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Abstract 

Polybrominated Diphenyl Ethers (PBDEs) are flame retardants widely used within the 

United States in various products such as plastics, electronics, textiles and furniture. With an 

increase in production and usage, PBDEs have recently emerged as a contaminant of concern. Due 

to their chemical structure, PBDEs have the propensity to bioaccumulate in mammals. In fact, 

elevated PBDE concentrations have been recorded in human breast milk. Due to the potential 

widespread exposure to PBDEs, this study investigates human blood concentrations of PBDEs 

generated through the 2003-2004 National Health and Nutrition Examination Survey. Through the 

use of statistical modeling, a comparison of mean PBDE concentrations in ng/g lipid is conducted 

based on age, gender and ethnicity. From a sample of 2337 individuals, the average blood 

concentration of PBDEs was approximately 81 ng/g lipid. The average PBDE concentration of 

males was significantly higher than females, using a 95% confidence level. In addition, PBDEs 

detected in human blood ranged approximately from 0.05 to 3676 ng/g lipid, with the highest 

concentrations found in black males. Also, a logistic regression analysis is conducted to determine 

whether an increase in background PBDE concentrations is a risk factor for obesity. Furthermore, 

the analyses of PBDEs are repeated for phthalates and polychlorinated Biphenyls for comparison. 

Finally, the measured concentrations of PBDEs are also compared to health outcome data known 

to show potential risk. 
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Chapter 1 

Introduction 

1.1 Flame Retardants 

In 2009, the National Fire Protection Association reported an estimated 1,348,500 fires in 

the United States. These fires were responsible for approximately 17,050 civilian injuries, 3,010 

civilian deaths and over $12 billion in property damage. Many of the casualties included children 

and the disabled. Unfortunately, the various threats of fires have always been a concern throughout 

history (American Chemistry Council, 2017). As a result, fire protection is a very important aspect 

of emergency planning. There are various methods of fire response and prevention. Within the 

United States, many entities share a responsibility to protect citizens from fire hazards. A city fire 

department is a popular example. However, a lesser-known yet very impactful entity includes the 

chemical industry. For many decades, the chemical industry has been responsible for generating 

compounds combat the progression of fire. These chemicals are called flame retardants (United 

States Environmental Protection Agency [USEPA], 2014). 

 

The term “flame retardant” does not refer to a group of chemicals but, instead, refers to a 

function. Some chemicals with varying structures and properties can function as flame retardants 

and are sometimes combined for greater effect (American Chemistry Council, 2017; ATSDR, 

2017; USEPA, 2014). Flame retardants are usually described as inorganic, halogenated 

compounds often containing bromine, chlorine, phosphorus or nitrogen. By lacing various 

consumer goods with flame retardants, the progression of fire is delayed or prevented. Generally, 
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ignition is prevented by increasing the threshold necessary to start a fire which delays flashover 

and reduces the spread of fire (American Chemistry Council, 2017).  

 

Flame retardant use is an innovative way to protect ourselves from injury, death and 

prevent property damage. It is important to note that over three decades ago, American residents 

had approximately seventeen minutes to escape a house fire, while today, residents have three to 

four minutes. This is largely due to the types of materials used to build today’s household furniture 

in comparison to thirty years ago. Then, more natural materials were used while today’s furniture 

contain more synthetic material that are more flammable (Davis, 2016). This further accentuates 

the need for flame retardants in today’s household goods.  

 

The first flame retardants used in the United States were polychlorinated biphenyls (PCBs). 

However, due to human health concerns, PCB production was banned in 1979. PCBs have been 

classified as carcinogenic to humans (group 1) by the International Agency for Research on Cancer 

(IARC) and are known as persistent organic pollutants. As a result, PCBs were replaced as flame 

retardants by a compound with similar properties known as polybrominated diphenyl ethers 

(PBDEs) (Vonderheide et al., 2008). After 1979, PBDE compounds were the major group of flame 

retardants due to their cost effectiveness. In recent years, there has been a growing concern 

pertaining to the potential environmental and public health risks of background PBDE levels 

(Alaee et al., 2003; Aylward et al., 2013; Banasik et al., 2009; Birnbaum et al., 2004; Castorina et 

al., 2011; Turyk et al., 2009; Vasiliu et al., 2006).  
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1.2 Polybrominated Diphenyl Ethers 

Polybrominated diphenyl ethers are flame retardants used in a variety of appliances, 

fixtures, furniture and other household goods. The use of these chemicals has increased 

tremendously since the ban of PCBs. Just as PCBs and PBDEs share similar flame retardant 

properties, they also share similarities in chemical structure. PBDEs are not covalently bonded to 

the polymer matrix within materials in which they are used. Therefore, these brominated 

compounds are known to readily leach into the surrounding environment where they have shown 

resistance to various forms of biodegradation. They have been shown to bioaccumulate in the food 

chain (Costa & Giordano, 2007; Kiviranta et al., 2004; Turyk et al. 2015; Viberg et al., 2003). 

Lower brominated congeners tend to be more persistent and bioaccumulate more than higher 

brominated congeners. BDE congeners differ in the orientation or total number of bromine atoms 

attached to the ether molecule (ATSDR, 2017).  

 

There are 209 possible congeners. Of these, BDE-47 and BDE-99 make up 75% of the total 

brominated flame retardants in commercial mixtures. In comparison to BDE-47, there is twice as 

much BDE-99 in these commercial mixtures. When congeners contain the same number of 

bromine atoms, they are referred to as homologs. There are ten homologous groups of PBDEs; 

three of which are produced commercially. These three homologs are: decabromodiphenyl ether 

(decaBDE), octabromodiphenyl ether (octaBDE) and pentabromodiphenyl ether (pentaBDE). 

DecaBDE has been the most widely used homolog worldwide (USEPA, 2014).  

 

At the end of 2004, pentaBDE and octaBDE mixtures were voluntarily phased out by their 

only U.S. manufacturers. According to the Environmental Protection Agency, as of January 2014, 
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PBDEs are no longer produced nor imported in the United States (ATSDR, 2017). However, levels 

of PBDEs in breast milk have significantly increased in the United States. In fact, just as usage of 

PBDEs continued to increase, so did the average concentration of PBDEs in humans. The latter 

occurs because PBDEs remain ubiquitous in various products, especially in indoor environments. 

Thus, despite being no longer produced or imported, PBDEs will persist for many years in our 

environment. In addition, PBDEs will likely be present in human tissue and body fluids at elevated 

levels for years to come (Darnerud et al., 2001; Frederiksen et al., 2009; Hooper & McDonald, 

2000; Schecter et al., 2003).  

 

Due to the relatively elevated levels of PBDEs found in human breast milk, in comparison 

to other regions such as Europe (e.g., France, Germany, and Russia), there is increasing concern 

for pregnant mothers and nursing children as they may be more vulnerable to potential health 

effects of PBDEs, which are known to disrupt the body’s endocrine system and thyroid hormone 

levels (Darnerud et al., 2001). Since they are lipophilic, PBDEs tend to accumulate in human fatty 

tissues (USEPA, 2014). As a result, it is important to investigate the level of association between 

their background concentrations and obesity. An investigation of the concentration and distribution 

of PBDEs in the American population is critical to characterizing levels of risk per demographic 

category.  

  

1.3 Phthalates & Dioxin-Like Polychlorinated Biphenyls 

There are dioxin-like and non-dioxin-like PCBs. Non-dioxin-like PCBs are often referred 

to as indicator-PCBs and include some mono-ortho-substituted biphenyls. Some PCBs are 

described as dioxin-like chemicals because they act in the body through similar mechanisms as 
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dioxins (ATSDR, 2000). As previously mentioned, PBDEs and PCBs (especially dioxin-like 

PCBs) share key similarities including their flame retardant properties and chemical structures. 

However, they also share other attributes along with phthalates. While American PBDE production 

and importation have reportedly ceased, and although PCBs have been banned in the United States, 

phthalates are still in use (ATSDR, 2000; ATSDR, 2002; ATSDR, 2017). Like PBDEs and dioxin-

like PCBs (dl-PCBs), phthalates are ubiquitous in our surroundings. Phthalates are used in 

detergents, adhesives, lubricating oils, plastic clothing, containers and personal-care products, just 

to name a few (ATSDR, 2002). All three compounds can be found in household dust. Therefore, 

we are constantly exposed to these chemicals. In addition, PBDEs, dl-PCBs and phthalates are all 

known as potential endocrine disrupting compounds and are lipophilic. All three compounds have 

garnered significant attention concerning their potential human health effects (ATSDR, 2000; 

ATSDR, 2002; ATSDR, 2017; Aylward et al., 2013). Although this research primarily focuses on 

characterizing exposure levels and potential human health effects of PBDEs, it is also pertinent to 

compare results of PBDE analyses with those of PCBs and phthalates. The differences and 

similarities of these results will be discussed.  

 

1.4 Objectives 

This research study investigates the distribution of Polybrominated Diphenyl Ether 

concentrations in American blood using various demographic attributes through the 2003-2004 

National Health and Nutrition Examination Survey (NHANES). The objectives of the current 

study are comprised of the following: 

o Characterize the background concentrations of PBDEs in the blood of 2003-2004 

NHANES participants. 
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o Compare the PBDE blood concentrations between various demographic groups 

including genders, age groups, ethnicities; and, genders and ethnicities (e.g., Black 

Males vs. Mexican American Females). 

o Since PBDEs have a strong affinity for lipids and bioaccumulate in human adipose 

tissue, investigate their association with obesity. 

§ Similarly, the association between PBDE concentrations and being 

overweight is also investigated. 

• Repeat analyses for other lipophilic compounds including phthalates 

and dioxin-like PCBs. 

• Discuss results for the aforementioned objectives in relation to those 

of phthalates and dioxin-like PCBs. 

 

PBDEs are a relatively new compound whose usage significantly increased over time 

(ATSDR, 2017). Much research remains to be done to fully understand their characteristics, 

distribution and potential human health effects. Therefore, these findings will provide a 

significant contribution to the overall body of knowledge for PBDEs. 

 

1.5 Hypotheses 

According to the objectives of this study, the following hypotheses will be tested: 

1. Biomonitoring data obtained from the National Health and Nutrition Examination 

Survey indicates the presence of background biomarkers of PBDE, dl-PCB, and 

phthalate exposure in individuals from a sample of the general population. 
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2. Due to the bioaccumulative properties of PBDEs in the human body, increasing 

PBDE concentrations are significantly associated with increasing with age groups. 

a. Due to the bioaccumulative properties of dl-PCBs in the human body, 

increasing dl-PCB concentrations is significantly associated with increasing 

with age groups. 

b. Due to the bioaccumulative properties of phthalates in the human body, 

increasing phthalate concentrations is significantly associated with 

increasing with age groups. 

3. Since PBDEs are ubiquitous in the environment, the average concentrations of its 

biomarkers are homogeneous across other sample subgroups including genders, 

ethnicities, and, genders and ethnicities; indicating that these subgroups are not at 

an increased risk of a negative health outcome. 

a. Similarly, average dl-PCB concentrations are homogeneous across other 

sample subgroups including genders, ethnicities, and, genders and 

ethnicities; indicating that these subgroups are not at an increased risk of a 

negative health outcome. 

b. Similarly, average phthalate concentrations are homogeneous across other 

sample subgroups including genders, ethnicities, and, genders and 

ethnicities; indicating that these subgroups are not at an increased risk of a 

negative health outcome. 

4. Blood sample data from the National Health and Nutrition Examination Survey 

reveal that the background concentrations of PBDEs do not significantly increase 

the odds of obesity nor the odds of being overweight. 
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a. Blood sample data from the National Health and Nutrition Examination 

Survey reveal that the background concentrations of dl-PCBs do not 

significantly increase the odds of obesity nor the odds of being overweight. 

b. Blood sample data from the National Health and Nutrition Examination 

Survey reveal that the background concentrations of phthalates do not 

significantly increase the odds of obesity nor the odds of being overweight. 

5. Due to the similarities of PBDEs and dl-PCBs, average concentrations are not 

significantly different among demographic categories. 

a. Although distributions of phthalate concentrations can be discussed in 

relation to PBDEs, specific comparisons cannot be made due to a difference 

in measurement units (ng/g lipids for PBDEs and dl-PCBs vs. ng/mL for 

phthalates).  
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Chapter 2 

Literature Review 

2.1 Brominated Flame Retardant Use  

The use of PBDEs began in the late 1970s. Their commercial production began largely as 

a response to the ban of PCBs, which were also used as flame retardants. Due to mounting 

environmental health concerns, PCBs were no longer produced in the United States. As a result, 

the production and usage of other flame retardants such as PBDEs became more prevalent. In fact, 

since the ban of PCBs, there has been a significant augmented use of PBDEs (ATSDR, 2017). In 

2001, the global production rate of PBDEs was over 67,000 tons per year, as shown in Table 1 

(Birnbaum, & Staskal, 2004). By 2003, approximately 98% of the global demand for pentaBDE 

occurred in North America (Hale et al., 2003). However, largely due to unsubstantiated public 

health concerns, PBDEs are also no longer in production in the United States. At the end of 2004, 

the only manufacturers of pentaBDEs and octaBDEs voluntarily phased out their production. As 

the only remaining PBDE mixture marketed for commercial products, decaBDEs experienced a 

similar fate. The only American manufacturers of decaBDEs were Albermarle Corporation and 

Chemtura Corporation; and their largest importer was ICL Industrial Products, Inc. In 2009, all 

three companies guaranteed a voluntary phase out of PBDE manufacture and importation for 

nearly all uses in America by December 31st of 2012. They also guaranteed a complete phase out 

of manufacture and importation for all uses of PBDEs in America by the end of the year 2013 

(ATSDR, 2017).  
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Table 1. Major Brominated Flame Retardant Volume (metric tons) estimates by region in 2001 
(Birnbaum & Staskal 2004). 
 

 
 
During periods of production, PBDEs were used as flame retardants in a variety of 

materials including thermos plastics. PBDEs were physically added to these materials instead of 

being chemically combined. Since PBDEs were not covalently bonded to many of the materials 

they were used for, these chemicals could easily diffuse out of the materials (Siddiqi et al., 2003). 

The furniture industry found great use in pentaBDEs as flame retardants (Standen, 2013). In fact, 

over 95% of pentaBDE commercial mixture usage was in furniture. Specifically, pentaBDEs were 

predominantly used in flexible polyurethane foams which are found in mattresses, sofas, carpets, 

etc. The majority of furniture treated with pentaBDEs were sold in California (ATSDR, 2017). It 

is the only state that required, by law, that upholstered products contain an approved level of 

ignition resistance (Standen, 2013). Only a small percentage of pentaBDEs were used for other 

materials like adhesives, printed circuit board components, hydraulic fluids, and rubber products. 

OctaBDEs were predominantly used as flame retardants in the plastic industry and specifically for 

acrylonitrile-butadiene-styrene terpolymers, often used in computer monitors and casings. 

DecaBDE mixtures were used as additive flame retardants for many polymer applications. The 

primary use of decaBDEs was high impact polystyrene often used as cabinet backs in the television 

industry (ATSDR, 2017; Watanabe & Sakai 2003). 
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2.2 Regulations & Guidelines         

Although PBDEs are no longer being produced or imported in the U.S., the relatively 

limited US regulations and guidelines continue to apply since many products currently used still 

contain PBDEs. The Occupational Safety & Health Administration (OSHA) has not formulated 

any occupational regulations for these flame retardants. The US Food & Drug Administration 

(FDA) has not set any allowable bottled water limits for PBDEs. Also, the International Agency 

for Research on Cancer (IARC) has classified PBDEs as Group 3 toxicants - not classified as 

human carcinogens (Standen, 2013). The Agency for Toxic Substances and Disease Registry 

(ATSDR) has generated Minimum Risk Levels (MRLs) for these brominated flame retardants. 

Based on a no-observed-adverse-effect-level for thyroid hormone effects in rats, an intermediate-

duration inhalation MRL of 0.006 mg/m3 has been generated for lower-brominated congeners. 

Also, based on a lowest-observed-adverse-effect-level for endocrine effects in female rats, and 

neurobehavioral and reproductive effects in F1 offspring from several reports, the ATSDR has 

derived an acute-duration oral MRL of 0.00006 mg/kg/day for lower-brominated congeners 

(ATSDR, 2017). Moreover, based on a negligible lowest-observed-adverse-effect-level for 

decreased testosterone in rats, an intermediate-duration oral MRL of 0.000003 mg/kg/day was 

generated for lower-brominated PBDEs. The ATSDR has also derived an acute-duration oral MRL 

of 0.01 mg/kg/day for decaBDE due to a no-observed-adverse-effect-level for neurobehavioral 

health effects found in rats. In addition, based on a negligible lowest-observed-adverse-effect-level 

for increased serum glucose found in a study of rats, an intermediate-duration oral MRL of 0.0002 

mg/kg/day was derived for decaBDE (ATSDR, 2017; Standen, 2013). The Environmental 

Protection Agency (EPA) has not assigned a reference concentration (RfC) for PBDEs. The EPA 
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has not generated drinking water standards for PBDEs. Instead, the US EPA has generated 

reference doses (RfDs) for PBDEs. The following are the current RfDs for BDE congeners. (IRIS, 

2003; IRIS, 2004; IRIS, 2008a-d). 

