadiene 0.085 0.12 0.064 0.0046 0.006 0.0028    

benzene 1.9 2.3 1.8 0.11 0.12 0.089    

acetaldehyde 0.89 1 0.79 0.047 0.054 0.039    

formaldehyde 1.7 2.1 1.6 0.08 0.14 0.064       

*spr: sprawl scenario; com: compact scenario; elec: electric vehicle scenario 
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As discussed in Section 5.4.2.1, the modeled NOx concentrations in urbanized 

areas are lower in the compact than sprawl scenario due to lower NOx emissions from 

point sources. These urbanized areas have densely distributed populations in the compact 

scenario, and hence human populations are co-located with lower NOx concentrations. 

Consequently, human exposures to NOx are lower in the compact than sprawl scenario, 

suggesting compact urban form may not necessarily always have higher human 

exposures to primary pollutants than sprawl urban form. 

Comparing the compact and electric vehicle scenarios, county average exposures 

are higher in the latter for NOx, but lower for other pollutants. For 1,3-butadiene, 

benzene, acetaldehyde and formaldehyde, ambient concentration levels are largely 

contributed by other emissions sources besides point sources. By eliminating on-road 

mobile sources emissions, their ambient concentrations will be lowered. Regarding NOx, 

point sources dominate emissions and contribute to NOx concentrations. Through vehicle 

fleet electrification point source emissions of NOx were significantly increased, which in 

turn leads to higher ambient NOx concentration in Hillsborough County and hence higher 

NOx exposures. Therefore, the implementation of vehicle fleet electrification as a 

potential strategy for the alleviation of air pollution exposures in compact urban form 

may be favorable for some pollutants, but not all. 

6.5.3. Limitations and Uncertainties of Exposure Estimation 

Block group population projections may contains significant uncertainties. More 

comprehensive and rigorous models are available, such as UrbanSim (The UrbanSim 

Project, 2011) and MoSeS (Townend et al., 2009), which are suggested for future studies. 
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Similar with exposure estimation for the baseline scenario, there are overlapping 

in the category definition for race/ethnicity groups. Human activity patterns, as well as 

pollutant concentration variations at micro-environments were not included in the 

exposure estimation. Additional analysis are suggested. 

6.5.4. Summary and Conclusion of Exposure Estimation 

The modeled pollutant concentrations of NOx, 1,3-butadiene, benzene, 

acetaldehyde and formaldehyde are combined with the projected population in the future 

scenarios to estimate human exposures to air pollution. Results for different scenarios 

were compared to investigate the impact of urban form on air pollution exposure. 

Past literatures consistently show that human exposures to air pollution may be 

higher in compact urban form for primary pollutants. Consistent findings were found for 

1,3-butadiene, benzene, acetaldehyde and formaldehyde, however for NOx the current 

results suggest the possibility of a reversed relationship: air pollution exposure to NOx is 

in fact higher in the sprawl than in compact urban form. The type of emission source that 

contributes to the ambient pollutant concentrations, and the locations of these emission 

sources are important.  

6.6. Explore Exposure Inequalities in Future Scenarios 

To explore the potential impact of urban form on exposure inequalities among 

population subgroups, demographic data at block group level were projected to the future 

scenarios and combined with the modeled pollutant concentrations to estimate air 

pollution exposures among chosen race/ethnicity, age and income subgroups. 
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6.6.1. Methods for Exposure Inequalities Estimation 

Demographic data used in the baseline scenarios were extrapolated to the year 

2050. First, projected total populations of race/ethnicity (black, Hispanic, white) and age 

(age < 5, between 5 and 65 and age > 65) subgroups in Hillsborough County for the year 

2030 were obtained from the Bureau of Economic and Business Research (BEBR). 

Population fractions of each chosen subgroup were calculated and further extrapolated 

linearly to the year 2050. The total populations of each chosen subgroup were then 

estimated by multiplying the extrapolated fractions with county total population for 

Hillsborough County in future scenarios (see section 5.3.1.1.1). Total population changes 

for each specific subgroup were obtained by subtracting the baseline population of each 

subgroup from the predicted populations of the corresponding subgroup in the future 

scenarios. The calculated subgroup population changes were then spatially distributed to 

each census block group proportional to the total population changes in the corresponding 

block group. Finally, subgroup populations in each census block group for race/ethnicity 

and age groups were estimated by summing the baseline population with the distributed 

population changes for the corresponding subgroup.  

Regarding income subgroups, it was assumed that the proportions of each income 

groups in each block group in the future scenarios are the same as in the baseline 

scenario. The estimated subgroup populations were then combined with modeled 

pollutant concentrations to estimate exposure inequalities. Population weighted exposures 

and subgroup inequality index were used to quantify exposure distribution among 

subgroups. 
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6.6.2. Results and Discussion for Exposure Inequalities Estimation 

Table 6.19 through Table 6.23 show the estimated population weighted exposures 

for all five pollutants in the three future scenarios, and the estimated inequality indices 

are provided in Appendix B-8 through Appendix B-22.  

Among race/ethnicity subgroups, in the compact and electric vehicle scenarios, 

black and Hispanic subgroups consistently experience higher than county average 

population-weighted exposures, while white subgroup experiences lower than county 

average exposures. However in the sprawl scenario for 1,3-butadiene and benzene, as 

well as acetaldehyde and formaldehyde at annual average scale, the directions of change 

in exposure for white and Hispanic subgroups are reversed. The white subgroup now 

experiences higher exposure levels whereas the Hispanic subgroup experiences lower 

than county average exposure. For NOx, acetaldehyde and formaldehyde at the highest 1 

hour temporal scale, the reverse patterns are not observed. This finding suggests that 

urban forms do have impact inequalities regarding air pollution exposures, but the 

impacts differ by pollutants and temporal scales. Similar reversed exposure patterns are 

also observed for age subgroups.  

Among income subgroup, the lowest income subgroup consistently experiences 

the highest exposures, and the population weighted exposure levels generally decreases 

with the increase of income. The only exception to this pattern is for the highest income 

subgroup (> 100K). This observation suggests that exposures tend to be inversely 

correlated with annual household income.  

Appendix B-8 through Appendix B-22 provide detailed population distributions 

and estimated inequality indices for each population subgroup in the three scenarios for  
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Table 6.19 Population weighted exposures for NOx at three future scenarios. Exposure 

values larger than county average are shaded. 

    population weighted exposure (µg/m3) 

  highest 1 hour 98th percentile annual average 

    spr com elec spr com elec spr com elec 

race/ethnicity 

white 403 346 639 108 92 146 18.5 15.5 22.5 

black 660 527 1186 127 119 208 20.4 19.3 29.5 

Hispanic 629 503 1142 122 118 207 19.5 19.1 29.2 

age 

< 5 519 440 940 114 105 179 18.7 17.3 26.1 

between 5 and 65 519 440 938 114 106 180 18.9 17.5 26.3 

> 65 627 502 1139 120 117 203 19.4 19.0 29.0 

annual household income 

< 20K 771 582 1376 140 124 223 22.1 19.9 30.9 

between 20K to 40K 544 462 971 116 111 187 19.1 18.2 27.3 

between 40K to 60K 492 412 842 110 104 174 18.1 17.1 25.4 

between 60K to 100K 409 350 657 97 92 148 16.6 15.5 22.7 

> 100k 407 349 676 99 94 150 17.1 16.0 23.2 

county average 547 457 991 116 109 186 19.0 17.9 27.0 

*spr: sprawl scenario; com: compact scenario; elec: electric vehicle scenario 

 

Table 6.20 Population weighted exposures for 1,3-butadiene at three future scenarios. 

Exposure values larger than county average are shaded. 

    population weighted exposure (µg/m3) 

  highest 1 hour annual average 

    spr com elec spr com elec 

race/ethnicity 

white 0.091 0.110 0.058 0.0050 0.0056 0.0026 

black 0.090 0.134 0.068 0.0048 0.0065 0.0030 

Hispanic 0.081 0.127 0.067 0.0044 0.0063 0.0029 

age 

< 5 0.088 0.121 0.063 0.0048 0.0060 0.0027 

between 5 and 65 0.087 0.121 0.063 0.0048 0.0060 0.0028 

> 65 0.079 0.125 0.065 0.0043 0.0062 0.0028 

annual household income 

< 20K 0.094 0.137 0.069 0.0050 0.0066 0.0030 

between 20K to 40K 0.087 0.125 0.065 0.0047 0.0062 0.0028 

between 40K to 60K 0.083 0.119 0.063 0.0045 0.0059 0.0027 

between 60K to 100K 0.078 0.108 0.057 0.0043 0.0055 0.0025 

> 100k 0.078 0.107 0.059 0.0044 0.0056 0.0026 

county average 0.085 0.122 0.064 0.0046 0.0060 0.0028 

*spr: sprawl scenario; com: compact scenario; elec: electric vehicle scenario 
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Table 6.21 Population weighted exposures for benzene at three future scenarios. 

