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ABSTRACT

In mathematical epidemiology, the standard compartmental models assume homogeneous mixing

in the host population, in contrast to the disease spread process over a real host contact network.

One approach to incorporating heterogeneous mixing is to consider the population to be a network

of individuals whose contacts follow a given probability distribution. In this thesis we investigate

in analogy both homogeneous mixing and contact network models for infectious diseases that

admit latency periods, such as dengue fever, Ebola, and HIV. We consider the mathematics of the

compartmental model as well as the network model, including the dynamics of their equations from

the beginning of disease outbreak until the disease dies out. After considering the mathematical

models we perform software simulations of the disease models. We consider epidemic simulations

of the network model for three different values ofR0 and compare the peak infection numbers and

times as well as disease outbreak sizes and durations. We examine averages of these numbers for

one thousand simulation runs for three values of R0. Finally we summarize results and consider

avenues for further investigation.
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CHAPTER 1: INTRODUCTION

The presence of communicable disease has always been an important part of life in human soci-

eties. Some diseases are endemic in many parts of the world, always present in the population,

like typhus, malaria, or cholera. Other diseases such as SARS, influenza, and AIDS can spread

from epidemics, operating on a relatively short time scale as they spread through the population.

Mathematical epidemiology, the mathematical modeling of disease spread in a population, has a

long history and many early developments in the mathematical modeling of diseases are due to

public health physicians [1]. For example, Daniel Bernoulli, trained as a physician and a mem-

ber of a famous family of mathematicians, attempted to model smallpox in 1760 while defending

the practice of inoculation. Mathematical epidemiology can aid medical professionals who are

trying to manage diseases. During a disease outbreak ethical considerations make it impossible

for medical experiements to be performed on a population which would compare the effects of

different disease management strategies. Therefore predictions based upon mathematical models

may be essential in addressing the impact of communicable diseases and formulating strategies for

fighting them.

Much of the basic theory of mathematical epidemiology was developed between 1900 and 1935

[1]. In the 1927 paper of Kermack and McKendrick [5], the authors partitioned a hypothetical

population into sets (compartments) of people, including those in the population susceptible to

disease infection (but not yet infected); those exposed and in a latent period who are infected but

not yet infectious; those who are already infectious; and those who are removed from consideration

(because they have recovered and are now immune, or because they have died) [4]. The numbers

of people who are susceptible, exposed, infectious, or removed at time t are denoted by S(t),

E(t), I(t), and R(t), respectively, and the total population N = S + E + I + R. This SEIR

model assumes constant rates of mass-action incidence and disease recovery, and mean periods

1



of infectiousness and latency. There is also a constant R0, the basic reproduction number, whose

value indicates whether the disease dies out (R0 < 1) or becomes an epidemic (R0 > 1). This

Kermack-McKendrick epidemic model is a mass action (MA) model that assumes contacts are

uniform between people in a population, similar to the mixing of chemicals. The model exhibits

two flaws: it neglects social heterogeneity, that is, it neglects variation in contact rates between the

susceptible and the infected; and it neglects partnership duration by assuming that all partnerships

between people are only momentary in duration.

Since the year 2000 attention has turned to the usage of network models to allow for social het-

erogeneity, pioneered by Volz and Miller [8], [12], [16]. The objective in any of these so-called

edge-based configuration models (EBCM) is, as always, to be able to calculate the numbers of

susceptible, infectious, and recovered in the population. The EBCM approach begins with con-

sideration of a randomly chosen test node u, and asks whether u is susceptible, infectious, or

recovered. In the EBCM context, S(t), I(t), and R(t) represent proportions of the population that

are susceptible, infectious, or recovered, respectively, at time t (with S(t) + I(t) +R(t) = 1 since

here they are proportions). The essential characteristic of the EBCM approach is the incorpora-

tion of the idea that test node u is susceptible as long as none of its neighbors (or partners) has

ever transmitted infection to u [12]. This requires consideration of how many neighbors u might

have as well as the possiblities that a randomly chosen neighbor v of u could itself be susceptible,

infectious, or recovered.

Although the Miller-Volz model addresses social heterogeneity it does not consider exposed but

non-infectious individuals. In some infectious diseases there is a period of time in which suscepti-

ble individuals have been exposed to disease but have not yet developed symptoms and are unable

to transmit infection to anyone else [1]. We add to the model the proportion of exposed but not

yet infectious individuals, E(t). We then investigate this model. We derive a system of ordinary

differential equations and determine and classify equilibria of the system. Finally we study its
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long-term behaviour for various values of R0. We perform simulations and compare their results

with the mathematical model.

In this thesis we investigate both homogeneous mixing and contact network models for disease

epidemics with latency. In Chapter 2 the classic SEIR compartmental model with homogeneous

mixing is revisited and the basic reproduction number R0 determines the final disease outbreak

size. In Chapter 3 we construct and analyze an edge-based configuration model that includes an

exposed class, and R0 is proven to serve as the threshold value for disease outbreak. In Chapter

4 we conduct numerical simulations to analyze and compare behavior of the system of equations

from Chapter 2. In Chapter 5 we consider conclusions to be drawn from our investigations as well

as ideas for future work.
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CHAPTER 2: HOMOGENEOUS MIXING COMPARTMENTAL MODEL

2.1 Model Formulation

The disease model we are going to investigate is constructed within a static population, i.e., a

population in which it is assumed that the population does not change from travel or births or

deaths except possibly from deaths of people who are infected with the disease. In our model we

are going to assume that the epidemic process is deterministic, that is, that population behavior

is completely determined by its history and by the rules that describe the model [1]. A disease

epidemic acts on a short time scale; an epidemic is a sudden outbreak of a disease that infects a

substantial portion of a population before it disappears. Usually epidemics leave many members

of the population untouched. Our population is divided into four sets (compartments) of people:

those who are susceptible to disease infection but not yet infected; those who have been exposed,

i.e., infected but not yet infectious; those who are infectious; and those who have been removed

from being susceptible or infected by recovering and acquiring immunity to the disease. Therefore

the population is made up of N people and N = S + E + I +R, where we define

S = S(t) = number of individuals in the population susceptible at time t,

E = E(t) = number of individuals exposed (but not infectious) at time t,

I = I(t) = number of individuals infectious at time t, and

R = R(t) = number of individuals recovered at time t.

