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Abstract 
 

Ebola, a type of filovirus that causes hemorrhagic fevers, dominated global 

headlines in 2014 when the largest Ebola epidemic in history took place in West Africa. 

Healthcare practitioners are at particular risk of contracting Ebola while taking care of 

patients with the disease because they are easily exposed to bodily fluids such as blood, 

urine, saliva, and feces, quite often in the intensive care unit (ICU). While personal 

protective equipment (PPE) protects the healthcare practitioner by providing an effective 

barrier against the virus, users are also at risk for heat stress. The type of protective 

clothing that is used as part of a PPE ensemble can affect the amount of heat stress 

users experience. In this study, coveralls made of monolithic barriers, which prevent 

vapors from escaping the suit, are compared to coveralls made of micro-porous material, 

which allows evaporated sweat to escape the suit. The Microgard® 2000 TS Plus, made 

of micro-porous barrier material and the monolithic barrier Microgard® 2300 Plus were 

compared against a control ensemble of work clothes consisting of a long-sleeve shirt 

and trouser. 

A progressive heat stress protocol was used to determine the critical 

environment at the upper limit of compensable heat stress. The critical condition is the 

point at which the heat gain caused by wearing the protective ensemble as well as dry 

heat exchange is balanced by the maximum heat loss due to evaporative cooling. Wet 

bulb globe temperature at the critical condition (WBGTcrit ) ,total evaporative resistance 

(Re,T,a), and clothing adjustable factor (CAF) were calculated for each ensemble based 

on data at the critical point. Also at the critical condition, participant rectal temperature 



	  

V. 

(Tre) , heart rate (HR), skin temperature (Tsk), and physiological strain index (PSI) were 

noted and compared for each ensemble.  

A two-way ANOVA (ensemble x participant) for WBGTcrit  and Re,T,a as dependent 

variables was used to determine whether or not there were differences among 

ensembles. Tukey’s honest significance test was used to determine where significant 

differences occurred. WBGTcrit  was 33.8, 26.3, and 22.9 °C-WBGT for Work Clothes, 

M2000, and M2300 respectively. Re,T,a  was 0.012, 0.031, and 0.054 kPa m2 W-1 for WC, 

M2000, and M2300 respectively. The higher the WBGTcrit for an ensemble, the more it 

can support evaporative cooling and hence the better it is at ameliorating heat stress. 

Based on this trial, the micro-porous ensemble Microgard® 2000 TS Plus has better 

heat stress performance than vapor-barrier Microgard® 2300 Plus. As expected, there 

were no differences for any of the physiological metrics at the critical conditions. 
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Chapter One: 

Introduction  

Ebola is a type of filovirus that causes hemorrhagic fever [1]. 2014 marked the 

largest Ebola epidemic in history when multiple countries in West Africa were affected. 

Ebola, like Hepatitis B, Hepatitis C, and Human Immunodeficiency Virus (HIV), is a blood 

borne pathogen that is spread through contact via blood, saliva, among other body fluids 

[2]. What makes Ebola a significant threat is that a small infectious dose causes an 

extremely infectious disease, which we currently have no cure for.  

Healthcare practitioners are at particular risk of contracting Ebola while taking 

care of patients with the disease because they are easily exposed to bodily fluids such 

as blood, urine, saliva, and feces in the Intensive Care Unit through daily activities such 

as using needles, syringes, foley catheters, etc. Encapsulating personal protective 

equipment, which is equipment that is worn to minimize exposure to workplace injuries 

and illnesses by shielding the head and entire body has an integral role in Ebola 

prevention.  

Major organizations such as United States Centers for Disease Control and 

Prevention (CDC), World Health Organization (WHO), Occupational Safety and Health 

Administration (OSHA) have published guidelines for selecting personal protective 

equipment for Ebola. Because of evolving literature as well as continual improvement in 

understanding of Ebola, these guidelines are constantly updated. In general, the entire 

body especially mucosal regions in mouth, nose, and eyes should be covered via face 
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shield, goggles, or surgical masks with a design that does not collapse on the mouth [4]. 

A fluid resistant respirator that is either a N-95 or Powered Air Purifying Respirator 

(PAPR) should be used. If using a PAPR, choosing one with a self-contained filter and 

blower unit integrated within the helmet or headpiece is preferable [5].  Next, all 

healthcare practitioners should use double gloves made with nitrile material with 

extended cuffs to decrease the chances of needle stick injuries as well as contamination 

while removing PPE ensemble. Waterproof boots are also recommended as they help 

prevent needle stick injuries, are slip resistant, and easier to clean and disinfect in 

comparison to the combination of closed toe shoes and covers [6].   

In regards to protecting the torso, a disposable gown and apron or a disposable 

coverall and apron combo should be worn over scrubs [6]. The decision to use a gown 

or coverall has been a topic of debate but there has been no literature recommending 

one over the other [6]. However gowns are more familiar to healthcare practitioners and 

easier to put on and take off. This may decrease the risk of contamination while donning 

and doffing PPE.  On the other hand, coveralls are designed to protect the entire body 

while gowns leave possible openings in the back and only reach the mid-calf. In general, 

coveralls are made of material that do not allow as much gas exchange as gowns, thus 

leaving the user at greater risk for heat stress [7].  

