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ABSTRACT 

How to reduce weight and increase fuel efficiency is a critical challenge in transportation 

industries. One way to resolve the problem is to adopting lightweight alloys (i.e. advanced high 

strength steel, aluminum alloys, or magnesium alloy) in structure designs and manufacturing. 

Fully understanding the mechanical properties of these materials is a key step. 

In order to fully characterize the plasticity and fracture of magnesium AZ31B-H24 sheets, a set 

of mechanical experiments (170 in total) were performed under both monotonic and non-

proportional loading conditions, including monotonic uniaxial tension, notch tension, in-plane 

uniaxial compression, wide compression (or called biaxial compression), plane strain 

compression, through-thickness compression, in-plane shear, punch test, uniaxial compression-

tension reverse loading, and two-step uniaxial tension (cross-loading). 

Both the plastic strain histories and stress responses were obtained under the above loading 

conditions, which give a comprehensive picture of mechanical behaviors of this material. No 

apparent cross-hardening effect was observed for this material. 

An extended orthotropic yield criterion involving two linear anisotropic transformation tensors, 

CPB06ex2, in conjunction with its associated flow rule was fully calibrated to describe both the 

anisotropy in plastic flow and tension-compression asymmetry in stress-strain behaviors. 

A fully modularized framework to combine isotropic, kinematic, and cross hardening behaviors 

was established under non-monotonic loading conditions. Three sets of state variables were 
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defined and applied to consider the effects of, a) loading history, b) twinning and de-twinning 

and c) different pre-strain. 

In order to predict ductile fracture of metal sheets, the “mixed” stress/strain invariants based 

Modified-Mohr-Coulomb (MMC) fracture model was transferred into an all-strain based MMC 

(eMMC) model under plane stress condition, predicting the fracture strain dependent on strain 

ratio or Φ angle, instead of stress triaxiality and Lode angle parameter. The strain ratio or Φ 

angle could be directly measured by digital image correlation (DIC), while the latter required 

finite element analysis to be determined. This method makes it possible to study material fracture 

behavior while bypassing plasticity. The eMMC fracture locus can be fully calibrated by fracture 

strains directly measured from DIC. The fracture strain was also extended by a linear 

transformation operating to the plastic strain tensor to incorporate the fracture anisotropy. All 

models were implemented into Abaqus/Explicit as a user material subroutine (VUMAT). Good 

prediction capability has been demonstrated for magnesium AZ31B-H24 sheets by FE 

simulation using shell elements. 

The current framework was also applied for TRIP780, BH240, DP600, and EDDQ steel sheets 

with adjustment, under different loading conditions. The FE simulation results for TRIP780 

correlated well with experimental data under different monotonic loading conditions. The 

analytical results for BH240, DP600, and EDDQ demonstrated good prediction capability for 

cross-hardening behavior, and validated by the non-proportional experimental data under two-

stage uniaxial tension. 
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 CHAPTER 1 INTRODUCTION 

Magnesium Alloy and Experiments 1.1 

The magnesium alloys have been very competitive in the automotive industry to enable 

lightweight design and reduce energy consumption and greenhouse gas emission. With their very 

high ratio of strength/stiffness versus density, the magnesium alloys have also been applied in 

new products by major leading car manufactures to replace steels and aluminum. For instance, 

Volkswagen, Audi, Mercedes Benz, BMW, Ford, and Jaguar are all using magnesium 

transmission casings in recent models. General Motor is using 57 pounds of magnesium in the 

full-sized Savana and Express vans, offering a 20% − 25% weight saving over aluminum alloys 

(Elektron, 2014). 

The magnesium alloy sheets (AZ31B) exhibit different mechanical responses as compared to 

steels and aluminum sheets and highly anisotropic characteristic because of their hexagonal close 

packed (HCP) crystal structure and strong basal crystallographic texture from rolling process 

(S.R. Agnew, 2002; Roberts, 1960). This also results in strong tension/compression asymmetry 

based on the test data from Kelley and Hosford (1968). More experiments under different 

loading conditions are required for magnesium alloy sheets to fully understand their 

comprehensive mechanical behaviors. A comprehensive set of experiments on plasticity and 

fracture of magnesium AZ31B-H24 was conducted by Jia and Bai (2015c) under various multi-

axial loading conditions. 

For uniaxial loading, the cumulative and instantaneous Lankford ratios under uniaxial tension 

were reported by Khan, Pandey, Gnäupel-Herold, and Mishra (2011); X. Y. Lou, Li, Boger, 
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Agnew, and Wagoner (2007). The in-plane uniaxial compression has been performed using 

reduced-size dogbone specimens with anti-buckling device by X. Y. Lou et al. (2007), using 

stacked cubic specimens by Ghaffari Tari, Worswick, Ali, and Gharghouri (2014); D. Steglich, 

Tian, Bohlen, and Kuwabara (2014), using single cylindrical specimens by Barnett, Keshavarz, 

and Ma (2006). The in-plane compressive hardening behavior differs significantly from tension 

because of the activation of twinning-dominated deformation (Ball & Prangnell, 1994; Barnett, 

2007; Barnett, Keshavarz, Beer, & Atwell, 2004). The strain-stress relationship exhibits a 

concave shape under uniaxial compression, while it is typically a convex curve under tension. 

Under compression-tension reverse loading, the de-twinning phenomenon occurs when the 

subsequent tensile load is performed along the c-axis of the twinned areas (Brown et al., 2005; X. 

Y. Lou et al., 2007; Nguyen, Lee, Kim, & Kim, 2013; H. Wang, Wu, Wang, & Tomé, 2013). 

For biaxial tension loading, cruciform specimens have been applied using biaxial testing 

machine, with different ratios between the forces along horizontal and vertical conditions, by 

Abu-Farha, Hector, and Khraisheh (2009); Andar, Kuwabara, and Steglich (2012); D. Steglich et 

al. (2014). For certain materials, an alternative approach is to add a pair of notches for the sheet 

specimen, which is equivalent to the biaxial tension condition at approximately the center (Bai, 

2008). The analytical solution of the stress triaxiality at the center of the specimen can be 

determined by its geometry. It is reported that the equi-biaxial tension has also been performed 

by bulge test (Kaya, Altan, Groche, & Klöpsch, 2008; D. Steglich, Jeong, Andar, & Kuwabara, 

2012), punch test (Ambrogio et al., 2008; H. J. Kim, Choi, Lee, & Kim, 2008), and through-

thickness compression (Kurukuri, Worswick, Ghaffari Tari, Mishra, & Carter, 2014; D. Steglich 

et al., 2014) . Note that the cruciform test for equi-biaxial tension was stopped at a strain level of 
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0.015 because shear fracture occurred prior to the equi-biaxial tension failure (Andar et al., 

2012). The bulge test could achieve a higher strain level up to 0.05 in room temperature (Kaya et 

al., 2008; D. Steglich et al., 2012). The punch test is capable to measure the plastic flow under 

equi-biaxial tension at the center point, however, the corresponding strain-stress curve could not 

be directly obtained due to the non-uniform out-plane loading. The through-thickness 

compression is equivalent to the equi-biaxial tension superimposed with a hydrostatic pressure. 

The similar strain-stress response with bulge test or cruciform specimen test has been obtained 

by through-thickness compression with a strain level of 0.12, based on the comparison from D. 

Steglich et al. (2014). 

The report of in-plane biaxial compression loading is currently not adequate. At present, a few 

channel die compression tests for magnesium alloy sheets were reported, achieving plane strain 

compression in the transversal direction (Barnett et al., 2006; Staroselsky & Anand, 2003). Data 

that allow comparing the difference in response between uniaxial compression and plane strain 

compression for magnesium AZ31B is currently missing. Cyclic simple shear tests have been 

conducted for magnesium alloy sheets with a maximum strain level of 0.1 in equivalent plastic 

strain by X. Y. Lou et al. (2007). 

Sheet Metal Forming 1.2 

Sheet metal forming is an essential part of automobile industry because it allows manufacturing 

high quality products with complex geometry and low costs. It is also possible to produce a wide 

range of drawn-parts, from the metal components of car-body elements to the structural elements 

of aircrafts. Recently, more and more lightweight materials like advanced high strength steels or 

nonferrous metallic alloys (aluminum or magnesium) are adopted due to the urgent need to 



4 

 

reduce vehicle weight and increase both fuel efficiency and performance. However, these 

materials are relatively brittle and vulnerable to fracture during forming or subsequent 

procedures. It is necessary to have an adequate plasticity and fracture model to precisely predict 

the final shape without producing strains that exceeds the forming limit or fracture limit during 

metal forming. 

Numerous experiments have been conducted for investigating the dependency of ductile fracture 

on stress states. The relationship between ductile fracture strain and stress triaxiality for steels 

has been investigated by Johnson and Cook (1985); Mackenzie, Hancock, and Brown (1977), 

using notched axisymmetric tensile specimens. It was concluded that the ductility is negatively 

related to the stress triaxiality. A comprehensive set of experiments was conducted on aluminum 

2024-T351 by Bao (2003); Khan and Liu (2012a), including compression, pure shear, uniaxial 

and bi-axial tensions under axisymmetric and plane stress loading conditions. The results 

exhibited a non-monotonic trend of fracture strain dependency on stress triaxiality. A 

comparison was made between the notched axisymmetric and flat grooved specimens by Bai, 

Teng, and Wierzbicki (2009), yielded that ductility is affected by not only stress triaxiality but 

also Lode angle parameter. A butterfly-shaped flat specimen was applied to study the fracture 

initiation under a wide range of loading conditions by D. Mohr and Henn (2007); Wierzbicki, 

Bao, and Bai (2005). Another series of multi-axial fracture tests on tubular specimens was 

performed by Barsoum and Faleskog (2007). These tests have also proven that the ductility 

depends on both stress triaxiality and the Lode angle parameter.  

During a sheet metal forming process, the mechanical behavior can be dramatically influenced 

by non-proportional strain histories, based on the reports from Bai and Wierzbicki (2008a); 
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Barlat, Ferreira Duarte, Gracio, Lopes, and Rauch (2003); Min, Jeon, Kim, and Kim (1995); 

Schmitt, Shen, and Raphanel (1994). For example, the loading condition in a deep drawing could 

alter into biaxial tension from pure shear when the material flows into the die from the flange 

area, resulting in a non-proportional deformation (Thuillier, Manach, Menezes, & Oliveira, 

2002). 

For magnesium alloys, the de-twinning phenomenon occurs under compression-tension reversal 

loading when the subsequent tensile load is performed along the c-axis of the twinned areas, 

generating an unusual concave shape in the tensile stress-strain curve (Brown et al., 2005; X. Y. 

Lou et al., 2007; Piao, Chung, Lee, & Wagoner, 2012). This phenomenon has a different 

tendency from the monotonic compression/tension loading. A much lower yield stress occurs at 

the second-stage tension loading, resulting in another low stress plateau followed by a rapidly 

increasing hardening rate. 

Constitutive Modeling 1.3 

1.3.1 Anisotropic Yield Criterion 

With the complicated mechanical behavior under different loading conditions, the accurate 

prediction of both plastic behavior and ductile fracture property is still a big challenge. Several 

typical anisotropic yield criterion with symmetric yield surface, including Hill 1948, Barlat 1989, 

and Yld2000-2D, have been evaluated using uniaxial and biaxial tension data, and claimed to be 

inadequate for compression status by Andar et al. (2012); Jia, Long, Wang, and Bai (2013); J. 

Park, Lee, You, Choi, and Kim (2007). An anisotropic yield criterion with asymmetrical 

tension/compression surface is therefore required because twinning is operational in HCP metals 

and induces tension/compression asymmetry and texture evolution. To account for both 
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anisotropy and tension/compression asymmetry induced by twinning, several anisotropic criteria 

expressed in terms of the stress deviator were developed by Cazacu and Barlat (2004); Cazacu, 

Plunkett, and Barlat (2006); Nixon, Cazacu, and Lebensohn (2010); Plunkett, Cazacu, and Barlat 

(2008). 

For AZ31B magnesium alloys, primarily based on monotonic uniaxial tension and compression 

data sets for this material, a modified Drucker-Prager yield criterion with asymmetrical yield 

surface (J. H. Kim et al., 2008) has been calibrated by M.-G. Lee, Wagoner, Lee, Chung, and 

Kim (2008), the Cazacu-2004 yield criterion (Cazacu & Barlat, 2004) has been evaluated by 

Mekonen, Steglich, Bohlen, Letzig, and Mosler (2012); Dirk Steglich, Brocks, Bohlen, and 

Barlat (2011). The CPB06 yield criterion (Cazacu et al., 2006) has been calibrated and applied in 

three-point bending finite element (FE) analysis by J. Kim et al. (2008). The CPB06 yield 

criterion was applied to describe the anisotropy in the stress-strain response among uniaxial 

tension, uniaxial compression and torsional loading by Chandola et al. (2015); Revil-Baudard, 

Chandola, Cazacu, and Barlat (2014). The CPB06 yield criterion with two stress linear 

transformations (CPB06ex2) (Plunkett et al., 2008), which improved the yield surface correlation 

with the area of biaxial tension, has been evaluated by Andar et al. (2012); Plunkett et al. (2008). 

The CPB06 yield criterion with different linear transformations (one as CPB06, two as 

CPB06ex2, three as CPB06ex3, and four as CPB06ex4) have been compared and implemented 

in the bending simulation by Ghaffari Tari et al. (2014), showing that the CPB06ex3 could 

provide improved bending stress distribution. Additionally, it is also important to develop a 

hardening rule which is capable to consider the effects of twinning under complex loading 

conditions. Using the monotonic uniaxial tension and compression data, a viscoplastic self-
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consistent polycrystal model has been developed and applied by Jain and Agnew (2007). A semi-

analytical Sachs model has been developed, combining the Schmid law, power law hardening 

and a sigmoidal function based on the twinning fraction, together with an isotropic hardening 

rule by Barnett (2007); Barnett et al. (2004). Correlating with the experimental data under 

compression-tension reverse loading, a nonlinear mixture isotropic hardening rule (J. H. Kim et 

al., 2008) together with the Chaboche kinematic hardening model (Chaboche, 1977) has been 

calibrated by M. G. Lee, Kim, Wagoner, Chung, and Kim (2009); M.-G. Lee et al. (2008). A set 

of deformation evolution rules (named as “TWINLAW”), incorporating slip and twinning/de-

twinning effects, has been developed and calibrated by M. Li, Lou, Kim, and Wagoner (2010). 

Some crystal-plasticity based models have been applied by Hama and Takuda (2011); H. Wang 

et al. (2013). Another phenomenological model, identifying the slip and twinning modes for 

isotropic hardening behavior, has been proposed by Nguyen et al. (2013). 

1.3.2 Hardening Model 

Two types of constitutive model are capable to incorporate the twinning/de-twinning effect under 

reversal loading conditions: crystal plasticity model and phenomenological-based hardening 

model. A visco-plastic self-consistent polycrystalline model was proposed and applied by Jain 

and Agnew (2007), using the monotonic uniaxial tension and compression data. This model was 

further incorporated within the Marciniak–Kuczynski (M–K) approach for forming limit curve 

prediction by John Neil and Agnew (2009). A set of deformation evolution rules, “TWINLAW”, 

was developed by M. Li et al. (2010), incorporating slip and twinning/de-twinning effects in the 

constitutive model. Crystal-plasticity based models have been implemented into finite element 

(FE) analysis by Hama and Takuda (2011); H. Wang et al. (2013). Alternatively, a nonlinear 
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mixed isotropic and Chaboche (1977) kinematic hardening rule has been calibrated by M. G. Lee 

et al. (2009), directly using experimental data under compression-tension reverse loading. An 

Armstrong and Frederick (1966) (AF) type back stress was applied and coupled with 

crystallographic slip and twinning/de-twinning through the plastic flow rule by Dirk Mohr, 

Chevin, and Greve (2013). Another phenomenological model has been proposed by Nguyen et al. 

(2013), identifying a sigmoidal shape equation for isotropic hardening under three deformation 

modes: slip, twinning and de-twinning. A semi-analytical Sachs model has been developed, 

combining the Schmid law, power law hardening and a sigmoidal increase based on the twinning 

fraction, and applied in monotonic loading cases as an isotropic hardening rule by Barnett (2007); 

Barnett et al. (2004). The semi-analytical Sachs model was modified to correlate with different 

monotonic and multi-axial loading conditions by Jia and Bai (2015b, 2015c), where the twinning 

fraction parameter was generalized as a function of the stress triaxiality and Lode angle (Bai & 

Wierzbicki, 2008b) for the isotropic hardening. This model offers a good framework in handling 

the twinning-activation effect under different scenarios, exhibiting its potential in being 

generalized to predict the non-linear hardening behavior. 

In addition to reverse loading, the strain path in real applications can be very complicated. One 

type of test commonly used in the lab is the uniaxial tension test with pre-strain along different 

orientations with regard to the rolling direction. The pre-strain could be uniaxial tension, equi-

biaxial tension or shear. It is reported that the flow stress for the second step may exceed the 

monotonic strain-stress curve with a few stagnation, dependent on the angle change of 

orientation (Barlat et al., 2013; Ha, Lee, & Barlat, 2013; S. Li, Hoferlin, Bael, Houtte, & 

Teodosiu, 2003; Schmitt, Fernandes, Gracio, Vieira, & Vieira, 1991; Teodosiu & Hu, 1995). 
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This phenomenon is called cross-loading where inactive slip systems in the first loading step 

were activated in the second step. Microscopic-based hardening rules and crystal plasticity 

models were developed for the cross-loading phenomenon. Dislocation structure based state 

variables, expressed as a fourth order tensor, were applied in a continuum plasticity theory by 

Teodosiu and Hu (1998). This model can also provide good results for reversal loading as well as 

any possible strain path changes. A special case of the Teodosiu model has been evaluated by 

Levkovitch and Svendsen (2007), neglecting distortional hardening. Another similar 

modification of Teodosiu model was done by H. Feigenbaum and Dafalias (2008); H. P. 

Feigenbaum and Dafalias (2007), capturing higher curvature of the yield surface in loading 

direction and the respective flattening in the orthogonal direction. The three models above have 

been compared and extended for magnesium alloy sheets by Shi and Mosler (2013). A single 

strain history change with dislocation microstructure was investigated by Rauch, Gracio, and 

Barlat (2007), using three variables associated with dislocation densities to model the cross-

loading stress-strain behavior. A homogeneous yield function based anisotropic hardening (HAH) 

model Barlat, Gracio, Lee, Rauch, and Vincze (2011), was extended to the cross-loading case 

with latent hardening effect for steel sheets proposed by Barlat et al. (2013); Ha et al. (2013). 

This approach could also capture the Bauschinger effect without using the kinematic hardening 

concept. 

Fracture Property and Modeling 1.4 

Many ductile fracture models have been developed and applied in the past decades. The 

foundation of the micromechanics associated with the void growth was set by McClintock 

(1968); Rice and Tracey (1969). A micromechanical based porous plasticity model was proposed 
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by Gurson (1977). The ductile fracture could be carried out subsequently based on void growth 

and void nucleation. This theory has been validated using axisymmetric notched tensile tests by 

Hancock and Brown (1983). Tvergaard and Needleman (1984) introduced shear and coalescence 

effects of micro-voids in representative volume elements. The micro-void shear effect was also 

considered by Xue (2008) and Nahshon and Hutchinson (2008) with applying an additional shear 

damage term. Gurson-Tvergaard-Needleman (GTN) model has been modified to predict ductile 

fracture in incremental sheet forming simulation byGatea, Lu, Ou, and McCartney (2015); 

Malcher, Andrade Pires, and César de Sá (2014). Another modified GTN model was proposed 

by Malcher, Andrade Pires et al. (2014) focusing on low stress triaxiality, and applied for both 

2024-T351 aluminum alloy and 1045 steel through FE simulation. A different type of 

micromechanical void growth model was proposed by Ravi Kiran and Khandelwal (2013), 

choosing cylindrical domain with an embedded spheroidal void, verified by R. Kiran and 

Khandelwal (2014), using ASTM A992 steels under uniaxial and notch tensions. 