The numbers in each compartment are integers, but if N is sufficiently large then S, E, I , and R

can be treated in our model as continuous variables.

Denote the disease transmission rate (per infectious person) by β. This model assumes mass action
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incidence, that an average member of the population makes contacts sufficient to transmit infection

with βN others per unit time. For many infectious diseases there exists an exposed or latent

period after transmission of infection from susceptibles to potentially infectious members of the

population but before these potentially infectious individuals can transmit infection. Denote by

ε the rate of transfer from exposure or latency to infectiousness; note that 1/ε is then the mean

period of exposure or latency. Denote by γ the recovery rate (so that 1/γ is the mean period of

infectiousness).

If we assume that initially the entire population is susceptible, this is the same as writing S(0) =

N . Given a susceptible individual, the probability that that person would have contact with an

infectious individual is I/N since I/N is the fraction of the population that is infectious; so the

rate of new infectious people per susceptible is (βN)(I/N). Thus the rate of new infectious over

the entire population is

(βN)
I

N
S = βIS. (2.1)

The flowchart in Figure 2.1 shows the scheme of progression in the model from one compartment

to the next.

Figure 2.1: Flow chart for the SEIR model.

The model is determined by the system of ordinary differential equations (primes denote differen-
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tiation with respect to time t):

S ′ = −βIS (2.2)

E ′ = βIS − εE (2.3)

I ′ = εE − γI (2.4)

R′ = γI. (2.5)

The model is stated in terms of derivatives of the sizes of the different compartments, which as-

sumes that the number of members of a compartment is a differentiable function of time. This is a

reasonable assumption if there are many members of a compartment.

2.2 Model Analysis

We assume mass action incidence which implies that an average member of the population makes

contacts sufficient to transmit infection with βN others per unit time, so that in the mean infec-

tiousness period 1/γ a newly introduced infectious person could theoretically infect a total of

βN/γ individuals. Denote

R0 =
βN

γ
(2.6)

the basic reproduction number. If we add together the equations (2.3) and (2.4) we get

E ′ + I ′ = (E + I)′ = βIS − εE + εE − γI = βIS − γI

= (βS − γ)I. (2.7)
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E(t) + I(t) can increase only if E ′ + I ′ > 0. By (2.7) and because I(t) > 0, we conclude that

E ′ + I ′ > 0 as long as

βS − γ > 0

or
βS

γ
> 1. (2.8)

With S(0) = N this becomes
βN

γ
> 1

orR0 > 1 by (2.6). Thus we have an epidemic ifR0 > 1 and ifR0 < 1 then E(t)+I(t) decreases

and the disease dies out.

It is desirable to be able to solve the system (2.2)–(2.5) and obtain an expression for I(t). An

expression for I(t) was found in [5], but it did not model the number of infectious well when t

was not close to zero [2]. An alternative is to add the equations for E ′ and I ′, then divide by the

equation for S ′.
d(E + I)

dS
=
βIS − εE + εE − γI

−βIS
= −1 + γ

βS

and multiplying through by dS gives

d(E + I) = −dS +
γdS

βS
. (2.9)

We next integrate both sides of this equation from 0 to t. Then we have

E(t)− E(0) + I(t)− I(0) = −(S(t)− S(0)) + γ

β
(lnS(t)− lnS(0))
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and since E(0) = 0 and I(0) ≈ 0 this is equivalent to

E(t) + I(t) = N − S(t) + γ

β
ln
S(t)

N
. (2.10)

Denote limt→∞ S(t) by S(∞) and similarly for limt→∞E(t) and limt→∞ I(t) byE(∞) and I(∞).

Lemma. The quantities E(∞) = 0 and I(∞) = 0.

Proof. We have already seen in (2.7) that E + I is increasing when S > γ
β

. By (2.7) when S < γ
β

thenE ′+I ′ < 0. Thus when S = γ
β

,E ′+I ′ = 0 and by the first derivative testE+I has a maximum

value there. E + I is positive valued and thus is bounded below by zero, so E(∞) + I(∞) = 0

which implies E(∞) = 0 and I(∞) = 0.

Proposition. LetR0 be defined as in (2.6). Then ln S(∞)
N

= −R0(1− S(∞)
N

).

Proof. In equation (2.10) let t go to infinity:

E(∞) + I(∞) = N − S(∞) +
γ

β
ln
S(∞)

N

where the left side is zero by the lemma, so that

−γ
β
ln
S(∞)

N
= N − S(∞)

= N
(
1− S(∞)

N

)
.

