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ABSTRACT 

 

Drug toxicity may cause liver injury, resulting in damage to cells and tissues. This 

damage can lead to cytotoxic events that may result in an activation of poly(ADP-ribose) 

polymerase (PARP). A study was conducted to determine if cocaine and acetaminophen toxicity 

lead to DNA damage and to the activation of the repair protein, PARP in the liver using the 

hepatotoxicants: cocaine and acetaminophen (APAP).  

A dose-response analysis for cocaine concluded that a dose as low as 20 mg/kg resulted 

in elevated ALT levels. A higher dose of 60 mg/kg was tested for analyses but resulted in severe 

hemorrhaging. The dose-response analyses for APAP resulted in no elevated liver enzyme levels 

for a 75 mg/kg and 150 mg/kg dose. A dose of 50 mg/kg for cocaine, and a dose of 300 mg/kg 

for APAP, were used to analyze temporal trends for both toxicants. Both cocaine and APAP 

produced incremental increases in ALT at the 2 hour, 6 hour, 18 hour, and 24 hour time points, 

respectively. PARP activity analysis for cocaine measured the highest activity at the 2 hour and 6 

hour time points. PARP analysis for acetaminophen measured gradual increases until the 18 hour 

time point where the highest level of PARP activity was measured. 

A PARP inhibition analysis was conducted with cocaine and (APAP) to understand the 

impact of a PARP inhibitor, 1,5-dihydroxyisoquinoline (DIQ), on PARP activity in the liver. A 

50 mg/kg dose of cocaine or a 300 mg/kg dose of APAP was administered, followed by a 10 

mg/kg dose of DIQ at 1) the time of initial toxicant dose (0 hour), or 2) 1 hour after initial  
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toxicant dose (1hr). The PARP inhibition analysis for cocaine and APAP was conducted at 6 and 

18 hours post initial dose, respectively, when the highest levels of PARP were observed. 

Inhibition analyses determined that ALT declined significantly when DIQ was administered 

immediately following the initial toxicant dose for both toxicants. DIQ administered 1 hour after 

initial toxicant dose resulted in slightly higher ALT than the 0 hour time point. Decreases in 

PARP activity were observed at the 0 hour time point, with slightly higher PARP levels observed 

at the 1 hour time point. Decreased PARP activity was observed following DIQ treatment with 

both, a concurrent drug treatment and treatment following drug administration. Cocaine and 

APAP treatment did not cause DNA fragmentation. A liver glutathione (GSH) analysis 

conducted for cocaine and APAP did not correlate with DIQ alteration of PARP activity. The 

mechanism of DIQ effects on drug-induced hepatotoxicity appears to be GSH independent. DIQ 

was effective in reducing drug-induced hepatotoxicity and preserving organ function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

CHAPTER ONE: 

INTRODUCTION 

 

Recent data reported by the CDC states that drug overdose was the leading cause of death 

among adults aged 25-64 years old, causing more overall deaths than motor vehicle accidents 

(Centers for Disease Control and Prevention, 2015). While drug overdose is on the rise among 

the adult population within the United States, the use of prescription drugs has drove the recent 

statistics for both drug usage, as well as drug overdose to alarming heights. However, the debate 

continues to exist as to how much of a role does pharmaceutical and recreational drugs 

contribute to these alarming statistics.  

 A drug is defined as any chemical compound that may be used for treatment or diagnosis 

of a condition or disease, for pain relief, or for the feeling that it causes (CDC, 2015). It is the 

misuse of drugs that lead to a potential overdose. During an overdose, an excessive amount of a 

drug may be ingested, inhaled, or absorbed that may lead to body injury (CDC, 2015). Two 

major classes of drugs that may lead to a potential overdose are recreational and pharmaceutical 

drugs. Recreational drugs are those drugs that are used without medical justification for the 

effects that they elicit (Merriam-Webster, 2015). These drugs may be habit-forming or addictive. 

Some examples of recreational drugs include cocaine, amphetamines, methamphetamines, LSD, 

heroin, cannabis, and ecstasy. Pharmaceutical drugs are those drugs that are prescribed and are 

considered to be safe and effective (World Health Organization, 2015). Some examples of 
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pharmaceutical drugs include Acetaminophen, Ranitidine, Diazepam, Naproxen, and 

Furosemide. An overdose of either a recreational or pharmaceutical drug may lead to a number 

of adverse health effects, including acute liver injury (CDC, 2015; WHO, 2015). 

 As of 2007, the Centers for Disease Control and Prevention reported that as many as 120 

people die per day as a result of drug overdose (CDC, 2015). This alarming statistic includes 

both prescription drug abuse as well as recreational drug use. In 2012, drug overdose was the 

leading cause of injury death. Overdosing of drugs led to more deaths than motor vehicle traffic 

crashes among individuals between the ages of 25 to 64 (CDC, 2015). With the risk for death 

from overdose increasing each year, it is imperative that research studies are conducted to 

determine any potential way that we may combat these alarming death statistics.  

 
 

Statement of the Problem 

 

 With recent increases observed in the number of individuals overdosing on prescription 

drugs, there has also been an increase in the usage of recreational drugs as well (CDC, 2015). 

The age of drug usage for recreational drugs continues to decrease every year. While youth have 

the lowest death rates from drug overdose, drug abuse among all ages contributed to more than 

2.5 million visits in the emergency room in 2012 (CDC, 2015). One of the major recreational 

drug’s that is gaining popularity among youth in grades eight through twelve is cocaine. What is 

more alarming about the use of cocaine among the youth population is that the usage of crack 

cocaine far surpasses the usage of cocaine among young people (CDC, 2015; National Institute 

on Drug Abuse, 2015). As of 2014, there has been a recent increase in the usage of crack cocaine 

among youth aged 12 to 17 years of age (NIDA, 2015). While the physiological impacts from 
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cocaine are much more acute, extensive liver damage may result from consuming high doses of 

this recreational drug (McCluskey, Harbison, Sava, Johnson, Harbison, 2012; NIDA, 2015). 

While prescription drug abuse may contribute the overwhelming majority of 

pharmaceutical drug abuse, over the counter drugs also contribute to the recent increase in the 

number of overdoses from pharmaceutical products. One of the major reasons for increase in 

abuse of pharmaceutical drugs is due to the idea that pharmaceutical drugs pose less of a health 

risk because they are prescribed medications (CDC, 2015; NIDA, 2015). Pharmaceutical drugs 

are seen as safe and present less addictive properties as opposed to recreational drugs (CDC, 

2015). However, it is this false misconception that leads to the misuse and abuse of 

pharmaceutical drugs. Just as this misconception is prevalent among prescription drug abusers, 

this theory also resonates for abuse of over-the-counter drugs as well. Acetaminophen, also 

known as Tylenol, is commonly used as a prescribed medication, as well as an over-the-counter 

drug. A common analgesic or pain reliever, acetaminophen is one of the most commonly used 

pharmaceutical drugs on the market today (United States National Library of Medicine, 2015). 

Because acetaminophen is an over-the-counter drug, it is deemed safe if the recommended dose 

is consumed. However, acetaminophen is not recommended for large consumption with a single 

dose, or for long-term usage due to its potential to cause extensive damage to the liver (United 

States National Library of Medicine, 2015). It is this concern that leads to precaution of 

physicians and other health professionals for consumers that may misuse this pharmaceutical 

drug.  

 

Purpose of the Study 

 

 The purpose of this study is to determine the impacts of a pharmaceutical drug and  
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recreational drug overdose on the role of poly(ADP-Ribose) polymerase (PARP) protein activity 

in the liver. The pharmaceutical drug acetaminophen and the recreational drug cocaine will be 

used to characterize the role of PARP in hepatotoxicity. A dose-response analysis will be 

conducted to determine the optimal dose to elicit cytotoxicity in the liver caused by an overdose 

of cocaine and acetaminophen. A temporal analysis will be conducted to understand the role of 

time in drug-induced hepatotoxicity for the two hepatotoxicants. PARP activity will be measured 

to characterize the role of PARP in cocaine and acetaminophen-induced hepatotoxicity and the 

onset of change. Lastly, an efficacy study inhibiting PARP activity with 1,5-

dihydroxyisoquinoline (DIQ) will be conducted to determine if there is a measurable reduction in 

damage from blocking activation of the PARP protein.  

 The ability to inhibit the PARP activation mechanism will help to increase the amount of 

time an individual will have to seek medical attention following an overdose. This will help to 

potentially decrease mortality rates for drug overdose if an individual is able to seek medical 

attention soon after administration of the drug. Furthermore, this will also help to better 

understand the cytotoxic impacts of acetaminophen and cocaine in the liver, while also 

explaining PARP protein activity in the liver in the presence of these known hepatotoxicants.  
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CHAPTER TWO: 

 

LITERATURE REVIEW 

 

 

 
Cocaine Background 

 

 Cocaine is one of the most commonly used recreational drugs, with only marijuana and 

heroin usage being more common among drug abusers of illicit drugs (NIDA, 2015). Some 

alternative names for cocaine include coke, blow, powder, and snow (NIDA, 2015). Common 

uses include the form of both cocaine and crack cocaine. Classified as a stimulant, cocaine 

produces a temporary increase in functionality due to its impact on the neurotransmitter 

dopamine (NIDA, 2015). The use of cocaine blocks the dopamine transporter and prevents the 

reuptake of dopamine (Siegel, 1991). Cocaine produces an overproduction of dopamine, but 

those dopamine molecules have nowhere to go so they bounce around between the pre- and post-

synapses at the synaptic cleft (Siegel, 1991). In turn, this reaction contributes to the excitatory or 

stimulatory feelings observed after consumption of the drug. 

Cocaine originates from the coca plant found mostly in South America. Historically, 

cocaine was used as a common anesthetic, particularly during nasal surgery (Kester, Vrana, & 

Karpa, 2012). Common routes of administration include chewing, insufflation (snorting), 

inhalation (smoking), dermal, and intravenous. Injecting cocaine or smoking cocaine will 

provide a quicker and stronger but short lasting high as opposed to insufflation or snorting 

cocaine (NIDA, 2015). A common treatment method for an overdose of cocaine is the 



6 
 

administration of Diazepam or other benzodiazepines. Administration of Diazepam is used to 

treat symptoms such as elevated heart rate and blood pressure but will not alter hepatotoxicity 

(NIDA, 2015).   

While there are a number of potential routes of administration for cocaine, the end result 

is significant impacts on the central nervous and cardiovascular system (Mehanny, Abdel-

Rahman, 1991; Kulberg, 1986; Thompson, Shuster, Shaw, 1979; Labib, Turkall, Abdel-Rahman, 

2002; Ascenzi, Clementi, Polticelli, 2003). The binding of cocaine to dopamine receptors 

produces a stimulatory response due to the inhibition of the re-uptake of dopamine from the 

synaptic cleft. The lack of binding of 3dopamine to its receptors produces feelings of euphoria 

(Xu et al., 1994). The stimulatory effects of cocaine on the heart may severely impact heart rate 

and blood pressure, along with causing damage to heart cells by reactive oxygen species 

(Kovacic, 2005; Labib, Turkall, Abdel-Rahman, 2002). 

Cocaine is primarily metabolized in the liver and produces two major metabolites of 

ecgonine methyl ester and benzoylecgonine (Labib, Turkall, Abdel-Rahman, 2002; Stewart, 

Inaba, Lucassen, Kalow, 1979; Ascenzi, Clementi, Polticelli, 2003; Stewart, Inaba, Lucassen, 

Kalow, 1979). (See Figure 1.) During hepatotoxic events minor metabolites such as norcocaine 

or cocaethylene are produced. Ecgonine methyl ester is metabolized via a deesesterification 

metabolic pathway, while the more common metabolite benzoylecgonine is metabolized via a 

demethylation metabolic pathway. Benzoylecgonine is unlikely to produce any reactive species 

that may be detectable within the liver (Kovacic, 2005; Labib, Turkall, Abdel-Rahman, 2002; 

Freeman and Harbison, 1981; Boess, Ndikum-Moffor, Boelsterli, Roberts, 2003vira). One minor 

oxidative metabolic route producing norcocaine may produce a number of byproduce such as 

nococaine nitroxide, N-hydroxynorcocaine, norcocaine nitrosonium, cocaine iminium, N-  
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Figure 1. Cocaine Metabolites. Metabolism of cocaine produces the metabolites of ecgonine 
methyl ester, benzoylecgonine, norcocaine, and cocaethylene (Stewart, Inaba, Lucassen, Kalow, 
1979; Ascemzi, Clementi, Polticelli, 2003; Thompson, Shuster, Shaw, 1979; Roth, Harbison, 
James, Tobin, Roberts, 1992; Kovacic, 2004).  
 

hydroxy, and formaldehyde, which have been shown to affect cocaine toxicity (Kovacic, 2005; 

Labib, Turkall, Abdel-Rahman, 2002; Thompson, Shuster, Shaw, 1979). The production of 

cocaethylene as a minor metabolite may result from cocaine metabolism in the presence of 

alcohol (Ascenzi, Clementi, Polticelli, 2003). These metabolites may react with a number of 

enzymes throughout the body to impact several different organ systems such as the central 

nervous system and the cardiovascular system (Kovacic, 2005; Labib, Turkall, Abdel-Rahman, 

2002). 

 

 

Acetaminophen Background 

 

Acetaminophen is a common analgesic drug used safely at therapeutic doses, but may  
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cause liver injury with an overdose (James, Mayeux, Hinson, 2003; Dӧnmez, Uysal, Poyrazoglu, 

Er Ӧztas, Türker, Kaldirim, Korkmaz, 2015). A common over-the-counter drug suggested for 

women during pregnancy, acetaminophen is rarely recognized as a toxic drug. Common routes 

of administration include intravenously, orally, and rectally. Acetaminophen overdose is one of 

the leading causes of acute liver injury (McGill, Lebofsky, Norris, Slawson, Bajt, Xie, Williams, 

Wilkins, Rollins, Jaeschke, 2013; Lee, 2004; Yaman, Isbilir, Cakir, Uysal, 2011). While 

acetaminophen overdose may cause acute liver injury, it is unlikely to cause widespread liver 

damage that could result in a liver transplant. Due to the acute impacts of acetaminophen liver 

injury resulting from an overdose, it is important to use proper clinical diagnostic tests to identify 

acetaminophen hepatotoxicity (Dӧnmez, Uysal, Poyrazoglu, Er Ӧztas, Türker, Kaldirim, 

Korkmaz, 2015; Yaman, Isbilir, Cakir, Uysal, 2011). Delayed symptoms from an overdose 

include nausea and vomitting that may develop more than eight hours after ingestion (Rumack, 

1983). Common treatments for an overdose include charcoal and N-acetylcysteine, the latter 

commonly used in Europe (Linden & Rumack, 1984; Rumack, 1983). 

With origins dating back well over 100 years, acetaminophen has been a commonly used 

analgesic for a number of medical conditions (Brune, Renner, Tiegs, 2015; Spooner & Harvey, 

1976). Originating in a laboratory from p-nitrophenol, paracetamol gained more popularity 

overseas than in the United States. It wasn’t until its efficacy as an analgesic was recognized in 

the mid-1900s that acetaminophen gained widespread use in the United States (Spooner & 

Harvey, 1976; Black, 1984). A patent was granted for acetaminophen use in the United States 

during the 1980s (Black, 1984). 