As an alternative to void growth type models, non-associated fracture model has been developed 

and applied with a separate plasticity model, which can bypass the effect of the plastic material 

behavior on the damage. An empirical model based on the experimental results under different 

strain rates and temperatures was proposed by Johnson and Cook (1985). It is also typically 

expressed that the fracture initiates when a weighted function of equivalent plastic strain 

approaches a critical value by Fischer, Kolednik, Shan, and Rammerstorfer (1995). A fracture 

model using a weighting function dependent individually on both pressure and stress ratio was 

proposed by Wilkins, Streit, and Reaugh (1980). The stress triaxiality effect on fracture was 

applied in the continuum damage mechanics (CDM) by Lemaitre (1996) within a consistent 
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thermodynamics framework. Lemaitre’s ductile damage model has been generalized to 

anisotropic damage by describing the damage variable into a fourth-order tensor (Armero & 

Oller, 2000; Hammi, Bammann, & Horstemeyer, 2004). The CDM-based Lemaitre’s model and 

GTN model have been evaluated and implemented into FE simulation by H. Li, Fu, Lu, and 

Yang (2011), for aluminum 6061-T6 under a wide range of stress triaxialities. Another CDM-

based model was applied by Shojaei, Dahi Taleghani, and Li (2014) to predict hydraulic 

fractures growth in porous rock. 

To generalize the non-associated fracture criterion, the third invariant of the stress tensor was 

introduced by Wierzbicki and Xue (2005). The effect of Lode angle (related to the third 

deviatoric stress invariant) was then incorporated into the ductile fracture model by Bai and 

Wierzbicki (2008b). A general form of an asymmetric fracture model was postulated by Bai and 

Wierzbicki (2010), with a transformation of the classical Mohr-Coulomb fracture model into the 

space of the equivalent plastic strain, stress triaxiality, and Lode angle. The Modified-Mohr-

Coulumb (MMC) fracture model was validated by Y. Li, Luo, Gerlach, and Wierzbicki (2010); 

Luo and Wierzbicki (2010), using experimental results on advanced high strength steels and 

aluminum alloys. MMC model was evaluated and implemented by Lian, Wu, and Münstermann 

(2015) for high-strength low-alloy steel plates with modified fracture locus. It was also applied 

in edge fracture and plane strain blanking simulation for AHSS sheet by K. Wang, Luo, and 

Wierzbicki (2014); K. Wang and Wierzbicki (2015), together with an anisotropic yield criterion. 

A criterion using the magnitude of stress vector (MSV) was proposed by Khan and Liu (2012a, 

2012b). A Lou–Huh ductile fracture model for sheet metal fracture prediction was proposed by 

Lou, Huh et al. (2012), incorporating the existence of cut-off value of stress triaxiality. The Lou-
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Huh model was modified to consider both anisotropic and loading path effect in sheet metal 

fracture by N. Park, Huh, Nam, and Jung (2015). A review of different groups of fracture model 

was presented by Bai and Wierzbicki (2015). 

The fracture properties for this material have been investigated under monotonic loading 

conditions. The fracture toughness of this material has been investigated using cohesive FE 

approach by Guo, Chang, Chen, and Zhou (2012). The Johnson-Cook fracture model (Johnson & 

Cook, 1985) has been evaluated using the high strain-rate tensile tests by Feng et al. (2014). 

Based on uniaxial and biaxial tension results, the fracture forming limit diagram has been plotted 

by Jia, Long, and Bai (2012), and a modified Mohr-Coulumb (MMC) fracture model by Bai and 

Wierzbicki (2007) has been applied to obtain the fracture locus by Jia et al. (2012); Jia et al. 

(2013). An all-strain based Modified Mohr-Coulumb (eMMC) model, transferred from the MMC 

model (Bai & Wierzbicki, 2010), was developed, calibrated to obtain the fracture locus for 

magnesium alloy sheets, and implemented into FE analysis to predict fracture behaviors under a 

wide range of monotonic stress states by Jia and Bai (2015b). 

Outline of the Thesis 1.5 

In the presented thesis, chapter 2 is devoted to design and conduct a comprehensive set of 

experiments for magnesium AZ31B-H24, including monotonic uniaxial tension, notch tension 

(for biaxial tension loading condition), uniaxial compression, wide compression (for biaxial 

compression loading), plane strain compression, through-thickness compression, pure shear, 

punch test. Also a set of non-proportional experiments was conducted, including uniaxial 

compression-tension reversal loading, and two-step uniaxial tension with orientation changes. 
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Chapter 3 analyzes and summarizes the experimental results for magnesium sheets, in material 

strength, plastic flow, and fracture behavior, under monotonic loading conditions. A new 

parameter, Φ, is defined and depicted under each loading condition to describe the anisotropic 

material plastic flow. 

Chapter 4 describes the constitutive model framework, including CPB06ex2 anisotropic yield 

criterion, and a new developed modified Sach hardening model to incorporate isotropic, 

kinematic, and cross hardening behaviors. Three sets of state variables are defined in this model, 

to respectively describe a) loading history, b) twinning and de-twinning behaviors, and c) pre-

strain effects. A calibration procedure with non-aftereffect is introduced. 

Chapter 5 introduces an all-strain based MMC (eMMC) fracture model with Hill 1948 type 

anisotropic equivalent plastic strain. This fracture model is calibrated individually for tension 

and compression dominated regions to obtain a comprehensive fracture locus. The fracture 

model is partially associated with one of the twinning-related state variables to incorporate the 

non-linear fracture behavior. 

Chapter 6 demonstrates the finite element models for all cases of loading condition to reproduce 

the experimental results using shell elements. All constitutive models and fracture model is 

written into a user-subroutine (VUMAT) in FE software Abaqus/Explicit. All numerical results 

are exhibited and compared to the experimental ones in this chapter for magnesium alloy sheet, 

under monotonic, reversal, and cross loading conditions. 

Chapter 7 studies the model performance for steel sheets, including TRIP780, BH240, DP600, 

and EDDQ. FE simulation is conducted and compared to the experimental results for TRIP780 
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under monotonic loading conditions. The analytically modeled results are correlated with the 

experimental results under cross loading conditions for the rest of materials.  

Chapter 8 summaries the contributions of the present thesis and describes the recommended 

research in the future. 
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 CHAPTER 2 EXPERIMENT METHODS 

The material investigated in this paper is AZ31B-H24 magnesium sheet, which was 

mechanically tested at room temperature. Aiming to comprehensively describe the mechanical 

properties of this material, tests were conducted under different loading conditions. All 

deformations were recorded and measured by the Digital Image Correlation (DIC) technique. 

Material and Equipment 2.1 

In the discussion that follows, AZ31B-H24 magnesium alloy sheet refers to a cold rolled sheet 

with partially annealed (H24 temper) AZ31B magnesium alloy, which ordered from Magnesium 

Elektron (Elektron, 2014). All specimens were machined parallel to the following degrees with 

respect to the rolling direction (RD), 0°, 22.5°, 45°, 67.5° and 90° respectively, for monotonic 

loading. Three orientations were machined, 0°, 45°, and 90° respectively for non-proportional 

loading. Three identical specimens were manufactured for each orientation to assess 

experimental repeatability. The sheet thickness was 2𝑚𝑚 and all the specimens were cut from 

two sheets belonging to the same production batch, according to the manufacturer. Only the two-

step uniaxial tension tests were using sheets with 1𝑚𝑚 thickness. Semi-gloss black and white 

paint was sprayed in small dots randomly on the surface of all the specimens one day before the 

test. 

All tests were conducted quasi-statically using MTS universal testing machine. A quasi-static 

strain rate of about 10−3/𝑠  was applied for all tests reported. It was found that there is no 

apparent effect of strain rate at room temperature with quasi-static loading condition for AZ31B 

magnesium (Khan et al., 2011; Maksoud, Ahmed, & Rödel, 2009). Optical measurements with 
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the DIC system were utilized to obtain the precise strain fields. The system is consisted of a 

Tokina AT-X Pro macro 100𝑚𝑚 − 𝑓/2.8 − 𝑑 lens with a resolution of 2448 × 2048 and VIC-

2D 2009 software by Correlated Solutions, Inc.. The capture frequency was 1𝐻𝑧. 

Uniaxial Tension 2.2 

Uniaxial tension test was performed under standard of ASTM-E8-00 (2000). Figure 1 illustrates 

the slant fracture surfaces of the rolling direction (0°) and transverse direction (90°) in both front 

and side views, which shows shear dominated fracture mechanism in this magnesium sheet.  

 

Figure 1 The 0° (top side) and 90° (bottom) dogbone specimens after test show shear dominated 

fracture mode. 
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Figure 2 The contour of equivalent strain post-processed by DIC for both 0° (left) and 90° 
dogbone specimen at the moment just before fracture initiation. 

It is also possible to see the brittle nature of fracture because no apparent localized necking was 

observed. The diffuse dominated localization is indicated by less shrinkage of thickness than 

width. Figure 2 compares between the strain fields of both 0° and 90° specimens, which were 

obtained from DIC measurement at the moment just before fracture initiation. One can see that 

the 90° specimen exhibits more strain localization. 

The plastic behaviors along different orientations are assessed by Lankford ratio (𝑟-value, the 

ratio between the plastic strain rate in width and thickness direction) under uniaxial loading 

condition, with the volume constancy in plastic deformation, as follows: 
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𝑟 = 𝜀𝑤̇𝑖𝑑𝑡ℎ𝑝𝜀𝑡̇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠𝑝 = − 𝜀𝑤̇𝑖𝑑𝑡ℎ𝑝𝜀𝑤̇𝑖𝑑𝑡ℎ𝑝 + 𝜀𝑎̇𝑥𝑖𝑎𝑙𝑝 .  (1) 

The 𝑟 valuewas usually computed as a ratio by using a) cumulative plastic strains after the test 

(Rousselier, Barlat, & Yoon, 2009) under the assumption of proportional loading, b) cumulative 

plastic strains chronologically measured at different test pauses (Beese, 2011; X. Y. Lou et al., 

2007), and c) incremental plastic strain obtained by pausing the test at different known strains (X. 

Y. Lou et al., 2007). It can be improved by measuring the effective strain through DIC technique 

during a test, for the reasons of a) obtaining precise strain value after specimen necking, b) the 

consistency between the ratio of incremental plastic strains and cumulative plastic strains under 

proportional loading, and c) maintaining the continuity of an experiment. The plastic strain 

components were obtained from the DIC's logarithmic strain while subtracting the elastic parts. 

Notch Tension 2.3 

Notch sheet specimen was designed to achieve the biaxial tension condition (between uniaxial 

tension and plane strain tension) at approximately the center (Bai, 2008). Figure 3 shows the 

geometry shape with key dimensions of the notch tension specimen and its fracture surface. 

Different biaxial stress ratios at the center point are capable to be obtained by adjusting the 

radius of the notch, using a uniaxial tensile loading frame. The stress triaxiality under plane 

stress condition can be computed by 

𝜂 = 𝜎𝑚𝜎 = (𝜎1 + 𝜎2)3√𝜎12 + 𝜎22 − 𝜎1𝜎2,  (2) 

where 𝜎𝑚 and 𝜎 are the mean stress and equivalent stress, respectively. The analytical solution 

for the stress triaxiality at the center point can be obtained by Bai (2008), as follows 
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𝜂 = 1 + 2Λ3√Λ2 + Λ + 1 = 0.4486,  (3) 

where Λ = 𝑙𝑛(1 + 𝑎/2𝑅). 𝑎 is the distance between the center point and the edge point at the 

neck of the notch, while 𝑅 is the radius of the notch. 

 

Figure 3 The notch specimen with sizes for biaxial tension. The arrow on the bottom shoulder of 

specimen on the left figure indicates the rolling direction. All the units are 𝑚𝑚. The fracture 

surface is similar with uniaxial tension. 

The true strain-stress curve and Lankford ratio under notch tension, however, cannot be directly 

measured in this test due to non-uniform cross-section and uneven distribution in thickness 

deformation. In this manner, it is necessary to define another plastic strain based parameter to 
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represent the effect of in-plane anisotropic flow under all the possible loading conditions. 

Therefore, a new parameter Φ is used hereafter, defined as 

Φ = 𝑎𝑡𝑎𝑛2(−𝜀2̇𝑝, 𝜀1̇𝑝) + 90∘,  (4) 

where 𝑎𝑡𝑎𝑛2  is two arguments arctangent function with sign information included. The 

analogical equation in stress field can be used to calculate the Lode angle (Bai & Atkins, 2011).  

 

Figure 4 The schematic FFLD describes the definition of Φ under proportional loading. The 

symbol 𝜂 means the stress triaxiality. 

As a matter of fact, Φ denotes the angle to the positive minor strain direction in the forming 

fracture limit diagram (FFLD), which is illustrated in Figure 4. Under proportional loading 

Minor Strain (  )

Major Strain (  )

Φ = 45°, 𝜂 = 2 3 
Equi-biaxial Tension

Φ = 90°, 𝜂 = 1 3 
Plane Strain Tension

Φ = 116°, 𝜂 = 1 3 
Uniaxial TensionΦ = 135°, 𝜂 = 0

Pure  ShearΦ = 153°, 𝜂 = −1 3 
Uniaxial Compression

Φ = 180°, 𝜂 = −1 3 
Plane Strain CompressionΦ = 225°, 𝜂 = −2 3 

Equi-biaxial Compression
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conditions, the value of Φ keeps constant, therefore the cumulative plastic strains can be used to 

calculate the value of Φ instead of using the plastic strain rates. The anisotropic effect is thus 

measured quantitatively by the angle offset to the specified loadings. Under the assumption of 

isotropic J2 plasticity, the Φ value equals to 45° corresponding to equi-biaxial tension; Φ = 90° 
corresponds to plain strain tension; 116° is for uniaxial tension; 135° is for pure shear, and 153° 
is for uniaxial compression etc.. In this way, this new parameter is utilized to comprehensively 

describe the plastic flow and calibrate the constitutive model under all possible loading 

conditions. It is more general than the Lankford ratio whose definition is based on uniaxial 

loading. 

Punch 2.4 

The Hasek (1978) punch test without cutout was conducted to effectuate the loading condition of 

equi-biaxial tension at the point of the disk center. The geometry of the disk specimen is shown 

in Figure 5. The disk specimen was clamped onto the top surface of the die by 16 fastening bolts. 

A mirror was placed below the die at 45° to assist the camera to capture the deformation of the 

disk. The punch was controlled to move vertically downwards onto the disk until it failed. More 

details about the testing procedure can be found in Walters (2009). The specimen after testing is 

displayed to the right of Figure 5, where the fracture initiation was not precisely at the absolute 

center point because a) the material fracture limit of the equi-biaxial point was expected to be 

higher than the peripheral region, and b) the anisotropic effect at the area around the center point. 

Therefore the limit of equi-biaxial fracture strain cannot be directly measured by DIC. However, 

the plastic flow under equi-biaxial tension can be well obtained. 
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Figure 5 The disk specimen with sizes for punch test. All the units are mm. The crack initiation 

site is a little bit offset from the absolute center of the disk after forming. 

Uniaxial Compression 2.5 

A set of small cuboid specimens were designed instead of the dogbone-like shape for in-plane 

sheet compression due to the aforementioned reason, in order to obtain more hardening 

information stably (Hammer, 2012). These cuboid specimens were cut into 3𝑚𝑚 in width and 4𝑚𝑚 in length, with the original thickness of 2𝑚𝑚, and compressed along the length direction. 

The length-to-width (𝐿/𝑊) ratio was therefore 1.33. The two surfaces on which the compressive 

force was applied had been lubricated by Vaseline to decrease the friction effect. Figure 6 shows 

the difference between a) uniaxial compression test of small cuboid specimen, and b) 

compressive stage in reverse loading of the reduced-size dogbone specimen, with anti-buckling 

device described in next section. The fracture initiated at compressive strain of 11% for small 

cuboid specimens with no buckling, and a shear-dominated fracture surface is shown in Figure 7. 

It is found that the fracture initiated at the edge rather than center due to the stress concentration 

with the edge effect, therefore, accurate measurement of uniaxial compressive fracture strain was 

 12.70
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22.5° 43.94

 127.0
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unavailable in this test. However, its entire loading history can be precisely observed by DIC to 

reveal its plastic behavior. 

 

Figure 6 True strain-stress curves for uniaxial compression, comparing between small cuboid 

specimen (solid line) and reduced-size dogbone specimen with anti-buckling device (dash line). 

Biaxial and Plane Strain Compression 2.6 

Similarly, another small cuboid sample was carried for biaxial compression with a larger width 

of 16𝑚𝑚, which was four times more than the length of 4𝑚𝑚 to exert horizontal stress occurred 

at the center during a test. Plane strain compression was achieved by further increasing the width 

to 40𝑚𝑚, which restricts the horizontal strain. 
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Figure 7 The compression specimens after test shows shear dominated fracture mechanism. The 

specimens before test are shown side by side to compare with. (a) Uniaxial compression, (b) 

Biaxial compression and (c) Plane strain compression. 

The 𝐿/𝑊 ratios for biaxial and plane strain compression were 0.25 and 0.10, respectively. An 

identical procedure of the cuboid uniaxial compression test was applied for biaxial and plane 

strain compression tests. Using this method, biaxial compression loading conditions between 

uniaxial compression and plane strain compression can be achieved under a uniaxial testing 

machine. The fracture surfaces of biaxial and plane strain compression specimens after test, 

similar with uniaxial compression, are shown in Figure 7b and Figure 7c. The usual definitions 

of the von Mises equivalent stress and strain for the plane strain test (𝐿/𝑊 = 0.1) can be 

approximated as follows 

𝜎 = √32 𝑌𝜀 = 2√3 𝜀,  (5) 

10𝑚𝑚
(a)

(b)

(c) 10𝑚𝑚
10𝑚𝑚
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where 𝑌  and 𝜀  are the true stress and strain computed by the experimental data, along the 

compressive direction. However, for the biaxial compression test, the stress triaxiality cannot be 

obtained directly from the test and hence the result will be presented in the form of true strain-

stress (strain/stress component at loading axis) instead of equivalent strain-stress, comparing to 

the uniaxial and plane strain compression tests. 

Through-Thickness Compression 2.7 

The uniaxial compression in a through-thickness direction is equivalent to a stress state involving 

both in-plane equi-biaxial tension and a hydrostatic pressure. Therefore, the same stress-strain 

response with equi-biaxial tension (e.g. bulge test or cruciform specimen test) will be obtained 

by through-thickness compression, under the assumption of pressure insensitivity to plasticity. A 

technique was designed for through-thickness compression concerning with eliminating the 

frictional effects at the loading surfaces (Vial, Hosford, & Caddell, 1983). A series of two 10𝑚𝑚 

diameter discs were stacked together (without glue or bonding agent) to produce a “cylindrical” 

specimen. The 𝐿/𝑊 ratio was therefore 0.40. Teflon tapes of 0.075𝑚𝑚 thickness were cut into 

the disc shape and placed between the specimens and the platens for lubrication. Different from 

the punch test, the information of the plastic flow is unobtainable due to the limitation of DIC 

(the images can be only captured on side view). However, the equivalent strain-stress response 

can be directly obtained. 
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Figure 8 The through-thickness compression specimens before and after test. Both of the 

specimens were stacked together as a “cylinder” specimen. (a) The specimens before the test, (b) 

The specimens after the test. 

The fracture surfaces of the through-thickness compression specimens are shown in Figure 8b. 

Specimen failure was initiated by small cracks on the edge, and the subsequent loadings cannot 

represent the equi-biaxial loading condition. The diameters vary with different radial orientations 

after the test (forming an oval shape), which indicates the anisotropic effect. 

(a)

(b)

10𝑚𝑚

Rolling 

Direction
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Pure Shear 2.8 

 

Figure 9 The shear specimen with sizes. All the units are 𝑚𝑚. 

Figure 9 illustrates the geometry of the in-plane shear test specimen, which was used by Khan et 

al. (2011); Y. Lou and Huh (2013) with no thickness reduced in the shear zone based on an 

original design proposed by Bao and Wierzbicki (2004). It is worth mentioning that the thickness 

reduction may introduce surface effects such as residual stresses and micro-cracks, and the 

material properties of rolling AZ31B magnesium sheet along the thickness direction can also be 

different (D.-G. Kim, Son, Kim, Kim, & Lee, 2011; Yan, Zhang, Chen, Zhong, & Weng, 2007). 

