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ABSTRACT 

 This research work investigates the thermal performance of a film-cooled gas 

turbine endwall under two different mainstream flow conditions. In the first part of the 

research investigation, the effect of unsteady passing wakes on a film-cooled pitchwise-

curved surface (representing an endwall without airfoils) was experimentally studied for 

heat transfer characteristics on a time-averaged basis. The temperature sensitive paint 

technique was used to obtain the local temperatures on the test surface. The required heat 

flux input was provided using foil heaters. Discrete film injection was implemented on the 

test surface using cylindrical holes with a streamwise inclination angle of 35˚ and no 

compound angle relative to the mean approach velocity vector. The passing wakes 

increased the heat transfer coefficients at both the wake passing frequencies that were 

experimented. Due to the increasing film cooling jet turbulence and strong jet-mainstream 

interaction at higher blowing ratios, the heat transfer coefficients were amplified. A 

combination of film injection and unsteady passing wakes resulted in a maximum pitch-

averaged and centerline heat transfer augmentation of ≅ 28% and 31.7% relative to the no 

wake and no film injection case. 

 The second part of the research study involves an experimental and numerical 

analysis of secondary flow and coolant film interaction in a high subsonic annular cascade 

with a maximum isentropic throat Mach number of ≅ 0.68. Endwall (platform) thermal 

protection is provided using discrete cylindrical holes with a streamwise inclination angle 

of 30˚ and no compound angle relative to the mean approach velocity vector. The surface 

flow visualization on the inner endwall provided the location of the saddle point and the 
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three-dimensional separation lines. Computational predictions showed that the leading-

edge horseshoe vortex was confined to approximately 1.5% of the airfoil span for the no 

film injection case and intensified with low momentum film injection. At the highest 

blowing ratio, the film cooling jet weakened the horseshoe vortex at the leading-edge plane. 

The passage vortex was intensified with coolant injection at all blowing ratios. It was seen 

that increasing average blowing ratio improved the film effectiveness on the endwall. The 

discharge coefficients calculated for each film cooling hole indicated significant non-

uniformity in the coolant discharge at lower blowing ratios and the strong dependence of 

discharge coefficients on the mainstream static pressure and the location of three-

dimensional separation lines. Near the airfoil suction side, a region of coalesced film 

cooling jets providing close to uniform film coverage was observed, indicative of the 

mainstream acceleration and the influence of three-dimensional separation lines. 

 

  



v 

 

 

 

 

 

 

 

 

 

 

“This Dissertation is dedicated to my Parents, Siblings and other Family members  

for their invaluable love, guidance and support” 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

ACKNOWLEDGMENTS 

 First and foremost, I owe my gratitude to my major advisor, Prof. Jayanta Kapat 

for his encouragement, support and guidance in various aspects of my research work. I also 

thank him for the financial support provided during my coursework.  

  I am heartily thankful to my co-advisor, Dr. Shashi Verma for his valuable 

guidance in experimental techniques and research publications.  

 I am grateful to my dissertation committee members, Prof. Bhimsen Shivamoggi, 

Prof. Kareem Ahmed, and Prof. Subith Vasu for their valuable suggestions and patience 

during the course of preparation of my dissertation. In addition, I sincerely thank Prof. 

Bhimsen Shivamoggi for his encouragement, support and guidance in multiple aspects of 

my research and coursework. 

 I am heartily thankful to Prof. Ranganathan Kumar for his invaluable advise during 

my research and coursework. 

 I am extremely grateful to Prof. Challapalli Suryanarayana and (late) Prof. Suhada 

Jayasuriya for providing me Graduate Teaching Assistantship for multiple semesters 

during my coursework. 

 I am grateful to Prof. Hansen Mansy for his mentoring during my appointment as a 

Graduate Teaching Assistant for multiple semesters during my coursework. 

 I am thankful to Dr. Getnet Agegnehu, Application Engineer at CD Adapco for his 

valuable input on the computational model. I am grateful to Mr. Stephen Palluconi, 

research engineer at Innovative Scientific Solutions Inc., for his technical support with 

luminescent paint measurements. 



vii 

 

 I sincerely thank Dr. Brian Goldiez and Mr. Amit Goel at the Institute of Simulation 

and Training for their help with performing computations on STOKES Advanced Research 

Computing Cluster. 

 I owe my gratitude to the Siemens Energy Center research group and all my other 

colleagues for their help during the span of my stay at University of Central Florida. 

 I sincerely thank Dr. Jose Rodriguez at Siemens Energy for his valuable guidance 

during my appointment as a Graduate Research Assistant at the Siemens Energy Center. 

 I gratefully acknowledge the financial support received from Siemens Energy, 

Florida Center for Advanced Aero-Propulsion and Florida High-Tech Corridor for 

conducting my research work. 

 

 

 

 

 

 

 

 

 

 

 



viii 

 

TABLE OF CONTENTS 

LIST OF FIGURES ......................................................................................................... xiv 

LIST OF TABLES ............................................................................................................ xx 

LIST OF NOMENCLATURE ......................................................................................... xxi 

CHAPTER 1: INTRODUCTION ....................................................................................... 1 

Gas Turbines ................................................................................................................... 1 

Evolution of Gas Turbines .......................................................................................... 2 

Theory of Operation and Thermal Efficiency ............................................................. 3 

Gas Turbine Cooling ................................................................................................... 9 

Internal Cooling .................................................................................................... 12 

External Cooling ................................................................................................... 13 

Endwall Film Cooling ........................................................................................... 14 

References ..................................................................................................................... 15 

CHAPTER 2:  REVIEW OF LITERATURE ................................................................... 17 

Film Cooling on a Flat Plate ......................................................................................... 17 

Influence of Unsteady Wakes on Film Cooling ............................................................ 22 

Endwall Secondary Flow System ................................................................................. 26 

Endwall Film Cooling ................................................................................................... 29 

Endwall Heat Transfer .................................................................................................. 36 

References ..................................................................................................................... 40 



ix 

 

CHAPTER 3: RESEARCH OBJECTIVES ...................................................................... 53 

Scientific Contributions ................................................................................................ 53 

Unsteady Passing Wake Effect on a Pitchwise-curved Surface ............................... 53 

Endwall Film Cooling in a High Subsonic Annular Cascade ................................... 53 

CHAPTER 4: INSTRUMENTATION AND METHODOLOGY ................................... 55 

Temperature Sensitive Paint ......................................................................................... 55 

Calibration................................................................................................................. 58 

Pressure Sensitive Paint ................................................................................................ 60 

Calibration................................................................................................................. 62 

Five-hole Probe Measurements..................................................................................... 63 

Construction .............................................................................................................. 63 

Calibration................................................................................................................. 65 

Measurements ........................................................................................................... 65 

Hot-wire Measurements ................................................................................................ 66 

Principle of Operation ............................................................................................... 66 

Calibration................................................................................................................. 68 

Pitot-static Tube Measurements .................................................................................... 68 

Static Pressure Tap Measurements ............................................................................... 69 

Surface Oil Visualization .............................................................................................. 71 

References ..................................................................................................................... 72 



x 

 

CHAPTER 5: EXPERIMENTAL SETUP ....................................................................... 73 

Unsteady Passing Wake Effect on a Pitchwise-curved Surface ................................... 73 

Mainstream Flow ...................................................................................................... 73 

Heat Transfer Measurements .................................................................................... 75 

Endwall Film Cooling in a High Subsonic Annular Cascade ....................................... 78 

Mainstream Flow ...................................................................................................... 78 

Film Cooling Effectiveness Measurements .............................................................. 81 

References ..................................................................................................................... 84 

CHAPTER 6: EQUATIONS AND DATA REDUCTION .............................................. 85 

Mainstream Flow .......................................................................................................... 85 

Coolant Flow ................................................................................................................. 86 

Discharge Coefficient ................................................................................................... 87 

Pressure Coefficient ...................................................................................................... 87 

Saddle Point Shift ......................................................................................................... 88 

Wake Strouhal Number................................................................................................. 88 

Film Cooling Effectiveness........................................................................................... 89 

Heat Transfer ................................................................................................................ 90 

References ..................................................................................................................... 94 

 

 



xi 

 

CHAPTER 7: UNCERTAINTY ANALYSIS .................................................................. 95 

Method of Error Propagation ........................................................................................ 95 

Uncertainty Tree ........................................................................................................... 96 

Total Uncertainty ........................................................................................................ 100 

References ................................................................................................................... 104 

CHAPTER 8: CFD MODELING ................................................................................... 105 

Meshing Scheme ......................................................................................................... 105 

Initial and Boundary Conditions ................................................................................. 106 

Grid Convergence Study ............................................................................................. 108 

Computational Solver and Turbulence Model ............................................................ 111 

Numerical Uncertainty ................................................................................................ 111 

Validation of CFD model............................................................................................ 113 

References ................................................................................................................... 114 

CHAPTER 9: RESULTS AND DISCUSSION .............................................................. 115 

Unsteady Passing Wake Effect on a Pitchwise-curved Surface ................................. 115 

Pitch-averaged heat transfer augmentation ............................................................. 116 

Centerline Heat Transfer Augmentation ................................................................. 120 

Endwall Film Cooling in a High Subsonic Annular Cascade ..................................... 128 

Airfoil Passage Periodicity ..................................................................................... 128 

Coolant Temperature Drop across Film Cooling Hole ........................................... 128 



xii 

 

Endwall Surface Flow Visualization ...................................................................... 129 

Film Cooling Effectiveness..................................................................................... 134 

Impact of Endwall Surface Flow on Film Cooling Effectiveness Distribution .. 134 

Mainstream Flow and Coolant Jet Trajectory ..................................................... 137 

Horseshoe Vortex Dynamics .............................................................................. 143 

Effect of Discharge Coefficient on Film Cooling Effectiveness ........................ 152 

Effect of Local Blowing Ratio on Film Cooling Effectiveness .......................... 156 

Pitchwise Film Cooling Effectiveness ................................................................ 157 

Cooling Uniformity Coefficient .......................................................................... 168 

Pitch-averaged Film Cooling Effectiveness ........................................................ 172 

Comparison with Published Literature ................................................................... 173 

Connection with Real Engine Endwall Film Cooling Design ................................ 174 

References ................................................................................................................... 174 

CHAPTER 10: CONCLUSIONS ................................................................................... 177 

Unsteady Passing Wake Effect on a Pitchwise-curved Surface ................................. 177 

Endwall Film Cooling in a High Subsonic Annular Cascade ..................................... 178 

CHAPTER 11: FUTURE WORK .................................................................................. 180 

Airfoil Passage Film Cooling Measurements ............................................................. 180 

Positioning of Film Cooling Holes on Iso-Mach lines ........................................... 180 

Experimental Setup ................................................................................................. 183 

Machining of Passage Film Cooling Holes ............................................................ 183 



xiii 

 

Endwall Heat Transfer Measurements ........................................................................ 184 

Heat Flux Calculation ............................................................................................. 185 

Heater Foil Cutting ................................................................................................. 186 

Experimental Setup ................................................................................................. 189 

Foil Heater Technique............................................................................................. 190 

References ................................................................................................................... 192 

APPENDIX A: PUBLICATIONS .................................................................................. 193 

Journal Publications .................................................................................................... 194 

Conference Presentations ............................................................................................ 194 

APPENDIX B: COPYRIGHT PERMISSION LETTERS ............................................. 195 

Aeroprobe Corporation ............................................................................................... 196 

 

  



xiv 

 

LIST OF FIGURES 

Figure 1: Actual Brayton cycle for an industrial gas turbine [4] ........................................ 3 

Figure 2: Actual Brayton cycle for a propulsion gas turbine [4] ........................................ 4 

Figure 3: Non-dimensional work output dependence on pressure ratio [6] ........................ 7 

Figure 4: Advancement of gas turbine blade cooling systems [8] .................................... 10 

Figure 5: Simplified block diagram of gas turbine thermal efficiency reduction ............. 11 

Figure 6: A typical classification of component cooling in gas turbines [11] .................. 11 

Figure 7: Film cooling hole nomenclature ........................................................................ 18 

Figure 8: Coolant jet behavior at low and high momentum flux ratio [7] ........................ 19 

Figure 9: Difference between wall-normal and wall-tangential wake rod orientation ..... 25 

Figure 10: Simplified schematic of an endwall secondary flow system [47,55] .............. 27 

Figure 11: Temperature sensitive paint technique ............................................................ 57 

Figure 12: Jablonski quantum energy-level diagram [1] .................................................. 57 

Figure 13: Temperature sensitive paint calibration setup ................................................. 59 

Figure 14: Temperature sensitive paint typical calibration curve ..................................... 59 

Figure 15: Pressure sensitive paint technique ................................................................... 61 

Figure 16: Pressure sensitive paint calibration setup ........................................................ 61 

Figure 17: Pressure sensitive paint typical calibration curve............................................ 62 

Figure 18: Five-hole probe nomenclature [2] ................................................................... 64 

Figure 19: Dimensions of the five-hole probe [2] ............................................................ 64 

Figure 20: Circuit diagram of a constant temperature anemometer [3] ............................ 67 

Figure 21: Drill jig for machining endwall static pressure tap holes ................................ 70 



xv 

 

Figure 22: Outer endwall with static pressure taps and five-hole probe slots .................. 70 

Figure 23: Schematic of experimental flow loop .............................................................. 74 

Figure 24: Test surface setup for heat transfer measurements .......................................... 76 

Figure 25: Schematic of the high subsonic cascade tunnel flow loop .............................. 79 

Figure 26: Predicted mainstream hydrodynamic boundary layer ..................................... 82 

Figure 27: Coolant flow setup for film cooling effectiveness measurements .................. 83 

Figure 28:  Heat losses in unsteady passing wake study .................................................. 92 

Figure 29: A typical control volume on test surface and energy balance ......................... 93 

Figure 30: Uncertainty tree for Reynolds number ............................................................ 96 

Figure 31: Uncertainty tree for Mach number .................................................................. 97 

Figure 32: Uncertainty tree for density ratio..................................................................... 97 

Figure 33: Uncertainty tree for blowing ratio ................................................................... 97 

Figure 34: Uncertainty tree for momentum flux ratio ...................................................... 98 

Figure 35: Uncertainty tree for pressure coefficient ......................................................... 98 

Figure 36: Uncertainty tree for Strouhal number .............................................................. 98 

Figure 37: Uncertainty tree for film cooling effectiveness ............................................... 99 

Figure 38: Uncertainty tree for cooling uniformity coefficient ........................................ 99 

Figure 39: Uncertainty tree for heat transfer coefficient .................................................. 99 

Figure 40: Uncertainty tree for heat transfer augmentation ............................................ 100 

Figure 41: Uncertainty tree for saddle point shift ........................................................... 100 

Figure 42: y+ distribution on the inner endwall .............................................................. 106 

Figure 43: Baseline CFD model ..................................................................................... 108 

Figure 44: CFD model with film cooling ....................................................................... 108 



xvi 

 

Figure 45: Medium grid CFD model .............................................................................. 110 

Figure 46: Validation of CFD model with experimental data ........................................ 113 

Figure 47: Pitch-averaged heat transfer augmentation - S = 0 ....................................... 117 

Figure 48: Literature comparison for pitch-averaged heat transfer augmentation - S = 0

......................................................................................................................................... 117 

Figure 49: Pitch-averaged heat transfer augmentation - S = 0.15 .................................. 119 

Figure 50: Pitch-averaged heat transfer augmentation - S = 0.3 .................................... 120 

Figure 51: Centerline heat transfer augmentation - S = 0 ............................................... 121 

Figure 52: Literature comparison for centerline heat transfer augmentation - S = 0 ...... 122 

Figure 53: Centerline heat transfer augmentation - S = 0.15 .......................................... 123 

Figure 54: Centerline heat transfer augmentation - S = 0.3 ............................................ 124 

Figure 55: Simplified schematic of unsteady passing wake effect on film cooling ....... 125 

Figure 56: Centerline and off-centerline heat transfer augmentation - S = 0 ................. 126 

Figure 57: Centerline and off-centerline heat transfer augmentation - S = 0.15 ............ 127 

Figure 58: Centerline and off-centerline heat transfer augmentation - S = 0.3 .............. 127 

Figure 59: Predicted coolant temperature drop across film cooling hole ....................... 129 

Figure 60: Simplified schematic of an endwall secondary flow system [6,7] ................ 130 

Figure 61: Endwall surface flow visualization without film injection ........................... 131 

Figure 62: Endwall surface flow visualization with film injection - case 1 ................... 131 

Figure 63: Endwall surface flow visualization with film injection - case 2 ................... 132 

Figure 64: Endwall surface flow visualization with film injection - case 3 ................... 132 

Figure 65: Location of saddle point with and without film injection ............................. 133 

Figure 66: Film cooling effectiveness superimposed on surface flow - case 1 .............. 135 



xvii 

 

Figure 67: Film cooling effectiveness superimposed on surface flow - case 2 .............. 136 

Figure 68: Film cooling effectiveness superimposed on surface flow - case 3 .............. 136 

Figure 69: Predicted streamlines of mainstream flow without film injection ................ 138 

Figure 70: Predicted streamlines of mainstream and coolant flow - case 1a .................. 139 

Figure 71: Predicted streamlines of mainstream and coolant flow - case 1b .................. 140 

Figure 72: Predicted streamlines of mainstream and coolant flow - case 1c .................. 140 

Figure 73: Predicted streamlines of mainstream and coolant flow - case 3a .................. 141 

Figure 74: Predicted streamlines of mainstream and coolant flow - case 3b .................. 142 

Figure 75: Predicted streamlines of mainstream and coolant flow - case 3c .................. 142 

Figure 76: Flow visualization planes for predicted streamlines ..................................... 144 

Figure 77: Predicted streamlines for no film injection - plane A ................................... 145 

Figure 78: Predicted streamlines for case 1 - plane A .................................................... 145 

Figure 79: Predicted streamlines for case 3 - plane A .................................................... 145 

Figure 80: Predicted streamlines for no film injection - plane B .................................... 147 

Figure 81: Predicted streamlines for case 1 - plane B .................................................... 147 

Figure 82: Predicted streamlines for case 3 - plane B .................................................... 147 

Figure 83: Predicted streamlines for no film injection - plane C .................................... 148 

Figure 84: Predicted streamlines for case 1 - plane C .................................................... 148 

Figure 85: Predicted streamlines for case 3 - plane C .................................................... 148 

Figure 86: Predicted streamlines for no film injection - plane D ................................... 149 

Figure 87: Predicted streamlines for case 1 - plane D .................................................... 150 

Figure 88: Predicted streamlines for case 3 - plane D .................................................... 150 

Figure 89: Predicted streamlines for no film injection - plane E .................................... 151 



xviii 

 

Figure 90: Predicted streamlines for case 1 - plane E ..................................................... 151 

Figure 91: Predicted streamlines for case 3 - plane E ..................................................... 152 

Figure 92: Predicted film cooling hole mass flow rate ................................................... 153 

Figure 93: Predicted film cooling hole discharge coefficients ....................................... 153 

Figure 94: Local blowing ratio for film cooling holes .................................................... 157 

Figure 95: Pitchwise film cooling effectiveness at 0% axial chord ................................ 159 

Figure 96: Pitchwise film cooling effectiveness at 10% axial chord .............................. 160 

Figure 97: Pitchwise film cooling effectiveness at 20% axial chord .............................. 160 

Figure 98: Pitchwise film cooling effectiveness at 30% axial chord .............................. 161 

Figure 99: Pitchwise film cooling effectiveness at 40% axial chord .............................. 162 

Figure 100: Pitchwise film cooling effectiveness at 50% axial chord ............................ 163 

Figure 101: Pitchwise film cooling effectiveness at 60% axial chord ............................ 164 

Figure 102: Pitchwise film cooling effectiveness at 70% axial chord ............................ 164 

Figure 103: Pitchwise film cooling effectiveness at 80% axial chord ............................ 165 

Figure 104: Pitchwise film cooling effectiveness - case 1 .............................................. 166 

Figure 105: Pitchwise film cooling effectiveness - case 2 .............................................. 167 

Figure 106: Pitchwise film cooling effectiveness - case 3 .............................................. 168 

Figure 107: Cooling uniformity coefficient - case 1 ....................................................... 170 

Figure 108: Cooling uniformity coefficient - case 2 ....................................................... 171 

Figure 109: Cooling uniformity coefficient - case 3 ....................................................... 172 

Figure 110: Pitch-averaged film cooling effectiveness .................................................. 173 

Figure 111: Isentropic Mach number contour superimposed on passage film cooling holes

......................................................................................................................................... 182 



xix 

 

Figure 112: Machined passage film cooling holes on inner endwall .............................. 184 

Figure 113: Heater layout for airfoil passage-3 .............................................................. 186 

Figure 114: Drawing of fixture plate for heater foil cutting ........................................... 187 

Figure 115: Heater foil with double-sided Kapton tape .................................................. 188 

Figure 116: Fixture plates with heater foils before cutting ............................................. 188 

Figure 117: Heater foil after cutting ............................................................................... 189 

Figure 118: Foil heater measurement technique ............................................................. 191 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xx 

 

LIST OF TABLES 

Table 1: Scientific contributions ....................................................................................... 54 

Table 2: Test matrix for heat transfer measurements ........................................................ 77 

Table 3: Airfoil geometry specifications and flow angles ................................................ 78 

Table 4: Test matrix for endwall film effectiveness measurements ................................. 83 

Table 5: Test matrix for surface oil visualization experiments ......................................... 83 

Table 6: Symbolic representation and magnitude of total uncertainty ........................... 101 

Table 7: Order of magnitude of residuals after convergence .......................................... 111 

Table 8: Grid convergence index for the coolant temperature drop ............................... 112 

Table 9: Comparison of percentage coolant flow rate between grids ............................. 112 

Table 10: Parameters for comparison with published literature ..................................... 118 

Table 11: Pitch-averaged film cooling effectiveness at various axial chord locations ... 158 

Table 12: Specifications of airfoil passage film cooling holes ....................................... 182 

Table 13:  Proposed test matrix for endwall heat transfer measurements ...................... 185 

Table 14: Heat flux calculation for endwall foil heater .................................................. 186 

 

  



xxi 

 

LIST OF NOMENCLATURE 

A area (m2) C airfoil chord (mm) D film cooling hole diameter (mm) d wake rod diameter (mm) DR density ratio h heat transfer coefficient (W/ m2 K) I momentum flux ratio k thermal conductivity (W/mK)  k∗ normalized turbulent kinetic energy (12 (𝑢𝑠,𝑅𝑀𝑆′ 2 + 𝑢𝑛,𝑅𝑀𝑆′ 2)/0.5𝑈∞2 ) L entry length; film cooling hole length (mm) M blowing ratio/mass flux ratio  Ma Mach number N number of film cooling holes; rotational speed of wake generator (RPM) n number of wake generator rods P pressure (Pa) p pitch (mm) q heat input; lateral heat conduction (W) R resistance of foil heater (ohm); radius of endwall (m) Re Reynolds number S wake Strouhal number; airfoil span (mm) 



xxii 

 

s coordinate along airfoil chord (m) T temperature (°C/K) Tu turbulence intensity U mean velocity (m/s) u local velocity (m/s) V voltage (V) w width of the heater strip (mm) x streamwise coordinate (m) y wall-normal coordinate (m) 

 y+ 
wall Reynolds number  (𝑦√𝜏𝑤ρ𝜈 ) 

z pitchwise coordinate ( 𝑧 ≅ 𝑅∆𝜃) (m) 

Greek Symbols α film cooling hole inclination angle; temperature coefficient of resistance 

(K-1); pitch angle of velocity vector β film cooling hole compound angle; yaw angle of velocity vector γ ratio of specific heats (cp/cv) δ boundary layer thickness (mm) 

ε emissivity η film cooling effectiveness θ pitchwise angle, cone angle of velocity vector ν kinematic viscosity (m2/s) 



xxiii 

 

ρ fluid density (kg/m3); resistivity of heater material (ohm-m) σ Stefan-Boltzman constant (5.67×10-8 W/m2K4) φ yaw angle, projected streamwise angle of film cooling hole ϕ roll angle of velocity vector 𝜏 shear stress (N/m2) 

Superscripts ′′ per unit area 

– pitchwise-averaged ′ time-dependent value; auxiliary coordinate 

Subscripts 1 displacement thickness 2 momentum thickness ∞ mainstream; free-stream  act actual amb ambient avg average ax axial 

b backside c coolant  cond conduction conv convection e exit 



xxiv 

 

el electrical gen generated h film cooling hole in inlet inj film injection location is isentropic 

n normal o baseline; stagnation condition r recovery rad radiation s static; surface; coordinate along airfoil chord w wire sensor; wall 𝑙 local 

Abbreviations S𝑛 singlet state (n = 0,1,2,3…) T𝑛 triplet state (n = 1,2,3…) AR aspect ratio (S/C) CFD computational fluid dynamics CUC cooling uniformity coefficient CV corner vortex DR density ratio FCH film cooling hole 



xxv 

 

fps frames per second IED inner endwall IT, IS intersystem transition LE leading-edge LED light emitting diode LHV leading-edge horseshoe vortex OED outer endwall PS pressure side PSP pressure sensitive paint PV passage vortex RMS root mean square SHV suction side horseshoe vortex SP saddle point SS suction side TSP temperature sensitive paint  

VR velocity ratio 

 

  



1 

 

CHAPTER 1: INTRODUCTION 

This chapter provides a brief background on gas turbines, their thermodynamic 

cycle, and the cooling methodologies that are practiced in modern gas turbines. Following 

this, endwall or platform cooling will be discussed in detail.  

Gas Turbines 

Gas turbines are cyclic heat engines widely used in propulsion, land-based power 

generation, marine and military applications. They have high specific power and are 

significantly low in emissions when compared to the conventional reciprocating engines. 

Almost, every modern aircraft is powered by a gas turbine. In addition, turbines contribute ≅ 98% of the total electricity that goes to the United States power grid [1]. These include 

coal, natural gas, nuclear, and renewable power sources (hydro, wind, solar-thermal). It is 

also noted that micro-turbines (miniature gas turbines) with power producing capacity 

ranging from 10s to 100s of kilowatts are considered to provide promising technologies to 

the hybrid electric vehicles. Some micro-turbines are also used for laboratory experiments 

in universities. 

A large industrial gas turbine typically produces 100 to 400 MW of power and has 

35–40% thermal efficiency under stand-alone cycle and 55-60% under combined cycle 

operation. Typically, industrial gas turbines have higher thermal efficiency than propulsion 

gas turbines. This is because of the thrust requirement in the latter case that keeps the work 

output of the turbine merely sufficient to the power the fan (in case of turbofan engines), 

compressor and small auxiliary power units. In addition, the aerodynamic losses are higher 

http://en.wikipedia.org/wiki/Thermodynamic_efficiency
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in propulsion gas turbines due to increased coolant flow rate. The propulsion gas turbines 

have limitations on size and weight to reduce the flight load. In the case of industrial gas 

turbines, the size restriction is not a primary concern which permits the operation of dual 

or combined cycle gas turbine units (gas and steam turbine, for example).  