Because acetaminophen is a common analgesic, resultant target areas may vary 

throughout the body (Rumack, 1983; Linden & Rumack, 1984; James, Mayeux, Hinson, 2003). 
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When taken as a therapeutic drug, acetaminophen has little to no toxic impacts on the body as 

most of it metabolites are excreted in the urine (Miners, Osborne, Tonkin, Birkett, 1992).  It is in 

the presence of an overdose when symptoms may be observed in an individual that may require 

medical attention (Budnitz, Lovegrove, Crosby, 2011). During an overdose, hepatotoxic events 

may produce widespread liver damage (Shi et al., 2012; James, Mayeux, Hinson, 2003; 

Jaeschke, McGill, Williams, Ramachandran, 2011; McGill, Sharpe, Williams, Taha, Curry, 

Jaeschke, 2012). While charcoal and N-acetylcysteine may be used for treatment of an acute 

overdose, often prolonged therapeutic use of acetaminophen may also result in widespread liver 

damage as well. Resultant liver damage from acute and chronic use may be irreversible in 

extreme cases (McGill et al., 2013; Williams, Koerner, Lampe, Farhood, Jaeschke, 2011; 

Jaeschke, McGill, Williams, Ramachandran, 2011; McGill, Sharpe, Williams, Taha, Curry, 

Jaeschke, 2012).  

The complex mechanism for acetaminophen has been researched for a number of years 

due to the impacts of intermediate metabolites on various cells and tissues throughout the body 

(McGill, Williams, Xie, Ramachandran, Jaeschke, 2012; Gujral, Knight, Farhood, Bajt, 

Jaeschke, 2002; James, Mayeux, Hinson, 2003; McGill et al., 2013; Lawson, Fisher, Simmons, 

Farhood, Jaeschke, 1999). Acetaminophen metabolism occurs via three pathways. The two most 

common pathways include glucuronidation and sulfation (Kessler, Kessler, Auyeung, Ritter, 

2002; McGill, Sharpe, Williams, C., Taha, M., Curry, S., Jaeschke, H., 2012; Koch-Weser, 1976; 

Miners, Penhall, Robson, Birkett, 1988). (See Figure 2.) The minor third metabolic pathway 

involves the oxidation of acetaminophen molecules that are produced by cytochrome -P450 

enzymes to produce the reactive metabolite of N-acetyl-p-benzoquinone imine (NAPQI) 

(Manyike, Kharasch, Kalhorn, Slattery, 2000). Glutathione (GSH) detoxifies NAPQI molecule 
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Figure 2. Acetaminophen Metabolism. Metabolism of acetaminophen produces metabolites via 
the processes of glucuronidation and sulfation, along with the formation of the reactive 
metabolite N-acetyl-p-benzoquinone imine (NAPQI) (Food and Drug Administration, 2002; 
James, Mayheux, Hinson, 2003; Jaeschke, McGill, Williams, Ramachandran, 2011). 
 

 through a conjugation reaction to reduce damage to liver cells and tissue from toxic metabolites 

(McGill, Sharpe, Williams, C., Taha, M., Curry, S., Jaeschke, H., 2012; Nelson, 1990; Williams, 

Koerner, Lampe, Farhood, Jaeschke, 2011; Cohen, Pumford, Khairallah, Boekelheide, Pohl, 

Amouzadeh, Hinson, 1997; Manyike, Kharasch, Kalhorn, Slattery, 2000; Mitchell, Jollow, 

Potter, Davis, Gillette, Brodie, 1973). 

 
 

Hepatotoxicity 

 

            Hepatotoxic events may result from a number of acute and chronic drug use. While  
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chronic usage is a repeated use of drugs over a prolonged period of time, toxicity resulting from 

acute usage may occur from consumption of a single dose of a drug. Both chronic and acute drug 

usage may result in drug-induced liver injury (Begriche, Massart, Robin, Borgne-Sanchez, 

Fromenty, 2011; Björnsson, 2009). However, it is the metabolism of the drug to its toxic 

metabolites that may create widespread liver damage. Two common outcomes resulting from 

drug toxicity are apoptosis and necrosis. Both outcomes impact cell signaling and result in 

extreme damage to liver cells and tissues (Gujral, Knight, Farhood, Bajt, Jaeschke, 2002; Hong, 

Dawson, Dawson, 2004; El-Hassan et al., 2003; Adams et al., 2001).  

 Toxicity in the liver may be measured a number of different ways. The most common 

method for determining liver damage is through the testing of serum biomarkers. Abnormal 

levels of serum biomarkers may provide an indirect indication of potential liver damage that may 

exist (Ozer, Ratner, Shaw, Bailey, Schomaker, 2008; Amacher, 1998; Amacher, Alder, Hearth, 

Townsend, 2005; Boone et al., 2005; Ramaiah, 2007). Considered the gold standard for detection 

of liver injury, alanine aminotransferase (ALT) is the most frequently used serum biomarker for 

assessing hepatotoxic effects (Ozer, Ratner, Shaw, Bailey, Schomaker, 2008; Amacher, 1998; 

Amacher, 2002). Similar to ALT, aspartate aminotransferase (AST) is considered the second 

most common serum biomarker used for measuring hepatotoxicity (Ozer, Ratner, Shaw, Bailey, 

Schomaker, 2008). Although AST is less specific than ALT, abnormalities with both liver 

enzymes indicate potential liver damage that may exist. Some other common serum biomarkers 

used to determine hepatotoxicity include bilirubin, bile acids, gamma-glutamyl transferase, and 

glutamate dehydrogenase (Ozer, Ratner, Shaw, Bailey, Schomaker, 2008; Amacher, 2002). Most 

liver enzyme assays may be conducted with colorimetric detection methods, more in-depth 
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ELISA assays may be used to determine any abnormalities for any non-colorimetric biomarkers 

(Ozer, Ratner, Shaw, Bailey, Schomaker, 2008). 

 
 

Apoptosis 

 

 A cellular pathway ending in apoptosis may result from a number of potential metabolic 

pathways. Common apoptotic pathways may result from minor cellular damage to improper cell 

signaling. An alternative result from apoptosis is the activation of initiator and effector caspase. 

Irrespective of the mechanistic pathway, the ending result for apoptotic signaling is cell death. 

Cells processing through apoptotic pathways result in cell shrinkage and cell phagocytosis while 

the cell membrane remains intact (Alison, Sarraf, 1992: Sen, 1992; Proskuryakov, 

Konoplyannikov, Gabai, 2003). Other metabolic processes impacted by apoptosis include DNA 

fragmentation and caspase (Jaeschke, H., Cover, C., Bajt, M., 2006; McGill, Sharpe, Williams, 

Taha, Curry, Jaeschke, 2012; Cohen, 1997; Sen, 1992). While cell death may be the ultimate 

outcome from apoptotic signaling, often the damage to tissues is not widespread (Sen, 1992). 

 

 

Necrosis  

 

 An alternative cellular pathway ending is via necrosis. A necrotic pathway is more severe 

in that the cellular and tissue damage is widespread than for apoptosis. While cells may shrink 

and die with apoptosis, during necrosis cells swell and burst. This potential outcome leads to 

breaking of the cell membrane and cell contents are released from inside the cell causing massive 

widespread tissue damage (Hong, Dawson, Dawson, 2004; Walker, Harmon, Gobé, Kerr, 1988). 

Some outcomes that may result from a necrotic pathway may include ATP depletion, free 

radicals, and reactive oxygen species (Jaeschke, H., Cover, C., Bajt, M., 2006; McGill, Sharpe, 
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Williams, Taha, Curry, Jaeschke, 2012; Begriche, Massart, Robin, Borgne-Sanchez, Fromenty, 

2011). A necrosis ending result is more detrimental to cells and tissues due to the widespread 

damage that is caused with the bursting of cells and the release of free radicals to potentially 

generate further damage to other nearby cells (Proskuryakov, Konoplyannikov, Gabai, 2003).  

 

 

Other Outcomes of Hepatotoxicity 

 

 There are a number of outcomes that may result from potential hepatotoxic events. Each 

of the resultant outcomes result in either necrosis or apoptosis as damage to cells and tissues 

occur. Some common alternative outcomes that may result from hepatotoxic events include 

DNA fragmentation, activation of caspases, and ATP depletion. Activation of any of these 

processes will most likely result in cell death and tissue damage. Most damage that occurs as a 

result of these outcomes is irreversible. 

 DNA fragmentation expresses the cleaving of DNA that occurs during apoptotic 

signaling. Apoptotic signaling causes histones wrapped around DNA to unravel and expose 

DNA strands. Exposed strands are susceptible to degradation as other parts of the cell die during 

the apoptosis process. Another potential outcome leading to apoptosis that may arise from an 

apoptotic pathway is the activation of caspases (Hong, Dawson, Dawson, 2004; Malhi, Gores, 

Lemasters, 2006; Jiang, Wang, 2004). Activation of caspases may result from a number of 

potential mechanisms, but the end result of caspase activation is activation of apoptotic pathways 

(McGill, Sharpe, Williams, Taha, Curry, Jaeschke, 2012; Gujral, Knight, Farhood, Bajt, 

Jaeschke, 2002; Davidson and Eastham, 1966; Hong, Dawson, Dawson, 2004; Jaeschke, H., 

Cover, C., Bajt, M., 2006; Majno, Joris, 1995). ATP depletion results from a necrotic pathway. A 

depletion of ATP stores results in cell swelling, where cell membranes eventually burst leading 
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to cell death (Malhi, Gores, Lemasters, 2006; Majno, Joris, 1995; Goldblatt, Trump, Stowell, 

1965; Nieminen, Gores, Wray, Tanaka, Herman, Lemasters, 1988; Herman, Nieminen, Gores, 

Lemasters, 1988). Significant reductions to glutathione may also result from hepatotoxic events 

such as the production of reactive oxygen species. Because glutathione works as an antioxidant 

to repair damaged cells, reductions in levels may result in more widespread damage due to cells’ 

inability to prevent damage from reactive metabolites produced as a result of drug-induced 

toxicity (Nýdlova, Vrbová, Česla, Jankovičová, Ventura, Roušar, 2013; McCluskey, Harbison, 

Sava, Johnson, Harbison, 2012; Labib, Turkall, Abdel-Rahman, 2002; McCluskey, Sava, 

Harbsion, Muro-Cacho, Johnson, Ping, Harbison, 2011; Dӧnmez, Uysal, Poyrazoglu, Er Ӧztas, 

Türker, Kaldirim, Korkmaz, 2015; Cover et al. 2005a; James, Mayeux, Hinson, 2003; McGill et 

al. 2013;  McGill, Sharpe, Williams, Taha, Curry, Jaeschke, 2012). 

 

 

Cocaine and Hepatotoxicity 

 

The liver is a known target of cocaine toxicity. The hepatic injury that may result from 

cocaine overdose is likely to be extensive throughout many liver cells and tissue. Studies have 

shown that whether the dose is acute or chronic, measured liver enzymes indicate that some level 

of damage to the liver occurs from either frequency of administration of the drug (Mehanny, 

Abdel-Rahman, 1991; Evans, Dwivedi, Harbison, 1977; Shuster, Freeman, and Harbison, 1977; 

Freeman, Harbison, 1981; Devi, Chan, 1997). Hepatotoxicity resulting from acute cocaine doses 

has been shown to be dependent upon the induction cytochrome P450 oxidative enzymes 

(Mehanny, Abdel-Rahman, 1991; Thompson, Shuster, Shaw, 1979; Freeman, Harbison, 1978; 

Labib, Turkall, Abdel-Rahman, 2002; Freeman, Harbison, 1981; Devi, Chan, 1997). It is through 

this oxidative pathway that reactive oxygen species are produced (Labib, Turkall, Abdel-
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Rahman, 2002; Aoki, Ohmori, Takimoto, Ota, Yoshida, 1997). The production of these reactive 

species causes damage to a number of organelles within the cell, such as damage to the cell 

membrane and malfunctioning of mitochondria (Labib, Turkall, Abdel-Rahman, 2002; Devi, 

Chan, 1997; Ndikum-Moffor, Roberts, 2003). As a result glutathione levels are expected to be 

reduced along with ATP stores within the cell. Depletion of ATP stores impact the cell’s ability 

to withstand damage from ROS produced from cocaine toxicity (Labib, Turkall, Abdel-Rahman, 

2002; Devi and Chan, 1996; Evans, 1983; Kovacic, 2004). These hepatotoxic events lead to a 

defective cell that swells and eventually bursts. This damage eventually causes what has been 

observed as necrotic damage to cells and tissues resulting from cocaine hepatotoxicity (Roth, 

Harbison, James, Tobin, Roberts, 1992). 

Research has shown that pretreatments may help to reduce the extent of liver damage that 

results from cocaine hepatotoxic events. Studies evaluated the effectiveness of pretreatments on 

both acute and chronic cocaine drug treatments (Labib, Turkall, Abdel-Rahman, 2002; 

McCluskey, Harbison, Sava, Johnson, Harbison, 2012; McCluskey, Sava, Harbison, Muro-

Cacho, Johnson, Ping, Harbison, 2011). The purpose is to reduce ALT levels, restore ATP, and 

increase the production of glutathione. Research has shown that improvements of these elements 

have significant impacts on reducing widespread liver damage, and in some cases, may also 

reverse observed damage from cocaine-induced hepatotoxicity (McCluskey, Harbison, Sava, 

Johnson, Harbison, 2012; Ozer, Ratner, Shaw, Bailey, Schomaker, 2007). However, the key to 

altering the toxicity produced by reactive oxygen species is to protect the cell membrane and 

mitochondria to maintain viable cells that can increase glutathione production that will aid in the 

reduction of toxic cocaine metabolites (Donnelly, Boyer, Petersen, Ross, 1988; McCluskey, 

Harbison, Sava, Johnson, Harbison, 2012).  
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Acetaminophen and Hepatotoxicity 

Acetaminophen hepatotoxicity may result from drug-induced liver injury that may cause 

permanent damage to liver cells and tissue (Enomoto, Itoh, Nagayoshi, Haruta, Kimura, 

O’Connor, Harada, Yamamoto, 2001; Ingawale, Mandlik, Naik, 2014; Brodie, Reid, Cho, Sipes, 

Krishna, Gillette, 1971; Mitchell, Jollow, Potter, Davis, Gillette, Brodie, 1973; Reid, Krishna, 

Mitchell, Moskowitz, Brodie, 1971; Cover et al, 2005a; James, Mayeux, Hinson, 2003; Dӧnmez, 

Uysal, Poyrazoglu, Er Ӧztas, Türker, Kaldirim, Korkmaz, 2015). Hepatotoxic events develop 

from the production of the toxic metabolite, N-acetyl-p-benzoquinone imine (NAPQI), by 

cytochrome p450 enzymes. The production of NAPQI depletes glutathione and binds to the 

amino acid cysteine within the cell (McGill, Williams, Xie, Ramachandran, Jaeschke, 2012; 

Nelson, 1990; James, Mayeux, Hinson, 2003; Cohen, Pumford, Khairallah, Boekelheide, Pohl, 

Amouzadeh, Hinson, 1997; Nýdlova, Vrbová, Česla, Jankovičová, Ventura, Roušar, 2013). This 

process stimulates the toxic events of oxidative stress resulting from damage caused by reactive 

oxygen species to various parts of the cell (McGill, Williams, Xie, Ramachandran, Jaeschke, 

2012; Kon, Kim, Jaeschke, Lemasters, 2004; Jaeschke, H., McGill, M., Ramachandran, A., 

2012; Cohen, Pumford, Khairallah, Boekelheide, Pohl, Amouzadeh, Hinson, 1997; Cover et al., 

2005b). 

