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ABSTRACT 

Leptospirosis, a zoonotic disease caused by pathogenic spirochete bacteria (family 

Leptospiraceae, genus Leptospira), is endemic in developing tropical regions of the world.  It 

occurs in epidemics and is endemic in Ecuador where environmental conditions are ideal for 

maintenance.  The role of soil as a long term reservoir has been previously been documented.  

Geographic Information System (GIS) and Remote Sensing (RS) technology was used in our 

study to further explore the role of soil as an environmental reservoir and its potential use as a 

static risk indicator for disease.  Red, Green, Blue (RGB) spectral band data from known 

leptospire positive soil sites were extracted from high resolution satellite images and used to 

construct the first ever remotely dependent soil-based model.  The soil co-variates failed to 

demonstrate statistical significance; however, elevation was found to be statistically significant.  

The soil type most associated with soil samples where leptospire DNA was detected using real-

time PCR analysis was cambisol, a soil type with a common distribution in Ecuador and Africa.  

This exploratory analysis presented a novel idea of combining environmental microbiological 

sampling and GIS/RS technology to better examine static risk indicators such as soil.  Further 

analysis is warranted based on spatial relationships noted. 
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CHAPTER 1: INTRODUCTION 

The causative agents of human leptospirosis are spirochete leptospire bacteria (family 

Leptospiraceae, genus Leptospira). Over 200 pathogenic serovars, the basic unit of 

classification based on serology, have been identified [1].   DNA-DNA hybridization methods 

classify 20 species of leptospires including six saprophytic (L. biflexa), five intermediate, and 

nine pathogenic species (L. interrogans) [2].  Saprophytic leptospires are benign environmental 

bacteria which subsist on nutrients in surface water and mud [3].  Leptospires of intermediate 

pathogenicity are opportunistic organisms that have been isolated from humans and animals [2].   

Pathogenic leptospires maintain a complex lifecycle between animals and the 

environment where humans are accidental hosts.  The bacteria are maintained in asymptomatic 

chronic renal carrier animal hosts [4].  Most mammalians are susceptible to infection; however, 

rats and mice are considered the primary animal host.  They maintain lifelong asymptomatic 

infections and excrete large amounts of infective leptospires into the environment [5].  Livestock, 

swine, and dogs have been linked with disease transmission which has been attributed to their 

close proximity to humans.  Pathogenic leptospires have been detected in a wide variety of 

wildlife including bats in the Peruvian rainforest.  This reflects the ubiquitous distribution of 

disease-causing leptospires in domestic and wild animal populations [6,7].   

Water and soil environments play a key role in disease transmission.  They serve as 

long term reservoirs for pathogenic leptospires and a continual source of infection.  Pathogenic 

leptospires are associated with stagnant bodies of water and muddy rivers which provide 

optimal environments for maintenance and viability in the absence of a host [3].   
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Pathogenic leptospires can survive in soil for long periods of time outside a host.  

Survival times in soil have been reported from many weeks to months.  Leptospires remain 

viable in acidic soils with a pH of 5.5 for 42 days and in more neutral soil for up to 74 days [8].  

The organism can form biofilms in both biotic and abiotic materials (glass, plastic) as an 

adaptive survival strategy [9]. Additional factors that support environmental maintenance include 

an alkaline pH, low levels of heterotrophic bacteria, high oxygen and low salt concentration [3].   

Moisture is a universal requirement for leptospires.  The bacterium is killed by dehydration or 

temperatures greater than 50 oC [10]. 

High humidity, heavy rainfall, and warm temperatures have been identified as 

environmental drivers of leptospirosis [11].  A link has long been established between heavy 

rainfall and epidemics [12].  Epidemics have been linked to periods of heavy rainfall and 

flooding events throughout the world including Argentina, Bangladesh, Brazil, Costa Rica, Cuba, 

Ecuador, India, Korea, Malaysia, Mexico, Nicaragua, Philippines, Portugal, Puerto Rico, Russia, 

and the United States [13].  Climate change has been cited as an emerging future driver for 

disease.  Links between global warning and increases in the frequency and intensity of natural 

disasters and flooding events associated with climate change continue to be made.  Global 

warming due to climate change could potentially increase disease burden by causing carrier 

animals to migrate into higher elevations or helping to increase survival time of leptospires in the 

environment [14]. 

Humans contract leptospirosis when the organism enters the bloodstream through any 

compromised skin or mucous membranes [15].  This can occur through direct contact with 

infective animal products or waste (blood, urine, pelts, wool, meat, reproductive materials, or 

milk).  Leptospirosis can be related to occupations (slaughterhouse workers, farmers), food and 

water consumption, and recreational habits (hunters/trappers).  Ingestion of contaminated food 



  
 

3 
 

and water and inhalation of contaminated aerosol droplets following the spraying of dairy cow 

udders during milking have been documented [4].   

Leptospirosis is also frequently contracted indirectly through contact with water, soil, or 

vegetation contaminated with animal urine containing leptospires [15,16].  A widely accepted 

water-borne transmission model elucidates how indirect leptospirosis transmission likely occurs 

through environmental exposure.  This model asserts that rain water carries pathogenic 

leptospires in soil contaminated with the urine of infected animals to surface water where new 

hosts are infected.  Specifically, rat nests (habitats) in the ground are posited to be flooded 

during heavy rains, and pathogenic leptospires may be driven to the surface where humans 

come into contact with them.  This model may not be complete, however, since many cases 

actually do not occur until months after the onset of heavy rain.  Furthermore, cases do not 

always correlate with years of heavier than normal rainfall [3,17]. 

Diseases symptoms vary greatly from mild, unapparent to severe, fatal disease.  The 

disease presents as a fever of unknown origin with muscle pains and non-specific complaints. 

Between 20-40% of the cases involving a fever of unknown origin may be due to leptospirosis 

[18].  Non-specific signs present similarly in a host of other diseases including dengue fever, 

malaria, and influenza often leading to a delayed or missed diagnosis [15].   Co-infections with 

dengue fever occur which further complicates diagnosis and treatment efforts [19,20]).  Clinical 

signs seen in the most severe manifestation of the disease, known as Weil’s disease, are 

related to renal dysfunction, hepatic dysfunction, pneumonia, hemorrhagic disease, and 

inflammation to the central nervous system [4].  Average reported case fatality rates vary from 

5-20% [21].   Vaccination as a preventive method is very limited in both humans and animals.  A 

human vaccine, Vax-Spiral ®, was produced and used in Cuba and demonstrated 

immunogenicity against all included serovars with a 78% efficacy [22]. 
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Application of highly diluted potentised bacteria in oral vaccines prior to epidemics has 

been evaluated as a potential preventive measure in Cuba [23].  To date, however, acceptable 

primary prevention measures are avoidance of stagnant bodies of waters and flood waters, 

wearing protective gear when engaging in recreational water activities or in areas where contact 

could occur with animal excreta, and covering open wounds and abrasions when around 

potential sources of contamination [24].  Secondary prevention measures include early 

detection and initiation of antibiotic therapy, both of which improve health outcomes. 