Evolution of Gas Turbines 

The earliest known concept of propulsion dates back to about 150 BC, when the 

Greek Mathematician Hero demonstrated the concept of a rotating sphere due to the 

reaction forces produced by the steam jets [2]. The first patent for a gas turbine engine was 

obtained by John Barber from United Kingdom in 1791 [2]. It consisted of a chain-driven, 

reciprocating type of compressor, a combustion chamber, and a turbine. Charles Gordon 

Curtis received the first gas turbine patent in the United States in 1899 [2]. The theory of 

gas flow past airfoils was studied by Alan Arnold Griffith resulting in a publication named, 

“An Aerodynamic Theory of Turbine Design” in 1926 [2]. In 1930, Sir Frank Whittle from 

England patented a gas turbine design for jet propulsion [2]. The world’s first gas turbine 

for power generation was commissioned at Brown Boveri Company in Switzerland in 1939 

[2].  

The world’s first aircraft to be powered by a turbojet engine was Heinkel He 178, 

which used Hans von Ohain’s patented engine [2].  In 1942, the Junkers Jumo-004-B 

became the first large scale aircraft gas turbine to use air-cooled turbine blades [3]. From 

1945 onwards, aircraft gas turbine development efforts have increased the turbine inlet 

temperatures, pressure ratios, component thermal efficiencies and fan by-pass ratios [3]. 

This has induced a corresponding increase in the thrust-to-weight ratios, durability and 
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reliability, thus reducing the specific fuel consumption. Other essential components of the 

development include production and maintenance costs, engine shut down times, and NOx 

emissions [3]. 

Theory of Operation and Thermal Efficiency 

The thermodynamic cycle of a gas turbine is called the “Brayton cycle” named after 

George Brayton who proposed it in 1870. In an ideal Brayton cycle, the heat addition and 

rejection are constant pressure processes as opposed to constant volume that occurs in a 

reciprocating engine (Otto cycle, for example). The process of combustion is continuous 

in a gas turbine which increases power output per cycle. The actual Brayton cycle on the 

h-s diagram for an industrial gas turbine is shown in Figure 1 and the jet propulsion cycle 

is shown in Figure 2. In Figures 1 and 2, the ideal or the isentropic states are shown using 

the subscript ‘i’. 

 

 

 

 

 

 

 

 

Figure 1: Actual Brayton cycle for an industrial gas turbine [4] 
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Figure 2: Actual Brayton cycle for a propulsion gas turbine [4] 

 

In Figure 1, which describes a Brayton cycle for a power generation gas turbine, 

shows four processes. For the ideal case, the compression and expansion processes are 

reversible adiabatic (i.e. the entropy remains constant) and the pressure remains constant 

during heat addition. Typically the exhaust gas is vented to the atmosphere.  Due to the 

entropy generation from non-isothermal heat transfer and other irreversibilities, the actual 

cycle deviates from the isentropic case, decreasing the thermal efficiency.  

In a jet propulsion cycle (Figure 2), the compression and expansion processes are 

similar to the Brayton cycle. The useful work output of the turbine stage is negligible 

compared to an industrial gas turbine. This is because the primary goal in the case for a 

propulsion gas turbine is to increase the thrust. Due to this, the core thermal efficiency 

receives a lower priority. By accelerating the exhaust gases in a nozzle, the jet velocity is 

increased resulting in the required thrust. On the other hand, the thermal efficiency is a 

pertinent factor for power generation gas turbines. Since the temperature of turbine exhaust 

gases are high (~ 474°C in modern gas turbines) compared to the ambient temperature, 
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additional heat recovery is practiced mainly in large scale power generation gas turbines 

by passing the exhaust gases through a steam-generator to power a steam turbine. This type 

of dual thermodynamic cycle operation that involves a gas and steam turbine is called a 

“combined cycle” power plant whose efficiency can be > 60% in modern gas turbines [5]. 

Considering an ideal Brayton cycle for a power generation gas turbine, the thermal 

efficiency of the cycle is given in Equation 1.1 [6].  

𝜂𝑡ℎ,𝐵𝑟𝑎𝑦𝑡𝑜𝑛𝑖𝑑𝑒𝑎𝑙 = 𝑤𝑛𝑒𝑡𝑞𝑖𝑛 = 1 − 𝑞𝑜𝑢𝑡𝑞𝑖𝑛 = 1 − 𝑇4𝑇3 (1 − 𝑇1𝑇41 − 𝑇2𝑇3)                           (1.1) 

 Since the processes 1 → 2 and 3→ 4 are isentropic, the isentropic relations can be 

used as shown in Equation 1.2. 𝑇2𝑇1 = (𝑃2𝑃1)𝛾−1𝛾 = (𝑃3𝑃4)𝛾−1𝛾 = 𝑇3𝑇4                                                       (1.2) 

 Using Equation 1.2 in Equation 1.1 and using cold-air-standard assumptions, the 

thermal efficiency for an ideal Brayton cycle can be obtained as shown in Equation 1.3 [6]. 

𝜂𝑡ℎ,𝐵𝑟𝑎𝑦𝑡𝑜𝑛𝑖𝑑𝑒𝑎𝑙 = 1 − 𝑇4𝑇3 = 1 − 1(𝑃2𝑃1)𝛾−1𝛾 ;  𝑃2𝑃1 = 𝑟𝑝                               (1.3) 

From Equation 1.3, it is evident that the efficiency can be increased by increasing 

the pressure ratio (𝑟𝑝). The performance of a Brayton cycle is usually evaluated using two 

factors namely, the thermal efficiency and the useful work output as pointed out by Wilson 

and Korakianitis [7]. The former increases with pressure ratio while the latter reaches a 

maximum at an optimum pressure ratio. It is essential to arrive at the optimum pressure 

ratio based on the gas turbine application. This optimum pressure ratio can be found for an 

ideal cycle by minimizing the derivative of the useful work with respect to the pressure 
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ratio. The pressure ratio for maximum useful work output is derived below based on [6]. 

The specific work (i.e. work per unit mass) is defined in Equation 1.4. 𝑤𝑛𝑒𝑡 = 𝑐𝑝[(𝑇3 − 𝑇2) − (𝑇4 − 𝑇1)]                                          (1.4) 

Assuming constant properties for the gas and recognizing that the compressor inlet 

temperature is normally the ambient temperature and cannot be considered to be an 

important independent parameter in Equation 1.4, Equation 1.5 is obtained. 𝑤𝑛𝑒𝑡𝑐𝑝𝑇1 = 𝑇3𝑇1 [1 − 𝑇4𝑇3] − [𝑇2𝑇1 − 1]                                             (1.5) 

Using Equation 1.2 in Equation 1.5, Equation 1.6 is obtained. 

𝑤𝑛𝑒𝑡𝑐𝑝𝑇1 = 𝑇3𝑇1 [1 − 1𝑟𝑝𝛾−1𝛾 ] − [𝑟𝑝𝛾−1𝛾 − 1]                                             (1.6) 

In Equation 1.6 we can recognize 
𝑇3𝑇1 as the temperature ratio parameter the upper 

bound being dictated by the highest turbine inlet temperature that the first turbine stage can 

withstand without failure. The graph for Equation 1.6 is shown in Figure 3. Component 

cooling has paved way for turbine inlet temperatures higher than the super-alloy melting 

temperature. Gas turbine cooling will be discussed in the next section of this dissertation.  
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Figure 3: Non-dimensional work output dependence on pressure ratio [6] 

 

It can be observed from Figure 3 that the maximum work output at higher turbine 

inlet temperatures shifts towards higher pressure ratios. This implies there must be an 

optimum pressure ratio for which the useful work output is the maximum. The optimum 

pressure ratio can be obtained by the maximization of the specific work output with respect 

to the pressure ratio for a fixed temperature ratio as shown in Equation 1.7.    

𝑑𝑑𝑟𝑝𝛾−1𝛾 (𝑤𝑛𝑒𝑡𝑐𝑝𝑇1) = 𝑇3𝑇1 ( 1𝑟𝑝2(𝛾−1𝛾 ) − 1)                                      (1.7) 

For maximum useful work output, we need to have 
𝑑𝑑𝑟𝑝𝛾−1𝛾 (𝑊𝑛𝑒𝑡𝑐𝑝𝑇1 ) = 0 and 

𝑑2𝑑2𝑟𝑝𝛾−1𝛾 (𝑊𝑛𝑒𝑡𝑐𝑝𝑇1 ) < 0. The first derivative of the non-dimensional specific work is given 

in Equation 1.8. 
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𝑇3𝑇1 ( 1𝑟𝑝2(𝛾−1𝛾 ) − 1) = 0                                                            (1.8) 

The optimum pressure ratio for a fixed 
𝑇3𝑇1 is given in Equation 1.9.  

𝑟𝑜𝑝 = (𝑇3𝑇1) 𝛾2(𝛾−1)                                                                    (1.9) 

Note that from Equation 1.8, we can see that 
𝑑2𝑑2𝑟𝑝𝛾−1𝛾 (𝑊𝑛𝑒𝑡𝑐𝑝𝑇1 ) < 0. 

From Equation 1.9, for a given temperature ratio and the type of gas (predominantly 

air), the optimum pressure ratio for the maximum specific work can be ascertained. 

Equation 1.9 can be rewritten to move the specific heat ratio exponent to the side of 

optimum pressure ratio as shown in Equation 1.10. 

𝑟𝑜𝑝𝛾−1𝛾 = (𝑇3𝑇1)1/2                                                            (1.10) 

Using Equation 1.2 in Equation 1.10, Equation 1.11 is obtained. 

(𝑇2𝑇1)2 = 𝑇3𝑇1 ;  (𝑇2𝑇1) (𝑇3𝑇4) = 𝑇3𝑇1 ;  𝑇2 = 𝑇4                                    (1.11) 

From Equation 1.11, it can be inferred that in order to progress towards the 

optimum pressure ratio, the compressor discharge and turbine exhaust temperatures must 

be as close as possible. For values of 𝑟𝑝 between 1 and (𝑇3𝑇1) 𝛾2(𝛾−1)
, the compressor 

discharge temperature will be less than the turbine exhaust temperature. In power plants 

with regeneration, the heat from the turbine exhaust is effectively utilized to increase the 

temperature of the compressor discharge air prior to combustion. Typical pressure ratios 
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used in land-based gas turbines are in the range of 15 to 25.  The pressure ratios are higher 

than 40 in aircraft and military applications. 

In summary, the need to increase the thermal efficiency and the specific work 

output of a gas turbine involves optimizing the pressure ratio for a fixed temperature ratio. 

The turbine inlet temperature is a key performance parameter and a minor increase in this 

value requires significant amount of engineering design and analysis to sustain component 

durability. 

Gas Turbine Cooling 

With increasing demands in turbine efficiency and net power output, the turbine 

inlet temperatures of the modern industrial gas turbines have reached approximately 

1600˚C [5]. Cooling is widely practiced in gas turbines to increase component life. 

According to Han et al. [8], the life of a gas turbine blade can be approximately doubled if 

the mean blade wall temperature can be reduced by 28˚C. It is therefore extremely critical 

that turbine components are cooled continuously to sustain part durability. The gas turbine 

blades are manufactured by investment casting of super-alloys [9]. The typical thermal 

conductivity of a Nickel-based super-alloy (IN713LC) is approximately 10.3 W/mK at 

room temperature [9]. There have been significant improvements made in the field of 

turbine cooling over the last few decades. The underlying goal is to lower the maximum 

metal temperature. Figure 4 shows the advancement of cooling systems in gas turbine 

blades over the last five decades with increasing turbine inlet temperature. 
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Figure 4: Advancement of gas turbine blade cooling systems [8] 

 

Both internal and external cooling techniques are practiced in gas turbine 

components. The primary hot-gas-path components include the first stage nozzle guide 

vanes, rotors, and the associated endwalls (platforms). High pressure air, typically from the 

last few compressor stages is made to by-pass the combustor and is fed into internal cooling 

channels inside the hot-gas-path components. The compressor-bled airflow is cold relative 

to the mainstream flow, with the temperature difference being 337˚C approximately for the 

GE-E3 engine for the first stage nozzle guide vanes [10]. It is noted here that the coolant 

temperature can differ based on the overall pressure ratio and operating conditions of the 

gas turbine.  

Since the coolant bled from the compressor stage does not contribute towards useful 

turbine work, it is extremely essential to minimize the amount of cooling air in any gas 

turbine cooling scheme. Moreover, excess coolant increases the mixing losses in the engine 

which is detrimental to the thermal efficiency. A fundamental understanding of the coolant 
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behavior in a gas turbine is extremely essential for the design of efficient cooling schemes. 

The pertinent contributions to the thermal efficiency reduction from the theoretical limit 

and the importance of efficient cooling schemes and reduced losses is outlined in a 

simplified block diagram in Figure 5. A typical classification of gas turbine component 

cooling is shown in Figure 6. 

 

 

Figure 5: Simplified block diagram of gas turbine thermal efficiency reduction 

 

 

Figure 6: A typical classification of component cooling in gas turbines [11] 

 

𝑇3 = 1873.15 𝐾;  𝑇1 = 300 𝐾; 𝑃2𝑃1 = 25 
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Any cooling technique must have a balance between its efficiency and the losses 

incurred to the turbomachine. In that respect, the elevated turbine inlet temperatures that 

can be achieved using a particular cooling technique become essential during the 

evaluation of its performance. Based on the type of gas turbine application, weight 

restrictions may also determine the feasibility of a cooling technique.  

Internal Cooling 

In internal (or convective) cooling, the passages inside the blade are usually 

roughened with turbulators. Typical turbulators include ribs and pin-fins. The turbulators 

increase the coolant residing time in the internal cooling passage by promoting flow mixing 

between the coolant the hot component wall thereby enhancing heat convection. Pin-fins 

are normally used near the trailing edge region of the airfoil in order to provide structural 

rigidity for the airfoil walls. Impingement cooling, which is a sub-category of internal 

cooling uses a surface with numerous holes through which high pressure air is ejected on 

to a hot (target) surface. The heat transfer coefficients on the target surface exhibit variation 

depending on the distance between the impingement holes and the target surface. 

Typically, impingement cooling is employed in areas which require high levels cooling 

(for example, the leading-edge of a first stage vane or blade). It is also noted here that the 

blade geometry itself imposes a constraint on the type of cooling that can be implemented. 
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External Cooling 

After cooling the inside of the component, the coolant is ejected through discrete 

holes on the surface of the component that creates a relatively cold film over the target 

surface. This type of external cooling often called film cooling. The buffer layer (film) 

formed between the hot gas and the cooled surface reduces the temperature of the substrate 

(i.e. the maximum metal temperature). This type of cooling has permitted significant 

increase in turbine inlet temperatures over the past three decades. A typical stator-rotor and 

endwall cooling system in an aircraft gas turbine can be found in [11]. Transpiration 

cooling or continuous film cooling is a type of porous media cooling which has the 

potential to provide increased uniformity in the film coverage compared to discrete film 

injection in which hot spots can appear between the film cooling holes. Due to the 

challenges in the manufacturing of transpired components walls, the transpiration cooling 

technique is still under research and development.   

In addition to the active cooling schemes, low thermal conductivity coatings called 

thermal barrier coatings (TBC) are applied to the components that need a large amount of 

cooling. An example of a thermal barrier coating used with Nickel-based superalloy is 

Yttria-stabilized Zirconia Polycrystal which has a thermal conductivity of ≅ 2 W/mK at 

room temperature [12]. Usually, the first stage nozzle guide vanes, blades and endwalls are 

coated with TBC since they experience the highest thermal and aerodynamic load in the 

engine. Thus higher turbine inlet temperatures are possible with TBC coatings while 

limiting the thermal exposure of the components. In combination with active film cooling, 

TBC’s permit working fluid temperatures higher than the melting point of the super-alloy. 
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Endwall Film Cooling 

The primary hot-gas path components as mentioned earlier include the first stage 

nozzle guide vanes, blades, and the associated endwalls. Film cooling practiced on the hot-

gas path components have received significant attention in the past few decades. This is 

because of the strong secondary flow that dominates the endwall flow field thereby 

affecting the coolant trajectory and coverage. The ejected coolant interacts with the endwall 

secondary flow resulting in higher aerodynamic and thermodynamic losses. Increased 

losses are a penalty to the turbine stage efficiency and the extraction of cooling air from 

the compressor results in the reduction of the overall thermal efficiency. A typical gas 

turbine endwall film cooling configuration can be found in [3]. 

Due to the presence of alternating stator-rotor arrangement in a gas turbine, the 

mainstream flow is strongly influenced from the wakes (i.e. velocity deficits) shed by the 

vanes and blades. The endwall located downstream of a vane or blade is subjected to the 

wakes that are inherently unsteady. As the wakes convect downstream, they interact with 

the injected coolant. It essential to understand this interaction to quantify the influence of 

unsteady passing wakes on the coolant distribution on the endwall.  

A substantial amount of research has been performed in the field of endwall film 

cooling. The next chapter will provide a comprehensive review of the published literature 

on film cooling studies relevant to the present investigation. 
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CHAPTER 2:  REVIEW OF LITERATURE 

A comprehensive review of the film cooling technology has been provided by 

Goldstein [1] and Bogard and Thole [2]. Some of the topics discussed in these 

investigations include film cooling hole shape, coolant injection location, momentum flux 

ratio, mainstream turbulence, mainstream pressure gradient, and surface roughness. A 

more specific review on shaped hole film cooling was contributed by Bunker [3]. This 

chapter is split into several sections each providing a detailed review of the published 

literature related to film cooling on a flat plate, film cooling in the presence of unsteady 

passing wakes and film cooling on a gas turbine endwall. 

Film Cooling on a Flat Plate 

 Some fundamental studies on film cooling were performed on a flat plate with zero 

pressure gradient. Eriksen and Goldstein [4] pointed out that the film cooling effectiveness 

at the centerline of the film hole increased with decreasing displacement thickness to film 

hole diameter ratio near the injection location. This was because of the greater momentum 

(due to the thin boundary layer) experienced by the film jet as it enters the mainstream. The 

effect of film hole geometry and density ratio on film cooling performance was studied by 

Goldstein et al. [5]. It was found that widening of the coolant channel near the exit of the 

film hole reduced the momentum of the exiting jet thereby keeping the jet well adhered to 

the surface and increasing the lateral spreading of the film jet. The orientation of a film 

cooling hole is shown in Figure 7.  
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 Goldstein and Yoshida [6] observed that the inlet boundary layer was perturbed by 

the film holes and that the type of inlet boundary layer has meager influence on film cooling 

and heat transfer. In the work by Sinha et al. [7], the momentum flux ratio was found to be 

a better scaling parameter for film effectiveness in the jet lift-off regime, which was 

observed to occur at a momentum flux ratio greater than 0.3. The attached jet and partially 

detached jet (lift-off) scenario is shown in Figure 8 based on [7]. The effect of varying 

film-hole geometries including compounded holes and diffusing exits for a wide range of 

momentum, mass flux, and density ratios were studied by Bell et al. [8]. It was seen that 

the film holes with a combination of lateral diffusion and compound angle performed the 

best among the tested configurations. Hay et al. [9] observed that the lateral variation in 

the heat transfer augmentation was small past the streamwise location where the adjacent 

film jets started interacting with each other.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Film cooling hole nomenclature 

𝛃: Compound angle 𝛂: Streamwise inclination 𝛗: Projection  of 𝜶 on XY − plane 
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     Figure 8: Coolant jet behavior at low and high momentum flux ratio [7] 

 

 In the study performed by Liess [10], it was observed that the mainstream Mach 

number had no measurable effect on the film cooling parameters up to a local Mach number 

of 0.9. Increasing displacement thickness to film hole diameter ratio was found to 

deteriorate the film cooling effectiveness. Pedersen et al. [11] showed that the effect of 

density ratio had a significant impact on the film cooling performance for holes with an 

injection angle of 35°. Lutum and Johnson [12] reported that film holes with length to 

diameter ratio less than 5 exhibited undeveloped flow character and a greater effective 

injection angle. This deteriorated the film cooling effectiveness.  
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 An experimental study by Gritsch et al. [13] included the effect of cross flow Mach 

number in the coolant reservoir on film cooling performance. Their results showed that 

higher cross flow Mach numbers increased the turbulence intensity inside the ejected jet 

thus augmenting the laterally-averaged heat transfer coefficient about 10% for cylindrical 

holes and up to 30% for shaped holes. Goldstein and Taylor [14] used the heat-mass 

transfer analogy to measure heat transfer with film cooling. Their investigations indicated 

that high heat transfer coefficients occur between adjacent film holes mainly due to the jet-

to-jet interaction. The behavior of the film jet at higher mass flux ratios were compared to 

a solid rod placed in a cross flow at the same film hole injection angle. 

 In a study by Ammari et al. [15], the heat transfer coefficients for film injection 

through normal holes (90° injection angle) exhibited no change when the density ratio was 

varied by keeping the mass flux ratio constant. When the film hole injection angle was 

reduced to 35°, a strong dependence on density ratio was exhibited by the heat transfer 

coefficient. The hydrodynamics of a row of film holes with an injection angle of 35° was 

studied by Pietrzyk et al. [16] on a flat plate for a density ratio of 2 and compared the results 

with two cases with density ratio of 1. They found that in the near hole region, the high 

density jets have lower velocities near the wall when compared to the jets with lower 

density. This reduces the relative momentum of the film jet with respect to the mainstream 

flow keeping it closer to the cooled surface.  

 Nasir et al. [17] observed that the film cooling effectiveness was lower for holes 

with higher injection angle. They also noticed that the compound angle film cooling holes 

produced lateral interactions of the film jet with the mainstream thereby resulting in high 
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heat transfer coefficients. The film cooling effectiveness in the far downstream increased 

for a compounded hole due to high lateral momentum of the film jet. 

  Experimental investigations on a flat plate performed by Yuen & Botas [18,19] 

indicated that the coolant film behavior can change dramatically when the fluid mechanics 

of the coolant film and the associated boundary layer are altered. The flow characteristics 

inside a film hole were studied by Walters and Leylek [20] who found the existence of a 

region of accelerating flow near the exit of the coolant hole and recirculating flow (wake 

region) under the film hole at higher coolant-to-mainstream mass flux ratios. They also 

showed the production of vorticity inside the boundary layer of the film hole that gives rise 

to the counter-rotating vortex pair. They also found that increasing distance between the 

streamwise vorticity pockets reduces the lift and strength of the vortical structures. There 

are two major parts of a vortex structure namely the up-wash and down-wash side, which 

was observed in the flat plate film cooling experiments performed by Ligrani and Williams 

[21] and Ligrani et al. [22]. The former decreases film cooling while the converse is true 

in the latter case.  

 The effect of both unsteady wakes and pulsed jets on film cooling were studied by 

Womack et al. [23] on a flat plate with a wall-tangential wake rod orientation. They noticed 

a reduction in film effectiveness when both pulsed jets and wakes were introduced. It was 

observed that at lower wake passing frequencies, the timing of the wake had a significant 

impact on the time-accurate film effectiveness measurements whereas at higher wake 

passing frequencies, the effect of wake timing was negligible. In another similar flat plate 

investigation with periodic wakes, Womack et al. [24] observed that the heat transfer 

coefficients increased with the wake passing frequency by the same order as with and 
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without film cooling. The test surface recovered completely from the passing wake 

disturbance at low Strouhal numbers but this recovery reduced with increasing wake 

passing frequency. 

Influence of Unsteady Wakes on Film Cooling 

 Since a gas turbine turbine endwall is continuously exposed to wake shedding from 

upstream stators and rotors, it is necessary to understand the effects of unsteady passing 

wakes on film cooling and heat transfer. There is a need here to simplify the existing 

situation of the complex flow field by considering the passing wake influence on an 

endwall without airfoils. This enables to isolate the effects of secondary flows that are 

generated in a cascade and focus the attention on the unsteady passing wake effect only. 

This is the motivation behind the first part of this research work. This section provides a 

detailed discussion on the relevant passing wake studies that are part of the open literature.  

 Schobeiri et al. [25] conducted tests on a concave plate with an upstream wake 

generator and observed a wake-induced boundary layer transition and a quasi-steady 

primary boundary layer which was periodically disturbed by the wakes.  Du et al. [26, 27] 

found that trailing edge ejection from a rotating wake rod compensated for the velocity 

deficit caused by the periodic wakes. The trailing edge coolant ejection was observed to 

have a stronger effect on film effectiveness than on airfoil heat transfer coefficients. 

Unsteady wakes were seen to increase the heat transfer coefficients slightly on a film 

cooled blade.       

 On the other hand, the film cooling effectiveness deteriorated with the introduction 

of unsteady wakes. Han et al. [28] found that the blade heat transfer coefficients increased 
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with the Strouhal number when the mainstream Reynolds number was held constant. The 

Reynolds number (length scale based on the airfoil chord) and Strouhal number (length 

scale based on the wake rod diameter) were both considered essential parameters in 

understanding the airfoil heat transfer [28].  

  In a numerical investigation of wake influenced shower-head film cooling by 

Adami et al. [29], it was found that the wake has a considerable impact on the  coolant flow 

mixing and separation near the surface while the effect on the overall flow field was not 

significant. The velocity fluctuations due to the wake and mainstream turbulence were 

damped out more on the suction side than the pressure side due to the local positive 

curvature near the airfoil leading-edge. Dullenkopf et al. [30] found that the unsteady 

wakes have a significant influence on the boundary layer on the suction side of an airfoil. 

Apart from this, the unsteady wakes were observed to have a vital effect on the average 

heat transfer coefficient in the laminar-turbulent boundary layer transition regime.  

 Teng et al. [31] found that unsteady wakes play a predominant role in determining 

the boundary layer transition while a single row of film holes do not have a notable 

influence on the transition. The jet lift-off phenomenon was observed by Funazaki et al. 

[32] for an average mass flux ratio greater than 0.8 and a density ratio of 0.93 for film holes 

located near the stagnation region of a blunt body.  This was because the local mass flux 

ratio at the film hole exit was much higher due to the decreased local mainstream velocity 

in the airfoil stagnation region. The influence of the passing wake was negligible at low 

mass flux ratios. Both turbulence intensity and the turbulence length scale of the 

mainstream were considered to be important factors in dictating the film cooling 

performance.  
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The effect of stationary wakes on endwall film cooling near the airfoil leading-edge 

junction was studied by Rodriguez et al. [33]. At lower streamwise distances downstream 

of film injection, the wakes were found to increase the film effectiveness. But due to strong 

mixing with the coolant, the decay rate of the film effectiveness increased in the presence 

of stationary wakes. An experimental and numerical study by Heidmann et al. [34] showed 

that not resolving the flow within the film holes can over predict the film effectiveness 

since the flow field inside the coolant hole had a substantial influence on the jet trajectory. 

It was also seen that the passing wakes influences the film jets by augmenting their lateral 

mixing.  