The constraint of the shear specimen was achieved by using one pin at each end to guarantee that 

no rotational loadings were introduced. No instability was observed prior to fracture. Figure 10 

shows fractured shear specimens. 
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Figure 10 The fracture surface for shear specimen in the view of (a) front, (b) side and (c) 

thickness, respectively. 

Under this loading condition, the shear stress 𝜎12 is calculated as follows 

𝜎12 = 𝐹𝑏𝑡,  (6) 

where 𝑡 is the specimen thickness. Due to notable large deformation, the logarithmic engineering 

shear strain in incremental form is evaluated using the following method suggested by D. Mohr 

and Oswald (2007) 

𝛾12𝑖 = 𝛾12𝑖−1 + 12( 1𝛥𝑌 + 𝑣𝐴𝑖−1 − 𝑣𝐵𝑖−1 + 1𝛥𝑌 + 𝑣𝐴𝑖 − 𝑣𝐵𝑖 ) (𝑢𝐴𝑖 − 𝑢𝐵𝑖 − 𝑢𝐴𝑖−1 + 𝑢𝐵𝑖−1),  (7) 

where 𝑢 and 𝑣 denote the horizontal and vertical displacements measured by DIC respectively, 𝑖 
and 𝑖 − 1  indicate the time steps. The remaining symbols are expressed in Figure 11. By 

Equation (7) the shear strain is obtained by 𝜀12  = 𝛾12/2, hence the equivalent stress and strain 

for the shear test read 

(a)
10𝑚𝑚 2𝑚𝑚

(b)
2𝑚𝑚

(c)
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𝜎 = √3𝜎12𝜀 = 2√3 𝜀12  (8) 

 

Figure 11 Geometry of the shear test and the description of the deformation at the specimen 

center. 

Compression-Tension Reverse Loading 2.9 

Reversal loading test can reveal the kinematic hardening behavior for this material. Different 

types of anti-buckling device have been designed in order to prevent the sheet specimen from 

buckling during the compression phase. The compression strain can be achieved as 8% (Boger, 

Wagoner, Barlat, Lee, & Chung, 2005), 10% (Yoshida, Uemori, & Fujiwara, 2002), 13% (Beese, 

2011) and 20% (Khan et al., 2011) reported, using the anti-buckling device. The reduced-size 

dogbone specimen for reverse loading test is illustrated in Figure 12 and Figure 13, using the 

same approach and device reported by Beese (2011). The sheet specimen was clamped by two 

steel plates with 14 bolts and springs. The springs were loaded to provide enough pressure, 

Shear Zone

Time Step: 𝑖

Time Step: 𝑖 + 1
 

   

𝐹𝐹

𝑏 𝑌
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preventing the buckling effect. A window was opened in the anti-buckling device for optical 

strain measurement. Teflon tapes were applied between the plate and the specimen for both sides 

in order to eliminate the frictional effect. The montage of the specimen assembled with the anti-

buckling device is shown in Figure 13. Three different amounts of compressive strain, 3%, 6%, 

and 10% were conducted respectively, followed by uniaxial tension until fracture occurred. 

 

Figure 12 The reduced-size dogbone specimen for reverse loading. All the units are 𝑚𝑚. 
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Figure 13 The assembled anti-buckling device and the reduced-size dogbone specimen designed 

by Beese (2011), with (a) unloaded springs and (b) loaded springs. 

Two-Step Uniaxial Loading 2.10 

The conduction of a two-step uniaxial tension test is capable to achieve the cross-loading 

condition. A large-scaled dogbone specimen was used for the first step uniaxial tension. 

 

Figure 14 The large-scaled and small-scaled dogbone specimens for two-step uniaxial tension. 

The small ones were cut from the large specimen based on the assembly. The central area was 

painted for the purpose of DIC measurement. 

The amount of true strains in the first step were 2% , 5.5% , and 8%  for both 0°  and 90° 
orientation, and 2% and 5.5% for 45° orientation. The large dogbone specimens were unloaded 

after approaching the specified pre-strain, and then they were cut into small-scaled dogbone 

(a) (b)

100𝑚𝑚 Rolling Direction

0° 90° 45° for Second Step
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specimens along the orientations of 0°, 45°, and 90° to conduct the second step uniaxial tension. 

Two identical specimens were cut along each orientation, to assess experimental repeatability. 

The geometries and assembly of both large and small scaled dogbone specimens are illustrated in 

Figure 14, with the rolling direction marked. All the orientations mentioned were according to 

the rolling direction of the original metal sheets. 
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 CHAPTER 3 RESULTS AND ANALYSIS 

This section aims to characterize the yielding, hardening, and fracture properties of magnesium 

AZ31B alloy sheet under different loading conditions. The experimental results for different 

loading conditions are exhibited including material strength, plastic flow, and strain histories to 

fracture. It should be noted that the stress dropping on the stress-strain curves presented in this 

section are not due to unloading but the fracture initiation. 

Uniaxial and Notch Tension 3.1 

The true strain-stress curves under uniaxial tension are given below in Figure 15a. The data 

points of normalized stress (with respect to 0° orientation) extracted at the true strain of 0.08 in 

Figure 15b. One can see that the specimen has both higher strength and larger fracture strain 

when the orientation approaches 90°  (transversal direction), where there are about 10% 

difference in stress observed between 0° and 90° specimens. A similar anisotropic characteristic 

is also observed in notch tension, whose force-displacement curves are shown Figure 15c. 

Therefore, this material exhibits strong anisotropic plastic behavior in strength under uniaxial 

and biaxial tension. 

Figure 16a illustrates the strain histories under uniaxial tension in the space of Lankford ratio 

versus equivalent plastic strain, which were extracted at the fracture initiation points using DIC.  
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Figure 15 The anisotropic plastic behaviors for both uniaxial and notch tension specimens. (a) 

True strain-stress curves for uniaxial tension specimens along five different loading orientations 

with respect to the rolling directions (0°), (b) Normalized yield stress for uniaxial tension at the 

true strain of 0.08 with different loading orientations, where the baseline is 323𝑀𝑃𝑎, and (c) 

Force-displacement curves for notch tension specimens. 
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Figure 16 Plastic flow for both uniaxial and notch tension specimens. (a) Lankford ratio versus 

equivalent plastic strain for uniaxial tension, (b) Lankford ratio versus different orientations for 

uniaxial tension, extracted at strain level of 0.08, and (c) Equivalent plastic strain versus Φ for 

both uniaxial and notch tension. 
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One can see that the increment of 𝑟-value is diminishing after the growth of the equivalent 

plastic strain for a certain period of time in the presented Lankford ratio curves. The maximum 

and minimum in-plane principal strains were approximately proportional with a confidence level 

of 0.99 for all orientations, based on the DIC measurement. Therefore, it can be deduced that a) 

the loading histories were proportional, and b) the Lankford ratio tended to stabilize at some 

value (for this material) under a given loading condition for a specific orientation. The 

comparison of 𝑟-values among different orientations is exhibited in Figure 16b, which were 

extracted at 0.08 true strain. It can be observed that the 𝑟-value approaches unity for 0° specimen, 

while 𝑟 = 3.5 for 90° specimen, indicating strong anisotropy in plastic flow. The Lankford ratio 

was unobtainable for notch tension because it was defined for uniaxial condition only. The 

general plastic flow parameter Φ  defined in previous section was therefore applied to 

quantitatively describe the anisotropic plastic flow under different loading conditions. There is a 

one-to-one correspondence between Lankford ratio and Φ under uniaxial loading condition. The 

definition of 𝑟-value from Equation (1) reads 

𝑟 = 𝜀𝑤̇𝑖𝑑𝑡ℎ𝑝𝜀𝑡̇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠𝑝 = − 𝜀𝑤̇𝑖𝑑𝑡ℎ𝑝𝜀𝑤̇𝑖𝑑𝑡ℎ𝑝 + 𝜀𝑎̇𝑥𝑖𝑎𝑙𝑝 . 
Equation (1) can be rewritten into 

𝑟𝑟 + 1 = 𝜀𝑤̇𝑖𝑑𝑡ℎ𝑝𝜀𝑎̇𝑥𝑖𝑎𝑙𝑝 = −𝜀2̇𝑝𝜀1̇𝑝.  (9) 

Under uniaxial condition, the principle values of in-plane plastic strain rate are: 𝜀1̇𝑝 = 𝜀𝑎̇𝑥𝑖𝑎𝑙𝑝 > 0, 𝜀2̇𝑝 = 𝜀𝑤̇𝑖𝑑𝑡ℎ𝑝 < 0. The new plastic flow parameter Φ from Equation (4) reads, 
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Φ = 𝑎𝑡𝑎𝑛2(−𝜀2̇𝑝, 𝜀1̇𝑝) + 90∘ = 𝑎𝑟𝑐𝑡𝑎𝑛 (−𝜀2̇𝑝𝜀1̇𝑝) + 90∘ = 𝑎𝑟𝑐𝑡𝑎𝑛 ( 𝑟𝑟 + 1) + 90∘.  (10) 

Therefore, a similar curve shape as Lankford ratio is obtained for Φ under uniaxial condition in 

Figure 16c according to Equation (10). Moreover the plastic flow for notch tension described by Φ is can be obtained concurrently in Figure 16c. By this approach, the calibration of material 

constitutive model will be based on the general plastic flow parameter Φ. The stabilized value of Φ was extracted for the model calibration, which was obtained at the time when the change of its 

value along the growth of equivalent strain was less than 5%, or from the final value of Φ along 

the strain history if the change was still larger than 5%. The stress triaxiality in the center of the 

notch specimen is 𝜂 = 0.4486 according to Equation (3), hence the theoretical value of Φ is 103° assuming J2 plasticity. This is approximately the same with the experimental value of 22.5°  notch tension. And for the other notch tension specimens, they all deviate from 103° to 

considerable varying degrees, demonstrating anisotropic behavior in plastic flow under biaxial 

tension. The similarly overall tendency in plastic flow is observed under uniaxial tension. 

In addition, the fracture strains can be obtained in Figure 16c from the loading histories of both 

uniaxial and notch tension. It is worthwhile distinguishing between edge and center fracture 

initiation for notch tension tests, because the loading conditions were actually different in one 

single notch specimen: bi-axial tension was achieved at the center while uniaxial tension was 

found at the both of the notch edges. It was observed that the equivalent strain at the edge (0.087, 

under uniaxial tension) was fairly smaller than the fracture strain under the dogbone uniaxial 

tension (0.16) based on the DIC measurement. Therefore, the equivalent strain at the center point 

at that frame could represent the fracture strain under notch tension. 
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Punch 3.2 

The force-displacement curve and the plastic flow are shown in Figure 17 for the punch tests. 

The Φ angle approaches 45° due to the enforcement of deformation at the center of the disk 

specimen, indicating that the equi-biaxial tension loading condition can be achieved 

approximately at the punch center. However, the material under equi-biaxial tension was 

theoretically limited to a single point. Said differently, the stress triaxiality  𝜂  equaled to 2/3 at 

the absolute center point.  It decreased rapidly when straying around, where the anisotropic effect 

took place. Hence, the loading history shown in Figure 17b deviated Φ = 45°  slightly, and 

according to Figure 17c, fracture initiates off the center when the punch displacement approaches 3𝑚𝑚  with equivalent plastic strain turning at approximately 0.13 . This is indicated by the 

transition points between two colors in both Figure 17a and Figure 17b. Subsequently, the punch 

load could still be supported until completely fracture due to strain hardening, but the loading 

condition diverged. Figure 17b also shows the comparison of the plastic flow between uniaxial 

tension and two punch tests. One can see that the turning strain 0.13 for punch test is slightly less 

than the fracture strain of 0° uniaxial tension. 
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Figure 17 Punch test results, indicating the fracture initiation points. (a) Force-displacement 

curve, (b) Equivalent plastic strain with Φ angle, comparing with the 0° uniaxial tension result. 

The loading condition change for punch test is distinguished by two colors. (c) The DIC image at 

the time when fracture initiated. 
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Uniaxial, Biaxial and Plane Strain Compression 3.3 

The true strain-stress curves (strain/stress component at loading axis) for uniaxial, biaxial and 

plane strain compression are shown in Figure 18a and Figure 18b. Significant characteristics of 

asymmetric yield and unusual hardening behavior were observed under compression loading. 

Figure 18c and Figure 18d show the equivalent plastic strains with Φ  parameters for those 

loading conditions. The noise in plastic flow was observed during the plateau period of flow 

stress after initial yield. After that, he Φ  angle gradually grows towards 153°  for uniaxial 

compression, and 180° for plane strain compression. It can be also seen from Figure 18d that the Φ angles under plane strain compression tests slightly changed after the initial yield plateau, 

though, approximately only 3%  of the compressive strain was measured in the horizontal 

direction in that period, which assured the plane strain loading condition. 

Similar to the uniaxial tensile loading condition, the flow stresses from 0° to 90°  are in an 

increasing order. For the plastic flow however, the J2 plasticity are consistent with the results of 90°  specimen instead of 0°  in tension test. In particular for plane strain compression, the 

anisotropic effect is not as apparent as uniaxial compression based on less difference in Φ value. 

The fracture strain for all the compressive tests with small cuboid cannot be reflected from the 

result due to contact friction effect, which usually leads to initiate tensile crack. For the same 

reason, the uniaxial compression test failed before their  Φ values approached 153°. 
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Figure 18 The results for uniaxial, biaxial and plane strain compression. The dot line indicates 

the biaxial loading condition. (a) True strain-stress curves for both uniaxial and biaxial 

compression, (b) True strain-stress curves for plane strain compression, (c) Equivalent plastic 

strain versus Φ angle for both uniaxial and biaxial compression, and (d) Equivalent plastic strain 

versus Φ angle for plane strain compression. 
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Through-Thickness Compression 3.4 

The true stress-strain curve of the through-thickness compression test is shown in Figure 19, 

comparing to the result of 0° uniaxial tension. 

 

Figure 19 The true stress-strain curves (two tests) of through-thickness compression, comparing 

with the 0° uniaxial tension result. 

Different from in-plane compression tests, the hardening behavior was similar to the one under 

uniaxial tension test. The fracture initiation strain is unknown in this test, because the fracture 

was initiated by edge crack at the strain of 0.08. The in-plane plastic strains were unable to be 

obtained due to the compressive loading direction. The equivalent stress-strain under through-
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thickness compression can be unified with the plastic flow from punch tests, exhibiting the 

loading condition of equi-biaxial tension. 

Pure Shear 3.5 

Figure 20 exhibits both the equivalent strain-stress curves and plastic flow under shear loading. 

The curves are more compliant among all the orientations in shear than those under tension and 

compression, which indicates less anisotropic effect. Both the highest strength and the largest 

offset from Φ = 135°  (isotropic) was observed in 45°  shear specimen. The normalized 

equivalent stresses for shear tests were extracted when the equivalent strain equals to 0.05 and 0.15 in Figure 20c, respectively. A larger difference in shear strength at 0.15 strain was observed 

than at 0.05 strain, among all the orientations. This indicates a special phenomenon that the 

hardening curves are not consistent but dependent on orientations, in particular for shear loading. 
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Figure 20 The results for shear tests. (a) Equivalent strain-stress curves, (b) Equivalent plastic 

strain versus Φ angle, the dash line marks pure shear loading condition based on von-Mises 

plasticity, and (c) Normalized stress at specific equivalent plastic strains. The baseline is 323𝑀𝑃𝑎. 
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Summary for Plasticity and Fracture 3.6 

 

Figure 21 The hardening curves for 0°  specimens, comparing with uniaxial tension, shear, 

through-thickness compression, uniaxial and plane strain compression. 

Nine different loading conditions (uniaxial tension, notch tension, punch, uniaxial reversal 

compression-tension, uniaxial compression, biaxial compression, plane strain compression, 

through-thickness compression, and shear) were applied, five orientations were tested for each 

loading condition except for punch (one), uniaxial reversal compression-tension (three) and 

through-thickness compression (one). Three tests were repeated for each case, therefore 105 

mechanical test were conducted for magnesium AZ31B-H24 in total. An overall picture of the 

magnesium AZ31B-H24 plasticity and fracture properties is exhibited. Good repeatability was 

observed when the strength data were summarized.  
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Figure 22 Normalized equivalent stresses versus orientations at initial yield among different 

loading conditions and orientations. The baseline values are all 220𝑀𝑃𝑎. Error bars of test data 

are provided. 

The equivalent strain-stress curves obtained by 0° specimens under different monotonic loading 

conditions are shown in Figure 21 and Figure 22. The results of notch tension, biaxial 

compression, and punch test are not included due to non-uniform deformation. The hardening 

curves can be then classified into two groups, a) classical “convex” curves, for uniaxial, shear, 

punch, and through-thickness compression (equi-biaxial tension) tests, and b) “concave” curves, 

for uniaxial and plane strain compression tests. Large asymmetrical initial yield stress between 

tension and compression can be observed for this material. 
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Figure 23 The entire loading histories with plastic flow and fracture strains, for all the loading 

conditions and orientations. Error bars of test data are provided. 

Figure 23 illustrates all the monotonic loading histories, which are distinguished by different 

loading conditions. The error bars were individually determined by comparing the difference 

between two continuous frames, when fracture initiated in a single test. The corresponding Φ 

values under J2 plasticity are indicated from left to right in Figure 23 as following: 45° for punch 

test (equi-biaxial tension), 103° for notch (biaxial) tension, 116° for uniaxial tension, 135° for 

pure shear, 153° for uniaxial compression and 180° for plane strain compression, respectively. 

Concurrently the fracture strains and safe points (no fracture initiation) are included in Figure 23 

as well, hence a fracture locus can be determined.  
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 CHAPTER 4 CONSTITUTIVE MODELING 

This material, magnesium AZ31B-H24, exhibits strong anisotropy according to the experimental 

results in the previous chapter. In order to describe the plastic behaviors in a general stress state, 

an accurate yield criterion and a hardening rule are required. 

CPB06ex2 Anisotropic Yield Criterion 4.1 

To account for both anisotropy in material strength and plastic flows for magnesium AZ31B 

alloys, an extension of Cazacu et al. (2006) orthotropic yield criterion was proposed by Plunkett 

et al. (2008). This criterion, denoted CPB06ex2, reads 

𝐹(𝚺, 𝚺′) = (Σ1 −  |Σ1|)𝑎 + (Σ2 −  |Σ2|)𝑎 + (Σ3 −  |Σ3|)𝑎 + (Σ1′ −  ′|Σ1′ |)𝑎 + (Σ2′ −  ′|Σ2′ |)𝑎+ (Σ3′ −  ′|Σ3′ |)𝑎,  (11) 

where   and  ′ are material parameters describing the asymmetrical strength between tension 

and compression, a is the degree of homogeneity, while 𝚺 and 𝚺′ are transformed stress tensors 

obtained through application of two linear 4th order orthotropic tensors, denoted 𝑪 and 𝑪′, on the 

Cauchy stress deviator 𝑺.  In the axes of orthotropy, 𝑪 and 𝑪′ are represented as 

𝚺 = 𝑪 ⋅ 𝑺, 𝚺′ = 𝑪′ ⋅ 𝑺,  (12) 

where 𝑪 and 𝑪′ are fourth-order tensors operating on the stress deviator, represented as 

𝑪 =
[  
   
𝐶11 𝐶12 𝐶13 0 0 0𝐶12 𝐶22 𝐶23 0 0 0𝐶13 𝐶23 𝐶33 0 0 00 0 0 𝐶44 0 00 0 0 0 𝐶55 00 0 0 0 0 𝐶66]  

   , 𝑪′ =
[  
   
 𝐶11′ 𝐶12′ 𝐶13′ 0 0 0𝐶12′ 𝐶22′ 𝐶23′ 0 0 0𝐶13′ 𝐶23′ 𝐶33′ 0 0 00 0 0 𝐶44′ 0 00 0 0 0 𝐶55′ 00 0 0 0 0 𝐶66′ ]  

   
 .  (13) 
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In this study 𝐶44, 𝐶55, 𝐶44′  and 𝐶55′  are zeros due to the plane stress condition, and 𝑎 was set as 

another material coefficient for calibration. Therefore 15 anisotropic parameters are involved in 

total, based on the orthotropic configuration with respect to the given Cartesian coordinate 

system. This yield surface was proven to be convex when  ,  ′ ∈  [−1,1] and 𝑎 ≥ 1 (Cazacu et 

al., 2006). The calibrated parameters are given in Table 1. 