Exposures to toxic doses of acetaminophen may cause widespread mitochondrial damage 

(McGill, Sharpe, Williams, Taha, Curry, S., Jaeschke, 2012; Jaeschke, H., McGill, M., 

Ramachandran, A., 2012). This mitochondrial dysfunction impacts the cytochrome p450 protein 

mechanism. The mitochondrial damage to cytochrome p450 can lead to oxidative stress, which 

may result in a production of free radicals (Park, Smith, Combs, Kehrer, 1988; Jaeschke, Gujral, 

Bajt, 2004; Yoon, Kim, Lee, Chung, Kim, 2006; Jaeschke, Cover, Bajt, 2006; McGill, Williams, 
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Xie, Ramachandran, Jaeschke, 2012; Cover et al., 2005b). These free radicals cause DNA 

fragmentation that can serve as a precursor to necrotic cell death and injuries to liver tissue 

(Cover et al., 2005a; McGill, Sharpe, Williams, Taha, Curry, Jaeschke, 2012; Williams, Koerner, 

Lampe, Farhood, Jaeschke, 2011; James, Mayeux, Hinson, 2003; Kröger, Ehrlich, Klewer, 

Grӓtz, Dietrich, Miesel, 1996; Jaeschke, McGill, Williams, Ramachandran, 2011). 

 Pretreatments have also been shown to improve hepatotoxic events resulting from 

acetaminophen-induced toxicity (Dӧnmez, Uysal, Poyrazoglu, Er Ӧztas, Türker, Kaldirim, 

Korkmaz, 2015; Ray, Kamendulis, Gurule, Yorkin, Corcoran, 1993).  Administered 

pretreatments aid in the reduction of elevations in ALT, and improve glutathione and ATP stores 

that result from acetaminophen-induced hepatotoxic events. Reducing the production of the toxic 

metabolite, NAPQI, will result in the improvement of glutathione stores that will improve 

cellular function (Shi et al., 2012; Fernandes et al., 2011; Purnell, Whish, 1980; Dӧnmez, Uysal, 

Poyrazoglu, Er Ӧztas, Türker, Kaldirim, Korkmaz, 2015). Improving the damage that results 

from hepatotoxic events may help to prevent widespread liver damage and reverse damage to 

liver cells and tissue (Shi et al., 2012; Dӧnmez, Uysal, Poyrazoglu, Er Ӧztas, Türker, Kaldirim, 

Korkmaz, 2015; Fernandes et al., 2011; Purnell, Whish, 1980).  

 

Poly(ADP-ribose) Polymerase (PARP)   

 The role of cellular death in drug-induced toxicity has been studied for a number of 

decades. While it is understood that the metabolic production of toxic metabolites contributes to 

the damage in major cell organelles, the intermediate mechanistic pathways and contributors 

continues to be debated (Cover et al., 2005b; Wang, Dawson, Dawson, 2009; James, Mayeux, 

Hinson, 2003; Virág, Robaszkiewicz, Rodriguez-Vargas, Oliver, 2013). Damage to DNA is 
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considered to be the main cellular response that results from the toxic events (Hong, Dawson, 

Dawson, 2004). Resultant nicks and tears to single and double stranded DNA triggers a cellular 

response to activate the enzyme poly(ADP-ribose) polymerase (PARP) by catalyzing modified 

nuclear proteins via poly-ADP ribosylation (Wang, Dawson, Dawson. 2009; Cover et al., 2005b; 

Scobie et al., 2014; Bouchard, Rouleau, Poirier, 2003; Dӧnmez, Uysal, Poyrazoglu, Er Ӧztas, 

Türker, Kaldirim, Korkmaz, 2015; Virág, 2005). PARP is a 116 kDa protein containing 3 main 

domains: an N-terminal DNA-binding domain (42 kDa), a central automodification domain (16 

kDa), and a C-terminal domain (55kDa). The N-terminal DNA-binding domain contains two 

zinc fingers that aid recognizing nicks and tears to DNA strands (Hong, Dawson, Dawson, 2004; 

Wang, Dawson, Dawson. 2009; Cover et al. 2005a; Bouchard, Rouleau, Poirier, 2003). (See 

Figure 3.)  

In the presence of drug and chemical-induced toxicity, an overproduction of PARP is 

activated to compensate for the loss of cellular energy resulting from mitochondria dysfunction 

and rapid depletion of NAD+ and ATP stores (McCluskey, Sava, Harbison, Muro-Cacho, 

Johnson, Ping, Harbsion, 2011; Cover et al., 2005a; Scobie et al., 2014; Dӧnmez, Uysal, 

Poyrazoglu, Er Ӧztas, Türker, Kaldirim, Korkmaz, 2015; Virág, Robaszkiewicz, Rodriguez-

Vargas, Oliver, 2013; Aredia, Scovassi, 2014). Excessive activation of this PARP enzyme 

depletes nicotinamide adenine dinucleotide (NAD+) within the cell. This depletion in NAD+ 

triggers a rapid depletion of adenosine triphosphate (ATP) within the cell. Rapid catabolism of 

NAD+ impacts energy metabolism by causing mitochondrial dysfunction and decreases function 

of the nucleus which eventually leads to cell death (Hong, Dawson, Dawson, 2004; McCluskey, 

Harbison, Sava, Johnson, Harbison, 2012; McCluskey, Sava, Harbison, Muro-Cacho, Johnson, 
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Figure 3. PARP Structure. A PARP structure containing the three main domains and two zinc 
fingers (Bouchard, Rouleau, Poirier, 2003; Hong, Dawson, Dawson, 2004).   
 

Ping, Harbsion, 2011; Bouchard, Rouleau, Poirier, 2003). The cell death that results is triggered 

from the activation of one of the two common cellular death pathways: apoptosis or necrosis 

(McCluskey, Harbison, Sava, Johnson, Harbison, 2012; Wang, Dawson, Dawson. 2009; 

Bouchard, Rouleau, Poirier, 2003; Ha & Snyder, 1999; Virág, Robaszkiewicz, Rodriguez-

Vargas, Oliver, 2013). (See Figure 4.) Biochemical changes resulting from apoptosis include a 

cell’s lack of ability to repair damage to DNA. Apoptosis results from the activation and 

cleavage of effector caspases: caspase 3, caspase 6, and caspase 7. Other cases where an 

apoptotic pathway may be activated include mitochondrial dysfunction and other proteases or 

profactors that may trigger activation of effector and effector caspase pathways. Activation  

results in the shrinking of cells where the cell eventually commits what is known as “cell 

suicide” or programed cell death. The alternative common cellular death pathway of necrosis  
 
includes an inflammatory response. Resulting from an over-activation of PARP due to decreases 
 
in cellular function, cells activating this pathway produce a breakdown of the cell membrane due 

to swelling. Eventually cells burst resulting in widespread cell and tissue damage (Hong, 

Dawson, Dawson, 2004; Wang, Dawson, Dawson. 2009; Bouchard, Rouleau, Poirier, 2003; 

McCluskey, Harbison, Sava, Johnson, Harbison, 2012; Cover et al., 2005b; Dӧnmez, Uysal, 
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Poyrazoglu, Er Ӧztas, Türker, Kaldirim, Korkmaz, 2015; Ha & Snyder, 1999; Virág, 

Robaszkiewicz, Rodriguez-Vargas, Oliver, 2013). 

 

 

Figure 4. Cell Death Model. Model displaying the outcomes of cell death resulting from 
activation of PARP (Bouchard, Rouleau, Poirier, 2003; Hong, Dawson, Dawson, 2004; Wang, 
Dawson, Dawson, 2009). 
 

Cocaine and PARP 

Cocaine has been shown to be toxic to the liver and produce hepatotoxic events resulting 
from an acute or chronic dose (McCluskey, Harbison, Sava, Johnson, Harbison, 2012; Scobie et 

al., 2014; Price, Muro-Cacho, Harbison, 1999; Evans, 1983). While the mechanism for cocaine-

induced hepatotoxicity is not fully understood, the production of the norcocaine metabolite from 

cocaine metabolism via cytochrome-P450 enzymes has been shown to elicit cytototoxic events 

causing damage to liver cells and tissues (McCluskey, Harbison, Sava, Johnson, Harbison, 2012; 

Roth, Harbison, James, Tobin, Roberts, 1992; Mehanny, Abdel-Rahman, 1991; Thompson, 

Shuster, Shaw, 1979; Stewart, Inaba, Lucassen, Kalow, 1979). What was once thought to 
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potentially be an apoptotic cell death pathway caused by cocaine has now been shown to be a 

necrotic cell death pathway. Toxic doses of cocaine has been shown to deplete ATP and NAD+ 

stores, along with causing mitochondrial dysfunction and damage to DNA (McCluskey, 

Harbison, Sava, Johnson, Harbison, 2012; Thompson, Shuster, Shaw, 1979; Roth, Harbison, 

James, Tobin, Roberts, 1992; Evans, 1983; Devi & Chan, 1997). These cellular events lead to the 

activation of PARP in order to attempt to replenish depleted ATP and NAD+ stores. However, in 

the presence of cocaine-induced hepatotoxicity, an overproduction of the PARP enzyme causes 

widespread damage to liver cells and tissues as cellular and mitochondrial function is impaired. 

Eventually, hepatocyte membranes are damaged by reactive oxygen species and the cell is no  

longer able to repair itself. As cellular function diminishes, cells swell and burst causing 

widespread necrotic cell death (McCluskey, Harbison, Sava, Johnson, Harbison, 2012; Kovacic, 

2005; Aoki, Ohmori, Takimoto, Ota, Yoshida, 1997; Roth, Harbison, James, Tobin, Roberts, 

1992; Devi & Chan, 1997; Evans, 1983). 

 

Acetaminophen and PARP  

            Hepatotoxic events resulting from an acetaminophen overdose may result in a number 
 
impacts to hepatocyte function. The resultant hepatotoxic events may be caused by either an 

acute or chronic dose. Impacts to hepatocytes include depletion of ATP and glutathione (GSH), 

mitochondrial dysfunction, and inflammation. These events cause tearing of DNA strands that 

may become permanently damaged and lead to cell death (Dӧnmez, Uysal, Poyrazoglu, Er 

Ӧztas, Türker, Kaldirim, Korkmaz, 2015; Cover, C., et al., 2005a; McGill, Sharpe, Williams, 

Taha, Curry, Jaeschke, 2012; McGill et al., 2013; James, Mayeux, Hinson, 2003; Gujral, Knight, 

farhood, Bajt, Jaeschke, 2002; McGill, Williams, Xie, Ramachandran, Jaeschke, 2012; Mitchell, 
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Jollow, Potter, Davis, Gillette, Brodie, 1973).  The damage to DNA may lead to activation of 

poly(ADP-ribose) polymerases (PARP) in the nucleus of a cell. However, too much production 

of PARP leads to bursting of cells and necrotic cell death (Ha, H., Snyder, S., 1999; Cover, C., et 

al., 2005a; Gujral, Knight, farhood, Bajt, Jaeschke, 2002; McGill, Sharpe, Williams, Taha, 

Curry, Jaeschke, 2012; Williams, Koerner, Lampe, Farhood, Jaeschke, 2011; McGill et al., 2013; 

Mitchell, Jollow, Potter, Davis, Gillette, Brodie, 1973).  

 
 

Poly(ADP-ribose) Polymerase (PARP) Inhibition 

  

 Due to the widespread damage resulting from the activation of PARP, inhibiting the  

activity of PARP via treatments with an inhibitor has been studied for a number of drugs and 

chemicals (McCluskey, Sava, Harbison, Muro-Cacho, Johnson, Ping, Harbison, 2011; 

McCluskey, Harbison, Sava, Johnson, Harbison, 2012; Virág, Szabó, 2002; Virág, 2005; 

Dӧnmez, Uysal, Poyrazoglu, Er Ӧztas, Türker, Kaldirim, Korkmaz, 2015; Southan, Szabó, 2003; 

Hall, Muro-Cacho, Abritis, Johnson,  Harbison, 2009-2010; Banasik, Stedeford, Strosznajder, 

Takehashi, Tanaka, Ueda, 2011; Shi et al., 2011). While treatments have varied tremendously 

due to their impacts on the metabolism of the drug being studied, the efficacy of treatments has 

provided a number of potential options to decrease cell and tissue damage throughout the body 

(McCluskey, Sava, Harbison, Muro-Cacho, Johnson, Ping, Harbison, 2011; McCluskey, 

Harbison, Sava, Johnson, Harbison, 2012 Virág, Szabó, 2002; Virág, 2005; Southan, Szabó, 

2003; de la Lastra, Villegas, Sánchez-Fidalgo, 2007; Shi et al., 2011). PARP inhibitors have been 

used to understand the role of inhibition on PARP activity, as well their role in cellular functions 

and signaling. Because PARP inhibition target DNA and mitochondria, the ability for an 

inhibitor to decrease the depletion of ATP and NAD+ while inhibiting necrosis or apoptosis can 
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prove to be a key component in its ability to prevent drug-induced hepatotoxicity (Virág, Szabó, 

2002; Virág, 2005; Cover et al., 2005a; Dӧnmez, Uysal, Poyrazoglu, Er Ӧztas, Türker, Kaldirim, 

Korkmaz, 2015; Southan, Szabó, 2003; de la Lastra, Villegas, Sánchez-Fidalgo, 2007; Hall, 

Muro-Cacho, Abritis, Johnson, Harbison, 2009-2010).  

 The use of water-soluble PARP inhibitors can be used to determine the role on PARP 

activity without potential interferences from chemical reactions and impacts on results gathered 

from biochemical assays (McCluskey, Sava, Harbison, Muro-Cacho, Johnson, Ping, Harbison, 

2011; Thiermann, 2002; Cover et al., 2005a; Dӧnmez, Uysal, Poyrazoglu, Er Ӧztas, Türker, 

Kaldirim, Korkmaz, 2015). A common water soluble PARP inhibitor, 1,5-dihydroxyisoquinoline 

(DIQ), has been found to decrease PARP activity with little to no effects on the metabolism of 

drug or chemicals used for inducing hepatotoxicity (McCluskey, Harbison, Sava, Johnson, 

Harbison, 2012). Along with their ability to cause less interference with enzymatic reactions, 

water soluble PARP inhibitors such as DIQ have been effective in preventing hepatotoxic events 

(McCluskey, Sava, Harbison, Muro-Cacho, Johnson, Ping, Harbison, 2011; McCluskey, 

Harbison, Sava, Johnson, Harbison, 2012; Cover et al., 2005a; Thiermann, 2002). 