• Penta-BDE: 2x10-3mg/kg/day (IRIS, 2004) 

• Octa-BDE: 3x10-3mg/kg/day (IRIS, 2003) 

• Deca-BDE: 7x10-3mg/kg/day (IRIS, 2008a) 

• 2,2’,4,4’-tetraBDE: 1x10-4mg/kg/day (IRIS, 2008b) 

• 2,2’,4,4’,5-pentaBDE: 1x10-4mg/kg/day (IRIS, 2008c) 

• 2,2’,4,4’,5,5’-hexaBDE: 2x10-4mg/kg/day (IRIS, 2008d) 

For all RfDs, potential effects to the nervous system is of significant concern, with a 

potential for neurobehavioral health effects; despite a relatively low level of confidence. Finally, 

mono-BDE congeners are regulated under the Comprehensive Environmental Response, 

Compensation, and Liability Act and Resource Conservation and Recovery Act (ATSDR, 2017). 

 

2.3 Exposure Assessment        

An exposure is defined as an interaction with the skin or eyes or contact through breathing 

or swallowing. This contact can be short-term or acute. On the other hand, it can also be long-term 

or chronic. It should be remembered that an exposure is only an opportunity for absorbing a 

substance. The types and duration of an exposure are key determinants of a significant dose. Then, 

if this dose is significant, there may be a health effect. Exposure assessment is the process of 

determining how someone may come into contact with a toxicant by considering the exposure 

route, frequency, duration and amount of the toxicant. There are several assessment methods which 

depend on the kind of exposure in question. Exposure assessments are commonly used in 
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environmental and occupational settings (Aylward et al. 2013; Lebeau, 2012). Passive air sampling 

may be conducted in a rural environment to evaluate environmental air quality (Jaward et al. 2005). 

In occupational settings, exposures to toxicants may be assessed through biomonitoring which 

measures the body burden of toxicants and their metabolites through the analysis of human fluids 

(e.g., blood) (Lebeau, (2012). 

 

2.4 Biomonitoring         

Biomonitoring is the process of determining the presence of chemicals in the human body 

as a result of an exposure. Once a chemical has been absorbed due to an exposure to food, air 

water, dust, etc., and depending on the pharmacokinetics of the chemical, it may be measured in 

various biological media. These commonly include the sampling of urine, blood, breast milk, 

tissue, etc. The chemicals being analyzed in biological media are often referred to as biological 

markers. Measurable concentrations of the parent chemical and its intermediate or conjugate 

allows for the prediction of a human health effect (Centers for Human Health Assessment, 2017). 

A measured chemical concentration can also be used to determine previous health effects based 

on current levels in the body (Centers for Human Health Assessment, 2017; Lebeau, 2012). Their 

concentrations can be used to identify early physiological changes. In addition, based on key 

metabolic characteristics of certain individuals, biological markers can be used to determine health 

effects, given a level of exposure. Although, the presence of a chemical in a biological sample 

does not automatically indicate a health effect (Ames et al., 1990a,b). 

 

In the process of biomonitoring, there are at least three factors that affect the detection of 

biological markers; one of which is half-life. Each chemical has a half-life, which is the time it 
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takes for a concentration of a chemical to decrease by half in the human body. If the chemical has 

a relatively brief half-life of one day, it is imperative to analyze the biological samples as quickly 

as possible. Thus, one must be aware of a chemical’s half-life, as it is a key consideration in 

biomonitoring results. Other factors that affect the detection of biological markers include the 

physical characteristics of the chemical and the detection limits of the instrument being used 

(Aylward et al., 2013; Centers for Human Health Assessment, 2017; Lebeau, 2012).  

 

As previously mentioned, there are various uses for biomonitoring. Biomonitoring is used 

to determine environmental (indoor or outdoor) and occupational exposures to toxicants. At the 

crux of biomonitoring is the need to understand if a population is at-risk after a chemical exposure. 

Thus, in the occupational setting for instance, biomonitoring is crucial if workers tend to work 

with chemicals at levels that are known to cause injurious health effects. Baseline levels of 

toxicants may be recorded for a group of workers. Over time, biological samples are taken from 

the workers on a routine basis. This allows us to determine whether concentrations of toxicants 

have increased significantly and may lead to a health effect (Lebeau, 2012).  

 

On a regional or national level, biomonitoring serves as an important tool to gauge the 

background levels of people among various American demographic categories. Public health 

researchers use this biomonitoring data to determine if the reported levels of toxicants are 

associated with various human health effects. An example of regional biomonitoring includes 

studies of large populations in the Center for the Health Assessment of Mothers and Children of 

Salinas (CHAMACOS) Study which is one of the longest running longitudinal birth cohort study 

of pediatric environmental exposures in a farmer community (Castorina et al., 2011; Eskenazi et 
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al., 2013). A similar study is the Health Outcomes and Measures of the Environment (HOME) 

Study in Cincinnati, Ohio from March 2003 to February 2006 which investigated the human health 

effects of low-level environmental toxicants (Vuong et al., 2015). On a much larger scale, 

scientists refer to the National Health and Nutrition Examination Survey (NHANES) to analyze 

biomonitoring data. NHANES biomonitoring data serves as the primary source of information for 

this dissertation research (Centers for Human Health Assessment, 2017). 

 

NHANES is administered by the Centers for Disease Control & Prevention’s National 

Center for Health Statistics. This biomonitoring program was started in the early 1960s and 

focused on specific populations and health topics (Centers for Human Health Assessment, 2017; 

Lebeau, 2012). In 1999, NHANES became a continuous biomonitoring program which changes 

focus based on several health and nutrition measurements that address emerging needs. A 

nationally representative sample of few thousand people are surveyed every year. Participants are 

from 15 counties throughout the country. NHANES data are released every two years. For 

biomonitoring specimens, participants are 6 years or older. Blood specimens are gathered from 

participants that are 12 years or older. It is important to note that the measured analytes cannot be 

used to estimate regional levels such as cities or states. They also cannot be used to generate 

estimates for populations with unusual exposures (Centers for Human Health Assessment, 2017).  

 

2.5 Brominated Flame Retardant Exposure      

2.5.1 Occupational Exposure        

Polybrominated Diphenyl Ethers are ubiquitous in our environment because they are used 

as flame retardants in a variety of materials. When considering the most at-risk populations as a 
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result of their occupations, we must seriously consider workers involved in the production, 

distribution, handling and disposing of materials that contain PBDEs. Naturally, e-waste workers 

and dismantlers fit this category very well (Darnerud et al., 2001). According to Watanabe & 

Sakai, in Japan, hazardous waste incinerators and final disposal sites are some key sources of 

brominated flame retardant effluents (Watanabe & Sakai, 2003). Among disposed wastes, 

televisions and computers may serve as significant sources of PBDEs. In comparison to 

transportation materials, electrical appliances, building materials and others, electronics contained 

over half of the relative amounts of flame retardants, as shown in Figure 1 (Darnerud et al., 2001; 

Watanabe & Sakai, 2003). As a result, their research has shown that workers at electronics-

dismantling facilities are among the most exposed individuals and appropriate measures should be 

taken to protect them along with those that handle other similar consumer waste products 

(Watanabe & Sakai, 2003). 

 

 
Figure 1. Relative amounts of flame retardants (including PBDEs) in various sectors (Darnerud 
et al., 2001). 

 
Sjodin et al. conducted a study of PBDE levels among full-time workers at a computer 

screen facility and clerks from an electronics-dismantling plant with hospital cleaners as the 
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control group. Sjodin et al. reported significantly higher concentrations of PBDEs among workers 

at the electronics-dismantling plant in comparison to hospital cleaners. Through this research, 

despite the relatively small sample size, results suggest that those who handle computer parts may 

have increased exposures to PBDEs (Sjodin et al., 1999). Also, BDE-47 was among the most 

prevalent BDE congeners among workers according to a study of 52 office workers in Boston, 

Massachusetts (Makey et al., 2016).   

 

Another potentially at-risk group of people due to the activities in which they partake 

include gymnasts. These athletes spend an inordinate amount of time with safety materials such as 

pit cubes and landing mats, which help to brace their fall during exercise. Because of their flame 

retardant content, materials used by gymnasts have been named as the primary culprits for the 

abnormally high concentrations of PBDEs found in these athletes. Research has also shown that 

apart from the materials, the facilities in which they train has been found to contain elevated levels 

of flame retardants in air and dust (Carignan et al., 2016). Carignan et al. have shown that these 

elevated levels of flame retardants corresponded with significantly higher concentrations of 

pentaBDEs in the blood serum of gymnasts. Concentrations were also significantly higher after 

practice in comparison to before practice, which suggests that elevated concentrations were likely 

due to contact with materials and dusts within the facility. Approximately 89% of foam samples 

from many training facilities contained flame retardants. Despite their interesting findings, this 

study was based on a relatively small sample of 53 participants; thus, leading to a relatively low 

statistical power (Carignan et al., 2016). However, it helps to identify another potentially at-risk 

group due to a specific type of activity or occupation. In general, further research should be 

conducted to determine the total PBDE body burden contribution of occupations in America. 
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2.5.2 Residential Exposure        

Unlike some regions of the world, the primary source of PBDE exposure in America is the 

indoor environment; especially, residential exposure. It is difficult to discuss residential exposure 

to PBDEs without considering the impact of California’s formerly strict flame retardant 

requirements. In 1975, Governor Jerry Brown signed the “Technical Bulletin 117” into law 

(Standen, 2013). This required all upholstered furniture to be injected with flame retardants like 

PBDEs. Since then, this law became a de facto national standard. Recently, California’s Technical 

Bulletin 117 has been revised. Beginning in 2014, on his most recent stint as California’s governor, 

Mr. Jerry Brown signed a revision to this law which no longer requires the injection of flame 

retardants into California’s furniture. However, prior to this revision, many studies investigated 

the impacts of Technical Bulletin 117 on PBDE levels among American residents; especially 

Californians (Standen, 2013). 

 

An increase of approximately one order of magnitude was reported for indoor air and dust 

concentrations of PBDEs in North America in comparison to Europe. The authors mention this 

disparity is likely due to a difference in fire standards between the two regions (Frederiksen et al., 

2009). According to Castorina et al., on average, PBDE blood levels were approximately 20 times 

higher in the US in comparison to Europe (Castorina et al., 2011). The total range of PBDE levels 

in Americans was from 4.2 to 1380 ng/g lipid. The pentaBDE mixture was traced in over 97% of 

samples. Researchers found that the total PBDE concentrations in Americans significantly 

increased with the length of time someone has resided in the United States, and in women living 

in Californian homes containing at least 3 pieces of stuffed furniture. Specifically, the possession 
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of 3 or more stuffed furniture was significantly associated with nearly a 27% increase in women’s 

blood concentrations of PBDEs (Castorina et al., 2011).  A study by Harley et al. also indicated 

that the strongest predictor of PBDE concentrations among pregnant women living in a low-

income mostly-Hispanic immigrant community in California, was residence time (Harley et al., 

2010). 

 

Zota et al. investigated the impacts of California’s flammability standards. Comparisons 

were made between PBDE levels in household dusts from Californian homes and those from seven 

other regions in the United States. A significantly higher household dust level of PBDEs was found 

in Californian homes compared to other regions in America. Investigators also reported 

approximately a two-fold increase in blood serum concentrations of PBDEs; that is, a least square 

geometric mean of 73.0 vs. 38.5 ng/g lipid (Zota et al., 2008).  

 

Frederiksen et al. indicated that although foodstuffs with a high fat content had relatively 

higher levels of PBDEs, diet alone cannot explain background levels of PBDEs among Americans. 

It was determined that the ingestion of indoor dusts contributed to the highest intake of BDE-209. 

Infants, often displaying crawling behaviors, tend to be exposed to a variety of chemicals. Toddlers 

were found to have ingested a significantly higher amount of PBDEs from indoor dusts in 

comparison to adults. Infants are also exposed to PBDEs via breast feeding. Overall, they have a 

higher body burden in comparison to adults (Frederiksen et al., 2009). 
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2.5.3 Dietary Exposure        

Although diet is not the primary source of PBDE exposure in the United States, it remains 

a significant source. In many regions of the world diet is the primary source of exposure. When 

discussing diet, the main attribute of PBDEs to consider is their affinity to fat. Due to this 

lipophilicity, research has shown that foods heavy in fat like poultry, meat, and fish (especially 

from top predators) contain significantly higher levels of PBDEs in comparison to fruits and 

vegetables. In general, average dietary PBDE levels follow this trend: vegetables ≤ 

dairy<meat<fish. The PBDE content of North American meat was generally higher in comparison 

to other regions of the world (Frederiksen et al., 2009). Similarly, in a Finnish study of dietary 

PBDE intake, Kiviranta et al. found that approximately 53% of PBDE intakes were from Fish. 

These results were comparable to dietary PBDE intake studies in Sweden and Canada (Kiviranta 

et al., 2004). 

 

Fromme et al. investigated various sources of PBDE exposure among 27 healthy females 

and 23 healthy males in Germany. Researchers found that dietary exposure was responsible for 

97% of the average intake and 95% of the high intake of total PBDE intake in this adult population. 

Their findings coincide with other studies that have shown that diet is a significant exposure source 

in many European countries (Fromme et al., 2009).  

 

Since Fish, especially top predators, are key dietary sources of PBDEs it is important to 

note that some fish and marine organisms contain what Teuten et al. have determined to be 

naturally produced PBDEs. The True’s Beaked Whale is one such organism. Studies of these 

animals have found methoxylated polybrominated diphenyl ethers (MeO-PBDEs) which are 
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structurally-similar to synthetic PBDEs. Through methoxylation processes the PBDEs become 

MeO-PBDEs. Molecular-level C-14 analysis was used to determine the source of the halogenated 

compounds (Teuten et al., 2005). For example, a change of C-14 value of +90 per mil shows that 

the source was natural. On the other hand, a value of -990 per mil for Bromkal 70-5DE (a 

commercial mixture of PBDEs) indicated that the source was industrial. Just like their 

nonmethoxylated counterparts, MeO-47 and 68 showed a high propensity for bioaccumulation. 

The most likely source of exposure of MeO-PBDEs for the whales is dietary (e.g., squid 

consumption).  Microorganisms also naturally produce these compounds and the authors suggest 

that this may be a detoxification mechanism. The natural production of these compounds has been 

occurring before any known environmental release of industrial PBDEs. In fact, cytochrome p450 

and other enzymes used in the metabolism of these compounds are believed to have existed for 

millions of years and probably arose originally as a response mechanism for naturally produced 

compounds in the environment (Teuten et al., 2005). 

 

2.6 Polybrominated Diphenyl Ether Health Effects       

2.6.1 Acute                 

Acute human health effects after PBDE exposure is poorly understood and currently being 

investigated. In general, most of the information related to acute health effects of PBDE exposure 

is from animal studies. Thus far, in animals, decaBDE mixtures have been shown to be relatively 

less toxic in comparison to lesser-brominated BDE congeners. In humans, decaBDEs are expected 

to have very little health effect. This is due to its much different toxicity in comparison to lesser-

brominated congeners (ATSDR, 2017).  
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In animals, one of the most significant health endpoints has been PBDEs’ potential effect 

on thyroid hormones. For example, rats and mice who were fed food laced with moderate amounts 

of lesser-brominated congeners for short periods had predominantly thyroid-related effects. 

However, it should be noted that thyroid disruption due to, short-term, small-to-moderate amounts 

of PBDE exposure is thought to be species-dependent. As a result, this suggests that similar effects 

are less likely to occur in humans. In addition, testing of animal offspring has also shown 

behavioral effects due to acute PBDE exposure (ATSDR, 2017). Once again, these behavioral 

effects are believed to be a result of changes in the thyroid since it is a major determinant of nervous 

system development. No additional birth defects have been recorded in animals after acute 

exposure. Much research is needed to determine if acute PBDE exposure has any reproductive 

health effects. Next, animal testing data of acute exposure has shown that some BDE congeners 

may affect the immune system and cause skin irritation if the animal’s skin is lacerated (ATSDR, 

2017). Furthermore, Darnerud et al. conducted studies pertaining to the clinical signs of toxicity 

after acute exposure. After rats were exposed to high doses of PBDEs, investigators reported the 

following clinical signs: diarrhea, red staining around the eyes and nose, reduced activity, 

continuous chewing, piloerection and clonic persistent tremors of forelimbs (Darnerud et al., 

2001).  

 

In humans, the only available data concerning acute PBDE health effects are from studies 

of decaBDE. In one skin sensitization study, involving 200 volunteers (120 females and 80 males) 

exposed to two decaBDE batches of unknown purity, no evidence of skin sensitization was 

observed. These participants were treated with nine induction patches every two days. For every 

treatment day, the test substance remained in contact with the participants’ skin for 24 hours. 
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Neither of the two undisclosed decaBDE batches had an effect on skin sensitization. In another 

study, the skin sensitization of a decaBDE mixture (decaBDE: 77.4%; nonaBDE: 21.8%;  and, 

octaBDE: 0.8%) was assessed for 50 volunteers. A five percent suspension of decaBDE in 

petrolatum was spread over the participants’ skin three times per week for a period of three weeks. 