Multiply both sides by −β
γ

, then apply (2.6) to get

ln
S(∞)

N
= −β

γ
N
(
1− S(∞)

N

)
= −R0

(
1− S(∞)

N

)
. (2.11)
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CHAPTER 3: NETWORK EDGE-BASED COMPARTMENTAL MODEL

3.1 Model Formulation

The configuration model we are going to discuss here is a static network, i.e., a network where

it is assumed that the population does not change except possibly from deaths of people who are

infected with the disease. Thus we assume there are no changes in population as a result of births,

non-disease deaths, or travel. In this model each individual in the population is represented by

a node, and contact or association between nodes is modeled by edges. We assume that edges

connecting nodes to other nodes are capable of transmitting disease between individuals. (We

also assume no loops or multiple edges between nodes.) In the discussion to follow we often

will consider a “test” node u and (synonymously) its neighbors or partners. In our model each

node has degree k ≥ 0 with probability P (k), so any node u is assigned ku stubs (half-edges)

with probability P (ku). Denote by {P (k)}∞k=0 = {P (k)}N−1k=0 the probability distribution of node

degrees in the network. Note that P (k) ·N is the number of degree-k nodes in a population of size

N .

The probability that a stub of node u connects to some stub of node v is proportional to kv since

the more stubs v has, the more stubs are available to connect to u. Thus

Pn(k) = P (a randomly selected neighbor v of u has degree k)

= (total number of degree-k network stubs)÷ (total number of network stubs)

=
kP (k)N

〈K〉N
, where 〈K〉 =

∑
k

kP (k),

=
kP (k)

〈K〉
. (3.1)
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Define

S = S(t) = proportion of population susceptible at time t,

E = E(t) = proportion of population exposed (but not infectious) at time t,

I = I(t) = proportion of population infectious at time t, and

R = R(t) = proportion of population recovered at time t.

If we choose u randomly from our population then at a given time t, uwill be susceptible, exposed,

infectious, or recovered with probabilities according to the proportions S(t), E(t), I(t), or R(t),

respectively.

There is an issue regarding u and its neighbors that needs to be addressed. When we assume a test

node u is susceptible, exposed, infectious, or recovered with probability equal to the proportion

of susceptible, exposed, infectious, or recovered in the population, respectively, we are implicitly

assuming that the epidemic size grows deterministically. While we focus on the test node u, we

make a simplifying assumption that the neighbors of u are acting independently [12]. Without

making this assumption, we could have the situation that if neighbor w infects u, then u can infect

another neighbor v, implying that the statuses of w and v are not independent. To see that this is

not a concern we show now that ignoring transmissions from u to any neighbors will not affect

the probability that u is in any state. Suppose we assume that u never transmits infection to any

of its neighbors. This has no impact on the situation until after u is infected, so it does not affect

the probability that u is susceptible or exposed. Once u is infectious, it may affect its neighbors.

Whether it does or not does not affect the duration of infection of u; therefore it does not alter

the probability that u is infected or recovered. Thus, preventing u from causing infection does not

affect our calculations for S, E, I , or R based on the status of u.

Define θ = θ(t) to be the probability that a randomly chosen neighbor v of u has not yet transmitted
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infection to u. Initially, i.e., for t = 0, θ ≈ 1. For large networks, we have seen that we can assume

neighbors of u are independent. If u has degree k then at time t, u is susceptible (but not yet

infected) with probability θ(t)k. Also S(t) can be thought of as the probability that none of u’s

neighbors have yet transmitted infection to u. Therefore, S(t) =
∑

k P (k)θ
k. If we next define a

probability generating function ψ(x) whose coefficients are the discrete probability distribution of

node degrees in the network, ψ(x) =
∑

k P (k)x
k, then we can write S = ψ(θ).

The probability θ can be expressed as the sum of mutually exclusive probabilities,

θ = φS + φE + φI + φR, (3.2)

where, assuming a chosen u with neighbor v,

φS = P (v is susceptible but has not transmitted disease to u),

φE = P (v is exposed but has not transmitted disease to u),

φI = P (v is infectious but has not transmitted disease to u), and

φR = P (v has recovered but did not transmit disease to u).

We can construct a probability flux diagram that describes transitions between the four probabilities

that comprise θ. For the disease in question we use the letters β, γ, and ε to denote respectively

the rates of infection, recovery, and transition from the exposed/latent class to the infectious class.

Using the probability generating function ψ(θ) we can represent φS in terms of θ. It will be useful

to note that if ψ(x) =
∑

k P (k)x
k then ψ′(x) =

∑
k kP (k)x

k−1 and ψ′(1) = 〈K〉 = the average

degree of nodes in the network. Since Pn(k) =
kP (k)
〈K〉 , we have

φS =
∑
k

Pn(k)θ
k−1 =

∑
k

kP (k)

〈K〉
θk−1 =

ψ′(θ)

ψ′(1)
. (3.3)
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We now have the probability flux diagram:

Figure 3.1: Flow/probability flux diagram for a static configuration model network.

This diagram can be used to derive a system of two coupled ordinary differential equations which

can be expressed in terms of two functions, φI and θ.

First note from the vertical arrow in the probability flux diagram that

θ′ = −βφI , (3.4)

so (1− θ)′ = βφI . Integrating with respect to time, from zero to t gives (1− θ(t))− (1− θ(0)) =

β
∫ t
0
φIdτ , or 1− θ(t) = β

∫ t
0
φIdτ . Here we have used information about initial conditions: θ ≈ 1

and φS = 1, so φE + φI + φR ≈ 0 by equation (3.2) and thus φE = 0, φI ≈ 0, and φR = 0.

Again from Figure 3.1,

φ′R = γφI , (3.5)

so again integrating with respect to time from 0 to t and using the initial condition φR(0) = 0 we
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get φR(t) = γ
∫ t
0
φIdτ . Putting this together with the previous result we have

φR(t)

1− θ(t)
=
γ
∫ t
0
φIdτ

β
∫ t
0
φIdτ

=
γ

β
,

so that

φR =
γ

β
(1− θ). (3.6)

Note that alternatively, we can derive φR as follows:

dθ

dφR
= −β

γ

∫
dθ = −β

γ

∫
dφR.