Exposure values larger than county average are shaded. 

    population weighted exposure (µg/m3) 

  highest 1 hour annual average  

    spr com elec spr com elec 

race/ethnicity 

white 1.96 2.129 1.69 0.115 0.11 0.083 

black 1.97 2.503 1.98 0.110 0.13 0.096 

Hispanic 1.82 2.391 1.89 0.102 0.13 0.092 

age 

< 5 1.90 2.292 1.81 0.109 0.12 0.088 

between 5 and 65 1.90 2.299 1.82 0.109 0.12 0.089 

> 65 1.82 2.392 1.89 0.100 0.12 0.091 

annual household income 

< 20K 2.06 2.582 2.04 0.114 0.13 0.097 

between 20K to 40K 1.93 2.386 1.89 0.108 0.12 0.091 

between 40K to 60K 1.82 2.239 1.77 0.104 0.12 0.087 

between 60K to 100K 1.73 2.075 1.64 0.100 0.11 0.081 

> 100k 1.76 2.151 1.71 0.103 0.11 0.083 

county average 1.88 2.323 1.84 0.107 0.12 0.089 

*spr: sprawl scenario; com: compact scenario; elec: electric vehicle scenario 

 

 

Table 6.22 Population weighted exposures for acetaldehyde at three future scenarios. 

Exposure values larger than county average are shaded. 

    population weighted exposure (µg/m3) 

  highest 1 hour annual average 

    spr com elec spr com elec 

race/ethnicity 

white 0.829 0.911 0.733 0.048 0.052 0.037 

black 0.957 1.069 0.833 0.047 0.055 0.039 

Hispanic 0.905 1.019 0.804 0.046 0.055 0.039 

age 

< 5 0.868 0.979 0.774 0.046 0.053 0.038 

between 5 and 65 0.873 0.983 0.780 0.047 0.054 0.038 

> 65 0.923 1.033 0.817 0.046 0.055 0.040 

annual household income 

< 20K 0.977 1.091 0.851 0.048 0.056 0.040 

between 20K to 40K 0.903 1.019 0.801 0.047 0.055 0.039 

between 40K to 60K 0.848 0.952 0.753 0.046 0.053 0.038 

between 60K to 100K 0.822 0.913 0.732 0.045 0.051 0.037 

> 100k 0.839 0.925 0.755 0.046 0.054 0.039 

county average 0.886 0.996 0.789 0.047 0.054 0.039 

*spr: sprawl scenario; com: compact scenario; elec: electric vehicle scenario 
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Table 6.23 Population weighted exposures for formaldehyde at three future scenarios. 

Exposure values larger than county average are shaded. 

    population weighted exposure (µg/m3) 

  highest 1 hour annual average 

    spr com elec spr com elec 

race/ethnicity 

white 1.49 1.83 1.29 0.082 0.136 0.0597 

black 1.93 2.33 1.85 0.081 0.149 0.0660 

Hispanic 1.83 2.24 1.77 0.078 0.148 0.0657 

age 

< 5 1.66 2.07 1.56 0.079 0.142 0.0623 

between 5 and 65 1.68 2.08 1.59 0.080 0.143 0.0631 

> 65 1.85 2.26 1.79 0.079 0.148 0.0661 

annual household income 

< 20K 1.85 2.28 1.62 0.084 0.150 0.0658 

between 20K to 40K 1.70 2.11 1.50 0.080 0.145 0.0641 

between 40K to 60K 1.53 1.95 1.37 0.077 0.140 0.0615 

between 60K to 100K 1.52 1.85 1.37 0.075 0.136 0.0595 

> 100k 1.44 1.85 1.29 0.078 0.142 0.0634 

county average 1.72 2.13 1.64 0.080 0.144 0.0639 

*spr: sprawl scenario; com: compact scenario; elec: electric vehicle scenario 

 

all pollutants at multiple temporal scales. Overall, the findings correspond well with 

findings for population weighted exposures among subgroups. 

Among race/ethnicity subgroups, the estimated indices for the black subgroup 

show a consistently increasing trend for all pollutants in the compact scenario, suggesting 

larger inequalities at higher concentrations levels. In the sprawl and electric vehicle 

scenarios, the indices for the black subgroup are generally positive, but the trend varies. 

In the compact and electric vehicle scenarios, inequality indices for the Hispanic 

subgroup are generally positive (disproportionately exposed), and indices for white 

subgroup are generally negative (disproportionately not exposed). The magnitude of the 

indices for the Hispanic subgroup is generally smaller than those for the black subgroup. 

Comparing the sprawl and compact scenarios, the impacts of urban form on air 

pollution exposure inequalities can also be seen. For example, positive indices were 
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estimated for the white subgroup whereas negative indices were estimated for the 

Hispanic subgroup in sprawl scenario, compared to the opposite compact scenario. This 

patterns however is not consistent for the other pollutants. 

The estimated inequality indices for the age subgroups are relatively small, with 

more fluctuations. Slightly positive indices were calculated for the older age subgroup 

(age > 65) in the compact and electric vehicle scenarios. The impact of urban form on 

inequalities can also be observed for this subgroup, especially for 1,3-butadiene and 

benzene. 

With the increase of annual household income, the estimated inequality indices 

generally decrease for all pollutants in all scenarios, with some fluctuations. This finding 

suggests that with the increase of income, the corresponding subgroup are more likely to 

live in areas with lower pollutant concentrations and hence are less likely to be 

disproportionately exposed to air pollution. The population distributions among income 

subgroups also show similar patterns: the population fractions of lower income subgroups 

seems to be greater in areas with higher pollutant concentrations. This pattern is reversed 

for higher income subgroups. 

Overall, these findings suggest urban forms do impact exposure inequalities 

among different subgroups, but the impact seems to differ by pollutant and temporal 

scale. Further, previous studies suggest on-road mobile sources may contribute 

significantly to inequalities related to air pollution exposure (Chakraborty, 2009). 

However when on-road mobile source emissions were eliminated, inequalities still exist. 

Past literatures regarding the impact of urban forms on air pollution exposure 

inequalities are limited (Ridder et al., 2008). These findings contribute to current 
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knowledge. However, evidences shown here are rather exploratory. Mechanisms 

regarding how urban forms impact exposure inequalities are still largely unknown. Future 

studies on this subject are needed to better understand this relationship. 

6.6.3. Limitation and Uncertainties for Exposure Inequalities Estimation 

The attempt to estimate exposure inequalities in future scenarios is exploratory in 

nature. Many assumptions were applied and lead to substantial uncertainties. The method 

used to predict subgroup populations at each census block group may contain the largest 

uncertainties. Some models, such as the previous mentioned UrbanSim (The UrbanSim 

Project, 2011) and MoSeS (Townend et al., 2009) model, are suggested for future work. 

6.7. Overall Summary and Conclusion 

In this chapter, the impacts of urban form on pollutant emissions, concentrations 

and pollution exposures were investigated. Five pollutants: NOx, 1,3-butadiene, benzene, 

acetaldehyde and formaldehyde were chosen. Emissions of these pollutants were 

projected to the year 2050 for three future scenarios: sprawl, compact and electric vehicle 

scenario. Concentration distributions of the pollutants were modeled using CALPUFF 

model. The modeled concentrations were then combined with projected demographic 

data to estimate human exposures to air pollution in the three scenarios, as well as 

exposure among chosen population subgroups. 

Emission estimation results show that emissions of NOx, 1,3-butadiene, benzene 

and formaldehyde are lower in the compact than sprawl scenario, while emissions of 

acetaldehyde are higher due to more forested land areas in compact urban form. With 

vehicle fleet electrification, emissions of 1,3-butadiene, benzene, acetaldehyde and 

formaldehyde are lowered but emissions of NOx were substantially increased as a result 
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of increased electricity demand. However it needs to be noted that the predicted 

emissions from stationary sources are expected to be overestimated, if new technologies 

that reduce NOx emissions are implemented. 

Concentration estimation results show that domain averaged concentrations of 

NOx and benzene are lower in the compact than sprawl scenario, and the averaged 

concentrations of the other pollutants are higher. Comparing the compact and electric 

vehicle scenarios, average pollutant concentrations are higher in the latter for NOx, due to 

substantially increased point source emissions, and are lower for other pollutants. In 

urbanized areas, a comparison of the spatial distribution of concentrations between the 

sprawl and compact scenarios show higher 1,3-butadiene and benzene concentrations, 

and higher annual average acetaldehyde and formaldehyde concentrations in the compact 

scenario. Concentrations of NOx are lower in the majority of Hillsborough County in the 

compact scenario, with the biggest concentration differences found near downtown 

Tampa and near a major fugitive point source. Between the compact and electric vehicle 

scenario, pollutant concentrations are higher in the majority of Hillsborough County for 

NOx, and are lower for other pollutants in the latter. 

