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Abstract

Advanced aerospace materials require extensive testing and characterization to antic-

ipate and ensure their integrity under hostile environments. Characterization methods

utilizing synchrotron X-Ray diffraction and spectroscopy can decrease the time required

to determine an emerging material’s readiness for application through intrinsic infor-

mation on the material response and failure mechanisms. In this study, thermal barrier

coating samples applicable to turbine blades of jet engines were studied using Raman and

Photoluminescence spectroscopy as well as Synchrotron X-ray diffraction while Kevlar R©-

based fiber composites applicable to ballistic resistant armor were studied using Raman

spectroscopy to investigate the mechanical state and corresponding damage and failure

mechanisms.

Piezospectroscopic studies on the stress state of the thermally grown oxide (TGO)

within the thermal barrier coatings, on a hollow cylindrical specimen, provided results

that indicate variations within the TGO. Comparison of measured photo-luminescence

spectra of the specimen before and after long duration thermal aging showcases the

development of the system and the initiation of micro-damage. Raman spectroscopy

performed on Kevlar R© ballistic composites with nanoscale additives, presented insight

into the additives’ role in load transfer and damage propagation through a comparison

of the shift in optical spectra to that of the pristine fibers.
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The results presented herein utilize changes in the measured emission from these non-

destructive testing techniques to link the phenomena with material response. Techniques

to optimize imaging and spectral collection are addressed as well. The findings will

advance the use of the techniques in the development of aerospace materials, providing

a more complete understanding of land and aircraft turbine blade coatings, and fiber

composite response to complex loading.
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“Every formula which expresses a law of nature is a hymn of praise to God.”

- Maria Mitchell
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CHAPTER 1
INTRODUCTION

1.1 Motivation and Background

Nondestructive testing methods have been a necessity for industrial applications for

nearly a century. [107] At its inception, visual inspection was required in an effort to

avoid mechanical failures due to fatigue and oxidation [107, 33]. In this time, novel

techniques have been pioneered to provide access to many forms of intrinsic information

from structures and materials. However, the true potential of many of these techniques

has yet to be actualized. To probe materials and mechanical systems, a variety of meth-

ods have been employed including radiation, sound waves, vibrations, and magnetic

waves. [13, 42, 143, 91] The common applications have included material identification,

material and joint integrity, crystal grain growth, and visual qualitative identification of

damage. [104, 19, 48] These complex techniques require further research to continue to

unlock their vast potential to reveal details on the mechanics of material response. The

study herein will explore piezospectroscopic and diffraction techniques which probe the

molecular response of materials, in an effort to link the micro phenomena to the bulk

response. This provides novel information for materials and composites which benefits

the development of emerging aerospace materials while ensuring their integrity under the

extreme conditions of operation.
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A great deal of research has been conducted to look at materials and mechanical

equipment outside their normal operation regimes due to the complexity of testing under

operational conditions. Taking the material from its service conditions to the laboratory

allows for inspection techniques, providing the capability to assess the effects of oper-

ational environments on structures and materials. The effects of loading are observed,

while the mechanisms of damage or fatigue are generally deduced from these observa-

tions. Herein, the studies will showcase the ability to conduct measurements to consider

the dynamic response of the structures and materials under loading conditions and the

residual states following the loading conditions.

1.1.1 Applications of Piezospectroscopy and Synchrotron Radiation for Ma-

terial Characterization

Aerospace applications require very high design tolerance, long lifetimes, and minimum

weight to assure their functionality. As a consequence, elaborate and highly tailored

composites have been designed for their unique role in the mechanism of vehicle’s design.