Integrating from 0 to t, and using the initial conditions,

θ(t)− θ(0) = −β
γ
φR(t) +

β

γ
φR(0),

or

θ(t)− 1 = −β
γ
φR(t),

from which we again get equation (3.6).

From Diagram 3.1 we have

φ′I = εφE − (β + γ)φI .

We can rearrange (3.2) to get φE = θ − φS − φI − φR. Substituting into this equation for φS and

φR from (3.3) and (3.6) gives

φE = θ − ψ′(θ)

ψ′(1)
− φI −

γ

β
(1− θ). (3.7)
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By using this expression for φE in our equation for φ′I we have

φ′I = ε
[
θ − ψ′(θ)

ψ′(1)
− φI −

γ

β
(1− θ)

]
− (β + γ)φI ,

which together with our equation for θ′ gives us the system of two equations,

φ′I = ε
[
θ − ψ′(θ)

ψ′(1)
− γ

β
(1− θ)

]
− (β + γ + ε)φI (3.8)

θ′ = −βφI . (3.9)

3.2 Model Analysis

In this section we investigate the dynamics of the system (3.8)–(3.9). Note that this system of two

equations is entirely in terms of the functions φI(t) and θ(t), plus constants. We want to examine

the behavior of this system by examining its equilibria. It will be convenient to refer to the right

sides of the equations (3.8) and (3.9) as the functions f(φI , θ) and g(φI , θ), respectively. That is,

we define f(φI , θ) = ε[θ − ψ′(θ)
ψ′(1)
− γ

β
(1 − θ)] − (β + γ + ε)φI and g(φI , θ) = −βφI . Thus the

system becomes

φ′I = f(φI , θ), (3.10)

θ′ = g(φI , θ). (3.11)

Before we set about finding equilibria for this system of ordinary differential equations (ODE) we

first consider the quantity R0. In epidemic models R0 is usually defined as the number of new

cases caused by a single randomly infected individual in a completely susceptible population. In

this model we modify that definition to say thatR0 is the number of new cases an average infected

individual causes early in a disease outbreak [10]. When R0 < 1, no epidemic occurs in the
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population; i.e., the disease dies out. IfR0 > 1 an epidemic occurs. For an epidemic on a network,

suppose u with degree k is chosen randomly from the population. If it is then infected by one of

its neighbors, it could possibly infect k − 1 other neighbors. Recall that P (a randomly selected

neighbor v of u has degree k) = Pn(k), and

Pn(k) =
kP (k)

〈K〉
.

To get an expression for R0 note also that since β is the rate of infection and γ is the rate of

recovery, then the probability that an infected node will infect a neighbor before it itself recovers

is β
β+γ

. Recall that with ψ(x) =
∑

k P (k)x
k we also have ψ′(x) =

∑
k kP (k)x

k−1 and ψ′′(x) =∑
k k(k − 1)P (k)xk−2; and when x = 1 we have ψ′′(1) =

∑
k k(k − 1)P (k) = 〈K2 −K〉. We

can write

R0 =
∑
k

Pn(k)(k − 1)
β

β + γ

=
β

β + γ

∑
k

kP (k)

〈K〉
(k − 1)

=
β

β + γ

∑
k k(k − 1)P (k)

〈K〉

=
β

β + γ

ψ′′(1)

ψ′(1)

=
β

β + γ

〈K2 −K〉
〈K〉

. (3.12)

To find equilibria for the system of equations we wish to find values of φI and θ such that

φ′I = 0,

θ′ = 0.
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By inspection, the second equation implies that φI = 0 since β, the rate of infection, is assumed to

be a positive quantity. If φI = 0 then

f(0, θ) = ε
[
θ − ψ′(θ)

ψ′(1)
− γ

β
(1− θ)

]
.

Again by inspection, f(0, θ) = 0 if θ = 1. The next question is whether (0, 1) is the only equilib-

rium of our system, (3.8)–(3.9). We will see that the answer depends on the value ofR0. To clarify

our analysis, define

f(θ) = θ − ψ′(θ)

ψ′(1)
− γ

β
(1− θ). (3.13)

Then f(0) = − γ
β

and f(1) = 0. Note that θ is a probability function, so its values and thus the

domain of the function f are the interval [0, 1]. We can take derivatives with respect to θ to get

f
′
(θ) = 1− 1

ψ′(1)

d

dθ
ψ′(θ) +

γ

β
=
β + γ

β
−
∑

k k(k − 1)P (k)θk−2

〈K〉
(3.14)

and

f
′′
(θ) = −

∑
k k(k − 1)(k − 2)P (k)θk−3

〈K〉
. (3.15)

Since θ ∈ [0, 1], the summands of the numerator summations for f
′

and f
′′

as well as for 〈K〉 are

all non-negative quantities. Therefore f
′′
< 0 for all values of θ ∈ (0, 1). We now discuss the

equilibria of our system (3.10)–(3.11).

Theorem 1. IfR0 ≤ 1 then there exists a unique equilibrium (φI , θ) = (0, 1) for the system.

Proof. We have just seen that by setting φ′I and θ′ equal to zero we find that (φI , θ) = (0, 1) is an

equilibrium of our system. To see that it is unique we consider f
′
. If R0 ≤ 1 then by (3.12) we

have

R0 =
β

β + γ

〈K2 −K〉
〈K〉

≤ 1 (3.16)
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so that
〈K2 −K〉
〈K〉

≤ β + γ

β
. (3.17)

In the expression (3.14) for f
′
the sum

∑
k k(k−1)P (k)θk−2 is a monotonically increasing function

of θ because each summation term k(k− 1)P (k)θk−2 is monotonically increasing from 0 to k(k−

1)P (k) as θ increases from 0 to 1. Therefore as θ increases from 0 to 1, the sum
∑

k k(k −

1)P (k)θk−2 increases monotonically from 0 to 〈K2−K〉 (= ψ′′(1)), so by (3.14) f
′
(θ) > 0 for all

θ ∈ (0, 1). Therefore f increases monotonically from f(0) = − γ
β

to f(1) = 0. There is no number

θ∗ with 0 < θ∗ < 1 such that f(θ∗) = 0, for if there were then by Rolle’s Theorem a number θ∗∗

between θ∗ and 1 would exist such that f
′
(θ∗∗) = 0, contradicting f

′
(θ) > 0. Thus the equilibrium

(φI , θ) = (0, 1) is the unique equilibrium of the system whenR0 ≤ 1.