Investigators did not find any skin sensitization among the participants (ATSDR, 2017). Finally, 

a study of workers involved in the manufacture of polybrominated biphenyls and polybrominated 

diphenyl ethers was conducted to investigate the acute health effects of PBDEs, including 

decaBDE. These workers were reported to have a higher prevalence of primary hypothyroidism 

and substantial reductions in conducting velocities in sensory and motor neurons than normal, after 

being acutely exposed to PBDEs at the workplace.  However, no other dermatologic or neurologic 

changes were found (Darnerud et al., 2001). 

 

2.6.2 Chronic                

Similar to acute health effects, the chronic health effects of PBDEs are poorly understood 

and requires a significant amount of research. Most of the known chronic health effects of PBDEs 

are from animal studies. It is speculated that a long-term exposure to PBDEs has a higher chance 

of causing health effects in comparison to short-term low levels of exposure. This is partly due to 

the bioaccumulative property of PBDEs which occur over many years of exposure. Once again, in 

relation to chronic health effects, decaBDEs are expected to be generally less toxic than lesser-

brominated counterparts. Of major importance to possible chronic health effects is the potential to 

cause cancer. Currently, it is unknown whether PBDEs can cause cancer in humans (ATSDR, 

2017; USEPA, 2014). 
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Although, rats and mice that ingested PBDEs throughout their lives developed liver tumors. 

Overall, investigators have found a statistically significant increase in the incidence of carcinomas 

in the livers of male rats exposed to low and high doses, and of female rats exposed to high doses. 

Secondly, a significant increase in cases of hepatocellular adenoma or carcinoma was found in 

male mice after low dose exposure (National Toxicology Program, 2006). Next, a significantly 

increased incidence of follicular cell hyperplasia was found in male mice after being exposed to 

high and low doses of decaBDE. The latter is thought to be a precursor to thyroid tumors in mice. 

It is based on this relatively limited body of evidence that the EPA postulates that decaBDE may 

possibly be carcinogenic to humans (ATSDR, 2017; USEPA, 2014). On the other hand, the EPA 

describes lower-brominated congeners as not classifiable as human carcinogens (USEPA, 2014).  

 

In case-control epidemiologic cancer studies, pancreatic cancer was not significantly 

increased with increased levels of lipid lower-brominated PBDEs. Next, in a study of women from 

California, of which were 78 cases and 56 controls, no significant association was found between 

adipose tissue concentrations of lower-brominated PBDEs and breast cancer. Third, a study of 

Alaskan women found no clear association between BDE-47 and breast cancer. In addition, blood 

concentrations of lower-brominated PBDEs were not significantly associated with thyroid cancer 

among participants from a large multicenter clinical trial in the U.S., which included 104 cases 

and 208 controls. Furthermore, in a study of Swedish men and women with 19 cases and 27 

controls, BDE-47 exposure was not significantly associated with non-Hodgkin’s lymphoma. Thus, 

from the relatively brief amount of human studies of cancer risks in relation to lower-brominated 

PBDE exposures, results have consistently shown that humans are not at significant risks to various 

forms of cancer (ATSDR, 2017).  
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2.6.3 Toxicokinetics         

In general, toxicokinetic studies of PBDEs have indicated that the absorption, metabolism 

and elimination of polybrominated diphenyl ethers are all dependent upon the congener, species 

and gender. Also, animal studies have shown that pups have a higher body burden of PBDEs than 

adults. This is because while a significant amount of PBDEs are transferred from mothers to pups 

through breast feeding, the pups have a lesser capacity for PBDE elimination. Just as in animal 

studies, children have been shown to carry a higher body burden of PBDEs in comparison to their 

parents (Costa & Giordano, 2007). In humans, when comparing the amount of absorbed 

polybrominated diphenyl ethers, with polychlorinated dibenzodioxins, polychlorinated dibenzo 

furans and co-planar polychlorinated biphenyls from 1973 to 2000, human PBDE levels have 

increased significantly while these other toxicants have all significantly decreased. The three most 

common congeners in humans have been BDE-47, followed by BDE-153, then BDE-99 (Costa & 

Giordano, 2007).  

 

2.6.3.1 Absorption                

In general, lesser-brominated congeners are more likely to enter the human body through 

the lungs and stomach, and pass into the bloodstream than decaBDE. Also, during pregnancy, 

PBDEs have been shown to enter the bodies of unborn babies through the placenta. Oral absorption 

estimates are available for PBDEs and include the following. After forced administration of 

PBDEs in lipophilic vesicles, the most recent estimates, show a range of 70-75% for BDE-47, 

BDE-99, BDE-100, BDE-153, and BDE-154. An estimated range of 10-26% is expected for BDE-
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209 (deca-BDE). The mechanisms of oral absorption, including active transport and protein 

binding, have not been determined (ATSDR, 2017). 

 

To assess the bioavailability of PBDEs, studies of in vitro gastrointestinal models have 

been conducted. Yu et al. found that the most important factor impacting PBDE bioaccessibility 

was dietary fat; likely due to the lipophilicity of PBDEs. Further study of the bioaccessibility of 

lesser-brominated BDE congeners in flour, rice, meat, fish and vegetables yielded a range of 2.6 

to 41.3% in foodstuffs. Bioavailability of PBDEs in food increased as fat, and carbohydrate content 

increased. On the other hand, bioavailability of PBDEs in food decreased with increasing protein 

and fiber content (Yu et al., 2009).  

 

The bioavailability of PBDEs have also been investigated in dust; the largest source of 

PBDE exposure. Research by Lepom et al. found that the bioavailability of PBDEs found in 

ingested dust was approximately less than 50%. From this investigation, researchers also reported 

a bioavailability of 27 to 42% for lesser-brominated BDEs and approximately 10% for BDE-209 

(Lepom et al., 2010). Similar results were found by Abdallah et al. Once again, the bioavailability 

of BDE-209 (14%) was much lower than that for lesser-brominated BDE congeners (32 to 58%) 

(Abdallah et al., 2012). 

 

A few in vitro studies have been performed to investigate the diffusion potential of PBDEs 

across dermal barriers for rats, mice, and human. According to Staskal et al., female mice that were 

exposed to a dermal dose of 1 mg/kg 14C BDE-47 had a dermal absorption efficiency of 62% 

(Staskal et al., 2005). Roper et al. reported that mean absorption efficiencies for 14C BDE-47 was 
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14.58% in rat skin and 1.88% for human skin (Roper et al., 2006). Finally, Hughes et al. report a 

mean absorption efficiency range of just 0.07-0.34% from the 14C decaBDE dose applied to mouse 

skin in vitro (Hughes et al., 2001).  

 

2.6.3.2 Distribution                

As previously mentioned, research has shown that infants have a higher body burden of 

PBDEs than their parents. One of the main reasons for the latter is due to PBDE absorption via 

breastmilk. However, research has also demonstrated that PBDEs are also distributed to the 

developing fetus from pregnant mothers via cord serum samples of non-occupationally exposed 

mothers (Li et al., 2013). The majority of congeners found in maternal, cord sera and breast milk 

samples have been tetraBDEs and pentaBDEs. Although, mounting evidence has shown the 

presence of hexaBDEs, octaBDEs and decaBDEs in cord sera and mothers’ breast milk (ATSDR, 

2017).  

  

The distribution of PBDEs in animal and human tissues has also been investigated. In one 

study, animals that were exposed to 14C-labeled BDE-47, BDE-99, BDE-100, BDE-153, BDE-

154, and BDE-209 (decaBDE) has shown that lower-brominated BDEs are distributed differently 

than decaBDE. Specifically, investigators found that after absorption and an initial wide 

distribution, lower-brominated congeners tended to accumulate more in adipose tissue. On the 

other hand, decaBDE tended not to be distributed in adipose tissue. Instead, decaBDE appeared to 

prefer highly perfused tissues, such as renal tissue, which are human tissues that circulate bodily 

fluids (ATSDR, 2017).  
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2.6.3.3 Metabolism                

The primary metabolic pathway of PBDEs in humans and animals is oxidative 

hydroxylation and follows the following series of steps. Polybrominated diphenyl ethers are 

metabolized with phase I and phase II enzymes, forming hydroxylated PBDEs. Through this 

metabolic pathway, monohydroxylated OH-PBDEs are formed. Hydroxylated PBDEs have been 

found in samples of human blood and breast milk. These have also been found in the feces of 

rodents that were exposed to 14C-labeled tetraBDEs, pentaBDEs, hexaBDEs and decaBDEs. The 

process of PBDE oxidative hydroxylation has been validated in studies of in vitro metabolic 

systems with primary hepatocytes or liver chromosomes in humans and rats (Cheng et al., 2008; 

Erratico et al., 2011; Erratico et al., 2012; Erratico et al., 2013). Other metabolic fate processes for 

PBDEs in mammals include the metabolic cleavage of the ether bond leading to a formation of 

brominated phenols and the debromination of lesser-brominated PBDEs (Cheng et al., 2008; 

Erratico et al., 2012; Erratico et al., 2013). Data from in vivo toxicokinetic studies of rodents 

exposed to PBDEs have been deemed adequate by the ATSDR to propose the likely involvement 

of cytochrome P450s in the formation of hydroxylated metabolites and hydroxylated debrominated 

metabolites. Furthermore, in vitro studies of human liver microsomes or hepatocytes and human 

recombinant CYP enzymes have shown that through hydroxylation and cleavage of the ether bond, 

CYP2B6-mediated metabolism of BDE-47, 99 and 100 generated several metabolites, as 

illustrated in Figures 2-4 respectively (Erratico et al., 2012; Erratico et al., 2013). Research of 

human liver microsomes or hepatocytes has not shown a production of hydroxylated metabolites 

of BDE-153 and BDE-209 (Lupton et al., 2009). Finally, it is interesting to note that there are 
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naturally occurring OH-BDEs and brominated phenols known to be produced by sponges and 

algae in marine environments (ATSDR, 2017). 

 
 

 
Figure 2. Structures and General Metabolic Scheme for Hydroxylated Metabolites of BDE-47 
Produced by Human Liver Microsomes (Erratico et al., 2013).  
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Figure 3. Structures and General Metabolic Scheme for Hydroxylated Metabolites of BDE-99 
Produced by Human Liver Microsomes (Erratico et al., 2012). 
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Figure 4. Structures and General Metabolic Scheme for Hydroxylated Metabolites of BDE-99 
Produced by Human Liver Microsomes (ATSDR, 2017). 

 
 
2.6.3.4 Elimination                

Just as in the case of absorption, the elimination of PBDEs depends on the chemical 

structure of the BDE congener. In general, these flame retardants and their metabolites are 
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eliminated from the body mainly through feces. A relatively very small amount is eliminated in 

urine. DecaBDEs and their lower-brominated counterparts are all known to concentrate in human 

breast milk. Thus, breastfeeding may serve as an additional source of elimination for nursing 

mothers (Hooper et al., 2007; Jakobsson et al., 2012; Thomsen et al., 2010). The two general 

classes of congeners also differ in their half-lives within the human body. The half-life for lower-

brominated BDE congeners is approximately 94 days. For decaBDEs, the approximate half-life is 

significantly less at 15 days. Thus, lower-brominated PBDEs have a much longer residence time 

in the body (ATSDR, 2017). 

 

2.6.4 Mechanisms of Toxicity        

Following exposure to PBDEs, the primary systems of concern in humans include the 

following: the liver, nervous, male reproductive, developing and mature endocrine systems. 

Although, the female reproductive, adult nervous system and the developing and mature immune 

systems are also of concern, the evidence that is available for these endpoints is incomplete. Many 

studies have been conducted to elucidate the likely mechanisms of toxicity for PBDEs. General 

mechanisms of toxicity, such as Aryl hydrocarbon receptor (AhR)-mediated effects and hepatic 

enzyme induction, and target-specific mechanisms have been investigated. Most mechanistic 

studies, for specific targets, have been focused on neurological effects and endocrine disruption. 

PBDEs share similar toxicological properties as PCBs likely due to their two-dimensional 

structural similarities. However, PBDEs are more coplanar in nature due to the ether bridge. This 

reduces the AhR binding affinity when compared to similar compounds. As a result, PBDEs are 

less sensitive to the influence of ortho substitutions that inhibit the AhR binding capability of PCBs 

(ATSDR, 2017; ATSDR, 2002). These attributes have implications on the nondioxin-like and 
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dioxin-like effects of PBDEs, which are mediated by the AhR pathway. Studies of the structure-

activity of PBDEs have demonstrated that although some BDE congeners are able to bind to AhR, 

the binding affinities and induction of AhR-mediated responses are extremely weak or 

insignificant; especially for commercial PBDE mixtures (ATSDR, 2017). Finally, Dingemans et 

al. have reported that the toxicity of PBDEs should be investigated in conjunction with structurally 

similar compounds such as nondioxin-like polychlorinated biphenyls because there is evidence 

showing an additive effect when these two types of compounds are combined (Dingemans et al., 

2016). Meng et al. also reported synergistic effects between polybrominated diphenyl ethers, 

polychlorinated biphenyls and organochlorine pesticides in a study of the association between 

asthma and persistent organic pollutants among children in Shanghai, China (Meng et al., 2016). 

 

2.6.5 Toxicity Assessment         

The assessment of polybrominated diphenyl ethers will be limited to select outcomes. This 

assessment concerns the most important public health risks, in addition to obesity; the primary 

health outcome concerning this dissertation research. Moreover, epidemiological studies will be 

presented, if available.  

 

2.6.5.1 Developmental Effects                      

First, the neurodevelopment system is a target of concern in children for all PBDEs. 

According to various human studies, results suggest that PBDEs influence the neurodevelopment 

of children. In one cohort study, investigators found associations between maternal serum PBDE 

concentrations and decreased IQ, hyperactivity at age 5 and executive functions (mental control 

and self-regulation) deficits in those children from 5 to 8 years old (Braun et al., 2014; Chen et al., 
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2014; Donauer et al., 2015; Vuong et al., 2016). Other studies have reported a correlation between 

cord serum PBDE concentrations in breast milk and adaptive behavior deficits in infants, mental 

and physical developmental deficits in toddlers, social development and language deficits in 

children (24 months old), increased impulsivity in toddlers, and attention deficit hyperactivity 

disorder at age 4. Secondly, despite the inconsistency of developmental endocrine system effect 

research, epidemiological data suggest that PBDEs can interact with the homeostasis of thyroid 

hormones in infants and children. Human research showed inconsistencies in the investigation of 

infant serum or cord blood thyroxine levels and PBDE developmental exposure. Results have also 

been inconsistent when researchers investigated infant serum or cord blood triiodothyronine levels 

and thyroid stimulating hormone in association with PBDE developmental exposure. In numerous 

studies of animals, results have shown a reduction in serum triiodothyronine and thyroxine levels 

in pups after receiving doses of pentaBDE or tetraBDE as low as 452 mg/kg/day in mice and 0.3 

mg/kg/day in rats throughout gestation and lactation. Third, sufficient animal and limited human 

data has shown that oral exposure to PBDEs during development may potentially affect the male 

reproductive system (ATSDR, 2017). One study found, no relationships between maternal PBDE 

levels and hypospadias in boys, adipose tissue concentrations of PBDEs in children and 

cryptorchidism, or any measures of sexual maturation in girls (Carmichael et al., 2010). Yet, an 

American longitudinal cohort study found a significant association between blood levels of PBDEs 

for 6 to 8-year-old girls and delayed onset of puberty. However, more research is needed to 

determine if PBDE levels in infants and children can cause altered reproductive effects in 

adulthood. Last, limited animal and human data have shown that exposure to PBDEs may be able 

to cause low birth weight among other endpoints of human physical development. However, such 
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conclusions are relatively inconsistent (Costa & Giordano, 2007; Kuriyama et al., 2005; Lilienthal 

et al., 2006; Toms et al., 2009a,b; Viberg et al., 2003). 

 

2.6.5.2 Endocrine Effects                       

Several epidemiologic studies have investigated possible endocrine system effects of 

PBDE exposure. First, many human studies have shown that PBDEs can disturb the endocrine 

system and hormone levels. In one study conducted by Hooper et al., 4 production workers out of 

a sample of 35 who worked at a decaBDE manufacturing plant presented with hypothyroidism 

(Hooper & McDonald, 2000). However, specific findings in human studies have been very 

inconsistent. Some studies have reported positive associations between thyroxine and PBDEs 

while others have reported negative or no associations (ATSDR, 2017). Similar inconsistencies 

exist for research concerning the association of thyroid stimulating hormone or triiodothyronine 

with PBDE concentration. Although, there is sufficient data supporting the ability for PBDEs to 

interact with the homeostasis of the thyroid hormone. Overall, current data from human and animal 

studies suggests that the thyroid is likely a target of concern for humans (Costa & Giordano, 2007; 

Hamers et al., 2006; Hooper & McDonald, 2000; Kim et al., 2012; Kovarich et al., 2011; Li  et al., 

2013; Lilienthal et al., 2006; Norrgran et al., 2017). 