Much previous studies suggest higher pollutant concentrations near urban centers 

in compact urban form when compared to sprawl urban form. Results of concentration 

estimation show the possibility of the opposite. Whether compact urban form leads to 

higher pollutant concentrations may be dependent on the emission sources that contribute 

to ambient pollutant concentrations, and the locations of those emission sources. In 

addition, vehicle fleet electrification was found to lead to generally worse air quality 

regarding NOx, but better air quality regarding the other four pollutants. 
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Overall population exposure estimations show that compact urban form may not 

necessarily lead to higher human exposure to air pollution, again the emission sources 

that contribute to the pollutant concentrations and the locations of these emission sources 

are important. Furthermore, exploratory estimations for exposure inequalities in future 

scenarios suggest that urban forms do impact inequalities regarding air pollution 

exposures, although the impacts differ by pollutants and temporal scales. 
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CHAPTER 7  

SUMMARY AND CONCLUSIONS 

 

7.1. Introduction 

Rapid urban growth and motor-vehicle dependency lead to drastically increased 

vehicle miles travelled. This results in substantial mobile source pollutant emissions, 

contributing to the deterioration of urban air quality, and human exposure to air pollution. 

Additionally, mobile source emissions also contribute to inequalities in air pollution 

exposure, which is a well-recognized issue in air quality management. 

This work investigated urban air pollution and exposure inequality by 

characterizing the complex relationship of urban form, pollutant emission, pollutant 

concentration, exposure to air pollution, and exposure inequalities. First, we investigated 

the impact of a small-scale transportation management project, specifically the ‘95 

Express’ high occupancy toll lane project, on pollutant emissions and air quality in the 

surrounding area. Second, we modeled the spatiotemporal concentration distributions of 

selected pollutants in the Tampa, FL area. We estimated residential human exposure to 

these pollutants, as well as exposure inequalities for selected race/ethnicity, age and 

income subgroups. Third, we investigated the impact of sprawl and compact urban forms, 

as well as vehicle fleet electrification, on pollutant emissions, spatiotemporal 

concentration distributions, air pollution exposure, and related exposure inequalities. 

Summaries from the three components are provided. 
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7.2. Impact of Transportation Infrastructure Improvements on Air Quality 

To investigate the air quality impact of the ‘95 Express’ high occupancy toll lane 

project (Phase 1A and 1B), baseline air quality was assessed by analyzing historical 

regulatory monitoring data. Next, on-road mobile source emissions from the study 

corridor were estimated. Ambient pollutant concentration levels were then determined 

using AERMOD model for areas surrounding the corridor. 

Baseline air quality data show that concentration levels of chosen criteria air 

pollutants including CO, NO2, O3, PM10 and PM2.5 are generally below corresponding 

standards established in the National Ambient Air Quality Standards. However, 

concentrations of NO2 (highest 1 hour), O3 (fourth highest 8 hour), and PM2.5 (98th 

percentile of 24 hour) exceeded corresponding standards in certain years. From 2000 - 

2009, concentrations of CO, NO2, and 1,3-butadiene in Broward and Miami-Dade 

counties, and benzene in Broward County show a declining trend. No apparent trend was 

observed for other pollutants. Air quality index in the two counties suggest a slightly 

better air quality in Miami-Dade County. 

On-road mobile source emissions from the study corridor were calculated by 

combining emission factors estimated from MOBILE6.2 model with traffic 

characteristics calculated by CORSIM model. Results show that implementation of the 

high occupancy toll lane project will slightly increase total emissions for CO, NOx, 

PM10, and benzene, and slightly decrease emissions of HC. Emissions from buses show 

a consistent decrease for all pollutants. The observed changes in emissions can be 

attributed to the changes in vehicle mileage travelled and emission factors, due to 

improved corridor performance.  
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The increase in on-road mobile source emissions for CO, NOx and benzene led to 

slightly elevated ambient concentration levels of these pollutants in the majority of the 

study domain. The northern end of the corridor experienced decreased concentrations due 

to spatially re-distributed vehicle mileage travelled as a result of the implementation of 

the high occupancy toll lane project.   

Results of the investigation contribute to the field by demonstrating performance 

improvements of transportation infrastructure do not equal a reduction in on-road mobile 

source emissions. It is rather determined by vehicle mileage travelled and the 

relationships between vehicle speed and pollutant emissions. Finally, the findings from 

this study could help better understanding the impact of transportation management 

choices on air quality, and could also be utilized to assist the designing of transportation 

infrastructure. 

7.3. Human Exposure and Exposure Inequalities to Selected Pollutant in the 

Tampa, FL area 

To appropriately characterize air pollution exposure and exposure inequalities in 

the Tampa, FL area, stationary point, on-road, non-road, non-point and biogenic 

emissions of NOx, 1,3-butadiene, benzene, acetaldehyde and formaldehyde were 

estimated for the study area and surrounding counties. Ambient concentration levels of 

the five pollutants were then estimated through either direct dispersion modeling using 

the CALPUFF model, or combining CMAQ data with CALPUFF modeling results. The 

estimated pollutant concentrations were spatially combined with census demographic 

data to estimate air pollution exposure and exposure inequalities among chosen 

population subgroups. 
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An improved modeling method was developed here. Hourly average traveling 

speed on each major roadway link were characterized and applied in emission estimation. 

A simplified chemistry algorithm was developed and applied in dispersion modeling. 

Finally, a full set of tools were developed that could be applied to automate modeling 

processes for the CALPUFF model.  

The results of emission estimation indicate a significant contribution of on-road 

mobile sources to total emissions. Spatial distribution of emissions show generally higher 

pollutant emissions in urbanized areas. 

Estimated spatiotemporal pollutant concentrations show different spatial patterns 

at multiple temporal scales, suggesting the necessity of exposure assessment at multiple 

temporal scales. Processes that cannot be cannot be captured by CALPUFF model, such 

as atmospheric formation of pollutants, were found to contribute substantially to 

concentrations of acetaldehyde and formaldehyde. Additionally, on-road mobile sources 

were found to contribute disproportionately to ground level pollutant concentrations. This 

suggests the potential influence of urban form on air quality, since on-road mobile source 

emissions are directly impacted by urban form. 

The results of exposure assessment indicate different exposure distributions for 

different pollutants. For NOx, 1,3-butadiene and benzene, black, Hispanic, and low 

income (annual household income less than $20,000) subgroups were disproportionately 

exposed, white and higher income subgroups were disproportionately less exposed to 

these pollutants. For acetaldehyde and formaldehyde, complex, and sometimes even 

reversed exposure patterns (at certain temporal scales) were observed. 
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The details emission estimation and modeling methods developed here can be 

readily applied in other regions for air quality and exposure assessment purposes. The 

findings help better understanding environmental inequalities related to air pollution 

exposure, and may be used to assist urban planning toward the direction of sustainable 

and equitable. 

7.4. Impact of Urban Form on Air Quality, Pollution Exposure and Exposure 

Inequalities 

Emissions of five chosen pollutants were projected to 2050 for the sprawl, 

compact, and electric vehicle scenarios. The CALPUFF model was used to estimate the 

spatiotemporal distributions of pollutant concentrations, which were combined with 

projected demographic data to estimate air pollution exposure, and explore exposure 

inequalities among chosen population subgroups in different scenarios. 

Results of emission estimation show higher NOx emissions in the future 

scenarios, due to increased emissions from stationary point sources, and lower emissions 

for other pollutants. The compact scenario has lower emissions of NOx, 1,3-butadiene, 

benzene, and formaldehyde, but higher emissions of acetaldehyde when compared to 

sprawl scenario. The electric vehicle scenario showed higher NOx emissions, but lower 

emissions for all other pollutants, due to increased electricity demand from vehicle fleet 

electrification. 

CALPUFF modeled pollutant concentrations show lower average concentrations 

for NOx and benzene in the compact than the sprawl scenario, and higher concentrations 

for the other pollutants. The electric vehicle scenario has higher average NOx 

concentration than the compact scenario, but lower average concentrations for other 
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pollutants. Spatial distributions of the modeled pollutant concentrations show generally 

consistent patterns, with higher concentrations found in urbanized areas. 

Overall population exposure to air pollution is higher in the compact than the 

sprawl scenario for all pollutants except NOx. With vehicle fleet electrification, county 

average exposure levels were reduced for all pollutants except NOx. In addition, by 

exploring exposure inequalities under different scenarios, evidence was found suggesting 

different urban forms lead to different exposure inequalities. 

Although there are substantial uncertainties in the estimation of pollutant 

emissions, especially for stationary point source emissions, results still suggest that the 

compact urban form does not necessarily lead to higher exposure for primary pollutants. 

Exposures are dependent on the types of emission sources that contribute to pollutant 

concentrations, as well as locations of those emissions sources. 