PPE allows health care workers to provide the necessary attention and care to 

patients suspected of having Ebola, while ideally providing re-assurance that risk for 

contracting the deadly hemorrhagic fever are minimal. Physicians, nurses, respiratory 

technicians and radiology technicians are among the healthcare practitioners that come 

in contact with patients the most and will require PPE. Tasks where Ebola could be 

spread could include intubation followed by ventilator and breathing tube management, 

drawing blood for labs, cleaning patient urine and feces, repositioning patients for x-rays. 
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The majority of patient contact occurs in the chest and torso areas as well as both arms 

and hands, which are both sufficiently protected by coveralls and gowns. PPE allow 

those involved with patient care to move and perform these tasks freely [5]. Ideally, 

range of motion should not be affected but those utilizing PAPRs along with coveralls 

may be hindered by the added bulk of the PPE. This could decrease motor function 

because the user may not be used to the weight of the apparatus and may lose some 

range of motion [7]. Furthermore, double gloves have been shown to limit the fine motor 

function, which results in increased movement time as well as decreased steadiness. 

Next, vision could also be affected by the use of respirators. Johnson et al. performed a 

study in 1997 that showed a decrease in visual range in subjects when respirators fog 

up [8]. Other issues that have occurred in subjects who have used full body PPE include 

anxiety due to claustrophobia, decreased comfort, decline in cognitive function, and 

finally heat stress [9,15].  

While personal protective equipment to protect the healthcare practitioner by 

providing an effective barrier against the virus, users are also at risk for heat stress. This 

is especially true of full body ensembles, which incorporate a coverall in addition to 

respirators, gloves, boots, etc. [7].  Coveralls increase thermal insulation, allow for very 

little gas exchange, and thus limit evaporative heat loss [10]. The issue of heat stress is 

magnified by the tropical climate in West Africa, where the 2014 epidemic greatly 

affected Sierra Leone and Guinea [12]. Sierra Leone and Guinea have similar climate 

with high year round temperature, humidity, and rainfall.  Kuklane, et al. reported that 

protective clothing made of an impermeable moisture outer layer could only be worn for 

about 40 minutes until the user’s core body temperature reaches the safe limit for 

occupational exposure [14,39].  
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Given the short duration that healthcare practitioners have while wearing 

protective clothing, they must either work faster and risk making medical errors or 

constantly doffing and donning suits in order take breaks to allow for body temperature 

to cool [7]. Neither option is effective because working faster places the worker at risk of 

incurring even more heat stress while increasing the risk of an adverse effect to patient, 

self, or even the rest of the healthcare team [39]. Working faster requires a higher 

metabolic rate and increases the risk of heat stress [7]. Moreover, by working at a rapid 

pace that the healthcare practitioner may not be comfortable with, he/she increases the 

chances of making a medical error such as accidentally extubating a patient, overlooking 

a change in vital signs, pushing the wrong the medication intravenously, and suffering 

accidental needle stick injuries.   

The alternative option of abiding by the ~40 minute time frame and frequently 

changing in and out of PPE also has its drawbacks. Because the suits are disposable, 

the economic cost of going through multiple suits on a daily basis would be significant. 

Furthermore, from an administrative standpoint there would have to be at least twice as 

many healthcare personnel present during any shift when a PPE is being used in order 

to insure the continuity of medical care while allowing each PPE user ample time to 

remove PPE and take breaks to cool down and hydrate [16]. It could take 30 minutes to 

get fully dressed in full PPE, 30 minutes to undress, and 30 minutes for recovery 

between work periods [39]. Advanced suits that used personal cooling with ice or phase 

change materials may allow for a longer working period of closer to two hours [40]. 

These suits may cost at least 10 times as much per set as current coveralls, but the 

higher initial costs can be offset by the reusability of the suits as well as less personnel 

that will be necessary to be present at each workstation [39].  



	  

 5 

In addition to the economic ramifications of frequent replacements of Ebola 

protective equipment, there is also increased risk of opportunistic infections. The 

effectiveness of PPE depends on using proper technique while donning and doffing 

equipment. The importance of proper technique and training is underscored by the 

requirement of having an onsite manager/trained observer present anytime PPE is used 

[5].  The manager must confirm that all parts of the PPE are in working condition and the 

PPE must be donned in the correct order in order to ensure effectiveness [5]. Once the 

healthcare practitioner has entered the Ebola patient’s room, the PPE may not be 

modified. If any part of the PPE is breached during the course of patient care, the user 

must immediately leave the room to return to the entry area to assess for possible 

exposure [5]. When the healthcare practitioner is ready for doffing, he/she must inspect 

and disinfect any visible contamination prior to entering the anteroom where PPE will be 

removed [5]. A trained observer must be present to remind the user of the proper steps 

of the doffing procedure as well as help remove specific components of the PPE. It is 

important that the PPE is removed in the correct order in order to minimize risk of cross-

contamination [17]. Finally, all disposable PPE must be placed in a liquid resistant 

biohazard bag to be properly disposed [5].  

The type of protective clothing that is used as part of a PPE ensemble can affect 

the amount of heat stress its users experience. In this study, coveralls made of 

monolithic barriers, which prevent vapors from escaping from the suit, are compared to 

that of micro-porous material, which allows water vapor from sweat evaporation to 

escape the suit. A progressive heat stress protocol was used to estimate a critical wet 

bulb globe temperature (WBGTcrit) at which thermal equilibrium can no longer be 

maintained. The protocol allowed for an estimation of total evaporative resistance (Re,T,a). 
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A clothing adjustment factor (CAF) can also be calculated from the WBGTcrit and 

assigned to each ensemble.  
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Chapter Two: 

Literature Review 

 Protective clothing is a part of a PPE ensemble that is worn by healthcare 

workers to protect themselves from the biological hazards of Ebola.  In addition to 

protecting users from biological hazards, protective clothing has also been used for 

chemical and physical hazards in a various industries. When considering the type of 

PPE to use, one must consider the potential heat stress that the PPE could cause.  