  
 

Objective 

 

 

             To determine if cocaine and acetaminophen-induced toxicity leads to the activation  

of the repair protein, poly(ADP-ribose) polymerase (PARP) in the liver. If activation of this 

PARP protein occurs, can this PARP activity be inhibited by the PARP inhibitor 1,5-

dihydroxyisoquinoline (DIQ). 
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Research Questions  

 

Research Question 1: 

Are dosing and temporal factors correlated with increases in serum liver enzyme levels? 

Research Questions 2: 

Is there a correlation between temporal factors and PARP activity? 

Research Question 3:  

Is an increase in PARP activity indicative of hepatic biochemical changes relevant to the 

mechanism of drug-induced hepatotoxicity? 

Research Question 4: 

Does DIQ provide protection against PARP activity for drug-induced toxicity with cocaine and 

acetaminophen? 

 

Hypotheses 

Research Question 1:  

Dosing and temporal factors are correlated with increases in serum liver enzyme levels. 

Research Question 2:  

There is a correlation between temporal factors and PARP activity. 

Research Question 3:  

An increase in PARP activity contributes to the mechanism of drug-induced hepatotoxicity. 

Research Question 4: 
 
DIQ decreases PARP activity and drug-induced toxicity caused by cocaine and acetaminophen. 
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CHAPTER THREE: 

METHODS 

 

Animals  

 Male, CD-1 mice (30 ± 5 g), age 8 weeks, were obtained from Charles River 

Laboratories (Wilmington, Massachusetts). Animals were housed under controlled conditions 

and exposed to a 12-hour light/dark cycle with free access to food and water. Animals were 

housed 5 animals per cage and were allowed 7 days to acclimate prior to testing. All of the 

experiments were conducted in accordance to the University of South Florida Institutional 

Animal Care and Use Committee (IACUC) guidelines. 

 

Treatments 

 Drugs were administered through intraperitoneal (IP) injection at a volume of 50μL/10g 

of body weight. All solutions were prepared fresh prior to treatment. Cocaine hydrochloride 

(cocaine) was obtained from Sigma-Aldrich (St. Louis, MO) and 4-Acetamidophenol, 98%, 

(APAP) was obtained from Acros Organics (Morris Plains, NJ). The PARP inhibitor, 1,5-

dihydroxyisoquinoline (DIQ), was obtained from AdipoGen (San Diego, CA). The PARP 

inhibitor was administered through intraperitoneal (IP) injection at a volume of 50μL/10g of 

body weight (b/w). Cocaine, APAP, and DIQ were dissolved in warm 0.9% saline prior to 

administration. Groups for comparison were treated with either (I) saline vehicle, (II) cocaine, 
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(III) APAP, (IV) cocaine and DIQ, or (V) APAP and DIQ. The combined administration of 

toxicant and inhibitor did not exceed the maximum allowed volume of 200μL/10g b/w. The 

injection sites for toxicants and PARP inhibitor were administered distant to one another to avoid 

chemical interaction. 

 

Experimental Design 

 Animals were randomized into treatment groups as shown in Tables 1 through 8. Animals 

were randomly assigned to control groups where the number of animals in each treatment group 

was approximately double that of the number in the control groups. The number of animals in 

each treatment group ranged from 4 to 8 depending on the size of the experiment. 

 

Serum Biochemistry 

 

 Alanine aminotransferase (ALT), a biomarker of hepatotoxicity, was quantified in 

triplicate using a colorimetric endpoint kit from TECO Diagnostics (Anaheim, CA) from the 

modified method by Reitman et al. (Reitman & Frankel, 1957). Whole blood was collected by 

cardiac puncture in microcentrifuge tubes and allowed to clot at room temperature for a 

minimum of 20 minutes. Serum was obtained from each individual sample by centrifugation at 6 

rcf for 20 minutes. Serum samples were transferred to a new microcentrifuge tube and stored at -

20°C until time of assay. All serum samples were analyzed within a 24 hour period. Serum 

samples were diluted with 0.9% saline for assay calculations. Standard curve was optimized for 

high concentrations using sodium pyruvate from Sigma-Aldrich (St. Louis, MO). Regents (ALT 

(SGPT) substrate, ALT (SGPT) color reagent, and ALT (SGPT) calibrator) were transferred to 

microplate with diluted samples at timed intervals, immediately followed by heat incubation at 
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37°C for specified time increments. Assay sample processing was modified in order to analyze 

samples using a 96-well assay plate. Assay plates were read by a spectrophotometer at 505 nm. 

Results are presented as total international units of ALT per serum sample. Modifications were 

made to calibration calculations using sodium pyruvate due to excessive levels of ALT measured 

among samples. 

 

Dose-Response Analysis 

To determine the optimal dose for cocaine and APAP-induced hepatotoxicity, a dose-

response study was conducted. Animals were sacrificed 24 hours after treatment. Animals treated 

with cocaine were administered (1) Vehicle only, (2) 20 mg/kg dose, (3) 30 mg/kg dose, (4) 40 

mg/kg dose, (5) 50 mg/kg dose, or (6) 60 mg/kg dose. (See Table 1.) Animals treated with APAP 

were administered (1) Vehicle only, (2) 75 mg/kg dose, (3) 150 mg/kg dose, (4) 200 mg/kg dose, 

or (5) 300 mg/kg dose. (See Table 2.) Blood samples were collected by cardiac puncture to 

determine alanine transaminase (ALT).  

 
Table 1. Dose-Response for Cocaine. 
 

Treatment Group Chemicals Dose 

Group I Vehicle Only 0 mg/kg 
Group II Cocaine 20 mg/kg 
Group II Cocaine 30 mg/kg 
Group II Cocaine 40 mg/kg 
Group II Cocaine 50 mg/kg 
Group II Cocaine 60 mg/kg 
 
 

Temporal Analysis 

 

To determine the optimal time for cocaine and APAP-induced heptatotoxicity, a time study was  
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conducted. Animals were administered a (II) 50 mg/kg dose of cocaine or a (III) 300 mg/kg dose 

of APAP. Animals were sacrificed at a 2 hour, 6 hour, 18 hour, or 24 hour time point following 

treatment (See Tables 3 & 4.) Blood samples were collected by cardiac puncture to determine 

alanine transaminase (ALT). 

 

Table 2. Dose-Response for APAP. 
 
Treatment Group Chemicals Dose 

Group I Vehicle Only 0 mg/kg 
Group III APAP 75 mg/kg 
Group III APAP 150 mg/kg 
Group III APAP 200 mg/kg 
Group III APAP 300 mg/kg 
 

Table 3. Temporal Analysis for Cocaine. 

Treatment Group Chemicals Dose Time  

Group I Vehicle Only 0 mg/kg 2 hr, 6 hr, 18 hr, 24 
hr 

Group II Cocaine 50 mg/kg 2 hr 
Group II Cocaine 50 mg/kg 6 hr 
Group II Cocaine 50 mg/kg 18 hr 
Group II Cocaine 50 mg/kg 24 hr 
 

 

Table 4. Temporal Analysis for APAP. 
 
Treatment Group Chemicals Dose Time  

Group I Vehicle Only 0 mg/kg 2 hr, 6 hr, 18 hr, 24 
hr 

Group III APAP 300 mg/kg 2 hr 
Group III APAP 300 mg/kg 6 hr 
Group III APAP 300 mg/kg 18 hr 
Group III APAP 300 mg/kg 24 hr 
 
 

Poly(ADP-ribose) Polymerase (PARP) Activity 

 

An indirect colorimetric method to measure poly(ADP-ribose) polymerase (PARP) was  
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used to measure the activity of PARP in liver tissue following cocaine or APAP treatments. (See 

Tables 5 & 6.) Livers were isolated and perfused with normal saline, and stored at -80◦C until 

used for assay. PARP activity was measured using an 80 ± 10 mg sample of liver tissue 

homogenized with a mortar and pestle, sonicated at a medium setting, and centrifuged at 0.6 rcf 

for 5 minutes in a 1X lysis buffer (Triton X-100, D-l-1,4-dithiothreitol (DTT), double distilled 

water (ddH2O), sodium chloride (NaCl),  and 10X PARP Buffer (Tris base, magnesium chloride 

(MgCl2•6H2O), bovine serum albumin (BSA), 1.78M hydrochloric acid (HCl), and ddH2O) to 

remove excess proteins.  A transfer of supernatant to a new tube was centrifuged at 4.0 rcf for 10 

minutes. After 10 minutes the supernatant is discarded and the nuclear fraction remains. The1X 

PARP buffer was added to the nuclear fraction for each sample, with the addition of glycerol, 

and was stored at -80◦C in order to prevent degradation of proteins. Protein concentration 

quantification was determined utilizing the biuret method for a bicinchoninic acid (BCA) assay 

prior to PARP activity measurements for sample loading. Samples were diluted with saline and 

working reagents A and B were combined and added to change protein samples from green to 

purple during a 30 minute incubation at 37°C. (See Figure 5.) Concentrations of protein were 

calculated for 20μg of protein/well and diluted with 1X PARP buffer on Day 3 of PARP activity 

measurement. PARP activity measurement consisted of a three day process using an enzyme-

linked immunosorbent assay (ELISA) microplate, (Day 1) plating of histones, (Day 2) blocking 

step, (Day 3) PARP activity detection. Day 1 consisted of preparing a histone coating solution 

consisting of sodium carbonate (Na2CO3), sodium bicarbonate (NaHCO3), stock histone solution 

(Fraction V Histones), and ddH2O, and coating each well of a 96-well plate with histone coating 

solution. Day 2 consisted of a blocking step that began with a washing step with phosphate-

buffered saline (PBS) of the 96-well ELISA microplate with 1X PBS and 1X PBS + 0.05% 
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Tween-20. Washing steps were followed by the addition of a 3% BSA blocking solution to each 

well. After Day 1 and Day 2 procedure was conducted, microplate was stored at -20◦C. Day 3 

consisted of measurement of PARP activity where sample dilutions were calculated from protein 

quantification conducted prior to Day 3 assay. PARP-High Specific Activity Enzyme (HSA) was 

used to create calibration curve. Assay processing begins with a 1X PBS and 1X PBS + 0.05% 

Tween-20 washing step, followed by the addition of samples diluted with 1X PARP buffer to the 

96-well ELISA microplate. Reagents used on Day 3 consists of 1X PARP substrate (6-biotin-17-

nicotinamide-adenine-dinucleotide (NADB), sheared herring sperm DNA, 10X PARP buffer, and 

ddH2O) (1 hour incubation at room temperature), 1:60,000 streptavidin-conjugated horseradish 

peroxidase (streptavidin-HRP)) (1 hour incubation at room temperature), 3,3’,5,5’-

tetramethylbenzidine (TMB) (20 minute incubation at room temperature), and 0.2M HCl (10 

minute incubation at room temperature). After the addition of each reagent to the 96-well ELISA 

microplate a washing step is conducted with 1X PBS and 1X PBS + 0.05% Tween-20. The 

microplate was read at 450 nm using an ELISA microplate reader at the end of the Day 3 

procedure. (See Figure 6.) A standard curve using a fitted regression model was used to quantify 

samples. PARP activity was reported as IU per 20 μg of protein per well. 

 

Table 5. PARP Activity for Cocaine.  
 
Treatment Group Chemicals Dose Time  

Group I Vehicle Only 0 mg/kg 2 hr, 6 hr, 18 hr, 24 
hr 

Group II Cocaine 50 mg/kg 2 hr 
Group II Cocaine 50 mg/kg 6 hr 
Group II Cocaine 50 mg/kg 18 hr 
Group II Cocaine 50 mg/kg 24 hr 
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Table 6. PARP Activity for APAP.  

Treatment Group Chemicals Dose Time  

Group I Vehicle Only 0 mg/kg 2 hr, 6 hr, 18 hr, 24 hr 
Group III APAP 300 mg/kg 2 hr 
Group III APAP 300 mg/kg 6 hr 
Group III APAP 300 mg/kg 18 hr 
Group III APAP 300 mg/kg 24 hr 
 
 
 

 

 

Figure 5. Protein Quantification. A endpoint colorimetric bicinchoninic acid (BCA) assay used 
to quantify the concentration of protein used for PARP activity analysis. 
 
 
 

 

 

Figure 6. PARP Activity. A resultant PARP analysis assay with a 96-well microplate for an 
endpoint colorimetric assay measured by spectrophotometry. 
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Poly(ADP-ribose) Polymerase (PARP) Inhibition 

 
An inhibitory efficacy study was conducted to determine if a PARP inhibitor, DIQ 

(AdipoGen), reduced ALT and PARP activity. A 10 mg/kg dose of DIQ was dissolved in warm 

saline and administered via IP injection at the time points of 0 hour, concurrent with treatment 

dose, or 1 hour after treatment dose. PARP inhibition analyses were conducted at time points 

where PARP activity was highest to measure any reductions in PARP activity that occurred 

following cocaine and APAP treatment. (See Tables 7 & 8.) Cocaine PARP inhibition analyses 

were conducted at the 6 hour time point. APAP PARP inhibition analyses were conducted at the 

18 hour time point. The effect of DIQ on PARP inhibition was also analyzed along with 

glutathione (GSH), DNA fragmentation, and Western Blot. 

 

Table 7. PARP Inhibition: Activity, ALT, GSH, DNA Fragmentation, and Western Blot for 
Cocaine + DIQ at the 6 hour Time Point. 
 
Treatment Group Chemicals Dose Time  

Group I Vehicle Only 0 mg/kg 0 hr, 1 hr 
Group II Cocaine Only 50 mg/kg  0 hr, 1 hr 
Group IV Cocaine + DIQ 50 mg/kg + 10 mg/kg 0 hr 
Group IV Cocaine + DIQ 50 mg/kg + 10 mg/kg 1 hr 
 

Table 8. PARP Inhibition: Activity, ALT, GSH, DNA Fragmentation, and Western Blot for 
APAP + DIQ at the 18 hour Time Point. 
 
Treatment Group Chemicals Dose Time  

Group I Vehicle Only 0 mg/kg 0 hr, 1 hr 
Group III APAP Only 300 mg/kg  0 hr, 1 hr 
Group V APAP + DIQ 300 mg/kg + 10 

mg/kg 
0 hr 

Group V APAP + DIQ 300 mg/kg + 10 
mg/kg 

1 hr 
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Glutathione  

 An analysis was conducted to determine the role of glutathione (GSH) on PARP activity. 

A modified colorimetric kinetic glutathione assay measured the ratio of the reduced form of 

glutathione to its oxidized form by Griffith and Rahman et al (Griffith, 1980; Rahman, Kode, & 

Biswas, 2006). Livers were isolated and perfused with normal saline, and stored at -80◦C until 

needed for assay. Prior to assay a 30 ± 10 mg sample of liver tissue was homogenized with a 

mortar and pestle on ice and centrifuged at 4.0 rcf for 10 minutes in a GSH extraction reagent 

(metaphosphoric acid (MPA), 5-sulfosalicylic acid, and double distilled water (ddH2O). The 

homogenized tissue for each sample was stored at -80◦C in order to prevent degradation. Aliquot 

samples were transferred into two tubes for measurement of total glutathione and oxidized 

glutathione. Samples were analyzed utilizing a 96-well microplate. Standards and samples were 

diluted with KPE buffer (0.1 M KH2PO4, 97.6 mM K2HPO4, Na2EDTA, and ddH2O) prior to 

assay. Reagents for assay include 0.066% w/v Ellman’s Reagent (DTNB), 0.066% w/v β-

NADPH, and glutathione reductase (10 Units/mL), working substrate reagent (1:1 

DTNB:glutathione reductase), 2-vinylpyridine working reagent, and triethanolamine working 

reagent. Total glutathione procedures were conducted first, followed by oxidized glutathione. 