The findings here contribute to our understandings of the impacts of urban forms 

and transportation management choices on pollutant emissions, concentrations, 

exposures, as well as exposure inequalities among different population subgroups. These 

findings could also be used for better urban planning to improve air quality, and to reduce 

pollution exposure and exposure inequalities. 
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APPENDIX A 

SUPPLEMENT MATERIALS FOR CHAPTER 5 

 

Appendix A- 1 List of the Tampa Bay regional planning model (TBRPM) area types 

TBRPM area type ID area type description 

11  urbanized area (population over 500,000), primary city CBD* 

12  urbanized area (population under 500,000), CBD  

13  other urbanized area, CBD and small city downtown  

14  non-urbanized area, small city downtown  

21  all CBD fringe areas  

31  developed portions of urbanized areas  

32  undeveloped portions of urbanized areas  

33  transitioning areas/urban areas over 5,000 population  

34  residential beach area  

41  major outlying business districts 

42  other outlying business districts 

43  beach outlying business districts 

51  developed rural areas/small cities under 5,000 population  

52  undeveloped rural areas  

*CBD: Central business district. 

 

Appendix A- 2 List of the Tampa Bay regional planning model (TBRPM) roadway types 

TBRPM roadway  

type ID roadway type description 

11  urban freeway group 1 (cities with population 500,000 or more)  

12  other urban freeway  

15  collector/distributor freeway lanes/facilities  

16  controlled access expressways  

17  controlled access parkways  

21  divided arterial unsignalized (55 mph)  

22  divided arterial unsignalized (45 mph)  
aClass I roadways: density of signalized intersections less than or equals to 2.49/mile 

(urban area), or 1.50/mile (rural area); bClass II roadways: density of signalized 

intersections from 2.5 to 4.5/mile (urban area), or more than 1.50/mile (rural area); cClass 

III/IV roadways: density of signalized intersections more than 4.5/mile. 
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Appendix A- 2 (Continued) List of the Tampa Bay regional planning model (TBRPM) 

roadway types 

TBRPM roadway  
roadway type description 

type ID 

23 divided arterial class Ia 

24 divided arterial class IIb 

25 divided arterial class III/IVc 

31 undivided arterial unsignalized with turn bays  

32 undivided arterial class I with turn bays  

33 undivided arterial class II with turn bays  

34 undivided arterial class III/IV with turn bays  

35 undivided arterial unsignalized without turn bays  

36 undivided arterial class I without turn bays  

37 undivided arterial class II without turn bays  

38 undivided arterial class III/IV without turn bays  

41 major local divided roadway  

42 major local undivided roadway with turn bays  

43 major local undivided roadway without turn bays  

44 other local divided roadway  

45 other local undivided roadway with turn bays  

46 other local divided roadway without turn bays  

47 low speed local collector  

48 very low speed local collector  

49 truck restricted facilities  

51 basic centroid connector  

52 external station centroid connector  

53 dummy zone centroid connectors  

61 one-way facilities unsignalized  

62 one-way facilities class I  

63 one-way facilities class II  

64 one-way facilities class III/IV 

65 frontage road unsignalized  

66 frontage road class I 

67 frontage road class II  

68 frontage road class III/IV 

71 freeway on/off ramp  
aClass I roadways: density of signalized intersections less than or equals to 2.49/mile 

(urban area), or 1.50/mile (rural area); bClass II roadways: density of signalized 

intersections from 2.5 to 4.5/mile (urban area), or more than 1.50/mile (rural area); cClass 

III/IV roadways: density of signalized intersections more than 4.5/mile. 
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Appendix A- 2 (Continued) List of the Tampa Bay regional planning model (TBRPM) 

roadway types 

TBRPM roadway  
roadway type description 

type ID 

72 freeway on/off loop ramp  

73 other on/off ramp  

74 other on/off loop ramp  

75 freeway-freeway ramp  

76 truck-only ramp  

81 freeway group 1 HOV lane (barrier separated)  

82 other freeway HOV lane (barrier separated)  

83 freeway group 1 HOV lane (non-barrier separated)  

84 other freeway HOV lane (non-barrier separated)  

85 non freeway HOV lane  

86 am & pm peak HOV ramp  

87 am peak only HOV ramp  

88 pm peak only HOV ramp  

89 all day HOV ramp  

91 freeway group 1 toll facility  

92 other freeway toll facility  

93 expressway/parkway toll facility  

94 divided arterial toll facility  

95 undivided arterial toll facility  

96 freeway group 1 reversible elevated lanes toll facility  

97 other freeway reversible elevated lanes toll facility 

98 acceleration/deceleration lanes - toll facility  

99 toll plaza - toll facility  
aClass I roadways: density of signalized intersections less than or equals to 2.49/mile 

(urban area), or 1.50/mile (rural area); bClass II roadways: density of signalized 

intersections from 2.5 to 4.5/mile (urban area), or more than 1.50/mile (rural area); cClass 

III/IV roadways: density of signalized intersections more than 4.5/mile. 

 

Appendix A- 3 Free flow speed (mph) look-up table from the Tampa Bay regional 

planning model (TBRPM) 

  TBRPM Area Type ID 

T
B

R
P

M
 

ro
ad

w
ay

 t
y
p
e 

ID
 

 11 12 13 14 21 31 32 33 34 41 42 43 51 52 

11 45    50 50    50     

12      50 65 60  50 50  65 70 

15     45 47         

16      52     45    

17      50 55    47    
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Appendix A- 3 (Continued) Free flow speed (mph) look-up table from the Tampa Bay 

regional planning model (TBRPM) 

    TBRPM Area Type ID 

    11 12 13 14 21 31 32 33 34 41 42 43 51 52 
T

B
R

P
M

 r
o
ad

w
ay

 t
y
p
e
 

21      42  43  41 42 42  55 

22      40  40   39  45 45 

23    42 37 38 39 39 38 35 38  42  

24  31  36 33 34    33 36 36   

25 28 28 30  31 33    30 33    

31      38  42   37  45 46 

32     33 36 36 36 36  34  40 41 

33    35 25 27     32 33 36  

34      31     31    

35      37     36  42  

36     32 33       39  

37     29 30  30       

38 24 24   26 28         

41     30 32     32   43 

42 28  29  29 31 31 31 30  30  37  

43 26    28 30 30 30   30  36 39 

44     27 28 28 28  28 29    

45 25    24 27  27   27 27 30 33 

46 22 25 26  24 25  25  25 25  29 30 

47   22 25 21 24 24 24   24   25 

48 21     24  24   24    

49 22              

51 10 10 12.5 16 12.5 16 16 24 16 15 16 16 25 25 

52      50  50     65 65 

61      40     40    

62 29    32 33     33    

63 27   35 30 32     30 30   

64 23 23   25 30     27    

66     33     40     

67     30 25     35    

71 27    28 30 30 30  28 28   40 

72 22    23 25 25 25  23 23   35 

73      29   29      
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Appendix A- 3 (Continued) Free flow speed (mph) look-up table from the Tampa Bay 

regional planning model (TBRPM) 

    TBRPM Area Type ID 

    11 12 13 14 21 31 32 33 34 41 42 43 51 52 
T

B
R

P
M

 r
o
ad

w
ay

 t
y
p
e
 

74      24         

75     40 45 45   40 40   55 

91 54    54 55         

92      55 65 65       

93      50 65   45     

96     54          

97      55         

98     40 42         

99         17.5 20   23 20 19         

 

Appendix A- 4 Bureau of Public Roads (BPR) function parameter look-up table from the 

Tampa Bay regional planning model (TBRPM) 

TBRPM 

roadway 

type σ β 

TBRPM 

roadway 

type σ β 

TBRPM 

roadway 

type σ β 

10 0.15 4 40 0.15 4 70 0.15 4 

11 0.283 3.018 41 0.25 3.5 71 0.25 3.5 

12 0.283 3.018 42 0.25 3.5 72 0.25 3.5 

13 0.15 4 43 0.25 3.5 73 0.25 3.5 

14 0.15 4 44 0.25 3.5 74 0.25 3.5 

15 0.15 4 45 0.25 3.5 75 0.25 3.5 

16 0.283 3.018 46 0.25 3.5 76 0.15 4 

17 0.283 3.018 47 0.25 3.5 77 0.15 4 

18 0.15 4 48 0.25 3.5 78 0.15 4 

19 0.15 4 49 0.15 4 79 0.15 4 

20 0.15 4 50 0.15 4 80 0.15 4 

21 0.15 4 51 0.15 4 81 0.2 5 

22 0.15 4 52 0.15 4 82 0.2 5 

23 0.136 1.234 53 0.15 4 83 0.2 5 

24 0.073 3.14 54 0.15 4 84 0.2 5 

25 0.195 1.105 55 0.15 4 85 0.2 5 

26 0.15 4 56 0.15 4 86 0.2 5 

27 0.15 4 57 0.15 4 87 0.2 5 

28 0.15 4 58 0.15 4 88 0.2 5 

29 0.15 4 59 0.15 4 89 0.2 5 

30 0.15 4 60 0.15 4 90 0.15 4 

31 0.15 4 61 0.15 4 91 0.283 3.018 
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Appendix A- 4 (Continued) Bureau of Public Roads (BPR) function parameter look-up 

table from the Tampa Bay regional planning model (TBRPM) 