Table 1 CPB06ex2 yield criterion parameters for magnesium AZ31B-H24 alloy 𝑎   𝐶11 𝐶12 𝐶13 𝐶22 𝐶23 𝐶33 𝐶66 1.65 0.67 1.63 −0.21 −0.21 0.94 −0.48 −1.72 1.69 

  ′ 𝐶11′ 𝐶12′ 𝐶13′ 𝐶22′ 𝐶23′ 𝐶33′ 𝐶66′ 
 −0.98 0.66 0.28 0.14 0.41 −0.82 −0.34 0.50 

Modified Semi-analytical Sachs Model 4.2 

Based on the activation of deformation twinning under compressive load, a semi-analytical 

Sachs model (Barnett, 2007; Barnett et al., 2006) has been evaluated for multi-axial hardening of 

AZ31B-H24 by Jia and Bai (2015c). It was then modified and extended to include the 

dependency on stress triaxiality and Lode angle parameter. Let 𝑋𝑇  be the fraction of grains 

undergoing twinning and 𝜒 is the fraction of these grains that have twinned, thus the following 

volumes can be defined: volume I, (1 − 𝜒)𝑋𝑇, material undergoing deformation by twinning; 

volume II, 𝜒𝑋𝑇 , twinned material undergoing deformation by glide; and volume III, 1 − 𝑋𝑇 , 

material that deforms only by glide. In volume I, the constant stress 𝜎𝐼 is assumed, partially due 

to the “easy” lateral advance of the {101̅2} twinning front once the twin has formed. Therefore 

𝜎𝐼 = (1 − 𝜒)𝑋𝑇 𝜏0𝑡𝑚𝐼 ,  (14) 
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where 𝜏0𝑡 is the critical resolved shear stress (CRSS) and 𝑚𝐼 is the effective Schmid factor for 

twinning in this volume. In volume II, additional hardening is controlled by an ad-hoc hardening 

factor 𝜉 due to twin boundaries and dislocation-twin interactions, and thus the stress 

𝜎𝐼𝐼 = 𝜒𝑋𝑇𝜉  𝑚𝐼𝐼𝑛+1 (𝜀𝑝 + 𝜀0)𝑛,  (15) 

where 𝑚𝐼𝐼  is the effective Schmid factor for basal slip in this volume and   reflects the 

magnitude of CRSS for basal slip. Note that the original power-hardening item was (𝜀𝑝 −0.13𝑚𝐼𝜒)𝑛 in Barnett (2007); Barnett et al. (2006), where the item 0.13𝑚𝐼𝜒 indicates the strain 

accommodated by the twinning reaction. This was modified into a single constant 𝜀0 with its sign 

reversed because it would cause model instability when 𝜀𝑝 − 0.13𝑚𝐼𝜒 was smaller than zero. 

Also, the value of 0.13𝑚𝐼𝜒 is actually small enough to be neglected. For volume III which does 

not undergo twinning, the stress is given as 

𝜎𝐼𝐼𝐼 = (1 − 𝑋𝑇)  𝑚𝐼𝐼𝐼𝑛+1 (𝜀𝑝 + 𝜀0)𝑛,  (16) 

where 𝑚𝐼𝐼𝐼 is the effective Schmid factor for basal slip in this volume. Therefore, to approximate 

the combined effect of these stresses, with the Sachs assumption, a convenient approximation is 

provided for the equivalent stress, as follows 

𝜎𝑆𝑎𝑐ℎ𝑠 = 𝜎𝐼 + 𝜎𝐼𝐼 + 𝜎𝐼𝐼𝐼 = (1 − 𝜒)𝑋𝑇 𝜏0𝑡𝑚𝐼 + 𝜒𝑋𝑇𝜉  𝑚𝐼𝐼𝑛+1 (𝜀𝑝 + 𝜀0)𝑛 + (1 − 𝑋𝑇)  𝑚𝐼𝐼𝐼𝑛+1 (𝜀𝑝 + 𝜀0)𝑛.  (17) 

An additional parameter 𝜀0 was added in the third item for controlling the initial yield stress. The 

value of 𝜒 is assumed to be a sigmoidal function, 
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𝜒 = 1 − 𝑒 𝑝 [−4(𝜀𝑝𝜀1)𝑎],  (18) 

where 𝑎 is a rate exponent and 𝜀1 is the macroscopic strain at which the twinning reaction is 98% complete. Two extensions were made to incorporate the stress triaxiality and Lode angle 

dependencies, in order to capture the complicated hardening behavior of this material. First, the 

parameter 𝑋𝑇 is generalized into a function of stress triaxiality, which reads 

𝑋𝑇 = 𝑋𝑇𝑇 + 𝑋𝑇𝐶 − 𝑋𝑇𝑇1 + exp[𝐶(𝜂 − 𝜂𝐶)],  (19) 

 

Figure 24 The parameter 𝑋𝑇  as a function of stress triaxiality 𝜂 , with interpretation of used 

coefficients. 
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Here, 𝑋𝑇𝑇 and 𝑋𝑇𝐶 are the individual 𝑋𝑇 values based on the measurement of twinning volume 

fraction under uniaxial tension and compression loading conditions, respectively. 𝐶 and 𝜂𝐶  are 

two more material coefficients, added to control the 𝑋𝑇𝑇 -to-𝑋𝑇𝐶  transition rate and position, 

respectively. 𝜂 is the stress triaxiality according to Equation (2), 

𝜂 = 𝜎𝑚𝜎 = (𝜎1 + 𝜎2)3√𝜎12 + 𝜎22 − 𝜎1𝜎2The function of 𝑋𝑇 versus stress 

The second extension was made to adjust the magnitude of 𝜎𝑆𝑎𝑐ℎ𝑠 by adding a correction term  

based on Algarni, Bai, and Choi (2015); Bai and Wierzbicki (2008b). The final equivalent stress 

now reads 

𝜎 = 𝜎𝑆𝑎𝑐ℎ𝑠[1 − 𝑐𝜂(𝜂 − 𝜂0)2] [𝑐𝜃𝑠 −𝑚 + 1𝑚 (𝑐𝜃𝑎𝑥 − 𝑐𝜃𝑠) (𝛾 − 𝛾𝑚+1𝑚 + 1)],  (20) 

where 

𝑐𝜃𝑎𝑥 = {𝑐𝜃𝑡 𝜃 ≥ 0𝑐𝜃𝑐 𝜃 < 0𝛾 is related to the normalized Lode 

𝛾 = √32 − √3 [sec (𝜃 𝜋6 ) − 1],  (21) 

where 𝑐𝜂 , 𝜂0 , 𝑐𝜃𝑠 , 𝑐𝜃𝑡 , 𝑐𝜃𝑐 , and 𝑚  are material coefficients. 𝜃  is the normalized Lode angle 

parameter. It is expressed, under plane stress condition, as follows, 

𝜃 = 1 − 2𝜋 𝑎𝑟𝑐𝑐𝑜𝑠 [− 272 𝜂 (𝜂2 − 13)].  (22) 

Note that two items were modified compared to the original equation from Bai and Wierzbicki 

(2008b), a) the original item (𝜂 − 𝜂0) was modified into a quadratic item (𝜂 − 𝜂0)2 to increase 

its flexibility, and b) the coefficient (𝑚 + 1) 𝑚  was newly added for user friendly consideration. 
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This modification could increase the robustness of the hardening model when a loading 

condition abruptly changes. The calibration of this model could be partially guided by 

rudimentary crystal plasticity type calculations to determine the values of the material 

coefficients 𝑚𝐼, 𝑚𝐼𝐼, 𝑚𝐼𝐼𝐼, 𝑋𝑇𝑇 and 𝑋𝑇𝐶, based on the measurement from Barnett et al. (2006); X. 

Y. Lou et al. (2007) with adjustment. The rest of them, 𝜏0, 𝜀1, 𝜀0, 𝑛, 𝑎, 𝜉,  , 𝐶, 𝜂𝐶 , 𝑐𝜂, 𝜂0, 𝑐𝜃𝑠 , 𝑐𝜃𝑡 , 𝑐𝜃𝑐 , and 𝑚 were optimized to simultaneously correlate with the tested equivalent stress-strain 

curves under different loading conditions. The set of calibrated plasticity parameters is listed in 

Table 2. 

Table 2 Modified Sachs hardening model coefficients for magnesium AZ31B-H24 𝑋𝑇𝑇 𝑋𝑇𝐶 𝑚𝐼 𝑚𝐼𝐼 𝑚𝐼𝐼𝐼 𝑎 𝜀1 𝜀0 𝑛 𝜏0 (𝑀𝑃𝑎) 0.041 0.836 0.450 0.450 0.250 2.920 0.124 0.005 0.091 84.20 𝜉 𝐶 𝜂𝐶  𝑐𝜂 𝜂0 𝑐𝜃𝑠  𝑐𝜃𝑡  𝑐𝜃𝑐  𝑚   (𝑀𝑃𝑎) 1.443 80.00 0.150 −0.150 0.000 0.969 0.971 1.155 0.050 87.40 

 



55 

 

Kinematic and Cross Hardening Rules Described by New State Variables 4.3 

 

Figure 25 Experimental true stress-strain curves under uniaxial compression-tension reversal 

loading with different compressive pre-strains. Note that the drops of last data points are due to 

fracture. 

Examples of true stress-strain curves under a uniaxial compression-tension reversal loading 

condition are illustrated in Figure 25, with three different compressive pre-strains, 0.037, 0.060, 

and 0.097. The orientations are all along rolling direction (RD). The details of experimental 

method and results are provided in the later sections. The first stage of compressive part is 

compliant with the monotonic experimental result (Jia & Bai, 2015c). However, three 

characteristics different from the monotonic loading in the sequential tensile stress-strain curves 
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can be observed, a) Another sigmoidal shape is exhibited, similar with the compressive part. b) 

This shape is dependent on the amount of compressive pre-strain. c) The stress-strain curve 

under reversal tension is consistent with the one under monotonic uniaxial tension, when the 

sequential sigmoidal shape approaches an ultimate plateau. Therefore, three different sets of state 

variables are defined to incorporate these effects into the hardening model. 

4.3.1 Loading History Effect 

An AF-type “dummy” back stress 𝜶 is defined as follows, in an increment form 

𝛼𝑖𝑗̇ = 𝐶0 (𝜌 𝜎𝑖𝑗 − 𝛼𝑖𝑗𝜎 − 𝛼𝑖𝑗) 𝜀 ̇𝑝,  (23) 

where 𝐶0 and 𝜌 are material coefficients, and 𝜀 ̇𝑝 is the increment of equivalent plastic strain. It is 

nominated as “dummy” because the Cauchy stress 𝜎𝑖𝑗 will not be directly influenced by this back 

stress, and the plastic flow potential function still remains, as follows 

𝑓(𝜎𝑖𝑗) − 𝜎 = 0,  (24) 

where 𝑓(𝜎𝑖𝑗) is the CPB06ex2 anisotropic yield criterion. Therefore, 𝛼 is only a state tensor to 

record the loading history. In order to characterize the strain path effect, a parameter was 

introduced by Schmitt et al. (1994), which reads 

Θ =  ̇(1)𝑝 :  ̇(2)𝑝‖ ̇(1)𝑝 ‖‖ ̇(2)𝑝 ‖,  (25) 

where 𝜀(̇1)𝑝
 and 𝜀(̇2)𝑝

 indicate plastic strain tensors under the pre-strain and the subsequent 

deformation, respectively. Similarly, a stress-based definition was proposed by Barlat et al. 
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(2013), where the strain tensors were replaced by Cauchy stress tensor and microstructure 

deviators in Equation (25). Analogously, a state variable 𝜓 is defined in this paper, as follows 

cos𝜓 = 𝝈:𝜶‖𝝈‖‖𝜶‖.  (26) 

The phenomenological meaning of this variable is the angle between Cauchy stress and “dummy” 

back stress, which is exhibited in Figure 26 under different loading conditions. 

 

Figure 26 A schematic graph of the angle 𝜓 in the stress space under (a) monotonic uniaxial 

tension, (b) reversal uniaxial compression-tension, and (c) two-step uniaxial tension (cross 

loading). 

This variable can then be further normalized into two different forms, 

𝑋𝐾 = 1 − cos𝜓2 ,  (27) 𝑋𝐶 = 1 − |cos𝜓|.  (28) 

These two state variables are capable for distinguishing different types of loading histories, as 

follows: 

1. Monotonic loading (Figure 26a): cos𝜓 = 1, 𝑋𝐾 = 0, 𝑋𝐶 = 0, when 𝝈 is co-directional 

with 𝜶. 

2. Reversal loading (Figure 26b): cos𝜓 = −1 , 𝑋𝐾 = 1 , 𝑋𝐶 = 0 , when 𝝈  is completely 
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opposite to 𝜶. 

3. Cross loading (Figure 26c): cos𝜓 ∈ (−1,1), 𝑋𝐾 ∈ (0,1), 𝑋𝐶 ∈ (0,1], when it is under the 

rest types of loading transitions, for example a transition in uniaxial tension from along 0° to 90° 
orientation, or a transition from uniaxial tension to pure shear. 

 

 

Figure 27 Schematic evolutions of new state variables 𝑋𝐾  and 𝑋𝐶  under (a), (c) reversal 

compression-tension, and (b), (d) two-step uniaxial tension (cross loading), in the space of (a), (b) 

stress, and (c), (d) equivalent plastic strain, comparing to their hardening curves. 𝑋𝐾 and 𝑋𝐶, whose evolutions are schematically illustrated in Figure 27, can then be utilized to 

identify the transitional strain history. Figure 27a and Figure 27c depict the loading condition 
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change from uniaxial compression to uniaxial tension. 𝑋𝐾  increases from zero to one and 

remains, while 𝑋𝐶 is constantly zero during the transition. It is because the “dummy” back stress 𝜶 is uniaxially driven by the Cauchy stress 𝝈. When 𝜶 evolves into the same direction of the 

Cauchy stress, 𝑋𝐾 returns into zero, generating a square shape with unity magnitude along the 

growth of equivalent plastic strain. The evolution scenarios of both 𝑋𝐾  and 𝑋𝐶  are different 

during cross loading from reversal loading. Figure 27b and Figure 27d depict a two-step uniaxial 

tension, from along 0°  to 90°  orientation. 𝑋𝐾  and 𝑋𝐶  increase from both 0 to 0.5  and 1 , 

respectively. Since 𝜶 is non-uniaxially evolving from along 0° to 90° orientation to follow the 

direction of 𝝈, the angle between 𝜶 and 𝝈 changes all the time, resulting in a decay instead of 

uniform shape in both of them along the growth of the equivalent plastic strain. A peak value is 

obtained at the beginning of the transition. The peak value and decaying rate are dependent on 

the angle between 𝝈 and 𝜶 when transition initiates, and the material coefficients in the “dummy” 

back stress, respectively. Therefore, 𝑋𝐾 is the state variable for recording loading histories under 

both reversal and cross conditions, while 𝑋𝐶 is for the cross loading histories only. In this way, 

reversal and cross loading histories can be fully decoupled to simplify the modeling and 

calibration processes. 

4.3.2 Twinning/De-twinning Effects 

A new state variable 𝜅, indicating the real-time absolute twinning ratio in a grain, is defined in 

form of differential equation, 

𝜅̇ = 𝜔(𝜅 + 𝜅0)[𝑋𝑇(𝜂) − 𝜅]𝜀 ̇𝑝,    𝜅(0) = 0,  (29) 
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where 𝜅0 and 𝜔 are material coefficients to adjust the twinning/de-twinning rate. This function 

has a sigmoidal shape along twinning ratio growth, which is similar with the empirical rule of 

twinning evolution 𝜒 in Equation (18).  

 

 

Figure 28 Schematic evolutions of new state variables 𝜅 and 𝜇 under reversal a), c) compression-

tension, and b), d) tension-compression, in the space of a), b) equivalent plastic strain with stress 

triaxiality, and c), d) equivalent plastic strain, comparing to their hardening curves. 

On the contrary, 𝜒 is an ever-increasing function that approaches an ultimate value of one and 

then stagnates, while 𝜅 can be increased/decreased towards 𝑋𝑇, indicating the expected twinning 
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ratio under a specific loading condition (represented by stress triaxiality). The schematic 

evolution of this state variable is depicted in Figure 28. Therefore, the twinning/de-twinning 

effect can be expressed by 𝜅, under the following scenarios: 

1. Monotonic tension (D to E), 𝜅 grows from zero towards 𝑋𝑇𝑇.  

2. Monotonic compression (A to B), 𝜅 grows from zero towards 𝑋𝑇𝐶, 

3. Tension followed by compression (D to E to F), 𝜅 grows from zero towards 𝑋𝑇𝑇, and the

n continues to grow towards 𝑋𝑇𝐶, 

4. Compression followed by tension (A to B to C), 𝜅 firstly grows from zero to 𝜅1 towards 𝑋𝑇𝐶. If 𝜅1 is larger than 𝑋𝑇𝑇, 𝜅 decreases towards 𝑋𝑇𝑇, otherwise 𝜅 continues to grow towards 𝑋𝑇𝑇. The position of 𝜅1 can be controlled by the twinning/de-twinning rate, represented by the m

aterial coefficients 𝜔 and 𝜅0. 

An ad-hoc de-twinning state variable 𝜇 is defined in form of differential equation, to represent 

the fraction of these twinned regions that expected to be de-twinned, as follows 

𝜇̇ = {−Ω𝜇(1.005 − 𝜇)𝜀 ̇𝑝 𝜅̇ < 00 𝜅̇ ≥ 0 , 𝜇(0) = 𝜇(𝜅̇ > 0) = 1,  (30) 

where Ω is a material coefficient representing the ad-hoc de-twinning rate. It is noted that the 

evolution of 𝜇 is governed by 𝜅̇, the rate of the absolute twinning ratio in a grain. 𝜇 is set as unity 

when there is no de-twinning in progress (𝜅̇ > 0). Once a de-twinning initiates (𝜅̇ < 0), μ is 

activated to evolve until all the twinned area is de-twinned (𝜇 = 0), which can be expressed as 

an inverse sigmoidal shape function. The schematic evolution of this state variable is also 

depicted in Figure 28. When the compressive pre-strain is larger, the sequential tensile part 

exhibits the following dependency: a) the magnitudes of both initial and ultimate plateau are 
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larger; and b) the transition from the initial to the ultimate plateau is slower, indicating a slower 

de-twinning rate. These two phenomena are recalled in Figure 25. Therefore, the ad-hoc de-

twinning rate coefficient Ω should be generalized into a function of compressive pre-strain 𝜀𝐶, 

which will be determined in the next section. Using a sigmoidal function again, Ω  can be 

expressed as follows 

Ω = Ω11 + exp(Ω2𝜀𝑐) + Ω3,  (31) 

where Ω1, Ω2 and Ω3 are three additional material coefficients. 

4.3.3 Pre-strain Effect 

Let 𝜀𝐶  be the compressive strain in a loading history. It can be defined, with another state 

variable 𝜀𝐶0 at time step 𝑖 + 1, as follows 

(𝜀𝐶)𝑖+1 = {𝜀 𝑝 − (𝜀𝐶0)𝑖+1 𝜅̇ ≥ 0(𝜀𝐶)𝑖 𝜅̇ < 0, 𝜇 < 0.95 

 (𝜀𝐶0)𝑖+1 = { 𝜀 𝑝 𝑋𝐾 = 1(𝜀𝐶0)𝑖 𝑋𝐾 ≠ 1 , 𝜀𝐶(0) = 𝜀𝐶0(0) = 0,  (32) 

The determination of 𝜀𝐶 is dictated by both twinning/de-twinning rate 𝜅̇ and the reversal loading 

historical state variable 𝑋𝐾, to exclusively record the compressive strain during reversal loading. 