Multi-layer coatings, fiber composites, ceramic matrix composites, and metal matrix

composites have all been uniquely designed for various applications. [64, 88, 97, 112]

For both aircraft thrust and land based power generating engines, aerodynamic tur-

bine blades are employed to extract or impose energy in the flow. The increasing high

temperature combustion gases required to drive these powerful engines have continued

2



to raise the efficiency of the system. [10] Recently, more work has been done to increase

the inlet temperatures to gain additional efficiency. [29, 89, 82] This is due in part that

a mere 1 percent increase in efficiency can save $200,000 in fuel cost per year for a gas

powered turbine. [102]

Thermally Barrier Coatings began their development almost 50 years ago to mitigate

the high temperature effects on the turbine blade superalloys. [77, 76, 18] Operational

temperatures have since been exceeded in order to increase the overall performance of

the engine. To do so, thermal barrier coatings have been employed to separate the un-

derlying load bearing metal from the high temperature combustion gases. This imposes

a thermal gradient over the multi-layer coating system, protecting the substrate. The

thermal gradient has allowed for longer use of turbine blades, increased operating tem-

peratures, and increased reliability. [98, 35, 25, 141, 8, 47, 7] A schematic representation

of this is detailed in Figure 1.1. However, if the coating should fail, the extreme tem-

peratures can quickly damage the turbine blade. In industry, these downtimes lead to

costly financial penalties. Of key interest to the aerospace community is to determine

the failure mechanisms responsible for the different types of failure, commonly seen in

application. [61, 58, 106, 95, 75, 93, 15, 12, 16, 23, 24, 9] Utilizing these testing methods

this study will investigate the effects of long duration aging on thermal barrier coatings

to identify failure and damage mechanics, and apply the methods to additional aerospace

composites.
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Figure 1.1: Schematic of the Loading Conditions Applied to a Turbine Blade in Appli-

cation

The thermal barrier coating system is traditionally made of a ceramic top coat and

a metallic bond coat adhered to the substrate superalloy. From the onset of the coating

process, a thin thermally grown oxide of alumina develops between the bond coat and

ceramic top coat. This layer, which grows with time under thermal loads, is effective

for halting the transport of oxygen deeper into the multi-layer system. Investigation has

been conducted into understanding the mechanics of growth in the thermally grown oxide

and how that affects the overall performance and degradation of the system. [45, 57, 60,

67, 3, 47, 108] Damaged turbine blades are commonly observed to have coating damage

4



and spallation on areas of curvature. [31] This leaves the superalloy substrate vulnerable

to the high temperature combustion gases, leading to ultimate failure of the blade.

Previous work has been conducted to identify how the thermally grown oxide behaves

under cycling from its coating till its eventual failure. [60, 68, 46, 37, 96, 26] Christensen

et al. and Nychka et al. showed ex-situ Photoluminescent spectroscopy studies of the

oxide layer for damage quantification and determining the residual stress state. The

measurements were conducted for isothermal loading conditions. It has been observed

that the loading conditions during the aging process have an effect on the results found

in the ex-situ study. [65, 100, 125] Additional studies have also shown variations due to

the sample’s geometry [115, 100] and the influence of induced cooling gradients [113, 40,

14, 142]. Capturing the effects of realistic geometries and applied loading conditions is

critical to developing a complete understanding of thermal barrier coatings’ performance

and failure.

Raman Spectroscopy is another powerful tool that has been used to investigate vibra-

tional energy in Raman active materials. Much work has been done to fingerprint material

composition and identify residual stress from manufacturing. [74, 110, 119, 124, 32, 34, 90]

This work has been effective in providing information during material synthesis, follow-

ing high temperature, and for determining the residual stress state of some aerospace

materials. [39, 110, 85, 83] This study investigates the use of Raman Spectroscopy to

investigate the top most layer of the Thermal Barrier Coating System, the ceramic top

coat. Classical Thermal Barrier Coatings have utilized Yttria-Stabilized Zirconia which

5



has a known characteristic optical spectra. One of the aims of this work is to apply

these non-invasive techniques to identify system wide effects of thermally grown oxide’s

development by using spectroscopy on the ceramic top coat. The oxide may be scanned,

as the columnar structure of the ceramic top coat produced by Electron-Beam Physical

Vapor Deposition is semi-transparent to visible light. However for layers deeper in the

coating system, different techniques are needed in order to penetrate the layers.