The microplate was read five times at 412 nm using a microplate reader at the end of each 

procedure. Oxidized glutathione is calculated from total glutathione to compute a reduced to 

oxidized glutathione ratio. 

 

DNA Fragmentation 

 A DNA fragmentation analysis using a modified Herrmann et al. method was conducted 

to determine if fragmented DNA results from hepatotoxic events with cocaine and APAP 
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overdose (Hermann, Lorenz, Voll, Grünke, Woith, and Kalden, 1994). DNA fragmentation 

analyses were conducted with cocaine, APAP, cocaine + DIQ, and APAP + DIQ samples with 

1.6% agarose gel. (See Figure 7.) The two day assay procedure consisted of tissue preparation 

(Day 1) and DNA analysis (Day 2). Livers were isolated and perfused with normal saline, and 

stored at -80◦C until needed for assay. Day 1 consisted of tissue preparation of a 20 ± 10 mg 

sample of liver tissue saturated in a LB9.0 buffer (1M Tris base, 500mM 

ethylenediaminetetraacetic acid (EDTA), 4M sodium chloride (NaCl), 10% sodium dodecyl 

sulfate (SDS), 1M sodium hydroxide (NaOH), 10 mg/mL proteinase K, autoclaved ddH2O) and 

placed on a heating block/dry bath to dissolve for at least 12 hours. Day 2 of assay included 

addition of the reagents RNAse, 4M sodium acetate, and 70% ethanol. Samples were place in a 

centrifuge for 10 minutes at 14 rcf. Samples were incubated for 1 hour at -20°C. After 1 hour, a 

small volume of each sample was transferred to a new microcentrifuge tube and  XCog (10 mM 

Tris base, 12 mM EDTA, 50% v/v Glycerol, 0.03% w/v Xylene Cyanol, 0.15% w/v Orange G, 

and HCl) was added to each sample before samples were added to wells. A resuspension buffer 

(3 mM Tris base, 0.2 mM EDTA, and HCl) was used as a loading control. A 1.6% agarose gel 

with ethidium bromide was used to run DNA samples in a 1X TAE buffer solution (Sigma- 

Aldrich) at 75V for 2 hours. After 2 hours, gel was placed on UV light and photos were taken. 

 

 

Western Blot 

 A western blot analysis was conducted to identify PARP protein sequences in liver 

tissues for a 50 mg/kg dose of cocaine at the 6 hour time point and a 300 mg/kg dose of APAP at 

the 18 hour time point. Livers were isolated and perfused with normal saline, and stored at -80◦C 



35 
 

 

 

Figure 7. DNA Fragmentation Electrophoresis Gel. An electrophoresis gel used to analyze 
treatment samples for fragmented DNA. 
 

until needed for assay. Prior to assay a 10 ± 10 mg sample of liver tissue was homogenized with 

a mortar and pestle on ice and centrifuged at 14.0 rcf for 5 minutes in a 

radioimmunoprecipitation assay (RIPA) buffer (1M Tris base, 500mM 

ethylenediaminetetraacetic acid (EDTA),  4M sodium chloride (NaCl), 10% sodium dodecyl 

sulfate (SDS), Triton X-100, 1.78M HCl, deoxycholic acid, and autoclaved ddH2O). After 

centrifugation, sample lysate was stored at -80°C until time of assay to prevent degradation of 

proteins. Protein concentration quantification was determined utilizing the biuret method for a 

BCA assay prior to western blot analysis. Samples were diluted with saline and working reagents 

A and B were combined and added to change protein samples from green to purple during a 30 

minute incubation at 37°C. Concentrations of protein were calculated for 10-15U of protein/well 

and diluted with saline and Laemmli sample buffer prior to assay. Diluted samples + Laemmli 

sample buffer were loaded on a 4-10.5% Tris-glycine polyacrylamide gel for electrophoresis at 

12V. Proteins were transferred to nitrocellulose membranes, which were incubated in 3% BSA 

blocking buffer (30 minute incubation at room temperature), 1:10,000 primary antibodies (one 

hour incubation at room temperature), 1:50,000 secondary antibodies (1 hour incubation at room 
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temperature), and streptavidin-HRP (25 minutes at room temperature). After the addition of each 

reagent, membranes were washed with Tris-buffered saline + 0.1% Tween-20 (TBS-T).  

Resultant nitrocellulose and gels were quantified using a Thermo Scientific PageRuler Unstained 

Protein Ladder (10 to 200 kDa). (See Figure 8.) The molecular weight for PARP measures at 116 

kDa (Boulares et al. 1999; Hong, Dawson, Dawson, 2004).  

 

 

 
 

Figure 8. Western Blot Protein Ladder. A protein ladder display used to measure the molecular 
weight for PARP at 116 kDa. 
 

 

Gross Pathology 

 

 Livers were isolated and partially perfused with normal saline following necropsy of each 

animal. Visual findings were recorded to correlate with ALT and PARP activity. Photographs 

were taken at the 24 hour time point for a 50 mg/kg dose of cocaine, a 300 mg/kg dose of APAP, 

and controls.  

 

Spectrophotometry 

 Assays requiring colorimetric endpoint measurements (ALT, PARP, PARP Inhibition, 

and GSH) were quantified using the μQuant Spectrophotometer (BioTek, Winooski, VT) with 
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the KC-Junior Analytical software (BioTek). (See Figure 9.) Each colorimetric endpoint was 

assessed at the wavelength stated within the assay section above. 

 

 

 

Figure 9. μQuant Spectrophotometer. The spectrophotometer used to read microplates and 
quantify biochemical medium as the amount of absorbed light that is proportionate to the 
concentration of the measured solution. 
 

Statistical Analysis 

 Statistical analysis was performed utilizing Microsoft Excel and the software program, 

SAS version 9.3. A one-way analysis of variance (ANOVA) test was performed to test 

comparisons among groups. Comparisons between treatment groups were conducted with 

independent sample t-tests. Statistical differences were considered significant with p ≤ 0.05. 

Adjustments for multiple comparisons were conducted utilizing a Tukey test. 
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CHAPTER FOUR: 

RESULTS 

 

Dose-Response  

A dose-response analysis was conducted for cocaine and acetaminophen (APAP) to 

determine the optimal dose that produces hepatotoxic events. A single dose of cocaine or APAP 

was administered via intraperotineal (IP) injections (n=6) and evaluated animals 24 hours after 

treatment. A measurement of the alanine aminotransferase (ALT) was chosen to analyze the 

severity of liver damage that resulted from drug toxicity. The determined optimal dose for both 

toxicants was used to analyze poly(ADP-ribose) polymerase (PARP) activity.  

Serum ALT (IU/L) measurements were conducted for a 20 mg/kg, 30 mg/kg, 40 mg/kg, 

and 50 mg/kg, and 60 mg/kg dosages of cocaine at 24 hours following treatment. (See Figure 

10.) Elevated serum ALT levels were measured for each dose. ALT increased incrementally for 

the 20, 30, 40, and 50 mg/kg dosages. ALT for the control group ranged from 30-40 IU/L. The 

highest ALT level of 1749 IU/L was observed at the 50 mg/kg dose group. A decreased level of 

1362 IU/L was observed with the 60 mg/kg dose. The 60 mg/kg dose resulted in severe 

hemorrhaging that caused a decrease in the amount of drug metabolized by the liver. This 

resulted in a decrease in ALT levels observed from the 50 to 60 mg/kg dose groups. Each dose 

group was statistically significantly increased at a (p ˂ 0.05) significance level when compared 

to controls.  
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Figure 10. Cocaine Dose-Response Analysis. A dose response analysis was conducted for a 20 
mg/kg, 30 mg/kg, 40 mg/kg, 50 mg/kg dose, and 60 mg/kg dose of cocaine at 24 hours following 
treatment (n=6). Mean serum ALT levels with standard deviations are denoted with error bars. 
An (*) denotes statistical significance at (p ˂ 0.05) when compared to controls.  
 

Serum ALT measurements were also conducted for 75 mg/kg, 150 mg/kg, 200 mg/kg, 

and 300 mg/kg doses of acetaminophen (APAP) at 24 hours following treatment (See Figure 11.)  

ALT for the control group ranged from 30-40 IU/L. Each dose group resulted in elevations in 

ALT. Serum ALT levels for the 75 mg/kg  (45 IU/L) and 150 mg/kg (316 IU/L) dose groups did 

not result in significant elevations of ALT. A 200 mg/kg dose of APAP resulted in a significant 

increase in serum ALT of 2252 IU/L. Higher serum measurements in ALT were observed with 

the 200 mg/kg and 300 mg/kg dose groups.  The highest observed serum ALT was measured 

with the 300 mg/kg dose group at 4311 IU/L. Each dose group was statistically significant at a (p 

˂ 0.05) significance level when compared to controls. 
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Figure 11. APAP Dose-Response Analysis. A dose-response analysis comparing serum ALT 
was conducted for a 75 mg/kg, 150 mg/kg, 200 mg/kg, and 300 mg/kg dose of acetaminophen 
(APAP) at 24 hours following treatment(n=6). Standard deviations are denoted with error bars. 
An (*) denotes statistical significance at (p ˂ 0.05) when compared to controls. 
 

Temporal Analysis 

 
 A temporal analysis was conducted for cocaine and acetaminophen (APAP) to determine 

the optimal time to measure PARP activity. A single dose of cocaine or APAP was administered 

via intraperotineal (IP) injection (n=6) where serum and livers were harvested at 2 hour, 6 hour, 

18 hour, and 24 hour time points. A measurement of serum ALT (IU/L) was chosen to analyze 

the severity of liver damage that resulted from drug-induced toxicity at each time point. The 

optimal time point for both toxicants was based on the observed serum ALT levels following 

drug treatment to analyze poly(ADP-ribose) polymerase (PARP) activity. 

 A 50 mg/kg dose of cocaine was determined to be the optimal dose that produced 

hepatotoxicity but did not cause death. This 50/kg dose of cocaine was used to conduct a 
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temporal analysis of serum ALT levels over a 24 hour period. ALT levels were conducted at a 2 

hour, 6 hour, 18 hour, and 24 hour time point following treatment. (See Figure 12.) Serum ALT 

for the control group ranged from 30-40 IU/L. Serum ALT levels were measured at each time 

point. An initial increase in ALT at the 2 hour following treatment time point  was measured at 

450 IU/L. A significant increase in serum ALT was observed from the 2 to 6 hour time point 

following treatment with a measurement of 1847 IU/L observed at the 6 hour time point. Serum 

ALT increased incrementally during the 6, 18, and 24 hour time points following treatment. The 

highest observed serum ALT level of 3231 IU/L was observed at the 24 hour time point. Serum 

ALT measurements at the 6 hour, 18 hour, and 24 hour time points were statistically significant 

at a (p ˂ 0.05) significance level when compared to controls. 

 Liver samples from a saline control and a 50 mg/kg dose of cocaine were collected at a 

24 hour time point following treatment. (See Figure 13.) When compared to the control liver 

sample, the cocaine liver appears smaller in size, including abnormal shapes of the lobes of the 

liver sample. Some hemorrhaging and necrosis appears on the surface of the liver. Motteling on 

the surface of the liver was also observed at the 24 hour time point when compared to controls. 

 Serum ALT measurements were conducted at a 2 hour, 6 hour, 18 hour, and 24 hour time  

point following APAP treatments. (See Figure 14.) Serum ALT for the control group ranged  

from 30-40 IU/L. Elevated ALT levels were measured for each time point. A significant increase 

in ALT was observed at the 2 hour time point with a measurement of 1507 IU/L. ALT increased 

incrementally at each time point. The highest observed serum ALT of 4994 IU/L was observed at 

the 24 hour time point. ALT measurements at the 2 hour, 6 hour, 18 hour, and 24 hour time 

points were statistically significant at a (p ˂ 0.05) significance level when compared to controls. 
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Figure 12. Cocaine Temporal Analysis. A temporal analysis for a 50 mg/kg dose of cocaine was 
conducted at a 2 hour, 6 hour, 18 hour, and 24 hour time points following treatment (n=6). 
Standard deviations are denoted with error bars. An (*) denotes statistical significance at (p ˂ 
0.05) when compared to controls. 
 

Liver samples from a saline control and a 300 mg/kg dose of APAP treated animal were 

collected at 24 hours following treatment. (See Figure 15.) When compared to the control liver 

sample, lobes of the liver appear smaller in size when compared to controls. Significant 

hemorrhaging and necrosis appears throughout the liver. Slight discoloration is observed on the 

outer edges of the APAP liver sample. 

A comparison of serum ALT for a 50 mg/kg dose of cocaine and a 300 mg/kg dose of 

APAP at a 2 hour, 6 hour, 18 hour, and 24 hour time points following treatment. (See Figure 16.) 
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Figure 13. Gross Pathology: Control + 50 mg/kg Cocaine. Liver samples were harvested for a 
saline control (left) and a 50 mg/kg dose of cocaine (right) at 24 hours following treatment.  
 

ALT increased at a much faster rate following APAP treatment compared to cocaine. A 

significant increase in serum ALT following cocaine treatment was observed at the 2 and 6 hour 

time point. A significant increase was observed at the 18 hour and 24 hour time points for both 

toxicants following treatments. 

The line graph comparison for cocaine and APAP-induced serum ALT changes at a 2 

hour, 6 hour, 18 hour, and 24 hour time points following treatments shows a steady increase in 

ALT for APAP from the 2 hour to 24 hour time point when compared to controls. (See Figure 

17.) The graph also shows a steady increase from the 2 hour to 18 hour time point for cocaine. A 

much smaller increase was observed for cocaine from the 18 hour to 24 hour time points when 

compared to controls. 
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Figure 14. APAP Temporal Analysis. A temporal analysis for a 300 mg/kg dose of APAP was 
conducted at a 2 hour,  6 hour, 18 hour, and 24 hour time points following treatment (n=6). 
Standard deviations are denoted with error bars. An (*) denotes statistical significance at (p ˂ 
0.05) when compared to controls. 
 
 
Poly(ADP-Ribose) Polymerase (PARP) Activity 

 
  

A 50 mg/kg dose of cocaine and a 300 mg/kg dose of acetaminophen (APAP) were 

determined to be the optimal dose to analyze PARP activity. This optimal dose for cocaine and 

APAP was used to conduct a PARP activity analysis over a 24 hour period. PARP activity 

(IU/20 μg of protein) was measured at a 2 hour, 6 hour, 18 hour, and 24 hour time point 

following cocaine and APAP treatments. An ALT and PARP activity analysis was conducted for 

both cocaine and APAP-induced heptotoxicity. 
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Figure 15. Gross Pathology: Liver samples were harvested for a saline control (left) and a 300 
mg/kg APAP dose (right) at 24 hours following treatment. 
 