 

Finally, the pancreatic effects of PBDEs have been studied in humans and animals. 

Epidemiologic studies have been inconclusive. However, animal studies have shown that the 

pancreas may be a target of concern after an oral dose of PBDE is provided. For example, a study 

of male rats that were exposed to approximately 20 mg/kg/day to PBDEs in food for 70 days 

showed a reduction in serum glucose levels. However, it should be noted that the study did not 
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report the lowest dose at which point glucose levels were significantly lower in male rats. Another 

study, investigated insulin regulation and pancreatic morphology in male rats after being exposed 

to 0, 0.05, 1, or 20 mg/kg/day of decaBDE every day for a period of 8 weeks. Investigators reported 

that the rats exposed to 1 and 20 mg/kg/day had a significant 50-60% decrease of serum insulin. 

In addition, rats that were exposed to 0.05, 1 and 20 mg/kg/day had a significant increase of glucose 

levels by 12, 18, and 21%, respectively (ATSDR, 2017; Ernest et al., 2012). 

 

2.6.5.3 Hepatic Effects               

Currently, the potential human hepatotoxic effects of PBDEs is based primarily on animal 

data. There are no known animal studies of liver toxicity resulting from chronic lower-brominated 

PBDE exposure. Also, for decaBDEs, hepatotoxic effect research have been relatively 

inconsistent. Based on animal studies, acute exposure to lower-brominated BDE exposure is 

potentially toxic to the human liver. Furthermore, pups appear to be more susceptible to liver 

damage after decaBDE exposure, when compared to adult animals. Research has shown an 

increase in liver weights and diffuse liver cell hypertrophy with increased cytoplasmic eosinophilia 

in female rat pups that were exposed to ≥2 mg/kg/day and male rat pups exposed to 146 mg/kg/day 

of decaBDE. Research has also shown that fatty degeneration and elevated liver enzymes can occur 

in male rats after receiving a decaBDE dose that is ≥300 mg/kg/day (ATSDR, 2017). 

 

2.6.5.4 Body Mass Index                         

A primary focus of this dissertation research is an investigation of the potential association 

of PBDEs and obesity. Studies in this area of research has been relatively limited and inconclusive. 

However, the following are some epidemiologic findings concerning the association of body mass 
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index (BMI) with PBDE levels. The Centers for Disease Control & Prevention defines obesity as 

having a BMI that is greater than 30. BMI is a calculation of an individual’s weight in kilograms 

divided by the square of height in centimeters. In general, research shows that there is a moderate 

correlation between BMI and body fat (Centers for Disease Control & Prevention [CDC], 2015). 

This is important to remember due to the lipophilicity of PBDEs and their propensity to accumulate 

in the human body (Hooper & McDonald, 2000). First, in a study of Taiwanese mothers, 

investigators reported that children had low birth weight and height, and a decrease in Quetelet’s 

BMI, after a daily intake of 20.6 ng/kg/day via breastmilk (Costa & Giordano, 2007). This dose is 

lower than the average levels of PBDEs found in American human breast milk (approximately 306 

ng/kg/day) but higher than levels reported in the general Taiwan population in 2001 (Costa & 

Giordano, 2007). Other studies have reported no associations between PBDE exposure and the 

latter physical health endpoints in children. Next, a follow-up study of the Center for the Health 

Assessment of Mothers and Children of Salinas cohort was conducted to investigate the association 

between blood levels of BDE-47, 99, 100, and 153 with measures of obesity like obesity and 

overweight status, BMI and waist circumference. This investigation was conducted for 224 parents 

and 216 children from 2-7 years old. Investigators found no association between PBDE levels and 

measures of obesity. Although, once investigators adjusted for gender, significant effect 

modification was observed. Thus, investigators conducted the analyses separately, for each gender, 

and found a significant positive relationship between BMI z-score in 3.5-year-old boys and a 10-

fold rise in PBDE levels. This suggests that PBDEs have potential obesogenic effects for in-utero 

exposure in male boys (ATSDR, 2017). On the other hand, a significant negative association was 

observed in 3.5-year-old girls. Interestingly, Vuong et al. have reported no significant association 

between PBDE levels in maternal blood, during the 16th week of pregnancy (geometric mean of 
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39.1 ng/g lipid), and weight or height of children from 1 to 8 years old. However, Vuong and 

colleagues found a negative association between BDE-153 and body mass index for children who 

were 2 to 8 years old. A lower percent of body fat was also found for 8-year-old children (Vuong 

et al., 2016). Finally, Agay-Shay et al. also found no significant associations between BMI z-scores 

or risk of being overweight in children and maternal PBDE colostrum levels. It should be noted 

that Agay-Shay et al. did not separate their analyses by sex as was done in the abovementioned 

Salinas cohort study (Agay-Shay et al., 2015). 

   
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



 

 39 

 
 
 
 
 

Chapter 3 

Methods 

3.1 Data Source 

The data analyzed for this research was generated from the 2003-2004 National Health and 

Nutritional Survey (NHANES). NHANES is a major data collection program of the National 

Center for Health Statistics (NCHS), which is a part of the Centers for Disease Control and 

Prevention (CDC). The primary goal of NCHS is to generate vital and health statistics for the 

country. Thus, the primary function of NHANES is to evaluate the health and nutritional status of 

American children and adults. In order to generate statistical data on the amount, type, and 

distribution of illnesses and disabilities within the United States, the National Health Monitoring 

Act of 1956 was created (CDC, 2012). 

 

The NHANES program was officially operational in the early 1960s. Since then, it has 

conducted various surveys focused on different demographic groups and health topics. Prior to 

1999, NHANES had been conducted periodically for periods of 2-4 years. However, there would 

be periods of 1-5 years where health data were not being collected. Since 1999, the NHANES 

program, now known as Continuous NHANES, has collected health and nutritional data on a 

yearly basis to address emerging health concerns (CDC, 2012; Donauer et al., 2015).  

 

The NHANES program surveys a representative sample of the American population every 

year, amounting to approximately 5,000 people. These survey participants inhabit 15 counties 
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throughout the country, which NHANES visit on a yearly basis. NHANES intentionally 

oversamples minority populations (e.g., African Americans, and Hispanics) and the elderly (60 

years or older) to produce reliable statistics. As it relates to the elderly, NCHS is currently 

attempting to increase the knowledge concerning their health status. NHANES is a primary vehicle 

for this target. While all participants visit the physician, in general, the older the person the more 

extensive the examination tends to be. As it relates to minorities, oversampling is conducted 

because minority groups tend to have drastically different health status and characteristics in 

comparison to non-minorities (CDC, 2012; Donauer et al., 2015). 

 

The current annual NHANES randomly selects approximately 7,000 American residents 

who have an opportunity to participate in the survey. It is also important to note that their 

participation is voluntary and confidential. Participants that are selected for the survey receive a 

standardized physical examination along with a personal interview. The health interviews are 

conducted in the homes of survey participants. The health examinations, on the other hand, are 

conducted in fully-equipped and specially-designed mobile examination centers (MECs) that 

travel across the nation during the survey period. These MECs are staffed with dietary and health 

interviewers, physicians, medical and health technicians. Many of the staff members are 

multilingual; especially in English and Spanish. In addition, the MECs uses a state-of-the-art 

computers system using high-end servers which efficiently processes the NHANES data while 

eliminating the use of manual coding or paper forms of data collection and reducing the potential 

for coding errors. When necessary, participants are provided vehicle transportation to and from the 

MECs. Surveyed individuals are provided a detailed summary of medical findings and are 

compensated for their participation (CDC, 2012; Donauer et al., 2015).  
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The collected data is published publically on the NHANES website and include the 

following subsets: Demographics, Dietary, Examination, Laboratory, Questionnaire, and Limited 

Access (NHANES, 2005a,b; NHANES, 2007; NHANES, 2008a,b). Demographics, Examination 

and Laboratory subsets were used for this dissertation research. From the Demographics subset, 

the Demographic Variables & Sample Weights XPT extension file was downloaded to include 

age, gender and ethnicity in the analytical models. From the Examination subset, the Body 

Measures XPT extension file was downloaded to include height (cm), weight (kg) and body mass 

index (BMI). From the Laboratory subset, the Brominated Flame Retardants XPT extension file 

was downloaded to include all the polybrominated diphenyl ether concentrations found in the 

blood serum of study participants. Also from the laboratory subset, the Cholesterol – Low Density 

Lipoprotein (LDL) & Triglycerides XPT was downloaded to include the LDL cholesterol and 

triglycerides. This process was repeated for comparative analyses of phthalates using the 

Phthalates – Urine XPT file, and Dioxin-Like PCBs using the Dioxins, Furans, & Coplanar PCBs 

XPT file. Each of the XPT extension files are attached with a word document which provide a 

description of the measured variable, limit of detection when necessary, sample requirements, 

sampling protocols and procedures, and other important information pertaining to the data.  

 

3.2 Sampling 

3.2.1 PBDE Sampling 

Participants that were eligible for this research were 12 years or older; age-capped at 85 

years old. This includes a total of 2337 individuals. For confidentiality and for cross-analyses of 

data, every individual was assigned a unique survey participant identifier (SEQN). Their PBDE 
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concentrations were determined from an extraction of blood serum and/or plasma from each 

participant. These specimens were collected in vials and stored under the appropriate frozen 

temperature of -20 °C as elicited in the NHANES Laboratory/Medical Technologists Procedures 

Manual (LPM). Once specimens were collected, they were processed and shipped to the Division 

of Environmental Health Laboratory Sciences, National Center for Environmental Health, Centers 

for Disease Control and Prevention for examination (CDC, 2012; NHANES, 2007). 

 

The concentration of PBDEs are measured after sample cleanup and by using solid-phase 

extraction. First, samples are pretreated using a Gilson 215 liquid handler. This process involves 

the automated addition of internal standards, formic acid (denaturant) and water (diluent) and 

mixing in-between each addition by rotation. The use of formic acid allows for the extraction of 

the PBDEs from the samples. Next, during the extraction step, the analytes of interest of transferred 

from an aqueous medium to an organic solvent. Then, samples are cleaned up by removing co-

extracted lipids through elution of the extract, using 8 mL of hexane, through a column of silica 

(0.1g) and 1 g of silica/sulfuric acid (33% by weight). PBDE samples are cleaned and extracted 

using an automated solid phase extraction workstation (Rapid Trace®, Caliper Life Sciences). In 

addition, samples are evaporated by controlling vacuum, temperature and vortex action using 

RapidVap® (LabConco) and transferred into gas chromatography vials for analysis (NHANES, 

2007). 

 

Isotope dilution gas chromatography high-resolution mass spectrometry (GC/IDHRMS) is 

used to determine the final concentration of PBDE congeners. GC/IDHRMS allows for the 

reduction or elimination of many interferences typically associated with low-resolution 
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measurement of organohalogen compounds. Serum concentrations are reported in a lipid weight 

basis (ng/g lipid) which is preferable due to PBDEs affinity for lipids and, thus, are distributed 

within the body according to the distribution of the tissues lipid content (NHANES, 2007).  

 

3.2.2 DL-PCB Sampling 

Participants that were eligible for this research were 12 years or older; age-capped at 85 

years old. This includes a total of 1723 individuals. For confidentiality and for cross-analyses of 

data, every individual was assigned a unique survey participant identifier (SEQN). Their dl-PCB 

concentration was determined from an extraction of blood serum and/or plasma from each 

participant. These specimens were collected in vials and stored under the appropriate frozen 

temperature of -20 °C as elicited in the NHANES Laboratory/Medical Technologists Procedures 

Manual (LPM). Once specimens were collected, they were processed and shipped to the Division 

of Environmental Health Laboratory Sciences, National Center for Environmental Health, Centers 

for Disease Control and Prevention for examination (CDC, 2012; NHANES, 2008a). 

 

Nine dL-PCBs were measured in serum using high resolution gas chromatography/isotope-

dilution high-resolution mass spectroscopy (HRGC/ID-HRMS) and include the following: PCB 

105, PCB 118, PCB 156, PCB 157, PCB 167, PCB 189, PCB 126, PCB 81, PCB 169. 5 to 10 mL 

serum specimens to be analyzed for dl-PCBs were spiked with 13C-labeled (13C12) internal 

standards. Then, the analytes of interest were isolated in hexane using the C18 solid phase 

extraction which was followed by a Power-Prep/6 (Fluid Management Systems) automated 

cleanup and enrichment procedure using acidic, basic, and neutral multilayered silica gel and 

alumina columns coupled to an AX-21 carbon column. From carbon to toluene, Dl-PCBs are 
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isolated in the reverse direction. After sample cleanup, a Turbovap II (Caliper Life Sciences) was 

used to evaporate excess solvent to 350 µL. The remaining solvent was transferred to silanized 

auto sampling vials which contained 1 µL of dodecane “keeper” and was allowed to go to 

“dryness”. Each vial was reconstituted with 5 µL 13C12-labeled external standard before 

quantification. Then, sample extracts were analyzed for dl-PCBs by HRGC/ID-HRMS. Using a 

GC Pal (Leap Technology) auto sampler, 2µL were injected into an Agilent Technologies 6890 

Gas Chromatograph operated in the splitless injection mode with a flow of 1 mL/minute helium 

through a DB-5ms capillary column (30 m × 0.25 mm × 0.25 µm film thickness) where analytes 

are separated prior to entering a Thermo Finnigan MAT95 XP (5 kV) magnetic sector mass 

spectrometer operated in EI mode at 40 eV, using selected ion monitoring (SIM) at 10,000 

resolving power (10% valley) (NHANES, 2008a). 

 

In order to calibrate the mass spectrometer response factor v. concentration, calibration 

standards containing known concentrations of each native (12C12) compound and its 

corresponding 13C12 internal standard were used. Through interpolation from individual linear 

calibration curves the concentration of each analyte was derived and adjusted for sample weight. 

A variety of established criteria to evaluate the validity of all mass spectrometry data including: 

signal-to-noise ratio ≥ 3 for the smallest native ion mass, relative retention time ratio of native to 

isotopically labeled analyte within 3 parts per thousand compared to a standard, chromatographic 

isomer specificity index with 95% limits, instrument resolving power ≥ 10,000, response ratios of 

the two 12C12 and 13C12 ions within ± 20 % of their theoretical values and analyte recovery≥10 % 

and ≤ 120%. The method detection limit was calculated by correcting for sample weight and 

recovery, for each analyte. A summation method was used to estimate total lipid content of each 
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specimen from its total cholesterol and triglycerides values. Serum concentrations are reported in 

ng/g lipids (NHANES, 2008a). 

 

3.2.3 Phthalate Sampling 

In order to compare results with those of PBDE analyses, participants from 6 to 11 years 

old were removed from the data set. Participants that were eligible for this research were 12 years 

or older; age-capped at 85 years old. This includes a total of 2263 individuals. For confidentiality 

and for cross-analyses of data, every individual was assigned a unique survey participant identifier 

(SEQN). Phthalate concentration was determined from urine samples from each participant. These 

specimens were collected in vials and stored under the appropriate frozen temperature of -20 °C 

as elicited in the NHANES Laboratory/Medical Technologists Procedures Manual (LPM). Once 

specimens were collected, they were processed and shipped to the Division of Environmental 

Health Laboratory Sciences, National Center for Environmental Health, Centers for Disease 

Control and Prevention for examination (CDC, 2012; NHANES, 2008b). 

 

High performance liquid chromatography-electrospray ionization-tandem mass 

spectrometry (HPLC-ESI-MS/MS) was used for the quantitative detection of the following 

phthalate metabolites in urine: mono(2-ethyl-5-carboxypentyl) phthalate (mECPP), mono(2-ethyl-

5-hydroxyhexyl) phthalate (mEHHP), mono(2-ethyl-5-oxohexyl) phthalate (mEOHP), 

monoisononyl phthalate (mNP), monobenzyl phthalate (mBzP), monooctyl phthalate (mOP), 

mono (2-ethylhexyl) phthalate (mEHP), monocyclohexyl phthalate (mCHP), mono (3-

carboxypropyl) phthalate (mCPP), mono-isobutyl phthalate (miBP), monobutyl phthalate (mBP), 

monoethyl phthalate (mEP) and monomethyl phthalate (mMP). Urinary samples were processed 
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using enzymatic deconjugation of the glucuronidated phthalate monoesters. This was followed by 

on-line solid phase extraction along with reversed phase HPLC-ESI-MS/MS. The incorporation of 

isotopically-labeled internal standards for each of the phthalate metabolites allowed the 

improvement of assay precision. Also, 4-methyl umbelliferone glucuronide was used to track 

deconjugation efficiency. Urinary concentrations are reported in ng/mL (NHANES, 2008b). 

 

3.3 Data Analysis 

Demographics, Examination and Laboratory XPT extension files were downloaded from 

the 2003-2004 NHANES. These laboratory subsets were uploaded and merged into SAS statistical 

software (Version 9.4) for preliminary analyses. Preliminary analyses included generating 

frequency distributions for all demographic groups and analytes (e.g., PBDEs, dl-PCBs, 

Phthalates). For PBDEs, analyses were performed on a sum of 10 congeners and two of the most 

prevalent congeners, BDE-47 and BDE-99, representing 75% of PBDEs in commercial mixtures 

(NHANES, 2007.). For dl-PCBs, analyses were performed on 9 congeners (NHANES, 2008a). 