This can be explained as follows, 

1. Monotonic and cross loading (𝜅̇ ≥ 0, 𝑋𝐾 ≠ 1): 𝜀𝐶0 are always equal to zero and then 𝜀𝐶 

is always following the total equivalent plastic strain 𝜀 𝑝 because 𝜀𝐶 = 𝜀 𝑝 − 0 = 𝜀 𝑝. 

2. Tension-compression reversal loading (𝜅̇ ≥ 0, 𝑋𝐾 = 1): Let 𝜀 𝐶0𝑝  be the equivalent plastic 

strain at the beginning of sequential compressive loading, where satisfies 𝜅̇ ≥ 0 and 𝑋𝐾 = 1. 
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Therefore, it can be obtained that 𝜀𝐶0 = 𝜀 𝐶0𝑝  and 𝜀𝐶 = 𝜀 𝐶0𝑝 − 𝜀𝐶0 = 𝜀 𝐶0𝑝 − 𝜀 𝐶0𝑝 = 0, indicating the 

initiation of the compressive loading. After the transition, it can be obtained 𝑋𝐾 = 0 during the 

sequential compression. Therefore,  𝜀𝐶0  remains as 𝜀 𝐶0𝑝 , and 𝜀𝐶  equals to 𝜀 𝑝 − 𝜀𝐶0 = 𝜀 𝑝 − 𝜀 𝐶0𝑝  

since 𝜅̇ ≥ 0  still remains, recording the extracted amount of equivalent plastic strain under 

compressive loading only. This is because the accumulated strain in all previous loadings 𝜀 𝐶0𝑝  has 

been removed from 𝜀 𝑝. The twinning ratio is always either growing or remaining (𝜅̇ ≥ 0) till the 

end of the sequential compression loading. 

3. Compression-tension reversal loading (𝜅̇ < 0, 𝑋𝐾 = 1): The pre-compressive part can be 

either monotonic (scenario 1) or reversal (scenario 2). As described above, the compressive 

strain can be recorded by 𝜀𝐶  under both cases. In the sequential tension part where 𝜅̇ < 0, 𝜀𝐶 

remains as a constant value from the previous step, which can then be applied in Equation (31) 

with de-twinning effect activated. An additional identification 𝜇 < 0.95 is added to eliminate 

noises in FE simulation, ensuring the pre-strain starts to be recorded after the expected tension 

part. 

On the other hand, a general pre-strain 𝜀𝐵 can be similarly defined as follows, utilizing both 𝑋𝐾 

and the twinning rate 𝜅̇, 

(𝜀𝐵)𝑖+1 = {𝑋𝐾𝜀 𝑝 𝜅̇ ≥ 0, 𝑋𝐾̇ > 0(𝜀𝐵)𝑖 𝑂𝑡ℎ𝑒𝑟 , 𝜀𝐵(0) = 0.  (33) 

Different from εC , εB  indicates a pre-strain under all rest loading conditions, including cross 

loading. This can be explained as follows, 

1. Monotonic loading (𝜅̇ ≥ 0, 𝑋𝐾 = 0): 𝜀𝐵 are always equal to zero. 

2. Cross loading (𝜅̇ ≥ 0, 𝑋𝐾 ∈ (0,1), 𝑋𝐾̇ > 0): Cross loading includes all possible stress 
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states transitions within the range of (−180°, 180°)  on the yield surface. For example, a 

transition from 0° uniaxial tension to 90° uniaxial tension can be expressed as a 90° transition on 

the yield surface. It could result in 𝑋𝐾̇ > 0 , an impulse peak value for 𝑋𝐾  ranges in (0,1), 

followed by an exponential decay shape as discussed in section 4.3.1The twinning behavior 

remains in this range (𝜅̇ ≥ 0) because 𝑋𝑇 , governing the target value of the evolution of 𝜅 , 

remains the same. For example, the 0° uniaxial tension shares the same stress triaxiality 1 3  

with the 90° uniaxial tension. Therefore, 𝜀𝐵 = 𝑋𝐾𝜀 𝑝 , indicating the current equivalent plastic 

strain with distinguishing the effects among different types of cross-loading by 𝑋𝐾. 𝜀𝐵 remains 

once the state variable 𝑋𝐾 decays because 𝑋𝐾̇ is now smaller than zero. 

3. Tension-compression reversal loading (𝜅̇ ≥ 0, 𝑋𝐾 = 1, 𝑋𝐾̇ > 0): Let 𝜀 𝐶0𝑝  be the current 

equivalent plastic strain at the beginning of sequential compressive loading. An impulse is 

generated for 𝑋𝐾  at the beginning of the transition, where 𝑋𝐾̇ > 0 and 𝑋𝐾 = 1. The twinning 

ratio is always either growing or remaining (𝜅̇ ≥ 0) during compression loading. Therefore, 𝜀𝐵 is 

set as 𝑋𝐾𝜀 𝐶0𝑝 = 𝜀 𝐶0𝑝 , and remained after the impulse since 𝑋𝐾  will either stagnate (during the 

transition) or return into 0 (after the transition). This can be considered as a specific case under 

scenario 2 above. 

4. Compression-tension reversal loading (𝜅̇ < 0, 𝑋𝐾 = 1, 𝑋𝐾̇ > 0): 𝜀𝐵 are always equal to 

zero or the previous recorded value since 𝜅̇ ≥ 0 doesn’t satisfy. 

Therefore, 𝜀𝐵  records the equivalent plastic strain under all loading conditions except 

compression, compensating to the other strain state variable 𝜀𝐶 . It is noted that 𝜀𝐶  and 𝜀𝐵  can 

then be applied for modeling all types of kinematic hardening behavior. 
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Derivation of a New Hardening Model 4.4 

The modified semi-analytical Sachs model (Jia & Bai, 2015b) can be extended to incorporate the 

kinematic hardening behavior, using the state variables. Therefore, an additional item is defined, 

as follows 

𝜎𝐾 = 𝑠𝑖𝑔𝑛(𝜇̇) [( 𝐾1𝜇 −  𝐾2𝜀𝐶)(𝜀 𝑝 + 𝜀0 − 𝜀𝐶)𝑛 + 𝑋𝐾√𝜶𝑑𝑒𝑣: 𝜶𝑑𝑒𝑣],  (34) 

where 

𝜇 is the ad-hoc de-twinning state variable, evolves from 1 (no de-twinning) to 0 (de-twinning 

finished) evaluated by Equation (30). This is the key state variable to generate the sigmoidal 

shape in the sequential tensile stress-strain curve. 

𝑠𝑖𝑔𝑛(𝜇̇)  is the de-twinning activation factor, which can be either −1  (activated) or 0 

(deactivated) based on Equation (30). The entire item vanishes when it is deactivated. 

𝜀𝐶 is the compressive strain in previous loading history, computed by Equation (32). An amount 

of 𝜀𝐶 is subtracted from the total equivalent plastic strain in the power hardening item. This is to 

consider the dependency on compressive pre-strain. 

 𝐾1  and  𝐾2  are material coefficients, controlling the magnitudes of the initial and ultimate 

plateau in the sequential tensile part. 

𝑋𝐾 is the loading history state variable identifying the transition area. 

𝜶𝑑𝑒𝑣 is the deviatoric part of the “dummy” back stress, whose von-Mises type equivalent value 

is expressed by √𝜶𝑑𝑒𝑣: 𝜶𝑑𝑒𝑣. A smoother transition can be generated by adding this item. 
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Figure 29 Schematic effects for new added items, (a) 𝜎𝐾 under a compression-tension reversal 

loading, and (b) 𝜎𝐶 under a two-step uniaxial tension (cross loading). 

The effect of 𝜎𝐾  on the stress-strain curve under compression-tension reversal loading is 

illustrated in Figure 29a. This item 𝜎𝐾  governs the compression-tension part in kinematic 

hardening exclusively, utilizing the special de-twinning effect. The kinematic hardening behavior 

under the rest conditions, including tension-compression and cross loadings, can be incorporated 

by subtracting 𝜀𝐵 from the accumulated equivalent plastic strain 𝜀 𝑝. The micro-structure related 

coefficients can be also combined and simplified to improve user friendliness, especially when 

those parameters are not readily available from micro-structural investigation. Therefore, the 

modified Sachs hardening model based on Equation (17) becomes, 

𝜎𝑁𝑒𝑤𝑆𝑎𝑐ℎ𝑠 =  1(1 − 𝜒)𝑋𝑇 + [ 2𝜒𝑋𝑇 +  3(1 − 𝑋𝑇)](𝜀 𝑝 + 𝜀0 − ℎ𝜀𝐵)𝑛,  (35) 

where 

𝜒 indicates the fraction of the to-be-twinned grains that have already twinned, ranges from 0 to 1. 

It is defined as follows, 
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𝜒 = 1 − 𝑒 𝑝 [−4(𝜀 𝑝 − ℎ𝜀𝐵𝜀1 )𝑎].  (36) 

𝑋𝑇 is the fraction of grains expected to be twinned based on Equation (19). 𝜀𝐵 is the historical 

accumulated plastic strain from the previous loading transitions, excluding the de-twinning 

process. By subtracting it from the total equivalent plastic strain 𝜀 𝑝, the kinematic hardening 

behavior can be achieved under tension-compression loading and cross loadings. 

ℎ is an additional material coefficient attached to 𝜀𝐵 to control the isotropic hardening. ℎ ranges 

from 0 (no kinematic hardening) to 1 (no isotropic hardening). For example, if ℎ = 1, the stress-

strain curve in sequential compression part would be exactly the same with the one under 

monotonic compression. 

 1,  2, and  3 are simplified material coefficients, which can be directly calibrated. If the micro-

structural parameters are available they can be expressed as follows 

 1 = 𝜏0𝑡𝑚𝐼 ,  2 = 𝜉  𝑚𝐼𝐼𝑛+1 ,  3 =  𝑚𝐼𝐼𝐼𝑛+1,  (37) 

The rest of material coefficients are identical in previous section. It is noted that 𝜀𝐵  always 

equals to zero under monotonic loading conditions. Therefore, it is ensured that the material 

coefficients calibrated by monotonic loading results (Jia & Bai, 2015b) are consistent. The 

kinematic hardening behavior during cross loading can be further compensated by an additional 

item 𝜎𝐶, defined as 

𝜎𝐶 = −𝑋𝐶𝜆√𝜶𝑑𝑒𝑣: 𝜶𝑑𝑒𝑣,  (38) 

Here, 𝑋𝐶 is the key state variable governing the smoothness in transition during cross loading, as 

discussed in section 4.3.1. It equals to zero under both monotonic loading and reversal loading. 
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This parameter also exclusively represents a decay function under cross loading, see Figure 27d. 

This provides an advantage to isolate the cross hardening from the rest kinematic hardening 

behavior. 𝜆 is an exponential material coefficient adjusting the decaying rate of 𝑋𝐶. The term of √𝜶𝑑𝑒𝑣: 𝜶𝑑𝑒𝑣 dictates the magnitude during the cross hardening. 

The effect of this item is illustrated in Figure 29b, comparing to a case without 𝜀𝐵 and 𝜎𝐶 in the 

example of 0° to 90° two-step uniaxial tension. Conclusively, the final constitutive model for 

magnesium AZ31B-H24 becomes 

𝜎 = (𝜎𝑁𝑒𝑤𝑆𝑎𝑐ℎ𝑠 + 𝜎𝐾 + 𝜎𝐶)𝑓𝑒𝑥𝑡(𝜂, 𝜃 ),  (39) 

Together with the yield criterion, the governing equation is 

𝑓(𝜎𝑖𝑗)𝑓(𝝈𝑈𝑇) − 𝜎 = 0,  (40) 

where 𝑓(𝜎𝑖𝑗) is CPB06ex2 anisotropic yield criterion and 𝝈𝑈𝑇 is a constant stress tensor defined 

as 

𝝈𝑈𝑇 = [ 1 0 0 ].  (41) 

This is used to normalize the plane stress anisotropic yield criterion to the uniaxial tension 

condition, in order to assure the equivalent stress 𝜎 always equals to the first component of the 

stress tensor under uniaxial tension. Through this section, a fully decoupled plasticity model is 

established. 

Alternative Interpretation to Twinning/De-twinning State Variables 4.5 

Reminding of Equation (29), 
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𝜅̇ = 𝜔(𝜅 + 𝜅0)[𝑋𝑇(𝜂) − 𝜅]𝜀 ̇𝑝,    𝜅(0) = 0 

The twinning/de-twinning effect can be well incorporated by applying the new added state 

variables 𝜅 and 𝜇. However, the characteristic of this key state variable 𝜅 partially overlaps with 

the one of an existed function 𝜒, from Equation (36), 

𝜒 = 1 − 𝑒 𝑝 [−4(𝜀 𝑝 − ℎ𝜀𝐵𝜀1 )𝑎]The differences between those two 

 

Figure 30 Schematic graph of a grain with the alternative interpretation under (a) twinning and (b) 

de-twinning. The gradient region indicates the growth/shrinkage of twinned area. 

After the replacement, these three areas can then be expressed by: a) 𝑋𝑇 − 𝜅, b) 𝜅, and c) 1 − 𝜅 

under a twinning scenario. 𝑋𝑇 − 𝜅 is always larger or equal than zero because 𝑋𝑇 is the saturated 

value of 𝜅 along twinning growth. On the other hand, the de-twinning effect can be incorporated 

into the main framework. Assume the evolution of twinning is completed (𝜅 = 𝑋𝑇, 𝑋𝑇𝐶 = 𝑋𝑇 =𝜅 > 𝑋𝑇𝑇 ), and the loading condition changes from compression to tension. The de-twinning 

effect takes place when 𝑋𝑇, the area that supposed to be twinned, shrinks into 𝑋𝑇𝑇, which is 

much smaller than the current 𝜅. Alternatively, a grain can now be divided into three other 

𝑋𝑇 − 𝜅
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different areas: a) 𝜅 − 𝑋𝑇 , going to be de-twinned, in the area undergone twinning, b) 𝑋𝑇 , 

remains twinned during de-twinning, and c) 1 − 𝜅, free of twinning/de-twinning. These areas can 

be schematically depicted in Figure 30.  

Calibration Procedure 4.6 

The new model includes six different modules to calibrate. The basic calibration sequences and 

procedures are described as follows. 

1. Calibrate the CPB06ex2 anisotropic yield criterion 𝑓(𝜎𝑖𝑗)  using the data set of both 

plastic flow and strength, under different monotonic loading conditions and loading orientations. 

As for the strength part, the material strength difference is influenced by both orientation and 

loading condition. Commonly, these two factors are coupled together in the anisotropic yield 

criterion. In the current framework, the latter is decoupled by involving the function 𝑓𝑒𝑥𝑡(𝜂, 𝜃 ) to 

further consider the loading condition effects. Therefore, the dependency on loading orientation 

is exclusively governed by the yield criterion. Experimental material strengths can then be 

normalized by their individual 0° (rolling direction) case under each loading condition. 

2. Calibrate the first hardening item, 𝜎𝑁𝑒𝑤𝑆𝑎𝑐ℎ𝑠  for isotropic hardening using the 

experimental stress-strain curves under different monotonic loading conditions and along 

referential orientation (0°). If the expected twinning ratio in a grain under compression (𝑋𝑇𝐶) and 

under tension (𝑋𝑇𝑇 ) are not readily available from micro-structural investigation, a single 

unknown value of 𝑋𝑇 ∈ [0,1] rather than the entire function of Equation (19) can be substituted 

into Equation (35), where ℎ is temporarily set to zero. 𝑋𝑇 controls the convexity/concavity of the 

entire hardening curve. 𝑋𝑇 = 0 indicates completed convex. The curve gradually grows into a 
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concave shape as 𝑋𝑇 increases. The effects of 𝑋𝑇 on different material coefficients in Equation 

(35) and (36) can be summarized as follows. 

a)  1 and 𝜀0 control the initial yield stress.  1 dominates when 𝑋𝑇  is closer to one, while 𝜀0 

dominates when 𝑋𝑇 is closer to zero. 

b)  2 controls the magnitude of the ultimate plateau when 𝑋𝑇 is closer to one. It can also adjust 

the slope when 𝑋𝑇 is closer to zero. 

c)  3 and 𝑛 control the magnitude and curvature for the entire curve.  3 exhibits less effect 

when 𝑋𝑇 is closer to one. 

d) 𝑎 and 𝜀1 control the sigmoidal shape when 𝑋𝑇 is closer to one. 

If multiple experimental stress-strain curves (with different stress triaxialities) are available to be 

fitted, different values of isolated 𝑋𝑇 can be firstly applied in order to obtain the rest of material 

coefficients. Secondly, the coefficients, 𝑋𝑇𝑇, 𝑋𝑇𝐶, 𝐶, and 𝜂𝐶  in Equation (19) can be obtained by 

comparing different 𝑋𝑇  values to the corresponding stress triaxiality 𝜂 values. It is noted that 

only the curvatures should be correlated well in this step, because the magnitude of material 

strength under different loading conditions can be further adjusted by the function of 𝑓𝑒𝑥𝑡(𝜂, 𝜃 ). 
3. Calibrate the stress triaxiality and Lode angle dependency function 𝑓𝑒𝑥𝑡(𝜂, 𝜃 ). Now the 

stress-strain curves can be generated by incorporating both the anisotropic yield criterion 𝑓(𝜎𝑖𝑗) 
and 𝜎𝑁𝑒𝑤𝑆𝑎𝑐ℎ𝑠 under different loading conditions and orientations. Extract initial yield stresses or 

a set of stress points at any other single strain value from both analytical and experimental curves. 

Apply their stress triaxialities and Lode angle parameters in the function 𝑓𝑒𝑥𝑡(𝜂, 𝜃 ) and multiply 

the extracted analytical stresses by the function. Adjust the material coefficients 𝑐𝜂, 𝜂0, 𝑐𝜃𝑠 , 𝑐𝜃𝑡 , 𝑐𝜃𝑐 , 

and 𝑚  to correlate them with the extracted experimental stress data. The calibration for 
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monotonic loading cases is completed through these three steps. 

4. Calibrate the kinematic hardening item 𝜎𝐾 with related state variables. A set of stress-stra

in curves from uniaxial compression-tension reversal loading are required, with different compre

ssive pre-strains. Firstly, apply all related state variables, 𝜅, 𝜇, 𝛼𝑖𝑗, 𝜀𝐶 and 𝑋𝐾, into the governing 

equation to generate a uniaxial compression-tension scenario. Secondly, adjust the material coeff

icients to simultaneously fit the experimental curves under different pre-strains, however, with in

dividual de-twinning rate Ω. The effects of different material coefficients in Equation(29), (30), a

nd (34), are listed as follows. 

a)  𝐾1 controls the magnitude of the initial plateau in the sequential tensile part only. 

b)  𝐾2 controls the magnitude of both the initial and ultimate plateaus simultaneously. 

c) Ω controls the evolution rate from the initial to the ultimate plateau in the sequential tensile 

part. 

d) 𝐶0 and 𝜌 in the “dummy” back stress 𝛼𝑖𝑗 control the smoothness in the transition area. 

e) 𝜔 and 𝜅0, even though don’t explicitly influence the stress-strain curve, control the twinning 

rate in both the compressive and tensile loadings. It is noted that the current twinned ratio 𝜅 

at the transition may possibly be smaller than 𝑋𝑇𝑇 (the expected twinning ratio in a grain) if 

the twinning rate is slow enough or the compressive pre-strain is very small. In this case, the 

de-twinning effect will not happen and the sigmoidal shape will not appear in the sequential 

tensile step. If this phenomenon is captured in the experimental results, it is important to 

adjust 𝜔 and 𝜅0 to correlate with the boundary pre-strain, between the occurrence and non-

occurrence of the de-twinning effect in the sequential tensile part. 
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Thirdly, the coefficients Ω1, Ω2 and Ω3 can be obtained by comparing different Ω values to the 

corresponding 𝜀𝐶 values in Equation (31). The last step is to determine the residual coefficient ℎ 

in Equation (35) using an experimental stress-strain curve under uniaxial tension-compression 

reversal. 