 For studies on clothing ensembles, two approaches can be taken. A common 

approach is to create conditions of uncompensable heat stress by fixing the 

environmental conditions to one or more typical environments at a fixed metabolic rate 

[20]. The average safe exposure time and/or differences in physiological response 

represent the ensemble performance. An alternative approach is to determine the critical 

environment at the upper limit of compensable heat stress following a progressive 

exposure protocol that was developed at the University of South Florida. Based on the 

critical environment, an estimation of the total apparent evaporative resistance (Re,T,a) 

and the critical WBGT (WBGTcrit) can be determined [17,21]. From the WBGTcrit, a 

Clothing Adjustment Factor (CAF) can be assigned to the ensemble, which is the 

difference from the critical WBGT of Work Clothes. Both Re,T,a and WBGTcrit are useful 

indices for the comparison of the evaporative cooling capacity of clothing ensembles 

[22]. 

There have been a series of studies conducted at the University of South Florida 

College of Public Health on this topic over the past 15-20 years.  Caravello et al, wrote 
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that to varying degrees, clothing affects the level of heat stress that a person 

experiences via convection, conduction, radiation, and most notably sweat evaporation 

[18]. Evaporative resistance modifies the maximum rate of evaporative cooling, and is 

therefore the most important factor with respect to maintaining thermal balance [19]. 

Wet Bulb Globe Temperature (WBGT) 

 The wet bulb global temperature (WBGT) is widely used in the assessment of 

environmental conditions to monitor for occupational heat stress [21]. WGBT is a 

measure of heat stress, which takes into account humidity, temperature, wind speed, 

solar radiation, and sun angle. The formula for WBGT in an indoor or outdoor setting 

with no solar load, WBGT = 0.7Tnwb + 0.3Tg. When measuring WBGT in an outdoor 

setting with sunlight, WBGT = 0.7Tnwb + 0.2Tg.+ 0.1Tdb, where Tnwb=Natural Wet Bulb 

Temperature, Tg=Globe Temperature, and Tdb=Dry Bulb Temperature [22]. Dry bulb 

temperature indicates the amount of heat in air and is measured by a thermometer that 

is shielded from moisture and direct radiant heat sources [23]. Globe temperature 

reflects radiant heat and is the temperature inside a blackened, hollow, thin copper globe 

[23]. Natural wet bulb temperature is measured by exposing a wet sensor such as a wet 

cotton wick fitted over the bulb of a thermometer to the effects of evaporation and 

convection [23].  

Effects of Clothing on Evaporative Sweating  

 Evaporative cooling is limited by clothing, specifically total evaporative resistance 

(Re,t,a), which affects the ability of the clothing ensemble to facilitate evaporative cooling. 

Research by Havenith et al. in 1999 showed that while convection, conduction, and 

radiation have minor roles in maintaining thermal equilibrium in hot climates, evaporative 

resistance is the most important factor because of sweating’s profound effect on cooling 
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[18,26].  Evaporative resistance and vapor permeability of clothing is affected by many 

factors including air motion, body movement, and wetness. Each clothing ensemble has 

a static Re,t,a that reflects values when clothing is worn without any significant movement 

in a controlled environment. A more accurate reflection of realistic conditions would be 

resultant values of Re,t,a. For example, multiple studies by Lotens, Havenith and Holmer 

have shown that walking at a brisk pace can decrease the insulation of moderately thick 

clothes by nearly 50% because it helps facilitate air moving in and out of clothing [27,28]. 

A similar mechanism explains decreased total evaporative resistance. 

 Clothing adjustment factors were developed because WBGT-based assessments 

are based on observed (empirical) relationships and not rational (biophysical) 

relationships. Hence it is difficult to account for clothing effects based on insulation and 

evaporative resistance without having a standardized method to account for different 

clothing material [21]. Clothing adjustment factors (CAF) were first described by Ramsey 

in 1978 and further developed by Bernard, et al. and adopted by the American 

Conference of Governmental Hygienists (ACGIH) in 1990 [21,22]. CAFs are based on 

differences between the critical WBGT (WBGTcrit) of clothing ensembles of interest and 

that of work clothes, which serve as a baseline. The higher the WBGTcrit, the better it is 

from a heat stress perspective because it can support more evaporative cooling. The 

effective WBGT is the sum of the WBGTcrit and CAF, and can be compared to an 

occupational exposure limit [21]. The critical WBGT in degrees Celsius is calculated as 

0.7 (Tpwb + 1.0) + 0.3 Tg. Tpwb is the psychometric wet bulb temperature which is similar 

to the wet bulb temperature except the measurement is taken with 3.5 meters/second of 

air forced across the wet cotton wick of the bulb [23].  
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Metabolic Rate  

 The metabolic rate, M has a profound effect on heat stress by increasing heat 

generation.  Bernard et al. demonstrated this in a 2005 study when their vapor barrier 

Tychem QC® ensemble had a metabolic rate that was 10 W m−2 higher than the others. 

This resulted in a WBGTcrit that was 6 to 8 °C lower than the other 4 ensembles [21]. 