Direct and indirect methods are used to detect leptospires in various types of human, 

anima, and environmental samples.  Direct detection methods involve antigen detection through 

direct visualization with microscopy, DNA detection, or culture methods.  Direct visualization of 

leptospires in blood, urine, and rarely cerebrospinal fluid has been conducted using dark-field 

microscopy.  This technique, however, is not sensitive or specific with approximately 104 

leptospires per ml required for one cell per field for visualization [25].  Culture is a confirmatory 

method for diagnosis but has limited utility in clinical settings.  It requires special, expensive 

media.  Additionally, leptospires are fastidious organisms that often take months to grow [26].  

The use of culture is largely limited to reference laboratories for these reasons.   

The importance of molecular methods for rapid detection of leptospires is increasing as 

technologies improve.  Polymerase Chain Reaction (PCR) methods including conventional and 

real-time PCR methods have been described in the literature for detection of leptospires in 

human, animal and environmental samples [25,27].  Typical processing time is between 2-5 

hours.  In general terms, conventional PCR techniques involve repeated cycling of DNA 

denaturing, primer annealing, DNA duplication by a DNA polymerase enzyme, and 

electrophoresis in agarose gel [28].  This process allows the amplification of small numbers of 

leptospires that may be present early on in the disease process and increases the ability to 

obtain definitive diagnosis before antibodies are detectable.   
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Real-time PCR assays are faster and less prone to contamination issues.  Limitations of 

PCR technologies include expense and requirements for specialized equipment such as 

thermocyclers [25].  Additionally, samples must be taken prior to antibiotic therapy since 

antibiotics rapidly clear the organism from blood and urine [29].   

Isothermal methods for DNA amplification such as Loop-mediated Isothermal 

Amplification (LAMP) have been studied for use in various infectious diseases.  The use of loop 

primers have demonstrated ability of amplify small amounts of leptospiral DNA to 109 copies 

within 60-90 minutes [30].  Reported equipment requirements include a heat block or water bath 

maintained at a single temperature which makes this technology potentially useful in the field or 

clinical setting as well as for use in low resource countries.   

The gold standard for definitive diagnosis is serologic testing for antibodies via the 

Microscopic Agglutination Test (MAT).  Paired serum samples taken at least two weeks apart 

are tested for the presence antibodies with a fourfold or greater increase in titer levels is 

considered confirmatory [12].  Widespread use in low resource settings is limited due to cost of 

testing and specialized laboratory requirements.  A reference library of geographically 

appropriate live leptospire strains is required for testing.  Additionally, the MAT shows limited 

sensitivity in early stages of illness (29.0 -48.7%).  The interpretation of test results involves 

visual inspection for agglutination.  The subjective nature of this interpretation has been cited as 

a diagnostic limitation of the test [12, 31-33].  

Estimates of global disease burden range between 500,000 to 1,000,000 cases per year 

occur; however, true disease burden is unknown due to limitations in diagnostics, inconsistent 

surveillance, and a low index of suspicion among healthcare workers [18]. The World Health 

Organization (WHO) prioritizes the disease as the most underreported neglected tropical 

zoonosis worldwide [12,33].  Leptospirosis occurs with greatest frequency in tropical and sub-

tropical regions where year round transmission and maintenance is supported by moist 
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environments.  The estimated incidence of human leptospirosis is 0.1 to 1 per 100,000 

population in temperate regions compared with an incidence of 10 or more per 100,000 

population in tropical regions [34].  The highest median annual incidences per 100 000 

population are as follows:  Africa (95.5), Western Pacific (66.4), the Americas (12.5), SE Asia 

(4.8), and Europe (.05) [12].   

In Ecuador, human leptospirosis occurs as an endemic disease and in epidemics 

following heavy rainfall and flooding.  Between 1994 and 2012, 3,606 cases were detected and 

reported throughout all provinces through the national surveillance operated by Ecuador’s 

Ministry of Health Epidemiological Surveillance System (Figure 1) [35].  A significant spike 

occurred in 1998 where reported cases increased from 3 in 1997 to 398 in 1998.  Heavy 

flooding occurring in 1997-1998 due to the effects of El Nino was likely a major contributing 

factor.  Similar flooding events associated with the El Nino warm water current typically occur 

every three to four years in Ecuador making the country prone to leptospirosis epidemics.  El 

Nino has been associated with increases in frequency and intensity in coastal regions in 

Ecuador as well increases in landslides and storm surges [36].  In 2012, 95.7% (1224/1279) of 

human leptospirosis cases were from the coastal region.  The greatest incidence in 2012 

occurred in the coastal province of Manabí 63.71% (975/1279) (Figure 2).  The major burden of 

leptospirosis in Ecuador occurs in Manabí province in rural parishes. Case prevalence 

(seroprevalence) and incidence data from Ecuador’s Ministry of Health Epidemiological 

Surveillance provided by Veronica Barragan from Northern Arizona University demonstrates 

that the majority of leptospirosis in Manabí occurs in the rural parishes of Portoviejo and Santa 

Ana (Table 1 and 2).   Figure 5 depicts a 2011 leptospirosis incidence map per 100 000 

population by province in Continental Ecuador.   

GIS was developed in the 1960s by geographers and mathematicians for the purpose of 

mapping and management of large amounts of geographically referenced data such as national 
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census data [37].  Advances in information technology and increased availability of spatial data 

have contributed to increased use of GIS in both public health practice and research [38].  In 

public health practice GIS is increasingly being used as an evidence-based decision support 

tool for guiding policy, resource allocation, and program management.  The technology has also 

been incorporated into disease surveillance and control programs at local, national, and 

international levels.  For example, the World Health Organization (WHO) initiated an ongoing 

Public Health Mapping Program and GIS program in 1993 designed to strengthen surveillance, 

prevention and control programs and improve management and knowledge of priority diseases 

[38]. 

Two GIS-enabling technologies are Global Position System (GPS) and Remote Sensing 

(RS).  GPS allows manual geo-referencing of important data points that can later be uploaded 

into the GIS software platform and mapped [39].  RS refers to use of sensor technology on 

satellites to collect images of the Earths’ surface which contains geographical, environmental, 

and meteorological data.  Examples of satellites include Landsat, World-View2, SPOT, GeoEye-

1, QuickBird, and IKONOS [39].  Images collected vary in resolution, and higher resolution 

images are significantly more expensive to purchase.  Currently, GeoEye-1 images are the 

highest commercially available images with a ground resolution of .41 meters [40]. This level of 

resolution is referred to as sub-meter resolution.  Use of RS permits identification of site-specific 

predictor variables related to geography or calculation of environmental proxy variables from the 

information captured on the images.  It is widely co-applied with GIS in public health studies.   