Ou et al. [35] studied the effect of unsteady wakes on the blade heat transfer in a 

linear cascade at a density ratio of 1.5 and unity. The high density coolant increased the 

heat transfer coefficient in the transition region but did not have much influence on most 

part of the suction and pressure side of the airfoil. Film injection alone was seen to increase 

the heat transfer coefficient more than just the passing wake. Mehendale et al. [36] 

performed heat transfer and film cooling experiments in the same facility as Ou et al. [35]. 

On the pressure side of the airfoil, the high density coolant was noticed to perform much 

better than the low density coolant. The reason for this is due to the very low the 

mainstream velocity near the airfoil pressure side that increases the momentum flux ratio. 

With a higher density coolant, the velocity ratio reduces which in turn decreases the 

momentum flux ratio.  

Wright et al. [37] used stationary rods and delta wings to mimic the combined effect 

of trailing edge wakes and upstream passage vortices in a linear cascade of airfoils. Among 

the 30° and 45° delta wings used to generate upstream passage vortices, the secondary 
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flows generated by the delta wings at 45° incidence angle were observed to cause greater 

detriment to the slot coolant.  

From the discussed published literature, it is observed that most of the passing wake 

investigations conducted have been confined to flat plate or cascade studies. The first part 

of the present research investigation stands in-between flat plate and cascade flow studies 

providing information on film cooling effectiveness and heat transfer on a pitchwise-

curved surface influenced by passing wakes. The wall-normal wake rod orientation in a 

sector-annular duct provides a realistic experimental setup in connection with a gas turbine 

endwall in the absence of airfoils. It should be noted that the velocity components (axial & 

tangential) of the passing wake are retained in its entirety when investigated in an annular 

channel as opposed to a rectangular channel. A schematic in Figure 9 shows the difference 

between a wall-normal and wall-tangential wake-rod orientation.  

 

 

 

 

 

 

 

 

 

 

Figure 9: Difference between wall-normal and wall-tangential wake rod orientation 
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 The results obtained from this investigation will provide information on the film 

effectiveness and heat transfer distribution on an endwall without airfoils with wall-normal 

wake rod orientation. The following section will focus on endwall secondary flows, 

endwall film cooling and heat transfer studies reported in the published literature. 

Endwall Secondary Flow System 

 The endwall flow field is highly complicated and three-dimensional. Due to the 

non-uniform velocity distribution in the flow approaching the airfoils, there exists a 

spanwise stagnation pressure gradient with the lowest stagnation pressure occurring near 

the endwall. This results in a downward flow approaching the endwall that rolls up into a 

horseshoe vortex near the airfoil leading-edge. In addition, the flow turning due to the non-

zero airfoil camber produces cross flow (i.e. flow from the pressure side to the suction side 

of the airfoil) inside the airfoil passage which leads to the migration of the horseshoe vortex 

to the suction side.  

 The cross flow fed pressure side horseshoe vortex is called the passage vortex. The 

suction leg of the horseshoe vortex stays close to the airfoil suction surface and has an 

opposite rotational motion compared to the pressure side branch. A typical endwall 

secondary flow system is shown in Figure 10. These secondary flows can have a significant 

influence on the film cooling effectiveness and heat transfer coefficient distribution on the 

endwall. Particularly, the airfoil leading-edge-endwall junction and the path of the passage 

vortex inside the airfoil passage experience high heat transfer coefficients and hence need 

adequate cooling to maintain part durability. 
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Figure 10: Simplified schematic of an endwall secondary flow system [47,55]  

 

 One of the earliest studies on the classical secondary flow theory was reported by 

Hawthorne [38]. This model presents the streamwise vorticity components arising due to 

the distortion of the vortex filaments in the inlet boundary layer leading to the generation 

of the passage vortex. The leading-edge or the stagnation point vortex was first identified 

by Klein as pointed out by Sieverding [39], who has summarized the research performed 

on the basic aspects of secondary flows in airfoil passages between 1975 and 1985. Several 

investigations have been made in the field of flow visualization and pressure loss 

measurements in cascade flows [40-47].  

It was noted by Moore and Smith [40], Sieverding and Van den Bosch [41], and 

Langston et al. [42] that the injected fluid along the pressure side ended in the core of the 

passage vortex and the suction side fluid surrounded the passage vortex with an opposite 

rotational motion. Sjolander [43] measured the total pressure at various streamwise planes 

along the airfoil passage to calculate the losses incurred due to the vortical flows. The 
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losses were seen to be high near the suction side due to the pitchwise migration of the 

passage vortex. 

 Harrison [44] performed measurements of endwall shear stress and streamwise 

vorticity in a high turning linear cascade. They observed that the boundary layer on the 

endwall was affected both upstream and downstream of the separation lines.  The loss core 

of the passage vortex was highest at the exit plane of the cascade. Gregory-Smith and 

Graves [45] reported that the secondary loss growth exhibited close to a steady behavior 

through the cascade. This finding was opposite to Langston et al. [42] and Marchal and 

Sieverding [46] who found the losses to remain the same up to the axial location of highest 

suction velocity and increased rapidly thereafter due to the interaction of the endwall cross 

flow and the airfoil suction surface boundary layer. A comprehensive discussion on the 

loss mechanisms in turbomachines was provided by Denton [47] where the author points 

out that the secondary flow losses contribute to almost one-third of the total losses in a 

turbomachine. 

 Secondary flow reduction is another important aspect of endwall film cooling. A 

passive method of reducing the endwall secondary flows is to use a fillet at the airfoil 

leading-edge-endwall junction. The fillet reduces the pitchwise pressure gradient by 

accelerating the flow near the airfoil pressure side thereby altering the size and location of 

the vortex structures. Many researchers have studied the usage of fillet and its impact on 

the cascade aerodynamics and heat transfer. Only few recent studies are mentioned here. 

Mahmood and Acharya [48] investigated the effect of a linear and a parabolic fillet on the 

cascade flow field and heat transfer. They found that the fillet weakened the passage vortex 

and reduced the endwall heat transfer compared to the no fillet case. Praisner et al. [49] 



29 

 

studied the application of non-axisymmetric contouring to the endwall of high lift low 

pressure turbine airfoils. It was observed that the secondary flow losses associated with the 

passage vortex were reduced with the introduction of a contoured endwall. Abraham et al. 

[50] conducted experiments in a transonic cascade with two contoured endwalls optimized 

for aerodynamics and heat transfer respectively. They found that the mixed out secondary 

flow losses, one airfoil chord downstream of the trailing edge reduced by 17% with the 

introduction of the endwall optimized for aerodynamics.  

Endwall Film Cooling 

Film cooling effectiveness is a non-dimensional temperature ratio which provides 

a measure of coolant concentration on the surface. Various research groups have performed 

effectiveness measurements using discrete film and slot injection on an endwall. 

 Initial research investigations in film cooling focused on studying the impact of the 

coolant injection on the secondary flows [51-53]. The effect of pitchwise blowing upstream 

of the airfoil leading-edge was investigated by Biesinger and Gregory-Smith [51], who 

observed that increased blowing re-energized the inlet boundary layer thereby promoting 

counter-streamwise vorticity which causes progressive weakening of the passage vortex. 

On the other hand, excess blowing was seen to be detrimental in terms of increasing the 

mixing losses in the passage. In high turning cascades, the effect of coolant injection altered 

the flow angles significantly based on the blowing ratio as reported by Sieverding and 

Wilputte [52] and Goldman and McLallin [53], who also showed that the depth of the loss 

core of the passage vortex was mitigated at higher coolant flow rates. 
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 One of the earliest studies reported in film effectiveness measurements was by Blair 

[54] who performed measurements in an airfoil passage of a linear cascade. It was seen 

that the film effectiveness deteriorated near the pressure side due to the disturbance caused 

by the secondary flows. A similar finding was reported by Takeishi et al. [55]. Harasgama 

and Burton [56] performed endwall film cooling effectiveness measurements at engine 

conditions in an annular cascade. It was reported that positioning of the film cooling holes 

along the iso-Mach lines provided a uniform momentum flux ratio. In a companion paper, 

Harasgama and Burton [57] observed that when the axial pressure gradient correction was 

made to the endwall film effectiveness distribution, it came closer to the flat plate 

correlations with discrete film injection. It was also found that film injection alters the 

endwall streamlines significantly depending on the momentum flux ratio. 

 The effect of a non-uniform inlet velocity and temperature profile in a cascade was 

discussed by Lakshminarayana [58] who showed that the direction of rotation of the 

passage vortex was altered depending on the combination of inlet velocity and temperature 

profile. This resulted in the change of sign in the radial total pressure gradient. Friedrichs 

et al. [59-61] studied the aerodynamic aspects of film cooling and the coolant distribution 

in a low speed linear cascade. It was found that the continuously varying static pressure 

across an airfoil passage altered the local blowing ratio significantly. The coolant injection 

upstream of the lift-off lines was noticed to have a substantial influence on the secondary 

flow strength and its associated losses. 

 Barigozzi et al. [62] studied the effect of coolant flow rate on the aero-thermal 

performance in a higher pressure rotor airfoil cascade using discrete film holes employed 

near the airfoil pressure side. In terms of the aerodynamic losses, it was found that the 
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ejected coolant did not have any significant influence on the downstream flow field. It was 

found that varying the coolant mass flow rate did not affect the secondary flows 

significantly. This can be explained due to the location of the film holes in the passage as 

pointed out by Friedrichs et al. [60]. In the study by Liu et al. [63], the spatially averaged 

film cooling effectiveness was reported to be doubled in the case of double row film 

injection upstream of the airfoil leading-edge. A triangular shaped uncooled region 

between the airfoil pressure side and the vortex lift off line was seen to be diminishing as 

the coolant mass flux increased to approximately twice the mainstream mass flux.  

 Jabbari et al. [64] experimented discrete film injection inside an airfoil passage of 

a low speed planar cascade. It was observed that the film cooling hole spacing, local 

mainstream velocity direction, blowing ratio, and the density ratio significantly affected 

the film cooling jet behavior and thereby the coolant distribution. Goldstein and Chen [65] 

investigated the film cooling of a turbine blade due to the effect of endwall secondary flow. 

The sweeping of the coolant from the suction side due to the suction side horseshoe vortex 

results in an uncooled triangular region. On the other hand, the airfoil pressure side was 

observed to less influenced by the endwall secondary flow. It was found that the film 

cooling effectiveness was closely linked to the local mainstream flow behavior. A 

combination of the mainstream flow conditions and the airfoil geometry were considered 

responsible for the strength and location of the secondary flows. 

 Some of the computational investigations for endwall film cooling have been 

performed by Friedrichs [66], Hada and Thole [67], Hermanson and Thole [68], Lynch et 

al. [69], and Knost and Thole [70]. It was found that the predictions agreed reasonably well 

with the experimental results, especially from the coolant coverage perspective [67]. In the 
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study by Hermanson and Thole [68], computational predictions were performed to 

investigate the inlet velocity and temperature profile effects on secondary flows. The 

results reported were qualitatively similar to Lakshminarayana [58]. Lynch et al. [69] found 

that the total pressure loss and heat transfer distribution were over-predicted by the 

computational model whereas the film cooling effectiveness and secondary kinetic energy 

were found to be in good agreement with the experiments.  

 As discussed in the review of shaped holes [1], fan-shaped holes increase the lateral 

spreading of the coolant jets thereby enhancing the effectiveness. The study conducted by 

Colban et al. [71] involved comparing cylindrical and fan-shaped holes under low and high 

mainstream turbulence conditions. It was seen that the fan-shaped holes increased the area-

averaged cooling effectiveness by 75% more than the cylindrical holes. This was attributed 

to the decrease in the local blowing ratios of the fan-shaped holes in comparison with the 

cylindrical holes. The effect of high mainstream turbulence on the cylindrical holes was to 

slightly increase the film effectiveness since the turbulent mixing of the jet helps to have 

higher lateral spreading. For the fan-shaped holes, the effect of higher mainstream 

turbulence slightly increased the film effectiveness but followed a similar trend as the low 

turbulence cases at higher coolant flow rates.  

 Barigozzi et al. [72] performed experiments using fan-shaped holes with different 

area-ratios. It was seen that lower area-ratio holes performed better in terms of secondary 

losses. This was attributed to the higher momentum of coolant jet that reduced the 

secondary flow strength. Various airfoil loading conditions were studied by Kunze et al. 

[73] to understand its impact on film effectiveness downstream of a single row of fan-

shaped holes. At higher incidence angles, which typically represent engine off-design 
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conditions, the secondary loss region was found to grow in the radial and the pitchwise 

directions due to intensification of the secondary flow. A second loss peak appeared in the 

loss coefficient contour positioning itself close to the passage vortex. This was considered 

to be representing the trailing edge vortex.  

 Some investigations have been performed with trenched film cooling holes, film 

cooling slots (representing the combustor-turbine interface) or a combination of slot and 

discrete film cooling holes. A few of them are discussed here. Sundaram and Thole [74] 

performed endwall film cooling studies using trenched holes and observed that the coolant 

stayed attached to the surface until Mavg = 2.5 due to the low exit momentum flux compared 

to the discrete film holes. Since the edge of the trench acts like a wall, the coolant is forced 

to spread laterally thereby enhancing the effectiveness.  

 Zhang and Jaiswal [75] performed experiments with a double-staggered row of 

discrete film holes or slots located upstream of the airfoil leading-edge. A higher cooling 

uniformity was obtained with slot injection at increased blowing ratios. The dominating 

effect of the secondary flow was almost unchanged for both the slot and the discrete hole 

injection at the lower blowing ratios. At higher blowing ratios, the secondary flow was 

suppressed due to the increased coolant momentum.  

 Knost & Thole [76] studied film cooling effectiveness in the presence of leakage 

flow from the combustor-turbine interface along with two distinct discrete film cooling 

hole patterns. The first hole pattern used the iso-Mach lines to locate most of the film 

cooling holes while the second hole pattern followed the iso-Mach lines only for few 

downstream holes. It was noticed that for the discrete film injection cases, an uncooled 

region was present in the center of the passage for pattern 2. This uncooled region was not 
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present in the case of pattern 1 due to the uniformity in the blowing ratio of the holes 

located on the same iso-Mach line. Including slot injection in addition to the discrete film 

resulted in an overcooled region in the center portion of the passage inlet. The authors 

pointed out that caution must be used while determining the film cooling hole locations in 

a combined slot and discrete film injection scenario to avoid excessive use of coolant.   

 Wright et al. [77] performed an experimental investigation of a combined slot and 

discrete film cooling configuration in a linear cascade. The slot was located near the airfoil 

leading-edge and the discrete film cooling holes were employed downstream in the airfoil 

passage. The authors found that the slot injection weakened the passage vortex at blowing 

ratios greater than unity. In addition, increased mainstream turbulence was found to 

weaken the passage vortex thereby increasing the film cooling effectiveness.  

 Heat transfer and film cooling effectiveness measurements in a transonic linear 

cascade were conducted by Nicklas [78]. The coolant injection was provided using a slot 

or discrete film cooling holes. It was found that the slot injection intensified the leading-

edge horseshoe vortex which resulted in high heat transfer coefficients near the leading-

edge. The trailing edge wake region was noted to be extremely difficult to cool without 

introducing trailing edge cooling holes.  

 Milidonis and Geogiou [79] investigated a slot injection configuration at the 

leading-edge of a symmetric bluff body near the endwall junction. The coolant trajectory 

was seen to be assisted by the return leg of the leading-edge horseshoe vortex. It was 

observed that the coolant film extended for a radial distance of almost half the radius of the 

bluff body leading-edge and for a 30° circumferential distance from the bluff body leading-

edge. Mensch and Thole [80] studied film and impingement cooling separately and a 
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combination of film and impingement cooling in adjacent airfoil passages of an endwall in 

a linear cascade. The film cooling holes were oriented along the local flow direction. The 

average discharge coefficient of the film cooling holes exhibited an increase with the 

blowing ratio. High film effectiveness was observed in the immediate downstream region 

of the film holes after which the endwall cross flow disturbed the uniformity in the film 

effectiveness distribution.  

 The effect of both coolant plenum and mainstream cross flow on film cooling hole 

discharge coefficient was investigated by Gritsch et al. [81] in a flat plate film cooling 

experiment. By varying both the inclination and compound angle of the film cooling hole, 

the impact on the hole discharge coefficient was studied. It was found that the discharge 

coefficient was profoundly affected by the coolant plenum and mainstream cross flow 

conditions in addition to the coolant to mainstream pressure ratio. Increasing the inclination 

or compound angle of the film cooling hole resulted in reduced discharge coefficients due 

to the higher losses at the inlet than the exit of the coolant hole.  

 Rowbury et al. [82] reported a scaling methodology of film cooling hole discharge 

coefficients from experiment to engine conditions. The experiments were conducted in a 

large scale annular cascade. It was shown that by means of dimensional analysis, the film 

cooling hole discharge coefficients depend on the coolant to mainstream pressure ratio and 

the coolant jet Reynolds number.  

 The published literature on endwall film cooling contains studies performed at both 

engine and non-engine conditions. Although the coolant jet behavior at a density ratio less 

than 1.2 cannot be directly applied to understand the flow physics at engine conditions 

where the density ratios are typically between 1.5 and 2, the scientific methodology used 
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in the present investigation for understanding the impact of coolant injection on secondary 

flow and vice versa can be adapted to analyze the flow physics in an engine scenario. 

Endwall Heat Transfer 

 In addition to the substantial impact on film cooling effectiveness, the endwall 

secondary flows also contribute to high rates of heat transfer mainly because of the 

increased mixing between the near-wall fluid and the mainstream flow. Several 

experimental investigations have been carried out to measure heat transfer coefficients on 

airfoils and endwalls.  

 Blair et al. [54] conducted endwall heat transfer experiments in a large scale linear 

cascade. It was found that due to the presence of a corner vortex at the junction of the airfoil 

suction side and the endwall, the heat transfer distribution exhibited significant variations 

inside the airfoil passage in the trailing edge region. Introducing film injection or changing 

the location of inlet boundary layer transition did not have a noticeable impact on the corner 

vortex. Endwall and airfoil heat transfer measurements were performed by Takeishi et al. 

[55] in a low-speed annular cascade of nozzle guide vanes. It was found that the secondary 

flows upstream and inside the airfoil passage had a significant impact on the heat transfer 

distribution on the endwall and the airfoil suction surface. On the other hand, the secondary 

flows were found to have little influence on the heat transfer distribution on the airfoil 

pressure surface. The heat transfer in the airfoil leading region was increased by the 

horseshoe vortex.   

 Harasgama and Burton [56] conducted heat transfer measurements in an annular 

cascade at engine representative mainstream and coolant flow conditions. It was observed 
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that film injection decreased the heat transfer rate by 50-75% over most of the endwall area 

for the high blowing ratio cases. The airfoil pressure side corner was observed to 

experience high heat transfer rates even with film injection due to the passage vortex that 

removes the coolant from the endwall. A thin boundary layer is formed in this region which 

is highly skewed and contributes to increased heat transfer rates.   

 Liu et al. [63] conducted endwall heat transfer measurements in a large scale linear 

cascade. The heat transfer coefficients on the endwall increased remarkably in the presence 

of film cooling since the film jets promote turbulent mixing with the mainstream flow. In 

a study by Kang et al. [83], the sweeping of peak heat transfer across the blade passage 

from the airfoil pressure side to the suction side on the endwall due to the impact of the 

cross flow on the passage vortex was reported. The skewed boundary layer that is formed 

downstream of the separation lines leads to high heat transfer coefficients due to high shear 

stresses in this region.  

 Thole and Knost [84] compared the local heat transfer augmentation along three 

individual streamlines at the pressure, mid-pitch, and suction side of the passage. It was 

noted that there was little difference between the pressure and suction side locations at the 

inlet to the passage. Further downstream of the passage, the suction side heat transfer 

increased beyond the pressure side due to the passage vortex which migrates towards the 

suction side. The authors point out that the heat transfer augmentation could be severely 

under predicted if any two-dimensional boundary layer calculations were used. 

 Endwall heat transfer measurements at engine representative Reynolds and Mach 

numbers were performed by Spencer et al. [85] in an annular cascade of nozzle guide vanes. 

They found that the heat transfer coefficient increased along the passage due to the 
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acceleration of the mainstream flow. The horseshoe vortex was found to create a region of 

high heat transfer near the suction side due to its lift-off from the hub surface. The pitchwise 

and spanwise pressure gradients in the airfoil passage affect the pattern of the secondary 

flows and their position thereby influencing the heat transfer characteristics. Boyle and 

Russell [86] performed an experimental investigation of endwall heat transfer in a linear 

cascade for a wide range of Reynolds numbers. At low Reynolds numbers, the heat transfer 

pattern was found to be close to the inviscid streamlines at the airfoil midspan. On the other 

hand, the high Reynolds number cases exhibited significant differences from the inviscid 

streamlines. The heat transfer coefficients at high Reynolds numbers were found to 

correlate well with the local mainstream velocity. The magnitude of the heat transfer 

coefficients showed noticeable variation with changes in the thickness of the inlet boundary 

layer. 

 Graziani et al. [87] performed endwall and airfoil heat transfer experiments in a 

large scale turbine blade cascade for two inlet boundary layer thickness values. The results 

showed that the heat transfer distribution on the airfoil suction side and the endwall was 

strongly influenced by the passage secondary flows. The secondary flows were found to 

have negligible impact on the airfoil pressure side heat transfer distribution. Variation in 

the cascade inlet boundary layer thickness was seen to influence the airfoil suction side and 

endwall heat transfer distribution significantly. Due to the strong three-dimensionality in 

the cascade flow field, the applicability of conventional boundary layer calculations were 

considered questionable [87].  

 Goldstein and Spores [88] investigated the heat transfer distribution in a linear 

cascade using the mass transfer analogy. It was found that the presence of the leading-edge 
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horseshoe vortex increased the heat transfer coefficient significantly near the stagnation 

region of the airfoil. Apart from this, the heat transfer distribution varied greatly inside the 

airfoil passage due to the presence of branches of the leading-edge horseshoe vortex. 

 Harvey et al. [89] studied the endwall heat transfer in an annular cascade using thin 

film heat flux gauges at engine representative Mach and Reynolds numbers. They found 

that the sweeping of the inlet boundary layer upstream of the endwall separation lines 

resulted in the convergence of streamlines near the airfoil suction side, reducing the heat 

transfer in that region. The location of passage vortex formation near the leading-edge, the 

pressure side trailing edge region, the sweeping path of the new boundary layer from the 

airfoil pressure side to the suction side were observed to be high heat transfer zones. 

Downstream of the airfoil passage, it was seen that the growing boundary layer and flow 

diffusion reduced the heat transfer.  

 Measurements of heat transfer performed by Chana [90] in an annular cascade of 

nozzle guide vanes showed high heat transfer mainly near the airfoil trailing edge region. 

This finding was different from those reported by [85-88] who found high heat transfer 

values at many locations inside the airfoil passage. The heat transfer levels were augmented 

with the increase in the mainstream flow Reynolds number and were found to be in good 

agreement with the flat plate heat transfer analogy. 

 The effect of slot injection angle on the leading-edge horseshoe vortex and endwall 

heat transfer distribution was investigated by Thrift and Thole [91] in a large-scale low-

speed cascade. At low blowing ratios, the turbulence levels were noted to be very similar 

to the no injection case. The low momentum coolant was observed to be dominated by the 

secondary flow at the airfoil-endwall junction resulting in the formation of a leading-edge 
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horseshoe vortex for all the slot injection cases. It was found that at high blowing ratios, 

the leading-edge horseshoe vortex disappeared for the 30° and 45° slot injection and 

increased turbulence levels were observed that resulted in the enhancement of endwall heat 

transfer compared to the no injection case.  In the case of 65° and 90° slot injection, a 

significant downwash was observed near the airfoil leading-edge which resulted in the 

boundary layer impingement on the endwall thereby augmenting the heat transfer at high 

blowing ratios.  
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CHAPTER 3: RESEARCH OBJECTIVES  

Scientific Contributions  

The main scientific contributions of the present dissertation work are as follows:  

Unsteady Passing Wake Effect on a Pitchwise-curved Surface  

(i) To quantify the impact of unsteady passing wakes on heat transfer on a film-cooled 

pitchwise-curved surface, replicating an endwall without airfoils. 

(ii) To bridge the knowledge gap between flat plate film cooling and cascade film 

cooling studies in the regime of unsteady passing wake effect.  

Endwall Film Cooling in a High Subsonic Annular Cascade 

(i) To provide a fundamental insight into the interaction between the endwall 

secondary flow and the coolant jets from a surface flow perspective and extending 

this information to the predicted three-dimensional flow field.  

(ii) To quantify the impact of endwall secondary flow on film cooling and vice versa. 

(iii) The procedure reported in this investigation to understand the endwall secondary 

flow and film cooling jet interaction can be adapted towards improvement in an 

engine endwall film cooling hole configuration. 

The pertinent scientific contributions from the present dissertation study are detailed in 

Table 1. 
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Table 1: Scientific contributions   

Current Issue Contribution(s) of present 

study 

Instrumentation/ 

Methodology  

Key aspects of experimental setup 

Endwall film 

cooling affected 

by unsteady 

passing wakes 

shed by  upstream 

components 

 Quantification of the 

effect of passing wakes 

on heat transfer on a 

film-cooled pitchwise 

curved surface, 

replicating an endwall in 

the absence of airfoils 

 Foil heater 

 Temperature sensitive 

paint  

 Hot wire  

 Pitot-static tube  

 Static pressure taps 

 Sector-annular duct with wall-

normal wake rod orientation 

 Baseline test case – no film cooling 

 Single row discrete film injection 

 Cylindrical film cooling hole 

 α = 35˚, β = 0˚ p/d ≅ 3, Number of 

holes = 5 

 Wake rod to film cooling hole 

diameter ratio = 2.375 

 DR ≅ 1 

Impact of 

secondary flow on 

endwall film 

cooling 

effectiveness 

 Study of interaction 

between discrete film 

cooling jets and 

secondary flow  

 Quantification of saddle 

point shift with film 

injection 

 Quantification of local 

blowing ratio effect on 

film effectiveness  

 Quantification of local 

discharge coefficient 

effect on film 

effectiveness 

 Surface oil 

visualization  

 Temperature sensitive 

paint  

 Pressure sensitive 

paint 

 Pitot-static tube  

 Five-hole probe  

 Hot wire  

 Static pressure taps 

 CFD 

 High subsonic annular cascade with 

a maximum isentropic throat Mach 

number of ≅ 0.68 

 Baseline test case – no film cooling 

 Single row discrete film injection 

upstream of airfoil leading-edge;  

 Cylindrical film cooling hole 

 α = 30˚, β = 0˚ p/d ≅ 3.55 

 Airfoil leading-edge diameter to 

film cooling hole diameter ratio (≅ 

4.75) representative of an aircraft 

engine 

 DR ≅ 0.89 
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CHAPTER 4: INSTRUMENTATION AND METHODOLOGY 

This chapter contains a detailed description of the various types of 

measurements and instrumentation involved in this research study.  