Ashley et al. also found this inverse relationship in a 2008 study that compared three 

metabolic rates with five ensembles and concluded that increasing the metabolic rate 

decreased the WBGTcrit, while increasing the physiological data (HR, Tre , and PSI) [29].  

On the other hand, metabolic rate has not been shown to change clothing 

adjustable factor, CAF. Bernard et al. investigated this in 2008 when they showed that 

metabolic rates approximating light, moderate and heavy work had no effect on the CAF 

of four clothing ensembles [19]. While the WBGTcrit is expected to decrease with 

increasing M, this decrease should be the same across all ensembles, thus the CAF 

which is added to each to the WGBT will remain the same [22]. The CAF can be used in 

either low or high metabolic rates [22]. 

Physiological Strain Index 

 Moran et al. developed the Physiological Strain Index (PSI) in 1998, which is 

based on rectal temperature and heart rate. The PSI ranges from a scale of 0 (no strain) 

to 10 (very strenuous) and depicts the heat strain that is reflected by both the 

cardiovascular and thermoregulatory system [30]. The PSI allows for real time analysis 

of heat strain and can be applied at any time during both rest and recovery periods 

whenever HR and T can be measured [30]. Furthermore, this index can compare the 

strain between any combination of clothing ensemble and climate. A follow up by Moran 

et al. in 1999 found no gender differences in PSI between matched cohorts of males vs. 
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females. This same study also found that a group of fitter males and females both had a 

lower PSI [31].  

Objective of the study 

 There is no current universal guideline for personal protective equipment against 

Ebola. Coveralls are only one aspect of PPE that healthcare personnel must wear in 

order to safeguard themselves when treating patients with a possible diagnoses of 

Ebola. In addition to considering the effectiveness of protection against the filovirus, heat 

stress is another major consideration. Therefore one must balance choosing an 

ensemble that may be more resistant to filoviruses, but run a higher risk of its users 

suffering heat stress disorders. The purpose of this study is to determine if there are 

differences in heat stress among three clothing ensembles. The WBGTcrit and the Re,T,a 

will be integral to comparing these three ensembles under heat stress conditions 

Hypothesis 

Null Hypotheses: 

There are no differences in heat stress and heat strain among standard work clothes 

ensemble (reference ensemble), MICROGARD® 2000 TS Plus and MICROGARD® 

2300 Plus protective clothing when worn with facemask, hood, gloves, goggles, and 

boots.  

Alternative Hypothesis: 

There will be differences in heat stress and heat strain among standard work clothes 

ensemble (reference ensemble), MICROGARD® 2000 TS Plus and MICROGARD® 

2300 Plus protective clothing when worn with facemask, hood, gloves, goggles, and 
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boots.  
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Chapter Three: 

Methods  

Experimental Design 

 The study was a balanced cross over design. Each participant completed a trial 

with each ensemble. The order of ensembles was randomized in a partially balanced 

cross over design. Each participant served as their own control, completing trials in work 

clothes and the two Microgard® Ebola ensembles for a total of three trials each.  Re,T,a,, 

WBGTcrit, and CAF are measures of heat stress, while Tre , HR, Tsk, and PSI are 

measures of heat strain. All were measured and used to comparison among the three 

ensembles.  Metabolic rate and relative humidity are controlled to avoid confounded 

results.  In addition, metabolic rate was controlled for in the data analysis.  

Participants 

 The University of South Florida Institutional Review Board approved the study 

protocol. A written informed consent was obtained prior to enrollment in the study. 

Participants were recruited from the University of South Florida campus via word of 

mouth and fliers posted in areas frequented by the target population, such as the student 

union, fitness center, College of Education and College of Public Health. Each 

participant was examined by a physician and approved for participation.  A medical, 

family, social and work history was taken to assess current state of health and to 

determine that participants are healthy with no chronic disease or medication use known 

to influence or adversely affect thermoregulatory or cardiovascular response to heat. A 
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physical examination for evidence of disorders of the vestibular system, pulmonary 

system, cardiovascular system, gastrointestinal system, genitourinary system, 

musculoskeletal system, and neurological system was performed and each participant 

underwent a resting 12-lead electrocardiogram. Inclusion criteria were males between 

ages 18-40 who passed the physical exam and were medically approved to participate. 

Participants were excluded if there was evidence of drug or alcohol abuse or use of the 

following classes of medication:  alpha and beta (sympathetic) blocking agents, 

anticholinergics, antidepressants, lithium, antihistamines, calcium channel blockers, 

cocaine, diuretics, dopaminergics, ethanol, neuroleptics, and sympathomimetics.  

Subjects were also excluded if they had a history of hypertension, cardiovascular 

disease, heart or lung disease, renal pathology, diabetes, asthma, or previous incidence 

of heat injury.  

 Six acclimatized adult males participated in the experimental wear trials. Table 1 

provides information on their physical characteristics. Participants were reminded of the 

need to maintain good hydration. On the day of a trial, they were asked not to drink 

caffeinated beverages three hours before the appointment and not to participate in 

vigorous exercise before the trial. Prior to beginning the experimental trials to determine 

critical conditions, participants underwent a 5-day acclimatization to dry heat that 

involved walking on a treadmill at a metabolic rate of approximately 150 W m-2 in a 

climatic chamber at 50¹C and 20% relative humidity (rh) for two hours. Participants wore 

tee shirts, shorts, socks, and athletic shoes.  
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Table 1. Participant Characteristics  

Participant Age 
[yr] 

Heigh
t[m] 

Weigh
t[kg] 

Body Surface Area  

[m2] 

S02 

 