 

PARP activity was measured at a 2 hour, 6 hour, 18 hour, and 24 hour time point 

following treatment with a 50 mg/kg dose of cocaine. (See Figure 18.) Activation of PARP 

activity was measured at each time point. Elevations in PARP activity were measured for each 

time point. PARP activity for the control measured at 0.2 IU/20 μg of protein. Cocaine increased 

PARP activity at the 2 hour time point following treatment. The highest activity was 1.43 IU/20 

μg of protein was measured at the 6 hour time point. An increase in activity was also measured 

from the 2 to 6 hour time point. A decrease in PARP activity was also observed from the 6 to 18 

hour time point but remained significantly increased above controls. The lowest amount of 

PARP activity was measured at the 24 hour time point at 1.04 IU/20 μg of protein. PARP 

activity measurements at the 2 hour, 6 hour, 18 hour, and 24 hour time points were statistically 

significantly elevated at a (p ˂ 0.05) significance level when compared to controls. 
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Figure 16. Cocaine and APAP Temporal Analysis: Bar Chart. A bar chart comparison of the 
serum ALT temporal differences between a 50 mg/kg dose of cocaine and a 300 mg/kg dose of 
APAP at a 2 hour, 6 hour, 18 hour, and 24 hour time points following treatments (n=6). Standard 
deviations are denoted with error bars. An (*) denotes statistical significance at (p ˂ 0.05) when 
compared to controls. 
 
 

PARP activity increased in liver tissue at a 2 hour, 6 hour, 18 hour, and 24 hour time 

point following a 50 mg/kg dose of cocaine. (See Figure 19) A seven fold increase for PARP 

activity shows that the largest increase in PARP activity was observed at the 6 hour time point 

when compared to controls. Lower increases were observed at the 18 and 24 hour time points. 

The smallest increase was observed at the 24 hour time point with a 5.60 increase measured. 

PARP activity was measured at 2 hour, 6 hour, 18 hour, and 24 hour time point for a 300 

mg/kg dose of APAP. (See Figure 20.) An activation of PARP activity was measured at each 

time point. Elevations in PARP activity were measured for each time point. PARP activity for 
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Figure 17. Cocaine and Temporal Analysis: Line Graph. A line graph comparison of the 
temporal analysis for serum ALT following a 50 mg/kg dose of cocaine and a 300 mg/kg dose of 
APAP was conducted at a 2 hour, 6 hour, 18 hour, and 24 hour time points following treatment 
(n=6).  
 
 
the control was 0.23 IU/20 μg of protein. APAP increased PARP activity at the 2 hour and 6 

hour time points. The highest activity of 1.55 IU/20 μg of protein was measured at the 18 hour 

time point. A significant increase in activity was also measured at the 6 and 18 hour time points. 

A decrease in PARP activity was observed at the 18 and 24 hour time points but remained above 

the controls. The lowest amount of PARP activity was measured at the 24 hour time point at 1.23 

IU/20 μg of protein. Increases in PARP activity at the 2 hour, 6 hour, 18 hour, and 24 hour time 

points were statistically significant at a (p ˂ 0.05) significance level when compared to controls. 
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Figure 18. PARP Activity for Cocaine. A PARP analysis of liver tissue following 50 mg/kg dose 
of cocaine at 2 hour, 6 hour, 18 hour, and 24 hour time points following an initial dose (n=6). 
Standard deviations are denoted with error bars. An (*) denotes statistical significance at (p ˂ 
0.05) when compared to controls. 
 
 

Increases in PARP activity were measured at the 2 hour, 6 hour, 18 hour, and 24 hour 

time points following a 300 mg/kg dose of APAP. (See Figure 21.) The largest increase was 

observed at the 18 hour time point with a measurement of 7.75. A lower level was observed at 

the 24 hour time point. The smallest increase was observed at the 2 hour time point with a 

measurement of a 2.50 fold increase. 

 A comparison of liver PARP activity following a 50 mg/kg dose of cocaine and a 300 

mg/kg dose of APAP at a 2 hour, 6 hour, 18 hour, and 24 hour time points following treatments. 

(See Figure 22.) A delayed elevation of PARP activity was observed following APAP treatment. 

Cocaine-induced PARP activity showed significant increases at the earlier time points. PARP 
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Figure 19. PARP Activity Fold Change for Cocaine. Increases in PARP activity following a 50 
mg/kg dose of cocaine at 2 hour, 6 hour, 18 hour, and 24 hour time points following treatment 
(n=6).  
  

activity levels are higher at the 2 and 6 hour time points for cocaine when compared to APAP. 

APAP-induced PARP activity levels are higher at the 18 and 24 hour time points. Cocaine and 

APAP showed a decrease in PARP activity from the 18 to the 24 hour time point. 

The line graph comparison of increase in PARP activity following a 50 mg/kg dose of 

cocaine and a 300 mg/kg dose of APAP at 2 hour, 6 hour, 18 hour, and 24 hour time points 

following treatment shows a significant difference in PARP activity over the observed 24 hour 

period. (See Figure 23.) PARP activity was higher at early time points within the 24 hour 

observation period for cocaine treatments. PARP activity had a slower rate of increase for APAP 

treatments during the 24 hour observation period. APAP-induced PARP activity was higher 

following cocaine treatments during the 24 hour observation period. 
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Figure 20. PARP Activity for APAP. A PARP activity for liver samples for a 300 mg/kg dose of 
APAP at a 2 hour, 6 hour, 18 hour, and 24 hour time points following treatment (n=6). Standard 
deviations are denoted with error bars. An (*) denotes statistical significance at (p ˂ 0.05) when 
compared to controls. 
 

Poly(ADP-Ribose) Polymerase (PARP) Inhibition 

 

A 50 mg/kg dose of cocaine at a 6 hour time point and a 300 mg/kg dose of 

acetaminophen (APAP) at an 18 hour time point were determined to be the optimal doses and 

time to analyze PARP inhibition. These optimal doses for cocaine and APAP were used to 

evaluate PARP activity over a 24 hour period. These time points were chosen because the 

highest levels of PARP activity were observed for the optimal dose at the observed time points 

following treatment. A 10 mg/kg dose of 1,5-dihydroxyisoquinoline (DIQ), a PARP inhibitior, 

was used to evaluate the effect of PARP inhibition on cocaine and APAP-induced hepatoxicity. 

An ALT and PARP activity analysis was conducted for both toxicants. 
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Figure 21. PARP Activity Fold Change for APAP. Increases in PARP activity following a 300 
mg/kg dose of APAP at 2 hour, 6 hour, 18 hour, and 24 hour time points following an initial dose 
(n=6). 
 

A PARP inhibition ALT analysis for a 50 mg/kg dose of cocaine at the 6 hour time point 

shows an elevation in serum ALT of 1677 IU/L following treatment. (See Figure 24.) A DIQ 

injection administered concurrently with cocaine significantly reduced serum ALT to 201 IU/L. 

DIQ administration at the 1 hour post cocaine treatment time point was not as effective in 

reducing elevations in serum ALT.  

 DIQ treatment reduced cocaine-induced increased PARP activity by two fold. (See 

Figure 25.) DIQ treatment administered one hour following cocaine was not as effective as 

concurrent treatment. A larger reduction in PARP activity resulted from concurrent treatment of 

DIQ when compared to the cocaine only dose group.  
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Figure 22. Cocaine and APAP PARP Analysis: Bar Chart. A bar chart comparison of liver 
PARP activity following a 50 mg/kg dose of cocaine and a 300 mg/kg dose of APAP was 
conducted at 2 hour, 6 hour, 18 hour, and 24 hour time points following treatments (n=6). 
Standard deviations are denoted with error bars. An (*) denotes statistical significance at (p ˂ 
0.05) when compared to controls. 
 

A 300 mg/kg dose of APAP significantly increased ALT 18 hours following treatment 

with an observed measurement of 4003 IU/L. (See Figure 26). Concurrent treatment with DIQ 

decreased that elevation to 856 IU/L. An APAP-induced increase in ALT was observed when 

DIQ was administered 1 hour following APAP treatment. The elevation of ALT was also 

reduced by DIQ treatment. The effect was not as robust when compared to concurrent DIQ 

administration with cocaine treatment. 

DIQ treatment decreased APAP-induced elevation of PARP activity by more than 4 fold 

at 18 hours following treatment. (See Figure 27.) DIQ decreased PARP activity with concurrent 



53 
 

treatment and treatment 1 hour following APAP dose. DIQ treatment 1 hour following APAP 

was less effective than concurrent treatment.  

 

 
 
 
Figure 23. Cocaine and PARP Analysis: Line Graph. A line graph comparison of PARP activity 
for a 50 mg/kg dose of cocaine and a 300 mg/kg dose of APAP was conducted at 2 hour, 6 hour, 
18 hour, and 24 hour time points following treatment (n=6).  
 
 

A comparison of the effect of PARP inhibition on a 50 mg/kg dose of cocaine at a 6 hour 

time point and a 300 mg/kg dose of APAP at an 18 hour time point was measured at the stated 

time points. A DIQ dose was administered concurrently or 1 hour following drug treatment. (See   

Figure 28.) Higher serum ALT was measured for APAP treatments when compared to cocaine. 

The measured serum ALT for the both toxicants produced a significant decrease to elevations 

with DIQ administration at the 0 hour post treatment time point. A larger decrease in serum ALT 

was observed for APAP treatments with a concurrent DIQ administration.  Increases for cocaine 
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and APAP-induced samples with DIQ administration were observed at the 1 hour post initial 

dose time point when compared to controls. 

 

 

Figure 24. PARP Inhibition for Cocaine: ALT. A serum ALT PARP inhibition analysis 
following a 50 mg/kg dose of cocaine at the 6 hour time point with the administration of a PARP 
inhibitor, DIQ (n=6). Standard deviations are denoted with error bars. An (*) denotes statistical 
significance at (p ˂ 0.05) when compared to controls. 
 

 
A line graph comparison of serum ALT levels for PARP inhibition following a 50 mg/kg 

dose of cocaine at a 6 hour time point and a 300 mg/kg dose of APAP at an 18 hour time point 

was measured at the stated time points. Serum ALT levels were measured at a concurrent DIQ 

dose and 1 hour post initial dose time points. (See Figure 29.) The line graph shows a very 

similar pattern for both toxicants following DIQ-induced PARP inhibition when compared to 

controls. Steeper declines and increases were observed for APAP samples. A large decrease in 

serum ALT was observed with the concurrent administration of DIQ. A slight elevation was 
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observed when DIQ was administered at the 1 hour time point for both toxicants when compared 

to controls. A measurement for toxicant + DIQ at the 1 hour time point increases to serum ALT 

levels observed for the toxicant only treatment group for both drugs. 

 
 

 

Figure 25. PARP Activity Fold Change for PARP Inhibition for Cocaine. Decreases in PARP 
activity following a 50 mg/kg dose of cocaine at a 6 hour time point of an initial dose with a 
concurrent 10 mg/kg DIQ treatment and a DIQ treatment 1 hour following drug treatment. (n=6). 
 

 
A PARP activity analysis for PARP inhibition was conducted with a 50 mg/kg dose of 

cocaine at the 6 hour time point. (See Figure 30.) The cocaine treatment caused an activation of 

PARP and a large increase in PARP activity of 1.36 IU/20 μg of protein when compared to 

controls. A decrease in PARP activity was observed for a concurrent dose of DIQ at 0.74 IU/20 

μg protein. DIQ administered 1 hour following cocaine treatment was not as effective with a 

measurement of 1.09 IU/20 μg protein. 
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Figure 26. PARP Inhibition for APAP: ALT. A serum ALT PARP inhibition analysis following 
a 300 mg/kg dose of APAP at the 18 hour time point with the administration of a PARP 
inhibitor, DIQ (n=6). Standard deviations are denoted with error bars. An (*) denotes statistical 
significance at (p ˂ 0.05) when compared to controls. 

 

 PARP activity was measured following a 300 mg/kg dose of APAP at the 18 hour time 

point following a concurrent DIQ treatment and a 1 hour following APAP treatment. (See 

Figure 31.) The APAP treatment shows an activation of PARP and a large increase in PARP 

activity at 1.52 IU/20 μg protein when compared to controls. A concurrent DIQ treatment 

decreased PARP activity at 0.51 IU/20 μg protein. A slight increase in PARP activity was 

observed when DIQ was administered 1 hour following APAP treatment time point at 1.10 IU/20 

μg protein. 

 A combined analysis of PARP activity with PARP inhibition shows a relatively similar  
 
trend for both cocaine and APAP. (See Figure 32.) PARP activity following APAP treatment 
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resulted in a lower decrease in PARP activity with a concurrent dose of DIQ when compared to 

cocaine. A larger increase was measured at 1 hour following APAP treatment time point than 

cocaine. Both drugs resulted in a decrease in PARP activity with concurrent administration of 

DIQ following treatments. Measurements observed at the 1 hour time point show that DIQ was 

less effective in decreasing PARP activity for cocaine and APAP-induced hepatotoxicity. 

 
 

 
 
 
Figure 27. PARP Activity Fold Change for PARP Inhibition for APAP. DIQ treatment resulted 
in a fold decrease in PARP activity following a 300 mg/kg dose of APAP at the 18 hour time 
point for a concurrent treatment and a 1 hour following drug treatment time points (n=6). 

 

A line graph comparison of PARP activity with PARP inhibition shows a relatively  

similar trend for both cocaine and APAP. (See Figure 33.) PARP activity following APAP 

treatment resulted in a lower decrease in PARP activity with a concurrent dose of DIQ when 

compared to cocaine. The line graph shows a similar pattern for cocaine and APAP treatments 
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with DIQ when compared to controls. A significant decrease was observed with a concurrent 

dose of DIQ for both toxicants. A slight elevation was observed 1 hour following treatment for 

cocaine and acetaminophen treatments when compared to controls.  

 

 
 
 
Figure 28. Cocaine and APAP PARP Inhibition: ALT Bar Chart. A bar chart comparison of a 50 
mg/kg dose of cocaine at the 6 hour time point with the administration of DIQ concurrently or 1 
hour following cocaine treatment (n=6) and a 300 mg/kg dose of cocaine at the 18 hour time 
point with the administration of DIQ concurrently or 1 hour following APAP treatment (n=6). 
Standard deviations are denoted with error bars. An (*) denotes statistical significance at (p ˂ 
0.05) when compared to controls. 
 
 

Glutathione 

 

 A glutathione (GSH) analysis was conducted for a 50 mg/kg dose of cocaine at the 6 hour 

time point and a 300 mg/kg dose of acetaminophen (APAP) at the 18 hour time point to  
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understand the role of GSH in PARP activity following the administration of a PARP inhibitor. 

An analysis was conducted following cocaine and APAP treatments with a 10 mg/kg dose of 

DIQ as a concurrent dose or 1 hour after following treatment. Glutathione was measured as a 

ratio of GSH (reduced glutathione) to GSSG (oxidized glutathione) for each toxicant at the above 

time points.  

 
 

 
 
 
Figure 29. Cocaine and APAP PARP Inhibition: ALT Line Graph. A line graph comparison of a 
50 mg/kg dose of cocaine at the 6 hour time point with the concurrent administration of DIQ or 1 
hour following cocaine treatment (n=6) and a 300 mg/kg dose of APAP at the 18 hour time point 
with the concurrent administration of DIQ or 1 hour time point following APAP treatment (n=6).  
 