5. Calibrate the additional cross hardening item 𝜎𝐶. Cross loading experimental results are 

required to determine the last material coefficient 𝜆 . This type of test could be a two-step 

uniaxial tension, with different loading orientations. The detail of this test will be discussed in 

the experimental method section. The exponential coefficient 𝜆 is obtained by correlating the 

transition area in model-generated stress-strain curve to the experimental one. 

6. Calibrate the eMMC anisotropic fracture model. The material coefficients are non-

associated with the plasticity model. The details of this part will be discussed in the next chapter. 

It can be seen that the calibration procedure has non-aftereffect property: the calibration for each 

step will not affect the calibration result(s) from the previous step(s). Therefore, the entire 

calibration could be performed straightforwardly within individually modules. A tool in the 

Excel spreadsheet with Microsoft Visual Basic codes was built to generate the analytical stress-

strain curves and compare with the experimental ones, which helps to adjust model parameters to 

obtain the best curve fitting results for all loading conditions. The calibrated material coefficients 

for the new derived constitutive model are partially listed in Table 3, while the rest is already 

listed in Table 2. The calibrated model was then implemented into the FE simulation to 

reproduce all experimental results. 

Table 3 New constitutive model coefficients for magnesium AZ31B-H24 sheets 𝜔 𝜅0 Ω1 Ω2 Ω3 𝐶0 (𝑀𝑃𝑎) 𝜌  𝐾1 (𝑀𝑃𝑎)  𝐾2 (𝑀𝑃𝑎) ℎ 𝜆 
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71.00 0.015 550.7 47.40 70.37 9.500 975.6 240.0 260.0 1.000 4.500 

 

Calibration Result 4.7 

The predicted equivalent stress-strain curves for 0°  under the following loading conditions, 

uniaxial tension/compression, pure shear, plane strain and through-thickness compression, were 

compared to the experimental curves in Figure 31. One can see that the asymmetrical 

characteristic between tension and compression was well modeled, and the unusual concave 

curves in both uniaxial and plane strain compression were well predicted.  

 

Figure 31 Comparison between predicted and experimental hardening curves among different 

loading conditions. The orientations are all 0°. 
Figure 32 exhibits the anisotropic hardening behavior under those loading conditions along 

different orientations. An excellent correlation between tested and theoretical stress-strain curves 

can be observed for all the orientations. Figure 33 illustrates the calibration of plastic flow, 
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represented as the Φ angle under different loading conditions. Note that the hardening curves 

under notch tension cannot be obtained directly from the tests, however, the information of 

plastic flow can be measured by DIC and well calibrated. There are some errors in the plastic 

flow prediction for shear loading condition, whose Φ angles deviated with test measurements.  
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Figure 32 Comparison between predicted and experimental stress-strain curves, (a) uniaxial 

tension, (b) shear, (c) uniaxial compression, and (d) plane strain compression. 

There are two possible reasons for this difference in shear, a) the actual specimen orientation 

could be rotated during the experiment which was not considered in theoretical solutions, and b) 

the real stress triaxiality in shear specimen could be slight different from the analytical solution, 

where 𝜂 = 0 was applied. The predicted Φ angles could be much closer in the FE simulations 

where material orientation change and stress triaxiality are accurately calculated, which will be 

described in next chapter. The calibrated parameters of CPB06ex2 yield criterion and Sachs 

hardening rule were listed in Table 1, Table 2, and Table 3, respectively. The part of non-

proportional loading cases is given together with the FE simulation results in the next chapter. 
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Figure 33 The calibration results for the plastic flow, represented in Φ angle, including uniaxial 

tension/compression, shear, plane strain compression, and notch tension. 
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 CHAPTER 5 ALL STRAIN BASED ANISOTROPIC DUCTILE 

FRACTURE MODELING 

Model Framework 5.1 

The fracture locus of the original MMC fracture criterion based on the work of Bai and 

Wierzbicki (2010) reads 

𝜀𝑓(𝜂, 𝜃) = { 𝐶2 [𝐶̃𝜃𝑠 +√3(𝐶𝜃𝑎𝑥 − 𝐶̃𝜃𝑠)2 − √3 (sec 𝜃𝜋6 − 1)] [√1 + 𝐶123 cos𝜃𝜋6 + 𝐶1 (𝜂 + 13 sin 𝜃𝜋6 )]}−1𝑛,  (42) 

where 

𝐶𝜃𝑎𝑥 = { 1 𝜃 ≥ 0𝐶̃𝜃𝑐 𝜃 < 0. 
Here, 𝜂 is the stress triaxiality; 𝜃 is Lode angle parameter;  , 𝑛, 𝐶1, 𝐶2, 𝐶̃𝜃𝑠 and 𝐶̃𝜃𝑐 are the model 

parameters. The calibration is confined to the tensile loading condition because of the availability 

of the fracture strains. Due to the difficulty of direct measurement of stress triaxiality evolution 

(without FE simulations with an adequate plasticity model), the model was transformed into an 

all-strain based space by involving the stress ratio and the ratio of in-plane principal strain 

increments (Jia et al., 2013). The strain incremental ratio (𝛼) and stress ratio (𝛽) are defined as 

𝛼 = 𝑑𝜀2𝑑𝜀1 ,   𝛽 = 𝜎2𝜎1.  (43) 

Assuming the Mises-Levy flow rule, it can be derived that 

𝛼 = 𝑑𝜀2𝑑𝜀1 = 𝜕𝑓𝜕𝜎2𝜕𝑓𝜕𝜎1 = 2𝜎2 − 𝜎12𝜎1 − 𝜎2 = 2𝛽 − 12 − 𝛽 ,  (44) 
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where 𝑓 is the von-Mises plastic potential function. It can be rewritten into 

𝛽 = 2𝛼 + 12 + 𝛼 .  (45) 

From the side of stress state, the three invariants of a stress tensor under plane stress condition 

are defined, respectively 

𝑝 = −𝜎𝑚 = −𝜎1 + 𝜎23 ,  (46) 

𝑞 = 𝜎 = √𝜎12 + 𝜎22 − 𝜎1𝜎2,  (47) 

𝑟 = (272 det 𝑺)13 = [272 (𝜎1 − 𝜎𝑚)(𝜎2 − 𝜎𝑚)(−𝜎𝑚)]13 

= (𝜎13 − 32𝜎12𝜎2 − 32𝜎22𝜎1 + 𝜎23)13,  (48) 

where 𝜎𝑚 is the mean stress, 𝜎 is the equivalent stress, 𝑺 = 𝝈 − 𝑝𝑰 is the deviatoric stress tensor, 𝜎1  and 𝜎2  denote the in-plane principal stresses. Using the definition of the stress triaxiality 

under plane stress condition, from Equation (2), 

𝜂 = 𝜎𝑚𝜎 = 𝜎1 + 𝜎23√𝜎12 + 𝜎22 − 𝜎1𝜎2 

Note the relationship between 𝜂 and 𝛽 is, using the definition of stress ratio 𝛽, 

𝜂 = 𝜎1 + 𝜎23√𝜎12 + 𝜎22 − 𝜎1𝜎2 = 𝛽 + 13√𝛽2 − 𝛽 + 1.  (49) 

Another important stress state related variable, the Lode angle parameter 𝜃 is originally defined 

as 
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𝜃 = 1 − 2𝜋 arccos (𝑟𝑞)3.  (50) 

It can be rewritten as, under plane stress condition, recalling Equation (22) 

𝜃 = 1 − 2𝜋 𝑎𝑟𝑐𝑐𝑜𝑠 [−272 𝜂 (𝜂2 − 13)] 
= 1 − 2𝜋 arccos [𝜎13 − 32𝜎12𝜎2 − 32𝜎22𝜎1 + 𝜎23(𝜎12 + 𝜎22 − 𝜎1𝜎2)32 ] 
= 1 − 2𝜋 arccos [𝛽3 − 32𝛽2 − 32𝛽 + 1(𝛽2 − 𝛽 + 1)32 ].  (51) 

Therefore, both the stress triaxiality and the Lode angle parameter, which are two independent 

variables in the original 3D MMC fracture model, can be expressed as a function of the stress 

ratio only, under the plane stress condition. Using the relationship between strain ratio and stress 

ratio from Equation (45), the fracture strain 𝜀𝑓 is hence expressed as a function of strain ratio (𝛼) 

only, which can be directly measured by a DIC system. However, the strain ratio (𝛼) could not 

distinguish different loading conditions between tensile dominated and compression dominated 

loadings. For example, it gives the same values for both equi-biaxial tension and equi-biaxial 

compression. In this manner, the parameter Φ can also be used here, based on Equation (4), 

Φ = 180°𝜋 𝑎𝑡𝑎𝑛2(−𝜀2̇𝑝, 𝜀1̇𝑝) + 90∘ 
where 𝑎𝑡𝑎𝑛2  is the two arguments arctangent function with sign information included. The 

analogical equation in stress field can be used to calculate the Lode angle (Bai & Atkins, 2012). Φ denotes the angle to the positive minor strain direction in the forming fracture limit diagram 

(FFLD) under proportional loading, illustrated in Figure 4. The effect of strain/stress state on 
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ductility is thus measured quantitatively by the angle offset to the specified loadings under the 

assumption of isotropic J2 plasticity, which are 45° for equi-biaxial tension, 90° for plain strain 

tension, 116° for uniaxial tension, 135° for pure shear and 153° for uniaxial compression etc.  

 

Figure 34 The relationship among stress triaxiality (𝜂), strain ratio (𝛼), and the new parameter Φ. 

An one-to-one mapping is illustrated from the stress triaxiality to Φ. 

One big advantage of the all-strain based fracture model is that it can be used to study fracture 

while bypassing plasticity. The definition of Φ  under tensile loading condition is shown as 

follow, 
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Φ = 180°𝜋 𝑎𝑡𝑎𝑛2(−𝜀2̇𝑝, 𝜀1̇𝑝) + 90∘ = 360°𝜋 𝑎𝑟𝑐𝑡𝑎𝑛 −𝜀2̇𝑝√(𝜀2̇𝑝)2 + (𝜀1̇𝑝)2 + 𝜀1̇𝑝 + 90∘ 
= 360°𝜋 𝑎𝑟𝑐𝑡𝑎𝑛 −𝛼√1 + 𝛼2 + 1 + 90∘.  (52) 

Using Equation (52), an one-to-one mapping can be then obtained from the stress triaxiality to 

the space of Φ. The relationship among 𝜂, 𝛼 and Φ is sketched in Figure 34, under both tensile 

(𝜂 > 0) and compressive (𝜂 < 0) parts. One can see that it could confuse the loading condition 

between tension and compression using the strain ratio (𝛼), where there are two values of stress 

triaxiality (𝜂) corresponding to one 𝛼. However, for any given loading condition (expressed by 

stress triaxiality), there is only a single value of Φ  to represent. The fracture strain (𝜀𝑓 ) is 

therefore expressed as a function of Φ only, by Equations (42) to (52), which becomes an all-

strain based fracture locus. Furthermore, in order to describe the anisotropic fracture accurately, 

a non-conjugated anisotropic equivalent plastic strain function was introduced by applying a 

linear transformation to the strain tensor (Luo, Dunand, & Mohr, 2012). In the present work, the 

anisotropic equivalent plastic strain is defined as 

𝜀𝑝̃ = √23 (𝜷 𝑝: 𝜷 𝑝),  (53) 

where  𝑝 indicates the plastic strain vector under plane stress condition  𝑝 = {𝜀11𝑝 , 𝜀22𝑝 , 𝜀33𝑝 , 𝜀12𝑝 }. 𝜷 is a positive semi-definite matrix which characterizes the linear transformation of the strain 

vector, reads 
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𝜷 = [𝛽11 0 0 00 𝛽22 0 00 0 𝛽33 00 0 0 𝛽44],  (54) 

where 𝛽11, 𝛽22, 𝛽33, and 𝛽44  are four anisotropic fracture coefficients. Now the new fracture 

model reads 

𝜀𝑝̃ ≤ 𝜀𝑓(𝜂, 𝜃) = 𝜀𝑓̂(𝛼) = 𝜀𝑓̃(Φ).  (55) 

Experimental data should be rotated back into the sheet rolling orientation for comparison. Then, 

coefficients of both fracture locus and the anisotropic equivalent strain can be calibrated. 

Non-Association with Plasticity 5.2 

Typically the material fracture model is expressed by the stress state variables, including 

pressure, stress triaxiality, Lode angle parameter, and critical failure stress, etc.. For example, the 

original Mohr-Coulumb model can be described as, in space of stress triaxiality and Lode angle 

parameter by Bai and Wierzbicki (2010) 

𝜎𝑓(𝜂, 𝜃) = 𝐶2 [√1 + 𝐶123 𝑐𝑜𝑠 𝜃𝜋6 + 𝐶1 (𝜂 + 13 𝑠𝑖𝑛 𝜃𝜋6 )]−1,  (56) 

where 𝐶1, 𝐶2 are material coefficients, same with the ones in MMC model, and 𝜎𝑓 is the fracture 

stress. In fact, one can see that the expression is identical with part of the MMC model in 

Equation (42). This is because the MMC model was derived by applying a “dummy” hardening 

law in Equation (56) to transform the critical failure stress into fracture strain. The 

transformation is necessary in the metal forming application, due to easier measurement of 

equivalent strain than stress. This “dummy” hardening law also assisted to generalize the 
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capacity of fracture model under different loading conditions, based on its dependency of both 

stress triaxiality and Lode angle parameter (Bai & Wierzbicki, 2008b). It reads 

𝜎 =  𝜀 𝑛 [𝐶̃𝜃𝑠 + √3(𝐶𝜃𝑎𝑥 − 𝐶̃𝜃𝑠)2 − √3 (𝑠𝑒𝑐 𝜃𝜋6 − 1)],  (57) 

where  , 𝑛 , 𝐶̃𝜃𝑠 , and 𝐶𝜃𝑎𝑥  are material coefficients. Substituting Equation (57) into (56) with 

solving out the equivalent strain, the MMC model from Equation (42) can be obtained to govern 

the material fracture behavior. The material plasticity could be coupled with the current fracture 

model by applying the actual hardening model. However, this will either a) reduce the capacity 

and flexibility in fracture prediction by using a simpler hardening model (for example, Swift 

model for TRIP780, with no dependency on different loading conditions), or b) increase the 

model complexity and instability, especially when the anisotropic plasticity involved (for 

example, modified Sachs model for magnesium alloy could involve nine more material 

coefficients, and it would be unobtainable for an explicit expression of equivalent strain like 

Equation (42) due to its form). The further investigation of their relationship could lead into 

another topic. Therefore, the actual plasticity model applied in the FE analysis is not required to 

be the same with Equation (57). Also the material coefficients do not have to be the same even 

though the same model was applied. Both the stress triaxiality and Lode angle parameter in the 

original MMC model were transferred into a function of strain angle Φ. Due to the same reason, 

a J2 plasticity was applied in Equation (44) rather than applying the actual yield criterion (for 

example CPB06ex2 for AZ31B-H24). This made the stress triaxiality 𝜂  and Lode angle 

parameter 𝜃  become “dummy” in the equations after applying Equation (44), including the final 

derived eMMC model. In this way, 𝜂 and 𝜃  are still stress state variables but not representing the 

actual stress triaxiality and Lode angle parameter in eMMC model if the yield criterion was not 
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J2. They can be considered as intermediated variables connecting the strain angle Φ to the stress 

states. Therefore, the fracture model is completely de-coupled with the plasticity or stress states. 

The eMMC fracture model could be single-handedly calibrated by using a series of ultimate 

fracture points or strain histories. It should be emphasized that the stress triaxiality and Lode 

angle parameter are “dummy” only when Equation (44) was applied. 

Calibration Results for Magnesium AZ31B 5.3 

Figure 35 illustrates the modeled fracture locus by eMMC, with an applied linear transformation. 

Concerning the asymmetrical characteristic between tension and compression dominated regions 

in fracture, two separate groups of fracture parameters were calibrated, one for tension 

dominated and one for compression dominated regions, respectively. A joint point between both 

fracture loci was extracted as a critical Φ  angle to identify the domination of tension or 

compression, which was located at Φ𝐶 = 129° approximately for this material. Note that some 

of the calibration for the compressive half was based on the safe points, which are actually 

located below the real fracture limits. This was because the latter cannot be directly obtained 

from tests in the current study. The set of calibrated fracture parameters is listed in Table 4. 
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Figure 35 The fracture locus based on eMMC fracture model, with anisotropic equivalent strain. 

Specifically for this material, an additional assumption is made to incorporate the twinning/de-

twinning effect, which improves the accuracy of fracture prediction under reversal loading, as 

follows. The damage accumulation is temporarily deactivated, between the initialization and 90% completion of de-twinning. Therefore, the damage accumulation rule is expressed by 

𝑑𝐷 = { 0 𝜇 ∈ (0.1,1)𝑑𝜀𝑝̃𝜀𝑓̃(Φ) 𝜇 ∈ [0,0.1], 𝜇 = 1. (58) 

Here, 𝜀𝑓̃(Φ)  is the anisotropic fracture limit calculated for eMMC model and 𝜀𝑝̃  is the 

anisotropic equivalent plastic strain. 
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Table 4 Anisotropic all-strain based MMC coefficients for magnesium AZ31B-H24 sheet 

 Φ Angle 

 ≤ Φ𝐶 > Φ𝐶   409.7𝑀𝑃𝑎 𝑛 0.1560 𝐶1 0.4150 −0.1410 𝐶2 217.6𝑀𝑃𝑎 𝐶̃𝜃𝑠 0.9408 1.2321 𝐶̃𝜃𝑐 1.0300 1.0940 𝛽11 1.0320 𝛽22 0.5050 𝛽33 0.5870 𝛽44 1.0540 
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 CHAPTER 6 NUMERICAL SIMULATION 

The eMMC with plasticity models have been implemented into Abaqus/Explicit as a user 

subroutine (VUMAT), to perform FE analysis and reproduce both the material strength and 

plastic strain history. All elements applied were four-node shell elements with reduced 

integration points (S4R). Five Simpson integration points through the thickness of all shell 

elements were used to obtain reliable results, especially for simulating punch test with large out-

plane bending deformation. The fracture initiation and crack propagation were simulated by 

deleting elements when the damage accumulation 𝐷 reached a given critical value 𝐷𝐶 . 

FE Model Description 6.1 

6.1.1 Monotonic Cases 

Six types of monotonic loading conditions, including uniaxial tension, notch tension, uniaxial 

compression, plane strain compression, shear and punch test, were performed in FE simulation 

for magnesium AZ31B-H24 alloy sheet. All thicknesses were set as 2𝑚𝑚 . Five different 

orientations, 0°, 22.5°, 45°, 67.5°, and 90° were assigned for all models except for punch test, 

where a single orientation was assigned. The configurations were the same as the tested 

specimens. The modeled specimens are shown in Figure 36, with different gauge lengths marked. 

The total reaction forces were outputted and converted to true stress if needed. Either 

displacement or true strain between two gauge points was extracted from simulations for a direct 

comparison with test results. The fracture initiation area was picked to extract the entire strain 

histories up to failure, for all six types of tests. 
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Figure 36 FE meshes for AZ31B-H24 under (a) uniaxial tension, (b) notch tension, (c) plane 

strain compression, (d) uniaxial compression, and (e) shear. 

The experimental measurements were all from DIC. To be identical with experimental scenarios, 

rigid bodies were added in some of models, together with necessary penalty contact properties 

and friction coefficients. The details are described as follows: 

1. In the models of both uniaxial compression and plane strain compression, two rigid plates 

(a)

Gauge

Length:70𝑚𝑚
Gauge

Length:22.5𝑚𝑚
(b)

Gauge Length: 30.5𝑚𝑚

(e)

(c)

(d)

Gauge

Length:3.4𝑚𝑚

Gauge Length: 3𝑚𝑚
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were added at both ends of the specimen, which carried the compressive load. A friction 

coefficient of 0.1 was set between the specimen and the rigid plate at both ends. This was 

because a) fracture initiated at the edge in the experiment, which indicated certain friction 

effect, and b) no apparent barrel effect was observed in the test, which indicated the friction 

effect was not very large. 

2. In the model of shear test, there were two 12.7𝑚𝑚 pins modeled as discrete rigid bodies at 

both ends to carry the load. A friction coefficient of 0.05 was set between the pin and the 

specimen, to be consistent with the punch test configuration. 