Advances in GIS and RS technologies now offer new public health research tools to 

explore temporal and spatial relationships in diseases with complex transmission lifecycles like 

leptospirosis.  It allows spatial and temporal analysis among multiple inputs from human, 

animal, and environmental data that can be applied in assessing risk for disease.  Disease risk 

models created through use of GIS analysis can serve as powerful planning tools for disease 
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prevention programs in evidence-based public health practice.  They can enable more targeted 

allocation of limited resources for control and prevention, especially important for neglected 

diseases in resource poor settings.  

Problem Statement  

 In light of its complex ecology, lack of geo-location of representative sites, and lack of 

availability of mapping data in the literature, identification of a static indicator for creation of a 

robust infectious disease leptospirosis predictive model is needed.   

Study Purpose 

The purpose of our study was to explore the potential utility of soil type as a static 

indicator of risk for leptospirosis using Geographic Information System (GIS) and Remote 

Sensing (RS) technologies.  An additional aim of the study was to analyze potential 

environmental drivers of leptospirosis in rural, coastal Ecuador within a GIS environment.   

Definitions and Terms  

Risk models:  Quantitative estimations of the probability of specified adverse events from 

defined hazards [41].  

Geographic Information System (GIS):   people, data, computer software, hardware, and 

procedures and methods [42]. 

Remote Sensing Model:  Model based on the use of sensor technology on satellites to collect 

images of the Earths’ surface which contains geographical, environmental, and meteorological 

data [39].   

Spectral Signature:  Spectral signatures are radiation signals collected at different spectral 

bands and are the basis for land surface classification and evaluation of geophysical properties. 

The spectral signature represents the connected points of solar radiation emitted from a 

material plotted over a range of wavelengths.  The spectral signature can be measured with a 



  
 

9 
 

task spectrometer or separation of red, green, blue, and Near Infrared portion of the 

electromagnetic spectrum in remotely sensed images [43].   

Endmember spectra: Pixel spectra that lie at the vertices of the image simplex in n-dimensional 

space [44].  

Research Objectives  

The primary objective of our study was to determine if a soil-based remote sensing 

model could be constructed within a GIS environment from known infected sites for pathogenic 

or opportunistically pathogenic leptospires in Ecuador that can accurately forecast unknown, un-

sampled positive infective sites based on soil type.  Our additional research aim was to evaluate 

potential statistically significant drivers for leptospirosis in rural, coastal Ecuador.    

Delimitations  

 In this study, individual risk factors were not evaluated due to the lack of individual case 

data and patient confidentiality concerns.  The literature review for the study is highly focused 

on research pertaining to soil, GIS-based studies relative to risk mapping and remote sensing 

disease risk models, and leptospirosis research conducted in the Americas and Ecuador.  

Chemical analysis of soils, testing on humans and animals was not performed due to cost. 

Limitations 

Study limitations are inherent to an ecological study design and ecological fallacy. Population 

level findings were not able to be applied to individual.  The collection of samples was limited 

temporally to one season due to time constraints of the student’s program.   
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CHAPTER 2: LITERATURE REVIEW 

The most comprehensive analysis of leptospirosis incidence in the Americas to date was 

research published by authors Costa et al. in 2012 [45].  In this original research, the authors’ 

main objective was to evaluate leptospirosis reporting practices throughout the Americas.  To 

achieve this, the authors queried several sources to include the Ministry of Health official 

websites, international organizations, personal communications, and international morbidity 

databases.  The following three countries represented greater than 80% of the cases reported 

from the period of 1996-2005:  Brazil, Costa Rica, and Cuba.  The median annual cases 

reported by Ministry of Health official websites in these three countries were 3,165.5, 196, and 

558.5 respectively.  The median reported number of annual human leptospirosis cases in 

Ecuador was reported at 61 cases per 100 000 [45].   

Of the ten South American countries and territories reporting data, three (Argentina, 

Brazil, and Ecuador reported leptospirosis cases every year from 1996-2005.  Case fatalities 

were only reported for three countries which may highlight an inherent problem with the 

methodology of this study [45].  This study highlighted some overall weaknesses in leptospirosis 

surveillance and reporting systems in the Americas.  The authors discussed the fact that there is 

a lack of standardization, regionally and internationally, in reporting requirements, and there is a 

disparity in information availability for the years 1996-2005 reported in this study.  Also, the 

authors point to the fact that there may be variability in case definitions and laboratory 

confirmation methodology which may contribute to erroneous numbers of cases reported [45].  

The study highlights the fact that the true incidence is most likely grossly under reported due to 

the variability in surveillance and reporting systems and lack of sensitive and specific tests.  
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Several studies examine the association of leptospires with specific soil types.  Early 

research of the geographical distribution of pathogenic leptospires conducted by Kingscote 

(1970), demonstrated a correlation of leptospiral habitats with bedrock type [46].  In this study, 

Paleozoic bedrock composed of limestone and dolomite was indicated as a reliable marker for 

enzootic disease with colloidal clay common to positive habitats [46].  The link between specific 

soil types and increased risk for disease is further supported by an ecological study conducted 

by Schneider et al (2012) where potential drivers for leptospirosis transmission in Nicaragua 

were evaluated [47].  In this study increased risk of disease was associated with the following 

two types of soil combination: cambisol over pyroclastic larval bedrock and andosol over 

volcanic ash [47].  Andosols are young soils formed in volcanic ash and contain large amounts 

of glass and colloidal materials commonly found in leptospirosis-prone regions [48,49]. 

 Environmental data, geographic information systems (GIS), spatial statistical analysis, 

and predictive risk maps have been used for the investigation and management of a range of 

infectious diseases including malaria, onchocerciasis, West Nile Virus (WNV), Eastern Equine 

Encephalitis (EEE), schistosomiasis, and Lyme disease [50-55]. GIS-based studies in this area 

are generally focused on analysis of vector ecology, exploration of environmental drivers in 

disease transmission, and the development of risk models and early warning systems.  These 

studies identify geographic areas with high disease prevalence and/or risk of outbreaks, and are 

useful for guiding allocation of scarce public health resources. GIS studies in vector-borne 

diseases highlight areas where the technology has provided greater insight into transmission 

patterns and environmental drivers.  Our study is the first to use GIS and RS technology to 

evaluate the feasibility of a soil-based model for human leptospirosis.  Remote Sensing (RS) 

technology has proven highly useful tool for identifying high risk areas to improve allocation of 

public health resources for many vector-borne diseases including malaria, Eastern Equine 

Encephalitis, and West Nile Virus.  Jacob et al. (2005) in Kenya, Africa examined the effect of 



  
 

12 
 

changes in land cover due to rice husbandry practices over time on abundance of anopheline 

larval habitats [51].   Spatial datasets were constructed from entomological larval sampling data, 

demographic, hydrological, and agricultural data in order to evaluate potential associations.  

Findings illuminated a correlation between larval habitat and land use changes and further 

identified the areas of higher land use changes which could have implications for targeted pest 

control applications in resource poor settings.   