 

32 1.70 85 1.96 

S06 23 1.72 94 2.07 

S07 25 1.82 100 2.21 

S08 

 

19 1.82 76 1.97 

 S09 24 1.77 80 1.97 

S10 25 1.92 90 2.20 

 

Clothing 

Table 2. Description of Clothing Ensembles  
 
Clothing Ensemble Description 

Work Clothes Standard cotton work clothes (6 oz. shirt and 8 oz. trousers) 
worn over a base ensemble of tee-shirt, shorts, socks, and 
athletic shoes 

Scrubs 55% cotton, 45% polyester: unisex solid top-single left chest 
pocket, loose fitting v-neck short sleeves with side slits; unisex 
trousers- 1 pocket traditional boxer style with drawstring cord 

M2000 MICROGARD® 2000 TS Plus worn over scrub suit and with 
hood, face-covering goggles, gloves and boots. (WHITE) 

M2300 MICROGARD® 2300 Plus worn over scrub suit and with hood, 
face-covering, goggles, gloves and boots. (YELLOW) 
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For this study, there were three ensembles based on fabric and construction as 

described in Table 2. Each participant wore all three ensembles in a balanced order. 

          

Work Clothes                          Scrubs             Microgard® 2000 TS Plus  Microgard® 2300 Plus 

Figure 1: Various Trial Ensembles 

 

Equipment  

 The trials were conducted in a controlled climatic chamber. The internal 

dimensions of the chamber are 2.7-m wide, 3.0-m deep and 2.2 m high. The possible 

range of environments in the climatic chamber were between 10 to 90% relative humidity 

(RH) and 4 to 60¹ C. Humidity for the experimental trials was controlled at 50 % RH and 

air speed at 0.5 m/sec. Temperature was controlled according to protocol. The ambient 
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environmental conditions inside the chamber were monitored using a Quest temperature 

monitor with measurements of the dry bulb, natural wet bulb and globe temperatures.  

 A motorized treadmill was used to control the metabolic rate and work demand 

through settings of speed and slope to elicit a target metabolic rate of 150 W m-2 and 

approximate moderate work independent of aerobic capacity.    

 Heart rate (HR) was monitored using a sports-type heart rate monitor (Polar 

Electro Inc., Lake Success, N.Y.). Rectal temperature was measured using a flexible 

thermistor inserted 10-cm beyond the anal sphincter muscle. Prior to each trial, the 

rectal thermistor was calibrated in a warm water bath. All other equipment was calibrated 

following laboratory standard procedures or per manufacturer’s recommendations.  

 Skin temperatures (Tsk) were measured using surface thermistors taped to four 

sites (chest, upper arm, thigh, and calf) following the method of Ramanathan [32]. 

Average skin temperature was Tsk = 0.3 Tch + 0.3 Tarm + 0.2 Tth + 0.2 Tcalf.  Pre-trial and 

post-trial weight while wearing cotton tee shirt, gym shorts, socks and athletic shoes 

were taken on a Mechanical Linear Beam Medical Weight Scale.  

 Metabolic rate was estimated from assessment of oxygen consumption (VO2) 

using a Douglas bag method.  Expired air was collected and sampled by having 

participants breath through a two-way valve attached to flexible tubing that was 

connected to the Douglas bag. The volume of expired air was measured using a dry gas 

meter. A small sample was removed from the collection bag and drawn into an oxygen 

analyzer to determine oxygen content. Comparison was then be made between the 

composition of inspired and expired air, allowing VO2 to be determined.  

 



	  

 18 

Protocols 

 A progressive heat exposure protocol was used during the experimental trials. 

Each participant wore each ensemble as they walked on the treadmill at a moderate rate 

of work (150 W m-2). The order of ensembles was randomized in a partially balanced 

design. Participant weight was recorded before the start of each trial and as well as after 

completion of each trial.  The heart rate monitor was secured with a chest strap. The four 

skin surface thermistors were attached, and rectal thermistor (after insertion by each 

participant in a separate private dressing room) was taped to the participant’s upper 

buttock to prevent thermistor from being pulled out during trials.  During trials, 

participants were allowed to drink water or a commercial fluid replacement beverage 

(Gatorade®) at will with volume of fluid ingested recorded each hour and at the end of 

each trial. If the pre-trial and post-trial weights showed a net loss of 1.5% or more of 

body weight, participant was advised to continue aggressive fluid replacement for the 

remainder of the day.   

 Core temperature, heart rate and ambient conditions (dry bulb, natural wet bulb 

and globe temperatures; Tdb, Tnwb and Tg, respectively) were monitored continuously and 

recorded every 5 minutes. Initial dry bulb temperature (Tdb) was set according to 

ensemble at 36°C for work clothes, 28 °C for M2000 and 23 °C for M2300. Relative 

humidity (rh) was set at 50% for all three ensembles. Once the participant reached 

thermal equilibrium (no change in Tre and heart rate for at least 15 minutes.), Tdb was 

increased 0.8 °C every 5 minutes.  

 Trials were scheduled to last 120 minutes unless one of the following criteria was 

met: (1) a clear rise in rectal temperature (Tre) associated with a loss of thermal 

equilibrium (typically 0.1 °C increase per 5 min for 15 min), (2) Tre reached 39 °C, (3) a 
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sustained heart rate greater than 90% of the age-predicted maximum heart rate, or (4) 

participants experienced sustained fatigue or weakness, light-headedness, nausea, 

dizziness, faintness, muscle cramps, or pains in the joints or muscles, or wished to stop. 