X-Ray diffraction is a technique that extends the capability of investigating the Ther-

mal Barrier Coating system. Common lab equipment has produced interesting data on

the material using backscattering methods including material identification for compos-

ites and changes of material phase following high temperature holds. [140, 66, 22] The

lack of depth penetration and the limitations of 1D detectors have kept this technique

from being fully realized for optimum testing. [55] Increases in energy and throughput,

coupled with advances in detectors and optics, have led to even more effective research

methods. X-Ray diffraction measures changes in the spacing of the crystal lattice planes,

of which a measurement of strain can be collected from this Angstrom deviation of the

crystalline lattice spacing. [37, 32, 62, 36]

This work will utilize synchrotron X-Ray diffraction to identify the in-situ strain

profile of a complex geometry Thermal Barrier Coating and superalloy substrate with

realistic imposed loading conditions to more completely understand the performance and

failure mechanisms in cycle.
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1.2 Overview of Research

An examination of non-destructive testing techniques for application in determining ma-

terial readiness for commercial application, providing in-situ measurements for remote

testing, and non-invasive examinations of sensitive equipment is of great interest to both

industry and the research community. In environments deemed too harsh or simply in-

accessible for human measurement, novel methods for identifying damage and predicting

failure are to be explored. Analysis of material properties and loading response under

working conditions can provide valuable information for advancing novel material’s ap-

plication into industry. Currently a lack of material properties and response for complex

geometry and realistic loading conditions limits our understanding of failure mechanisms

and lifetime expectancy for aerospace materials. Herein a discussion of the motivation

behind the research is discussed, aimed at gas turbine blades and advanced fiber com-

posites. An overview of non-destructive testing techniques will also be developed. In

Chapter 2 an introduction to the theory and measurement methods is detailed, including

Raman Spectroscopy, Photoluminescence Spectroscopy, and Synchrotron X-Ray Diffrac-

tion techniques. Data analysis and fitting procedures for developing strain and stress

profiles and identifying damage is also outlined. The specimen materials, geometry, and

experimental setup are detailed in Chapter 3. Specimen design and manufacturing is

presented, and material properties and methodology of loading and measurements tech-

niques are described. A combination of non-destructive testing techniques on the selected
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materials is discussed. Results of the piezospectroscopic studies on thermal barrier coat-

ings are presented in Chapter 4, including a comparison of findings from the early cycled

specimen versus the aged specimen. In Chapter 5, a discussion of results of the X-Ray

diffraction studies of the as coated Thermal Barrier Coating System is presented. The

results of the experiments conducted on the Kevlar R© ballistic panels and the effects

of matrix additives is detailed in Chapter 6. In Chapter 7 the conclusions and future

outlook of these non-destructive testing methods will be discussed.
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CHAPTER 2
PIEZOSPECTROSCOPY AND DIFFRACTION METHODS

2.1 Piezospectroscopy

Piezospectroscopy is a noninvasive technique that investigates changes in spectral re-

sponse of the material with stress, under laser excitation. The molecular structure

and constituents of the material may induce scattering or luminescence resulting in a

characteristic optical spectra. Of particular focus for material study are two classes of

piezospectroscopy, Vibrational and Photoluminescence spectroscopy. This research ex-

plores the techniques of Raman and Photoluminescence spectroscopy for the investigation

of Thermal Barrier Coatings and advanced aerospace fiber composites. The ability to

link the variations in spectral emissions captured by the techniques with the material’s

properties and resulting behavior allows for advanced material characterization and the

determination of material response to realistic complex loading conditions.

2.1.1 Photoluminescence Spectroscopy

Photoluminescence Spectroscopy is an optical method of which an excitation source ex-

cites the electron cloud of a material resulting in the emission of new photons with a

given wavelength. The excitation raises electrons to a higher energy state, and upon

their return to the initial or ground state this results in the emission of photons. This
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was originally described by the Rydberg formula in Equation 2.1

1/λ = R(1/n2

1 − 1/n2

2) (2.1)

where λ represents the wavelength, R is the Rydberg constant, and n1 and n2 are

integers with n1 being the greater. [73]

In the case of α-alumina, Chromium3+ ions are present as a doping agent, either

through material processing or through alloying. Even with trace concentrations, 0.01%

the characteristic optical spectra for chromium doped alumina is observed.