A study was conducted in 1991 to evaluate the distribution of the deer tick which 

transmits Lyme disease in Northwest Illinois [50].  Geo-referenced data retrieved from tick 

infested deer were added into the state database which contained additional environmental, 

geographical, and biological data.  Tick distribution on deer was found to be clustered on foci 

near rivers.  The presence of wooded vegetation, sandy soil, and river location were detected as 

possible risk factors [50].  The study offered insight into the dispersal pattern of the vector and 

authors planned further studies to continue to document vector dispersal patterns over time.  

Studying the geographical distribution of vectors and combining this data with human health-

related data was referenced as a future initiative in this study.  This type of surveillance is highly 

relevant over twenty years later in light of re-emerging diseases.  

A GIS-based study of the ecology of triatomines, the vector for Chagas disease was 

conducted in a Brazilian village in order to assess risk of transmission [56].  Triatomines were 

sampled at both inhabited and uninhabited dwellings.  Additionally, samples were taken from 

wood heaps in the village.  A kernel density estimation map was generated in a Geographic 

Information System, and subsequent analysis identified the wood heaps as the greatest source 

of risk for transmission.  Additional local risk areas noted were identified in uninhabited 

dwellings where animals were kept.  From this study, environmental risk factors related to local 

vector and human behavior were identified.  Human practices such as storage of animals in 

wood buildings were identified as contributing factors to the spread of disease [56].    
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  Similarly another study design utilized remotely sensed data in combination with 

intensive field sampling of anopheles mosquito habitat to study human malaria and rice field 

anopheline population dynamics [57].  The study presented findings from a 1987 background 

study conducted by NASA in Sacramento California in 1985 designed to identify environmental 

parameters influencing mosquito production using remotely-sensed data.  The original 1985 

study found that rice fields with high larval populations were associated with fields with early 

developing vegetation canopies.  The 1987 study expanded the original study and focused on 

104 irrigated rice fields in the same area in California.  Spectral values, by channel, were 

extracted from LANDSAT remote satellite images, and a digital land use coverage was created 

in ARC GIS software.  Land use coverage maps were used to located sampled fields and 

calculate distances between each rice field and nearest livestock pastures.  High producing 

fields were found to be clustered in areas adjacent to livestock pastures.  The study 

demonstrated practical applications of RS technology to improve mosquito abatement efforts 

[57]. 

The focus of a research article published in 2012 on malaria in the Amhara region of 

Ethiopia was on the development of a computerized early warning system capable of 

forecasting epidemic risk [52].  The methodology centered on the use of RS to extract 

environmental, climate, and land surface variables to use in modelling risk.  Disease specific 

data were incorporated in a time-series analysis to calculate risk indices.  The reported 

predictability of the model through a cross-validation study was 50% [52].  Several limitations to 

the study were discussed.   
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Data related to human behaviors and other potential environmental drivers were not 

included in the model.  The use of district level data limited the detection of finer-scale 

heterogeneity.  Limited availability of malaria surveillance data was also mentioned.   The 

system demonstrated promise for monitoring and surveillance activities but was not fully 

developed as a predictive tool. 

 Similar focus on developing predictive models is found in GIS-based dengue fever and 

West Nile Virus research. A study on dengue fever in the Philippines outlined a prediction 

method for detecting dengue incidence levels four weeks in advance.  Retrospective validation 

was performed with a reported prediction accuracy of 78% [53].  Authors caution that any 

predictive model developed will be highly dependent on accuracy of data [53].  This is of 

concern in many parts of the world where surveillance and reporting methods lack 

standardization and underreporting is commonplace.   

A study performed in the United States on West Nile Virus evaluates a national-level 

predictive model generated using GIS and RS technology [58].  The model was found 

retrospectively to predict national-level WNV incidence with a resulting correlation coefficient of 

.86 [58].  The authors, however, noted potential incongruities with regional model predictability 

values much lower than national predictability which compromised overall model validity.  

Limitations of small numbers of human cases were also discussed.  A WNV study utilizing GIS 

and RS conducted in Iowa reported a significant novel finding of an association between rural 

agricultural settings and human WNV disease [54].   

 A study was conducted on the encephalitic viral disease Equine Eastern Encephalitis 

(EEE), a disease which maintains a lifecycle between mosquito vectors and birds with humans 

and horses as dead end hosts [55].  The study conducted in Tuskegee, Alabama in 2005 

utilized GIS and RS with field and remote sampled mosquito and bird data to explore spatial 

relationships between vector and host [55].   Through use of various functions in GIS, 
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regression and spatial liner models were generated. Significant environmental and terrain 

variables were identified.  The findings demonstrated the utility of GIS and RS to better 

understand spatial relationships between vector and host with the potential for future use in 

surveillance programs and prediction of EEE transmission risk [55]. Additionally, a highly 

sensitive and specific remote sensing model was developed and validated to predict Simulium 

damnosum S.l. breeding sites in West Africa which is the black fly vector for onchocerciasis, a 

highly debilitating disease and major cause of blindness worldwide.   The model utilized a 

spectral signature of known positive sites associated with fast flowing water passing over pre-

cambrian rock.  The spectral signature for bedrock was highly predictive for breeding sites of the 

black fly vector of onchocerciasis in Sub-Saharan Africa [59]. The model was generated through 

use of remotely sensed QuickBird images at .61 meter resolution containing geo-referenced 

validated vector aquatic habitats and the Li-Strahler model.   

Class estimates were obtained using ENVI, a commercial GIS software product that 

utilizes an object-based classification algorithm. Non-parametric estimators from the 

endmember spectra and the geometric-optical model were then used to construct a Boolean 

model that generated a robust spectral signature reference in an ArcGIS database specific for 

the verified Simulium damnosum s.l. habitats.  These unique signatures were then used to 

predict larval habitats along rivers in unvisited, untested sites in Togo and Uganda [59].   

In a study conducted by Jacob et al. the following steps are described for developing a 

robust model for forecasting canopied Simulium damnosum s.l. larval habitats in Burkina Faso:  

habitat mapping, generation of remote sensing models, object-based image classification, 

successive progressive algorithm, 3D radiative transfer equation/Li-Strahler Geometric Optical 

Model, and Validation [60].  These steps were outlined for using an unbiased stochastic spectral 

endmember interpolator of a potential vector/disease agent habitat which could be useful for 

soil-based diseases if a static indicator is discovered.  
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 Image classification can be achieved by the following three methods:  pixel-wise image 

classification, sub-pixel wise classification, and object-based image classification.  Pixel-wise 

image classification methods work under the assumption that each pixel is pure and is labelled 

as a single land use land cover type.  Given the previous discussion of heterogeneity in images, 

it is not ideal for classification for lower resolution images.  Using sub-pixel wise classification a 

more accurate estimation of the proportion of each land cover type can be attained.  Fuzzy 

classification, artificial neural networks, regression modeling, spectral mixture analysis, and 

multiple endmember spectral analysis are examples of sub-pixel wise classification [67].  Higher 

accuracy has been demonstrated when object-based classification is utilized.  Geographical 

objects are the basic unit of analysis in object-based models.  