Temperature Sensitive Paint 

  In order to obtain local temperature measurements on the test surface, the 

Temperature Sensitive Paint (TSP) technique was used. This provides high resolution 

measurements of temperature on the test surface based on the maximum number of pixels 

available on the imaging device. The test surface (airfoil passage-3 inner endwall) was 

painted with TSP that comprises luminescent molecules (pigment) in an oxygen-

impermeable polymer binder. A schematic of the TSP technique is shown in Figure 11. 

The photo-physical process of thermal quenching, which is the principle of the TSP 

technique is explained using the Jablonski quantum energy-level diagram as shown in 

Figure 12.  

The luminescent molecule is initially at the ground state which is a singlet state. 

The recommended excitation range for TSP is between 380 and 520 nm. When the TSP is 

exposed to a peak excitation wavelength of 458.2 nm with a full width at half maximum of 

30.7 nm, the ground state molecules absorb the incident photons and get transferred to an 

excited state. The molecule returns to its original energy state through emission of a longer 

wavelength (lower energy) light relative to the excitation wavelength. The probability that 

the molecule will emit luminescent light as opposed to the radiation-less transition to 

ground state through thermal quenching decreases at higher temperature. Thus the intensity 
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of TSP is inversely proportional to temperature of the luminophore. The intensity of the 

emitted radiation is detected by a scientific grade CCD (charge-coupled device) camera 

(14-bit PCO 1600 monochrome) using a long pass filter with a typical high pass cut-off 

wavelength of 550 nm. Due to the oxygen impermeability of the polymer binder, the TSP 

measurements are not influenced by oxygen partial pressure changes. Hence oxygen 

quenching does not affect the temperature measurements obtained from the TSP technique. 

The effect of the test surface curvature on the pixel shift in the image was found to be less 

than 1 pixel at the CCD camera position. This shift was therefore neglected during the 

processing of the TSP images. More details on the TSP technique can be found in Liu [1]. 

Using an in-house MATLAB code, the time-averaged temperatures are processed to 

calculate the adiabatic film cooling effectiveness (see chapter 6 for equation). 

 The spatial variations due to the illumination and the paint thickness are eliminated by 

taking the ratio of a reference (wind-off) and a test (wind-on) image. A spatial resolution 

of ≅ 7.3 pixels per ‘mm’ was obtained for the captured image size (1200 × 1600 pixels). 

The signal to noise ratio was calculated for each average blowing ratio. An average signal 

to noise ratio is reported here. The highest and lowest signal to noise ratio were calculated 

to be 100:1 and 54:1 respectively. The CCD camera noise obtained from the dark room 

image was subtracted from both the test image and the reference image during post 

processing.  
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Figure 11: Temperature sensitive paint technique 

 

            

Figure 12: Jablonski quantum energy-level diagram [1] 

 

 



58 

 

Calibration  

 The calibration setup for the TSP is shown in Figure 13. During the calibration, a high 

thermal conductivity substrate (coupon) painted with TSP is placed on a Peltier thermo-

electric module which in turn is placed on an aluminum heat sink. As part of the imaging 

procedure, the first image is taken at a known temperature, called the reference image 

(usually at room temperature). The second image called the hot image is taken at an 

elevated temperature (higher than reference temperature). This is repeated to span the entire 

calibration range at appropriate temperature increments (≅ 22 – 80°C).  

 By taking the ratio of TSP images at various temperatures to the reference image, a 

calibration curve with intensity ratio on the abscissa and temperature ratio on the ordinate 

is obtained. The definitions for the temperature and the intensity ratio are provided in 

Figure 14. It should be noted that Tref and Iref are the temperature and intensity of the 

calibration sample at zero heater voltage (i.e. approximately at room temperature). The 

values of Tsample and Isample are taken at every calibration point. Therefore, at any known 

reference temperature and intensity ratio, the local surface temperature can be ascertained. 
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Figure 13: Temperature sensitive paint calibration setup 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Temperature sensitive paint typical calibration curve 
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Pressure Sensitive Paint 

The static pressure on the endwall is measured using the Pressure Sensitive Paint 

(PSP) technique. As part of the measurement process, the test surface (airfoil passage-3 

inner endwall) is painted with PSP which comprises luminescent molecules (pigment) in 

an oxygen-permeable polymer binder which is sensitive to both pressure and temperature. 

The principle of the PSP method is the photo-physical process of oxygen quenching. The 

recommended excitation range for PSP is between 380 and 520 nm. A circular LED array 

with a peak excitation wavelength of 458.2 nm and a full width at half maximum of 30.7 

nm is used to excite the luminescent molecules in the PSP. The excited luminophore returns 

to its original energy state by transferring the excited state energy to a vibrational mode of 

the local oxygen molecule through a process known as oxygen quenching. This is a 

radiation-less decay mechanism and the probability of this process increases at higher 

partial pressures of oxygen. The emission wavelength is higher relative to the excitation 

wavelength. Thus the intensity of PSP is inversely proportional to the oxygen partial 

pressure. Using a long pass filter with a typical high pass cut-off wavelength of 610 nm, 

the emitted radiation is captured by a scientific grade CCD camera (14-bit PCO 1600 

monochrome) having a frame rate of 30 frames per second at its maximum resolution. The 

camera exposure time ranges between 300 ms and 600 ms. The spatial resolution of the 

measurements and elimination of PSP spatial variations were performed similar to TSP 

measurements (see Temperature Sensitive Paint). The highest and lowest signal to noise 

ratio were calculated to be 100:1 and 54:1 respectively. Figures 15,16,17 provide the 
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schematics of the PSP technique, calibration setup, and a typical calibration curve 

respectively. For a more detailed explanation of the PSP technique, refer Liu [1]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Pressure sensitive paint technique 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Pressure sensitive paint calibration setup 
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Figure 17: Pressure sensitive paint typical calibration curve 

Calibration  

  As part of the PSP calibration process, a small coupon painted with PSP is placed 

inside a calibration chamber with a thermoelectric heater placed under it to keep the 

temperature approximately constant throughout the calibration. A reference image is taken 

at ambient conditions (reference pressure). A vacuum pump is used (since the cascade 

tunnel is operated under suction) to regulate the pressure inside the calibration chamber to 

the desired value. The pressure inside the calibration chamber is monitored using static 

pressure taps (mounted flush with the wall of the calibration chamber) connected via plastic 

tubing to a hand-held manometer. By taking the ratio of PSP images at various gauge 

pressures to the reference image, a calibration curve with intensity ratio on the abscissa and 

pressure ratio on the ordinate is obtained for a fixed temperature. Since PSP is temperature 

sensitive, the calibration is repeated at different temperatures. For the temperature range 

observed in the experiment, the PSP calibration curve exhibited negligible change between 

Pressure ratio = Psample / Pref 

Intensity ratio = Isample / Iref 
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temperatures. Using an in-house MATLAB code, the static pressure on the surface is 

obtained from the image intensity using calibration curve.  

Five-hole Probe Measurements 

Using multi-hole probes for total pressure measurements is mainly due to their 

ability to provide the correct flow information when the direction of the flow is not known 

beforehand. This type of measurement is called the non-nulling technique [2] in which the 

probe undergoes extensive calibration for different yaw and pitch angles of the flow. The 

nomenclature of the five-hole probe is shown in Figure 18 based on [2].  

The five-hole probe has five pneumatic tubes which carry information of the flow 

dynamics. The center pressure port (P1) measures the stagnation pressure in the case of a 

mainstream flow parallel to the probe. There are four pressure ports (P2, P3, P4, P5) located 

on the periphery of the probe cone which measure the static or stagnation pressure 

depending on the orientation of the probe with respect to the incoming flow. 

Construction 

A necked five-hole probe was used which has a robust stainless steel construction. 

The drawing of the probe is shown in Figure 19. The probe tip has a cone with a half angle 

of 30°. Connecting all the five ports on the cone are pneumatic stainless steel tubing which 

is soldered to the ports and then fit into a larger tube enclosed within the probe shaft. The 

space between the pneumatic tubing and the probe shaft is filled with epoxy to avoid tubing 
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displacement. The end of the metal tubing is connected to flexible plastic tubing that in 

turn interfaces with the pressure transducer.  

 

 

 

 

 

 

 

 

 

Figure 18: Five-hole probe nomenclature [2] 

 

(All dimensions are in mm) 

 

Figure 19: Dimensions of the five-hole probe [2] 
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Calibration 

During calibration (performed by Aeroprobe Corp.), the probe is exposed to 

numerous yaw and pitch angles in the probe coordinate system. At each location, pressure 

data from all the five port pressures are recorded. The same procedure is repeated for 

different flow Mach numbers. A calibration chart is generated from the measurements 

which can be used to obtain the flow magnitude, direction and other flow quantities by 

interpolating between the five port pressures and using compressible flow equations. The 

five-hole probe in this study was calibrated for Mach numbers between 0.2 and 0.7 with 

±60° yaw and pitch angle accuracy. It should be noted here that any deviation from the 

calibration range of the probe can lead to separated flow near the vicinity of the pressure 

ports, which will give incorrect flow information. Thus it is critical to stay within the 

calibrated range of the probe. A data-reduction software (Multi-probe) provided by 

Aeroprobe Corporation was used to reduce the pressure data from the five ports to 

meaningful flow quantities.  

Measurements 

The five-hole probe was used to measure the total pressure, static pressure, velocity 

components, pitch, yaw, and roll angle of the flow relative to the probe reference flat. These 

measurements were performed at few discrete locations at the cascade inlet plane. Before 

being introduced into the flow, the probe is inspected under a microscope to confirm that 

there are no foreign particles blocking the ports. High pressure air is blown through the 

pneumatic tubing to clear the tubing path. A manual traverse system that can locate the 
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probe in the flow circumferentially and radially with an accuracy of ±1.5 mm was used for 

the discrete point measurements. The primary purpose of the measurements were to 

ascertain the cascade inlet plane velocity, total, and static pressure before film cooling 

measurements were performed.  

Hot-wire Measurements 

In order to measure the streamwise instantaneous velocity and thereby the 

turbulence intensity in the flow field, a constant temperature thermal anemometer with a 

single hot film sensor was used. The film sensor is a disposable probe with a platinum film 

(TSI T1201) and can be used in the flow field up to a fluid maximum temperature of 60ºC. 

The film sensors are more rigid and less susceptible to get damaged by the foreign particles 

in the flow which was the reason behind the introducing the sensor in a high Mach number 

open circuit wind tunnel. On the other hand, the response time of the film sensors are lower 

than the wire sensors due to their low length to diameter ratio (L/ DW ≅ 20) [3].  

Principle of Operation 

The basic principle behind hot-wire anemometry is the measurement of fluid 

velocities by changes in heat transfer of a small electrically heated element that is exposed 

to the measuring medium. Inside the anemometer is a Wheatstone bridge that can operate 

in a constant temperature or constant current mode. The former used for the case of the hot 

wire measurements comprises a velocity and temperature compensation sensor in the lower 

leg of the bridge. The upper leg comprises two known resistances. An operational amplifier 
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controls the power delivered to the upper part of the bridge based on the change in 

resistance of the lower part such that the bridge remains balanced. 

A schematic of a constant temperature anemometer circuit is shown in Figure 20. 

As the flow moves past the velocity sensor, the resistance of the sensor decreases which 

triggers the temperature compensation sensor to provide a feedback to the operational 

amplifier which supplies power to the upper half of the bridge network. The amount of 

power supplied to the upper half of the bridge is related to the fluid velocity in terms of 

voltage. By performing a calibration of voltage versus velocity, the flow speed is 

determined. The correlation for finding the velocity of the flow is provided in Equation 

4.1. This correlation was reported by King [4]. 𝑅𝑤𝐼2𝑅𝑤 − 𝑅𝑎 = 𝐴 + 𝐵𝑈𝑛                                                  (4.1) 

where A, B, and n are calibration constants determined from the curve fit. 

 

 

 

 

 

 

 

 

Figure 20: Circuit diagram of a constant temperature anemometer [3] 



68 

 

Calibration 

A calibration nozzle (model 1125) provided by TSI Inc. [3] was used for calibrating 

the hot film sensor for the desired velocity range. The calibration nozzle contains three 

different nozzle diameter attachments to achieve a wide velocity range. For the present 

study, the smallest diameter nozzle (4mm) is used. Stagnation pressure is varied in the 

plenum corresponding to the required velocity at the nozzle exit. The hot film sensor (TSI 

T1201) is positioned approximately 2-3 mm away from the nozzle discharge location to 

reduce the disturbances caused by surrounding environment to the jet exiting the 

calibration nozzle. By monitoring the plenum pressure using a hand held manometer the 

output voltages are recorded using a voltmeter. 

By graphing the voltage versus velocity and curve-fitting the data points, a 

relationship between the voltage and velocity is obtained in the calibrated velocity range.  

A Labview code with a National Instruments DAQ card is used for data acquisition. After 

calibration, the film sensor is positioned the exit of the nozzle and for a known pressure 

setting in the plenum, the nozzle exit velocity is measured. This validates the calibration 

curve for any discrepancy prior to data collection.  

Pitot-static Tube Measurements 

In order to ascertain the mass flow rate in the wind tunnel before every experiment, 

a Pitot-Static tube (United Sensor Corp.) was used. The total and static pressure ports were 

connected via flexible rubber tubing to a Fluke 922 air flow meter (Fluke Corp.) which 

outputs the velocity magnitude based on the measured differential pressure according to 
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the Bernoulli’s equation (Equation 4.2). It is to be noted here that the Bernoulli’s equation 

is valid for the calculation of velocity since the flow is incompressible at measurement 

location (Ma < 0.3). The fluid density is calculated based on the ideal gas law. The velocity 

measurements were made at the exit of nozzle – 1 (see chapter 8, Figure 43) at several 

discrete locations along the plane centerline in the spanwise direction.  

𝑢 = √2(𝑃0 − 𝑃𝑠)𝑃𝑠𝑅𝑇𝑠                                                           (4.2) 

Static Pressure Tap Measurements 

In order to measure the airfoil passage periodicity, holes for static pressure taps 

were machined on the outer endwall of the cascade test section. The drilling of the holes 

were performed in two phases. As part of first phase, 1/32 inch (0.793 mm) through holes 

were drilled from the flow side on the outer endwall to ensure a smooth surface facing the 

mainstream flow. In the second phase, 1/16 inch (1.587 mm) holes were drilled from the 

non-flow side up to half the thickness on the outer endwall to enable insertion of the metal 

pressure tubing. This also ensures that the metal tubing does not accidentally protrude into 

the mainstream flow resulting in erroneous static pressure measurements. 

 Since the static pressure taps are required to be normal to the test surface, it was 

needed to position the drilling tool normal to the test surface. Due to the surface curvature 

of the outer endwall, the drilling of wall-normal holes were a challenge. A CNC drilling 

machine was used with a custom-design drill jig made to fit the curvature of the outer 

endwall. The drill jig is shown in Figure 21. The drill-head was indexed appropriately to 

ensure that the drilling tool was normal to the outer endwall before each drilling operation.  
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 After drilling the holes, metal tubing (≅ 25.4 mm in length) was inserted into the 

hole and a small amount of two-part epoxy was applied around the metal tubing on the 

non-flow side of the outer endwall. Once the epoxy cured completely, clear flexible plastic 

tubing (purchased from Scannivalve Corp.) was cut to the desired length and attached to 

the open end of the metal tubing. A 47 port multiplexer along with a ± 5 psi (± 34,473 Pa) 

pressure transducer (purchased from Scannivalve Inc.) was used to obtain the static 

pressure measurements after appropriate port bias corrections. The outer endwall with the 

static pressure taps is shown in Figure 22. 

 

 

 

 

 

 

Figure 21: Drill jig for machining endwall static pressure tap holes 

 

 

 

 

 

 

 

Figure 22: Outer endwall with static pressure taps and five-hole probe slots 
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Surface Oil Visualization 

The endwall surface flow is visualized by applying a mixture of titanium dioxide 

powder and vacuum pump oil to the surface of interest. A few drops of oleic acid is added 

to reduce the viscosity of the mixture to help follow the endwall surface flow closely. 

Approximately 5-10 minutes after applying the mixture to the test surface, the wind tunnel 

is operated for a short duration (approximately 6-7 minutes). This time duration was based 

on several iterations since the endwall shear stress dictates the trajectory of the oil mixture 

which in turn is strongly dependent on the local flow velocity in the passage. After 

completion of the experiment, images of the surface flow pattern on the test surface are 

taken using a high resolution camera. In the cases with film injection, the coolant flow is 

turned on before activating the mainstream flow and the same imaging procedure is 

followed. 
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CHAPTER 5: EXPERIMENTAL SETUP 

Unsteady Passing Wake Effect on a Pitchwise-curved Surface  

Mainstream Flow 

All experiments were conducted in a low subsonic open-loop wind tunnel. The test 

section comprises a 30° annular duct made of acrylic supports and lexan polycarbonate 

walls for optical access. A 20 HP (14.91 kW) AC motor is used to power the blower. In 

order to isolate the effect of the airfoils, they are excluded from the test surface. A rotating 

spoke wheel is placed upstream of the test section to generate unsteady passing wakes. The 

spoke-wheel is driven by a 5 HP (3.73 kW) motor that is controlled by a variable frequency 

drive to allow control over the wake Strouhal number (see chapter 6 for equation). The 

spoke wheel was calibrated against a thermal anemometer for the appropriate wake passing 

frequency prior to the measurements. The test benefit of an annular channel is that the 

tangential velocity of rod is constant along the pitchwise coordinate of the test surface. This 

cannot be achieved in the more common rectangular test channels. The wake wheel has 12 

rods with the ratio of rod to film hole diameter fixed at 2.375. This ratio was selected based 

on a parametric study performed by Golsen et al. [1] and a typical airfoil trailing edge to 

film cooling hole diameter ratio in an aircraft engine.   

The average mainstream flow velocity (𝑈∞) was kept constant at ≅ 12 m/s for all 

the experiments. The mainstream flow was at room temperature (≅ 23°C). The mainstream 

velocity profile and turbulence intensity in the streamwise direction were measured in the 

absence of wakes using a TSI IFA 300 hot wire anemometer using a hot film probe (TSI 

1201) at the film injection location. The measured value of the mainstream turbulence 
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intensity was ≅ 1.5%. The average fluid velocities were verified with Pitot-static tube 

measurements. The Reynolds number based on average mainstream velocity and the film 

hole diameter was ≅ 6.304×103. The experimental flow loop is shown in Figure 23. 

 

 

 

 

Figure 23: Schematic of experimental flow loop 

 

Due to the presence of the wake generator casing, the mainstream flow was tripped 

at the wake generator interface which made the boundary layer turbulent. No extra 
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sandpaper trip was used for this purpose. The boundary layer thickness (evaluated at 99% 

of 𝑈∞) measured in the absence of the wakes was ≅ 1.58D at the film injection location. 

From the measured velocity profile, the displacement and momentum thickness were 

calculated to be ≅ 0.322D and 0.193D respectively which yields a shape factor of 1.66 

approximately. The top and bottom of the pitchwise-curved surface extend ± 15 degrees 

from the centerline. 

Heat Transfer Measurements 

 For the heat transfer measurements, a constant heat flux boundary condition was 

needed. Discrete strips of stainless steel foils are adhered to a 1.27 cm low thermal 

conductivity material (k ≅ 0.028 W/mK) called ‘Rohacell’ (Model - RIMA 110, Evonik 

Inc.) using Kapton tape. The Rohacell surface is glued to a polycarbonate substrate (k = 

0.2 W/mK) for increased structural strength. The back side heat conduction loss was 

measured to be < 3%. The Kapton tape is made from Kapton polyimide film with silicon 

adhesive. The thickness ranges between 0.025 mm to 0.127 mm and they are compatible 

over a wide temperature range (-269°C to 400°C) with a thermal conductivity of ≅ 0.5 

W/mK and an electrical resistance of 1×1012 ohms approximately. The lowest thickness 

Kapton tape was used with the foil heaters.  

 The stainless steel (type 321) foil heater strips of nominal thickness (≅ 51μm) were 

connected in series using copper bus bars to increase the total resistance of the foil. 

Volumetric or Joule heating of the stainless steel foil is achieved by passing electric current 

through the copper bus bars. The density ratio was maintained approximately at 1 for all 



76 

 

the heat transfer experiments with the mainstream and coolant flow at ≅ 23°C. The test 

surface setup and the cross section of the coolant plenum are shown in Figure 24.  

 

 

 

 

 

 

 

 

 

Figure 24: Test surface setup for heat transfer measurements 

 

 The film cooling coupon was made using high resolution stereo-lithography with a 

step size of ≅ 0.1 mm. The inclination angle of the film cooling hole (α) was 35°, the 

compound angle (β) was 0°, and the L/D was 8. It was pointed out by Lutum and Johnson 
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[2] that a film hole L/D > 5 reduces the premature jet lift-off especially at higher blowing 

ratios. The p/D was maintained at 3 for all the experiments. The film injection location was 

located ≅ 8.83D downstream of the wake generator inlet. The coolant flow is supplied from 

a plenum that contains a perforated plate near the compressed air inlet which disrupts the 

jetting of the compressed air flow to provide close to a uniform flow at the film cooling 

coupon inlet. A pressure regulator and a calibrated thermal mass flow meter (Model - FMA 

1843, Omega Inc.) are used to establish control over the coolant flow rate.  

 In the downstream region of the test section (≅ 23D from the exit of the film cooling 

hole), two T-type thermocouples were placed touching the test surface to measure the 

recovery temperature. There was negligible difference between the two thermocouple 

readings. In addition to this, local recovery temperature measurements were taken using 

the TSP technique. The measurements indicated negligible variation in the recovery 

temperature on the test surface. The test matrix for the heat transfer measurements is given 

in Table 2. 

 

Table 2: Test matrix for heat transfer measurements  

 

 

  

 

 

 

 

Cooling 

method 
Measurement M I VR DR S d/D 

 

Discrete film 

(Cylindrical 

hole) 

Heat transfer 

0 0 0 

1 0,0.15,0.3 2.375 
0.25 0.062 0.25 

0.5 0.25 0.5 

0.75 0.562 0.75 
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Endwall Film Cooling in a High Subsonic Annular Cascade 

Mainstream Flow 

The experiments were conducted in a high subsonic 25˚ sector-annular cascade. 

This comprised four full airfoils and two half-airfoils resulting in five airfoil passages. The 

airfoils represent a 3X-scaled model of the first rotor stage of the GE-E3 engine. Since a 

cascade is operated under stationary conditions, the velocity triangles do not differ along 

the span of the airfoil unlike a real gas turbine which involves rotation. In order to maintain 

close to zero incidence angle throughout the airfoil span, the mid-span profile of the rotor 

was used for the cross section of the low aspect ratio airfoil. The specifications of the airfoil 

and the approximate flow angles are given in Table 3. The cascade mainstream flow loop 

and the studied airfoil passage is shown in Figure 25. 

 

Table 3: Airfoil geometry specifications and flow angles 

 

 

 

 

 

  

 During the design phase of the cascade, tail boards were used to adjust the mass 

flow between the airfoil passages to achieve periodicity. This is necessary to imitate the 

presence of numerous airfoil passages similar to a real gas turbine. More details on the 

complete design and flow analysis of the cascade can be found in McDonald [3]. The flow 

periodicity between airfoil passages 2,3,4 were measured on the outer endwall using static 

Parameter Value 

Aspect ratio 1.2 

Span 12.7 cm 

Incidence angle  ≅ 0˚ 
Inlet flow angle  ≅ 43˚ 

Outlet flow angle  ≅ -67˚ 
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pressure taps. The static pressure on inner endwall of passage-3 was measured using the 

Pressure Sensitive Paint technique and compared with the static pressure tap data on the 

outer endwall (see chapter 8, Figure 46). A 350 hp (261.1 kW) centrifugal blower was used 

to provide the required mass flow in the cascade tunnel which is operated in an open flow 

loop configuration under suction. A flow conditioning section (with one honeycomb and 

two mesh screens) followed by two 3.2:1 contractions ensures close to a uniform inlet flow 

to the test section. In order to isolate the propagation of blower non-uniformities into the 

test section, the exit flow is directed to a large plenum through a straight duct and a diffuser. 

Optical access is provided using plexiglass endwalls manufactured using the thermal-

forming process by House of Plastics Unlimited. 

 

Figure 25: Schematic of the high subsonic cascade tunnel flow loop 

 

     The average mainstream flow velocity (𝑈∞) was kept constant at ≅ 105 m/s at the inlet 

of the cascade for all the experiments. The mainstream flow was at room temperature that 
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varied between 23°C and 29°C depending on the ambient conditions during different tests. 

The flow parameters were monitored closely during all experiments to ensure that the 

required corrections were made in the coolant flow rate. The turbulence intensity in the 

streamwise direction was measured using a TSI IFA 300 hot wire anemometer using a 50 

μm diameter probe (TSI T1201) at the exit plane of nozzle 2-C (see chapter 8, Figure 44). 

The average value of the mainstream turbulence intensity in the bulk flow region was           ≅ 1.8%. The average fluid velocities in the pitchwise direction were verified using Pitot-

static tube measurements.  

Due to certain experimental rig access constraints, the incoming velocity profile 

was obtained from computations. Details on the computational model are provided in 

chapter 8. The Mach number at the film injection location (Mainj) and at the throat (Mat) 

were 0.29 and 0.68 approximately. The Reynolds number based on the average mainstream 

velocity at film cooling hole exit and the airfoil true chord was calculated to be ≅ 6.43×105. 

The coolant jet Reynolds number based on the average mainstream velocity at film cooling 

hole exit and the film cooling hole diameter was calculated to be ≅ 1.21×104. From the 

CFD predictions, the mainstream boundary layer, displacement, and momentum thickness 

were calculated to be 6.312 D (0.099 S), 0.526 D (0.008 S), and 0.389 D (0.006 S) at the 

film injection location for the averaged hydrodynamic boundary layer (average of 12 

individual hole exit mainstream boundary layer profiles). The resulting boundary layer 

shape factor was calculated to be ≅ 1.35. The predicted boundary layer profiles are shown 

in Figure 26. 
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Film Cooling Effectiveness Measurements 

     A 2.54 cm thick thermal formed plexiglass curved wall with a thermal conductivity of 

0.2 W/mK (Evonik Inc.) was used for the test surface. Based on a typical airfoil leading-

edge diameter to film cooling hole diameter ratio and location in an aircraft engine and the 

feasibility of the experimental setup, the film cooling hole diameter and upstream film 

injection distance were selected. A total of 12 film cooling holes (based on one geometric 

airfoil pitch) are placed ≅ 20 mm upstream of the airfoil leading-edge. The film cooling 

holes are cylindrical in cross section with a nominal diameter (D) of 2 mm. The p/D was 

maintained at ≅ 3.55 for all the experiments. The streamwise inclination angle (𝛼) of the 

film cooling hole was 30°, the compound angle (𝛽) was ≅ 0° (at the film injection location), 

resulting in a L/D of 17 approximately. It was pointed out by Lutum and Johnson [2] that 

a film cooling hole with L/D > 5 does not experience undeveloped flow inside the hole or 

an increased effective inclination angle especially at higher blowing ratios.  