For Phthalates, analyses were performed on 13 phthalate metabolites (NHANES, 2008b). 

Descriptive statistics such as the mean, minimum, maximum, standard deviation and standard error 

were calculated for analyte concentrations given age, gender, and ethnicity. Microsoft Excel was 

also used to generate graphs and tables for data visualization and supplementary analysis.   

 

During preliminary analyses of the concentration of analytes, it was determined that 562 

observations did not have a recorded concentration for dl-PCBs; and 434 were missing for 

phthalates (NHANES, 2008b). These observations were removed from the analyses to reduce bias. 

In addition, 297 observations had concentrations which were below the limit of detection (LOD) 
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for PBDEs. The LOD of every BDE congener was identified from the NHANES Lab Manual for 

PBDEs. Following industrial convention, the missing values were replaced by LOD/Square root 

(2) (NHANES, 2007). There were other instances where the data of interest was missing. 

Specifically, some individual data was missing for height in kg, weight in cm, BMI, triglycerides, 

and LDL cholesterol. In these cases, the missing data were omitted to reduce the bias or 

misinterpretation of analytical results.  

 

To investigate the validity of the research hypotheses, the following analyses were 

performed. Two major statistical procedures were utilized including analysis of variance 

(ANOVA) and logistic regression, when appropriate. First, ANOVA was calculated for any 

analysis that included dichotomous (or categorical) variables such as gender, age group or 

ethnicity. ANOVA was used to determine whether the average concentrations of analytes were 

significantly different among genders, age groups, ethnicities, and genders and ethnicities. A 

significance level of 0.05 (95% confidence level) was used for all ANOVA analyses. In other 

words, a resulting p-value less than 0.05 indicated a significant result.  

 

In addition, a logistic regression was conducted for BMI, given quartiles of analyte 

concentrations. Quartiles of analyte concentration were generated for statistical significance. It 

should also be noted that the CDC generates BMI values for adults who are 20 years or older. 

Thus, the data analysis of BMIs excluded participants who were under the age of 20. Based upon 

guidelines set forth by the CDC, participants were categorized according to their BMI. 

Specifically, participants were marked as underweight (BMI<18.5), normal or healthy weight 

(BMI=18.5-24.9), overweight (BMI=25.0-29.9), or obese (BMI≥30) (CDC, 2015). The logistic 
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regression analyses were used to calculate odds ratios (OR) which determined whether higher 

concentrations of a given analyte led to a higher odd of being overweight or obese. These analyses 

incorporated age (20 years or older), gender, ethnicity, LDL cholesterol, triglycerides and analytes 

separated into quartiles. If the OR values are equal to 1, this signifies that there is no difference 

between comparative groups in relation to an outcome of interest. If OR is above or less than 1 

than one of the two measure groups has a greater or lesser odd, respectively, of achieving an 

outcome in question. The further away from 1 the OR, the more drastic the difference between the 

two comparative groups (e.g., males v. females). To account for precision of OR measurements, 

95% Wald confidence limits are assigned for each calculation of OR point estimates. A point 

estimate outside of that confidence interval is deemed significant. 

 

Lastly, analyte concentrations among demographic categories were specifically compared 

using a paired t-test in Microsoft Excel. For each analysis a 95% confidence interval was utilized, 

where a calculated p-value less than 0.05 indicated a significant result. Correlation coefficients 

were used to present the strength of association among analyte concentrations. In addition, 

correlation of determinations were generated to measure the percent of variation that could be 

explained by the regression equation. 
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Chapter 4 

Results 

Results are ordered by analyte(s); that is, BDE-47, BDE-99, sum of PBDEs, dl-PCBs, 

followed by phthalates. Analysis for each analyte(s) was conducted to determine the following:  

• Frequency distribution of analytes, demographic categories and demographic 

categories per quartile. 

• Average concentration of analytes for all individuals in the sample and per 

demographic category.  

• Comparison of means for all demographic categories using ANOVA. 

• Calculation of odds of being overweight and obese in association with analyte 

concentration compared to other factors, using logistic regression.  

• Comparison of results using paired t-test. 

• Summary of results. 

 

4.1 Overall Detection Frequency   

 Analytes were detected in at least 85% of samples. Samples detected include values that 

were below the limit of detection, which were subsequently treated using LOD/Square root (2). 

These values could not be separated from the graph since they were not enumerated for dl-PCBs. 

The CDC automatically used the LOD/Square root (2) treatment for such analytes. Also, it 

should be noted that for the sum of all PBDEs, missing values from individual congeners were 
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automatically omitted in SAS and did not affect the final concentrations calculated for 

participants.   

   

 
 
Figure 5. Number of samples detected. 
   
 
Table 2. Detections among individuals in the dataset. 
 
  BDE-47 BDE-99 All PBDEs* All dl-PCBs All 

Phthalates 
Samples Detected 2016 1985 2337 2285 2697 
 Missing 321 352 0 562 434 
 Percent 

Detected 
86.26% 84.94% 100.00% 80.26% 86.14% 

*Note: Although the sum of PBDEs contains some missing values, when calculating the sum 
of concentrations SAS automatically ignores missing values. 
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4.2 Polybrominated Diphenyl Ethers                

4.2.1 BDE-47                    

4.2.1.1 Frequency Distributions  

 
 
Figure 6. Frequency distribution of BDE-47 per quartile range. 
 
 
Table 3. Frequency distribution table of BDE-47 per quartile range. 
 

BDE-47 (Quartiles)   
Concentration Range Frequency Percent Min Max 
Q1 (0-6.8) 584 24.99% 0.004384062 2350 
Q2 (6.8-17.5) 584 24.99%   
Q3 (17.5-40.1) 584 24.99%   
Q4 (40.1-2350) 585 25.03%   
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Table 4. Frequency distribution table of age ranges cross-referenced with BDE-47 quartiles. 
RIDAGEYR refers to age in years from the 2003-2004 NHANES Demographic dataset and 
LBXBR3LA refers to BDE-47 from the 2003-2004 NHANES Brominated Flame Retardants 
dataset.  
 

 
  
            
Table 5. Frequency distribution table of gender cross-referenced with BDE-47 quartiles. 
RIAGENDR refers to gender from the 2003-2004 NHANES Demographic dataset and 
LBXBR3LA refers to BDE-47 from the 2003-2004 NHANES Brominated Flame Retardants 
dataset. 
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Table 6. Frequency distribution table of ethnicity cross-referenced with BDE-47 quartiles. 
RIDRETH1 refers to CDC-defined ethnicity from the 2003-2004 NHANES Demographic 
dataset and LBXBR3LA refers to BDE-47 from the 2003-2004 NHANES Brominated Flame 
Retardants dataset. 
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4.2.1.2 Comparative Statistics  
 

 
 
Figure 7. Comparison of average BDE-47 concentrations among age groups, in years. 
Difference in mean BDE-47 concentrations between age groups were insignificant; p-value 
>0.05. 
 
 
Table 7. Comparison of average BDE-47 concentrations among age groups, in years. 
 
Age Group, in years 12 to 18 19 to 30 31 to 50 51 to 84 85 and Above 
Concentrations, in ng/g lipids 40.068 43.083 40.411 44.275 56.318 
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Figure 8. Comparison of average BDE-47 concentrations among genders. Difference in mean 
BDE-47 concentrations between genders were significant; p-value <0.05. 
 
 
Table 8. Comparison of average BDE-47 concentrations among genders. 
 
Gender Male Female 
Concentrations, in ng/g 
lipids 

47.524 37.476 

 
 

 
 
Figure 9. Comparison of average BDE-47 concentrations among ethnic groups. Difference in 
mean BDE-47 concentrations between ethnicities were insignificant; p-value >0.05. 
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Table 9. Comparison of average BDE-47 concentrations among ethnic groups. 
 
Ethnicity Mexican 

American 
Other 
Hispanic 

Non-
Hispanic 
White 

Non-
Hispanic 
Black 

Other Race - 
Including Multi-
Racial 

Concentrations, 
in ng/g lipids 

39.819 31.341 42.463 46.681 37.145 

 
 

 
 
Figure 10. Comparison of average BDE-47 concentrations among gender and ethnicities. 
Difference in average BDE-47 concentrations is insignificant, given genders & ethnicities; p-
value >0.05. 
 
 
Table 10. Comparison of average BDE-47 concentrations among gender and ethnicities. 
 
Ethnicity & Gender Concentrations, 

in ng/g lipids 
Mexican_Male 42.751 
OtherHispanic_Male 37.614 
White_Male 46.760 
Black_Male 55.072 
OtherRace/Multiracial_Male 43.671 
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Table 10. (continued). 
 
Ethnicity & Gender Concentrations, 

in ng/g lipids 
OtherHispanic_Female 25.711 
White_Female 38.504 
Black_Female 38.545 
OtherRace/Multiracial_Female 32.485 

 
 

 
 
Figure 11. Comparison of average BDE-47 concentrations among males and ethnicities. 
Difference in average BDE-47 concentrations is insignificant, given males & ethnicities; p-value 
>0.05. 
 
 
Table 11. Comparison of average BDE-47 concentrations among males and ethnicities. 
 
Ethnicity & Gender Concentrations, 

in ng/g lipids 
Mexican_Male 42.751 
OtherHispanic_Male 37.614 
White_Male 46.760 
Black_Male 55.072 
OtherRace/Multiracial_Male 43.671 
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Figure 12. Comparison of average BDE-47 concentrations among females and ethnicities. 
Difference in average BDE-47 concentrations is insignificant, given females & ethnicities; p-
value >0.05. 
 
 
Table 12. Comparison of average BDE-47 concentrations among females and ethnicities. 
 
Ethnicity & Gender Concentrations, 

in ng/g lipids 
Mexican_Female 37.030 
OtherHispanic_Female 25.711 
White_Female 38.504 
Black_Female 38.545 
OtherRace/Multiracial_Female 32.485 
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4.2.1.3 Logistic Regression Statistics 
 

 
 
Figure 13. Odds of being overweight in relation to blood concentration of BDE-47. From a 
logistic regression model containing Gender, Age, Ethnicity and Quartiles as exposure variables 
and Overweight BMI as the outcome, Ethnicity is the only significant exposure variable which 
increases the odds of being overweight. Most interestingly is the 1.841 odds ratio produced for 
Other Hispanic (non-Mexican) Vs. Mexican categories. 
 
 
Table 13. Odds of being overweight in relation to blood concentration of BDE-47. 
 
Effect Odds 

Ratio 
95% Confidence 
Intervals 

Female v. Male 0.717 0.517 0.995 
Age in Years 1.009 1.000 1.017 
High v. Low Triglycerides  1.292 0.852 1.959 
High v. Low LDL 1.288 0.784 2.116 
OtherRace & Multiracial v. Mexican 
American 

0.627 0.249 1.576 

NonHispanic Black v.  Mexican American 0.782 0.465 1.317 
NonHispanic White v.  Mexican American 0.980 0.644 1.491 
Other Hispanic v.  Mexican American 1.841 0.703 4.824 

0.717 1.009 1.292 1.288 0.627 0.782 0.980 1.841 1.465 1.007 1.072
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Table 13. (Continued). 
 
Effect Odds 

Ratio 
95% Confidence 
Intervals 

Quartile 4 v. 1 1.465 0.898 2.389 
Quartile 3 v. 1 1.007 0.611 1.661 
Quartile 2 v. 1 1.072 0.673 1.707 

 
 

 
 
Figure 14. Odds of being obese in relation to blood concentration of BDE-47. No comparisons 
yielded significant odds of obese BMI. 
 
 
Table 14. Odds of being obese in relation to blood concentration of BDE-47. 
 
Effect Odds 

Ratio 
95% Confidence 
Intervals 

Female v. Male 1.737 1.251 2.412 
Age in Years 1.002 0.993 1.011 
High v. Low Triglycerides  2.081 1.371 3.159 
High v. Low LDL 0.580 0.339 0.994 
OtherRace & Multiracial v. Mexican 
American 

0.309 0.116 0.820 

NonHispanic Black v.  Mexican American 1.307 0.800 2.136 

1.737 1.002 2.081 0.580 0.309 1.307 0.671 0.484 1.195 1.560 1.655
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Table 14. (Continued). 
 
Effect Odds 

Ratio 
95% Confidence 
Intervals 

NonHispanic White v.  Mexican American 0.671 0.443 1.017 
Other Hispanic v.  Mexican American 0.484 0.163 1.443 
Quartile 4 v. 1 1.195 0.722 1.978 
Quartile 3 v. 1 1.560 0.949 2.565 
Quartile 2 v. 1 1.655 1.035 2.645 

              
4.2.2 BDE-99                          

4.2.2.1 Frequency Distributions 

 
 
Figure 15. Frequency distribution of BDE-99 per quartile range. 
 
 
Table 15. Frequency distribution table of BDE-99 per quartile range. 
 

BDE-99 (Quartiles)   
Concentration Range Frequency Percent Min Max 
Q1 (0-1.7) 569 24.35% 0.004949747 692 
Q2 (1.7-3.6) 593 25.37%   
Q3 (3.6-8.9) 594 25.42%   
Q4 (8.9-692) 581 24.86%   
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Table 16. Frequency distribution table of age ranges cross-referenced with BDE-99 quartiles. 
RIDADEYR refers to age in years from the 2003-2004 NHANES Demographic dataset and 
LBXBR5LA refers to BDE-99 from the 2003-2004 NHANES Brominated Flame Retardants 
dataset. 
 

 
            
 
Table 17. Frequency distribution table of gender cross-referenced with BDE-99 quartiles. 
RIAGENDR refers to gender from the 2003-2004 NHANES Demographic dataset and 
LBXBR5LA refers to BDE-99 from the 2003-2004 NHANES Brominated Flame Retardants 
dataset. 
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Table 18. Frequency distribution table of ethnicity cross-referenced with BDE-99 quartiles. 
RIDRETH1 refers to CDC-defined ethnicity from the 2003-2004 NHANES Demographic 
dataset and LBXBR5LA refers to BDE-99 from the 2003-2004 NHANES Brominated Flame 
Retardants dataset. 
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4.2.2.2 Comparative Statistics  
 

 
 
Figure 16. Comparison of average BDE-99 concentrations among age groups, in years. 
Difference in mean BDE-99 concentrations between age groups were insignificant; p-value 
>0.05. 
 
 
Table 19. Comparison of average BDE-99 concentrations among age groups, in years. 
 
Age Group, in years 12 to 18 19 to 30 31 to 50 51 to 84 85 and 

Above 
Concentrations, in ng/g 
lipids 

10.058 11.795 11.873 10.421 14.814 
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Figure 17. Comparison of average BDE-99 concentrations among genders. Difference in mean 
BDE-99 concentrations between genders were significant; p-value <0.05. 
 
 
Table 20. Comparison of average BDE-99 concentrations among genders. 
 
Gender Male Female 
Concentrations, in ng/g 
lipids 

12.793 9.365 

 
 

 
 
Figure 18. Comparison of average BDE-99 concentrations among ethnic groups. Difference in 
mean BDE-99 concentrations between ethnicities were insignificant; p-value >0.05. 
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Table 21. Comparison of average BDE-99 concentrations among ethnic groups. 
 
Ethnicity Mexican 

American 
Other 
Hispanic 

Non-
Hispanic 
White 

Non-
Hispanic 
Black 

Other Race - 
Including Multi-
Racial 

Concentrations, 
in ng/g lipids 

9.840 7.984 11.025 12.776 9.387 

 
 

 
 
Figure 19. Comparison of average BDE-99 concentrations among gender and ethnicities. 
Difference in average BDE-99 concentrations is insignificant, given genders & ethnicities; p-
value >0.05. 
 
 
Table 22. Comparison of average BDE-99 concentrations among gender and ethnicities. 
 
Ethnicity & Gender Concentrations, 

in ng/g lipids 
Mexican_Male 11.252 
OtherHispanic_Male 9.289 
White_Male 12.466 
Black_Male 15.451 
OtherRace/Multiracial_Male 11.221 
Mexican_Female 8.497 
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Table 22. (Continued). 
 
Ethnicity & Gender Concentrations, 

in ng/g lipids 
White_Female 9.697 
Black_Female 10.181 
OtherRace/Multiracial_Female 8.077 

 
 

 
 
Figure 20. Comparison of average BDE-99 concentrations among males and ethnicities. 
Difference in average BDE-99 concentrations is insignificant, given males & ethnicities; p-value 
>0.05. 
 
 
Table 23. Comparison of average BDE-99 concentrations among males and ethnicities. 
 
Ethnicity & Gender Concentrations, 

in ng/g lipids 
Mexican_Male 11.252 
OtherHispanic_Male 9.289 
White_Male 12.466 
Black_Male 15.451 
OtherRace/Multiracial_Male 11.221 
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Figure 21. Comparison of average BDE-99 concentrations among females and ethnicities. 
Difference in average BDE-99 concentrations is insignificant, given females & ethnicities; p-
value >0.05. 
 