Numerous endmember extraction techniques and models are described in the literature.  

A 3D radiative transfer model and L-Strahler geometric optical model were used to extract 

endmembers in the study conducted by Jacob et al. [60].  The 3D radiative transfer model 

calculated adsorption of seasonally oriented canopy radiance measurement and infused 

Eddington approximations.  Eddington approximation is a special case of the two stream 

approximation applied in spectral unmixing approximations with the underlying assumption that 

intensity is a linear function where µ=cos0 [60].    

The Li-Strahler geometric optical model which is an invertible model commonly used in 

remote sensing.  It allows calculation of spectral properties given surface conditions and 

extraction of surface structures from remotely sensed signals over vegetation canopies [68].  

The model is based on the assumption that Bi-directional Reflectance Distribution Function 

(BRDF) is a purely geometric phenomenon resulting from a scene of discrete 3-dimensional 

objects being illuminated and viewed from different positions in the hemisphere. The reflectance 

of a single pixel can be modeled by linear combination of the following three components: sunlit 

canopy (C), sunlit background (G) and shadow (T) [69].   
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Many spectral unmixing algorithms are described in literature.  When using remotely 

sensed images for analysis the issue of spectral mixing must be addressed.  Spectral mixing 

refers to the fact that within any remotely sensed image few image pixel spectra are 

homogenous [44]. Image endmembers, commonly referred to as endmembers, are pixel spectra 

that lie at the vertices of the image simplex in n-dimensional space [44].  Endmember variability 

related to spectral mixing can severely affect the accuracy of subpixel land cover fractions [70].  

Spectral Mixture Analysis (SMA) is used to account for mixture of pixels in remotely sensed 

images. The two categories that broadly define SMA techniques are those that reduce within 

class variation or enhance between class variation and those that test all endmember 

combinations that are potentially feasible and selection of the best fit model [70].  Techniques in 

the former category include automated short-wave form infrared (SWIR) unmixing, stable zone 

unmixing (SZU), and various spectral weighting techniques.  Methods described for the latter 

category include Multiple Endmember Spectral Mixture Analysis (MESMA) and endmember 

bundling [70].   

The broad steps in conducting MESMA include development of a spectral library 

followed by image unmixing using every possible combination of two, three, and four 

endmembers applied to each pixel [60].  In a study conducted by Myint and Okin, a MESMA 

technique was applied to characterize urban land cover in a growing desert environment in 

Arizona [71].  The technique was employed over conventional SMA because it allows 

endmembers to vary on a per pixel basis, and SMA is unable to account for non-linear mixing 

[71].  The study utilized a combination of three land cover types including impervious surfaces, 

soil, and vegetation.  Findings suggest that MESMA is highly effective in mapping urban land 

covers.  Some signature confusion was noted between bright soils and impervious surfaces.  

Also confusion was noted between dry/exposed soil and bright impervious surfaces.  To 

address the latter it was recommended to separate urban and non-urban land covers using 
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different models and different endmembers separately.  Using two endmembers for one land 

type can be employed to improve model performance [71].    General limitations cited for 

MESMA include the requirement use of hundreds of endmembers which can complicate 

interpretation and computation [60].  

Conventional mathematical algorithms for spectral image classification do not quantify 

the dependence between a pixel and its neighbors known as spatial autocorrelation [66].  A 

robust Successive Progressive Algorithm used within a Boolean {false, true}domain is described 

by Jacob et al. to spectrally separate with-in class feature attributes in n-dimensional space and 

quantitate sub-pixel endmember heterogeneity [60]. Decomposed endmembers can be used to 

generate a robust spectral signature in a GIS environment that can then be kriged in order to 

identify unknown, unsampled productive habitat sites in a blind study fashion [60].  Ordinary 

kriging is a geostatistical method which utilizes spatial correlation of data to determine weighting 

values and models correlation between data points to determine the estimate value at an 

unsampled point [66].   

The final step in the described process for generating a robust spectral signature using 

endmember spectra is the validation process.  In the referenced study, this was accomplished 

through a process referred to as ground truthing where field verification acquired through 

sampling of all forecasted habitat sites is used to generate a validation model.  The validation 

model generated by Jacob et al. demonstrated a 100% correlation among predictive geo-

referenced productive vector habitats based on seasonal-sampled larval density count values 

[60].  A robust remote sensing model known as the Black Rock-Rapid (BRR) model was 

similarly developed to predict larval habitats demonstrated a sensitivity of 80% and a specificity 

of 92% for predicting productive larval habitats [59]. 
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CHAPTER 3: METHODS 

The Republic of Ecuador is located in Western South America with a western border of 

the Pacific Ocean at the Equator with Colombia to the north and Peru to the south.  It represents 

a total area of land and water of 283, 561 kilometers and includes the Galapagos Islands.  Four 

distinct regions are recognized:  Costa, Sierra, Oriente, Galapagos Islands [72].  Figure 3 is a 

population map representing the provinces of continental Ecuador, which does not include the 

Galapagos Islands. The islands were not evaluated as a part of this study.  The climate is highly 

variable across the regions ranging from tropical along the coast and in the Amazonian jungle 

lowlands to more temperate conditions inland and at higher elevations.  The terrain is also 

variable from the coastal plain, inter-Andean central highlands (sierra), and the flat and rolling 

eastern jungle terrain.  Ecuador is prone to frequent earthquakes, landslides, volcanic 

activity, periodic droughts, and floods [72]. Furthermore, the largest coastal and 

mountain cities are in earthquake-prone areas where populations are particularly vulnerable to 

leptospirosis outbreaks following natural disasters [36].  

Sites targeted for testing were adjacent to areas where productive water sampling is 

being conducted in riverine bodies in eastern, rural communities in Manabí, Ecuador.  Manabí 

province is a coastal province bordered to the north by the province of Esmeraldas, to the south 

by Guayas and Santa Elena, and to the east by Guayas, Los Rios, Santo Domingo de los 

Tsachilas, and west by the Pacific Ocean.  Hydrology and elevation are significant factors to 

flooding and epidemics in this region.   The climate is subtropical dry to moist tropical. The 

winter season is from early December to the end of May which warms due to El Nino. Summer 

season extends from June to December and is mildly influenced by the cold Humboldt Current. 
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The temperature is not uniform across the province, the average temperature in 

Portoviejo, thecapital, is 25 degrees Celsius and in the port city, Manta where average 

temperatures are 23 degrees Celsius.  The province is marked by rapidly urbanizing and rural 

areas where access to basic services is limited [73].  Figure 4 depicts a 2010 population map of 

the cantons of Manabí province.  We conducted our sampling in the cantons of Portoviejo and 

Santa Ana.  Portoviejo has a greater population which is highly concentrated in urban areas; 

however, our sample sites were outside the major urbanized areas in less populated locations in 

both Portoviejo and Santa Ana.     