TBRPM 

roadwa

y type 

σ β 

TBRPM 

roadwa

y type 

σ β 

TBRPM 

roadwa

y type 

σ β 

32 0.136 1.234 62 0.136 1.234 92 0.283 3.018 

33 0.073 3.14 63 0.073 3.14 93 0.283 3.018 

34 0.195 1.105 64 0.195 1.105 94 0.2 5 

35 0.15 4 65 0.15 4 95 0.2 5 

36 0.136 1.234 66 0.136 1.234 96 0.283 3.018 

37 0.073 3.14 67 0.073 3.14 97 0.283 3.018 

38 0.195 1.105 68 0.195 1.105 98 0.2 5 

39 0.15 4 69 0.15 4 99 0.2 5 

 

 

 

Appendix A- 5 List of the FDOT Quality/Level of Service Handbook area types 

LOS area type ID* area type description 

201 urban 

202 transition 

203 rural undeveloped 

204 rural developed with pop < 5000 

                          *LOS area type IDs are self-coded for convenience purposes 

 

Appendix A- 6 List of the FDOT Quality/Level of Service Handbook roadway types 

LOS handbook roadway types capacity class ID* 

Freeway 101 

uninterrupted highway - divided 102 

uninterrupted highway - undivided 103 

class I signalized arterials - divided 104 

class I signalized arterials - undivided 105 

class II signalized arterials - divided 106 

class II signalized arterials - undivided 107 

class III/IV signalized arterials - divided 108 

class III/IV signalized arterials - undivided 109 

non-arterial roads - divided 108 

                    *capacity classes are self-coded for convenience purposes 
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Appendix A- 7 Mapping method from Tampa Bay regional planning model area type to 

FDOT Quality/Level of Service Handbook area types 

TBRPM area type ID LOS area type ID 

11,12,13,14,21,31,34,41,42,43 201 

32,33 202 

51 204 

52 203 

 

Appendix A- 8 Mapping method from Tampa Bay regional planning model roadway type 

to FDOT Quality/Level of Service Handbook roadway types. Associated capacity 

adjustment factors are also listed. 

TBRPM 

roadway 

type ID 

LOS 

roadway 

type ID 

capacity 

adjustment 

factor 

TBRPM 

roadway 

type ID 

LOS 

roadway 

type ID 

capacity 

adjustment 

factor 

11 101 1 62 105 0.6 

12 101 1 63 107 0.6 

15 101 1 64 109 0.6 

16 101 1 65 103 0.6 

17 101 1 66 105 0.6 

21 102 1 67 107 0.6 

22 102 1 68 109 0.6 

23 104 1 71 101 1 

24 106 1 72 101 1 

25 108 1 73 101 1 

31 103 1 74 101 1 

32 105 1 75 101 1 

33 107 1 76 101 1 

34 109 1 81 101 1 

35 103 0.75 82 101 1 

36 105 0.75 83 101 1 

37 107 0.75 84 101 1 

38 109 0.75 85 101 1 

41 108 0.9 86 101 1 

42 109 0.9 87 101 1 

43 109 0.9 88 101 1 

44 108 0.65 89 101 1 

45 109 0.65 91 101 1 

46 108 0.65 92 101 1 

47 109 0.65 93 101 1 

48 109 0.65 94 104 1 

49 109 0.65 95 105 1 

51 109 0.65 96 101 1 
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Appendix A- 8 (Continued) Mapping method from Tampa Bay regional planning model 

roadway type to FDOT Quality/Level of Service Handbook roadway types. Associated 

capacity adjustment factors are also listed. 

TBRPM 

roadway 

type ID 

LOS 

roadway 

type ID 

capacity 

adjustment 

factor 

TBRPM 

roadway 

type ID 

LOS 

roadway 

type ID 

capacity 

adjustment 

factor 

52 109 0.65 97 101 1 

53 109 0.65 98 103 1 

61 103 0.6 99 109 1 

 

Appendix A- 9 Roadway capacity look-up table 

LOS area 

type ID 

capacity 

class ID 

number 

of lanes capacity 

LOS area 

type ID 

capacity 

class ID 

number 

of lanes capacity 

201 101 4 5500 203 104 2 460 

201 101 6 8320 203 104 4 1000 

201 101 8 11050 203 104 6 1550 

201 101 10 13960 203 105 2 460 

201 101 12 18600 203 105 4 1000 

201 103 2 1460 203 105 6 1550 

201 102 4 4660 203 106 2 460 

201 102 6 6990 203 106 4 1000 

201 105 2 1500 203 106 6 1550 

201 104 4 3440 203 107 2 460 

201 104 6 5200 203 107 4 1000 

201 104 8 6970 203 107 6 1550 

201 107 2 1020 203 108 2 460 

201 106 4 2420 203 108 4 1000 

201 106 6 3790 203 108 6 1550 

201 106 8 5150 203 109 2 460 

201 109 2 500 203 109 4 1000 

201 108 4 1220 203 109 6 1550 

201 108 6 1910 204 101 4 5140 

201 108 8 2620 204 101 6 7690 

202 101 4 5410 204 101 8 10320 

202 101 6 8140 204 103 2 1420 

202 101 8 10870 204 102 4 3710 

202 101 10 13690 204 102 6 5570 

202 103 2 1460 204 104 2 950 

202 102 4 4400 204 104 4 2260 

202 102 6 6600 204 104 6 3530 

202 105 2 1370 204 105 2 950 

202 104 4 3110 204 105 4 2260 

202 104 6 4710 204 105 6 3530 
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Appendix A- 9 (Continued) Roadway capacity look-up table 

LOS area 

type ID 

capacity 

class ID 

number 

of lanes capacity 

LOS area 

type ID 

capacity 

class ID 

number 

of lanes capacity 

202 107 2 910 204 106 2 950 

202 106 4 2200 204 106 4 2260 

202 106 6 3460 204 106 6 3530 

202 109 2 460 204 107 2 950 

202 108 4 1110 204 107 4 2260 

202 108 6 1750 204 107 6 3530 

203 101 4 5230 204 108 2 950 

203 101 6 7870 204 108 4 2260 

203 101 8 10410 204 108 6 3530 

203 103 2 790 204 109 2 950 

203 102 4 4020 204 109 4 2260 

203 102 6 6040 204 109 6 3530 

 

Appendix A- 10 Vehicle classification system in MOVES model 

MOVES vehicle type ID description 

11 Motorcycle 

21 Passenger Car 

31 Passenger Truck 

32 Light Commercial Truck 

41 Intercity Bus 

42 Transit Bus 

43 School Bus 

51 Refuse Truck 

52 Single Unit Short-haul Truck 

53 Single Unit Long-haul Truck 

54 Motor Home 

61 Combination Short-haul Truck 

62 Combination Long-haul Truck 

 

Appendix A- 11 List of MOVES roadway types 

MOVES roadway type ID description 

1 off-network 

2 rural restricted access 

3 rural unrestricted access 

4 urban restricted access 

5 urban unrestricted access 
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Appendix A- 12 Mapping method from Tampa Bay Regional Planning Model (TBRPM) 

area and roadway types to MOVES roadway types 

TBRPM MOVES 

roadway 

type 

TBRPM MOVES 

roadway 

type 

TBRPM MOVES 

roadway 

type 

area* 

type 

roadway 

type 

area 

type 

roadway 

type 

area 

type 

roadway 

type 

10X 11  4 20X 75  4 40X 45  5 

10X 12  4 20X 76  4 40X 46  5 

10X 15  4 20X 81  4 40X 47  5 

10X 16  4 20X 82  4 40X 48  5 

10X 17  4 20X 83  4 40X 49  5 

10X 21  5 20X 84  4 40X 51  5 

10X 22  5 20X 85  4 40X 52  5 

10X 23  5 20X 86  4 40X 53  5 

10X 24  5 20X 87  4 40X 61  5 

10X 25  5 20X 88  4 40X 62  5 

10X 31  5 20X 89  4 40X 63  5 

10X 32  5 20X 91  4 40X 64  5 

10X 33  5 20X 92  4 40X 65  5 

10X 34  5 20X 93  4 40X 66  5 

10X 35  5 20X 94  5 40X 67  5 

10X 36  5 20X 95  4 40X 68  5 

10X 37  5 20X 96  4 40X 71  4 

10X 38  5 20X 97  4 40X 72  4 

10X 41  5 20X 98  4 40X 73  4 

10X 42  5 20X 99  5 40X 74  4 

10X 43  5 30X 11  4 40X 75  4 

10X 44  5 30X 12  4 40X 76  4 

10X 45  5 30X 15  4 40X 81  4 

10X 46  5 30X 16  4 40X 82  4 

10X 47  5 30X 17  4 40X 83  4 

10X 48  5 30X 21  5 40X 84  4 

10X 49  5 30X 22  5 40X 85  4 

10X 51  5 30X 23  5 40X 86  4 

10X 52  5 30X 24  5 40X 87  4 

10X 53  5 30X 25  5 40X 88  4 

10X 61  5 30X 31  5 40X 89  4 

10X 62  5 30X 32  5 40X 91  4 

10X 63  5 30X 33  5 40X 92  4 

10X 64  5 30X 34  5 40X 93  4 

10X 65  5 30X 35  5 40X 94  5 

*Here 10X refers to TBRPM area type 11, 12, 13, 14; 20X refers to TBRPM area type 