Inflection Point and Determination of Critical WGBT 

 The inflection point or critical condition marks the transition from thermal balance 

to the loss of thermal balance, where core temperature continued to rise. The chamber 

conditions five minutes before the noted increase in core temperature was taken as the 

critical condition. One investigator noted the critical condition, and a second investigator 

randomly reviewed the decisions. The WBGTcrit in °C-WBGT at the inflection point was 

computed as 0.7 (Tpwb + 1.0) + 0.3 Tg  [33]. 

Calculation of Clothing Parameters 

Estimations of Re,T,a and WBGTcrit follow from a progressive heat stress protocol which 

identifies the critical conditions at which the maximum heat loss due to evaporative 

cooling (vapor pressure difference between the environment [Pa] and the skin [Psk]  

divided by the apparent total evaporative resistance [Re,T,a]) is balanced by the net heat 

gain due to internal sources (Hnet) (metabolic rate [M] less external work [Wext], storage 

rate [S] and respiratory exchange rates by convection [Cres] and evaporation [Eres]) and 

dry heat exchange (for non-radiant environments, approximated by the difference 

between air [Tdb] and skin [Tsk] temperatures divided by the resultant total insulation 

[IT,r]). This relationship is demonstrated by equations 1 and 2. [18,34].  

(Pa - Psk) / Re,T,a = Hnet + (Tdb - Tsk) / IT,r  (1) 

Hnet = M - Wext - S + Cres - Eres  (2) 
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Total static insulation (IT,stat) values were estimated from previous data on similar 

ensembles. In the current study, these values were treated as a fixed value for all 

ensembles. The following is the process to compute derived values for each trial based 

on trial conditions for the participant and environment. 

Resultant total insulation (IT,r) was estimated as a two-step process according to 

ISO/FDIS 9920 (2007) (Equation 32) as 

CFI = exp[-0.281 (v - 0.15) + 0.044 (v - 0.15)2 - 0.492 w + 0.176 w2]    (3a) 

where air speed (v) was taken as 0.5 m s-1 and walking speed (w) was the treadmill 

speed (m s-1) for the specific trial. This adjustment for air and body movement was 

similar to that proposed by Holmer et al. [28]. The value of resultant clothing insulation 

was further reduced by 10% (multiplied by 0.9) to account for the reduction in insulation 

due to wetting [36,37]. That is, 

IT,r = CFI • IT,stat • 0.9        (3b) 

Referring to Kenney, et al. (1993), the measures in Equation 2 were computed as 

follows. Oxygen consumption (VO2, L min-1) was estimated from treadmill speed (w, m s-

1) and clothed body weight (mb, kg) as VO2 = mb (3.5 + 6 w)/1000. Metabolic rate (M) in 

W m-2 was estimated from oxygen consumption in liters per minute as M = 350 VO2/AD 

[34]. The Dubois surface area (AD) was calculated for each subject as AD = 0.202 mb
 0.425 

. H0.725, where mb was the mass of the body (kg) and H was the height (m). The external 

work (Wext) was taken as zero because the treadmill slope was zero. Respiratory 

exchanges, latent respiration heat loss (Eres) and dry respiration heat loss (Cres), were 

calculated as Cres = 0.0012 M (Tdb - 34) and Eres = 0.0173 M (5.62 - Pa) [35]. Kenney, et 

al. (1993) recognized that there might be some heat storage represented by a gradual 
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change in Tre. To account for this, the rate of change in heat storage was estimated 

knowing the specific heat of the body (0.97 W h °C-1 kg-1), body weight (mb), and the rate 

of change of body temperature (ΔTre Δt-1) as an average over the 20 minutes preceding 

the inflection point (Caravello et al. 2008). That is, S = 0.97 mb ΔTre AD
-1 Δt-1 [18,34].  

The apparent total evaporative resistance (Re,T,a) was computed by rearranging Equation 

1 to 4 

Re,T,a = (Pa - Psk) / [Hnet + (Tdb - Tsk) / IT,r] (4) 

where Psk was the saturation pressure of water vapor at Tsk.  

Data Analysis   

 The primary dependent variables were thermal characteristics of clothing (Re,T,a, 

WBGTcrit,), and heat strain (HR, Tre,, Tsk, and PSI). Data were analyzed using statistical 

analysis software (SAS 9.4). A two-way analysis of variance (ANOVA) (clothing x 

participants) was used to determine if clothing ensemble had any significant effect. 

Tukey’s multiple comparison test was used to determine where the main differences 

occurred.  Significance was tested at the α= 0.05 level. 
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Chapter Four: 

Results 

 Table 3 summarizes the metabolic rates and environmental critical conditions by 

ensemble. There were no differences among the three ensembles for metabolic rate 

normalized to body surface area (M), thus eliminating the possibility that metabolic rate 

could be a confounder for environmental factors at critical conditions. WBGTcrit 

decreased with higher levels of evaporative resistance.  

 

Table 3. Metabolic rate and environmental conditions at critical condition by clothing ensemble. 

Clothing 
Ensemble 

M* 

[W m-2] 

Tdb, crit 

[°C] 

Pa, crit 

[kPa] 

WBGTcrit  

[°C-WBGT] 

Work Clothes 
155 

±4 

41.4 

±1.7 

3.49 

±0.34 

33.8 

±1.5 

M2000 
155 

±4 

32.1 

±2.0 

2.27 

±0.15 

26.3 

±1.3 

M2300 
155 

±5 

28.1 

±3.2 

1.85 

±0.37 

22.9  

±2.6 

*No significant differences in metabolic rate. 
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 Table 4 summarizes physiological strain for each clothing ensemble at critical 

conditions by ensemble. There were no differences in Tre, , HR, Tsk,, and the 

physiological strain index (PSI).  