Theorem 2. IfR0 > 1 then there exist two equilibria for the system, (φI , θ) = (0, 1) and (φI , θ) =

(0, θ∗), where 0 < θ∗ < 1.

Proof. As in Theorem 1 there is one equilibrium for the system at (0, 1). IfR0 > 1 then by (3.12)

we have

R0 =
β

β + γ

〈K2 −K〉
〈K〉

> 1 (3.18)

so that
〈K2 −K〉
〈K〉

>
β + γ

β
. (3.19)

By equation (3.14) we have

f
′
(θ) =

β + γ

β
−
∑

k k(k − 1)P (k)θk−2

〈K〉
.

Since

lim
θ→0+

f
′
(θ) =

β + γ

β
> 0,
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we know that near θ = 0, f
′
(θ) > 0. And since by (3.19)

lim
θ→1−

f
′
(θ) =

β + γ

β
− 〈K

2 −K〉
〈K〉

< 0,

then we know that near θ = 1, f
′
(θ) < 0. We know f

′
(θ) is continuous on (0, 1), therefore by

the Intermediate Value Theorem there exists some number c ∈ (0, 1) such that f
′
(c) = 0. By the

first derivative test f(c) is a maximum value of f(θ) on [0, 1]. We claim that f(c) > f(1) = 0, for

if f(c) ≤ f(1) = 0 then f
′′
> 0 for some θ ∈ (0, 1). But by equation (3.15) this is impossible.

We thus have f(0) = − γ
β
< 0 and f(c) > 0. By the Intermediate Value Theorem there exists

some θ∗ ∈ (0, c) such that f(θ∗) = 0. This number is unique because if there were more than one

candidate for θ∗ then we would not have that f
′′
(θ) < 0 for all θ ∈ (0, 1) by (3.15). Thus we have

two equilibria for our system whenR0 > 1.

We now determine system dynamics near the equilibria we have found. In order to do this we will

utilize the Jacobian of the functions f(φI , θ) and g(φI , θ). The Jacobian is

J =

 ∂f
∂φI

∂f
∂θ

∂g
∂φI

∂g
∂θ

 =

−(β + γ + ε) ε
[
1− ψ′′(θ)

ψ′(1)
+ γ

β

]
−β 0

 =

−(β + γ + ε) ε
[
β+γ
β
− ψ′′(θ)

ψ′(1)

]
−β 0

 .
We are going to want to examine the eigenvalues for this matrix, so we want to find the determinant

of the matrix λI− J, where I is the 2-by-2 identity matrix:

det
(
λI− J

)
=

∣∣∣∣∣∣∣
λ+ (β + γ + ε) ε

[ψ′′(θ)
ψ′(1)

− β+γ
β

]
β λ

∣∣∣∣∣∣∣ = λ2 + (β + γ + ε)λ+ βε
[
β+γ
β
− ψ′′(θ)

ψ′(1)

]
.

This determinant is a quadratic polynomial in λ. Notice that the coefficient of λ is positive, and

the last term could be positive or negative depending on the value of the bracketed expression. It

will be useful to apply the quadratic formula to obtain an expression for λ:
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λ =
−(β + γ + ε)±

√
(β + γ + ε)2 − 4βε

[
β+γ
β
− ψ′′(θ)

ψ′(1)

]
2

(3.20)

Theorem 3. IfR0 < 1 then the equilibrium (φI , θ) = (0, 1) is locally stable.

Proof. Here we have θ = 1 so that in the discriminant of (3.20), the bracketed portion

β + γ

β
− ψ′′(θ)

ψ′(1)
=
β + γ

β
− 〈K

2 −K〉
〈K〉

. (3.21)

IfR0 < 1 then by (3.12)
β

β + γ

〈K2 −K〉
〈K〉

< 1 (3.22)

so that
〈K2 −K〉
〈K〉

<
β + γ

β
(3.23)

and thus the bracketed portion of the discriminant is positive. There are two possibilities, depend-

ing on the size of 4βε
[
β+γ
β
− 〈K

2−K〉
〈K〉

]
. If the discriminant > 0 we have

√
(β + γ + ε)2 − 4βε

[β + γ

β
− 〈K

2 −K〉
〈K〉

]
<
√

(β + γ + ε)2 = β + γ + ε (3.24)

since β, γ, and ε are positive quantities, so that in the numerator of λ, both

−(β + γ + ε) +

√
(β + γ + ε)2 − 4βε

[β + γ

β
− 〈K

2 −K〉
〈K〉

]
< 0 (3.25)

and

−(β + γ + ε)−

√
(β + γ + ε)2 − 4βε

[β + γ

β
− 〈K

2 −K〉
〈K〉

]
< 0. (3.26)

Hence both eigenvalues λ are negative real numbers, implying that the system is locally stable at

the equilibrium (φI , θ) = (0, 1).
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If the discriminant < 0 then the values of λ are complex conjugates, both with negative real parts

−β+γ+ε
2

, again implying that the system is locally stable at the equilibrium (φI , θ) = (0, 1). This

proves the theorem.