The change in energy states due to excitation of the Chromium3+ ions for α phase

alumina is presented in Figure 2.1 below.

Figure 2.1: Photoluminescence Spectroscopy Theory Relating Excitation to Resulting

Characteristic Optical Spectra

Photoluminescence spectroscopy is highly effective for investigating the thermally

grown oxide in Thermal Barrier Coating systems coated by Electron Beam-Physical Va-
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por Deposition method. By linking the optical phenomena with the material behavior

mechanisms, the stress state, damage response, thermal response, and material compo-

sition can be investigated. [80, 136, 92, 117, 26, 52, 44] This potential has also initiated

research in the development of this material as stress-sensitive embedded sensors with

application in structural health monitoring for bridges, trusses, railroad tracks, aircraft

joints, and other aerospace grade composites. [27, 121, 122]

2.1.2 Raman Spectroscopy

The second class of piezospectroscopy utilized in this study is vibrational piezospec-

troscopy. Raman Spectroscopy results from the atom or molecule scattering the excita-

tion photons. In the process, the electron briefly jumps to an unstable virtual energy state

due to the increased vibrational and rotational energy provided by the excitation. The

electron falls to its original ground state, resulting in the characteristic spectra as a result

of inelastic scattering and a reduction of energy. [127] This reduction of energy results

in a change of wavelength. From this characteristic optical spectra, much information

can be gleaned about the probed material. [6] An overview of this process is presented in

Figure 2.2. Materials which have bonds that experience symmetric stretching or result

in a change of polarizability indicates the material to be Raman active. [94]
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Figure 2.2: Raman Spectroscopy Theory Relating Excitation to Resulting Characteristic

Optical Spectra

2.1.3 Collection Methods

In this work, a Princeton Instrument Acton Series 2150 spectrometer with a 1200 g/mm

grating was attached to a fiber optic probe to collect piezospectroscopic readings. The

Charged Coupling Device (CCD) resolution was approximately 20 µm per pixel. To

calibrate, a Ne-Ar calibration source was utilized to match the observed spectra with

the known reference spectra. A green 532 nm diode laser with approximately 18 mW

of excitation power was used to conduct the piezospectroscopic studies. The resolved

optical data was collected by the CCD and viewed through the accompanying LightField

software.

12



2.1.4 Fitting Methods and Analysis

Pre-processing of the data was initiated to separate the map into discrete spectra for each

measurement location. Following this separation process, the data was ready to be fit

with a numerical equation. To facilitate the fitting and analysis of the piezospectroscopic

data, an in-house gradient based pseudo-Voigt program was utilized with a least squares

regression procedure. This analysis was performed using a Matlab-based algorithm. To

fit the region of interest, the curves were truncated to include the doublet and the edge

tails. Further, a linear baseline was removed to eliminate background fluorescence. To

fit the characteristic doublet of α-alumina, two pseudo-Voigt were summed for fitting the

convoluted peaks. Raman data was fit with a similar program utilizing a pseudo-Voigt

function with least squares regression.

Upon arriving at a good initial approximation, the raw data was then fit with the

numerical approximation. The fit peaks were then brought to the mapping program

which generated high resolution contour maps of the fit peak location, the deviation

from a zero stress reference peak, and the resulting stress profile.

2.2 Synchrotron Radiation

Synchrotron Radiation has been used for material characterization due to its high energy

affording throughput transmission and Angstrom scaled resolution. Further the through
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transmission diffraction method is preferred, as high energy X-rays are biased for smaller

angles and reflection would reduce the sampled depth. [72, 128, 135] High energy X-

Ray diffraction can be employed for studying several material properties and responses.