The glutathione ratio for 50 mg/kg dose of cocaine at the 6 hour time point decreased by more  
 
than half when compared to controls to 9.10. (See Figure 34.) The ratio decreased for a  
 
concurrent dose of DIQ. A concurrent administration of DIQ with cocaine treatment reduced the 
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ratio to 1.96 when compared to animals treated with only cocaine. An increase in the oxidized to  
 
reduced ratio of glutathione was observed for DIQ 1 hour following treatment at 4.17. 
 
 
 

 
 
 
Figure 30. PARP Inhibition for Cocaine: PARP Activity. PARP activity for a 50 mg/kg dose of 
cocaine at the 6 hour time point with the concurrent administration of DIQ or administration of 
DIQ 1 hour following cocaine treatment (n=6). Standard deviations are denoted with error bars. 
An (*) denotes statistical significance at (p ˂ 0.05) when compared to controls. 
 

A glutathione analysis was conducted with a GSH to GSSG ratio for a 300mg/kg dose of 

APAP at an 18 hour time point to determine the role of glutathione in PARP activity. (See Figure 

35.) An increase in the ratio was measured following APAP treatment at 3.29 and at 5.40 for a 

concurrent dose of DIQ when compared to 1 hour following treatment. A decrease in the  
 
GSH/GSSG ratio was observed with a DIQ dose administered 1 hour following treatment. 
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Figure 31. PARP Inhibition for APAP: PARP Activity. PARP activity for a 300 mg/kg dose of 
APAP at the 18 hour time point with the concurrent administration of DIQ or administration of 
DIQ 1 hour following cocaine treatment (n=6). Standard deviations are denoted with error bars. 
An (*) denotes statistical significance at (p ˂ 0.05) when compared to controls. 
 
 

A comparison of the ratio of GSH to GSSG for a 50 mg/kg dose of cocaine and a 300 

mg/kg dose of APAP with a concurrent administration of DIQ and 1 hour following treatment 

for both drugs reveals significant differences in the measured ratio. (See Figure 36.) A higher 

ratio was measured for control liver samples following cocaine treatments than for APAP 

treatments. The GSH to GSSG ratio decreased in liver samples following cocaine treatment. A 

concurrent dose of DIQ showed a decrease for the cocaine samples while an increase in the ratio 

was observed for the APAP samples. A similar inverse relationship was observed for DIQ 
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Figure 32. PARP Inhibition for Cocaine and APAP: PARP Activity Bar Chart. A bar chart 
comparison of PARP activity for a 50 mg/kg dose of cocaine at the 6 hour time point and a 300 
mg/kg dose of APAP at the 18 hour time point with the concurrent administration of DIQ or 
administration of DIQ 1 hour following cocaine treatment Standard deviations are denoted with 
error bars. An (*) denotes statistical significance at (p ˂ 0.05) when compared to controls. 
 
 
administration 1 hour following cocaine and APAP treatments. The inverse relationship observed 

for cocaine and APAP  may express an independent relationship with glutathione and PARP 

activity in the presence of a PARP inhibitor. 

The line graph for a glutathione ratio comparison following cocaine and APAP 

treatments shows an inverse relationship for both drugs with a concurrent administration of DIQ 

or 1 hour following treatment. (See Figure 37.) There is no clear linear pattern for the glutathione 

ratio following cocaine or APAP treatments with administration of DIQ. The glutathione ratio 

following cocaine and APAP treatments show individual linear trends that may suggest an 

independent relationship for PARP activity with glutathione for cocaine and APAP. 
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Figure 33. PARP Inhibition for Cocaine and APAP: PARP Activity Line Graph. A line graph 
comparison of PARP activity for a 50 mg/kg dose of cocaine at the 6 hour time point and a 300 
mg/kg dose of APAP at the 18 hour time point with the concurrent administration of DIQ or 
administration of DIQ 1 hour following cocaine treatment Standard deviations are denoted with 
error bars. An (*) denotes statistical significance at (p ˂ 0.05) when compared to controls. 
 

DNA Fragmentation 

 

 A 1.6% agarose gel was used to conduct a DNA fragmentation analysis for a 50 mg/kg 

cocaine dose at a 6 hour time point and a 300 mg/kg dose of APAP at an 18 hour time point. A 

10 mg/kg dose of the PARP Inhibitor of DIQ was administered concurrently with cocaine and 

APAP treatments or at 1 hour following cocaine and APAP treatments. DNA was analyzed from 

collected liver samples for any fragments, tears, or shredding of DNA in each of the treatment 

samples. Herring sperm DNA was used as a positive control to show the presence of DNA with 

no fragments. An expression of fragmented DNA may suggest evidence of apoptosis as the 

resultant outcome of drug toxicity as opposed to necrosis. 
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Figure 34. Glutathione Analysis for Cocaine. A 50 mg/kg dose of cocaine at a 6 hour time point 
measured a ratio of reduced glutathione to its oxidized form of GSSG. Measurements were 
conducted for concurrent administration of DIQ and 1 hour following treatment (n=6). Standard 
deviations are denoted with error bars. An (*) denotes statistical significance at (p ˂ 0.05) when 
compared to controls. 
   

A DNA fragmentation analyses was conducted to determine the impact of a cocaine 

treatment with a PARP inhibitor on DNA. (See Figure 38.) The resultant DNA fragmentation  

results show no cocaine treatment samples contained fragmented DNA. The results suggest that 

apoptosis is most likely not an outcome for cocaine-induced hepatotoxicity for a 50 mg/kg dose. 

Results also suggest that DIQ administered concurrently or 1 hour following cocaine treatment 

did not result in DNA fragmentation.  

Fragmented DNA was analyzed for a 300 mg/kg APAP dose with a 10 mg/kg DIQ PARP 

inhibitor dose. (See Figure 39.) The resultant DNA fragmentation results shows no samples for 

APAP only treatments, APAP administered concurrently with DIQ, or 1 hour following 
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treatment resulted in fragmented DNA. The results suggest that apoptosis is likely not an 

outcome for APAP-induced hepatotoxicity. This also suggests that DIQ administered 

concurrently or 1 hour following APAP treatment did not result in DNA fragmentation. 

 

 

 
Figure 35. Glutathione Analysis for APAP. A 300 mg/kg dose of APAP at an 18 hour time point 
measured a ratio of glutathione to its oxidized form of GSSG. Measurements were conducted for 
concurrent administration of DIQ and 1 hour following treatment (n=6). Standard deviations are 
denoted with error bars. An (*) denotes statistical significance at (p ˂ 0.05) when compared to 
controls. 
 
 

A comparison of analysis for DNA fragmentation was conducted to express any resultant 

fragmentation for a 50 mg/kg dose of cocaine or a 300 mg/kg dose of APAP with a 10 mg/kg  

dose of DIQ at a 0 hour or 1 hour time point. (See Figure 40.) DNA fragmentation results show 
 
no fragmented DNA was observed following cocaine and APAP treatment with a concurrent 

DIQ dose or a DIQ dose 1 hour following treatment. These results also conclude that apoptosis is 
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not likely to be the ending result for cell damage resulting from PARP activation following 

cocaine and APAP treatments. 

 

Western Blot 

 
 A western blot analysis was conducted for a 50 mg/kg cocaine or a 300 mg/kg dose of 

APAP with a 10 mg/kg concurrent dose of DIQ and 1 hour following treatment to analyze the 

expression of PARP in cocaine and APAP-induced liver samples. A protein ladder was used to 

measure the molecular weight of PARP at 116 kDa. PARP- High Specific Activity Enzyme 

(PARP-HSA) was used as a positive control to show the presence of PARP. 

 

 
 
 
Figure 36. Glutathione for Cocaine and APAP: Bar Chart. A comparison of the glutathione ratio 
of GSH to GSSG for a 50 mg/kg dose of cocaine and a 300 mg/kg dose of APAP with the PARP 
inhibitor DIQ administered concurrently or 1 hour following drug treatment (n=6). Standard 
deviations are denoted with error bars. An (*) denotes statistical significance at (p ˂ 0.05) when 
compared to controls. 



67 
 

 
 
 
Figure 37. Glutathione for Cocaine and APAP: Line Graph. A comparison of the glutathione 
ratio of GSH to GSSG following a 50 mg/kg dose of cocaine and a 300 mg/kg dose of APAP 
with a concurrent dose of PARP inhibitor DIQ or a DIQ dose 1 hour following treatments (n=6). 
Standard deviations are denoted with error bars. An (*) denotes statistical significance at (p ˂ 
0.05) when compared to controls. 
 
 

A western blot analysis was conducted for a 50 mg/kg cocaine with a concurrent 10 

mg/kg dose of DIQ and 1 hour following treatment. (See Figure 41.) Lane 1 was a positive  

control of PARP-HSA with a molecular weight measuring at 116 kDa. Lane 2 was a protein  
 
ladder used to determine the molecular weight of PARP protein. Lane 3 (cocaine + DIQ 
 
administered 1 hour following treatment), lane 4 (cocaine + DIQ administered 1 hour following  
 
treatment), and lane 8 (cocaine treatment only) show light signals of PARP protein at 116 kDa, 
 
likely due to a weak transfer to nitrocellulose. Lane 5 (cocaine + a concurrent DIQ dose) and 

lane 7 (cocaine treatment only) shows strong signals of PARP protein at 116 kDa. Lane 6 

(cocaine + a concurrent DIQ dose) does not show any strong PARP protein signals, likely due to 
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a bad transfer. This is likely due to low signaling or weak transfer. The cocaine saline control in 

lane 9 and the negative control (RIPA buffer)  in lane 10 do not express any PARP signaling at 

116 kDa. Lanes expressing PARP protein signaling express activation and presence of PARP 

activity observed from cocaine and APAP treatment with DIQ liver samples. 

 

 

 
Figure 38. DNA Fragmentation: Cocaine. A 50 mg/kg dose of cocaine + 10 mg/kg DIQ dose 
concurrently or 1 hour following treatment in a 1.6% agarose gel. (1) (-) control (H2O), (2) (+) 
control (Herring Sperm DNA), (3) loading control (resuspension buffer), (4) saline control, (5)-
(6) cocaine dose only, (7)-(8) cocaine + concurrent DIQ dose, (9)-(10) cocaine + DIQ dose 1 
hour following treatment. 
 
 

A western blot analysis was conducted for a 300 mg/kg APAP and a 10 mg/kg concurrent 

DIQ dose and a DIQ dose 1 hour after treatment. (See Figure 42.) Lane 1was a positive control 

of PARP-HSA expressing a low signal with a molecular weight measuring at 116 kDa. This is  
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likely due to low concentration of protein transferred during the assay. Lane 2 shows a protein 

ladder used for measuring molecular weight of PARP protein at 116 kDa. Lanes 3 & 4 (APAP + 

DIQ 1 hour following treatment ), lanes 5 & 6 (APAP + a concurrent DIQ dose, and lanes 7 & 8 

(APAP treatment only) express strong signals of PARP protein at 116 kDa. Lane 9 (APAP saline 

control) and lane 10 (negative control) show no signals of PARP protein at 116 kDa. Lanes 

expressing PARP protein signaling express activation and presence of PARP activity expressed 

with liver samples used for analysis. 

 
 

 
 
 
Figure 39. DNA Fragmentation: APAP. A 300 mg/kg dose of APAP + 10 mg/kg DIQ dose 
concurrently or 1 hour following treatment in a 1.6% agarose gel. (1) (-) control (H2O), (2) (+) 
control (Herring Sperm DNA), (3) loading control (resuspension buffer), (4) saline control, (5)-
(6) APAP dose only, (7)-(8) APAP + concurrent DIQ dose, (9)-(10) APAP + DIQ dose 1 hour 
following treatment . 
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Figure 40. DNA Fragmentation: Cocaine & APAP. A 50 mg/kg dose of cocaine  and a 300 
mg/kg dose of APAP + 10 mg/kg concurrent DIQ dose and 1 hour following drug treatment in 
1.6% agarose gel. (1) APAP + DIQ 1 hour after treatment, (2) cocaine + DIQ 1 hour after 
treatment, (3) APAP + a concurrent DIQ dose, (4) cocaine + a concurrent DIQ dose, (5) APAP 
treatment only, (6) cocaine treatment only, (7) APAP saline control, (8) cocaine saline control, 
(9) (+) control (Herring Sperm DNA), (10) (-) control (H2O).  
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Figure 41. Western Blot: Cocaine. A 50 mg/kg dose of cocaine at the 6 hour time point  + a 
concurrent 10 mg/kg DIQ dose and a DIQ dose1 hour following treatment in 4-10.5% Tris-
glycine polyacrylamide gel.  (1) (+) control, PARP-HSA (2) protein ladder, (3)-(4) cocaine + 
DIQ 1 hour following treatment (5)-(6) cocaine + a concurrent DIQ dose, (7)-(8) cocaine 
treatment only, (9) cocaine saline control, (10) (-) control, RIPA buffer.  
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Figure 42. Western Blot: APAP. A 300 mg/kg dose of APAP at the 18 hour  time point + a 
concurrent 10 mg/kg DIQ dose and a DIQ dose1 hour following treatment in 4-10.5% Tris-
glycine polyacrylamide gel.  (1) (+) control, PARP-HSA (2) protein ladder, (3)-(4) APAP + DIQ 
1 hour following treatment, (5)-(6) APAP + a concurrent DIQ dose, (7)-(8) APAP treatment 
only, (9) APAP saline control, (10) (-) control, RIPA buffer. 
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CHAPTER FIVE:  

 

DISCUSSION 

 

 
 This experiment has shown that cocaine and acetaminophen-induced hepatotoxicity can 

activate poly(ADP-ribose) polymerase (PARP) activity in the liver. In the presence of an 

overdose, cocaine and acetaminophen (APAP) can produce elevations in PARP activity. The use 

of a PARP inhibitor following cocaine and APAP treatment, 1,5-dihydroxyisoquinoline (DIQ), 

was shown to reduce PARP activity in the liver. Cocaine and APAP-induced hepatotoxicity 

produced from cocaine and APAP treatments resulted in widespread liver damage producing 

significant elevations in serum ALT and increases in PARP activity in liver tissues.  

 A dose-response analysis conducted following a cocaine treatment produced an optimal 

dose of 50 mg/kg to evaluate cocaine-induced hepatotoxicity. While doses lower than 50 mg/kg 

produced significantly elevated serum alanine aminotransferase (ALT) levels, a 60 mg/kg dose 

caused severe hemorrhaging and resulted in a decrease in measured serum ALT that was likely 

due to the inability of the metabolism of cocaine following treatment. The measured ALT for the 

60 mg/kg dose is inconsistent with Roth et al. and McCluskey et al. that chose a 60 mg/kg dose 

to analyze for experiments (McCluskey, Harbison, Sava, Johnson, Harbison, 2012). No studies 

have conducted a temporal analysis to determine the optimal time when PARP activity is highest 

for cocaine-induced hepatotoxicity. A comparative temporal analysis was conducted for PARP 

activity over a 24 hour period at a 2 hour, 6 hour, 18 hour, and 24 hour time point were serum 
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ALT was analyzed for any indications of cocaine-induced hepatotoxicity. While serum ALT 

levels increased incrementally at each time point, the highest ALT levels were observed at the 24 

hour time point. Results from PARP analysis following cocaine treatment showed the most 

activity was observed at the 6 hours following treatment. It is expected for biochemical results to 

be delayed due to the time it takes to for the drug to be metabolized by the liver. Results suggest 

that time may play a role in the difference between cocaine metabolism in the liver and the time 

for activation of PARP activity following treatment. These differences may exist with an acute 

and chronic cocaine dose. Scobie et al. measured elevations in PARP activity following a 

repeated cocaine dose from a single endpoint sacrifice time point in the brain. This may suggest 

that while elevations to PARP activity may be observed at a number of time points, the time 

point for peak PARP activity may exist during a specific period of time following cocaine 

treatments (Scobie, et al., 2014). 