 The coolant flow is supplied from a plenum that contains a perforated plate near 

the compressed air inlet which disrupts the jetting of the inlet air flow to provide close to a 

uniform flow at the film cooling hole inlet. A pressure regulator and a calibrated thermal 

mass flow meter (Model-GFM 77, Aalborg Inc.) were used to establish control over the 

coolant flow rate. Prior to injection into mainstream, the coolant fluid is heated using two 

inline heaters to ≅ 72°C as measured at the entrance to the coolant hole. Since the film hole 

diameter is very small (≅ 2 mm), inserting a thermocouple (bead diameter ≅ 1mm) into 

the hole to measure the temperature drop across the hole can cause significant blockage 
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and disturbance to the coolant flow. Due to this, the temperature drop across the coolant 

hole was obtained from conjugate heat transfer simulations detailed in chapter 8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: Predicted mainstream hydrodynamic boundary layer 

 

 On an average, the temperature difference between the coolant exit and the 

mainstream was ≅ 37.4°C, resulting in a coolant to mainstream density ratio of 0.89 

approximately. The recovery temperature on the test surface was measured using the TSP 

technique. In addition two T-type (Copper-Constantan) thermocouples were placed 

touching the test surface at the exit of the airfoil passage-3 to validate the TSP 

measurements. The coolant flow setup is shown in Figure 27. The test matrix for the film 

cooling effectiveness and surface oil visualization experiments is given in Table 4 and 

Table 5 respectively. 
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Table 4: Test matrix for endwall film effectiveness measurements 

 

 

 

Table 5: Test matrix for surface oil visualization experiments 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27: Coolant flow setup for film cooling effectiveness measurements 

 

 

 

Cooling 

method 
Measurement Mavg Iavg DR p/D L/D 

Case

no. 

Discrete film 

(Cylindrical 

hole) 

Film cooling 

effectiveness 

0.56 0.35 

0.89 3.55 17 

1 

0.83 0.77 2 

1.11 1.38 3 

Cooling 

method 
Measurement Mavg Iavg DR p/D L/D 

Case

no. 

Discrete film 

(Cylindrical 

hole) 

Saddle point 

shift 

0 0 

1 3.55 17 

- 

0.56 0.31 1 

0.83 0.69 2 

1.11 1.23 3 
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CHAPTER 6: EQUATIONS AND DATA REDUCTION  

Mainstream Flow  

 The flow Reynolds number can be defined based on the (i) entry length (L) which 

is measured from the starting point of the test surface to the trailing edge of the film hole 

in the case of a flat plate, (ii) airfoil true chord (C) in the case of a cascade, and (iii) the 

film cooling hole diameter (D) in the case of film injection The entry length definition is 

used to ascertain the inlet boundary layer thickness at the point of film injection. The 

definition based on the airfoil chord is used for scaling with engine conditions. Defining 

the Reynolds number based on the film cooling hole diameter enables better understanding 

of the flow field near the film injection location. The Reynolds number definitions are 

given in Equations 6.1, 6.2 and 6.3. 

𝑅𝑒𝐿 = 𝑈∞𝐿𝜈                                                                      (6.1) 

 𝑅𝑒𝐶 = 𝑈∞𝐶𝜈                                                                      (6.2) 

 𝑅𝑒𝐷 = 𝑈∞𝐷𝜈                                                                      (6.3) 

 

The flow compressibility is quantified using the Mach number, defined in Equation 6.4. 

𝑀𝑎∞ = 𝑈∞√(γ𝑅𝑇∞)                                                                (6.4) 

where, 𝑈∞ and 𝑇∞ are the free-stream velocity and static temperature respectively.  
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 The inlet boundary layer thickness was calculated based on 99% of the free-stream 

velocity. Following this, the displacement and momentum thicknesses were calculated as 

shown in Equations 6.5 and 6.6. 

𝛿1 ≈ ∫ (1 − 𝑢(𝑦)𝑈∞ )𝛿
0  𝑑𝑦                                                      (6.5) 

 𝛿2 ≈ ∫ 𝑢(𝑦)𝑈∞ (1 − 𝑢(𝑦)𝑈∞ )𝛿
0  𝑑𝑦                                                 (6.6) 

 

The turbulence intensity is calculated as shown in Equation 6.7. 

 𝑇𝑢 = 𝑢′𝑅𝑀𝑆𝑈∞                                                                       (6.7) 

 

Coolant Flow  

 The coolant-to-mainstream mass flux ratio (or blowing ratio) and the momentum 

flux ratio defined in Equation 6.8 and Equation 6.9 quantify the relative strength of the 

coolant jet compared to the mainstream flow on a local basis.  

𝑀 = 𝜌𝑐𝑈𝑐𝜌∞𝑈∞                                                                        (6.8) 

                   𝐼 = 𝜌𝑐𝑈𝑐2𝜌∞𝑈∞2 = 𝑀2𝐷𝑅                                                                (6.9) 

 

where, 𝐷𝑅 is the density ratio of the coolant to mainstream which was held approximately 

constant at 0.89 and 1 for film cooling effectiveness and heat transfer measurements 

respectively. 
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 Since there is a variation in the blowing ratio between the film cooling holes in a 

cascade, an average blowing ratio definition is necessary as shown in Equation 6.10. 

𝑀𝑎𝑣𝑔 = 𝜌𝑐𝑈𝑐,𝑎𝑣𝑔𝜌∞𝑈∞,𝑎𝑣𝑔                                                      (6.10) 

 

where, 𝑈𝑐,𝑎𝑣𝑔 and 𝑈∞,𝑎𝑣𝑔 are the averaged coolant and free-stream velocities at the film 

injection location.  

Discharge Coefficient  

 In order to quantify the individual film cooling hole discharge coefficient, the 

coolant plenum total pressure, film cooling hole exit static pressure (for the no film cooling 

case), and the actual mass flow rate through each film cooling hole was obtained from 

computations. The discharge coefficient for a compressible flow based on Rowbury et al. 

[1] is defined in 6.11. 

𝐶𝑑 = �̇�𝑎𝑐𝑡𝐴ℎ𝑃𝑜,𝑐 (𝑃𝑠,∞𝑃𝑜,𝑐 )1γ [{( 𝑃𝑜,𝑐𝑃𝑠,∞)γ−1γ − 1} 2γγ−1  1𝑅𝑇𝑜,𝑐]0.5                     (6.11) 

Pressure Coefficient  

 In order to quantify the periodicity between the airfoil passages, the static pressure 

was measured on the outer endwall using static pressure taps. On the inner endwall, 

pressure sensitive paint was used to measure the static pressure in the airfoil passage-3. A 

pressure coefficient is defined in Equation 6.12 which provides a normalized representation 
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of the static pressure variation on the endwall. The free-stream velocity, density, and static 

pressure used in Equation 6.12 were obtained at the exit plane of nozzle 2-C (see Figure 

44, chapter 8). 

𝐶𝑝 = (𝑃 − 𝑃∞)𝜌∞𝑈∞22                                                           (6.12) 

Saddle Point Shift  

 The saddle point distance from the airfoil leading-edge provides a measure of the 

horseshoe vortex location. With coolant injection, the shift in the saddle point relative to 

the baseline (i.e. no coolant injection) case is quantified as shown in Equation 6.13. 

 

𝑆𝑃𝑠ℎ𝑖𝑓𝑡 = 100 ∗ 𝑆𝑃𝐷𝐿𝐸                                                    (6.13) 

 

where, 𝐷𝐿𝐸 is the leading-edge diameter of the airfoil and SP is the distance of the saddle 

point from the airfoil leading-edge. 

Wake Strouhal Number 

 A wake Strouhal number can be defined as the ratio of rod velocity to the free-

stream velocity as shown in Equation 6.14. The wake tangential velocity is influenced by 

rod rotational speed, number of rods, and the rod diameter.  

𝑆 =  2𝜋 𝑁 𝑑 𝑛60 𝑈∞                                                          (6.14) 
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Film Cooling Effectiveness  

 A non-dimensional temperature called the film cooling effectiveness is used to 

quantify the efficiency of film cooling on a local basis. It is defined in Equation 6.15 and 

comprises three temperatures namely, the adiabatic wall temperature (measured by TSP), 

recovery temperature (measured by TSP), and the coolant temperature. The coolant 

temperature is measured using 4 T-type (Copper-Constantan) thermocouples placed near 

the coolant hole inlet.  

 For the cascade film cooling experiments, the temperature drop across the coolant 

hole was obtained from conjugate heat transfer simulations explained in chapter 8. This 

was due to the significantly small diameter of the film cooling hole compared to the 

unsteady wake experiment. The corrected coolant temperature is used for  𝑇𝑐 in Equation 

6.15. Due to the hot mainstream flow in a real gas turbine, the coolant temperature is lower 

than the recovery and film (i.e adiabatic wall) temperature and so the definition of film 

effectiveness needs to be adjusted accordingly. The pitch-averaged film effectiveness is 

calculated by integrating the local effectiveness values along the pitchwise coordinate at 

discrete streamwise locations along the airfoil axial chord. These integrated quantities are 

then averaged to obtain a single value, representative of the entire pitch extent for a given 

streamwise location. The pitch-averaged film cooling effectiveness is defined in Equation 

6.16. 

𝜂(𝑥, 𝑧) = (𝑇𝑎𝑤 − 𝑇𝑟) (𝑇𝑐 − 𝑇𝑟)                                                      (6.15) 

�̅�(𝑥) =  ∫ 𝜂(𝑥, 𝑧)  𝑑𝑧∫ 𝑑𝑧                                                     (6.16) 
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 In Equations 6.15 and 6.16, ‘x’ is the streamwise coordinate with origin at the airfoil 

leading-edge, ‘z’ is the pitchwise coordinate (𝑑𝑧 ≅ 𝑅𝑑𝜃) with origin at the airfoil leading-

edge and ‘R’ is the radius of the test surface. In the case of the unsteady passing wake study, 

‘x’ and ‘z’ are the streamwise and pitchwise coordinates with origin at the trailing edge of 

the film cooling hole. In Equation 6.16, the pitchwise integration for �̅�(𝑥) was performed 

for 0.05 ≤ z′/p ≤ 0.95 between x/Cax = 0  and x/Cax = 0.8.  

 A cooling uniformity coefficient (CUC) is defined in Equation 6.17 as an additional 

parameter to interpret the uniformity in film cooling effectiveness for the case of endwall 

film cooling. 

𝐶𝑈𝐶 =  𝜂(𝑥, 𝑧)�̅�(𝑥)                                                          (6.17) 

where, �̅�(𝑥) is the pitch-averaged film cooling effectiveness at each streamwise location. 

A CUC value > 1 implies an over-cooled region and vice-versa. 

Heat Transfer  

 The  measured voltage (V) input and heater resistance are first converted into an 

input heat flux after accounting for the heater surface area exposed to the mainstream flow 

(As). The heat flux generated by the heater is given in Equation 6.18. 

𝑞𝑔𝑒𝑛′′ = 𝑉2𝑅𝑒𝑙 × 𝐴𝑠                                                          (6.18) 

 Since the resistivity of the stainless steel heater changes with temperature, a curve 

fit for resistivity versus temperature was used to correct for the changes in heater resistance 

during the experiment. The heater resistance defined in Equation 6.19 is calculated using 
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the resistivity and the dimensions of the heater. The length (l) of the heater is measured in 

pitchwise direction while the width (w) is measured in the streamwise direction. The 

thickness (t) of the stainless steel foil is measured in the wall-normal (‘y’) direction. 

𝑅 =  (𝜌𝑒𝑙 × 𝑙)(𝑤 × 𝑡)                                                         (6.19) 

 The actual heat flux out of the test surface into the flow is obtained after accounting 

for the heat conduction and radiation losses. Figure 28 shows a schematic of the test surface 

with the various heat losses. The heat losses and the actual heat flux input are defined in 

Equations 6.20-6.22. 𝑞𝑎𝑐𝑡′′ = 𝑞𝑔𝑒𝑛′′ − 𝑞𝑐𝑜𝑛𝑑′′ −  𝑞𝑟𝑎𝑑′′ + 𝑞𝑙𝑎𝑡′′                             (6.20) 

 The heat generated by the heater varies for each experimental case. The lateral 

conduction calculation procedure is explained here. The first step involves obtaining the 

temperature distribution on the heater in the ‘x’ and ‘z’ directions from the temperature 

sensitive paint. The temperature gradient is then evaluated based on the temperature 

profile. By plotting the temperature gradient versus the ‘x’ and ‘z’ coordinate, the high 

temperature gradient locations are ascertained. These locations are then used as central 

nodes for performing the lateral conduction calculation with ≅ 8 nodes on either side of 

the central node to obtain a reasonable representation of the temperature gradient variation. 

This was done for the first two heaters since the downstream heaters exhibited close to 

uniform temperature along the test surface.  

 Figure 29 shows the temperature contour for M = 0.75; S = 0.3 with a typical control 

volume that was used for evaluating the lateral conduction. The lateral conduction 

calculation was performed for two cases (M = 0; S = 0 & M = 0.75; S = 0.3) to get an upper 
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and lower bound value. When comparing the values between the two cases, the maximum 

value of lateral conduction (≅ 6.33% of 𝑞𝑔𝑒𝑛′′ ) was observed on heater 1 for M = 0.75; S = 

0.3. Correction for lateral conduction was not considered in the calculation of the actual 

heat flux since the typical uncertainty in 𝑞𝑔𝑒𝑛′′  was greater than the lateral conduction 

contribution for the evaluated cases.  

The conduction loss given in Equation 6.21 from the backside of the heater for the 

maximum temperature difference was calculated to be 2.3% approximately, which was 

within the uncertainty of the heat flux in the experiment and thus was not considered in the 

energy balance. The radiation heat loss was accounted by using a blackbody radiation 

exchange model (ε = 1) for the heater surface as given in Equation 6.22. 

 𝑞𝑐𝑜𝑛𝑑′′ = (𝐿𝑟𝑜ℎ𝑎𝑐𝑒𝑙𝑙𝑘𝑟𝑜ℎ𝑎𝑐𝑒𝑙𝑙 )−1 (𝑇𝑏 − 𝑇𝑎𝑚𝑏)                            (6.21) 

𝑞𝑟𝑎𝑑′′ = ε𝜎(𝑇𝑤4 − 𝑇𝑎𝑚𝑏4 )                                           (6.22) 

 

 

 

 

 

 

 

 

Figure 28:  Heat losses in unsteady passing wake study  

LRohacell 

LLexan
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Figure 29: A typical control volume on test surface and energy balance 

 

The lateral heat conduction is defined in Equation 6.23. 

𝑞𝑙𝑎𝑡′′ = 𝑘 (𝜕2𝑇𝜕𝑥2 (∆𝑥) + 𝜕2𝑇𝜕𝑧2 (∆𝑧))                                        (6.23) 

 The radiation heat loss was found to be the highest (≅ 10.8% of 𝑞𝑔𝑒𝑛′′ ) on heater 2 

for M = 0; S = 0. This is because the highest temperature was observed on heater 2 when 

compared to heater 1. It was found that heaters downstream of heater 2 had a radiation heat 

loss less than heater 2. The radiation heat loss is accounted in the energy balance before 

arriving at the convective heat flux on the heater surface. The heat transfer coefficient is 

defined in Equation 6.24.  

ℎ = 𝑞𝑎𝑐𝑡′′𝑇𝑤 − 𝑇𝑟                                                              (6.24) 

The pitch-averaged heat transfer coefficient given in Equation 6.25, is calculated 

using a method similar to the film cooling effectiveness. 

ℎ̅(𝑥) =  ∫ ℎ(𝑥, 𝑧)  𝑑𝑧∫ 𝑑𝑧                                                     (6.25) 
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In Equation 6.25, the pitchwise integration for ℎ̅(𝑥) was performed for -3 ≤ z/D ≤ 

3 between x/D = 1 and x/D = 14. 

A heat transfer augmentation is defined in Equation 6.26 to quantify the impact of 

film injection and / or passing wake on heat transfer. This is a non-dimensional parameter 

which is the ratio of heat transfer with film cooling and / or passing wake to that without 

film cooling and no wake. 

ℎ𝑎𝑢𝑔 = ℎ̅ℎ𝑜̅̅ ̅                                                                (6.26) 
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CHAPTER 7: UNCERTAINTY ANALYSIS  

 A detailed uncertainty analysis was carried out to calculate both the systematic and 

random error in the experimental data. The analysis was performed based on the partial 

differentiation method proposed by Moffat [1] with a 95% confidence interval. Each 

measurand is split into numerous independent parameters which contribute to the total 

uncertainty. The systematic uncertainty (or bias) is obtained from the instrument 

specifications provided by the manufacturer. The random (or precision) uncertainty is 

calculated based on the standard deviation of the individual data sets (obtained from 

repeatability experiments) from the average data set for a fixed confidence interval.  

Method of Error Propagation 

The dependence of a resultant (R) can be expressed as shown in Equation 7.1. 𝑅 = 𝑅(𝑋1, 𝑋2, 𝑋3, 𝑋4, … , 𝑋𝑁)                                                    (7.1) 

where 𝑋1, 𝑋2, 𝑋3, 𝑋4, … , 𝑋𝑁 are the independent parameters (measurands) contributing to 

the uncertainty in 𝑅. The uncertainty in 𝑅 with respect to 𝑋𝑖 is given in Equation 7.2.  

𝑢𝑅𝑋𝑖 = 𝜕𝑅𝜕𝑋𝑖 𝑢𝑋𝑖             𝑓𝑜𝑟 𝑖 = 1,2 … , 𝑁                 (7.2) 

where, 
𝜕𝑅𝜕𝑋𝑖 is often called the sensitivity index or sensitivity coefficient for 𝑅 with respect 

to 𝑋𝑖 and 𝑢 refers to the uncertainty of the measurand.  

 On combining all the independent variables that influence the uncertainty in ‘R’, 

Equation 7.3 is obtained. 
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𝑢𝑅 = √( 𝜕𝑅𝜕𝑋1 𝑢𝑋1)2 + ( 𝜕𝑅𝜕𝑋2 𝑢𝑋2)2 +  ( 𝜕𝑅𝜕𝑋3 𝑢𝑋3)2 + ⋯ + ( 𝜕𝑅𝜕𝑋𝑁 𝑢𝑋𝑁)2            (7.3) 

 In Equation 7.3, the 𝑢𝑋𝑁 value called the total uncertainty contains both the 

systematic and random uncertainty combined using the root-sum-square method [1]. The 

validity of Equation 7.3 is based on satisfying the following conditions [1]. 

a) Every measurement made was independently. 

b) Repetitions of the measurement will result in a Gaussian distribution. 

c) The same confidence interval was used for each measurement uncertainty. 

Uncertainty Tree 

An uncertainty tree breaks down the various contributing measurands for a 

particular measurement quantity. This can help trace the high uncertainty measurands. The 

uncertainty tree for the measured quantities in the present study are given in                   

Figures 30-41.  

 

 

 

 

 

 

 

 

Figure 30: Uncertainty tree for Reynolds number 
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Figure 31: Uncertainty tree for Mach number 

 

 

 

 

 

 

Figure 32: Uncertainty tree for density ratio 

 

 

 

 

 

 

 

 

Figure 33: Uncertainty tree for blowing ratio 
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Figure 34: Uncertainty tree for momentum flux ratio 

 

 

 

 

 

 

Figure 35: Uncertainty tree for pressure coefficient 

 

 

 

 

Figure 36: Uncertainty tree for Strouhal number 
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Figure 37: Uncertainty tree for film cooling effectiveness 

 

 

 

 

 

Figure 38: Uncertainty tree for cooling uniformity coefficient 

 

Figure 39: Uncertainty tree for heat transfer coefficient 
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Figure 40: Uncertainty tree for heat transfer augmentation 

 

 

 

 

Figure 41: Uncertainty tree for saddle point shift 

Total Uncertainty 

 A symbolic representation of the total uncertainty for the various measurement 

quantities and the total uncertainty values are given in Table 6. The error bars in the results 

reported in this study indicate the total uncertainty at each data point.  
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Table 6: Symbolic representation and magnitude of total uncertainty 
 

 

 

Resultant  Expression Symbolic expression for the total uncertainty 

Total Uncertainty 

Unsteady 

Wake Study 

Cascade 

Study 

 

Mach 

number 

𝑀𝑎 = 𝑈∞√(γ𝑅𝑇∞) 𝑢𝑀𝑎 = √(𝜕𝑀𝑎𝜕𝑈∞ 𝑢𝑈∞)2 + (𝜕𝑀𝑎𝜕𝑇∞ 𝑢𝑇∞)2
 

 

± 4.89% 

 

± 4.83% 

 

Reynolds 

number - A 

𝑅𝑒𝐿 = 𝑈∞𝐿𝜈  𝑢𝑅𝑒𝐿 = √(𝜕𝑅𝑒𝐿𝜕𝑈∞ 𝑢𝑈∞)2 + (𝜕𝑅𝑒𝐿𝜕𝐿 𝑢𝐿)2
 

 

± 4.41% 

 

NA 

 

Reynolds 

number - B 

𝑅𝑒𝐶 = 𝑈∞𝐶𝜈  𝑢𝑅𝑒𝐶 = √(𝜕𝑅𝑒𝐶𝜕𝑈∞ 𝑢𝑈∞)2 + (𝜕𝑅𝑒𝐶𝜕𝐶 𝑢𝐶)2
 

NA ± 5% 

 

Reynolds 

number - C 

𝑅𝑒𝐷 = 𝑈∞𝐷𝜈  𝑢𝑅𝑒𝐷 = √(𝜕𝑅𝑒𝐷𝜕𝑈∞ 𝑢𝑈∞)2 + (𝜕𝑅𝑒𝐷𝜕𝐷 𝑢𝐷)2
 

± 4.18% ± 5.6% 

 

Density ratio 
𝐷𝑅 = 𝜌𝑐𝜌∞ 𝑢𝐷𝑅 = √(𝜕𝐷𝑅𝜕𝜌𝑐 𝑢𝜌𝑐)2 + (𝜕𝐷𝑅𝜕𝜌∞ 𝑢𝜌∞)2

 

 

± 0.46% 

 

± 0.49% 

 

 

Blowing 

ratio 

 

 

 𝑀 = 𝜌𝑐𝑈𝑐𝜌∞𝑈∞ 

 𝑢𝑀 = √(𝜕𝑀𝜕𝜌𝑐 𝑢𝜌𝑐)2 + ( 𝜕𝑀𝜕𝜌∞ 𝑢𝜌∞)2 + (𝜕𝑀𝜕𝑈𝑐 𝑢𝑈𝑐)2 + ( 𝜕𝑀𝜕𝑈∞ 𝑢𝑈∞)2
 

 

± 6.4% 

 

± 5.04% 
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Resultant 

 

Expression 

 

Symbolic expression for the total uncertainty 

Total Uncertainty 

Unsteady 

Wake Study 

Cascade 

Study 

 

Momentum 

flux ratio 

𝐼 = 𝜌𝑐𝑈𝑐2𝜌∞𝑈∞2  𝑢𝐼 = √( 𝜕𝐼𝜕𝜌𝑐 𝑢𝜌𝑐)2 + ( 𝜕𝐼𝜕𝜌∞ 𝑢𝜌∞)2 + ( 𝜕𝐼𝜕𝑈𝑐 𝑢𝑈𝑐)2 + ( 𝜕𝐼𝜕𝑈∞ 𝑢𝑈∞)2
 

 

± 6.4% 

 

± 10.04% 

 

Pressure 

coefficient 

 

 𝐶𝑝 = (𝑃 − 𝑃∞)𝜌∞𝑈∞22  

 

𝑢𝐶𝑝 = √(𝜕𝐶𝑝𝜕𝑃 𝑢𝑃)2 + (𝜕𝐶𝑝𝜕𝑃∞ 𝑢𝑃∞)2 + (𝜕𝐶𝑝𝜕𝜌∞ 𝑢𝜌∞)2 + ( 𝜕𝐶𝑝𝜕𝑈∞ 𝑢𝑈∞)2
 

 

NA 

 

± 0.1 

(absolute) 

 

Strouhal 

number 

 

 𝑆 =  
2𝜋 𝑁 𝑑 𝑛60𝑈∞  

𝑢𝑆 = √(𝜕𝑆𝜕𝑁 𝑢𝑁)2 + (𝜕𝑆𝜕𝑑 𝑢𝑑)2 + ( 𝜕𝑆𝜕𝑈∞ 𝑢𝑈∞)2
 

 

 

± 1.18% 

 

NA 

 

Film cooling 

effectiveness 

 

 𝜂 = 𝑇𝑎𝑤 − 𝑇𝑟𝑇𝑐 − 𝑇𝑟  𝑢𝜂 = √( 𝜕𝜂𝜕𝑇𝑎𝑤 𝑢𝑇𝑎𝑤)2 + ( 𝜕𝜂𝜕𝑇𝑟 𝑢𝑇𝑟)2 + ( 𝜕𝜂𝜕𝑇𝑐 𝑢𝑇𝑐)2
 

 

± 0.03 - 

±0.055 

(absolute) 

 

± 0.03 - 

±0.035 

(absolute) 

 

 

Cooling 

uniformity 

coefficient 

 

 𝐶𝑈𝐶 = 𝜂�̅� 

 

 𝑢𝐶𝑈𝐶 = √(𝜕𝐶𝑈𝐶𝜕𝜂 𝑢𝜂)2 + (𝜕𝐶𝑈𝐶𝜕�̅� 𝑢�̅�)2
 

 

NA 

 

± 0.19 

(absolute) 
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Resultant 

 

Expression 

 

 

 

Symbolic Expression for the Total Uncertainty 

Total Uncertainty 

Unsteady 

Wake Study 

Cascade 

Study 

Radiation 

heat flux 

 

 𝑞𝑟𝑎𝑑′′ = 𝜀𝜎(𝑇𝑤4 − 𝑇∞4) 𝑢𝑞𝑟𝑎𝑑′′ = √(𝜕𝑞𝑟𝑎𝑑′′𝜕𝑇𝑤 𝑢𝑇𝑤)2 + (𝜕𝑞𝑟𝑎𝑑′′𝜕𝑇∞ 𝑢𝑇∞)2
 

 

± 5.17% 

 

NA 

Conduction 

heat flux 

 

𝑞𝑐𝑜𝑛𝑑′′ = (𝑇𝑤 − 𝑇𝑏)(𝐿/𝑘)  𝑢𝑞𝑐𝑜𝑛𝑑′′ = √(𝜕𝑞𝑐𝑜𝑛𝑑′′𝜕𝑇𝑤 𝑢𝑇𝑤)2 + (𝜕𝑞𝑐𝑜𝑛𝑑′′𝜕𝑇𝑏 𝑢𝑇𝑏)2 + (𝜕𝑞𝑐𝑜𝑛𝑑′′𝜕𝐿 𝑢𝐿)2
 

 

± 1.2% 

 

NA 

 

Generated 

heat flux 

 

 𝑞𝑔𝑒𝑛′′ = 𝑉𝑒𝑙2𝑅𝑒𝑙𝐴𝑠 
𝑢𝑞𝑔𝑒𝑛′′ = √(𝜕𝑞𝑔𝑒𝑛′′𝜕𝑉𝑒𝑙 𝑢𝑉𝑒𝑙)2 + (𝜕𝑞𝑔𝑒𝑛′′𝜕𝑅𝑒𝑙 𝑢𝑅𝑒𝑙)2 + (𝜕𝑞𝑔𝑒𝑛′′𝜕𝐴𝑠 𝑢𝐴𝑠)2

 

 

± 7.66% 

 

NA 

 

Actual heat 

flux 

 

 𝑞𝑎𝑐𝑡′′ = 𝑞𝑔𝑒𝑛′′ − 𝑞𝑐𝑜𝑛𝑑′′−  𝑞𝑟𝑎𝑑′′  

𝑢𝑞𝑐𝑜𝑛𝑣 = √(𝜕𝑞𝑎𝑐𝑡′′𝜕𝑞𝑔𝑒𝑛′′ 𝑢𝑞𝑔𝑒𝑛′′ )2 + ( 𝜕𝑞𝑎𝑐𝑡′′𝜕𝑞𝑐𝑜𝑛𝑑′′ 𝑢𝑞𝑐𝑜𝑛𝑑′′ )2 + (𝜕𝑞𝑎𝑐𝑡′′𝜕𝑞𝑟𝑎𝑑′′ 𝑢𝑞𝑟𝑎𝑑′′ )2
 

 

± 7.7% 

 

NA 

 

Heat transfer 

coefficient 

 

 ℎ = 𝑞𝑎𝑐𝑡′′𝑇𝑤 − 𝑇𝑟 𝑢ℎ = √( 𝜕ℎ𝜕𝑞𝑎𝑐𝑡′′ 𝑢𝑞𝑎𝑐𝑡′′ )2 + ( 𝜕ℎ𝜕𝑇𝑤 𝑢𝑇𝑤)2 + ( 𝜕ℎ𝜕𝑇𝑟 𝑢𝑇𝑟)2
 

 

± 3.29% 

 

NA 

Heat transfer 

augmentation ℎ𝑎𝑢𝑔 = ℎℎ𝑜 𝑢ℎ𝑎𝑢𝑔 = √(𝜕ℎ𝑎𝑢𝑔𝜕ℎ𝑜 𝑢ℎ𝑜)2 + (𝜕ℎ𝑎𝑢𝑔𝜕ℎ 𝑢ℎ)2
 

 

± 5% 

 

NA 

Saddle point 

shift 
𝑆𝑃𝑠ℎ𝑖𝑓𝑡 = 100 ∗ 𝑆𝑃𝐷𝐿𝐸  𝑢𝑆𝑃𝑠ℎ𝑖𝑓𝑡 = √(𝜕𝑆𝑃𝑠ℎ𝑖𝑓𝑡𝜕𝑆𝑃 𝑢𝑆𝑃)2 + (𝜕𝑆𝑃𝑠ℎ𝑖𝑓𝑡𝜕𝐷𝐿𝐸 𝑢𝐷𝐿𝐸)2

 

 

NA 

 

± 7% 
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CHAPTER 8: CFD MODELING 

A CFD model was built replicating the cascade experimental setup closely in terms 

of geometry and boundary conditions. The geometry of the cascade was prepared using 

SolidWorks (Dassault Systems), a commercial CAD software. Since the experiments have 

limited instrumentation access in the cascade tunnel, the CFD model serves to provide 

valuable qualitative and quantitative information of the flow field.  