These include phase identification, grain size, strain profiles, crystallographic changes,

and thermal expansion. [116, 120, 123, 114, 139, 86]

2.2.1 X-Ray Diffraction Techniques

An overview of the fundamentals of Strain Analysis is presented in Figure 2.3. In Fig-

ure 2.3A, an overview of a synchrotron X-Ray source is detailed. X-Rays are generated

through a linear accelerator with supporting booster ring. Photons are collected in the

lengthy storage ring before being accessed by the user by a bending magnet or insertion

device. In Figure 2.3B the principle behind Bragg‘s Law is shown. Braggs Law expresses

the governing equation of the scattering of photons due to a crystal lattice. This scat-

tering is due to the nature of photons being deflected by the charged electron cloud, and

passing through the keyhole lattice spacing of the crystallographic planes. [28] Bragg‘s

Law is presented in Equation 2.2.

2dsin(θ) = n/λ (2.2)
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Figure 2.3: Fundamentals of X-Ray Diffraction: A) Schematic of Synchrotron Light

Source B) Bragg’s Law Relating Crystalline Planes to Diffraction Angle C) Debye-Scher-

rer Rings Collected by a 2D Area Detector D) Strain Curve Fit for a Single Measurement

Also represented in Figure 2.3C, is an example of the collected Debye-Scherrer rings

which result from diffraction. The rings are a 2 dimensional slice of the diffracting cone of

exiting X-Rays. X-Ray diffraction strain analysis is conducted by measuring the deviation

of the ring from a perfect circular ring. This eccentricity corresponds with the principal

strains, ǫ11 and ǫ22 as indicated on the set of rings. Figure 2.3D shows a representative
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strain profile for a measured ring, with the corresponding ǫ11 and ǫ22 deviating the strain

curve from the zero position.

2.2.2 Collection Methods

X-Ray diffraction experiments were conducted at the Advanced Photon Source at Ar-

gonne National Laboratory at the 1-ID beamline in Sector 1. The high energy X-Rays

were tuned to 65 keV and applied via insertion device. This energy corresponds to a

minimum diffraction ring available for collection of 1.29 Å. The beam was initialized to

graze the surface of the tubular geometry and moved inward towards the center of the

sample to map the strain distribution throughout the respective layers as shown in Fig-

ure 2.4. The focus of this study is on the grazing method only, as it minimized the depth

of the diffraction volume and reduced doublet and broadening effects due to the complex

geometry.

The investigation used a 2D GE detector with a pixel size of 200µm and Huber

goniometers. The beam step size was held at 30µm and a window size of 30 by 300µm.
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Figure 2.4: Method 1: Grazing surface from 5 to 100 µm. 2D detector measures axial

and radial components of strain. By moving the sample into the beam, each layer can

be scanned and collected. Method 2: Direct transmission along center line. 2D detector

measures wall-thickness averaged axial and circumferential components of strain. [114]

2.2.3 Fitting Methods and Analysis Procedures

The collected Debye-Scherrer Rings as presented in Figure 2.3C, are integrated az-

imuthally into a transformed line. The deviation from center is indicative of strain

present in the phase under examination. [49]

The transform plot is then divided into discrete bins, of which the radial position

of the intensity is then plotted and fit using a pseudo-Voigt routine in Matlab. The

variation between the fit radial positions of the intensity in each azimuthal bin is then

fit to the strain equation. [1]. This is described in Figure 2.5.
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In Figure 2.5A, the plotted transform for NiAl peak (110) is presented. This transform

is then discretized into radial bins for fitting as seen in Figure 2.5B. The resulting intensity

fit from each bin is then input into the strain equation, which results in the measurement’s

strain profile.

A

B

C

Figure 2.5: Strain Fitting Procedure: A) Transformed Lineout Plot Around Azimuth B)

Discretized Transform Bin for Fitting C) Fit Strain Curve
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CHAPTER 3
SPECIMEN MATERIALS, GEOMETRY, AND EXPERIMENTAL SETUP

The design of samples and techniques used for piezospectroscopic and diffraction mea-

surements for thermal barrier coatings and fiber composites is discussed herein.