21; 30X refers to TBRPM area type 31, 32, 33, 34; 40X refers to TBRPM area type 41, 

42, 43; 50X refers to TBRPM area type 51, 52. 
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Appendix A- 12 (Continued) Mapping method from Tampa Bay Regional Planning Model 

(TBRPM) area and roadway types to MOVES roadway types 

TBRPM MOVES 

roadway 

type 

TBRPM MOVES 

roadway 

type 

TBRPM MOVES 

roadway 

type 

area* 

type 

roadway 

type 

area 

type 

roadway 

type 

area 

type 

roadway 

type 

10X 66  5 30X 36  5 40X 95  4 

10X 67  5 30X 37  5 40X 96  4 

10X 68  5 30X 38  5 40X 97  4 

10X 71  4 30X 41  5 40X 98  4 

10X 72  4 30X 42  5 40X 99  5 

10X 73  4 30X 43  5 50X 11  2 

10X 74  4 30X 44  5 50X 12  2 

10X 75  4 30X 45  5 50X 15  2 

10X 76  4 30X 46  5 50X 16  2 

10X 81  4 30X 47  5 50X 17  2 

10X 82  4 30X 48  5 50X 21  3 

10X 83  4 30X 49  5 50X 22  3 

10X 84  4 30X 51  5 50X 23  3 

10X 85  4 30X 52  5 50X 24  3 

10X 86  4 30X 53  5 50X 25  3 

10X 87  4 30X 61  5 50X 31  3 

10X 88  4 30X 62  5 50X 32  3 

10X 89  4 30X 63  5 50X 33  3 

10X 91  4 30X 64  5 50X 34  3 

10X 92  4 30X 65  5 50X 35  3 

10X 93  4 30X 66  5 50X 36  3 

10X 94  5 30X 67  5 50X 37  3 

10X 95  4 30X 68  5 50X 38  3 

10X 96  4 30X 71  4 50X 41  3 

10X 97  4 30X 72  4 50X 42  3 

10X 98  4 30X 73  4 50X 43  3 

10X 99  5 30X 74  4 50X 44  3 

20X 11  4 30X 75  4 50X 45  3 

20X 12  4 30X 76  4 50X 46  3 

20X 15  4 30X 81  4 50X 47  3 

20X 16  4 30X 82  4 50X 48  3 

20X 17  4 30X 83  4 50X 49  3 

20X 21  5 30X 84  4 50X 51  3 

20X 22  5 30X 85  4 50X 52  3 

20X 23  5 30X 86  4 50X 53  3 

*Here 10X refers to TBRPM area type 11, 12, 13, 14; 20X refers to TBRPM area type 

21; 30X refers to TBRPM area type 31, 32, 33, 34; 40X refers to TBRPM area type 41, 

42, 43; 50X refers to TBRPM area type 51, 52. 



 

261 

 

 

Appendix A- 12 (Continued) Mapping method from Tampa Bay Regional Planning Model 

(TBRPM) area and roadway types to MOVES roadway types 

TBRPM MOVES 

roadway 

type 

TBRPM MOVES 

roadway 

type 

TBRPM MOVES 

roadway 

type 

area* 

type 

roadway 

type 

area 

type 

roadway 

type 

area 

type 

roadway 

type 

20X 24  5 30X 87  4 50X 61  3 

20X 25  5 30X 88  4 50X 62  3 

20X 31  5 30X 89  4 50X 63  3 

20X 32  5 30X 91  4 50X 64  3 

20X 33  5 30X 92  4 50X 65  3 

20X 34  5 30X 93  4 50X 66  3 

20X 35  5 30X 94  5 50X 67  3 

20X 36  5 30X 95  4 50X 68  3 

20X 37  5 30X 96  4 50X 71  2 

20X 38  5 30X 97  4 50X 72  2 

20X 41  5 30X 98  4 50X 73  2 

20X 42  5 30X 99  5 50X 74  2 

20X 43  5 40X 11  4 50X 75  2 

20X 44  5 40X 12  4 50X 76  2 

20X 45  5 40X 15  4 50X 81  2 

20X 46  5 40X 16  4 50X 82  2 

20X 47  5 40X 17  4 50X 83  2 

20X 48  5 40X 21  5 50X 84  2 

20X 49  5 40X 22  5 50X 85  2 

20X 51  5 40X 23  5 50X 86  2 

20X 52  5 40X 24  5 50X 87  2 

20X 53  5 40X 25  5 50X 88  2 

20X 61  5 40X 31  5 50X 89  2 

20X 62  5 40X 32  5 50X 91  2 

20X 63  5 40X 33  5 50X 92  2 

20X 64  5 40X 34  5 50X 93  2 

20X 65  5 40X 35  5 50X 94  3 

20X 66  5 40X 36  5 50X 95  2 

20X 67  5 40X 37  5 50X 96  2 

20X 68  5 40X 38  5 50X 97  2 

20X 71  4 40X 41  5 50X 98  2 

20X 72  4 40X 42  5 50X 99  3 

20X 73  4 40X 43  5    

20X 74  4 40X 44  5    

*Here 10X refers to TBRPM area type 11, 12, 13, 14; 20X refers to TBRPM area type 

21; 30X refers to TBRPM area type 31, 32, 33, 34; 40X refers to TBRPM area type 41, 

42, 43; 50X refers to TBRPM area type 51, 52. 
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APPENDIX B 

SUPPLEMENT MATERIALS FOR CHAPTER 6 

 

Appendix B- 1. List of 15 land use types in One Bay visioning plan 

land use type ID description 

1 low density residential 1 

2 low density residential 2 

3 medium density residential 1 

4 medium density residential 2 

5 high density residential 

6 commercial 

7 office Park 

8 commerce Park 

9 public institutional 

10 regional activity center 

11 town center 

12 village center 

13 regional transit oriented development center 

14 downtown residential 

15 downtown center 

 

  



 

263 

 

Appendix B- 2 List of 32 building types in One Bay visioning plan 

building type 

category 

 

building type ID* description 

mixed land use 

 1 downtown (office/retail/residential) 

 2 downtown residential (residential/retail) 

 3 city center (office/residential) 

 4 city center (retail/residential) 

 5 district center (retail/residential) 

 6 corridor (office/retail) 

 7 corridor (retail/residential) 

residential 

 8 high density apartment/condo  

 9 medium density apartment/condo 

 10 low density apartment/condo 

 11 townhome 

 12 mobile home 

 13 residential zero lot 

 14 residential small lot 

 15 residential medium lot 

 16 residential large lot 

 17 rural residential 

employment 

 19 downtown office 

 20 downtown mall 

 21 city center office 

 22 district center office 

 23 regional mall 

 24 lifestyle center 

 25 office park 

 26 light industrial 

 27 heavy industrial 

 28 urban corridor commercial 

 29 urban neighborhood commercial 

 30 strip commercial 

institutional  31 university campus 

*As defined in One Bay visioning data, building type ID 18 and 32 refer to “services” 

and “institutional”, however they were never used, hence they were excluded here. 
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Appendix B- 3 List of lane use type, associated building types and assumed building type 

fractions in One Bay visioning plan 

building type ID 

land use type ID 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1     0.1         0.1 0.1 

2     0.1        0.1 0.7 0.2 

3    0.2      0.2 0.1  0.1 0.1  

4    0.2      0.1   0.3 0.1  

5   0.1     0.1   0.2  0.1   

6            0.2    

7            0.1    

8     0.4        0.2 0.1  

9   0.2 0.4 0.2      0.1 0.1 0.1 0.1  

10   0.1 0.1   0.1 0.1   0.1 0.2 0.1   

11   0.2 0.2   0.1     0.1 0.1   

12                

13  0.2 0.2         0.2    

14  0.2 0.1         0.1    

15 0.2 0.3              

16 0.6 0.3              

17 0.2               

19     0.1     0.2     0.4 

20                

21          0.1 0.2    0.4 

22   0.1   0.1          

23      0.7    0.3      

24                

25       0.8 0.2        

26        0.4        

27        0.2        

28                

29           0.2     

30 0.1 0.1 0.1  0.1 0.2 0.1 0.1  0.2 0.1 0.1    

31     0.1    1 0.1 0.1 0.1    
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Appendix B- 4 List of vehicle trip generation rates and electricity demand for each 

building type in One Bay visioning plan 

building type ID 

vehicle trips generated  

(trips per acre) 

electricity demand  

(annual KWh) 