Meshing Scheme 

 During the initial stage of the CFD model preparation, a structured (hexahedral) 

grid was generated for the baseline CFD model (i.e. without film cooling) using ICEM 

CFD (Ansys Inc.), a commercial CFD software [1]. Due to the mapped mesh condition for 

the entire CFD model, mesh refinement in a specific region increased the number of cells 

significantly in other regions of the computational model. The grid size could not be 

handled with the available computational facilities and so a hybrid mesh generated using 

StarCCM+ v10.02.012 (CD Adapco), a CFD commercial code [2] was used in this study. 

 A hexahedral (structured) meshing scheme was used near the walls of the 

computational domain maintaining the dimensionless wall distance (y+) below 3.5 on all 

walls. The distribution of wall y+
 on the inner endwall is shown in Figure 42. The distance 

of the first cell from the wall was set to 0.013 mm from a preliminary shear stress 

calculation based on [2] and the target y+ value. A two-layer all wall y+ treatment described 

in [2] was used for the fluid continuum. The two-layer y+ treatment blends the viscous sub-

layer (y+ < 5), buffer layer (5 < y+ < 30) and the inertial sub-layer (30 < y+ < 200) depending 
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on the value of y+.  Based on the thickness of the prism/boundary layer mesh, an appropriate 

growth factor is computed by the CFD software to enable a smooth transition from the 

structured mesh near the walls to a polyhedral mesh (unstructured) in the region away from 

the walls.  All the interfaces had a conformal mesh to permit proper exchange of flow 

information. During grid refinement, the near wall cell distance was kept constant in order 

to obtain the same y+ distribution for the various grids but with a different mesh size for 

the other cells. 

 

 

 

 

 

 

 

 

 

 

 

Figure 42: y+ distribution on the inner endwall 

Initial and Boundary Conditions 

 The boundary conditions were specified to closely replicate the flow conditions in 

the experiment. Since the entire computational domain with adequate mesh refinement was 

very large to analyze in a single simulation, the computations were performed in two parts. 

In the first part, the complete CFD domain shown in Figure 43 was analyzed for no the 
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film injection case. Although the coolant plenum and film cooling holes were not included 

in the baseline CFD model, the portion of the film cooling section connected to the 

mainstream flow was included in order to have the same hydrodynamic boundary layer at 

the cascade inlet. The inlet to nozzle-1 was defined as a stagnation inlet boundary. The 

measured pressure and temperature from the experiment was specified at this boundary. A 

mass flow boundary condition was specified at the outlet of the exit duct. The mass flow 

rate and temperature values from the experiment were specified at this boundary. The 

initial conditions were specified based on the experimental pressure, velocity and 

temperature data.  

 The second part of the computations were performed for the CFD domain shown 

in Figure 44 which excludes the first nozzle section and the first two parts of the second 

nozzle section. The film cooling holes, coupon, and the coolant plenum were included in 

the second CFD domain. The flow velocity components, total pressure, turbulent kinetic 

energy, turbulent dissipation rate and total temperature were mapped from the baseline 

simulation to the inlet of the second CFD domain. A mass flow boundary condition was 

specified at the outlet of the exit duct with the same values used in the baseline simulation. 

At the inlet of the coolant plenum, the total temperature and mass flow rate were specified. 

The physical and thermal properties for the plexiglass film cooling coupon (solid 

continuum) were obtained from the material data sheet provided by the manufacturer 

(Evonik Industries). 
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Figure 43: Baseline CFD model 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 44: CFD model with film cooling 

Grid Convergence Study 

 Two grid convergence studies were performed for the baseline and film cooling 

simulations respectively. Three grids were simulated as part of each grid convergence 

study. For the baseline case, the three grids included 6.75M, 9.93M, and 18.1M cells. The 
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convergence monitors in addition to the residuals included the mainstream mass flow rate, 

total pressure and average static pressure on the endwall. The total pressure and mass flow 

rate were monitored at multiple flow-normal planes inside the CFD model. Table 7 shows 

the order of magnitude of the residuals after convergence. The pressure coefficient 

distribution on the endwall at the inlet was compared between the three grids. The results 

showed an average difference of < 1% between the medium and fine grid computations. In 

order to ensure that the results do not change significantly between y+ < 3.5 and y+ < 1 

grids, a computation was performed with the fine grid (18.1 M) with y+ < 1. The results 

showed < 1.5% difference between y+ < 3.5 and y+ < 1 grids. The results reported are for 

the fine grid computations with y+ < 3.5. 

 In the case of film cooling simulations, the three grids included 7.2M, 12.2M, and 

20.1M cells. The convergence monitors in addition to the residuals included mainstream 

and coolant mass flow rate, coolant plenum total pressure and the average static 

temperature on the film cooling coupon. Table 7 shows the order of magnitude of the 

residuals after convergence. An average blowing ratio of 0.83 was used for the grid study 

as a representative case. The results exhibited a maximum difference of < 3.2% between 

the medium and fine grid computations. In order to ensure that the results do not change 

significantly between y+ < 3.5 and y+ < 1 grids, a computation was performed for Mavg = 

0.83 (as a representative blowing ratio) with the medium grid (12.2 M) with y+ < 1. The 

results showed < 1% difference between y+ < 3.5 and y+ < 1 grids. The results reported in 

this paper are for the medium grid computations with y+ < 3.5. Figure 45 shows the medium 

grid CFD model used for the film cooling computations. 

 



110 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 45: Medium grid CFD model  
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Table 7: Order of magnitude of residuals after convergence 

 

 

 

 

 

Computational Solver and Turbulence Model 

 All computations were performed using StarCCM+ v10.02.012 [2]. The 

compressible Reynolds-Averaged Navier Stokes (RANS) solver with a second order 

coupled-energy formulation was used for the fluid domain. The realizable k-ε turbulence 

model was used for turbulence closure. A study by Davis et al. [3] showed that the 

realizable k-ε turbulence model performs better than other RANS-based turbulence models 

in flows with three-dimensional flow separation. The default coefficients were used with 

the realizable k-ε turbulence model and can be found in [2]. The film cooling simulations 

included the plexiglass film cooling coupon which was modeled as a solid continuum. A 

constant density coupled-energy solver was used for the solid continuum 

Numerical Uncertainty 

 The CFD uncertainty in the coolant temperature drop across the film cooling hole 

was calculated according to the numerical accuracy procedure reported by Celik et al. [4]. 

Since the difference between the coolant mass flow rate values of the medium and fine grid 

Governing equation Residual 

Continuity < 10-4 

x-momentum < 10-4 

y-momentum < 10-4 

z-momentum < 10-4 

Energy ≅ 10-3 

Turbulent kinetic energy ≅ 10-3 

Turbulent dissipation rate ≅ 10-3 
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computations was very close to zero, the numerical accuracy procedure reported by [4] 

could not be used. Due to this constraint, an alternative method was used to calculate the 

CFD uncertainty. The average percentage difference of the fractional coolant mass flow 

rate between the medium and fine grid results was used to estimate the uncertainty in the 

discharge coefficient and the fractional coolant mass flow rate. The grid convergence index 

(GCI) for the coolant temperature drop and the fractional coolant mass flow rate for the 

different grids are given in Table 8 and Table 9 respectively. 

 

 Table 8: Grid convergence index for the coolant temperature drop 

 

 

 

 

Table 9: Comparison of percentage coolant flow rate between grids 

FCH 

no. 
�̇�ℎ/�̇�𝑐,𝑡𝑜𝑡 

% Difference21 7.2M 12.2M 20.1M 

1 8.185 8.188 8.200 0.150 

2 8.284 8.286 8.277 0.112 

3 8.412 8.392 8.387 0.056 

4 8.533 8.504 8.479 0.302 

5 8.603 8.555 8.540 0.177 

6 8.604 8.561 8.552 0.107 

7 8.537 8.499 8.489 0.118 

8 8.376 8.368 8.371 0.038 

9 8.195 8.233 8.240 0.081 

10 8.080 8.143 8.147 0.040 

11 8.067 8.113 8.136 0.289 

12 8.125 8.156 8.181 0.307 

 

Grid no. Grid size 

(in millions) 
(Tc,i − Tc,𝑒)/(Tc,𝑖 − T∞) GCI32 

(%) 

GCI21 

(%) 

3 7.2 0.122  

0.15 0.08 2 12.2 0.135 

1 20.1 0.14 
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 Based on average percentage difference between the medium and fine grid values 

of  �̇�ℎ/�̇�𝑐,𝑡𝑜𝑡 in Table 9, the uncertainty in the discharge coefficient and fractional coolant 

mass flow rate was calculated to be ≅ ±0.28% and ±0.15% respectively.  

Validation of CFD model 

The CFD model validation with experimental data for the airfoil passage periodicity 

(extracted at x/Cax ≅  - 0.075) is shown in Figure 46. The CFD results appear to be in good 

agreement with the experimental data except at the peak negative pressure region near the 

airfoil suction side. One reason for this deviation can be due to the inaccurate prediction of 

the three-dimensional flow near the airfoil suction side by the turbulence model. More 

effort in CFD modeling is required for better prediction of flow near the leading-edge.  

 

 

 

 

 

 

 

 

 

 

Figure 46: Validation of CFD model with experimental data 
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CHAPTER 9: RESULTS AND DISCUSSION  

Unsteady Passing Wake Effect on a Pitchwise-curved Surface  

 In order to validate the unsteady passing wake study for steady mainstream flow 

conditions, flat plate experiments with similar test parameters and film hole geometry were 

selected from the open literature for pitch-averaged and centerline heat transfer 

augmentation measurements. Since blowing ratio is not the only scaling parameter for 

describing film cooling performance, research studies with similar momentum flux ratios 

were also included in the experimental validation.  

 At this juncture, it is essential to point out the influence of an important non-

dimensional parameter on heat transfer in the presence of film cooling. The ratio of 

displacement thickness to the film hole diameter (𝛿1/𝐷) provides the thickness of the 

incoming boundary layer relative to the film hole diameter. Depending on the boundary 

layer thickness at the film injection location, the value of 𝛿1/𝐷 can change significantly.  

 In connection with heat transfer, an increased boundary layer thickness offers a 

greater resistance to heat conduction near the wall compared to a thin boundary layer. A 

low momentum film jet thickens the boundary layer at the film injection location thereby 

adding to the near wall heat conduction resistance. On the other hand, a high momentum 

film jet penetrates into the boundary layer at the film injection location promoting turbulent 

mixing of the two fluid streams which enhances the heat transfer coefficient.   
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Pitch-averaged heat transfer augmentation 

 When comparing the different coolant to mainstream mass flux ratios for the 

baseline case (S = 0), it can be seen that the pitch-averaged heat transfer augmentation 

increases with the blowing ratio (Figure 47). The maximum increase in the pitch-averaged 

heat transfer augmentation is approximately 8%, 15%, and 20.5% for M = 0.25, 0.5, and 

0.75 respectively. For all the blowing ratios presented, the maximum increase in the pitch-

averaged heat transfer augmentation occurs at x/D ≅ 0.9. It is worthwhile to mention here 

that the increase in heat transfer augmentation can be even higher at x/D < 0.9 since the 

region near film injection location experiences significant mixing between the coolant and 

the mainstream. A monotonically decreasing trend in the pitch-averaged heat transfer 

augmentation is seen for all the three blowing ratios with increasing streamwise distance 

from the film cooling hole.  

 Table 10 shows the pertinent parameters used for comparison between the present 

study and the published literature. Comparison between the case of M = 0.5 in the present 

study and Hay et al. [1] shows quantitative agreement at most of the streamwise locations 

(Figure 48). On the other hand, there is a significant difference when compared to the 

results reported by Eriksen and Goldstein [2] for a similar mass and momentum flux ratio. 

One reason for this could be a small 𝛿1/𝐷 value near the film injection location of [2]. The 

heat transfer in the case of Eriksen and Goldstein [2] could have been higher without film 

injection than with film jets at low momentum flux ratios leading to a heat transfer 

augmentation less than unity. 
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Figure 47: Pitch-averaged heat transfer augmentation - S = 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 48: Literature comparison for pitch-averaged heat transfer augmentation - S = 0 
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Table 10: Parameters for comparison with published literature 
 

 

 The effect of unsteady passing wakes on the pitch-averaged heat transfer 

augmentation is shown in Figures 49-50. At S = 0.15 (Figure 49), there is negligible 

influence from the passing wake for the no film injection case (M = 0). The introduction 

of the film jets combined with the passing wakes produce a maximum heat transfer 

augmentation of ≅ 10.4%, 17.7%, and 24.3% for M = 0.25, M = 0.5, and M = 0.75 

respectively. Comparing the above values with the results without the passing wakes 

(Figure 47), it can be seen that the contribution from the passing wakes towards heat 

transfer augmentation is ≅ 2.4%, 2.7%, and 3.8% for M = 0.25, M = 0.5, and M = 0.75 

respectively.  

Author(s) Parameters used for comparison in unsteady wake study 

M DR I D 

(mm) 

L/D p/D α δ1/D % Tu 

Present 

study 

 

   0.25  

   1 

   0.062  

8 

 

8 

 

3 

 

35˚ 
 

0.32 

 

1.5 0.5 0.25 

0.75 0.562 

Hay et al. 

[1] 

0.48 1 0.23 2.3 > 4 3 35˚ 0.63 low 

Yuen & 

Botas [4] 

 

0.5 

 

1 

 

0.25 

 

NA 

 

4 

 

Single 

hole 

 

30˚ 
 

0.15 

 

2.7 

Eriksen & 

Goldstein 

[2] 

 

0.49 

 

0.98 

 

0.24 

 

11.8 

 

> 4 

 

3 

 

35˚ 
0.06-

0.12 

 

0.5 
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Figure 49: Pitch-averaged heat transfer augmentation - S = 0.15 

 

 Increasing the wake passing frequency enhances the heat transfer as shown in 

Figure 50. For the no film injection case, the passing wakes escalate the heat transfer by   ≅ 6% relative to the baseline case (M = 0, S = 0). For the film injection cases (M = 0.25, 

0.5, 0.75), the increase in heat transfer is ≅ 16%, 23%, and 28% respectively. The 

individual contribution of the passing wakes at S = 0.3 is ≅ 8% for M = 0.25, 0.5 and           ≅ 7.5% for M = 0.75.  



120 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 50: Pitch-averaged heat transfer augmentation - S = 0.3 

Centerline Heat Transfer Augmentation 

      Figure 51 shows the baseline case (S = 0) of the centerline heat transfer augmentation 

for the present study. Increasing the jet momentum enhances the interaction between the 

film jet and the mainstream by mixing. Apart from this, at higher blowing ratios, the 

analogy of flow past a cylindrical rod can be used to explain the jet-mainstream interaction 

[3]. Although this creates a wake region under the film jet in the immediate vicinity of 

injection, it also increases the velocity fluctuations in this region. As the velocity 

fluctuations propagate along the streamwise and pitchwise directions, they increase the 

shear stress near the wall by altering the velocity gradient. This phenomenon eventually 

results in an increased heat transfer coefficient. Quantitatively, the maximum enhancement 
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in the heat transfer coefficient is ≅ 7.9%, 15.5%, and 24.3% for M = 0.25, M = 0.5, and   

M = 0.75 respectively. When comparing with the baseline case of the pitch-averaged heat 

transfer augmentation, the effect of film cooling on the heat transfer coefficient is similar 

between the centerline and pitch-averaged heat transfer augmentation with a slightly higher 

(≅ 3.8%) heat transfer augmentation for M = 0.75 at the film jet centerline. 

 

 

 

 

 

 

 

 

 

 

  

Figure 51: Centerline heat transfer augmentation - S = 0 

 

 In comparison with published literature (Figure 52) the centerline augmentation   

(M = 0.5) shows quantitative agreement with Hay et al. [1] till x/D ≅ 3.5 and past x/D ≅ 7 

with Yuen and Botas [4]. Both the aforementioned studies have a significant difference in 

the displacement thickness to film hole diameter ratio as shown in Table 10. At the near 

hole region, the jet-to-mainstream interaction is significant which overrides the increase in 
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displacement thickness due to film injection at lower blowing ratios. With increasing 

streamwise distance, the displacement thickness becomes important as the heat transfer 

augmentation approaches unity in the case of the present study. In case of Hay et al. [1], 

the heat transfer augmentation falls below unity for x/D > 6. One reason for this could be 

the rise in near wall heat conduction resistance compared to the no film injection case. 

 

 

 

 

 

 

 

 

 

 

Figure 52: Literature comparison for centerline heat transfer augmentation - S = 0 

 

 With the introduction of passing wakes, there is a considerable impact on the 

centerline heat transfer coefficient. The passing wake is a low velocity fluid packet with 

increased unsteadiness. As it convects along the test surface, it acts on the film jets by 

mixing with them. When this happens, the film jets acquire part of the velocity fluctuations 

present in the passing wake which may be significant based on the film jet’s momentum 

flux relative to the mainstream at the injection location. The passing wake-induced velocity 
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perturbations are one of the primary contributors towards the increased heat transfer 

augmentation. 

  

 

 

 

 

 

 

 

 

 

 

Figure 53: Centerline heat transfer augmentation - S = 0.15 

  

 For the low wake passing frequency (S = 0.15), an approximate increase of 11.6%, 

21.7%, and 28.3% can observed for M = 0.25, M = 0.5, and M = 0.75 respectively (Figure 

53). It is important to note that the maximum heat transfer augmentation with only the 

passing wakes is ≅ 3.7%. The contribution of the passing wakes towards heat transfer 

augmentation in addition to the film injection is 3.7%, 6.1%, and 4.7% (approximately) at 

M = 0.25, M = 0.5, and M = 0.75 respectively. At increased downstream locations, the heat 

transfer augmentation values decline monotonically to unity with the decay rate 

proportional to the coolant to mainstream mass flux ratio. 
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Figure 54: Centerline heat transfer augmentation - S = 0.3 

  

 At an elevated wake passing frequency (S = 0.3), the centerline heat transfer 

augmentation increases even further as shown in Figure 54. The approximate increase in 

the heat transfer augmentation is ≅ 7.6%, 16.3%, 25%, and 31.7% for M = 0, M = 0.25, M 

= 0.5, and M = 0.75 respectively. Compared to low wake passing frequency case, the 

maximum heat transfer augmentation with only the passing wakes exhibited an additional 

increase of ≅ 4%. This increase clearly signifies the amplification in the wake velocity 

perturbations which cause vigorous mixing with the film jets. With regard to the sole 

contribution of the passing wakes towards heat transfer augmentation in addition to the 

film injection, an increase of 8.3%, 9.4%, and 8.1% (approximately) is observed at M = 

0.25, M = 0.5, and M = 0.75 respectively. The heat transfer augmentation decay trend with 

increased streamwise distance is similar to S = 0.15. 
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Figure 55: Simplified schematic of unsteady passing wake effect on film cooling  

 

 As seen in Figure 55, locations away from the film jet centerline experience shear 

layer interaction between adjacent film jets leading to continuous perturbation of the near 

wall velocity gradients. To better understand the effect of the jet-to-jet interaction and the 

wake influence, the centerline between two film holes (z/D = 1.5) was chosen in addition 

to the jet centerline to compare the differences. Figure 56 shows such a comparison for the 

no wake case. 

  It is evident that there is insignificant difference in the heat transfer augmentation 

between z/D = 0 and z/D = 1.5 for M = 0.25 and 0.5. At M = 0.75, there is an increase in 

the heat transfer augmentation at z/D = 1.5 (compared to z/D = 0) between x/D = 1.5 and 

x/D = 4.5 with the maximum increase (≅ 4.5%) measured at x/D ≅ 2.5. This rise in the 

heat transfer augmentation is conjectured to be due to the interaction between the film jets. 
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Figure 56: Centerline and off-centerline heat transfer augmentation - S = 0 

  

 At the low wake passing frequency (S = 0.15) shown in Figure 57, the variation 

between z/D = 0 and z/D = 1.5 decreases. No differentiation can be made for M = 0.25 and 

M = 0.5 between z/D = 0 and z/D = 1.5 whereas the increase in the heat transfer 

augmentation at the highest blowing ratio (M = 0.75) is ≅ 2.1% at x/D ≅ 3.2.  At the highest 

wake passing frequency (S = 0.3) shown in Figure 58, the heat transfer enhancement occurs 
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between x/D = 4.5 and x/D = 8 at M = 0.5 and between x/D = 7 and x/D = 8.5 for M = 

0.75. The maximum increase in the heat transfer augmentation is ≅ 2%. 

 

 

 

 

 

 

 

 

 

Figure 57: Centerline and off-centerline heat transfer augmentation - S = 0.15 

 

 

 

 

 

 

 

 

 

 

Figure 58: Centerline and off-centerline heat transfer augmentation - S = 0.3 
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Endwall Film Cooling in a High Subsonic Annular Cascade 

Airfoil Passage Periodicity 

The passage periodicity results along with the CFD model validation are shown in 

Figure 46 (chapter 8). 

Coolant Temperature Drop across Film Cooling Hole 

The predicted coolant temperature drop across the film cooling hole is provided in 

a normalized form in Figure 59. It is observed that the coolant temperature drop increases 

in a close to linear trend with blowing ratio. A maximum temperature drop of ≅ 9.34°C is 

noted at the highest blowing ratio. In the case of a real gas turbine, the coolant temperature 

increases as the coolant passes through the film cooling hole due to the heat convection 

from the wall of the film cooling hole to the fluid. This is often referred to as “heat pickup”. 

It is essential to use the increased temperature of the coolant (i.e. at the exit of the film 

cooling hole) for the film cooling effectiveness calculations. This is analogous to 

accounting for the coolant temperature drop in the experiments of the present study.  
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Figure 59: Predicted coolant temperature drop across film cooling hole 

Endwall Surface Flow Visualization 

A simplified representation of the pertinent vortex structures and the associated 

separation lines in the case of near-endwall flow are shown in Figure 60. The interaction 

between a non-uniform total pressure profile and the airfoil produces the horseshoe vortex 

at the airfoil leading-edge. Downstream of the leading-edge, the horseshoe vortex branches 

out into a pressure and a suction leg. The former is called the passage vortex (PV) and the 

latter is termed as the suction side horseshoe vortex (SHV). Due to the flow turning in the 

airfoil passage, a cross flow is generated from the pressure side to the suction side of the 

airfoil which contributes to the PV growth. This was reported earlier by Friedrichs [5]. The 

surface oil visualization was performed on the inner endwall of passage-3. The surface oil 

visualization results shown in Figures 61-64 provide insight into the complicated flow 

separation that occurs in an airfoil passage from a surface flow perspective. 
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Some of the important surface flow features include the saddle point (SP), leading-

edge horseshoe vortex (LHV), passage vortex (PV), and corner vortex (CV). The saddle 

point is the location where the reversed flow at the leading-edge meets the oncoming 

mainstream flow. It was observed that film injection had a significant impact on the three-

dimensional flow separation location as also reported by Friedrichs [5]. The saddle point 

location in the baseline case (Mavg = 0) shown in Figure 61 is used as a reference to quantify 

the saddle point shift in the film injection cases shown in Figures 62-64. 