3.1 Thermal Barrier Coating System

To best understand the material behavior and damage mechanics of thermal barrier

coatings, the experiment was designed to include a complex geometry and representative

service loads. This section will discuss the design and methodology of the study on

Thermal Barrier Coatings.

3.1.1 Sample Design

The Thermal Barrier Coating System that was designed for this study’s experiments was

comprised of an Inconel 100 superalloy substrate with a 7% Yttria partially stabilized

Zirconia adhered to the substrate via a NiCoCrAlY bond coat. The deposition method

was Electron Beam-Physical Vapor Deposition for both the bond coat and the top coat,

which produces a columnar structure in the YSZ top coat. A thin thermally grown oxide

layer forms during the coating process, and is estimated to be 0.5 µm for our sample. A

representation of this system is presented in Figure 3.1.
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Hernandez, Karlsson, Bartsch 2009 

Figure 3.1: Thermal Barrier Coating System

[60]

The specimen was designed with a tubular geometry of inner diameter 4 mm and

outer diameter 8 mm. Electron Beam-Physical Vapor Deposition was used to create the

top and bond coats to a thickness of 240 µm and 80 µm respectively. The coated length

was 102 mm of the full length of 160 mm. The geometry is presented in Figure 3.2.
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Figure 3.2: As Coated Sample CAD

Sample design and manufacturing took place at the German Aerospace Center (DLR)

in Cologne, Germany. For the manufacture of coatings, the institute runs two EB-PVD

coaters; one single source 60kW Leybold coater and one von Ardenne 150kW two-source

coater.
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Figure 3.3: As Coated TBC Specimen

The as-coated specimen is presented in Figure 3.3. The specimen was additionally

threaded for testing under tensile mechanical loading.

3.1.2 Material Properties

The mechanical and material properties known for the Thermal Barrier Coating system

are presented in Table 3.1.
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Table 3.1: High Temperature and Room Temperature Material Properties for Thermal

Barrier Coating System on IN100 Substrate [60]

Substrate Bond Coat TGO Top Coat

RT HT RT HT RT HT RT HT
Elastic modulus, radial[GPa] 215.00 148.00 140.00 70.00 360.00 340.00 13.00 16.00
Elastic modulus, axial [GPa] 120.00 80.00 - - - - - -
Poisson ratio, ν 0.30 0.30 0.32 0.35 0.24 0.24 0.22 0.28
CTE, α[10−61/K] 11.50 18.80 8.60 16.60 6.00 8.70 9.00 11.50
Thermal Cond.,λ[W/mK] 15.00 30.00 8.70 27.50 23.00 5.00 1.88 1.60
Density, ρ[g/cm3] 7.75 7.29 7.80 7.43 4.00 4.00 5.00 4.84
Heat capacity, Cp [J/kgK] 400.00 580.00 390.00 700.00 769.00 1261.00 500.00 630.00

Table 3.1 presents data showing that the room temperature properties are consider-

ably different than the properties at high temperature. This is critical, particularly in the

thermal expansion mismatch, and drives the high strains in the thermally grown oxide.

3.1.3 Experimental Design, Loading Conditions, and Measurement Methods

for the Study of Thermal Barrier Coatings

The specifications regarding the experimental design for the Thermal Barrier Coating

System are detailed herein. Three loading conditions were investigated in three different

material states, including: the as-coated specimen, the early cycled specimen, and the

long duration aged specimen.
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3.1.3.1 Design of Experiments for Thermal Gradient and Mechanical Load-

ing for an As-Coated Specimen by Methods of X-Ray Diffraction

The as-coated specimen was designed for application of tensile mechanical loading, ther-

mal loads, and induced internal cooling by the inflow of compressed ambient air through

the internal chamber. Mechanical loads were designed for a range of 16-128 MPa to ac-

company the thermal loading. The exterior surface temperature was held at 1000 ◦C and

ensured by encircling the specimen with a 0.35 mm type S thermocouple comprised of

Platinum-Rhodium (90%-10%) alloy and pure Platinum. The thermocouple was used in

a feedback loop to precisely hold the exterior of the sample. The sample was contained

in an infrared chamber heater manufactured by Precision Controls of Research INC.,

which delivered 8 kW of power via 4 quartz lamps focused on the center line by reflecting

mirrors.