In the first step of our methodology we identified known positive sites for disease-

causing leptospires (pathogen mapping) in rural parishes in Ecuador where leptospirosis is 

endemic.  Our study was conducted with conjunction with an ongoing leptospirosis collaborative 

study between the Northern Arizona University (NAU) and the University of San Francisco-Quito 

(USF-Q).  In their year-long study, water samples from river sites in the rural parishes of 

Calderon and Santa Ana were being tested for the presence of pathogenic leptospires in 

addition to human and animal samples.  The overall goal of the study was to link species 

between humans, animals, and the environment to better understand the risk factors associated 

with disease transmission of leptospirosis in Ecuador.  Investigators developed real-time 

quantitative polymerase chain reaction assays with specificity to discriminate among leptospiral 

species.   

 We coordinated our soil sampling with their ongoing scheduled water sampling and 

collected 64 field soil samples adjacent the river sites where water was being tested.  We 

collected the samples in two iterations in July and August three weeks apart.  Sampling dates 

were July 24-25, 2014 and August 13-14, 2014.  We collected samples in the following 

parishes:  Portoviejo, Abdon Calderon, Rico Chico, Santa Ana De Vuelta Larga (Santa Ana), La 

Union, and San Pueblo.  Active human cases were present in La Union at the time of sampling 
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(August 14, 2014).  Soil sites positive for leptospires in the communities sampled are depicted in 

Figure 6 and 7.  All samples were collected as aseptically as possible in a field setting using 

separate collection devices (plastic spoons) and double sealed in plastic bags to minimize risk 

of contamination.  Samples were collected within five meters of the river edge no more than 3 

cm in depth per recommended guidance in previous studies [75].  Samples were kept in coolers 

while being transported back to the laboratory of Dr. Gabriel Trueba at the University of San 

Francisco Quito (USF-Q) where we processed them.  DNA extraction using a commercial DNA 

extraction kit was performed on each sample.  Extraction was conducted in accordance with the 

manufacturer’s protocol, and no modifications were necessary.   

Liquid DNA extracted samples were frozen and shipped by FedEx® to collaborators 

Veronica Barragan and Dr. Talima Pearson at Northern Arizona University (NAU) laboratory. 

Real-time PCR techniques were used to amplify extracted DNA, if present, in samples.  Two 

proprietary assays developed by Veronica Barragan were used to discriminate between 

pathogenic, intermediate, and saprophytic species.   

A handheld commercial Global Positioning System (GPS) unit, Garmin GPSMAP ® 64, 

was utilized to capture geographic coordinates (latitude, longitude) of all locations soil samples 

were collected.  Elevation levels were also recorded at each sample location.  High resolution 

IKONOS 3.2 meter and sub-meter QuickBird .61 meter satellite remotely sensed imagery was 

provided through a digital imagery grant from the commercial producer Digital Globe Inc., 

Longmont, CO, USA.  Positive geo-referenced sites for leptospires were geo-referenced and 

incorporated into a GIS environment using the commercial GIS software ARC GIS 10.0. 

  The Harmonized World Soil Database (HWSD) and associated viewer developed and 

managed by the Food and Agriculture Organization of the United Nations (FAO) was used to 

determine soil types associated with infective sites.  The HWSD contains greater than 15,000 

different soil mapping units and combines existing regional and national soil information updates 
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globally [61].  General soil type data were available and recorded for all georeferenced sample 

locations based on latitude, longitude coordinates.   

Next, a dataset of RGB values, remotely dependent explanatory environmental 

covariates, and GIS-based indices such as the Normalized Difference Vegetation Index (NDVI) 

was constructed.  Unfortunately, many of the archived images were either not usable due to 

cloud cover, or the sites did not fall within the images.  Data were able to be extracted from 12 

positive sites in total.  RGB values were extracted from 11 sites on IKONOS and 1 site on a 

QuickBird image.  These values were then log transformed, and a single composite RGB value 

was calculated for each site.  These represented spectral signatures associated with positive 

infective sites for leptospires.  The composite RGB value was used as the dependent variable in 

regression analysis.   

Normalized Difference Vegetation Index (NDVI) values were recorded for each positive 

site detected on the IKONOS and QuickBird image used in the analysis.  The NDVI is the ratio 

between the red and near-infrared bands useful to quantitatively and qualitatively assess 

vegetation cover based on spectral data [62]. Based on leptospire moisture requirements and 

association with hydrology, other important inputs were Digital Elevation Models (DEM) and 

Soil-Adjusted Vegetation Index (SAVI) where vegetation can be associated with soil type.  A 

DEM represents ground surface topography and is useful for generation of highly accurate 

predictor variables associated with vector habitats based on spatiotemporal field sampled count 

data [66].  Several SAVI, NDVI, and DEM maps were constructed using IKONOS and QuickBird 

images within ARC GIS 10.0 (Figures 8-15)  

When developing a soil-based remote sensing model the following factors influencing 

soil reflectance must be considered:  mineral composition, soil moisture, organic matter content, 

and soil surface texture.  Absorption bands ranging from 1.4-1.9 µm relate to soil moisture 

content.  The soil line of reflectance spectra can be calculated using the least squares 
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regression method where NIR (soil) is equal to “a”, red (soil) is equal to “b” where Red (soil) is 

the soil reflectance in the red band.  NIR (soil) is equal to the soil reflection in the near-infrared 

[63].   The soil line is the graphical relationship between red and near-infrared (NIR) bands 

[62,63].  The a,b parameters of the soil line are estimated by the least squares regression 

method.  High organic matter and rough texture in a soil can produce spectral interference for 

band characteristics [63].  

 Individual soil sample analysis for mineral composition, organic matter levels, or texture 

information was not performed due to cost; however, soil moisture data were available and 

acquired from satellite-derived ASCAT soil moisture. The ASCAT soil moisture product is 

produced by EUMETSAT using WARP NRT software originally developed by IPF/TU Wien 

(Institute of Photogrammetry and Remote Sensing, Vienna University of Technology) [64,65].  

Ground surface topography has been shown useful for generation of highly accurate predictor 

variables associated with vector habitats based on spatiotemporal field sampled count data [66].   

Generalized linear regressions models based on remotely sensed and geographic data 

were constructed where the RGB value was the dependent variable.  Independent variables 

evaluated in the model were NDVI and SAVI values in addition to elevation and Euclidean 

distances of sample sites from the river edge.   

The Poissonized model using endmember spectral values was based on the Poisson 

distribution, a discrete probability distribution with the following formula: 

P(X)= λxe-λ/X! 