 
Table 24. Comparison of average BDE-99 concentrations among females and ethnicities. 
 
Ethnicity & Gender Concentrations, 

in ng/g lipids 
Mexican_Female 8.497 
OtherHispanic_Female 6.814 
White_Female 9.697 
Black_Female 10.181 
OtherRace/Multiracial_Female 8.077 
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4.2.2.3 Logistic Regression Statistics  
 

 
 
Figure 22. Odds of being overweight in relation to blood concentration of BDE-99. From a 
logistic regression model containing Gender, Age, Ethnicity and Quartiles as exposure variables 
and Overweight BMI as the outcome, Ethnicity is the only significant exposure variable which 
increases the odds of being overweight. Most interestingly is the 1.833 odds ratio produced for 
Other Hispanic (non-Mexican) Vs. Mexican categories. 
 
 
Table 25. Odds of being overweight in relation to blood concentration of BDE-99. 
 
Effect Odds 

Ratio 
95% Confidence 
Intervals 

Female v. Male 0.715 0.515 0.992 
Age in Years 1.008 0.999 1.017 
High v. Low Triglycerides  1.308 0.859 1.992 
High v. Low LDL 1.322 0.799 2.188 
OtherRace & Multiracial v. Mexican 
American 

0.607 0.241 1.528 

NonHispanic Black v.  Mexican American 0.777 0.461 1.308 
 

0.715 1.008 1.308 1.322 0.607 0.777 0.958 1.833 1.409 0.976 1.033
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Table 25. (Continued). 
 
Effect Odds 

Ratio 
95% Confidence 
Intervals 

NonHispanic White v.  Mexican American 0.958 0.630 1.458 
Other Hispanic v.  Mexican American 1.833 0.699 4.804 
Quartile 4 v. 1 1.409 0.849 2.338 
Quartile 3 v. 1 0.976 0.590 1.615 
Quartile 2 v. 1 1.033 0.638 1.673 

 
 

 
 
Figure 23. Odds of being obese in relation to blood concentration of BDE-99. No comparisons 
yielded significant odds of obese BMI. 
 
 
Table 26. Odds of being obese in relation to blood concentration of BDE-99. 
 
Effect Odds 

Ratio 
95% Confidence 
Intervals 

Female v. Male 1.745 1.257 2.423 
Age in Years 1.002 0.993 1.010 
High v. Low Triglycerides  2.166 1.422 3.301 
High v. Low LDL 0.616 0.358 1.059 
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Table 26. (Continued). 
     
Effect Odds 

Ratio 
95% Confidence 
Intervals 

OtherRace & Multiracial v. Mexican 
American 

0.308 0.116 0.817 

NonHispanic Black v.  Mexican American 1.265 0.775 2.065 
NonHispanic White v.  Mexican American 0.652 0.430 0.987 
Other Hispanic v.  Mexican American 0.476 0.160 1.415 
Quartile 4 v. 1 1.002 0.598 1.677 
Quartile 3 v. 1 1.156 0.701 1.904 
Quartile 2 v. 1 1.285 0.796 2.075 

 
         
4.2.3 Sum of PBDEs                         

4.2.3.1 Frequency Distributions  

 
 
Figure 24. Frequency distribution of the sum of PBDEs per quartile range. 
 
 
Table 27. Frequency distribution table of the sum of PBDEs per quartile range. 
 

Sum of 10 PBDEs (Quartiles)   
Concentration Range Frequency Percent Min Max 
Q1 (0-16.5) 585 25.03% 0.044901281 3676.204667 
Q2 (16.5-35.8) 583 24.95%   
Q3 (35.8-77.3) 584 24.99%   
Q4 (77.3-3676.2) 585 25.03%   
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Table 28. Frequency distribution table of age ranges cross-referenced with total PBDE quartiles.  
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Table 29. Frequency distribution table of gender cross-referenced with total PBDE quartiles. 
 

 
 
 
Table 30. Frequency distribution table of ethnicity cross-referenced with total PBDE quartiles. 
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4.2.3.2 Comparative Statistics   
 

 
 
Figure 25. Comparison of average PBDE concentrations among age groups, in years. Difference 
in mean PBDE concentrations between age groups were insignificant; p-value >0.05. 
 
 
Table 31. Comparison of average PBDE concentrations among age groups, in years. 
 
Age Group, in years 12 to 18 19 to 30 31 to 50 51 to 84 85 and 

Above 
Concentrations, in ng/g 
lipids 

76.134 81.089 78.433 84.654 104.898 
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Figure 26. Comparison of average PBDE concentrations among genders. Difference in mean 
PBDE concentrations between genders were significant; p-value <0.05. 
 
 
Table 32. Comparison of average PBDE concentrations among genders. 
 
Gender Male Female 
Concentrations, in ng/g 
lipids 

93.780 68.599 

 
 

 
 
Figure 27. Comparison of average PBDE concentrations among ethnic groups. Difference in 
mean PBDE concentrations between ethnicities were insignificant; p-value >0.05. 
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Table 33. Comparison of average PBDE concentrations among ethnic groups. 
 
Ethnicity Mexican 

American 
Other 
Hispanic 

Non-
Hispanic 
White 

Non-
Hispanic 
Black 

Other Race - 
Including 
Multi-Racial 

Concentration
s, in ng/g lipids 

71.607 59.555 85.321 86.671 64.954 

 
 

 
 
Figure 28. Comparison of average PBDE concentrations among gender and ethnicities. 
Difference in average PBDE concentrations is insignificant, given genders & ethnicities; p-value 
>0.05. 
 
 
 
 
 
 
 
 

79.240
74.493

97.469
105.795

77.755

64.348

46.148

74.130
68.126

55.810

0

20

40

60

80

100

120

Co
nc
en
tr
at
io
ns
	in
	P
PB

Genders	&	Ethnicities

Distribution	of	PBDE	Concentrations	Given	Genders	&	
Ethnicities



 

 77 

Table 34. Comparison of average PBDE concentrations among gender and ethnicities. 
 
Ethnicity & Gender Concentrations, 

in ng/g lipids 
Mexican_Male 79.240 
OtherHispanic_Male 74.493 
White_Male 97.469 
Black_Male 105.795 
OtherRace/Multiracial_Male 77.755 
Mexican_Female 64.348 
OtherHispanic_Female 46.148 
White_Female 74.130 
Black_Female 68.126 
OtherRace/Multiracial_Female 55.810 

 
 

 
 
Figure 29. Comparison of average PBDE concentrations among males and ethnicities. 
Difference in average PBDE concentrations is insignificant, given males & ethnicities; p-value 
>0.05. 
 
 
Table 35. Comparison of average PBDE concentrations among males and ethnicities. 
 
Ethnicity & Gender Concentrations, 

in ng/g lipids 
Mexican_Male 79.240 
OtherHispanic_Male 74.493 
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Table 35. (Continued). 
 
Ethnicity & Gender Concentrations, 

in ng/g lipids 
Black_Male 105.795 
OtherRace/Multiracial_Male 77.755 

 
 

 
 
Figure 30. Comparison of average PBDE concentrations among females and ethnicities. 
Difference in average PBDE concentrations is insignificant, given females & ethnicities; p-value 
>0.05. 
 
 
Table 36. Comparison of average PBDE concentrations among females and ethnicities. 
 
Ethnicity & Gender Concentrations, 

in ng/g lipids 
Mexican_Female 64.348 
OtherHispanic_Female 46.148 
White_Female 74.130 
Black_Female 68.126 
OtherRace/Multiracial_Female 55.810 

  
          

64.348

46.148

74.130
68.126

55.810

0
10
20
30
40
50
60
70
80

Co
nc
en
tr
at
io
ns
	in
	P
PB

Females	&	Ethnicities

Distribution	of	PBDE	Concentrations	Given	Females	&	
Ethnicities



 

 79 

 
 
 
4.2.3.3 Logistic Regression Statistics   
 

 
 
Figure 31. Odds of being overweight in relation to blood concentration of PBDEs. From a 
logistic regression model containing Gender, Age, Ethnicity and Quartiles as exposure variables 
and Overweight BMI as the outcome, Ethnicity is the only significant exposure variable which 
increases the odds of being overweight. Most interestingly is the 1.871 odds ratio produced for 
Other Hispanic (non-Mexican) Vs. Mexican categories. 
 
 
Table 37. Odds of being overweight in relation to blood concentration of PBDEs. 
 
Effect Odds Ratio 95% Confidence 

Intervals 
Female v. Male 0.728 0.525 1.011 
Age in Years 1.008 0.999 1.017 
High v. Low Triglycerides  1.310 0.863 1.987 
High v. Low LDL 1.312 0.798 2.157 
OtherRace & Multiracial v. Mexican 
American 

0.615 0.244 1.549 

NonHispanic Black v.  Mexican American 0.759 0.450 1.280 
NonHispanic White v.  Mexican American 0.945 0.621 1.438 
Other Hispanic v.  Mexican American 1.871 0.711 4.925 
Quartile 4 v. 1 1.482 0.929 2.363 
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Table 37. (Continued). 
 
Effect Odds Ratio 95% Confidence 

Intervals 
Quartile 3 v. 1 0.821 0.501 1.347 
Quartile 2 v. 1 1.054 0.665 1.672 

 
 

 
 
Figure 32. Odds of being obese in relation to blood concentration of PBDEs. No comparisons 
yielded significant odds of obese BMI. 
 
 
Table 38. Odds of being obese in relation to blood concentration of PBDEs. 
 
Effect Odds 

Ratio 
95% Confidence 
Intervals 

Female v. Male 1.728 1.243 2.402 
Age in Years 1.002 0.993 1.011 
High v. Low Triglycerides  2.157 1.418 3.281 
High v. Low LDL 0.597 0.349 1.022 
OtherRace & Multiracial v. Mexican 
American 

0.299 0.112 0.796 

NonHispanic Black v.  Mexican American 1.322 0.807 2.165 
NonHispanic White v.  Mexican American 0.668 0.441 1.011 
Other Hispanic v.  Mexican American 0.522 0.175 1.558 
Quartile 4 v. 1 1.043 0.643 1.694 
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Table 38. (Continued). 
 
Effect Odds 

Ratio 
95% Confidence 
Intervals 

Quartile 3 v. 1 1.239 0.761 2.017 
Quartile 2 v. 1 1.839 1.161 2.912 

 
           
4.3 Dioxin-Like Polychlorinated Biphenyls              

4.3.1 Frequency Distributions    

 

 
 
Figure 33. Frequency distribution of the sum of dl-PCBs per quartile range. 
 
 
Table 39. Frequency distribution table of the sum of dl-PCBs per quartile range. 
 
Sum of DL-PCBs (Quartiles)   
Concentration Range Frequency Percent Min Max 
Q1 (1.300-4.5976) 431 25.01% 1.3001 358.8613 
Q2 (4.5978  -9.414) 430 24.96%   
Q3 (9.432-22.315) 431 25.01%   
Q4 (22.405 -358.862) 431 25.01%   
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Table 40. Frequency distribution table of age ranges cross-referenced with total dl-PCB 
quartiles.  
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Table 41. Frequency distribution table of gender cross-referenced with total dl-PCB quartiles.  
 

 
 
 
Table 42. Frequency distribution table of ethnicities cross-referenced with total dl-PCB 
quartiles.  
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4.3.2 Comparative Statistics   
 

 
 
Figure 34. Comparison of average dl-PCB concentrations among age groups, in years. 
Difference in mean DL-PCB concentrations between age groups were significant; p-value <0.05. 
 
 
Table 43. Comparison of average dl-PCB concentrations among age groups, in years. 
 
Age, in years 12 to 18 19 to 30 31 to 50 51 to 84 85 and 

Above 
Concentrations, ng/g 
lipids 

5.652 6.578 15.025 39.665 75.020 
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Figure 35. Comparison of average dl-PCB concentrations among genders. Difference in mean 
DL-PCB concentrations between genders were insignificant; p-value >0.05. 
 
 
Table 44. Comparison of average dl-PCB concentrations among genders. 
 
Gender Male Female 
Concentrations, ng/g 
lipids 

17.987 20.635 

 
 

 
 
Figure 36. Comparison of average dl-PCB concentrations among ethnic groups. Difference in 
mean DL-PCB concentrations between races were significant; p-value <0.05. Non-Hispanic 
White vs. Mexican American and Non-Hispanic Black vs. Mexican American PBDE 
concentrations were the significant comparisons. 
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Table 45. Comparison of average dl-PCB concentrations among ethnic groups. 
 

Ethnicity Mexican 
American 

Other 
Hispanic 

Non-
Hispanic 
White 

Non-
Hispanic 
Black 

Other Race - Including 
Multi-Racial 

Concentrations, 
ng/g lipids 

10.477 17.784 22.957 20.946 19.235 

 
 

 
 
Figure 37. Comparison of average dl-PCB concentrations among gender and ethnicities. 
Difference in average DL-PCB concentrations is significant, among genders & ethnicities; p-
value <0.05. According to Tukey’s test, a comparison of average DL-PCB concentrations of 
White_Male v. Mexican_Male, and Black_Male v. Mexican_Male groups were significant and a 
comparison of average DL-PCB concentrations of Black_Female v. Mexican_Female, and 
White_Female v. Mexican_Female groups were significant. 
 
 
Table 46. Comparison of average dl-PCB concentrations among gender and ethnicities. 
 
Ethnicity Concentrations, 

ng/g lipids 
Mexican_Male 8.811 
OtherHispanic_Male 15.358 
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Table 46. (Continued). 
  
Ethnicity Concentrations, 

ng/g lipids 
Black_Male 18.109 
OtherRace/Multiracial_Male 20.708 
Mexican_Female 12.003 
OtherHispanic_Female 19.776 
White_Female 23.668 
Black_Female 23.853 
OtherRace/Multiracial_Female 17.562 

 
   

 
 
Figure 38. Comparison of average dl-PCB concentrations among males and ethnicities. 
According to Tukey’s test, a comparison of average DL-PCB concentrations of White_Male v. 
Mexican_Male, and Black_Male v. Mexican_Male groups were significant. 
 
 
Table 47. Comparison of average dl-PCB concentrations among males and ethnicities. 
 

Ethnicity Mexican_
Male 

OtherHispanic_
Male 
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Concentrations, 
ng/g lipids 
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Figure 39. Comparison of average dl-PCB concentrations among females and ethnicities. 
According to Tukey’s test, a comparison of average DL-PCB concentrations of Black_Female v. 
Mexican_Female, and White_Female v. Mexican_Female groups were significant. 
 
 
Table 48. Comparison of average dl-PCB concentrations among females and ethnicities. 
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4.3.3 Logistic Regression Statistics   
 

 
 
Figure 40. Odds of being overweight in relation to blood concentration of dl-PCBs. From a 
logistic regression model containing Gender, Age, Ethnicity and Quartiles as exposure variables 
and Overweight BMI as the outcome, Ethnicity and LDL Cholesterol (High vs Low) differences 
are significant in increasing the odds of being overweight. Most interestingly is the 1.063 odds 
ratio produced for Other Hispanic (non-Mexican) Vs. Mexican, 1.075 odds ratio produced for 
Other Race Vs. Mexican categories, and 1.353 odds ratio produced for High LDL Cholesterol 
Vs. High LDL Cholesterol. 
 
 
Table 49. Odds of being overweight in relation to blood concentration of dl-PCBs. 
 
Effect Odds Ratio 95% Confidence 

Intervals 
Female v. Male 0.854 0.589 1.239 
Age in Years 1.023 1.008 1.037 
High v. Low Triglycerides  1.239 0.768 1.999 
High v. Low LDL 1.353 0.778 2.352 
OtherRace & Multiracial v. Mexican 
American 

1.075 0.417 2.769 

NonHispanic Black v.  Mexican American 0.873 0.453 1.682 
NonHispanic White v.  Mexican American 0.823 0.503 1.348 
Other Hispanic v.  Mexican American 1.063 0.345 3.272 
Quartile 4 v. 1 0.434 0.184 1.027 
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Table 49. (Continued). 
 
Effect Odds Ratio 95% Confidence 

Intervals 
Quartile 3 v. 1 0.658 0.319 1.358 
Quartile 2 v. 1 0.663 0.331 1.326 

 
 

 
 
Figure 41. Odds of being obese in relation to blood concentration of dl-PCBs. No comparisons 
yielded significant odds of obese BMI. 
 
 
Table 50. Odds of being obese in relation to blood concentration of dl-PCBs. 
 
Effect Odds 

Ratio 
95% Confidence 
Intervals 

Female v. Male 1.379 0.941 2.020 
Age in Years 0.991 0.976 1.005 
High v. Low Triglycerides  1.600 0.989 2.589 
High v. Low LDL 1.129 0.633 2.012 
OtherRace & Multiracial v. Mexican 
American 

0.331 0.112 0.980 

NonHispanic Black v.  Mexican American 1.287 0.685 2.418 
NonHispanic White v.  Mexican American 0.575 0.350 0.943 
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Table 50. (Continued). 
 