1 2219 4287264 

2 1621 3453786 

3 599 1376840 

4 1473 1369000 

5 1241 952004 

6 1223 956669 

7 1070 735284 

8 1990 1487012 

9 306 566498 

10 132 216852 

11 70 156060 

12 75 118490 

13 104 185130 

14 77 150000 

15 48 102500 

16 25 66650 

17 4 10740 

19 2916 4700560 

20 3765 1552644 

21 1458 2350280 

22 413 784080 

23 654 379625 

24 970 568693 

25 195 313632 

26 52 353182 

27 7 352850 

28 185 327203 

29 677 348443 

30 430 298345 

31 382 280657 
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Appendix B- 5 List of non-point source emissions and corresponding surrogate used 

source 

classificatio

n code 

description surrogate 

2102004000 stationary fuel combustion /industrial /distillate oil /total: boilers 

and internal combustion engines 

total industrial land area 

2102005000 stationary fuel combustion /industrial /residual oil /total: all boiler 

types 

total industrial land area 

2102006000 stationary fuel combustion /industrial /natural gas /total: boilers and 

internal combustion engines 

total industrial land area 

2102007000 stationary fuel combustion /industrial /liquefied petroleum gas 

/total: all boiler types 

total industrial land area 

2102011000 stationary fuel combustion /industrial /kerosene /total: all boiler 

types 

population 

2102012000 stationary fuel combustion /industrial /waste oil /total population 

2103001000 stationary fuel combustion /commercial/institutional /anthracite 

coal /total: all boiler types 

population 

2103002000 stationary fuel combustion /commercial/institutional 

/bituminous/subbituminous coal /total: all boiler types 

population 

2103004000 stationary fuel combustion /commercial/institutional /distillate oil 

/total: boilers and internal combustion engines 

total commercial plus 

institutional land area 

2103005000 stationary fuel combustion /commercial/institutional /residual oil 

/total: all boiler types 

total commercial plus 

institutional land area 

2103006000 stationary fuel combustion /commercial/institutional /natural gas 

/total: boilers and internal combustion engines 

total commercial plus 

institutional land area 

2103007000 stationary fuel combustion /commercial/institutional /liquefied 

petroleum gas /total: all combustor types 

total commercial plus 

institutional land area 

2103010000 stationary fuel combustion /commercial/institutional /process gas 

/POTW digester gas-fired boilers 

population 

2103011000 stationary fuel combustion /commercial/institutional /kerosene 

/total: all combustor types 

population 

2104004000 stationary fuel combustion /residential /distillate oil /total: all 

combustor types 

population 

2104006000 stationary fuel combustion /residential /natural gas /total: all 

combustor types 

population 

2104007000 stationary fuel combustion /residential /liquefied petroleum gas 

/total: all combustor types 

population 

2104008001 stationary fuel combustion /residential /wood /fireplaces: general population 

2104008002 stationary fuel combustion /residential /wood /fireplaces: insert; 

non-EPA certified 

population 

2104008004 stationary fuel combustion /residential /wood /fireplaces: insert; 

EPA certified; catalytic 

population 

2104008010 stationary fuel combustion /residential /wood /woodstoves: general population 

2104008030 stationary fuel combustion /residential /wood /catalytic woodstoves: 

general 

population 

2104011000 stationary fuel combustion /residential /kerosene /total: all heater 

types 

population 

2199004000 stationary fuel combustion /total area source /distillate oil /total: 

boilers and internal combustion engines 

total industrial plus 

institutional land area 

2199005000 stationary fuel combustion /total area source /residual oil /total: all 

boiler types 

total industrial plus 

institutional land area 

2199006000 stationary fuel combustion /total area source /natural gas /total: 

boilers and internal combustion engines 

total industrial plus 

institutional land area 

2199007000 stationary fuel combustion /total area source /liquefied petroleum 

gas /total: all boiler types 

total industrial plus 

institutional land area 

2199011000 stationary fuel combustion /total area source /kerosene /total: all 

heater types 

population 

2302002100 food & kindred products /commercial cooking - charbroiling 

/conveyorized charbroiling 

population 
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Appendix B- 5 (Continued) List of non-point source emissions and corresponding 

surrogate used 

source 

classificatio

n code 

description surrogate 

2302002200 food & kindred products /commercial cooking - charbroiling 

/under-fired charbroiling 

population 

2305070000 mineral processes /concrete, gypsum, plaster products /total population 

2306010000 petroleum refining /asphalt paving/roofing materials /total population 

2310000000 oil & gas exploration & production /all processes /total: all 

processes 

population 

2310020000 oil & gas exploration & production /natural gas /total: all processes population 

2399000000 industrial processes: NEC /industrial processes: NEC /total population 

2401002000 surface coating /architectural coatings - solvent-based /total: all 

solvent types 

population 

2401003000 surface coating /architectural coatings - water-based /total: all 

solvent types 

population 

2430000000 rubber/plastics /all processes /total: all solvent types population 

2461800000 misc. non-industrial: commercial /pesticide application: all 

processes /total: all solvent types 

total commercial plus 

institutional land area 

2501011011 residential portable gas cans /permeation population 

2501011012 residential portable gas cans /evaporation (includes diurnal losses) population 

2501011013 residential portable gas cans /spillage during transport population 

2501011014 residential portable gas cans /refilling at the pump - vapor 

displacement 

population 

2501011015 residential portable gas cans /refilling at the pump - spillage population 

2501012011 commercial portable gas cans /permeation population 

2501012012 commercial portable gas cans /evaporation (includes diurnal losses) population 

2501012013 commercial portable gas cans /spillage during transport population 

2501012014 commercial portable gas cans /refilling at the pump - vapor 

displacement 

population 

2501012015 commercial portable gas cans /refilling at the pump - spillage population 

2501050120 petrol & petrol product storage /bulk terminals: all evaporative 

losses /gasoline 

total vehicle mileage 

travelled 

2501055120 petrol & petrol product storage /bulk plants: all evaporative losses 

/gasoline 

population 

2501060052 gasoline service stations /stage 1: splash filling total vehicle mileage 

travelled 

2501060100 gasoline service stations /stage 2: total total vehicle mileage 

travelled 

2501060201 gasoline service stations /underground tank: breathing and 

emptying 

total vehicle mileage 

travelled 

2501080050 petrol & petrol product storage /airports : aviation gasoline /stage 1: 

total 

population 

2501080100 petrol & petrol product storage /airports : aviation gasoline /stage 2: 

total 

population 

2505020090 petrol & petrol product transport /marine vessel /distillate oil population 

2505020120 petrol & petrol product transport /marine vessel /gasoline total vehicle mileage 

travelled 

2505020150 petrol & petrol product transport /marine vessel /jet naphtha population 

2505020180 petrol & petrol product transport /marine vessel /kerosene population 

2505030120 petrol & petrol product transport /truck /gasoline population 
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Appendix B- 5 (Continued) List of non-point source emissions and corresponding 

surrogate used 

source 

classificatio

n code 

description surrogate 

2505040120 petrol & petrol product transport /pipeline /gasoline total vehicle mileage 

travelled 

2601010000 on-site incineration /industrial /total population 

2601020000 on-site incineration /commercial/institutional /total population 

2610000300 open burning /all categories /yard waste - weed species unspecified 

(include grass) 

population 

2610000500 open burning /all categories /land clearing debris (use 28-10-005-

000 for logging debris burning) 

developed land area 

2610030000 open burning /residential /household waste (use 26-10-000-xxx for 

yard wastes) 

total low residential area 

2620000000 landfills /all categories /total population 

2630020000 wastewater treatment /public owned /total processed population 

2801500100 agriculture - crops /field burning - whole field set on fire /crops 

unspecified 

population 

2801500170 agriculture - crops /field burning - whole field set on fire /crop is 

grasses: burning techniques not important 

population 

2801500360 agriculture - crops /field burning - whole field set on fire /orchard 

crop is citrus (orange, lemon) 

population 

2810001000 forest wildfires - wildfires - unspecified forest area 

2810005000 managed burning, slash (logging debris) /unspecified burn method 

(use 2610000500 for non-logging debris) 

forest area 

2810015000 prescribed forest burning /unspecified forest area 

2810030000 structure fires /unspecified population 

2810050000 motor vehicle fires /unspecified population 

2810060100 cremation /humans population 

2810060200 cremation /animals population 
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Appendix B- 6 List of spatial surrogates used to allocate non-road, non-point and 

biogenic emissions, and method for deriving the surrogates. 