Theorem 4. If R0 > 1 then the equilibrium (φI , θ) = (0, 1) is unstable, and the equilibrium

(φI , θ) = (0, θ∗) where 0 < θ∗ < 1 is asymptotically stable.

Proof. First we have θ = 1 so that in the discriminant of (3.20), the bracketed portion

β + γ

β
− ψ′′(θ)

ψ′(1)
=
β + γ

β
− 〈K

2 −K〉
〈K〉

. (3.27)

IfR0 > 1 then by (3.12)
β

β + γ

〈K2 −K〉
〈K〉

> 1 (3.28)

so that
〈K2 −K〉
〈K〉

>
β + γ

β
(3.29)

and thus the bracketed portion of the discriminant is negative. Thus the discriminant becomes the

sum of two positive terms and we have

√
(β + γ + ε)2 − 4βε

[β + γ

β
− 〈K

2 −K〉
〈K〉

]
>
√

(β + γ + ε)2 = β + γ + ε (3.30)

since β, γ, and ε are positive quantities, so that in the numerator of λ,

−(β + γ + ε) +

√
(β + γ + ε)2 − 4βε

[β + γ

β
− 〈K

2 −K〉
〈K〉

]
> 0 (3.31)

and

−(β + γ + ε)−

√
(β + γ + ε)2 − 4βε

[β + γ

β
− 〈K

2 −K〉
〈K〉

]
< 0. (3.32)

Thus both of the eigenvalues are real with one positive and the other negative, therefore the equi-
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librium (φI , θ) = (0, 1) is unstable.

Next consider the equilibrium (φI , θ) = (0, θ∗) where 0 < θ∗ < 1. For this equilibrium we return

to the Jacobian of the system,

J =

−(β + γ + ε) ε
[
β+γ
β
− ψ′′(θ)

ψ′(1)

]
−β 0

 .
If we can show the trace of J is negative and the determinant is positive, we have shown the equi-

librium is locally stable. Because β, γ, and ε are all positive quantities, the trace−(β+γ+ ε) < 0.

The determinant βε
[
β+γ
β
− ψ′′(θ∗)

ψ(1)

]
> 0 since the bracketed portion is positive. Thus the system is

locally stable at (φI , θ) = (0, θ∗).

Following [12], put θ′ = 0. Define θ(∞) = limt→∞ θ(t). When the epidemic has ended we

assume all derivatives = 0. Then equation (3.8) becomes

θ(t) =
γ

β + γ
+

β

β + γ

ψ′(θ(t))

ψ′(1)

and letting t go to infinity we get

θ(∞) =
γ

β + γ
+

β

β + γ

ψ′(θ(∞))

ψ′(1)
.

WhenR0 > 1 this has two solutions for θ(∞), one of which is θ = 1 (the pre-disease equilibrium).

We can numerically solve for the smaller θ(∞), and use it to compute R(∞). Therefore when an

epidemic occurs the total fraction of the population infected is

R(∞) = 1− ψ(θ(∞)).
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CHAPTER 4: NUMERICAL SIMULATIONS

4.1 Random Network Compartmental Model Simulation

In the following simulations we are using NetworkX to simulate disease epidemics in a population

of one thousand people. NetworkX is an open-source graph and network software package pro-

grammed in Python and developed at the Los Alamos National Laboratory. For our simulations

NetworkX first constructs an Erdos-Renyi random graph (N = 1000, p = 0.05), in which the prob-

ability of an edge connecting two nodes = 0.05. The value of R0 is assigned to be 0.8, 1.5, 2, or

5. One randomly picked node is chosen to be infectious, while all the other nodes are susceptible.

Then a loop begins. Each susceptible neighbor of the infectious node may become exposed with a

pre-determined probability and move out of the susceptible class, or else remain susceptible. Then

the infectious node becomes recovered. Next, the algorithm looks at exposed nodes and decides

(using a pre-determined probability) whether they become infectious or just stay exposed. As the

process continues the number of infectious and exposed nodes will grow if an epidemic breaks out.

The process repeats by going back to all susceptible neighbors of each infectious node. The loop

continues until the number of exposed nodes plus the number of infectious nodes is zero.

In the first two graphs and the first three sets of six graphs, the simulation is run once and the

numbers of susceptible, exposed, infectious, and removed nodes through the life of the epidemic

are plotted. The fourth set of six graphs has plots of average numbers of infectious nodes over

1000 runs of the simulation. Three of the simulation runs average 1000 disease runs on a single

graph; the other three runs average 1000 disease runs where one disease epidemic is run for each

of 1000 graphs.
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We first run two simulations for which R0 = 0.8. As R0 < 1 in this case, we do not expect

a disease epidemic in the population. Results of the two simulations are shown in Table 4.1 and

Figure 4.1. In each case there are multiple generations in which the maximum number of infectious

individuals occurs. Although the disease is active beyond 20 generations in each case, the disease

does not break into an epidemic.