 A dose-response analysis conducted for acetaminophen showed small elevations in serum 

ALT observed at the lower dose groups of 75 mg/kg and 150 mg/kg. Significant elevations in 

serum ALT were measured with a 200 mg/kg and 300 mg/kg dose group. A 300 mg/kg dose was 

chosen as the optimal dose to conduct a PARP analysis due to significant elevations in serum 

ALT observed and low mortality. A temporal analysis conducted by Cover at al. and Gujral et al. 

produced similar results for a 300 mg/kg dose of APAP of an increase in serum ALT over time 

an observed time period (Gujral, Knight, Farhood, Bajt, Jaeschke, 2002; Cover et al., 2005a). An 

analysis of a 12 hour observation time by Cover at al. and a gap between hours 6 and 24 for 

Gujral et al. suggest that while increases to serum ALT were observed as time progressed, some 

differences in serum ALT may have been observed at time points not observed during the study. 

These gaps in measurements may potentially impact analyzing PARP activity, as there may be 
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elevations in activity outside of the measured parameters that could suggest other periods of peak 

PARP activity. Results gathered from this study suggest that PARP activity and serum ALT may 

be independent of one another in reference to time. While increases in PARP activity following 

treatment may be observed, the importance of determining peak PARP activity may provide 

answers to more accurate administration of PARP inhibitors in the future. 

 A PARP inhibitor efficacy analysis was conducted with DIQ for acetaminophen and 

cocaine. Although DIQ is not a potent PARP inhibitor, a reduction in PARP activity was 

observed with a concurrent DIQ administration and a DIQ administration one hour following 

drug treatment. A serum ALT analysis for both toxicants testing the efficacy of the DIQ in 

reducing liver damage shows that a significant reduction in serum ALT was observed with a 

concurrent administration of DIQ, followed by a small increase observed one hour following 

treatment. Significant increases observed at the DIQ one hour following treatment time point 

shows that time does play a role in the reduction of potential liver damage that may result from 

drug-induced toxicity. While a delay in biochemical samples is expected with drug metabolism 

of the liver, serum ALT results alone may not prove effectiveness of a PARP inhibitor. A similar 

trend was observed with PARP activity following an acetaminophen and cocaine treatment to 

suggest that DIQ is effective at reducing PARP activity.  

McCluskey et al. analyzed the effectiveness of DIQ with a 60 mg/kg cocaine dose on the 

liver. Reductions in serum ALT and PARP activity were measured in liver tissue samples. Study 

results also measured an increase in serum ALT at the one hour post initial dose time point. 

These results suggest that the effectiveness of a PARP inhibitor is impacted by time of 

administration. DIQ is most effective at inhibiting PARP activity and decreasing serum ALT 

levels when administered concurrently with a treatment dose (McCluskey, Harbison, Sava, 
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Johnson, Harbison, 2012). The significant differences in serum ALT for the measured PARP 

inhibitor time points suggest that while there is a window of time to reduce drug-induced liver 

injury, that window of time is very small. Results from this study for a 50 mg/kg cocaine dose 

produced similar results measuring a large increase in serum ALT from the DIQ administration 

concurrently with cocaine treatment to the one hour following treatment time point. No temporal 

analysis was conducted for PARP activity to determine the role of time on peak PARP activity.    

A similar analysis was conducted for a 300 mg/kg dose of APAP with a concurrent 3-

aminobenzamide (3-AB) dose by Cover et al. and Dӧnmez et al. (Dӧnmez, Uysal, Poyrazoglu, 

Er Ӧztas, Türker, Kaldirim, Korkmaz, 2015; Cover et al., 2005a). Both studies revealed a 

decrease in serum ALT levels. An increase in survival, glutathione, and PARP activity were 

observed for animals treated with 3-AB when compared to APAP treatment only animals. 

Results from this study produced similar results for PARP inhibition with DIQ administration for 

a 300 mg/kg APAP dose.  

The results gathered from this study for the role of cocaine and acetaminophen on PARP 

inhibition with administration of DIQ on PARP activity supports studies that show DIQ protects 

against hepatotoxic events resulting from drug-induced toxicity (Cover et al., 2005a; McCluskey, 

Harbison, Sava, Johnson, Harbison, 2012; Dӧnmez, Uysal, Poyrazoglu, Er Ӧztas, Türker, 

Kaldirim, Korkmaz, 2015; McCluskey, Sava, Harbison, Muro-Cacho, Johnson, Ping, Harbison, 

2011; Shi et al., 2012; Banasik, Stedeford, Strosznajder, Takehashi, Tanaka, Ueda, 2011). 

Cocaine and acetaminophen treatment produced an activation of PARP where elevated levels of 

PARP activity were also observed. Elevated levels of PARP activity and serum ALT suggest that 

significant damage to the liver resulted from toxic doses of acetaminophen and cocaine. 

Measurements for acetaminophen produced significantly higher measurements for ALT and 
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PARP activity when compared to cocaine. These were not expected results for acetaminophen 

when compared to cocaine, however, this may also be due to the route of administration for the 

toxicant dose. Administration of the 300 mg/kg dose of acetaminophen via the intraperitoneal 

route may have elicited a more extreme response due to metabolism of the drug and its ability to 

enter into the blood stream where toxic metabolites are produced in the liver.  

Western blot analysis produced similar evidence with measurements of PARP weighing 

at 116 kDa was expressed for cocaine and acetaminophen. This supports elevations in serum 

ALT and PARP activity measured that would suggest activations of PARP activity following 

cocaine and acetaminophen treatment. Results also revealed the presence of non-specific binding 

among various proteins at various molecular weights. An analysis determining the cleavage of 

PARP may have provided a more in-depth understanding of the role of PARP and how it may 

differ following cocaine and acetaminophen treatment. A caspase-3 detection analysis would 

confirm whether apoptosis or necrosis was the hepatotoxic cell death pathway resulting in the 

observed cytotoxic damage. 

 A temporal analysis was conducted to determine the optimal time when PARP activity 

was highest following cocaine and acetaminophen treatments. A serum ALT analysis over a 24 

hour period revealed that while elevations were observed for both drugs during the observed time 

period, significant differences were observed at each measured time point. The temporal analysis 

for PARP activity was also found to produce significantly different measurements at each 

observed time point. Cover et al. analyzed the role of time on a 300 mg/kg dose of 

acetaminophen over a 12 hour period (Cover et al., 2005a).  Results to ALT and PARP activity 

revealed similar results in showing increases to activity observed over time. PARP activity 

measured for acetaminophen produced a delayed reaction over the observed period which were 
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also observed through results gathered from this study. Results for PARP activity following 

acetaminophen and cocaine treatments differed over the observed 24 hour time period. While 

acetaminophen produced delayed elevations in PARP activity occurring at the later time points 

within the observed 24 hour period. However, PARP activity results for cocaine produced 

varying results in activity at the earlier time points with decreases in activity observed at the later 

time points within the 24 hour observation period.  

A temporal analysis was also conducted for the concurrent administration of the DIQ 

PARP inhibitor and 1 hour following treatment for both toxicants. A similar analysis was 

conducted by McCluskey et al. for a 60 mg/kg dose with cocaine with DIQ at a 0 hour, 1 hour, 

and 2 hours following treatment time point (McCluskey, Harbison, Sava, Johnson, Harbison, 

2012). Similar results were measured for DIQ and its ability to provide protection against 

cocaine-induced hepatotoxicity events following cocaine treatment. The largest reduction in 

serum ALT was observed with a concurrent administration of DIQ, followed by large increases 

observed at the 1 hour following treatment time point. Similar results were gathered for cocaine 

and acetaminophen with a similar analysis for DIQ observed with a concurrent dose and a dose 1 

hour following treatment time points. Reductions in PARP activity were observed with a 

concurrent DIQ administration and 1 hour following treatment for cocaine and acetaminophen. 

While a larger reduction in PARP activity was observed with concurrent administration of DIQ, 

results for both toxicants measured a much larger reduction for a concurrent administration of 

DIQ with acetaminophen treatment than cocaine treatment.  

A glutathione analysis produced the ratio of reduced to oxidized glutathione. Ratios were 

gathered for a 50 mg/kg dose of cocaine at a 6 hour time point or a 300 mg/kg dose of 

acetaminophen at an 18 hour time point with a concurrent administration of DIQ and 1 hour 
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following treatment.  Results from this analysis revealed a potential independent relationship for 

glutathione following cocaine and acetaminophen with DIQ administration. Alternatively, 

glutathione ratio measurements for the control group for acetaminophen were significantly lower 

than the toxicant dose group. Glutathione ratios measured for cocaine treated animals express 

that there may be a decrease in glutathione caused by cocaine and that DIQ may provide a 

delayed protection against hepatotoxic events at the 1 hour following treatment time point. 

Results gathered following acetaminophen treatment may suggest that the reactive metabolite, 

acetaminophen-glutathione conjugate (APAP-SG), produced during oxidation may produce toxic 

effects that may inhibit glutathione reductase activity. The inhibition of glutathione reductase by 

APAP-SG may suggest a competitive enzyme mechanism that could contribute to false 

elevations observed with acetaminophen treatments (Nýdlova, Vrbová, Česla, Jankovičová, 

Ventura, Roušar, 2013). 

 Gross pathology tissue samples following cocaine and APAP treatment at the 24 hour 

time point. The cocaine treatment samples display motteling on the surface with hemorrhaging 

observed on the surface of the liver. Resultant observations for the cocaine sample suggest that 

necrosis cell death is the pathway that results from cocaine-induced hepatotoxicity (Evans, 1983; 

Roth, Harbison, James, Tobin, Roberts, 1992; Thompson, Shuster, Shaw, 1979). A similar 

analysis was conducted for acetaminophen with significantly damaging impacts on the liver. 

Observations revealed a substantial amount of hemorrhaging on the surface of the liver. The 

results gathered from observing samples following acetaminophen treatment also suggest that 

necrosis is the cell death pathway for acetaminophen induced toxicity (Cover et al., 2005a; 

Dӧnmez, Uysal, Poyrazoglu, Er Ӧztas, Türker, Kaldirim, Korkmaz, 2015; Mitchell, Jollow, 



80 
 

Potter, Davis, Gillette, Brodie, 1973; Williams, Koerner, Lampe, Farhood, Jaeschke, 2011; 

Gujral, Knight, Farhood, Bajt, Jaeschke, 2002).  

 A DNA fragmentation analysis following cocaine and acetaminophen treatment 

evaluated the presence of fragmented DNA with PARP inhibited liver samples. Results from 

cocaine and cocaine + DIQ samples revealed no fragments to DNA in observed samples. Similar 

results were observed for APAP and APAP + DIQ samples. These results differ from Cover et al. 

that found the presence of fragmented DNA along with increases observed in fragmentation as 

time from initial dose increased (Cover et al., 2005a). While DNA fragmentation is considered to 

be a precursor for apoptotic signaling, presence of fragmented DNA has also been shown to 

produce necrotic cell death in liver cells. Some apoptotic cell death has been observed in the 

presence of acetaminophen induced drug toxicity (Cover et al., 2005a; Ray, Kamendulis, Gurule, 

Yorkin, Corcoran, 1993). However, recent studies analyzing acetaminophen hepatotoxicity have 

ruled out apoptosis as a cell death pathway (Cover et al., 2005a; Gujral, Knight, Farhood, Bajt, 

Jaeschke, 2002; Mitchell, Jollow, Potter, Davis, Gillette, Brodie, 1973). 

 Some possible limitations to this study include analyses used to determine PARP activity 

and cell death resulting from activation of PARP activity. The detection of glutathione and its 

role in PARP activity can be detected to determine the impacts of drug toxicity on cellular 

activity. While results may vary depending upon the toxicant, glutathione is expected to be 

depleted within the cell during toxic exposures to drugs and chemicals. The independent results 

gathered from this analysis with cocaine and acetaminophen presented alternative results that 

may distort the true role of glutathione on PARP activity. A western blot analysis analyzing the 

cleavage of PARP may have helped to better define the role of PARP activity following cocaine 
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and APAP treatments. More in-depth analyses for PARP activity may detect alternatives to cell 

death with drug-induced toxicity with administration PARP inhibitors.  

 There are a number of analyses that can be conducted to better understand the role of 

PARP activity in the presence of drug toxicity. Comparisons of drugs and chemicals help to 

better understand the metabolism of toxic metabolites activating PARP activity in the liver. 

Assays such as lipid peroxidation and caspase-3 can help to determine cell death pathways of 

necrosis or apoptosis for chemicals and drugs. Conducting analyses to understand that activity of 

PARP proteins during various stages of toxicity may help to understand better methods at 

inhibiting PARP activity. Evaluating the role of time with PARP activity is important to better 

understand the optimal time to supply PARP inhibitors in order to help elicit maximum potential 

when responding to hepatotoxic events.  
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CHAPTER SIX: 

 

CONCLUSION 

 

 This study helped to prove the efficacy of the PARP inhibitor, DIQ, with cocaine and 

APAP-induced hepatotoxicity. Conducting a dose-response analysis following cocaine and 

acetaminophen treatment helped to determine the optimal dose that would elicit hepatotoxicity 

but not cause mortality. Results from this study helped to show that while there may be multiple 

doses that may contribute to significant elevations in serum ALT, determining the maximum 

dose to elicit PARP activity is key to determining the efficacy of potential PARP inhibitor 

treatment. Incorporating the element of time into an analysis will help to better understand PARP 

activity in order to produce the maximum effects from administration of PARP inhibitors. Time 

will also help to better understand the role of PARP activity for acute and chronic doses of drugs 

during drug-induced hepatotoxicity. Results from this study shows that time plays a major role in 

drug-induced hepatotoxicity following cocaine and acetaminophen treatment and the efficacy of 

PARP inhibitors.  

 The debate with apoptosis and necrosis cell death pathways helps to provide areas for 

future research between a number of drugs and chemicals. Determining intermediate 

impairments to cell function may lead to prevention of widespread damage resulting from these 

cell death pathways. As research for the efficacy of PARP inhibitors is studied to better 

understand the role of the production of toxic metabolites on PARP activity, new methods to 
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evaluate and understand metabolic differences that may exist for drugs and chemicals will help 

to propel research with PARP activity into new directions. Although drug-induced toxicity has 

been studied for a number of decades, creating new methods to evaluate cellular function as 

PARP is activated helps to allow for comparisons with various drugs and chemicals that will 

help with determining new methods to inhibit PARP activity in the future. A better 

understanding of the role of PARP activity in drug-induced hepatotoxicity may help to reduce 

widespread damage to the liver and may help to potentially save life by increasing the window of 

time for which an individual may be able to seek medical assistance. 
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