Induced cooling was regulated by an Omega mass flow controller FMA5400/5500 from

0-100 standard liters per minute (SLPM). To facilitate mechanical loading, superalloy

grips were designed to hold and impart load in line with the servohydraulic mechanical

load frame. These grips were placed partly in the heating chamber and as such had to

handle high thermal loads. This challenge was surmounted by using Inconel 718 for the

grip material. Type K thermocouples were placed on the top and bottom grips to ensure

the integrity of the connection and to identify the amount of conduction taking place
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away from the sample. A schematic representation of the loading conditions is presented

in Figure 3.4 and Figure 3.5.

X-Ray Scan Zone 

Figure 3.4: Design and Description of Loading Conditions for in-situ X-Ray Diffraction

Study
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X-Ray diffraction measurements were conducted at the center of the gauge section in

an area assumed to be near uniform in thermal loading. A schematic representation is

presented in Figure 3.5 .

 

Figure 3.5: Design of Thermal Gradient and Mechanical Loading for X-Ray Diffraction

Measurements

Specifications regarding the design and setup of the in-situ measurement apparatus

can be found in the accompanying publication. [114] The X-Ray diffraction study took a

10 file depth-scan with the grazing technique, with a 30 µm step. The data was collected

at 5 frames per measurement, with an exposure time of 0.5 seconds per frame. This was
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done for a representative loading cycle showcased in Figure 3.6, with a high temperature

hold at 1000 ◦C for 40 minutes and 20 minute ramp times. The associated thermal data

was also collected from the various thermocouples in the system. Mechanical, thermal,

and flow-rate data was collected for ancillary measurements to accompany the X-Ray

diffraction data.

Figure 3.6: Representative Thermal Cycle

The discretized bins for the scan through the coating layers is presented in Figure 3.7.

Due to the nature of the cylindrical geometry, zirconia was always present in the diffrac-

tion data as the measurement scanned inward towards the sample center.
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Figure 3.7: Scanning Window for X-Ray Diffraction

3.1.3.2 Design of Experiments for an Early Cycle Specimen by Means of

Piezospectroscopy

Early cycling was a byproduct of the tests conducted on the as-coated specimen. The

test consisted of 17 cycles at high temperature. The Thermally Grown Oxide develops

quickly and non-linearly during its early development before slowing, as TGO growth

is dominated by oxygen diffusion through the thin layer. [60, 4, 131, 105] The loading

conditions imparted on the specimen were varied including the mechanical load from 16-
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128 MPa and induced cooling from 0-100 SLPM. This resulted in a maximum gradient

of 140 ◦C thermal drop over the 240 µm zirconia top coat, which compared well with

literature [109]. Further, the surface temperature at the center of the gauge section was

ramped from ambient to high temperature and held at 1000 ◦C. Due to the nature of

the furnace’s focusing, a thermal gradient was expected to be present in the vertical axis,

which was further intensified by the incoming cooling air imposed on the center of the

tubular specimen. As the ambient air flowed through the top grip and passed through

the specimen’s heated length, the rate of convective heat transfer was not expected to be

constant. This was confirmed by the thermocouples located on the grips and in the inlet

and exit flow. While the measurement location for the X-Ray diffraction study was con-

strained in the near uniform loading condition window, observations on the early cycled

specimen will be conducted to map these variations. This will allow the investigation of

the predicted outcome, that for early cycled specimen’s oxide growth is highly dependent

on the imposed loading conditions. An image from the in-situ diffraction measurements

resulting in early cyclic is presented in Figure 3.8. These loading conditions developed

the residual stress state for the material to be investigated.
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Figure 3.8: Specimen in Thermal Gradient and Mechanical Loading Apparatus