Effect Odds 

Ratio 
95% Confidence 
Intervals 

Other Hispanic v.  Mexican American 0.477 0.140 1.632 
Quartile 4 v. 1 1.395 0.591 3.293 
Quartile 3 v. 1 1.405 0.679 2.906 
Quartile 2 v. 1 0.978 0.488 1.958 

 
            
4.4 Phthalates                 

4.4.1 Frequency Distributions   

 
 
Figure 42. Frequency distribution of the sum of phthalates per quartile range. 
 
 
Table 51. Frequency distribution table of the sum of phthalates per quartile range. 
 
Sum of Phthalates (Quartiles)   
Concentration Range Frequency Percent Min Max 
Q1 (9-183.42) 565 100.00% 9.282631811 31733.40514 
Q2 (183.49-369.54 ) 566 0.00%   
Q3 (369.77 -776.19) 566 0.00%   
Q4 (776.94 -31734) 566 0.00%   
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Table 52. Frequency distribution table of age ranges cross-referenced with total phthalate 
quartiles.  
 

 
 
 
 
 
 
 
 
 
 



 

 93 

Table 53. Frequency distribution table of gender cross-referenced with total phthalate quartiles.  
 
 

 
 
 
Table 54. Frequency distribution table of ethnicities cross-referenced with total phthalate 
quartiles.  
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4.4.2 Comparative Statistics    
 

 
 
Figure 43. Comparison of average phthalate concentrations among age groups, in years. 
Difference in mean Phthalate concentrations between age groups were significant; p-value <0.05 
 
 
Table 55. Comparison of average phthalate concentrations among age groups, in years. 
 
Age Group, in years 12 to 18 19 to 30 31 to 50 51 to 84 85 and 

Above 
Concentrations, in ng/g 
lipids 

791.161 898.867 826.693 688.263 397.113 
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Figure 44. Comparison of average phthalate concentrations among genders. Difference in mean 
phthalate concentrations between genders were insignificant; p-value >0.05. 
 
 
Table 56. Comparison of average phthalate concentrations among genders. 
 
Gender Male Female 
Concentrations, in ng/g 
lipids 

835.662 727.169 
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Figure 45. Comparison of average phthalate concentrations among ethnic groups. Difference in 
mean Phthalate concentrations between races were significant; p-value <0.05. 
 
 
Table 57. Comparison of average phthalate concentrations among ethnic groups. 
 

Ethnicity Mexican 
American 

Other 
Hispanic 

Non-
Hispanic 
White 

Non-
Hispanic 
Black 

Other Race - Including 
Multi-Racial 

Concentrations, in 
ng/g lipids 

763.812 1086.998 626.326 1061.037 552.166 
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Figure 46. Comparison of average phthalate concentrations among gender and ethnicities. 
According to Tukey’s test, a comparison of average phthalate concentrations of 
OtherHispanic_Male and Black_Male groups was significant and a comparison of average 
phthalate concentrations of OtherHispanic_Female and  White_Female, Black_Female and 
Mexican_Female, Black_Female and White Female were significant. 
 
 
Table 58. Comparison of average phthalate concentrations among gender and ethnicities. 
 
Ethnicity Concentrations, 

in ng/g lipids 
Mexican_Male 852.102 
OtherHispanic_Male 920.440 
White_Male 711.763 
Black_Male 1060.784 
OtherRace/Multiracial_Male 567.649 
Mexican_Female 679.306 
OtherHispanic_Female 1244.552 
White_Female 547.704 
Black_Female 1061.277 
OtherRace/Multiracial_Female 540.984 
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Figure 47. Comparison of average phthalate concentrations among males and ethnicities. 
According to Tukey’s test, a comparison of average phthalate concentrations of 
OtherHispanic_Male and Black_Male groups was significant. 
 
 
Table 59. Comparison of average phthalate concentrations among males and ethnicities. 
 

Ethnicity Mexican_M
ale 

OtherHispanic_
Male 

White_M
ale 

Black_M
ale 

OtherRace/Multiracial
_Male 

Concentrations, 
in ng/g lipids 

852.102 920.440 711.763 1060.784 567.649 
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Figure 48. Comparison of average phthalate concentrations among females and ethnicities. 
According to Tukey’s test, a comparison of average phthalate concentrations of 
OtherHispanic_Female and White_Female, Black_Female and Mexican_Female, Black_Female 
and White Female were significant. 
 
 
Table 60. Comparison of average phthalate concentrations among females and ethnicities. 
 

Ethnicity Mexican_Fe
male 

OtherHispanic_F
emale 

White_Fe
male 

Black_Fe
male 

OtherRace/Multiracial
_Female 

Concentration
s, in ng/g lipids 

679.306 1244.552 547.704 1061.277 540.984 
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4.4.3 Logistic Regression Statistics   
 

 
 
Figure 49. Odds of being overweight in relation to urinary concentration of phthalates.  
 
 
Table 61. Odds of being overweight in relation to urinary concentration of phthalates. 
 
Effect Odds Ratio 95% Confidence 

Intervals 
Female v. Male 0.715 0.514 0.994 
Age in Years 1.010 1.001 1.019 
High v. Low Triglycerides  1.319 0.869 2.001 
High v. Low LDL 1.304 0.790 2.152 
OtherRace & Multiracial v. Mexican 
American 

0.666 0.263 1.685 

NonHispanic Black v.  Mexican American 0.825 0.489 1.392 
NonHispanic White v.  Mexican American 0.967 0.636 1.472 
Other Hispanic v.  Mexican American 1.857 0.710 4.859 
Quartile 4 v. 1 1.273 0.785 2.067 
Quartile 3 v. 1 1.192 0.745 1.907 
Quartile 2 v. 1 1.334 0.847 2.099 

0.715 1.010 1.319 1.304 0.666 0.825 0.967 1.857 1.273 1.192 1.334
0

1

2

3

4

5

6

7

8

Female	v.	
Male

Age	in	Years High	v.	Low	
Triglycerides	

High	v.	Low	
LDL

OtherRace	&	
Multiracial	 v.	
Mexican	
American

NonHispanic	
Black	v.		
Mexican	
American

NonHispanic	
White	v.		
Mexican	
American

Other	
Hispanic	 v.		
Mexican	
American

Quartile	4	v.	
1

Quartile	3	v.	
1

Quartile	2	v.	
1

O
dd
s	
Ra

tio

Effect

Odds	of	Being	Overweight	Based	on	Demographics	&	Phthalate	
Concentration



 

 101 

 
 

 
 
Figure 50. Odds of being obese in relation to urinary concentration of phthalates. 
 
 
Table 62. Odds of being obese in relation to urinary concentration of phthalates. 
 
Effect Odds 

Ratio 
95% Confidence 
Intervals 

Female v. Male 1.810 1.297 2.525 
Age in Years 1.002 0.993 1.011 
High v. Low Triglycerides  2.170 1.427 3.298 
High v. Low LDL 0.609 0.355 1.047 
OtherRace & Multiracial v. Mexican 
American 

0.340 0.127 0.913 

NonHispanic Black v.  Mexican American 1.248 0.761 2.048 
NonHispanic White v.  Mexican American 0.675 0.446 1.024 
Other Hispanic v.  Mexican American 0.496 0.167 1.470 
Quartile 4 v. 1 1.702 1.057 2.740 
Quartile 3 v. 1 1.127 0.705 1.800 
Quartile 2 v. 1 1.089 0.690 1.721 
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4.5 Comparison of Analytes  
 

 
 
Figure 51. Comparison of average PBDE (in blue) and dl-PCB (in red) concentrations among 
age-groups. Approximately 22.5% of the total variation in y can be explained by the linear 
relationship between x and y (as described by the regression equation). A positive moderate 
association exists between concentrations of PBDEs and dl-PCBs among age groups; R=0.47. 
Finally, p-value<0.05; there is a significant difference in the average concentrations of PBDEs in 
comparison to dl-PCBs’, among age groups. 
 
 
Table 63. Comparison of average PBDE and dl-PCB concentrations among age-groups. 
 
Age 
Groups 

Ages Mean PBDE Concentrations (ppb) Mean dl-PCB 
Concentrations (ppb) 

1 12 to 18 76.134 5.652 
2 19 to 30 81.089 6.578 
3 31 to 50 78.433 15.025 
4 51 to 84 84.654 39.665 
5 85 and Above 104.898 75.020 
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Figure 52. Comparison of average PBDE (in blue) and dl-PCB (in red) concentrations among 
genders. Approximately 3.1% of the total variation in y can be explained by the linear 
relationship between x and y (as described by the regression equation). A negative but very weak 
association exists between concentrations of PBDEs and dl-PCBs among genders; R=0.17. 
Finally, p-value>0.05; there is no significant difference in the average concentrations of PBDEs 
in comparison to dl-PCBs’, among gender groups. 
 
 
Table 64. Comparison of average PBDE and dl-PCB concentrations among genders. 
 
Gender 
Groups 

Genders  Mean PBDE 
Concentrations (ppb) 

Mean dl-PCB 
Concentrations 
(ppb) 

1 Male 93.780 17.987 
2 Female 68.599 20.635 
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Figure 53. Comparison of average PBDE (in blue) and dl-PCB (in red) concentrations among 
ethnicities. Approximately 0.7% of the total variation in y can be explained by the linear 
relationship between x and y (as described by the regression equation). A positive but very weak 
association exists between concentrations of PBDEs and dl-PCBs among ethnicities; R=0.08. 
Finally, p-value<0.05; there is a significant difference in the average concentrations of PBDEs in 
comparison to dl-PCBs’, among ethnic groups. 
 
 
Table 65. Comparison of average PBDE and dl-PCB concentrations among ethnicities. 
 
Ethnic 
Groups 

Ethnicities  Mean PBDE 
Concentrations (ppb) 

Mean dl-PCB 
Concentrations 
(ppb) 

1 Mexican American 71.607 10.477 
2 Other Hispanic 59.555 17.784 
3 Non-Hispanic White 85.321 22.957 
4 Non-Hispanic Black 86.671 20.946 
5 Other 

Race/MultiRacial 
64.954 19.235 
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4.6 Summary of Results  

Summary of PBDE Results 

• Mean PBDE concentrations are significantly different among genders 

o For sum, BDE-47, BDE-99  

• Mean PBDE concentrations are not significantly different among age groups, 

ethnicities 

o For sum, BDE-47, BDE-99  

• Based on categorical analysis,  

o Ethnicity is the only significant predictor of overweight BMI 

o Although, confidence intervals were generally large 

o No significant results were found for obesity analyses 

• The difference in PBDE blood concentrations was insignificant when accounting 

for genders and ethnicities. 

 

Summary of dl-PCB Results 

• Mean PCB concentrations are significantly different among age groups and 

ethnicities 

• Mean PCB concentrations are not significantly different among genders 

• Based on categorical analysis 

o Ethnicity and LDL cholesterol are predictors of overweight BMI 

o Although, confidence intervals were generally large 

o No significant results were found for obesity analysis 
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• The difference in PCB concentrations were significant among gender and 

ethnicities, males and ethnicities, and females and ethnicities. 

 

Summary of phthalate Results 

• Mean Phthalate concentrations are significantly different among age groups and 

ethnicities. 

• Mean Phthalate concentrations are not significantly different among genders. 

• Based on categorical analysis, 

o Ethnicity is the only significant predictor of overweight BMI. 

o Although, confidence intervals were generally large. 

o No significant results were found for obesity analysis. 

• The difference in Phthalate concentrations were significant among gender and 

ethnicities. 

 

Summary of Analyte Comparison Results 

• Mean	concentrations	among	age	groups,	in	parts	per	billion,	differed	

significantly	between	PBDEs	and	dl-PCBs.	

• Mean	concentrations	among	genders,	in	parts	per	billion,	did	not	differ	

significantly	between	PBDEs	and	dl-PCBs.	

• Mean	concentrations	among	ethnicities,	in	parts	per	billion,	differed	

significantly	between	PBDEs	and	dl-PCBs.	

o Blood	serum	concentrations	of	PBDEs	was	generally	higher	than	dl-

PCBs	in	analyses	of	age	groups,	genders	and	ethnicities.	 	
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Chapter 5 

Discussion 

5.1 Evaluation of Research Hypotheses  

The proposed hypotheses of this dissertation research will be examined below, to determine how 

well the results of this study supported the overall objectives of this research:    

 

Hypothesis 1: Biomonitoring data obtained from the National Health and Nutrition Examination 

Survey indicates the presence of background biomarkers of PBDE, dl-PCB, and phthalate 

exposure in individuals from a sample of the general population. 

 

Through the analyses that were conducted using the Demographic Variables & Sample 

Weights, Phthalates, and Dioxins, Furans, & Coplanar PCBs, there is evidence that PBDE, dl-PCB 

and Phthalate biomarkers are present in a sample of the US population. However, one must 

remember that the metabolism of pollutants can vary among study participants (Manno et al., 

2010). The latter has an impact on the reported concentrations of each analyte. In addition, one 

should consider the impact of dilution on reported analyte concentrations, especially in the case of 

urinary phthalates.  

 

Hypothesis 2: Due to the bioaccumulative properties of PBDEs in the human body, increasing 

PBDE concentrations is significantly associated with increasing with age groups.  
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• Due	to	the	bioaccumulative	properties	of	dl-PCBs	in	the	human	body,	increasing	dl-PCB	

concentrations	is	significantly	associated	with	increasing	with	age	groups.		

• Due	 to	 the	 bioaccumulative	 properties	 of	 phthalates	 in	 the	 human	 body,	 increasing	

phthalate	concentrations	is	significantly	associated	with	increasing	with	age	groups.	

 

A comparison of the average concentrations of PBDEs among age groups reveal that 

concentrations of the sum of PBDEs, BDE-47, and BDE-99 are not significantly associated with 

increasing age groups. The opposite results were found in an analysis of the distribution of dl-PCB 

and phthalate concentrations among age groups. It is not known why such differences in 

distributions exist since all three compounds are known to accumulate in the body over time. In 

the case of dl-PCBs, an exponential increase in concentration with increasing age groups was 

observed which supports the notion that these contaminants have a relatively long half-life in 

comparison to PBDEs. In the case of phthalates, urinary concentrations generally decrease with 

age. Furthermore, participants aged 85 or older have urinary concentrations that are, on average, 

lower in comparison to other age groups. Additionally, it should be noted that the age groups were 

arbitrarily divided. Hence, different conclusions and trends could have been generated if much 

different age groups were selected. Also, since the dataset is limited to ages 12 – 85 years, it is not 

known whether different conclusions would have been generated if the NHANES survey of these 

contaminants included individuals of a broader age range (e.g., including participants younger than 

12 years old). 

 

Hypothesis 3: Since PBDEs are ubiquitous in the environment, the average concentrations of its 

biomarkers are homogeneous across other sample subgroups including genders, ethnicities, and, 



 

 109 

genders and ethnicities; indicating that these subgroups are not at an increased risk of a negative 

health outcome. 

• Similarly, average dl-PCB concentrations are homogeneous across other sample 

subgroups including genders, ethnicities, and, genders and ethnicities; indicating that 

these subgroups are not at an increased risk of a negative health outcome. 

• Similarly, average phthalate concentrations are homogeneous across other sample 

subgroups including genders, ethnicities, and, genders and ethnicities; indicating that 

these subgroups are not at an increased risk of a negative health outcome. 

 

Concerning the analysis of other demographic categories, including gender, ethnicities and 

gender with ethnicities significant differences were observed for all analytes of interest. First, the 

average PBDE concentrations reported for the sum of PBDEs, BDE-47 and BDE-99 were 

significantly different among genders. In fact, males consistently had significantly higher average 

concentrations of the sum of PBDEs, BDE-47 and BDE-99. This is likely due to toxicokinetic 

(e.g., absorption, metabolism and elimination) differences among genders. The opposite was found 

in the case of dl-PCBs and phthalates. Once again it is not known why PBDEs are distributed 

differently than dl-PCBs and phthalates, among genders. In fact, a similar difference was found 

when analyzing the concentrations of these analytes among ethnicities. Specifically, the average 

concentrations of the sum of PBDEs, BDE-47, and BDE-99 were not significantly different among 

ethnicities. On the other hand, significantly different concentrations of dl-PCBs and phthalates 

were observed among ethnicities. Moreover, based on an analysis of the average concentrations of 

PBDEs, BDE-47 and BDE-99, there is no significant difference among genders and ethnicities 

(e.g., Black males v. Mexican American females). The latter supports part of the above-listed 
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hypothesis. However, when the analyses were conducted for the other contaminants, the opposite 

conclusions were found. Specifically, the difference in dl-PCB concentrations were significant 

among gender and ethnicities, males and ethnicities, and females and ethnicities. Also, the 

difference in phthalate concentrations were significant among gender and ethnicities; not for males 

and ethnicities, nor females and ethnicities. Tukey’s Test was used to determine which specific 

groups had significantly different concentrations for dl-PCBs and phthalates, using a 95% 

confidence level. According to Tukey’s test, a comparison of average dl-PCB concentrations of 

White_Male v. Mexican_Male, and Black_Male v. Mexican_Male groups were significant and a 

comparison of average dl-PCB concentrations of Black_Female v. Mexican_Female, and 

White_Female v. Mexican_Female groups were significant. Also, according to Tukey’s Test, a 

comparison of average phthalate concentrations of OtherHispanic_Male and Black_Male groups 

was significant and a comparison of average phthalate concentrations of OtherHispanic_Female 

and White_Female, Black_Female and Mexican_Female, Black_Female and White Female were 

significant. The significant outcomes that were discovered in the analyses of dl-PCB and phthalate 

concentrations could have been due to the oversampling of minorities through the NHANES 

program. As mentioned in the Methods section, the NHANES program oversamples minorities 

and the elderly since they tend to have drastically different health statuses and characteristics of 

concern, in comparison to non-minorities (CDC, 2012). However, one must note that this 

oversampling could lead to an overestimation of true exposure. Thus, the significant differences 

of dl-PCB and phthalate concentrations found among age groups, ethnicities, and genders with 

ethnicities could have been nullified if elderly and minority groups were not given special 

attention. The reported data could be overestimating the actual concentration of the biomarkers 

when extrapolating results to the population. In fact, true population levels may be lower than 
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those reported in the NHANEs sample (Lebeau, 2012). Finally, as a result of the consistency of 

results that have been observed between analytes, one can conclude that PBDEs appear to be 

distributed differently among demographic categories in comparison to dl-PCBs and phthalates. 