Where P(X) is the probability of exactly X occurrences;  

λ (lambda) equals the number of occurrences per unit of time (mean occurrence rate); 

e=2.718, the base of the natural logarithms 

X equals specific values (0,1, 2, 3, etc…) of the random variable; 
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Where the mean and variance of the Poisson distribution are equal and computed as 

follows:  

expected value = λ 

variance = λ [75] 

A negative binomial regression model was constructed to model count variables and to 

account for over-dispersion (excess Poisson variability) which was tested for using a likelihood 

ratio test.   A directory of variables was created and analyzed using a commercial statistical 

analysis software (SAS 9.4) to generate pseudo R-squared values.  This procedure was 

duplicated for an additional regression model where case prevalence rates from 2009-2013 

(Table 1) represented the response variable.  In this non-ordinal regression model, the 

independent variables were as follows:  soil moisture (upper soil layer < 2 cm expressed as % 

of saturation (%)), average annual rainfall (mm), evaporation potential (average annual 

percentage %), humidity (average annual % relative humidity), temperature (average annual 

temperature (oC), river flow (average annual river level (m)), land surface temperature (average 

annual surface temperature (oC). 
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CHAPTER 4: RESULTS 

 A total of 64 soil samples were collected and analyzed by real-time PCR in order to 

detect leptospiral DNA and classify pathogenic status of all positive samples.  Out of the 64 soil 

samples, 21/64 (32.8%) were positive for the presence of leptospiral DNA and 43/64 (67.2%) 

were negative.   14/21 (66.7%) of the leptospire positive soil samples were further determined to 

be of intermediate pathogenicity.  8/21 (38.1%) of the leptospire positive soil samples were 

determined to be saprophytic species.  1/21 (4.76%) of positive samples were positive for both 

intermediate and saprophytic leptospire species.  No positive findings for pathogenic (L. 

Interrogans) species were reported.   

Table 3 shows the dominant soil types associated with all samples.  Cambisol was found 

in soils testing positive for intermediate leptospires 11/64 (17.2%) and in negative soil samples 

22/64 (34.4%).  Phaeozems soil type was found in benign, intermediate, and negative samples.  

Luvisols soil type was found in benign and negative samples.  Regression outputs for the 

response variable RGB composite variable from the commercial Statistic Analysis Software 9.4 

are provided in Figures 27-34.  An alpha level of .05 was used for all tests.  Of all variables 

analyzed, only elevation demonstrated statistical significance in the Generalized Linear Model 

were the p value was .0343 (Figure 32).  The results of the non-ordinal regression model using 

prevalence as the response variable were negative for both Portoviejo and Santa Ana.  Ordinary 

krig maps using composite RGB and NDVI values associated with positive leptospire soil sites 

were constructed (Figures 16-18).   
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CHAPTER 5: CONCLUSION 

Discussion 

 Soil-related remote co-variates failed to show significance in constructed regression 

models when evaluated using composite RGB values as the response variable; however, this 

may be due to the small sample size of 12 that used in the analysis.  Elevation demonstrated 

significance in the Generalized Linear Model regression; however, a negative confidence 

interval was reported likely attributable to the small sample size.   It is biologically plausible for 

the statistical significance not to be artifact as lower elevations are more prone to flooding which 

is a well-established geographic risk factor for leptospirosis.  A sample size of at least 31 known 

infective soil site is needed to fully evaluate statistical significance (B. Jacob, personal 

communication, April 10, 2013).  The study would have been strengthened by acquisition of 

remotely sensed imagery of the entire study area in order to have the ability to extract all RGB 

values.  High- and sub-meter resolution RS imagery is expensive, and to acquire the entire 

study site was cost-prohibitive.  The study area is not routinely imaged with commercial 

satellites and would require a request for satellite images to be taken which significantly adds to 

the cost.  Archived images are often available at a significantly reduced cost.  Fortunately, we 

were able to acquire IKONOS and QuickBird images which were kindly provided through a free 

student digital grant from Digital Globe, Inc.  Additionally, several important soil-related factors 

were unable to be directly measured including mineral composition, organic matter content, and 

soil surface texture which affect soil reflectance and would be important in the soil remote 

sensing model.  Ideally, analysis at a soil laboratory, of individual soil sample properties would 

be performed and would provide more fidelity to any soil-based model.  This is especially 
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important considering the complexity of soil science at the microscopic level.  Dominant soil 

types found in sample sites included cambisol, phaeozems, and luvisols.  Cambisol has 

previously been associated as a potential driver of leptospirosis [47].  It was observed that, 

except for one sample, intermediate and benign species were detected independent of each 

other.  This trend may be due the relative low tolerance of pathogenic leptospires to compete 

with environmental bacteria.  This trend should be explored further to determine if the presence 

of high bacterial loads in environmental samples (soil, water) could be an indicator for the 

presence or absence of pathogens.  In other words, it may be easier to measure risk in this 

manner given the difficulty in detecting L. interrogans in the environment.  Also, as an 

observation of this study, it was noted that cambisol soil distribution is common to both Latin 

America and Africa where leptospirosis is problematic (Figure 24).  This soil type was 

associated with disease risk in Nicaragua [47]. 

Conclusions 

Soil-based co-variates were used to determine its potential as a potential stationary 

indicator with predictive power for identification of high risk transmission.  Geo-spatial trends 

were noted that point to the potential use of soil as a stationary indicator.  Soil holds predictive 

potential for identifying high risk transmission areas for leptospirosis that warrants further 

analysis.  Leveraging GIS and RS technology with soil sampling is a novel idea that could be 

developed further to create a robust model for predicting leptospirosis risks areas.  If soil could 

be linked directly as a static indicator it would offer tremendous power to public health planners 

in resource poor settings for focal targeting of limited resources and public health education 

programs where risk is greatest.  A targeted control program where prophylactic antibiotics 

could be dispensed prior to seasonal occurrences could be feasible if risk areas were able to be 

accurately delineated.  Environmental sampling, especially in highly impacted, endemic areas 

could be incorporated into ongoing surveillance programs if predictive patterns of disease can 
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be associated with soil type.  Molecular analysis of strains found in soil need to be further linked 

to human or animal strains to better establish the role of leptospires of intermediate 

pathogenicity.  

GIS and RS public health research has significantly advanced the general understanding 

of disease transmission patterns in many human and animal diseases by allowing maximum 

and real-time exploration of the total environment.  This technology offers researchers an 

enhanced tool for conducting spatial epidemiology where multiple environmental, geographical, 

social, and demographic factors can be simultaneously explored to uncover patterns in 

transmission and characterize risk.   

Recommendations  

Public health policy and planning for a disease like leptospirosis with a complex 

transmission cycle involving humans and animals bridged by environments such as soil and 

water requires active, ongoing surveillance in all three domains.  Establishment of national, 

regional, and local real-time geodatabases that allow submission, management, and 

synchronous analysis of health and environmental sampling data is highly recommended.  

Ecuador’s Ministry of Health has established GeoSalud 2.0 (GeoHealth) national database 

which maps health information and data from the 9 health zones within Ecuador [76].  

Establishment of these systems allow for continuous refinement of disease risk assessment and 

offers a highly efficient public health planning tool and are crucial in order to be able to focus 

limited resources and public health programs where they are needed the most.   
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TABLES AND FIGURES 
 
Table 1:  Human leptospirosis area prevalence, Manabí, Ecuador, 2009-2013.  Color strata from 
light to dark represents low to high quantile. 