 

Figure 37 Side (left) and isometric (right) views of the FE punch model for AZ31B-H24. 

3. The punch and die were modeled as analytical rigid bodies. The punch had a half-sphere 

head with a diameter of 𝑑 = 12.7𝑚𝑚 while the die had a radius of 𝑟 = 1𝑚𝑚 with its cavity 

having a diameter of 𝐷 = 50𝑚𝑚. The external edge of the punch disk was fixed because the 

disk was fasten by several bolts in the real test. It was also recognized that the friction 

coefficient had no apparent effect on the final results ranged from 0 to 0.2 , therefore a 

friction coefficient of 0.05 was set for the contact property. The penalty contact with the 

friction coefficient was defined between a) top surface of the disk specimen and the punch 

head, and b) bottom surface of the disk specimen and the die. The punch test model for 

𝑟 = 1𝑚𝑚
𝑑 = 12.7𝑚𝑚

𝐷 = 50𝑚𝑚

Punch Head

Disk 

Specimen

Die
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magnesium alloy sheet is shown in Figure 37. 

The following calibrated constitutive models were applied in FE analysis, including CPB06ex2 

anisotropic yield criterion, modified Sachs hardening model, and eMMC fracture model, as 

mentioned in previous sections. 

Usually a cutoff region is associated with fracture model, when the analytically calculated 

fracture strain becomes infinity under a specific strain/stress status. It could be expressed as a 

limit of stress triaxiality, which means that the fracture behavior is suppressed when the stress 

triaxiality exceeds the limit. This limit is determined by experience or a function of Lode angle 

parameter (Bai & Wierzbicki, 2015). 

Special cutoff stress triaxiality was applied to the eMMC model in the case of AZ31B-H24, 

which was not typically a single limit but a range. The fracture behavior was suppressed when 

the stress triaxiality 𝜂 ∈ (−0.577,−0.45). The first end of limit range, 𝜂 = −0.45, was set for 

restricting the damage accumulation in uniaxial compression simulation. It was observed that a 

loading condition closed to plane strain compression (𝜂 ≤ −0.45) occurred in the center of both 

ends of the specimen due to friction effect. The fracture strain is gradually smaller when the 

loading condition approaches plane strain compression, based on the tested strain histories. It 

would then cause an early fracture initiation in that center area, failing to capture the tested 

termination point in the true stress-strain curve. Therefore, this limit was added to assure the 

damage accumulate critically at the corners, leading the edge crack type failure with well-

correlated stress-strain response. On the other hand, the fracture behavior under plane strain 

compression would be affected if the other end of limit was not set. The deformation for this 

wide specimen is actually concentrated on the middle, where the stress triaxiality is even smaller 
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than −0.577. The damage accumulation around the edge is weaker than the one under uniaxial 

compression due to its large width. Hence the entire specimen could endure more deformation 

until the edge crack initiated, resulting in a much larger fracture displacement than tested one. 

Therefore, the cutoff region should be deactivated when stress triaxiality smaller than −0.577, in 

order to initiate the fracture in the middle area. This would help correlate with the experimental 

fracture displacement. 

It should be noted that shell element (S4R) was applied for both uniaxial compression and plane 

strain compression, which assumed a plane stress condition. This was because of the consistency 

of the application of plane stress based anisotropic yield criterion and eMMC model. In fact, this 

condition might not be the best way to simulate both of the compression tests because the size of 

thickness was similar with the other two dimensions. For uniaxial compression, the width was 3𝑚𝑚 and the length along compressive direction is only 4𝑚𝑚. For plane strain compression the 

length along compressive direction was 4𝑚𝑚 as well. Since the thickness was 2𝑚𝑚, the friction 

effect could be similarly intensive for both thickness and width direction. An out-of-plane stress 

could then possibly be exerted along the thickness direction, which made the real stress 

triaxiality even smaller. More importantly, a slant fracture surface was observed for both of the 

compression tests, which was generated along the thickness direction. This is not able to be 

reproduced by using shell element in FE simulation because of unavailable through-thickness 

geometry. Due to the same reason, the plastic flow under uniaxial compression, where Φ was 

changing all the time, could not be simulated neither. These features could be incorporated by 

applying 3D element (C3D8R) with related constitutive models in the future research. Currently 

the eMMC model is still focusing on plane stress condition due to its wide application in sheet 
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material. And the force-displacement and fracture point could correlate well with experimental 

results under these compressive loading conditions. 

6.1.2 Non-proportional Cases 

 

Figure 38 FE meshed different dogbone specimens, under (a) compression-tension reversal 

loading, (b), and (c) two-step uniaxial tension along 45° and 0°/90° orientation, respectively. 

Three small scaled dogbone specimens are re-orientated and adjusted to 0° , 45°  and 90° 
respectively for the second step load. 

Two types of non-proportional loading conditions, including uniaxial reversal compression-

tension and two-step uniaxial tension test were simulated in Abaqus/Explicit. The thickness for 

reversal loading test specimen was set as 2𝑚𝑚 while the one for two-step tension was set as 

Gauge Length:280𝑚𝑚
Gauge Length (All after First Step): 8𝑚𝑚 Rolling Direction

0° or 90°
45°

(a)

(b)

(c)

Gauge Length:12.5𝑚𝑚
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1𝑚𝑚. Three different orientations, 0°, 45°, and 90° were assigned for both models. The mesh 

configurations were the same as the tested specimens. 

The meshed specimens are shown in Figure 38, with gauge lengths marked. Multiple solver steps 

were applied for the two-step uniaxial tension tests, including first-step loading, first-step 

unloading, and second-step loading up to fracture. A special technique was used to simulate the 

second step tension: all elements in the large dogbone specimen were configured to be deleted at 

the end of the unloading step, except the ones for the three small-scaled dogbone. The small-

scaled dogbone specimens were then loaded up to fracture in the second step along their new 

orientations, with all state variables and equivalent plastic strains reserved from the first step 

uniaxial tension. The geometric boundaries for three small-scaled dogbone specimens were 

specified in the large-scaled dogbone specimen to be meshed with finer elements, as shown in 

Figure 38. It is noted that the geometries for small-scaled dogbone specimens should be anti-

deformed to compensate the deformation during the first step uniaxial tension. Let 𝜀1𝑡𝑝  and 𝜀2𝑡𝑝  be 

the major and minor in-plane plastic pre-strain in the first step, where 𝜀1𝑡𝑝  is known by the 

experimental configuration. Using an associated plastic flow rule under proportional loading, a 

strain ratio can be obtained by 

𝛼 = 𝜀2𝑡𝑝𝜀1𝑡𝑝 = 𝑑𝜀2𝑡𝑝𝑑𝜀1𝑡𝑝 = 𝜕𝑓𝜕𝜎2𝜕𝑓𝜕𝜎1 ,  (59) 

where 𝑓 is the calibrated CPB06ex2 anisotropic yield criterion. The strain ratio is dependent on 

orientation due to anisotropy. Therefore, a deformation gradient can be expressed in the in-plane 

2D space, as follows 
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 = [1 + 𝜀1𝑡 1 + 𝜀2𝑡] = [1 + 𝜀1𝑡 1 + 𝛼𝜀1𝑡].  (60) 

Let 𝑑𝒙 be a vector indicating the geometry of the small-scaled dogbone specimen after first-step 

deformation, and 𝑑  be the vector indicating the original geometry. Now if the normal geometry 

is supposed to be obtained after deformation, the anti-deformed geometry can then be yielded by 

𝑑 =  −1𝑑𝒙,  (61) 

The difference between the normal and the original anti-deformed geometries is depicted in 

Figure 39. 

 

Figure 39 Pre-deformed geometries for small-scaled dogbone specimens along 0°, 45° and 90° 
orientation, respectively. Solid curves are before tension, and dash curves are after the first step 

tension. 

The experimental scenarios under two-step uniaxial tension tests can be well correlated. The true 

stress and true strain were obtained from the total reaction force and displacement extracted 

between the gauge length, respectively. The simulated results were then compared to the 

experimental ones, which were all from DIC.  
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Simulation Results 6.2 

6.2.1 Monotonic Cases 
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Figure 40 Comparison between tested and simulated results of AZ31B-H24, in (a) true stress-

strain under uniaxial tension, (b) force-displacement under notch tension, (c) true stress-strain 

under uniaxial compression, (d) force-displacement under plane strain compression, (e) force-

displacement under shear, and (f) force-displacement under punch. 

The experimental data with well-correlated simulation results, under different loading conditions 

are illustrated in Figure 40a to Figure 40f, respectively. The ones with uniaxial tension and 

uniaxial compression are presented in the space of true stress-strain due to the uniformity of 

tested specimen, while the rest loading conditions are presented in the space of force-

displacement. All tested and simulated strain histories up to fracture initiation are shown in 

Figure 41. Tested curves are in solid lines and the FE results are in dash lines. The simulated 

strain histories for uniaxial compression were omitted, due to the limitation of shell elements 

applied for cuboid specimen. Usage of 3D solid element (C3D8R) will be more suitable to 

consider contact boundary conditions. 
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Figure 41 Comparison between tested and simulated strain histories for AZ31B-H24, in the 

space of equivalent plastic strain versus strain angle Φ. 

It can be seen that the anisotropic effect is very strong in both plasticity and fracture, due to 

apparently different strain paths, strengths, and fracture strains among five orientations. The 

eMMC model could predict this fracture behavior very well with proper plasticity and hardening 

models incorporated. The comparison of fracture modes between experiment and simulation is 

depicted in Figure 42, under the loading conditions. 
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Figure 42 Comparison of fracture modes between experiment and simulation for AZ31B-H24, 

under (a) uniaxial tension, (b) notch tension, and (c) punch. The scatters on tested specimens are 

painted dots for DIC measurement. All pictures share the same scale. 

The difference of ductility can be seen between 0° and 90° specimens under uniaxial tension: the 90° specimen has a notably necking phenomenon while the 0° one has not. This difference was 

also well simulated in FE analysis. Specifically, the shear specimen had two competing fracture 

initiation modes due to the anisotropic effect with this specific geometry, including a) an edge 

crack at notch area and b) a center crack in the shear zone. The loading conditions are different 

for different locations of the shear specimen: shear was applied in the center area while uniaxial 

or biaxial tension was generated at the notch edge. The 90° uniaxial tension had a fracture strain 
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90°
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10𝑚𝑚



100 

 

approximately two times larger than 0°  due to its strong anisotropic effect, while the shear 

fracture strains were similar among all five tested orientations. The shear failure limits are 

located at somewhere between 0°  and 90°  uniaxial tensions. This is shown by their strain 

histories and the fitted eMMC fracture locus in Figure 41. 

 

Figure 43 Comparison of the shear fracture modes between experiment and simulation for 

AZ31B-H24, along (a) 0°, and (b) 90° orientations. The scatters on tested specimens are painted 

dots for DIC measurement. All pictures share the same scale. 

The occurrence of two fracture initiation modes can be explained, as follows. a) The damage 

accumulation at the notch edge was faster than that in the center area (shear zone) when the 
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specimen orientation was along 0°, therefore the edge crack was prior to the shear failure. b) 

Damage accumulation was slower at the notch edge than in the center area when the orientation 

was along 90°, therefore the center crack due to shear happened firstly. This phenomenon is 

captured in FE simulation by using the anisotropic eMMC model, illustrated in Figure 43. 

 

Figure 44 Stress triaxiality contour for the shear specimen in FE simulation. 

It is also noted that the calibrated fracture locus has been adjusted a little bit from direct DIC 

calibration for the shear test prediction. This was mainly because there was not an even 

distribution of loading condition or stress triaxiality for the current shear specimen. The stress 

triaxiality contour from FE simulation is illustrated in Figure 44, at the moment of half the 
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displacement to fracture was applied. Different types of loading conditions appeared in a single 

test are described as below: 

1. Region A (shear zone), the stress triaxiality is about 0.06, a little bit different from pure shear 

(whose stress triaxiality is zero). This is the primarily region transferring the shear force. 

2. Region B (center area at the notch edge), the stress triaxiality is about 0.4. This indicates a 

loading condition of biaxial tension, somewhere between uniaxial tension (𝜂 = 1/3) and the 

used notch tension (𝜂 = 0.4486 analytically).  

3. Region C (inner notch area), the stress triaxiality is increased from 0.4 close to the edge 

gradually to 0.65, which indicates an almost equi-biaxial tension loading.  

4. Region D, the stress triaxiality is about 0.34, which is uniaxial tension. 

5. Region E, the stress triaxiality is about −0.34 . This area is dominated by uniaxial 

compression loading. 

The material yields only in these regions for carrying large amount of deformation. It was also 

observed that this stress triaxiality contour approximated remained during loading. Note that a) 

the strain angle Φ corresponding to a given loading condition would also vary among different 

orientations due to its anisotropic effect, and b) the intensity of damage accumulation are certain 

uneven as well, because the eMMC fracture locus is dependent on Φ. The fracture will initiate in 

the critical region that has the largest damage accumulation. It can be seen from the simulations 

that the critical region is also dependent on the specimen orientation: 

1. For 0° and 22.5°, region B, dominated by notch tension, 

2. For 45°, both region B and A, dominated by either notch tension or shear, 

3. For 67.5° and 90°, region A, dominated by shear. 
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This is also consistent with the difference in fracture modes observed in experiments, shown in 

Figure 43. The 45° case was the only one that was not correlated well: the simulation had a 

fracture initiation at the notch while the experiment had one in the shear zone. Note that the 

damage accumulations for 45° specimen were competitively increasing between region A and B, 

resulting in a slight larger damage in region B where notch crack was initiated. This dependency 

is caused by a combination of very low fracture limit under notch tension and its special 

geometry. The fracture limit under notch tension is specifically low for AZ31B-H24 along some 

orientations, based on the tested notch tension strain histories. And the geometry includes a pair 

of notches that could exert the some biaxial loading condition at the edges. Therefore, the eMMC 

fracture locus had to be slightly elevated in the area of notch tension while it was used in FE 

simulation. Good correlation was achieved between experimental and simulated shear test in a) 

force-displacement curves (shown in Figure 40e), b) strain histories (shown in Figure 41), and c) 

fracture modes (shown in Figure 43). It is also this special phenomenon for shear test, per se, that 

makes the correlation able to verify both anisotropic plasticity and fracture models, and their 

performance under/along different loading conditions/orientations. On the other hand, the 

simulated fracture displacements under notch tension are consequently somehow larger than the 

tested ones, as a trade-off.  
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6.2.2 Non-proportional Cases 

 

 

Figure 45 Comparison between tested and simulated true stress-strain curves of 2mm thickness 

AZ31B-H24 sheets up to fracture along 0°, 45° and 90° orientations, under compression-tension 

reversal loading with a pre-compressive strain of (a) 0.037, (b) 0.06, and (c) 0.097. 

The 2𝑚𝑚 thickness experimental data with well-correlated simulation results, under reversal 

loading conditions with different pre-strains, are illustrated in Figure 40. Tested curves are in 
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solid lines and the FE results are in dash lines. One can see that the new hardening model is 

capable to predict the compression-tension kinematic hardening behavior with pre-strain effect. 

The eMMC model with associated de-twinning effect could predict the fracture strains very well 

under 10% nominal pre-strain, while exhibit good tendencies under the rest types of pre-strain. 

 

Figure 46 Comparison between tested 1mm(dot lines) and 2mm  (solid lines) thickness true 

stress-strain curves of AZ31B-H24, along 0° , 45°  and 90°  orientations. Tests are monotonic 

uniaxial tension. 

Figure 46 compares the experimental true stress-strain curves between 1𝑚𝑚 thickness and 2𝑚𝑚 

thickness under monotonic uniaxial tension with different orientations. The similarity in shape 

and fracture strain between two types of thickness can be observed in the curves, while slight 
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difference is observed in material strength. Therefore, the same set of constitutive models can be 

applied to the 1𝑚𝑚 thickness sheet with a scale factor of 0.92 in material strength. 
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Figure 47 Comparison between tested and simulated true stress-strain curves of 1mm thickness 

AZ31B-H24 sheets up to fracture, under two-step uniaxial tension with a pre-strain of (a), (b), (c) 0.02, (d) 0.05, (e), (f) 0.055, and (g), (h) 0.078, along a orientation of (a), (d), (g) 0°, (b), (e) 45°, and (c), (f), (h) 90°. The second step loading is along 0°, 45°, and 90° respectively for each 

type of pre-strain. 

The comparison of true stress-strain between experimental and simulated two-step uniaxial 

tension is illustrated in Figure 47, with pre-strains under different amounts and orientations. One 
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can see that the second step true stress-strain curves with the same orientation are similar under 

different pre-strains. No additional hardening is apparently observed at the beginning of the 

second step uniaxial tension, when the loading orientation changes. Fair consistency can be 

observed between the monotonic and second step stress-strain curves with the loading orientation 

remaining and different pre-strains, due to typical strain hardening. In conclusion, no clear cross-

hardening effect is observed for magnesium AZ31B-H24 alloy sheet in the current experimental 

result. The ultimate fracture strains in that step are generally larger than the monotonic ones in 

Figure 46. Their fracture behaviors are well predicted by the combination of new kinematic 

hardening model and eMMC fracture model under lower pre-strain. The hardening curves under 

all scenarios are well correlated with experimental results. 
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 CHAPTER 7 MODEL PERFORMANCE FOR STEEL SHEETS 

The new framework presented in the current thesis can be also applied for steel sheets with 

limited adjustments in different modules, for example using simplified hardening models. Two 

different cases are specifically evaluated, TRIP780 steel sheets under multi-axial monotonic 

loading, and three types of steel sheets (BH240, DP600, and EDDQ) under two-step uniaxial 

tension tests. 

TRIP780 Steel Sheet 7.1 

Three sets of experiments with strain histories available were performed for TRIP780 steel 

sheets: uniaxial tension, notch tension (biaxial tension), and plane strain tension. Three 

orientations (0°, 45°, and 90° with respect to the rolling direction) were tested for each of the 

loading condition. All specimens had a thickness of 1.58𝑚𝑚. 

7.1.1 Plasticity 

An anisotropic yield criterion, Yld2000-2D by Barlat, Brem, et al. (2003), was calibrated using 

both the stabilized experimental Φ value and material strength under different loading conditions 

and orientations. This was necessary because the plastic strain histories should be precisely 

predicted to correlate with the experimental scenario, in order to hit the specified points on the 

fracture locus. The Yld2000-2D anisotropic yield criterion offers a symmetric yield surface, with 

two linear transformations onto the stress tensor, as follows 

|𝑋1′ − 𝑋2′ |𝑀 + |2𝑋1′′ + 𝑋2′′|𝑀 + |2𝑋2′′ + 𝑋1′′|𝑀 = 2𝜎𝑀 ,  (62) 
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where 𝜎  is the equivalent stress, 𝑀  is the exponential coefficient. 𝑋1′ , 𝑋2′ , 𝑋1′′, and 𝑋2′′  are 

principal values of two second order tensor  ′ and  ′′, respectively.  ′ and  ′′ are obtained by 

operating two different linear transformation matrix onto the Cauchy stress tensor 𝝈. 

[𝑋11′𝑋22′𝑋12′ ] = [𝐿11′ 𝐿12′ 0𝐿21′ 𝐿22′ 00 0 𝐿66′ ] [𝜎11𝜎22𝜎12],  (63) 

[𝑋11′′𝑋22′′𝑋12′′ ] = [𝐿11′′ 𝐿12′′ 0𝐿21′′ 𝐿22′′ 00 0 𝐿66′′ ] [
𝜎11𝜎22𝜎12].  (64) 

The number of parameters can be reduced by using 

[  
  𝐿11′𝐿12′𝐿21′𝐿22′𝐿66′ ]  

  = [  
  2 3 0 0−1 3 0 00 −1 3 00 2 3 00 0 1]  

  [𝛼1𝛼2𝛼7],  (65) 

[  
  𝐿11′′𝐿12′′𝐿21′′𝐿22′′𝐿66′′ ]  

  = 19 [   
 −2 2 8 −2 01 −4 −4 4 04 −4 −4 1 0−2 8 2 −2 00 0 0 0 9]  

  [   
 𝛼3𝛼4𝛼5𝛼6𝛼8]  

  ,  (66) 

where 𝛼1 to 𝛼8 with the exponential coefficient 𝑀 are nine material coefficients to be determined 

by experimental data. The calibrated set of parameters is listed in Table 5. 