 

 

 

 

 

 

 

 

Figure 60: Simplified schematic of an endwall secondary flow system [6,7] 

 

 In order to quantify the influence of film injection on the endwall secondary flow, 

the location of the saddle point from the airfoil leading-edge is plotted as a function of the 

average blowing ratio in Figure 65, in which DLE is the airfoil leading-edge diameter. For 

average blowing ratios between 0.56 and 1.11, the saddle point exhibits a movement 

towards the airfoil leading-edge. The highest shift in the saddle point is noticed at              

Mavg = 1.11 relative to the no film injection case. 
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Figure 61: Endwall surface flow visualization without film injection 

 

Figure 62: Endwall surface flow visualization with film injection - case 1 
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Figure 63: Endwall surface flow visualization with film injection - case 2 

 

 

Figure 64: Endwall surface flow visualization with film injection - case 3 
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Figure 65: Location of saddle point with and without film injection 

 

One of the main reason for the shift in the saddle point is due to the increased 

momentum flux of the film jet that provides the strength to penetrate into the mainstream 

flow near the airfoil-endwall junction. In addition to this, the separation lines move closer 

to the airfoil with increasing blowing ratio indicating that the injected film is strongly 

influencing the horseshoe vortex location. This movement in the separation lines due to the 

coolant injection upstream of separation lines agrees with the findings of Friedrichs [5]. 

For Mavg = 0.56, 0.83, and 1.11, the saddle point exhibits a close to linear shift of ≅ 11.7%, 

27%, and 47% respectively relative to Mavg = 0. 
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Typically, at blowing ratios greater than 1, the film cooling jets can lift-off the 

endwall due to the increased momentum flux as reported by Friedrichs et al. [8]. While the 

jet lift-off threshold is well-defined in flat plate studies [9], the location of the film cooling 

holes relative to the airfoil leading-edge and the strong influence of the endwall secondary 

flow on the injected coolant make it difficult to define a universal jet lift-off threshold for 

cascade film cooling studies. Comparing the average blowing ratios in the present study, it 

appears that at Mavg = 0.56,0.83,1.11 the coolant jet-2 stays close to the endwall near the 

airfoil leading-edge. It should be noted here that jet lift-off may have occurred at Mavg = 

0.83,1.11, but the film cooling jets near the airfoil leading-edge are still acting towards 

moving the LHV closer to the airfoil leading-edge.  

Film Cooling Effectiveness 

Impact of Endwall Surface Flow on Film Cooling Effectiveness Distribution 

 The film cooling effectiveness contours superimposed on the endwall surface flow 

are shown in Figures 66-68. For Mavg = 0.56 (Figure 66), it is observed that the coolant 

film extent is bounded primarily by the PV and the SHV separation lines. The vortices, due 

to their rotational motion distort the coolant film on the endwall by transporting the coolant 

into the mainstream flow away from the endwall. The transported coolant mixes with the 

mainstream flow and is considered lost from the endwall cooling perspective.  

 As a result of the induced incidence effect near the airfoil leading-edge, jet-1 tends 

to turn away from the airfoil pressure side as shown in Figure 70. This reduces the effective 

number of film jets contributing to film cooling for a single airfoil passage. Thus, it is 
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essential to account for the induced incidence effect in cascade film cooling experiments 

so that the individual film cooling hole mass flow rate and the film cooling jet trajectory 

are representative of a single airfoil passage. In the present study, the jet influenced by the 

induced incidence effect (jet-1) was not eliminated from the film cooling configuration 

since the number of film cooling holes were based on one geometric airfoil pitch. The 

individual film cooling hole fractional mass flow rate, discharge coefficients, and blowing 

ratios are provided in Figures 92-94 so that the jet behavior can be analyzed thoroughly.  

 

 

Figure 66: Film cooling effectiveness superimposed on surface flow - case 1 
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Figure 67: Film cooling effectiveness superimposed on surface flow - case 2 

 

Figure 68: Film cooling effectiveness superimposed on surface flow - case 3 
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 Comparing Figure 66 and Figure 70, it appears that film cooling jets 3-12 and the 

pressure side branch of jet-2 contribute completely towards film cooling in the studied 

passage. At Mavg = 0.83 (Figure 67), a reduction in the leading-edge separation zone occurs 

which provides increased coolant coverage. Similar to the lower blowing ratio case (Mavg 

= 0.56), majority of the coolant film is still bounded by the PV and SHV separation lines. 

There is slightly higher cooling near the airfoil leading-edge compared to Mavg = 0.56 

which is due to the increased coolant momentum at Mavg = 0.83. 

 Increasing the blowing ratio above Mavg = 0.83 results in a significant coolant 

coverage compared to Mavg = 0.56. As inferred from the surface flow visualization results, 

the saddle point exhibits a shift of ≅ 47% for Mavg = 1.11. In addition, the SHV separation 

line has moved closer to the airfoil. This facilitates better cooling near the leading-edge, 

mid-pitch, and the suction side of the airfoil-endwall junction. Comparing with Mavg = 0.83, 

it can be seen from Figure 68 that the coolant jets-2,3 have lower film cooling effectiveness. 

This can be explained due to the increased momentum flux ratio (Iavg = 1.38) of the jets at 

Mavg = 1.11 which has resulted in jet lift-off.  

Mainstream Flow and Coolant Jet Trajectory 

From the CFD model, the streamlines for the mainstream flow and the coolant were 

obtained for Mavg = 0, Mavg = 0.56, and Mavg = 1.11 shown in Figures 69-75. This 

information is used to explain the secondary flow and coolant film interaction from a three-

dimensional perspective. The locations of planes A,B,C,D,E shown in Figures 69-75 are 

for further analysis of the secondary flow and coolant film interaction discussed in the 

following section of this chapter. For the mainstream flow, the streamline seed is injected 
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at the inlet of the cascade section (≅ 2 mm from the inner endwall). In the case of coolant 

flow, the streamline seed is injected at a plane ≅ 1D upstream of the film cooling hole exit. 

The surface streamlines are visualized on a plane ≅ 2 mm from the inner endwall. The 

pressure and suction leg of the horseshoe vortex can be seen from Figure 69 for the baseline 

case. The pressure side leg of the horseshoe vortex, called the passage vortex meets the 

airfoil suction side at x/Cax ≅ 0.5 based on the surface flow pattern. By projecting the three-

dimensional flow on the surface flow, it is observed that the PV and SHV lift-off along the 

surface flow separation lines. 

Figure 69: Predicted streamlines of mainstream flow without film injection 

 

 

 For the cases with film cooling, the coolant trajectory is superimposed on the three-

dimensional mainstream flow to show the mixing of the coolant jets with the mainstream. 

Due to the complexity of the coolant-mainstream interaction, the coolant jets are split into 

3 sets (4 holes each) to better explain the flow physics. In Figure 70, set-I of the film cooling 
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jets are shown along with the three-dimensional mainstream flow. Due to the induced 

incidence effect, jet-1 moves completely into the adjacent airfoil passage. The trajectory of 

jet-2 shows two vortex branches near the airfoil leading-edge. The suction side branch 

merges with the SHV of the adjacent passage. The pressure side branch exhibits a strong 

rotational motion and convects downstream merging with the passage vortex. As the film 

cooling jets-3,4 convect downstream, they are entrained into the passage vortex at            

x′/D ≅ 18 and x′/D ≅ 24 respectively.  

Figure 70: Predicted streamlines of mainstream and coolant flow - case 1a 

 

     The set-II of film cooling jets comprising jets 5-8 are shown in Figure 71. These jets 

have the least influence from the PV and SHV and hence persist for a longer distance 

downstream of the film injection location before getting entrained into the PV. Relating 

this information with Figure 66, it is noted that the film cooling effectiveness is significant 

for an increased downstream region of jets 5-8. Figure 72 shows the coolant trajectory for 
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jets 9-12. It is seen that jet-12 exhibits increased turning due to the induced incidence effect 

of the adjacent airfoil passage. The jets 9-12 remain close to the airfoil suction side as they 

move downstream. The local blowing ratios of these jets are higher compared to jets 5-8 

and hence the jets are more susceptible to lift-off. 

Figure 71: Predicted streamlines of mainstream and coolant flow - case 1b 

Figure 72: Predicted streamlines of mainstream and coolant flow - case 1c 
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 In the case of set-I film cooling jets in Mavg = 1.11 (Figure 73), it can be seen that jet-1 

exhibits a similar trajectory as observed in Figure 70. The jets 2-4 have pushed the PV 

separation line towards the airfoil pressure side due to the increased momentum flux ratio. 

The vortex structures formed due to the interaction between jet-2 and the airfoil are similar 

to Mavg = 0.56 as observed from the top view of a three-dimensional flow field. In addition, 

jets-3,4 experience delayed flow turning inside the airfoil passage which is a result of the 

high momentum flux ratio. Moving downstream, it is noted that the coolant flow 

streamlines experience less distortion in the downstream region compared to Mavg = 0.56, 

which can be attributed to the film jets retaining their identity better amidst the endwall 

secondary flows.  

 

Figure 73: Predicted streamlines of mainstream and coolant flow - case 3a 
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Figure 74: Predicted streamlines of mainstream and coolant flow - case 3b 

 

 

Figure 75: Predicted streamlines of mainstream and coolant flow - case 3c 
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          The film cooling jets 5-8 shown in Figure 74 have a lower blowing ratio compared 

to the jets located near the airfoil pressure side and hence they have less impact from the 

jet lift-off consequences. In the downstream region, the reduced impact of the secondary 

flow on the coolant jets at Mavg = 1.11 compared to Mavg = 0.56 is evident from the reduced 

distortion of the coolant streamlines. The jets 10-12 in Mavg = 1.11 (Figure 75) exhibit 

significant turning upstream of the airfoil leading-edge. It can be noted that the uncooled 

region near the suction side present in Mavg = 0.56 (Figure 72) has reduced substantially 

due to the ability of jet-12 to influence the SHV. In the downstream region, the coolant 

flow streamlines are well-behaved without any significant distortion. 

Horseshoe Vortex Dynamics 

  Due to the complexity in a film-cooled cascade flow field, it is essential to study 

the coolant - mainstream interaction from different perspectives. In the present study, 5 

planes placed at different airfoil chord locations and oriented as shown in Figure 76 were 

used to visualize the predicted mainstream streamline pattern for Mavg = 0,0.56,1.11. The 

planes are also shown in Figures 69-75 to establish the connection with Figures 77-91. The 

turbulent kinetic energy (k*) in a normalized form is used to quantify the strength of the 

secondary flow. The information provided in Figures 77-91 can be used to understand the 

influence of film injection on the leading-edge horseshoe vortex (LHV) and passage vortex 

(PV).  

 In the case of Mavg = 0 at s/C = 0 (Figure 77), it is seen that the streamlines roll up 

into a horseshoe vortex due to the stagnation pressure gradient near the airfoil leading-

edge. The core of the horseshoe vortex is observed to be located at s′/DLE ≅ 0.61  and y/S 
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≅ 0.01, where DLE is the leading-edge diameter of the airfoil. Except for the flow near the 

leading-edge, the streamlines along the airfoil span exhibit close to a horizontal pattern. 

When film injection is introduced at an average blowing ratio of 0.56 (Figure 78), the 

streamlines are deflected from the endwall at s′/DLE ≅ 3.3 due to coolant injection. The 

suction leg of jet-2 is the primary contributor at s/C = 0 since jet-1 moves into the adjacent 

airfoil passage due to the induced incidence effect (shown in Figure 70). The LHV has 

shifted away from the leading-edge due to the endwall cross flow and moved upward 

compared to Mavg = 0. The size of the LHV has increased at Mavg = 0.56 due to the 

interaction with the suction leg of jet-2. Increasing the blowing ratio to Mavg = 1.11 (Figure 

79) offsets the lift-off location of the streamlines to s′/DLE ≅ 2.94. The LHV has shifted 

towards the leading-edge relative to Mavg = 0 due to the high momentum flux of jet-2. The 

core of the LHV is positioned at s′/DLE ≅ 0.438 and y/S ≅ 0.01.  

Figure 76: Flow visualization planes for predicted streamlines 
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Figure 77: Predicted streamlines for no film injection - plane A 

Figure 78: Predicted streamlines for case 1 - plane A 

 

Figure 79: Predicted streamlines for case 3 - plane A 
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 Moving downstream to s/C = 0.08, it is observed that part of the mainstream flow 

stagnates behind the HV for Mavg = 0 (Figure 80). This flow stagnation is due to blockage 

presented by the HV. There is a shift in the core of the HV towards the suction side due to 

the effect of the endwall cross flow. In the case of Mavg = 0.56 (Figure 81), jet-2 

significantly augments the HV since the direction of jet-2 is aligned with the mainstream 

streamlines near the airfoil stagnation region. It should be noted here that jet-2 is the sole 

contributor to the coolant flow at s/C = 0.08. As the average blowing ratio is increased to 

Mavg = 1.11 (Figure 82), the HV is intensified due to the influence of jet-2 similar to Mavg 

= 0.56. The core of the HV has advanced slightly towards the airfoil pressure side due to 

the high momentum of jet-2. Although jet-2 has increased strength to penetrate into the 

mainstream flow at Mavg = 1.11, it appears that the velocity components of jet-2 decay 

faster compared to the low momentum film injection. This is indicated by the lower 

turbulent kinetic energy in the HV at Mavg = 1.11.  

 Since s/C = 0.16 is located on the airfoil pressure side, the HV can be referred to as 

the passage vortex (PV). At s/C = 0.16, it is noticed that for Mavg = 0 (Figure 83), the flow 

beneath the PV has started moving the stagnated fluid behind it away from the airfoil 

pressure side. One major reason for this phenomenon is the increased cross flow at 

downstream locations inside the airfoil passage. In the case of Mavg = 0.56 (Figure 84), the 

PV size has decreased primarily due to the decay of jet-2 and the PV core has shifted away 

from the airfoil pressure side (due to the endwall cross flow) to s′/DLE ≅ 1.277. At Mavg = 

1.11 (Figure 85), a decrease in the PV size is noted due to the decay of jet-2 similar to the 

low blowing ratio case but no significant shift in the PV core is observed.   
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Figure 80: Predicted streamlines for no film injection - plane B 

 

 

 

 

 

Figure 81: Predicted streamlines for case 1 - plane B 

Figure 82: Predicted streamlines for case 3 - plane B 
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Figure 83: Predicted streamlines for no film injection - plane C 

 

Figure 84: Predicted streamlines for case 1 - plane C 

Figure 85: Predicted streamlines for case 3 - plane C 
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Moving downstream along the airfoil chord to s/C = 0.33, Figure 86 shows the 

presence of a secondary vortex for Mavg = 0 with its core located at s′/DLE ≅ 2.75. Although 

the PV has moved away from the airfoil pressure side compared to s/C = 0.16, the size is 

relatively unchanged. This indicates that the secondary vortex structure is formed most 

likely due to the flow reversal behind the PV and not as a result of PV breakdown. In the 

case of Mavg = 0.56 (Figure 87), the PV has decreased in size relative to s/C = 0.16. One 

major reason for this is that the PV structure is strongly influenced by jets-3,4 at s/C = 0.33. 

The jets-3,4 experience less streamline distortion as they convect downstream compared 

to jet-2 since jets-3,4 do not interact with the airfoil. This results in the mitigation of the 

PV. At Mavg = 1.11 (Figure 88), it is noted that the PV size has decreased relative to s/C = 

0.16 due to the influence of jets-3,4, a similar effect observed at Mavg = 0.56. The core of 

the PV has shifted slightly towards the airfoil pressure side due to the high momentum of 

jets-3,4.  

 

 

Figure 86: Predicted streamlines for no film injection - plane D 
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Figure 87: Predicted streamlines for case 1 - plane D 

 

Figure 88: Predicted streamlines for case 3 - plane D 

 

 

At s/C = 0.5, it is seen that for Mavg = 0 (Figure 89) the secondary vortex formed 

behind the PV at s/C = 0.33 is absent. By comparing Figure 89 and Figure 86, it appears 

that the secondary vortex has been convected by the accelerating mainstream flow and 

entrained in the upwash of the PV. This results in an increased fluid accumulation below 

the PV. When the average blowing ratio is increased to 0.56 (Figure 90), the PV exhibits a 

slight shift away from the airfoil pressure side due to the endwall cross flow but there is 

insignificant difference in the PV size and the turbulent kinetic energy relative to  s/C = 
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0.33. This indicates that the contribution from jets-3,4 is similar between s/C = 0.33 and 

s/C = 0.5. At Mavg = 1.11 (Figure 91), the PV shows a size reduction relative to  s/C = 0.33. 

By comparing the PV structure between s/C = 0.33 and s/C = 0.5, it can be said that the 

jet-4 interaction is significant at s/C = 0.5 which results in a size reduction of the PV. 

 

 

 

Figure 89: Predicted streamlines for no film injection - plane E 

 

 

Figure 90: Predicted streamlines for case 1 - plane E 
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Figure 91: Predicted streamlines for case 3 - plane E 

Effect of Discharge Coefficient on Film Cooling Effectiveness 

As the coolant jet enters the mainstream flow, it is exposed to a pitchwise variation 

in the static pressure distribution combined with the saddle point flow at the airfoil-endwall 

junction. This creates a difference in the flow resistance as experienced by the film cooling 

jets resulting in varying film cooling hole discharge for the same average blowing ratio. It 

is essential to know the individual film cooling hole mass flow rate for a given cooling 

configuration to obtain the local blowing ratio for the film cooling holes (after considering 

the corresponding local mainstream velocity and density ratio). The individual film cooling 

hole mass flow rate as a percentage of the total coolant mass flow rate is given in Figure 

92. The discharge coefficient for each film cooling hole at different average blowing ratios 

is shown in Figure 93.  
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Figure 92: Predicted film cooling hole mass flow rate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 93: Predicted film cooling hole discharge coefficients  
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     It is noted from Figure 92 that there is a significant variation in the mass flow rate 

between the film cooling holes at Mavg = 0.56. A maximum difference of ≅ 8.9% is 

observed between hole-1and hole-6. This variation is due to a combined effect of the local 

mainstream static pressure, the location of the film cooling hole relative to the endwall 

separation lines and the coolant momentum flux. At Mavg = 0.83, the maximum variation 

in the mass flow rate between hole-1and hole-6 is reduced to ≅ 4.6 % due to the increased 

coolant momentum flux. For blowing ratios above Mavg = 0.83, there is less than 2.4% 

maximum variation in the mass flow rate between the film cooling holes. Relating this 

information to the discharge coefficient distribution (Figure 93), it is inferred that the 

variation in discharge coefficient is primarily due to the variation in the individual film 

cooling hole mass flow rate and the mainstream static pressure which influences the 

theoretical mass flow rate. The dynamic compound angle of the film cooling hole is 

influenced by the endwall separation lines and has an implicit effect on the discharge 

coefficient. 

     At Mavg = 0.56, it is seen that there is a maximum difference of ≅ 4.8 % in the discharge 

coefficient between hole-1 and hole-6. This difference can be higher if the film cooling 

holes are located closer to the airfoil leading-edge or if the flow turning inside the airfoil 

passage is increased. After hole-6, the discharge coefficient exhibits a steady increase till 

hole-10. This increase is due to the lower mainstream static pressure near the airfoil suction 

side. Beyond hole-10, there is a drop in the discharge coefficient as it approaches the value 

of hole-1. There is less than 2% difference between hole-1 and hole-12 discharge 

coefficients, confirming the flow periodicity between hole-1 and hole-12. 
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     At Mavg = 0.83, there is an increase in the discharge coefficients for all the holes relative 

to Mavg = 0.56 due to the higher coolant momentum flux. A maximum increase of ≅ 5.6 % 

is noted for hole-6. In addition, the variation in discharge coefficients between the film 

cooling holes has decreased, with a maximum difference of ≅ 2.65 % between hole-1 and 

hole-10. The trend in the discharge coefficient variation is similar to Mavg = 0.56. As the 

blowing ratio is increased to Mavg = 1.11, there is a further increase in the discharge 

coefficients compared to Mavg = 0.83. It is observed that the increase is higher for holes 8-

12 than the other holes.  A maximum increase of ≅ 2.75 % is noted for hole-10. The 

maximum variation in the discharge coefficient between the film cooling holes is less than 

2%.  

 As mentioned in the discussion of the film cooling holes mass flow rate fraction,  

the coolant jet discharge appears to be a strong function of the average blowing ratio, 

mainstream static pressure and the location of the endwall separation lines which 

influences the dynamic compound angle. The varying dynamic compound angle among 

the film cooling jets changes the flow resistance as experienced by the jets. 

     In a flat plate film cooling scenario, some important parameters that influence the film 

cooling hole discharge coefficients include the hole length-to-diameter ratio (L/D), 

inclination angle (α), compound angle (β), mainstream Mach number (Ma∞), and coolant 

plenum Mach number (Mac) as pointed out by Gritsch et al. [11]. In addition to this, the 

dynamic compound angle (βd) and the local mainstream static pressure also influence the 

film cooling hole discharge coefficients in a cascade flow field. In the present study, the 

coolant plenum has negligible cross flow and so Mac ≅ 0. Since the L/D of the film cooling 

hole is ≅ 17, the flow inside the hole is not undeveloped or does not experience an 
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increased effective inclination angle [12]. It can be said that the hole exit flow conditions 

have a strong impact on the mass flow rate through the hole for subsonic flow conditions 

inside the hole. 

Effect of Local Blowing Ratio on Film Cooling Effectiveness 

The individual film cooling hole blowing ratios are shown in Figure 94. As a 

general trend, the local blowing ratio increases near the airfoil pressure side due to the low 

mainstream velocity and decreases near the airfoil suction side. At Mavg = 0.56, the 

maximum difference (≅ 4.4 %) in the local blowing ratio is observed between hole-1 and 

holes-6,7. The lowest blowing ratio is observed for holes-6,7 located near the suction side. 

Increasing the average blowing ratio to 0.83, augments the variation in the local blowing 

ratio up to ≅ 7.1 % between hole-1 and holes-6,7. This results in a partial jet lift-off for 

jets-2,3 relative to Mavg = 0.56 as seen by comparing Figures 66 and 67.  

As the average blowing ratio increases to 1.11, the blowing ratio variation among 

the film cooling holes is amplified. The highest difference (≅ 10.7 %) in the local blowing 

ratio is observed between hole-1 and hole-6. Both jet-2 and jet-3 show significant lift-off 

at Mavg = 1.11 as inferred from Figure 68.  
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Figure 94: Local blowing ratio for film cooling holes 

 

Pitchwise Film Cooling Effectiveness 

 Due to the complex secondary flows and pressure gradients in an airfoil passage, it 

is essential to quantify the local variation in the film cooling effectiveness along the 

pitchwise direction which cannot be represented in the more commonly reported pitch-

averaged film cooling effectiveness in endwall film cooling studies. In the present study, 

this local variation is quantified using pitchwise film cooling effectiveness and a cooling 

uniformity coefficient (reported in the next section). Due to higher intensity fluctuations in 

the TSP image near the airfoil walls and in the far downstream of the airfoil passage (x/Cax 

> 0.8), the pitchwise film cooling effectiveness values in this region are not reported. The 

pitchwise film cooling effectiveness results are shown in Figures 95-103. In addition, the 
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pitch-averaged film effectiveness values at each axial chord location are provided in    

Table 11. 

 

Table 11: Pitch-averaged film cooling effectiveness at various axial chord locations 

 

 

 

 

 

 

 

  

 At x/Cax = 0 (Figure 95), it can be seen that there is significant increase in the film 

cooling effectiveness for 0.05 ≤  z′/p ≤ 0.175 at Mavg = 0.83,1.11 compared to Mavg = 0.56. 

The maximum increase (≅ 81%)  in the film cooling effectiveness occurs at z′/p ≅ 0.05 for 

Mavg = 1.11. Since the film cooling jets coalesce near the airfoil suction side (shown in 

Figure 66), the discrete film cooling jet peaks are not distinguishable in this region. The 

reduced film cooling effectiveness close to the airfoil suction side shoulder is due to the 

SHV that prevents the coolant from completely reaching the airfoil. Moving away from the 

airfoil suction side, it can be seen that there is a zone of nearly uniform film cooling 

effectiveness (0.28 ≤  z′/p ≤ 0.55) for all blowing ratios.  

 

Pitch-averaged film cooling effectiveness (�̅�) 
Axial chord location 

(x/Cax) Mavg = 0.56 Mavg = 0.83 Mavg = 1.11 

0.219 0.235 0.242 0 

0.196 0.227 0.236 0.1 

0.184 0.204 0.237 0.2 

0.165 0.196 0.227 0.3 

0.15 0.181 0.211 0.4 

0.127 0.158 0.197 0.5 

0.102 0.13 0.173 0.6 

0.09 0.113 0.158 0.7 

0.08 0.097 0.14 0.8 
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Figure 95: Pitchwise film cooling effectiveness at 0% axial chord 

 

 Beyond z′/p ≅ 0.55, discrete film jet peaks start to appear due to the absence of 

streamwise flow acceleration. The discrete film cooling jets near the airfoil pressure side 

are absent at x/Cax = 0.1 (Figure 96) for Mavg = 0.56 but are visible for the other blowing 

ratios. Near the airfoil suction side, there is a considerable increase in the film cooling 

effectiveness between Mavg = 0.56 and Mavg = 1.11 with a maximum increase of ≅ 79% 

observed at z′/p ≅ 0.05.  
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Figure 96: Pitchwise film cooling effectiveness at 10% axial chord 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 97: Pitchwise film cooling effectiveness at 20% axial chord 
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 Due to the pitchwise pressure gradient, the coolant is moved to the airfoil suction 

side which is evident till x/Cax = 0.5. This “coolant accumulation effect” is higher for      

Mavg = 0.56,0.83 compared to Mavg = 1.11 due to the low momentum flux ratio                     

(Iavg = 0.35,0.77) which reduces the capability of the film cooling jets to influence the 

endwall secondary flow. At x/Cax = 0.2 (Figure 97), the discrete film jets are no longer 

visible for Mavg = 0.56,0.83,1.11. One reason for this is that part of the film cooling jets 

have coalesced and part of the coolant has been transported from the endwall by the PV 

and SHV. It is seen that the decay rate in the film cooling effectiveness at x/Cax = 0.3 

(Figure 98) for Mavg = 0.56 is steeper past z′/p ≅ 0.43. The discrete film cooling jets near 

the airfoil pressure side are not visible for any of the blowing ratios. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 98: Pitchwise film cooling effectiveness at 30% axial chord 
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 At x/Cax = 0.4 (Figure 99), the non-uniformity in the coolant coverage increases 

with most of the coolant present in the region close to the airfoil suction side (0.05 ≤  z′/p ≤ 0.4) for all the blowing ratios. The decay rate in the film cooling effectiveness beyond 

z′/p = 0.4 is similar between Mavg = 0.56,0.83,1.11. Moving downstream to x/Cax = 0.5, it 

is noted from Figure 100 that approximately 30% of the pitchwise distance near the airfoil 

pressure side has less than 11% film cooling effectiveness for Mavg = 0.56,0.83. At higher 

blowing ratios, this coolant deficit is low because of the film cooling jets’ increased 

momemtum that alters the size and location of the vortices thereby providing cooling to 

most of the pitchwise distance. At z′/p ≅ 0.5, there is ≅ 93% increase in the film cooling 

effectiveness between Mavg = 0.56 and Mavg = 1.11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 99: Pitchwise film cooling effectiveness at 40% axial chord 
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Figure 100: Pitchwise film cooling effectiveness at 50% axial chord 

 

 At x/Cax = 0.6 (Figure 101), it is noted that there is 13% or less film cooling 

effectiveness for 0.4 ≤  z′/p ≤ 0.95 in the case of Mavg = 0.56,0.83. A maximum increase 

(≅ 95%) in the film cooling effectiveness is noted at  z′/p ≅ 0.43 between Mavg = 0.56 and 

Mavg = 1.11. At x/Cax = 0.7 (Figure 102), about 50% of the region near the airfoil pressure 

side has 10% or less film cooling effectiveness in the case of Mavg = 0.56,0.83. Near the 

airfoil suction side, the highest film cooling effectiveness (≅ 0.21) occurs at z′/p ≅ 0.05 

for Mavg = 1.11.  
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Figure 101: Pitchwise film cooling effectiveness at 60% axial chord 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 102: Pitchwise film cooling effectiveness at 70% axial chord 
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 For the low blowing ratios (Mavg = 0.56,0.83), Figure 103 shows that ≅ 80% of the 

region near the airfoil pressure side has 10.6% or less film cooling effectiveness at          

x/Cax = 0.8. About 40% of the pitchwise distance near the airfoil pressure side has 13% or 

less film cooling effectiveness for Mavg = 1.11. 