In contrast, when considering the homogeneity or heterogeneity of average dl-PCB and phthalate 

concentrations among various demographic categories, significance of results is similar for both 

types of compounds. These results suggest pharmacodynamic differences for PBDEs in 

comparison to dl-PCBs and phthalates. Correspondingly, these results also suggest possible 

pharmacodynamic similarities between dl-PCBs and phthalates. 

 

Hypothesis 4: Blood sample data from the National Health and Nutrition Examination Survey 

reveal that the background concentrations of PBDEs do not significantly increase the odds of 

obesity nor the odds of being overweight. 

a. Blood sample data from the National Health and Nutrition Examination Survey reveal 

that the background concentrations of dl-PCBs do not significantly increase the odds 

of obesity nor the odds of being overweight. 

b. Blood sample data from the National Health and Nutrition Examination Survey reveal 

that the background concentrations of phthalates do not significantly increase the 

odds of obesity nor the odds of being overweight. 

 

According to a categorical analysis of PBDEs and obesity, PBDE background 

concentrations (higher vs. lower quartiles) did not significantly increase participants’ odds of being 

obese. In fact, when considering age, gender, ethnicity, LDL cholesterol, triglycerides and PBDE 

quartiles in the logistic regression model no results were significant. In the case of overweight 
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status, ethnicity was the only significant predictor of overweight BMI. Next, analyses also show 

that the background concentrations of dl-PCBs did not significantly increase one’s odd of being 

obese or overweight. Ethnicity and LDL cholesterol were the only significant predictors of 

overweight BMI, when considering age, gender, ethnicity, LDL cholesterol, triglycerides and 

PBDE quartiles in the logistic regression model. Finally, background concentrations of phthalates 

did not significantly increase participant’s odds of obesity or of being overweight. Ethnicity was 

the only significant predictor of overweight BMI, when considering age, gender, ethnicity, LDL 

cholesterol, triglycerides and PBDE quartiles in the logistic regression model. Although, it should 

be noted that confidence intervals were generally large in all three sets of categorical analyses. 

 

Hypothesis 5: Due to the similarities of PBDEs and dl-PCBs, average concentrations are not 

significantly different among demographic categories. 

c. Although distributions of phthalate concentrations can be discussed in relation to 

PBDEs, specific comparisons cannot be made due to a difference in measurement units 

(ng/g lipids for PBDEs and dl-PCBs vs. ng/mL for phthalates).  

 

First, it should be reiterated that a direct comparison cannot be made between PBDEs and 

phthalates because unlike PBDEs and dl-PCBs which were measured in serum and reported in 

ng/g lipid, phthalates were measured in urine and reported in ng/mL. In other words, the prior were 

reported in weight/weight ratio whereas the latter was reported in weight/volume ratio. Due to 

mathematical convention, a direct comparison cannot be made between these two types of units. 

As a result, while the distributions of all three analytes were investigated, direct comparative 

analyses could only be conducted for the sum of PBDEs and the sum of dioxin-like PCBs. Based 
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on paired t-test analyses, the average concentrations of PBDEs were significantly different from 

the average concentrations of dl-PCBs, when considering age groups and ethnicities. Next, average 

concentrations of PBDEs and dl-PCBs did not significantly differ when considering genders. In 

general, PBDE blood serum concentrations were higher than dl-PCBs in analyses of age groups, 

genders and ethnicities. These results are likely due to the 1979 ban on polychlorinated biphenyls. 

Although PCBs are persistent in our environments and despite their relatively long half-lives, and 

ability to accumulate in the body, PBDEs have been the dominant flame retardants of since 

(Vonderheide et al., 2008). Hence, their presence in our environments is likely to be much more 

pronounced. 

 

5.2 Evaluation of Results               

Overall, the average PBDE concentration among participants in the 2003-2004 NHANES 

was approximately 81 ng/g lipid with a range of 0.05 (LOD/√2) to 3676 ng/g lipid. These results 

are not clearly comparable with those of other studies for several reasons. First, unlike other 

studies, the 2003-2004 NHANES survey provides one of the largest samples used to investigate 

polybrominated brominate diphenyl ethers. Most comparable studies have much more limited 

sample sizes. As a result, investigators often report concentrations that are on generally less than 

those found in this dissertation research. The range of reported results are also much different. For 

example, according to a study of a sum of 10 PBDEs, Eskenazi and company reported a range of 

4.2 to 1379.4 ng/g lipid in maternal serum and 6.9 to 1385.5 ng/g lipid in child serum, in a study 

of the neurodevelopment effects of PBDEs (Eskenazi et al., 2013). Investigators in this study and 

others often report the median as a measure of central tendency instead of the mean. This also 

makes it difficult to compare results of this study with others. Overall, comparisons are difficult to 
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make as a result in differences in congeners, statistical tests, sample size, sample medium (e.g., 

blood, milk, food, etc.) and demographic categories considered. Most studies report PBDE 

concentrations (in various media) specifically in nursing mothers and children. Thus, the results 

of such studies are not representative of the US population. 

 

Nonetheless, Schecter et al. conducted a 2003 study of the PBDE concentrations in 

American breast milk compared to women’s breast milk in other countries. Investigators analyzed 

13 PBDEs in 47 individual milk samples from Texan nursing mothers, aged 20 to 41 years old. 

Investigators reported a range of 6.2 to 419 ng/g lipid and a mean of 73.9 ng/g lipid. Furthermore, 

investigators postulate that their results are similar to concentrations found in American blood and 

adipose tissue from Indiana and California (including research by Zota et al.) which are 10 to 100 

times greater than PBDE concentrations found in France, Germany, and Russia. They also mention 

that most of the women were Caucasian. Hence, it may be more appropriate to compare their 

results to PBDE concentrations of White_Females in this dissertation research who had a 

comparable average PBDE concentration of 74.1 ng/g lipid. It should also be mentioned that since 

their research contained participants who were mostly Caucasian, their results are selectively 

biased (Schecter et al., 2003).   

 

5.3 Evaluation of Risk                        

In general, as a result of a lack of information pertaining to the dose, duration, exposure 

source and route biomonitoring data can be difficult to assume risk. The National Health and 

Nutrition Examination Survey does not provide such information, which can lead due to a 

misinterpretation of the results (Centers for Human Health Assessment, 2017; Lebeau, 2012; 
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Manno et al., 2010). Regardless of the latter, a reported concentration, even if it were above a 

permissible level, would not be sufficient evidence to suggest a health risk. In fact, some 

statistically significant results were observed when considering the average sum of PBDE, BDE-

47 and BDE-99 concentrations among genders. Males had consistently higher levels than females, 

in all three analyses. These results could suggest that males may be more at-risk than females to 

the potential health effects of PBDEs. However, this conclusion would likely be incorrect since, 

not only do measured concentrations not necessitate risk, a specific health outcome may be 

dependent on the phenotypic or genotypic characteristics of individuals. Moreover, the measured 

background concentrations may not lead to any health effects in the American population. In 

addition, although reference doses have been generated for some BDE congeners, such reference 

doses cannot be used to predict risk (IRIS, 2003; IRIS, 2004; IRIS, 2008a-d). They are created to 

protect people from potential and often unknown health effects. 

 

5.4 Limitations of the Research                        

This cross-sectional study using the NHANES survey yielded some significant results 

among various demographics, depending upon the contaminant of interest. Since risk assessment 

is a very important feature of toxicology, a longitudinal study would have been more appropriate 

for the assessment of health risks. A major benefit of the latter is that data would be gathered for 

the same subjects repeatedly over a period. This would allow us to monitor increases and decreases 

in PBDE concentration. On the other hand, the NHANEs cross-sectional study design only 

generates a snapshot of PBDE concentrations for different participants. In addition, since the 2003-

2004 NHANES dataset contained the most recent PBDE concentration data among Americans, 

this data is relatively dated. It would be useful to analyze recent data. However, NHANES has not 
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produced such a dataset since then. Next, it is unknown whether low dose, chronic exposure to 

PBDEs can cause adverse health effects. This makes the evaluation of dose-response difficult. As 

previously mentioned, minorities and the elderly were oversampled in this research. This may have 

introduced sampling bias into the analyses. Furthermore, there were 297 values that were below 

the limit of detection. These values were treated by dividing the LOD/√2. Other treatment methods 

which could have been used include LOD=0 and LOD/2. The LOD/√2 treatment method was 

automatically applied by the CDC for the dl-PCB dataset. Hence, for comparison’s sake, this 

method was also used for the other analytes in this dissertation research. It should also be 

mentioned that the all analyses for the sum of PBDEs, BDE-47 and BDE-99 were also performed 

using the LOD=0 and LOD/2 treatment methods for values that were below the detection limits of 

the analytical instruments. No significant differences were found among analyses. Finally, since 

electronic waste workers are often addressed as an occupational group with increased exposure to 

PBDEs, it would be worthwhile to assess their blood PBDE concentrations in addition to other 

demographics. However, these workers could not be categorized using the NHANES occupational 

subset due to the use of broad occupational and industry categories. In other words, electronic-

waste workers could not be separated from NHANES’ occupational or industry designations.  
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Chapter 6 

Conclusion 

Since the 1979 ban of polychlorinated biphenyls in the United States, production, 

importation and usage of polybrominated diphenyl ethers have grown tremendously due their cost 

effectiveness as flame retardants. However, PBDEs experienced a similar fate in December of 

2013 when their only US manufacturers and importers guaranteed a complete phase out of these 

flame retardants. This phase out occurred largely as a result of unsubstantiated public health 

concerns based on inconsistent literature.  

 

In fact, research pertaining to the most potential health effects of PBDEs have been very 

inconsistent. Most notably, previous studies have investigated measures of obesity in relation to 

PBDE exposure with a focus on pediatric populations. As mentioned in the Literature Review, the 

only applicable research is from Agay-Shay, Costa and Vuong et al. whose results have been 

conflicting at best. Moreover, no other study has focused primarily on the potential effects of 

PBDE exposure in relation to obesity and overweight status of American adults.  

 

Therefore, to address current research gaps, this study investigated the human blood 

concentrations of PBDEs among demographic categories generated through the 2003-2004 

NHANES. Analyses of this representative sample of the American population revealed detectable 

concentrations of PBDEs ranging from 0.05 to 3676 ng/g lipid. Among the various demographic 

categories that were analyzed, PBDE concentrations per gender yielded the only significant results 
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for the sum of PBDEs, BDE-47 and BDE-99. In addition, PBDEs did not lead to a higher odd of 

being obese or overweight. These analyses were repeated for dioxin-like polychlorinated biphenyls 

and phthalates. In general, analyses of dl-PCBs and phthalates among demographic categories 

produced similar significant results which opposed those of PBDE analyses. Overall, no analytes 

led to a significant odd of being obese or overweight. 
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Appendices 
 

Appendix I – Polybrominated Diphenyl Ethers Sampled 
 

PBDE Congeners in 2003-2004 NHANES 
 

Name of 
Congener 

Compound SAS name 
(lipid-

adjusted) 

Limits of 
Detection 

in ppb 
(NHANES 
Manual) 

LOD/√2* 

BDE-17 2,2',4-
tribromodiphenyl 

ether 

LBXBR1LA 0.0025 0.00176776695 
 

BDE-28 2,4,4'-
tribromodiphenyl 

ether 

LBXBR2LA 0.0025 0.00176776695 
 

BDE-47 2,2',4,4'-
tetrabromodiphenyl 

ether 

LBXBR3LA 
 

0.0062 0.00438406204 

BDE-66 2,3',4,4'-
tetrabromodiphenyl 

ether 

LBXBR66L 0.0028 0.00197989898 

BDE-85 2,2',3,4,4'-
pentabromodiphenyl 

ether 

LBXBR4LA 0.0164 0.01159655121 

BDE-99 2,2',4,4',5-
pentabromodiphenyl 

ether 

LBXBR5LA 0.007 0.00494974746 

BDE-100 2,2',4,4',6-
pentabromodiphenyl 

ether 

LBXBR6LA 0.0025 0.00176776695 
 

BDE-153 2,2',4,4',5,5'-
hexabromodiphenyl 

ether 

LBXBR7LA 0.017 0.01202081528 

BDE-154 2,2',4,4',5,6'-
hexabromodiphenyl 

ether 

LBXBR8LA 0.0025 0.00176776695 
 

BDE-183 2,2',3,4,4',5',6-
heptabromodiphenyl 

ether 

LBXBR9LA 0.0041 0.0028991378 
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*There were 297 values below the limit of detection. These values were divided by the square 
root of two and manually inserted into the master dataset. 
 
Appendix II – Dioxin-Like Polychlorinated Biphenyls Sampled 

 
Dioxin-Like PCBs in 2003-2004 NHANES 

 
Name of 

Congener 
Chemical Name SAS Name 

(Lipid 
Adjusted)* 

PCB 105 2,3,3',4,4'-
Pentachlorobiphenyl  

LBX105LA 

PCB 118 2,3',4,4',5-
Pentachlorobiphenyl  

LBX118LA 

PCB 156 2,3,3',4,4',5-
Hexachlorobiphenyl  

LBX156LA 

PCB 157 2,3,3',4,4',5'-
Hexachlorobiphenyl  

LBX157LA 

PCB 167 2,3',4,4',5,5'-
Hexachlorobiphenyl  

LBX167LA 

PCB 189 2,3,3',4,4',5,5'- 
Heptachlorobiphenyl  

LBX189LA 

PCB 126 3,3',4,4',5-
Pentachlorobiphenyl 

LBXPCBLA 

PCB 81 3,4,4',5-
Tetrachlorobiphenyl 

LBXTC2LA 

PCB 169 3,3',4,4',5,5'-
Hexachlorobiphenyl 

LBXHXCLA 

 
*The variable named LBX___ provides the analytic result for that analyte. Analytical results 
which were below the detection limit, were automatically divided by the square root of 2 by the 
CDC. Units were originally in ng/g of lipid; except for PCB 126, PCB 81, PCB 169 which were 
originally in pg/g lipid. Their values were converted to ng/g lipid (parts per trillion to parts per 
billion). Also, 562 missing values were removed from the total sample. 
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Appendix III – Phthalates Sampled 
 

Phthalate Metabolites in 2003-2004 NHANES 
 

SAS Name 
for 

Metabolite 

Compound Typical 
Limits of 
Detection 

in PPB 
(NHANES 

Lab 
Manual) 
in ng/mL 

or ppb 

LOD/√2* 

URXECP Mono-2-ethyl-5-
carboxypentyl 

phthalate 

0.25 0.1767766953 

URXMBP Mono-n-butyl 
phthalate 

0.40 
 

0.2828427125 

URXMC1 Mono-(3-
carboxypropyl) 

phthalate 

0.16 0.113137085 

URXMCP Mono-
cyclohexyl 
phthalate  

0.402 0.284256926 

URXMEP Mono-ethyl 
phthalate 

0.264 0.1866761902 

URXMHH Mono-(2-ethyl-
5-hydroxyhexyl) 

0.32 0.22627417 

URXMHP Mono-(2-ethyl)-
hexyl phthalate 

0.90 0.6363961031 

URXMIB Mono-isobutyl 
phthalate 

0.26 0.1838477631 

URXMNM Mono-n-methyl 
phthalate 

1.0 0.7071067812 

URXMNP Mono-isononyl 
phthalate 

1.54 1.088944443 

URXMOH Mono-(2-ethyl-
5-oxohexyl) 

0.45 0.3181980515 

URXMOP Mono-n-octyl 
phthalate 

1.68 1.187939392 

URXMZP Mono-benzyl 
phthalate 

0.072 0.0509116882 

 
*The variable named URX___ provides the analytic result for that analyte. These values were 
divided by the square root of two and manually inserted into the master dataset. Also, 92 missing 
values were removed from the sample. 
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Appendix IV – Residential Sources of PBDE Exposure 
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