Table 5 Yld2000-2D material coefficients for TRIP780 𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 𝛼8 𝑀 0.524 1.049 0.953 0.793 0.828 0.640 0.811 0.841 4.669 
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A Swift power hardening law, 𝜎 = 𝐾(𝜀 𝑝 + 𝜀0)𝑛 , was applied, where 𝐾 = 1220.0𝑀𝑃𝑎 , 𝑛 =0.2500, and 𝜀0 = 0.0240. This was calibrated by the true stress-strain curve under uniaxial 

tension along rolling direction.  

7.1.2 eMMC Calibration 

The calibrated results based on eMMC model are shown in Figure 48. The set of used fracture 

parameters is listed in Table 6. Since this material has weak fracture anisotropy, these fracture 

parameters are the same as those of MMC model published by Bai and Wierzbicki (2010), and 

anisotropic parameters (𝛽𝑖𝑖) are set as unity. It is interesting to find that the eMMC takes some 

anisotropy of uniaxial tension into account even though 𝜷 = 𝑰 through the different strain state 

angles (Φ). Some other experimental results including  pure shear, equi-biaxial tension and plane 

strain tension (Bai & Wierzbicki, 2010) were also plotted for comparison, where the strain 

history and orientation information were not available. It is noted that there were two series of 

plane strain tension data. One with strain history was obtained by uniform plane strain specimen 

with the thickness machined down entirely. The other one was obtained by butterfly shape 

specimens (D. Mohr & Henn, 2007). Since the plane strain specimen’s flatness and surface 

quality were inadequate, the fracture strains from the uniform specimens could be 

underestimated. As for the butterfly specimens, the fracture strain could exceed the one under 

actual plane strain tension due to the non-uniformity. Therefore an average value between both 

of them was taken for the eMMC model calibration. For the equi-biaxial tension (from punch 

test), the fracture initiation strain is also presented in Figure 48. 
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Figure 48 The fracture locus based on eMMC fracture model for TRIP780, calibrated by the 

linear transformed anisotropic equivalent plastic strain. The isolated fracture initiation points 

without the entire strain history are taken from Bai and Wierzbicki (2010). 

Table 6 Anisotropic eMMC parameters for TRIP780   (𝑀𝑃𝑎) 𝑛 𝐶1 𝐶2 (𝑀𝑃𝑎) 𝐶̃𝜃𝑠 𝐶̃𝜃𝑐 𝛽11 𝛽22 𝛽33 𝛽44 1275.9 0.266 0.121 720.2 1.096 1.001 1.000 1.000 1.000 1.000 

7.1.3 FE Model Description 

Finite element models were set up for three types of tests, include uniaxial tension, notch tension, 

and punch test of TRIP780 steel sheet. Three orientations, 0°, 45°, and 90° were assigned for 

both of uniaxial and notch tension models. The geometry configurations were identical to the 

tested specimens. The specimens for uniaxial and notch tension are shown in Figure 49.  
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Figure 49 Model specimens for TRIP780 under (a) uniaxial tension, and (b) notch tension. 

The same measurements were made for both FE simulation and experimental results for 

correlation, which are listed as follows. 

1. A gauge of 70mm was taken for uniaxial tension tests along the vertical center line of the 

dogbone specimen, to calculate true strain. 

2. A gauge of 35mm was made for notch tension tests along the same position, to extract 

vertical displacement. 

3. Total forces for uniaxial tension are outputted to calculate true stress. 

(a) (b)

Gauge

Length:70𝑚𝑚
Gauge

Length:35𝑚𝑚
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4. Total forces for notch tension and punch tests are outputted for comparison. 

5. The fracture initiation area was picked to extract the entire strain history for all three tests. 

The positions of the strain gauges are also shown in Figure 49. The experimental measurements 

were all based on DIC. 

 

Figure 50 Side (left) and isometric (right) views of the FE punch model for TRIP780. 

Additionally, the following specifications are set up for the punch test: 

1. The entire model is shown in Figure 50 with key geometries. The punch and die were 

modeled as analytical rigid bodies. The punch had a half-sphere head with a diameter of 𝑑 = 45𝑚𝑚 while the die had a radius of 𝑟 = 10𝑚𝑚 with its cavity diameter 𝐷 = 90𝑚𝑚. 

2. The external edge of the punch disk was fixed because the disk was fastened by bolts in test. 

3. It was also recognized that the friction coefficient had no apparent effect on the final results 

ranged from 0 to 0.2, therefore a friction coefficient of 0.05 was set for the contact property. 

The penalty contact with the friction coefficient was defined between a) top surface of the 

disk specimen and the punch head, and b) bottom surface of the disk specimen and the die. 

𝑟 = 10𝑚𝑚

𝑑 = 45𝑚𝑚

𝐷 = 90𝑚𝑚

Punch Head

Disk 

Specimen

Die
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The calibrated constitutive models were applied in FE analysis, including Yld2000-2D 

anisotropic yield criterion, Swift hardening, and eMMC fracture model. 

7.1.4 Simulation Results 

 

 

Figure 51 Comparison between tested and simulated results for TRIP780, in (a) true stress-strain 

under uniaxial tension, (b) force-displacement curves under notch tension, and (c) force-

displacement under punch test. 
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The experimental true stress-strain curves from uniaxial tension tests and force-displacement 

curves from notch tension and punch test are respectively illustrated in Figure 51a, Figure 51b, 

and Figure 51c, together with the well-correlated simulation results. Their strain histories are 

shown in Figure 52, terminated by fracture initiation. All tested curves are in solid lines and all 

FE results are in dash lines. 

 

Figure 52 Comparison between tested and simulated strain histories for TRIP780, in the space of 

equivalent plastic strain versus strain angle Φ. 

One can see that the anisotropic effect for this material is not apparent in views of a) plasticity: 

both the tested strength and strain histories under different orientations are very close, for both 
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among three orientations for these loading conditions. It is also important that the plastic flow 

can be precisely captured by the anisotropic yield criterion, presented by the perfectly-fitted 

strain histories between FE and tested results. This is a key point for eMMC model to give great 

performance in fracture prediction. It can be seen that all simulated fracture points are well 

correlated with the experimental ones, in both aspects of strength and strain history. The fracture 

modes are also similar to the experimental ones under three different loading conditions, as 

shown in Figure 53. 

 

Figure 53 Comparison of the fracture modes between experiment and simulation for TRIP780, 

under (a) uniaxial tension, (b) notch tension, and (c) punch. The scatters on tested specimens are 

painted dots for DIC measurement. All pictures share the same scale. The fracture modes were 

similar among different orientations. 

20𝑚𝑚

(a)

(b)

(c)
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BH240, DP600, and EDDQ Steel Sheet 7.2 

The two-step tests were also accomplished for the following materials by Auto Steel Partnership 

(ASP), BH240, DP600, and EDDQ. The pre-load conditions were uniaxial tension and equi-

biaxial tension (bulge test). For uniaxial tension, a large-scaled dogbone specimen was used. 

 

Figure 54 Schematic graph for the two-step uniaxial tension specimen cutting pattern. The big 

circle and rectangular indicate big specimens undergone bulge test and uniaxial tension, 

respectively, from which the second step uniaxial tension specimens were cut. 
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The pre-strain were configured along three different orientations: 0° (rolling), 45° (diagonal), 

and 90° (transversal), with the nominate amount of 5%, 10%, and 15% for each orientation. For 

equi-biaxial tension the amount of equivalent strain was configured as 6% and 10%. The actual 

plastic strain for pre-loading was corrected by fitting with the monotonic strain-stress curves. 

After the first step, the pre-strained specimens were cut into small-sized dogbone specimens with 

the orientations of 0°, 15°, 30°, 45°, 60°, 75°, and 90° for uniaxial tensions until fracture. All the 

orientations mentioned were according to the rolling direction of the original metal sheets. The 

cutting pattern for two-step uniaxial tension specimens can be shown in Figure 54. 

7.2.1 Plasticity 

A Yld2000-2D yield criterion with hardening models (Swift for isotropic and Armstrong-

Frederick for kinematic) were calibrated by using the monotonic data with the Lankford ratio 

from BH240, DP600, and EDDQ. The strain-stress curves for the second step uniaxial tension 

were used for the verification. The calibrated set of parameters is listed in Table 7, Table 8, and 

Table 9. 

Table 7 Yld2000-2D material coefficients for BH240 𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 𝛼8 𝑀 0.858 1.63 0.726 1.144 1.068 0.054 1.234 1.734 8 

Table 8 Yld2000-2D material coefficients for DP600 𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 𝛼8 𝑀 0.772 0.896 0.846 0.84 0.828 0.708 0.84 0.978 5 

Table 9 Yld2000-2D material coefficients for EDDQ 𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 𝛼8 𝑀 1.148 1.014 0.657 0.912 0.862 0.872 1.048 1.15 3 
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A Swift power hardening law, 𝜎 = 𝐾(𝜀 𝑝)𝑛 + 𝑌 , was applied, together with an Armstrong-

Fredrick kinematic hardening model. This was calibrated by the true stress-strain curve under 

uniaxial tension along rolling direction, individually for each material. Different from 

magnesium AZ31B alloy sheets, the cross hardening effect can be commonly observed in BH240 

and DP600 steel sheets, as reported by Barlat et al. (2013); Jia and Bai (2015a). The true stress-

strain curve at the beginning of the re-oriented secondary uniaxial tension could exhibit an 

excess from the one under monotonic uniaxial tension. Slight stagnation is also observed before 

the curve becoming consistent with the monotonic one. The magnitude of excess and the length 

of stagnation depend on the both the amount of pre-strain and the orientation change between 

two steps. In this case, the additional cross-hardening item 𝜎𝐶 is capable to predict this behavior, 

with a modified expression based on Jia and Bai (2015a), 

𝜎𝐶 =  0[1 − exp(−𝐶1𝜀 𝑝)]𝑋𝐶𝜆,  (67) 

where  0 and 𝐶1 are material coefficients controlling the magnitude of cross-hardening with pre-

strain effect, and 𝜆 remains as the exponential coefficient adjusting the decaying process. The 

evolution of this item along the growth of equivalent plastic strain is depicted in Figure 55. 
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Figure 55 Schematic graph for the adjusted cross-hardening item 𝜎𝐶  based on (67). Three 

different pre-strains, 5%, 10%, and 15% are plotted, with the envelope dash curve of their peak 

magnitudes. 

Therefore, the plastic potential function from Equation (24) becomes 

𝑓(𝜎𝑖𝑗 − 𝛼𝑖𝑗) − 𝜎(𝜀 𝑝) − 𝜎𝐶 = 0,  (68) 

where the back stress 𝛼𝑖𝑗  is incorporated into the yield criterion 𝑓, following the incremental 

definition of Equation (23), 

𝛼𝑖𝑗̇ = 𝐶0 (𝜌 𝜎𝑖𝑗 − 𝛼𝑖𝑗𝜎 − 𝛼𝑖𝑗) 𝜀 ̇𝑝And 𝜎(𝜀 𝑝) is the Swift hardening 

Table 10 Hardening model coefficients for BH240 
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𝐾 (𝑀𝑃𝑎) 𝑛 𝑌 (𝑀𝑃𝑎) 𝐶0 𝜌 (𝑀𝑃𝑎)  0 (𝑀𝑃𝑎) 𝐶1 𝜆 351.6 0.82 266.0 84.00 0.226 105.6 13.15 0.350 

Table 11 Hardening model coefficients for DP600 𝐾 (𝑀𝑃𝑎) 𝑛 𝑌 (𝑀𝑃𝑎) 𝐶0 𝜌 (𝑀𝑃𝑎)  0 (𝑀𝑃𝑎) 𝐶1 𝜆 492.2 0.78 360.5 218.4 0.098 155.0 100.0 0.370 

Table 12 Hardening model coefficients for EDDQ 𝐾 (𝑀𝑃𝑎) 𝑛 𝑌 (𝑀𝑃𝑎) 𝐶0 𝜌 (𝑀𝑃𝑎)  0 (𝑀𝑃𝑎) 𝐶1 𝜆 323.6 0.96 151.8 135.6 0.133 172.0 14.40 0.400 

7.2.2 Analytical Results 

With the previous models implemented, a set of analytical stress-strain curves can be generated. 

The results are illustrated in Figure 56 for BH240, where the comparison to a without cross-

hardening case is depicted in a magnified local figure. It can be seen that the analytical stress-

strain curves correlate well with the experimental ones, especially around the loading transition 

area. All orientations in Figure 56 are described inclined to rolling direction. The longitudinal, 

diagonal, and transversal pre-strain indicate an orientation along 0°, 45°, and 90°, respectively. 

The experimental test result marked as “AR” indicates a monotonic uniaxial tension along a 

specific orientation. It is noted that the original experimental stress-strain data is not available 

under equi-biaxial tension as the first step loading. The rest of the results are shown in Appendix. 
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Figure 56 Calibration results for the cross-hardening for the materials of BH240, under the 

conditions of (a) 5% pre-strain, (b) 10% pre-strain, (c) 15% pre-strain along 0°, (d) 5% pre-

strain, (e) 10% pre-strain, (f) 15% pre-strain along 45°, (g) 5% pre-strain, (h) 10% pre-strain, 

(i) 15% pre-strain along 90° uniaxial tension test, (j) 6% pre-strain, (j) 10% pre-strain of equi-

biaxial tension (bulge) test. 
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 CHAPTER 8 CONCLUSIONS AND FUTURE STUDIES 

Summary of contribution 8.1 

 A comprehensive set of mechanical experiments was conducted for magnesium AZ31B 

sheets under different monotonic loading conditions, including uniaxial tension, notch 

tension (equivalent to biaxial tension), uniaxial compression, biaxial compression, plane 

strain compression, through-thickness compression (equivalent to equi-biaxial tension with a 

hydrostatic pressure), pure shear, and punch test. 

 Two different types of non-proportional loading tests were conducted along different 

orientations, a) uniaxial compression-tension reversal loading with different pre-compressive 

strains, and b) two-step uniaxial tension, known as cross-loading conditions, with different 

pre-strains. No apparent cross-hardening effect was observed in the two-step uniaxial tension 

experimental results. 

 A new plastic flow parameter, Φ angle, was proposed to characterize the loading condition 

with the anisotropic effect as a uniform approach, comparing to the Lankford ratio or in-

plane strain ratio. Both the plastic strain histories (exhibited by using equivalent plastic strain 

versus Φ  angle) and strength behaviors were obtained for the loading conditions above, 

revealing a big picture of the mechanical responses of this material. 

 A new Sachs-based constitutive model was developed for magnesium AZ31B-H24 alloy 

sheet, with a fully decoupled framework to combine isotropic, kinematic, and cross 

hardening behaviors. Three sets of state variables were defined to describe the following 

effects, a) loading history, including 𝛼𝑖𝑗 (known as the “dummy” back stress), 𝑋𝐾 and 𝑋𝐶, b) 

twinning and de-twinning, including 𝜅  and 𝜇 , and c) pre-strain, including 𝜀𝐶  and 𝜀𝐵 . The 
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state variables were applied to incorporate the twinning/de-twinning effect under reversal 

loading and the cross-hardening behavior. The new model, with a CPB06ex2 anisotropic 

yield criterion, was sequentially calibrated by the experimental results from a set of different 

monotonic loading conditions, and a), b) above, with non-aftereffect. 

 The mixed strain/stress invariants based MMC fracture model was transferred into an all-

strain based MMC model under the plane stress condition, predicting the fracture strain in the 

space of Φ angle, instead of stress triaxiality and Lode angle parameter. The Φ angle could 

be directly measured by DIC, while stress triaxiality and Lode angle parameter required FE 

analysis to be determined. This method makes it possible to study fracture of materials while 

bypassing plasticity for materials with complex plastic properties. 

 The calibrated new constitutive model, an anisotropic yield criterion CPB06ex2, and an 

eMMC anisotropic fracture model have been implemented into FE analysis to reproduce the 

non-proportional experiments through a user material subroutine (VUMAT) in 

Abaqus/Explicit. Good correlation was observed between experimental and simulation 

results, in both material strength and fracture behavior. 

 The new developed framework was applied for TRIP780 with simplification under different 

monotonic loading conditions. The simulated results correlated well with experimental 

results. 

 Two-step loading experiment results for the materials of BH240, DP600 and EDDQ were 

used to validate the cross-hardening model. Good correlation between experimental data and 

modeled strain-stress curves was observed.  
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Recommended Future Studies 8.2 

In the present thesis, a comprehensive set of experiments and models has been conducted and 

developed for predicting material plasticity, hardening, and fracture behaviors. However, there 

are several more topics suggested for the future research. 

1. Generalization. The magnesium AZ31B alloy sheet has a very special twinning/de-

twinning effect during reversal loading, which can be incorporated by the current framework. 

However, this constitutive model is also expected to work for other materials, for example 

aluminum alloy sheets, steel sheets, under reversal loading. The model can be simplified or 

adjusted into a more generalized form, applying for a wider range of materials. 

2. Compressive failure simulation. The current framework is implemented into FE 

simulation with using shell elements. However, a shape of slant fracture was observed in the 

compressive experiments, which cannot be completely simulated by shell elements. Ground on 

this, a FE model with 3D elements should be implemented to correlate with this phenomenon.  

3. Fracture propagation. The post-fracture behavior, for example the growth of cracks 

after the initial fracture of punch test, is difficult to be simulated using the current fracture model 

with element deletion. The accuracy can be improved by using element split technique in the 

future. 

4. Simplification of anisotropic yield criterion. This material, magnesium AZ31B alloy 

sheet has a complicated anisotropic yielding behavior, which requires the involvement of many 

material coefficients. This is not very user-friendly in the future application. An alternative way 

can be applied by using an associated plastic flow rule with the stress triaxiality and Lode angle 

dependency item, to reduce the number of material coefficients. 
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5. Mechanical properties under high strain rates and elevated temperatures. In the real 

applications of magnesium sheets, materials may be subjected to high strain rate (i.e. impact or 

stamping loading) and elevated temperatures (i.e. warm or hot forming). Therefore, it is 

important to extend the current theoretical framework to consider these two effects in the future. 

  



133 

 

APPENDIX: ANALYTICAL RESULTS FOR DP600 AND EDDQ 
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The analytical results for DP600 and EDDQ steel sheets are provided in Figure 57 and Figure 58, 

comparing to the experimental results under two-step uniaxial tension. The comparison to a 

without cross-hardening case is depicted in a magnified local figure. It can be seen that the 

analytical stress-strain curves correlate well with the experimental ones, especially around the 

loading transition area. All orientations in Figure 57 and Figure 58 are described inclined to 

rolling direction. The longitudinal, diagonal, and transversal pre-strain indicate an orientation 

along 0°, 45°, and 90°, respectively. The experimental test result marked as “AR” indicates a 

monotonic uniaxial tension along a specific orientation. It is noted that the original experimental 

stress-strain data is not available under equi-biaxial tension as the first step loading. 
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Figure 57 Calibration results for the cross-hardening for the materials of DP600, under the 

conditions of (a) 5% pre-strain, (b) 10% pre-strain, (c) 15% pre-strain along 0°, (d) 5% pre-

strain, (e) 10% pre-strain, (f) 15% pre-strain along 45°, (g) 5% pre-strain, (h) 10% pre-strain, 

(i) 15% pre-strain along 90° uniaxial tension test, (j) 6% pre-strain, (j) 10% pre-strain of equi-

biaxial tension (bulge) test. 
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Figure 58 Calibration results for the cross-hardening for the materials of EDDQ, under the 

conditions of (a) 5% pre-strain, (b) 10% pre-strain, (c) 15% pre-strain along 0°, (d) 5% pre-

strain, (e) 10% pre-strain, (f) 15% pre-strain along 45°, (g) 5% pre-strain, (h) 10% pre-strain, 

(i) 15% pre-strain along 90° uniaxial tension test, (j) 6% pre-strain, (j) 10% pre-strain of equi-

biaxial tension (bulge) test. 
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