ID surrogate description 

deriving surrogates 

Surrogate metric control total 

100 population baseline population + number of 

increased household * average household 

size 

county total population 

140 housing change and 

population 

number of increased household county total number of increased 

household  

240 total road miles 

same as baseline 

250 urban primary plus 

rural primary roads 

260 total railroad miles 

270 class 1 railroad miles 

280 class 2 and 3 railroad 

miles 

300 low intensity 

residential 

baseline low intensity residential area + 

redeveloped low density residential area 

county total low intensity residential 

area 

310 total agriculture baseline grid agriculture area -  grid total 

redeveloped area 

county total agriculture land area 

311 total agriculture 

without 

orchards/vineyards 

baseline grid agriculture area excluding 

orchards & vineyards -  grid total 

redeveloped area 

county total agriculture area excluding 

orchards & vineyards 

312 orchards/vineyards baseline grid orchards & vineyards area -  

grid total redeveloped area 

county total orchards & vineyards land 

area 

320 forest land baseline grid forest land area -  grid total 

redeveloped area 

county total forest land area 

350 water baseline grid water area -  grid total 

redeveloped area 

county total water area 

400 rural land area baseline rural land area -  grid total 

redeveloped area 

county total rural land area 

505 industrial land baseline industrial land area + new 

commerce park land area * 0.6 

county total industrial land area 

510 commercial plus 

industrial land use 

baseline commercial & industrial land 

area + new commerce park area * 0.6 + 

commercial land area  

county total commercial & industrial 

land area 

*in each grid cell, surrogate value is calculated by: surrogate metric/control total 
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Appendix B- 6 (Continued) List of spatial surrogates used to allocate non-road, non-

point and biogenic emissions, and method for deriving the surrogates. 

ID surrogate description 

deriving surrogates 

Surrogate metric control total 

515 commercial plus 

institutional land use 

baseline commercial & institutional land 

area + new commercial + new public 

institutional land area  

county total commercial & institutional 

land area 

520 commercial plus 

industrial plus 

institutional land use 

baseline commercial & industrial & 

institutional land area + new commercial 

+ new commerce park * 0.6 + new public 

institutional land area  

county total commercial & industrial & 

institutional land area 

525 golf courses plus 

institutional plus 

industrial plus 

commercial land use 

baseline number of golf courses, and 

baseline commercial & industrial & 

institutional land area + new commercial 

+ new commerce park * 0.6 + new public 

institutional land area  

baseline county total number of golf 

courses and updated county total 

commercial & industrial & institutional 

land area 

535 residential + 

commercial + 

industrial + 

institutional + 

government land use 

baseline residential & commercial & 

industrial & institutional & government 

land area + new commercial + new 

commerce park * 0.6 + new public 

institutional land area  

county total residential + commercial + 

industrial + institutional + government 

land area 

580 food, drug, chemical 

industrial land use 

same as baseline 

585 metals and minerals 

industrial land use 

590 heavy industrial land 

use 

baseline heavy industry land area + new 

commerce park * 0.2 

county total heavy industry land type 

area 

596 industrial plus 

institutional plus 

hospitals land use 

baseline industrial & institutional & 

hospitals land area + new commerce park 

* 0.6 + new public institutional land area  

county total industrial plus institutional 

plus hospitals  land area 

*in each grid cell, surrogate value is calculated by: surrogate metric/control total 
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Appendix B- 6 (Continued) List of spatial surrogates used to allocate non-road, non-

point and biogenic emissions, and method for deriving the surrogates. 

ID surrogate description 

deriving surrogates 

Surrogate metric control total 

600 gas stations 

same as baseline 

650 refineries and tank 

farms 

700 airport areas 

720 military airports 

800 marine ports 

810 navigable waterway 

activity 

850 golf courses 

870 wastewater treatment 

facilities 

890 commercial timber baseline commercial timber site numbers, 

grids with redeveloped land are removed 

county total commercial timber site 

number 

*in each grid cell, surrogate value is calculated by: surrogate metric/control total 
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Appendix B- 7 Estimated on-road mobile source emissions for seven counties included in 

the study domain 

scenario county county ID pollutant annual emission (metric tons) 

sprawl 

Hernando 12053 

1,3-butadiene 5.2 

acetaldehyde 23.5 

benzene 30.9 

formaldehyde 49.0 

NOx 4396.4 

Hillsborough 12057 

1,3-butadiene 15.0 

acetaldehyde 59.3 

benzene 96.5 

formaldehyde 120.8 

NOx 9783.4 

Manatee 12081 

1,3-butadiene 15.7 

acetaldehyde 57.9 

benzene 91.4 

formaldehyde 106.0 

NOx 8985.2 

Pasco 12101 

1,3-butadiene 11.3 

acetaldehyde 51.4 

benzene 67.5 

formaldehyde 107.3 

NOx 9336.9 

Pinellas 12103 

1,3-butadiene 6.1 

acetaldehyde 15.0 

benzene 37.9 

formaldehyde 19.8 

NOx 1186.9 

Polk 12105 

1,3-butadiene 16.3 

acetaldehyde 83.8 

benzene 98.3 

formaldehyde 185.5 

NOx 15389.9 

Sarasota 12115 

1,3-butadiene 5.0 

acetaldehyde 18.1 

benzene 29.2 

formaldehyde 32.4 

NOx 2525.4 
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Appendix B- 7 (Continued) Estimated on-road mobile source emissions for seven 

counties included in the study domain 

scenario county county ID pollutant annual emission (metric tons) 

compact 

Hernando 12053 

1,3-butadiene 2.4 

acetaldehyde 9.2 

benzene 14.1 

formaldehyde 17.3 

NOx 1457.6 

Hillsborough 12057 

1,3-butadiene 18.0 

acetaldehyde 71.0 

benzene 115.8 

formaldehyde 144.5 

NOx 11699.3 

Manatee 12081 

1,3-butadiene 10.9 

acetaldehyde 36.7 

benzene 63.2 

formaldehyde 62.3 

NOx 4969.6 

Pasco 12101 

1,3-butadiene 8.5 

acetaldehyde 33.6 

benzene 50.0 

formaldehyde 64.3 

NOx 5302.1 

Pinellas 12103 

1,3-butadiene 10.3 

acetaldehyde 30.5 

benzene 64.9 

formaldehyde 50.2 

NOx 3870.0 

Polk 12105 

1,3-butadiene 8.6 

acetaldehyde 38.3 

benzene 51.1 

formaldehyde 79.1 

NOx 6312.2 

Sarasota 12115 

1,3-butadiene 6.0 

acetaldehyde 21.7 

benzene 35.1 

formaldehyde 38.9 

NOx 3034.9 
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Appendix B- 8 Population distributions and estimated subgroup inequality indices for 

race/ethnicity subgroups regarding NOx exposures in three future scenarios. 
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Appendix B- 9 Population distributions and estimated subgroup inequality indices for 

age subgroups regarding NOx exposures in three future scenarios. 
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Appendix B- 10 Population distributions and estimated subgroup inequality indices for 

income subgroups regarding NOx exposures in three future scenarios. 
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Appendix B- 11 Population distributions and estimated subgroup inequality indices for 

race/ethnicity subgroups regarding 1,3-butadiene exposures in three future scenarios. 
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Appendix B- 12 Population distributions and estimated subgroup inequality indices for 

age subgroups regarding 1,3-butadiene exposures in three future scenarios. 
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Appendix B- 13 Population distributions and estimated subgroup inequality indices for 

income subgroups regarding 1,3-butadiene exposures in three future scenarios. 
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Appendix B- 14 Population distributions and estimated subgroup inequality indices for 

race/ethnicity subgroups regarding benzene exposures in three future scenarios. 
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Appendix B- 15 Population distributions and estimated subgroup inequality indices for 

age subgroups regarding benzene exposures in three future scenarios. 
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Appendix B- 16 Population distributions and estimated subgroup inequality indices for 

income subgroups regarding benzene exposures in three future scenarios. 
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Appendix B- 17 Population distributions and estimated subgroup inequality indices for 

race/ethnicity subgroups regarding acetaldehyde exposures in three future scenarios. 
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Appendix B- 18 Population distributions and estimated subgroup inequality indices for 

age subgroups regarding acetaldehyde exposures in three future scenarios. 
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Appendix B- 19 Population distributions and estimated subgroup inequality indices for 

income subgroups regarding acetaldehyde exposures in three future scenarios. 
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Appendix B- 20 Population distributions and estimated subgroup inequality indices for 

race/ethnicity subgroups regarding formaldehyde exposures in three future scenarios. 
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Appendix B- 21 Population distributions and estimated subgroup inequality indices for 

age subgroups regarding formaldehyde exposures in three future scenarios. 
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Appendix B- 22 Population distributions and estimated subgroup inequality indices for 

income subgroups regarding formaldehyde exposures in three future scenarios. 
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