 

 

 

 

 

 

 

 

 

 

 

Figure 103: Pitchwise film cooling effectiveness at 80% axial chord 

 

 In order to study the difference in the film cooling effectiveness along the various 

streamwise locations for a fixed average blowing ratio, Figures 104-106 provide the film 

cooling effectiveness for x/Cax = 0 to x/Cax = 0.8 for a specific average blowing ratio. The 

streamwise location, x/Cax = 0 is used as a reference to compare the film cooling 

effectiveness at the downstream locations.  

 For Mavg = 0.56 (Figure 104), the streamwise locations x/Cax = 0,0.1,0.2 exhibit 

negligible difference till z′/p ≅ 0.6. The discrete film jets are visible only at x/Cax = 0. Past 

SS PS 
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z′/p = 0.6, there is a significant decrease in film cooling effectiveness at x/Cax = 0.2 with a 

maximum drop of ≅ 93% occuring at z′/p ≅ 0.9. Moving downstream of the airfoil passage, 

the “coolant accumulation effect” is noted to be dominant for x/Cax = 0.3,0.4,0.5,0.6. The 

locations beyond x/Cax = 0.6 have negligible variation in film cooling effectiveness across 

the pitchwise distance between the airfoils. There is less than 12% film cooling 

effectiveness at these locations.  

  

 

 

 

 

 

 

 

 

Figure 104: Pitchwise film cooling effectiveness - case 1 

 

 The trend in film cooling effectiveness for Mavg = 0.83 (Figure 105) at x/Cax = 0 is 

similar to Mavg = 0.56. The streamwise locations x/Cax = 0.1,0.2 exhibit negligible 

difference compared to x/Cax = 0 till z′/p ≅ 0.74. Past z′/p ≅ 0.74, there is a significant 

drop in the film cooling effectiveness at x/Cax = 0.2 with a maximum decrease of ≅ 49% 

at z′/p ≅ 0.79. For the downstream locations between x/Cax = 0.3 and x/Cax = 0.6, the 

coolant persists for an increased pitchwise distance before decaying to less than 9% film 
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cooling effectiveness at z′/p ≅ 0.95. The streamwise locations beyond x/Cax = 0.6 have less 

than 10.3% film cooling effectiveness for at least 50% of the region near the airfoil pressure 

side. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 105: Pitchwise film cooling effectiveness - case 2 

 

 At Mavg = 1.11 (Figure 106), there is a noteable improvement in the film cooling 

effectiveness along the pitchwise distance with the lowest film effectiveness ≅ 14%.  The 

decay trend is very similar for the locations between x/Cax = 0.3 and x/Cax = 0.8. Past x/Cax 

= 0.6, there is less than 13% film cooling effectiveness for ≅ 30% of the region near the 

airfoil pressure side. 
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Figure 106: Pitchwise film cooling effectiveness - case 3 

Cooling Uniformity Coefficient 

For the first time in endwall film cooling studies, a cooling uniformity coefficient 

(CUC) (defined in chapter 6) is used in addition to the pitchwise film cooling effectiveness 

to quantify the uniformity in the film cooling. The normalizing parameter in Equation 6.17 

can be different in a real engine scenario depending on the target film cooling effectiveness 

value at a given streamwise location. The goal behind reporting the CUC is to provide a 

better representation of the local hot and cold spots on the endwall. The CUC results are 

shown in Figures 107-109. The CUC values close to the airfoil walls are not reported due 

to high uncertainty in the experimental data. 

 Since the pitch-averaged film cooling effectiveness decreases along the streamwise 

direction, it is necessary to terminate the reported CUC values when the pitch-averaged 

film cooling effectiveness approaches a very low value so that the CUC values are realistic. 

SS PS 
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For this purpose, the CUC values are reported in this study only for the airfoil axial chord 

locations which have �̅�(𝑥) ≥ 0.5 ∗ �̅�(𝑥 = 0). By connecting the CUC plot with the film 

cooling effectiveness contour (Figures 66-68), improved film cooling hole locations to 

achieve close to uniform film coverage can be obtained. 

 For Mavg = 0.56 (Figure 107), it can be observed that at x/Cax = 0, the CUC remains 

above 1 with slight variations (between 1.05 and 1.18) along the pitchwise direction 

between z′/p ≅ 0.28 and z′/p ≅ 0.59. This is the coalesced region of the film cooling jets 

5-12 near the airfoil suction side (Figure 66). At z′/p > 0.59, the film jets exhibit discrete 

behavior resulting in a pronounced variation of CUC. It can also be seen from Figure 66 

that part of jet 2 deflects to the suction side of the adjacent airfoil passage after interacting 

with the airfoil leading-edge. This decreases the film jet’s efficacy in the studied airfoil 

passage resulting in a lower CUC which can be related to the last peak near the airfoil 

pressure side in Figure 107. The CUC values at x/Cax = 0 are used as a reference to compare 

the downstream CUC values. At x/Cax = 0.1, no noticeable change is seen in the CUC.  

     It is observed that the CUC is less than unity for ≅ 40% of the region near the airfoil 

pressure side for x/Cax > 0.2. Moving downstream, x/Cax = 0.3 exhibits higher non-

uniformity in film cooling due to the pronounced coolant accumulation effect. There is also 

a significant shift in the over-cooled region towards the airfoil suction side. This behavior 

is due to the movement of the PV separation line which acts like a virtual wall preventing 

the coolant from reaching the airfoil pressure side. At x/Cax = 0.4, the peak CUC value 

remains unchanged (≅ 1.4) from x/Cax = 0.3, but the under-cooled area increases. There 

are two possible reasons for this: (i) coolant removed from the endwall due to the PV action 

and (ii) narrowing of the passage area unaffected by the endwall flow separation. The CUC 
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variation is augmented at x/Cax = 0.5 with the maximum and minimum values being 1.47 

and 0.65 approximately. There is a steep decrease in CUC from 1.46 at z′/p ≅ 0.14 to 0.79 

at z′/p ≅ 0.52, beyond which the decay becomes gradual. 

 

 

 

 

 

 

 

Figure 107: Cooling uniformity coefficient - case 1 

 

 Increasing the average blowing ratio to Mavg = 0.83 (Figure 108) results in 

negligible difference in the CUC between x/Cax = 0,0.1,0.2. For locations downstream of 

x/Cax = 0.2, ≅ 35% of the region near the airfoil pressure side has CUC less than 1, 

indicating inadequate uniformity in film cooling. There is a slight increase in the CUC at 

x/Cax = 0.3 with a maximum of ≅ 1.29 at z′/p ≅ 0.19. The CUC drops to ≅ 0.6 close to the 

airfoil pressure side. The downstream locations (x/Cax = 0.5,0.6) exhibit similar trends with 

a drastic variation in CUC from the airfoil suction side to pressure side.  

 

SS PS 



171 

 

      

 

 

 

 

 

 

 

 

 

 

Figure 108: Cooling uniformity coefficient - case 2 

 

 When the average blowing ratio is increased to Mavg = 1.11 (Figure 109), it is 

observed that there is negligible variation in CUC between x/Cax = 0,0.1,0.2,0.3 at most of 

the pitchwise locations. The CUC is less than 1 for ≅ 40% of the region near the airfoil 

pressure side for x/Cax > 0.2. A close to stable CUC region is noted between z′/p ≅ 0.2 and 

z′/p ≅ 0.57 for x/Cax = 0,0.1,0.2. The locations downstream of x/Cax = 0.4 exhibit an 

increase in the CUC between z′/p ≅ 0.05 and z′/p ≅ 0.16 with a maximum value of 1.32. 

Past z′/p ≅ 0.16, there is no noticeable change in CUC compared to the upstream locations.  

  

 

 

SS PS 



172 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 109: Cooling uniformity coefficient - case 3 

 

 

Pitch-averaged Film Cooling Effectiveness 

 In order to quantify the average film cooling efficiency along the streamwise direction, 

the pitch-averaged film cooling effectiveness is reported in Figure 110. The film cooling 

effectiveness decay rate is nearly the same for Mavg = 0.56, 0.83 at all x′/D locations. 

Between Mavg = 0.56 and Mavg = 0.83, the film cooling effectiveness is quantitatively same 

at all x′/D locations. The lowest blowing ratio (Mavg = 0.56) is used as a reference case for 

comparing with the higher blowing ratio cases. Elevating the blowing ratio to Mavg = 1.11 

results in a substantial increase in the film cooling effectiveness with the maximum 

(≅16.4%) occuring at x′/D ≅ 23. Although jet lift-off was seen for the film cooling jets 

near the airfoil pressure side for Mavg = 0.83,1.11, this is not explicitly observed in the 

pitch-averaged representation. This reinforces the essentiality of studying the local film 
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cooling effectiveness distribution. For Mavg = 1.11, the decay rate is less steep compared 

to Mavg = 0.56, 0.83 till x′/D ≅ 18, after which, the decay trend is similar to the low blowing 

ratio cases.  

 

 

 

 

 

 

 

 

 

 

Figure 110: Pitch-averaged film cooling effectiveness 

Comparison with Published Literature 

Among the published literature in cascade film cooling, a wide variation is observed 

in the airfoil and endwall geometries, flow conditions, film cooling hole location, spacing 

between film cooling holes and the definition of blowing ratio. These differences make it 

very difficult to establish a fair comparison between the results of the present study and the 

published literature for the pitch-averaged film cooling effectiveness. For this reason, no 

literature comparison is reported in the present study.  
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Connection with Real Engine Endwall Film Cooling Design 

The present study provides insight into the interaction between the coolant film 

injected upstream of the airfoil leading-edge using discrete cylindrical holes and the 

endwall secondary flow. The connection between the surface flow and the three-

dimensional flow field is established. Unlike a real engine, the density ratio, combustor 

exit thermal and hydrodynamic profiles, shock waves in the airfoil passage, leakage flows 

and turbulence intensity levels could not be replicated in the present study due to 

constraints in experimental facilities.  

The scientific methodology followed in the current investigation to (i) connect the 

surface flow to the three-dimensional flow field, (ii) quantify the film cooling non-

uniformity, (iii) relate the hole-by-hole blowing ratio to the film cooling jet behavior, and 

(iv) use computational results to explain the coolant-mainstream interaction in regions 

where experimental data is not available can be adapted for analyzing a real engine endwall 

film cooling case. 
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CHAPTER 10: CONCLUSIONS 

Unsteady Passing Wake Effect on a Pitchwise-curved Surface  

 In the first part of the research study, the effect of unsteady passing wakes on heat 

transfer was experimentally investigated on a pitchwise-curved surface representing an 

endwall without airfoils with a wall-normal wake-rod orientation. Discrete film cooling 

jets were injected at 35º to the test surface with no compound angle. Eliminating the airfoils 

provided an opportunity to study the effect of passing wakes in isolation. Coolant to 

mainstream mass flux ratios between 0.25 and 0.75 were tested at two wake Strouhal 

numbers (S = 0.15, 0.3) along with the study of passing wake effect without film injection 

on heat transfer. The density ratio was held approximately constant at 1. Some of the key 

findings include: 

1. Passing wakes augment the heat transfer coefficient at both wake passing 

frequencies (S = 0.15, 0.3). The highest increase in the heat transfer augmentation 

solely due to the unsteady passing wakes was measured to be 7.6% approximately 

at S = 0.3. 

2. A combination of film injection and unsteady passing wakes resulted in a maximum 

pitch-averaged and centerline heat transfer augmentation of ≅ 28% and 31.7% 

respectively, relative to the no wake and no film injection case. 

3. The maximum increase in the heat transfer augmentation (≅ 4.5%) between z/D = 

0 and z/D = 1.5 occurred at M = 0.75, S = 0.3 and at x/D ≅ 2.5. This rise in the heat 

transfer augmentation is conjectured to be due to the interaction between the film 

jets.  
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4. The passing wake-induced velocity perturbations are considered to be one of the 

primary contributors towards the increased heat transfer augmentation. 

Endwall Film Cooling in a High Subsonic Annular Cascade 

     In the second part of the research study, the interaction between endwall secondary flow 

and coolant film was experimentally investigated using surface oil visualization and film 

cooling effectiveness measurements in a high subsonic annular cascade. Coolant was 

injected using discrete film holes inclined at 30° to the inner endwall. The average blowing 

ratio was varied between 0.56 and 1.11 with the density ratio held approximately constant 

at 0.89. Computations were performed to predict the individual film cooling hole discharge 

coefficients, local blowing ratio, temperature drop across the film cooling coupon and the 

streamlines of coolant and mainstream flow. Some of the pertinent findings include: 

1. The saddle point movement exhibited close to a linear trend with increasing average 

blowing ratio. The highest shift (≅ 47% relative to Mavg = 0) was observed at      

Mavg = 1.11. 

2. A maximum coolant temperature drop of ≅  9.34°C was observed at Mavg = 1.11. 

It is extremely important to account for the coolant temperature drop in film 

effectiveness measurements. 

3. Due to the induced incidence effect, the effective number of film cooling jets in the 

studied passage was reduced.  

4. It is extremely important to account for the induced incidence effect while 

determining film cooling hole locations in cascade experiments so that the 
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individual film cooling hole mass flow rate and the film cooling jet trajectory are 

representative of a single airfoil passage. 

5. The horseshoe vortex was augmented by coolant injection at locations upstream of 

s/C = 0.16. 

6. The local mainstream static pressure and endwall separation lines have a profound 

effect on the film cooling hole mass flow rate and the jet trajectory. 

7. The variation in the discharge coefficients between the film cooling holes decreases 

with increasing average blowing ratio. 

8. A maximum variation of ≅ 10.7% was observed in the blowing ratio between hole-

1 and hole-6 at Mavg = 1.11. The local blowing ratio is needed to predict individual 

film cooling jet behavior. 

9. The variation in the local blowing ratio between the film cooling holes causes slight 

jet lift-off for film cooling jets-2,3 at Mavg = 0.83 and significant jet lift-off at Mavg 

= 1.11 as inferred from the local film cooling effectiveness distribution.  

10. Film coverage increases with average blowing ratio but a large variation in the 

coolant distribution is observed at x/Cax > 0.2 due to the coolant accumulation 

effect. 

11. As the average blowing ratio increased, the distortion of the coolant streamlines by 

the endwall secondary flow was reduced. The coolant sustained its trajectory better 

at higher average blowing ratios. 
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CHAPTER 11: FUTURE WORK 

 The potential future work options for the cascade film cooling study are discussed 

in this chapter. 

Airfoil Passage Film Cooling Measurements 

 As a continuation work of the endwall film cooling measurements (reported in 

Chapter 9), passage film cooling measurements will be performed for airfoil passage-3. 

The location of the film cooling holes inside the airfoil passage are very important since 

the pitchwise pressure gradient significantly alters the static pressure on the endwall. After 

reviewing the relevant published literature on airfoil passage film cooling, it was decided 

to orient the film cooling holes such that their exits followed the iso-Mach line for a given 

row of holes. This configuration results in a uniform blowing ratio and therefore higher 

cooling uniformity as reported by Harasgama and Burton [1] and Knost and Thole [2]. 

Positioning of Film Cooling Holes on Iso-Mach lines 

 In order to obtain the static pressure distribution on the endwall, the PSP technique 

(see Chapter 4) was used. The isentropic Mach number corresponding to the measured 

static pressure was calculated using the isentropic relation given in Equation 11.1. 𝑃𝑜𝑃 = [1 + 𝛾 − 12  𝑀𝑎2] 𝛾𝛾−1                                          (11.1) 

 The isentropic Mach number distribution was superimposed on the endwall along 

with the surface streamlines obtained from surface oil visualization. While the former 
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provides the local velocity for the near endwall flow, the latter gives the local mainstream 

flow direction which can be used to determine the orientation of the film cooling hole. An 

adapter was used to connect the endwall to the coolant plenum. Few essential design 

guidelines were followed before arriving at the film cooling hole locations. Most of the 

design guidelines were based on published literature and manufacturing limitations. The 

design guidelines are given below. 

1. The film cooling hole should have minimal angle relative to the local mainstream 

flow to avoid increased aerodynamic losses. 

2. In order to avoid wall effects, the film cooling hole should be located away from 

the coolant plenum walls.  

3. The inclination angle of the film cooling hole should be 35° or less to avoid jet lift-

off at low momentum flux ratios.  

4. The film cooling hole pitch should be representative of typical engine endwall film 

cooling configuration. 

5. There should be adequate access to machine the film cooling holes on the endwall.  

6. Since there is significant coolant deficit near the airfoil pressure side (as observed 

from film cooling upstream of the leading-edge), the passage film cooling holes 

should be located near the airfoil pressure side.  

7. The film cooling holes should be positioned away from the airfoil throat region to 

avoid large mainstream density variations. 
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 Considering the aforementioned guidelines, the hole locations were selected. The 

isentropic Mach number distribution superimposed on the endwall along with the film 

cooling holes is shown in Figure 111. The calculated values of the mainstream isentropic 

Mach number at the exit of each film cooling hole and the specifications of the passage 

film cooling hole geometry are given in Table 12. 

Figure 111: Isentropic Mach number contour superimposed on passage film cooling holes 
 

 

Table 12: Specifications of airfoil passage film cooling holes  

Row no. Hole no. Mais,e L/D p/D 𝛼 (deg) 𝛽 (deg) 

1 1 0.33 21.7 4 35 35 

 2 0.33 21.8 4 35 35 

2 1 0.4 22.6 4 35 35 

 2 0.4 22.6 4 35 35 

3 1 0.47 22.3 4 35 35 

 2 0.47 22.3 4 35 35 

 3 0.47 22.3 4 35 35 

4 1 0.54 22.3 4 35 35 

 2 0.54 22.3 4 35 35 

 3 0.54 22.3 4 35 35 
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Experimental Setup  

 The cascade tunnel will be operated in an open-loop configuration for passage film 

cooling measurements. The setup for the coolant flow is identical to the cascade film 

cooling measurements (see Chapter 5). The blowing ratios for the experiments will be 

selected based on the range of the thermal mass flow meter and the maximum available 

mass flow rate from the compressed air supply. 

Machining of Passage Film Cooling Holes 

  After the film cooling hole locations were ascertained, a CAD model of the endwall 

with the passage film cooling holes was prepared. With a small diameter (2 mm) and a 

large L/D (> 20), it was a challenge to arrive at a suitable drilling procedure for the film 

cooling holes. The machining of the film cooling holes was performed by House of Plastics 

Unlimited (Orlando, Florida). Due to the large L/D (> 20) of the film cooling holes, the 

drilling tool was most likely to get over-heated during the machining process since the 

removed material gets accumulated on the drilling tool.  

 After several hours of discussion with House of Plastics Unlimited, it was decided 

to perform the entire drilling process inside a box of coolant fluid (typically soap water) 

covering the airfoil passage-3. The coolant fluid was expected to keep the temperature of 

the drilling tool low. The machined inner endwall with the passage film cooling holes is 

shown in Figure 112. Based on the measurements of the machined film cooling holes, the 

tolerance on the film cooling hole spacing was found to be ±0.1 mm and the film cooling 

hole diameter had negligible difference from the nominal value. 
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Figure 112: Machined passage film cooling holes on inner endwall 

Endwall Heat Transfer Measurements 

 Due to the significant influence of the endwall secondary flows on the surface flow 

pattern, the heat transfer coefficients on the endwall exhibit large variations from the 

pressure side to the suction side of the airfoil inside the airfoil passage [3]. In addition to 

this, film injection can also alter the heat transfer coefficient distribution on the endwall 

depending on the momentum flux ratio. Investigating the endwall heat transfer under high 

subsonic flow conditions with a maximum isentropic throat Mach number of ≅ 0.68 can 

provide close to engine-realistic heat transfer distribution. This is the motivation behind 

the second part of the future work. 

 The density ratio will be maintained approximately constant at 1 for all the 

experiments. The test matrix for the proposed experiments is given in Table 13. The coolant 

flow setup will be similar to that described in Chapter 5 of this dissertation without the in-
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line heaters to elevate the temperature of the coolant. The foil heater technique used in the 

unsteady passing wake study will be adapted (with some modifications to the heater layout) 

to provide a constant heat flux boundary condition on the endwall. The heaters are made 

of stainless steel (type 321) with thickness ≅ 51μm, electrical resistivity and thermal 

conductivity at 25˚C being 75×10-8 Ohm-m and 14.12 W/mK respectively. For obtaining 

the local temperatures on the endwall, the TSP technique will be used.  

 

Table 13:  Proposed test matrix for endwall heat transfer measurements 

 

 

 

 

Heat Flux Calculation 

 The heat flux calculation was performed based on two values of typical heat transfer 

coefficients observed in an airfoil passage (obtained from preliminary CFD simulations) 

and considering the constraints in the available experimental facility. The heat flux 

calculations are shown in Table 14. Based on the resistance needed from the heater foil that 

spans the airfoil passage, the cross section and length of the heater foil was selected for a 

fixed current input. Due to the complex profile of the airfoil passage, a serpentine layout 

of the heater foil was necessary. The drawing of the foil heater to fit the airfoil passage-3 

is shown in Figure 113. 

 

Cooling 

method 
Measurement Mavg Iavg DR p/D L/D 

Discrete 

film 

(Cylindrical 

hole) 

Heat transfer 

0 0 

1 3.55 17 

0.56 0.31 

0.83 0.69 

1.11 1.23 

1.38 1.9 
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Table 14: Heat flux calculation for endwall foil heater 

 

Figure 113: Heater layout for airfoil passage-3 

Heater Foil Cutting 

 After exploring several options to cut the foil heater to obtain a serpentine layout 

(shown in Figure 113), abrasive water jet machining was selected due to its low cost and 

reasonable accuracy (± 0.25 mm). As a preparatory process for the heater foil cutting, two 

fixture plates (drawing shown in Figure 114) were machined out of aluminum to enclose 

multiple heater foils that will accommodate the serpentine heater layout with some 

tolerance on the circumference for the fasteners. Each heater foil was attached to a double-

sided Kapton tape (shown in Figure 115) so that the cut foil can later be affixed to the 

h 

(W/m2K) 

Current 

(Amps) 

Tw-Tr 

(°C/K) 

Area 

(m2) 

q" 

(W/m2) 

thickness 

(m) 

width 

(m) 

resistance 

(Ohm) 

Length 

(m) 

500 6.8 35 0.00939 17500 51×10-6 0.004 3.554 0.967 

700 8.1 35 0.00939 24500 51×10-6 0.004 3.506 0.969 
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endwall. In order to avoid shifting of the heater foils during the cutting process, the two 

fixture plates were bolted around the circumference with appropriate spacing between the 

bolts. The fixture plates prior to the cutting process are shown in Figure 116. 

 

 

 

 

 

 

 

 

Figure 114: Drawing of fixture plate for heater foil cutting 

 

 The heater foil cutting (abrasive water jet machining) was performed by Doudney 

Sheet Metal Inc., (Orlando, Florida). Figure 117 shows the heater foil after the water jet 

machining process. Due to the expansion of the water jet after it exits the nozzle, the last 

few foils (along the direction of the water jet) exhibited large deviations from the drawing 

dimensions. These foils will not be used for the heat transfer experiments.  
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Figure 115: Heater foil with double-sided Kapton tape 

 

 

 

 

 

 

 

Figure 116: Fixture plates with heater foils before cutting 
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Figure 117: Heater foil after cutting 

Experimental Setup  

 The cascade tunnel will be operated in an open-loop configuration for heat transfer 

measurements. While operating in open loop, the mainstream temperature reaches steady 

state at 35˚C approximately. The serpentine layout of the foil will be adhered to the endwall 

using Kapton tape to hold the heater in place. The Kapton tape is made from Kapton 

polyimide film with silicon adhesive. The thickness ranges between 0.025 mm to 0.127 

mm and they are compatible over a wide temperature range (-269°C to 400°C) with a 

thermal conductivity of ≅ 0.5 W/mK. The lowest thickness Kapton tape will be used with 

the foils.  The usage of Kapton tape provides good electrical isolation (resistance ≅ 1×1012 

ohms) from the plexiglass substrate. The ends of the heater foil will be connected to copper 

bus bars to which a variable alternating current voltage is applied. By supplying an 
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appropriate potential difference across the copper bus bars, the required power input to the 

heater or the heat flux is obtained.  

Foil Heater Technique 

 In order to measure the endwall surface temperature, the heaters are painted with 

TSP (see chapter 4 for the TSP technique). Three to four thermocouples are sandwiched 

between the Kapton tape and the heater in order to measure the temperature of the foil. The 

foil temperature needs to be closely monitored because the plexiglass substrate (endwall) 

can change optical properties if the temperature exceeds 80°C. The foil temperatures are 

also used to validate the TSP temperatures. The tunnel is allowed to reach steady state by 

monitoring the mainstream and heater foil temperature before the TSP images are taken. 

The foil heater experimental setup is shown in Figure 118. The heat transfer coefficient is 

defined in Equation 11.1. 

ℎ = 𝑞𝑤′′(𝑇𝑤 − 𝑇𝑟)                                                              (11.1) 

 Where, 𝑇𝑤 is the endwall surface temperature with heat flux input and 𝑇𝑟 is the 

recovery temperature. The recovery temperature is measured on the endwall surface with 

the mainstream flow turned on and the voltage to the foil heater turned off. With 

introduction of film cooling, the heat transfer coefficient is calculated using the same 

definition given in Equation 11.1. 
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 The heat transfer augmentation in the presence of film cooling is defined in 

Equation 11.2. 

ℎ𝑎𝑢𝑔 = ℎ𝑓ℎ𝑜                                                                  (11.2) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 118: Foil heater measurement technique 
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