Table 4. Physiological strain for each clothing ensemble at critical conditions.  

Clothing 
Ensemble 

Tre 

[°C] 

        Tsk 

        [°C] 

     HR 

        [bpm] 
PSI  

Work 
Clothes 

37.8 

±0.3 

35.9 

±0.5 

113 

±18 

4.41 

±0.63 

 

 

M2000 38.4 

±1.2 

35.5 

±0.5 

121 

±16 

5.65 

±0.63 

 

M2300 38.0 

±0.4 

35.7 

±0.4 

121 

±16 

5.06 

±0.63 

 

 

† PSI = 5(Tre – Tre0)/(39.5 – Tre0) + 5(HR – HR0)/(180 – HR0) ; Where Tre0 =36.5 and HR0  =60 

 

 Table 5 summarizes the thermal characteristics of clothing ensembles. The static 

insulation IT,stat  values were estimated from previous data on similar ensembles, and 

were treated as a fixed value for all ensembles. The resultant IT,r values were estimated 

according to the ISO/FDIS 9920 formula, which takes into consideration the air speed, 

walking speed, and adjusts for air and body movement [37]. The control work clothes 

ensemble had the lowest evaporative resistance and the two Microgard® ensembles 

both had higher evaporative resistances.  
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Table 5. Thermal characteristics of the clothing ensembles. 

Clothing 
Ensemble IT,stat 

[m2 °C W-1] 
IT,r 

[m2 °C W-1] 
Re,T,a 

[m2 kPa W-1] 
  

Work Clothes 0.18 0.106 
0.0112 
±0.002   

M2000 0.20 0.118 
0.031 

±0.006 
  

M2300 0.20 0.118 
0.054  

±0.015 
  

*All ensembles were different from each other for the total apparent evaporative resistance and 
insulation. 

 

 Table 6 summarizes the wet bulb global temperature at critical conditions with 

resulting clothing adjustment factor for the three ensembles. Not surprisingly, the 

WBGTcrit  was highest for the control group and decreased with increasing evaporative 

resistance values. The clothing adjustment factor was calculated to depict the 

differences in wet bulb globe temperature and showed that CAF increased as the 

WBGTcrit  decreased. 

Table 6. Results of multiple comparison tests for the ensembles for WBGTcrit and Re,T,a. 

Clothing 
Ensemble WBGTcrit 

[°C-WBGT] 
CAF 

[°C-WBGT] 
R e,T,a 

[m2 kPa W-1]  

Work Clothes 33.8 0 
0.0112 
±0.002  
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M2000 26.3 7.5 
0.031 

±0.006 
 

M2300 22.9 11 
0.054  

±0.015 
 

 

*All ensembles were different from each other for the three metrics of thermal characteristics of 
study 

 
Where the pooled Standard Error of Estimate (SEE) of the mean values is 0.77 for WBGTcrit 
and 0.004 for Re,T,a 
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Chapter Five: 

Discussion 

The WBGTcrit and the and Re,T,a   are dependent variables that are center to 

addressing our hypothesis that there will be differences in heat stress among standard 

work clothes ensemble, MICROGARD® 2000 TS Plus and MICROGARD® 2300 Plus 

protective clothing when worn with facemask, hood, gloves, goggles, and boots.  

The total evaporative resistance for work clothes of 0.012 kPa m2 W-1 was similar 

to work clothes values that were found in previous studies of 0.016 kPa m2 W-1  by 

Kenney et al. in 1993, 0.013 kPa m2 W-1  by Barker et al. in 1999 and Caravello et al, 

and most recently 0.011 kPa m2 W-1  by Fletcher et al. in 2014 [10,18,34]. This similarity 

in our work clothes control ensemble total evaporative resistance with prior studies 

confirmed the validity of this current set of data. Moreover, the small standard deviation 

of 0.002 kPa m2 W-1 demonstrates the reliability of our data. This is significant because 

the total evaporative resistance has the potential to be influenced by a series of potential 

errors, including the precision of knowing environmental conditions, inaccurate mean 

skin temperature measurements, faulty metabolic rate due to errors in estimation of 

respiratory heat exchange, and the presumption that a treadmill set to zero slope will not 

add any external work [18]. At the root of calculating total evaporative resistance is the 

principal that the ability of the clothing ensemble to allow thermal equilibrium at the 

upper limits of compensable heat stress (critical condition) affects how much the vapor 

pressure and dry bulb temperature changes at the inflection point (5 minutes before 
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critical condition). It is reassuring to know that despite these many steps where errors 

could have occurred during our calculation of total evaporative resistance, our data were 

similar to that found in 4 prior studies which used the heat stress protocol at USF.  

The Re,T,a  was 0.031 kPa m2 W-1  for our microporous M2000 TS Plus ensemble, 

which is composed of micro-porous material and was expected to have a lower 

evaporative resistance than vapor-resistant material. Prior studies on the NexGen® 

micro-porous film Bernard et al. in 2005 and Caravello et al. in 2008 yielded Re,T,a values 

of 0.036 kPa m2 W-1  which is similar to our value of 0.031 kPa m2 W-1 [18,21].  