 
Areas 

2009 2010 2011 2012 2013 

Cases Cases Cases Cases Cases 

PORTOVIEJO 245 252 289 521 114 

MANTA 1 8 12 30 52 

CHONE 5 9 9 57 25 

JIPIJAPA 1 1 2 12 4 

BAHIA 2 6 8 26 3 

CALCETA 13 19 25 71 23 

ROCAFUERTE 8 26 15 32 28 

EL CARMEN 0 0 0 16 0 

PAJAN 16 5 12 7 1 

SANTA ANA 29 71 81 110 46 

PICHINCHA 0 2 2 5 3 

PEDERNALES 0 2 1 6 0 

TOTAL 320 401 456 893 299 
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Table 2:  Human leptospirosis area incidence per 10 000, Manabí, Ecuador, 2009-2013. Color 
strata from light to dark represents low to high quantile.    

 
Areas 

2009 2010 2011 2012 2013 

Incidence Incidence Incidence Incidence Incidence 

PORTOVIEJO 

9.0 9.2 10.6 19.0 4.2 

MANTA 

0 0.3 0.4 1.0 1.8 

CHONE 

0.3 0.5 0.5 3.5 1.5 

JIPIJAPA 

0.1 0.1 0.2 1.3 0.4 

BAHIA 

0.2 0.7 0.9 3.0 0.3 

CALCETA 

1.3 1.9 2.5 7.0 2.3 

ROCAFUERTE 

1.5 5.0 2.9 6.1 5.3 

EL CARMEN 

0 0 0.0 1.5 0.0 

PAJAN 

3.9 1.2 2.9 1.7 0.2 

SANTA ANA 

3.1 7.4 8.5 11.5 4.8 

PICHINCHA 

0 0.6 0.6 1.5 0.9 

PEDERNALES 

0 0.4 0.2 1.1 0.0 

TOTAL 
23.3 2.9 3.3 6.4 2.2 
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Table 3:  Dominant soil type associated with each sampled soil site 

 

 
*64 samples were collected.  One sample tested positive for both benign and intermediate 
leptospire specie 

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 Leptospire species 

 
Cambisol 

 
Phaeozems 

 
Luvisols 

 
Total 

 Benign 0 4 3 7 

 Intermediate 11 4 0 15 

 Not detected 22 13 8 43 

 Total  33 21 11 65* 
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Figure 1:  Annual human leptospirosis prevalence rates in Ecuador, 1994-2012 
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Figure 2:  Human leptospirosis prevalence and incidence by region and province, Ecuador, 
1994-2012 
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Figure 3:  2010 population map of the Republic of Ecuador (Continental)  
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Figure 4:  2010 population map of the cantons of Manabí Province, Ecuador 
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Figure 5:  2011 leptospirosis incidence map per 100 000 population by province, Continental 

Ecuador.   The actual incidence values are reflected next to province names. 
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Figure 6:  Positive leptospire soil sites in sampled parishes, Manabí, Ecuador 
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Figure 7:  Positive leptospire soil sites displayed on high resolution (3.2 m) IKONOS satellite 

imagery. 
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Figure 8:  Soil Adjusted Vegetation Index (SAVI) associated with positive leptospire soil sites in 

Portoviejo, Manabí, Ecuador constructed using IKONOS (3.2m) 
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Figure 9:  Zoomed view of SAVI associated with positive leptospire soil sites in Portoviejo, 

Manabí, Ecuador on IKONOS image (3.2 m) 
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Figure 10:  SAVI constructed from QuickBird (.61m) image showing positive leptospire soil site 

in Santa Ana, Manabí, Ecuador  
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Figure 11:  Zoomed view of a SAVI constructed from QuickBird (.61m) imagery showing positive 

leptospire soil site in Santa Ana, Manabí, Ecuador 
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Figure 12:  Normalized Difference Vegetation Index (NDVI) on IKONOS (3.2 m) image showing 

positive leptospire soil sites in Portoviejo, Manabí, Ecuador 
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Figure 13:  Zoomed view of NDVI constructed from IKONOS (3.2 m) image showing positive 

leptospire soil sites in Portoviejo, Manabí, Ecuador 
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Figure 14:  Digital Elevation Model (DEM) with georeferenced positive leptospire soil sites, 
Portoviejo, Manabí, Ecuador 
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Figure 15:  DEM on IKONOS image (3.2 m) showing NDVI positive leptospire soil sites, 

Portoviejo, Manabí, Ecuador 
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Figure 16:  RGB composite value krig, Portoviejo, Manabí, Ecuador 
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Figure 17:  Zoomed RGB composite value krig, Portoviejo, Manabí, Ecuador 
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Figure 18:  NDVI value krig, Portoviejo, Manabí, Ecuador 
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Figure 19:  Screenshot of the Harmonized World Soil Database (HWSD) viewer depicting the 

dominant soil types of the world 
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Figure 20:  Screenshot of the HWSD viewer depicting the dominant soil types of the Republic of 

Ecuador (Continental)  
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Figure 21:  Screenshot of the HWSD viewer depicting the dominant soil types of Manabí, 

Ecuador  
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Figure 22:  Screenshot of the HWSD viewer depicting the dominant soil types of parishes of 

Manabí, Ecuador   
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Figure 23:  Screenshot of the HWSD viewer depicting the dominant soil type associated 

(cambisols) with a georeferenced positive leptospire site in Abdon Calderon, Portoviejo, 

Manabí, Ecuador  

 

 

 

 

 

 

 

 

 

 



  
 

55 
 

 

Figure 24:  Screenshot of the HWSD viewer depicting distribution of cambisol soil group in Latin 

America and Africa 
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Figure 25: ARC GIS Online map of intermediate leptospire positive soil sites in Portoviejo, 

Manabí, Ecuador.  Positive soil samples are labeled Q5 and Q6 on map.   The inlay photos 

show the presence of cattle at the site, and the sandy/clay texture of the soil is classified by the 

HWSD as cambisol.  
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Figure 26:  ARC GIS Online map of site of positive intermediate leptospire soil sample, 

Portoviejo, Manabí, Ecuador.  The inlay photos depict the site, and the sandy/clay texture of the 

soil is classified by the HWSD as cambisol.   
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Figure 27:  Univariate analysis for dependent variable RGB (SAS 9.4) 
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Figure 28:  Histogram showing distribution dependent variable RGB (SAS 9.4) 
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Figure 29:  Simple linear regression results for dependent variable RGB (SAS 9.4) 
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Figure 30:  Simple linear regression fit diagnostics for dependent variable RGB (SAS 9.4) 
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Figure 31:  Simple linear regression residual by regressors for dependent variable RGB (SAS 

9.4) 
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Figure 32:  Generalized Linear Model (GLM) regression analysis for variable RGB (SAS 9.4) 
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Figure 33:  Poisson regression analysis for dependent variable RGB (SAS 9.4) 
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Figure 34:  Negative binomial regression analysis for dependent variable RGB (SAS 9.4) 
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