Table 4.1: Two sample runs,R0 = 0.8

Sample Infection Peak Peak Moment(s) Final Infection Size Disease Duration
Imax Imax Generation(s) Rterminal = R(∞) End Generation

(a) 1 0,3,4,7,9,10,11,15,16,18,19 11 21
(b) 3 9,13,21,37,42 46 49

(a) (b)

Figure 4.1: Sample simulations for the spread of infectious diseases over a random social network
withR0 = 0.8.
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In Table 4.2 and Figure 4.2 we set R0 = 1.5. The graph of Figure 4.2(a) shows that after one

of the susceptible individuals becomes infectious in generation 0 the disease dies out immediately

in generation 1 with no outbreak. In this instance the simulation is as brief as can happen, where

the population goes immediately from one infectious individual to none just one generation after

the simulation begins. In Figure 4.2(b) the disease maintains a low level, with never more than

one infectious individual in the population during any generation. After generation 0 the peak

number of infectious individuals occurs six more times until the outbreak ends at generation 14

with seven individuals having been infectious and then recovered from the disease and removed

from susceptibility. In Figure 4.2(c) disease outbreak occurs. The number of infectious individuals

peaks at Imax = 41 in generation 27 and the oubreak ends at generation 76 with a total of R(∞) =

612 individuals removed from the susceptible portion of the population. In the disease outbreaks

of Figures 4.2(d), (e), and (f) the infectious peaks Imax occur in successively later generations. In

Figure 4.2(e) Imax occurs on four occasions, demonstrating that it is possible to have Imax occur

multiple times even if not at the beginning of a disease outbreak. Final outbreak sizes R(∞) are

668, 544, and 575 at generations 68, 112, and 99, respectively.

Table 4.2: Six sample runs,R0 = 1.5

Sample Outbreak Peak Peak Moment(s) Final Outbreak Size Outbreak Duration
Imax Imax Generation(s) Rterminal = R(∞) End Generation

(a) 1 0 1 1
(b) 1 0,1,2,3,9,12,13 7 14
(c) 41 27 612 76
(d) 53 39 668 68
(e) 20 54,55,57,59 544 112
(f) 32 60 575 99
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Sample simulations for the spread of infectious diseases over a random social network
withR0 = 1.5.
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In Table 4.3 and Figure 4.3 we set R0 = 2, meaning an increase in the likelihood that an infected

individual in the model will infect other nodes. As can be seen from Figures 4.3(a) and (b), it is

still possible with R0 = 2 for a disease outbreak not to occur, with the disease maintaining a low

level until dying out at generations 8 and 17 respectively. The simulations (c), (d), (e), and (f) are

disease outbreaks with peak numbers of infections Imax occurring in successively later generations,

between 21 and 40. Compared to the sample simulation runs for outbreaks with R0 = 1.5, the

sample runs for R0 = 2 outbreaks have greater output peaks with Imax between 69 and 87 versus

20 to 53, and the peak moments for R0 = 2 occur overall somewhat earlier, between generations

21 and 40 as opposed to generations 27 to 60. The final outbreak sizes for R0 = 2 range between

767 and 818 as opposed to between 544 and 668 for R0 = 1.5, and the outbreak end generation

ranges between 58 and 68 for R0 = 2 as opposed to 68 to 112 for the R0 = 1.5 sample runs.

Generalizing from these simulation samples for the two values of R0, one can say that when R0

is increased from 1.5 to 2 and one compares disease outbreaks, the outbreak peaks increased with

peak moments generally in earlier generations, and final outbreak sizes R(∞) increased with a

decrease in the overall disease outbreak durations.

Table 4.3: Six sample runs,R0 = 2

Sample Outbreak Peak Peak Moment(s) Final Outbreak Size Outbreak Duration
Imax Imax Generation(s) Rterminal = R(∞) End Generation

(a) 1 0,7 2 8
(b) 3 6 14 17
(c) 87 21 818 63
(d) 73 24,25 801 58
(e) 72 30 817 62
(f) 69 40 767 68
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Sample simulations for the spread of infectious diseases over a random social network
withR0 = 2.
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Table 4.4 and Figure 4.4 give details of six sample simulation runs withR0 set to 5. The results of

the six sample runs show greater uniformity for R0 = 5 than for either R0 = 1.5 or 2. All six of

the samples had disease outbreaks. Outbreak peak values Imax in these six sample range between

227 and 240, higher values and a narrower range of values than with R0 = 1.5 or 2 (20 to 53 and

69 to 87, respectively). The generations in which Imax occurred for R0 = 5 are earlier as well as

in a shorter time interval, 10 to 15 as opposed to 27 to 60 and 21 to 40. Final outbreak sizes R(∞)

for R0 = 5 are greater and confined to a shorter interval: 988 to 996 versus 544 to 668 and 767 to

818. The outbreak durations forR0 = 5 are a set of generations that is the earliest as well as in the

shortest time interval: generations 27 to 32 versus 68 to 112 and 58 to 68.

As can be seen from the outbreak information of the sample runs for the three chosen values ofR0,

asR0 increases the numbers of infectious individuals increase, both at the time of peak outbreak as

well as over the entire life span of the epidemic. With increasing R0 the growth of infectiousness

occurs at a faster rate, resulting in earlier peak generations of infectiousness as well as a disease

epidemic over a smaller number of generations. The greater the value of R0 the faster and more

aggressive the progression of the disease in the host population.

Table 4.4: Six sample runs,R0 = 5

Sample Outbreak Peak Peak Moment Final Outbreak Size Outbreak Duration
Imax Imax Generation Rterminal = R(∞) End Generation

(a) 228 10 988 27
(b) 230 11 990 30
(c) 239 11 993 28
(d) 232 12 992 30
(e) 227 13 993 30
(f) 240 15 996 32

28



(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Sample simulations for the spread of infectious diseases over a random social network
withR0 = 5.
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In Table 4.5 and Figure 4.5 we display the results of six averages of one thousand sample runs, two

averages each for all three values of R0. For each value of R0 the first sample (“fixed graph”) is

an average of one thousand runs of randomly generated disease epidemics over the same randomly

generated graph of one thousand nodes. The second sample (“random graph”) for each value of

R0 is an average of one thousand runs in which one disease epidemic is simulated on each of one

thousand different randomly generated graphs of one thousand nodes. In Table 4.5 the results are

paired in adjacent rows byR0 value.