The Re,T,a 0.053 kPa m2 W-1 for M2300 Plus, which is composed of polyethylene, 

a vapor barrier material. Caravello et al. found a Re,T,a of 0.029 kPa m2 W-1  in a Tychem® 

QC Coverall [18].  Fletcher et al. found a Re,T,a of 0.029 kPa m2 W-1  in a Tychem® F 

Coverall that was worn with hood and full-face respirator [10]. In that study, she noted 

that usage of respirators had a negligible effect on apparent total evaporative resistance, 

which lends further credence to our value of 0.031 kPa m2 W-1 . Fletcher et al’s lower 

value could be due to the stiffness of their ensemble that helped create a bellows effect 

with movement and thus higher rates of convection, although she concluded that it is 

difficult to know for sure how much the stiffness contributed to the evaporative resistance 

values that they obtained. The M2300 Plus ensemble also provided more seals than 

both the Fletcher Tychem® F and the Caravello Tychem® QC ensembles. Furthermore, 

the Tychem® QC ensemble was more compliant and moved more easily with the body. 

These are reasons why both Tychem® had lower Re,T,a values than the M2300 Plus.  

 Our data showed that there is an inverse relationship between WBGTcrit and Re,T,a  

. This is shown in Table 6, where Work Clothes Ensemble had the highest WBGTcrit at 

33.8 °C, while the M2000 had a WBGTcrit  of 26.3 °C, and the M2300 had a WBGTcrit  of 
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22.9 °C. This decrease in WBGTcrit with an increase in Re,T,a    was also seen in prior 

studies by Caravello and Fletcher and shows that the WBGTcrit and hence heat stress is  

adversely affected by the increased evaporative resistance of a clothing ensemble. This 

is because sweating is a significant mechanism of heat loss and plays an integral role in 

the body’s ability to thermoregulate in response to extreme working conditions.  

 The clothing adjustable factor (CAF) is a way to conceptualize the added thermal 

burden of a clothing ensemble in comparison to its control. As previously mentioned, 

CAFs are based on differences between the critical WBGT (WBGTcrit) of clothing 

ensembles of interest and that of work clothes control, which has a CAF of 0. Our data in 

Table 6 shows that the CAF is 7.5 for M2000 and 11 for M2300. These values are 

similar to the CAF’s obtained in prior studies where Bernard in 2005 and Caravello in 

2008 found that the Tychem® QC ensembles that were worn without a hood had a CAF 

of 7.8 [18,21]. The addition of a hood would be expected to add a CAF of about 1.0 so 

theoretically the Tychem® QC ensemble, should have a CAF of about 9 if worn the 

same way that the Microgard® ensembles were worn. Fletcher found that the Tychem® 

TAP Coverall ensemble used in her study had a CAF of 10 which makes sense because 

there was a double layer of material used in her study [10]. The Microgard® 2300 Plus 

had the highest CAF at 11, which could be due to more seals, resulting in less 

convective heat loss.  

 The final aspect of our study investigated physiological data for subjects while 

wearing the three ensembles. A two way ANOVA was used to evaluate whether or not 

the HR, Tsk, Tre, and PSI is statistically different among the three ensembles. Table 4 

shows no difference in HR, Tsk, Tre , and PSI for the subjects in each of the ensemble 

groups. This was no surprise, prior studies by Ashley et al. in 2008 and Fletcher et al. in 

2014 found no significant differences in PSI among different ensembles, and our results 
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were consistent with this [10,29].  

Limitations 

The small sample size that involved only 6 college aged males could mean that 

there is possibly selection bias. However, the data that was collected is reliable and 

therefore internally valid because each subject served as his control after undergoing a 

standard acclimatization period prior to the trial. Moreover, the heat stress protocol that 

was has been previously used in several other studies conducted at the University of 

South Florida in the past, and thus has been fine tuned to generate reliable and valid 

data. The data that was collected for the control work clothes ensemble was similar to 

work clothes ensemble data from prior studies, which helps lend credence that the 

results are reliable.  

There may be concern that no females were included in this study because a 

prior study by Ashley et al. in 2008 demonstrated that women demonstrated a higher 

PSI [29]. It is important to note that the increased PSI did not result in significant 

differences in resulting WBGTcrit . Hence, the CAF that were calculated for the 

Microgard® ensembles in this study would still be valid when women wear the 

ensembles, even if they theoretically may have a higher PSI. Next, the average age of 

our subjects (24.6) is almost guaranteed to be lower than the average age of healthcare 

personnel who would be utilizing these ensembles to treat Ebola patients. Several 

studies, including one by Pandolf, et al in 1997 have shown an increased susceptibility 

to heat stress in patients with chronic debilitating diseases, specifically heart disease 

[38]. Naturally there is concern that a healthy worker effect could occur in this study 

because our subjects are healthy college aged students. However, one should take into 

consideration that nurses, physicians, respiratory techs, and other potential users of 
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Ebola personal protective equipment should be healthier and in better shape than the 

general population. Therefore the young average age of subjects in our study should not 

decrease external validity of this study. 

Conclusion 

Based on the results of this study, the MICROGARD® 2000 TS Plus has a better 

heat stress profile than the MICROGARD® 2300 Plus ensemble. While the 

MICROGARD® 2300 Plus ensemble is composed of polyethylene material which is 

theoretically stronger than the MICROGARD®2000 TS Plus, it is unclear whether this is 

significant when it comes to protection against Ebola.  Other considerations in the choice 

of fabric include, cost, style, and personal preference.  
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