As can be seen from Table 4.5, averages for fixed and random samples for each value of R0 are

very similar. For sample averages (1.5) and (1.5′), the outbreak peak value Imax for (1.5′) is only

about 0.9% greater than that for (1.5). The peak generation for (1.5) is 41, for (1.5′) is 40. Final

outbreak size R(∞) for (1.5) is about 1.6% more than that for (1.5′), and the outbreak duration for

(1.5) is about 2.7% greater than that for (1.5′). When R0 = 2, Imax for (2) is about 2.2% greater

than that of (2′), with both outbreak peaks occurring in generation 28. For sample average (2)

R(∞) is about 1.3% greater than R(∞) for (2′), and the outbreak duration for (2) is about 0.9%

greater than that for (2′). For R0 = 5, Imax for (5′) is about 0.4% greater than that for (5), both

peaks occurring in generation 12. For (5′) R(∞) is about 0.09% greater than that for (5) and the

outbreak duration for (5) is about 0.1% greater than that for (5′).

Table 4.5: Averages for 1000 fixed graph runs and 1000 random graph runs,R0 = 1.5, 2, and 5

Outbreak Peak Peak Moment Final Outbreak Size Outbreak Duration
Imax Imax Generation Rterminal = R(∞) End Generation

(1.5) Fixed 15.841 41 342.946 54.085
(1.5′) Random 15.981 40 337.641 52.684

(2) Fixed 54.045 28 640.56 49.331
(2′) Random 52.872 28 632.427 48.88

(5) Fixed 214.201 12 984.191 30.261
(5′) Random 215.126 12 985.104 30.22
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(1.5)R0 = 1.5, fixed contact network (1.5′)R0 = 1.5, randomly generated networks

(2)R0 = 2, fixed contact network (2′)R0 = 2, randomly generated networks

(5)R0 = 5, fixed contact network (5′)R0 = 5, randomly generated networks

Figure 4.5: Averages of 1000 sample simulations for the spread of infectious diseases over a
random social network with R0 = 1.5, 2, and 5. Left column: fixed network. Right column:
average over 1000 random networks.
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4.2 ODE Compartmental Model Simulation

In the next table and figures we display behaviour of the system of ODEs from Chapter 2, equations

(2.2)–(2.5). The Runge-Kutta (4,5) algorithm is used by MATLAB/GNU Octave code to solve the

system of equations once the value of R0 is set. Because the system is deterministic with initial

conditions, only one run for eachR0 value is required.

In comparing results of this deterministic model with the previous contact network model it is

easiest to compare results of Table 4.5, averages over 1000 runs, with Table 4.6. The results of

the Chapter 2 SEIR model can be generalized to say that the assumption of homogeneous mix-

ing increases numbers of infectious individuals and accelerates the spread of infectiouness in the

population, compared to the contact network model. Comparison of homogeneous mixing ver-

sus contact network for R0 = 1.5 shows that Imax is 31.76 versus about 15.9, occurring around

generation 12 versus generation 40 in the contact network model. WhenR0 = 2, Imax is 76.26 oc-

curring around generation 8 versus about 53 at generation 28 in the contact network model. When

R0 = 5, Imax is 226.96 occurring around generation 3 versus about 214 at generation 12 in the

contact network model.

Similarly for comparing final outbreak sizes R(∞) and when they occur, for all values of R0 the

R(∞) values are greater and epidemic duration times are shorter in the deterministic model.

Table 4.6: Infectious in Chapter 2 SEIR model,R0 = 1.5, 2, and 5

R0 Outbreak Peak Peak Moment Final Outbreak Size Outbreak Duration
Imax Imax Generation Rterminal = R(∞) End Generation

1.5 31.76 12.34 583.92 51.11
2 76.26 7.89 797.15 33.32
5 226.96 3.21 993.05 14.63
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(a)

(b)

(c)

Figure 4.6: Infectious numbers in SEIR model for infectious disease spread in population with
homogeneous mixing: (a)R0 = 1.5, (b)R0 = 2, (c)R0 = 5.
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CHAPTER 5: CONCLUSION AND FUTURE STUDY

In the preceding chapters we have considered the SEIR model, a variation of the SIR infectious

disease model that admits a latency period for the disease. We first examined the compartmental

model that assumes homogeneous mixing in the host population. We discussed the mathematics

of the model as well as its numerical simulation. Next we examined a network model that al-

lows heterogeneous mixing beause connections between individual nodes are defined in terms of

a probability distribution. We employed numerical simulation for this model as well. We have

extensively explored numerical simulations of disease spread on randomly generated networks of

one thousand nodes each. Examples of results have shown that asR0 increases in value, epidemics

occur in less time and result in greater numbers of infected individuals. As tables of figures show,

asR0 increases final outbreak size increases while outbreak duration decreases.

It was found that in the compartmental model that assumes mass action incidence and homoge-

neous mixing, there are greater numbers of infectious individuals and the disease spread during an

epidemic occurs more rapidly. It appears that disease spread is less acute when a more realistic

assumption is made of heterogeneous mixing of individuals within the population.

There are several possible avenues of future study. One focuses on developing and analyzing varia-

tions of the SEIR model. For example, there could be more than one infectious stage in the model,

so the model could be SEIIR or SEIIIR or something similar. With more stages the challenge in-

creases as to how one could define the model so that meaningful and useful mathematical analysis

can be employed without paying too high a penalty in complexity. An alternative avenue of study

would be to take the SEIR model discussed here and try applying it to a particular disease whose

behavior seems similar. Ideally the model could shed light on the disease behavior in a way that

would assist health care workers in the containment or treatment of the disease. It is possible that
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a variation of the SEIR model would be most helpful in this regard. Computer simulations could

help determine the possible effectiveness of various treatment or containment options.
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