Due to the 17 thermal cycles imposed on the specimen, the TGO growth is expected

to have resulted in an increase in the thickness of the thin layer to approximately 1.5

µm. The thickness approximation was determined from a growth model developed in

literature. [60] This growth is localized, while the rest of the coating layers maintained

their original thickness. A schematic of this is presented in Figure 3.9.
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Figure 3.9: Estimated TGO Thickness after 17 Cycles

For the specimen under early cycling, piezospectroscopic measurements were con-

ducted to develop a stress profile for the thermally grown oxide layer and the ceramic

top coat. To conduct these measurements, a green 532 nm diode laser with 19 mW of

power was utilized to excite a piezospectroscopic response. An exposure time of 4 seconds

was used to optimize the collection. Calibration was conducted with a Neon-Argon source

lamp. For Face A, as referred to in Figure 3.10, the calibration produced an expected

uncertainty of ±0.030 nm Root Mean Square (RMS), and 0.028 nm RMS for Faces B, C,

and D ±. A Princeton Instrument Acton Series 2150 spectrometer with a 1200 g/mm

grating was utilized by way of a fiber optic probe to collect the piezospectroscopic data.

An image of the setup is presented in Figure 3.11.
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Figure 3.10: Piezospectroscopic Scanning Zones

For the early developing oxide, four snake scans of 2000 points each were collected

to produce a high resolution map. The resolution in the vertical and horizontal scan

direction measured 400 µm, with 100 vertical scan rows and 20 horizontal scan columns.

This covered an area of 40 mm by 8 mm. Each scan was turned 90 ◦ which provided 360

degrees of overlapping data. The portable spectrometer setup is presented in Figure 3.11.
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Figure 3.11: Portable Spectrometer for Piezospectroscopic Measurements.

The ceramic top coat was scanned with similar methodology, but under a less resolute

scan of 40 vertical scan rows and 6 horizontal scan columns. An exposure time of 2 seconds

was used to optimize the collection and avoid saturation. The resolution in the vertical

and horizontal scan directions measured 800 µm. Slight overlap was provided as each

scan covered 4.8 mm across and 32 mm in the vertical.

The scan was focused on the midsection of the primary heated zone and upward to

the top of sample. This was designed to measure the regions of variation induced by

slight changes in thermal loading and interactions with the induced cooling flow on the

inner wall of the tubular sample. Results of the measurement on the early cycle specimen

are presented in Chapter 4.
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3.1.3.3 Design of Experiments for a Specimen Following Long Duration Ag-

ing

Following testing on the early cycled specimen, the specimen was sent to the DLR in

Cologne, Germany where it was placed in a furnace for long duration aging. The aging

was conducted at 1000 ◦C with zero mechanical load and no induced cooling. Each

day the specimen was removed from the furnace to check for visible spallation damage,

effectively cycling it. The aging was conducted for a total of 264 additional hours at high

temperature. The TGO layer is expected to be approximately 3.75µm [60]. This aging

process more than doubled the thickness of the TGO, resulting in a marked effect of

the system’s stress profile. These loading conditions introduced a change in the residual

stress state for the material to be investigated.

After 264 hours of thermal aging on the specimen, piezospectroscopic measurements

were conducted to develop a stress profile for the thermally grown oxide layer and the

ceramic top coat, and to investigate any signs of damage due to the prolonged time at

temperature. To conduct these measurements, a green 532 nm diode laser with 19 mW

of power was utilized to excite a piezospectroscopic response. An exposure time of 3

seconds was used to optimize the collection. Calibration was conducted with a Neon-

Argon source lamp. As referred to in Figure 3.12, the calibration produced an expected

uncertainty of 0.029 nm RMS for Faces A, B, C, and D ±. A Princeton Instrument

Acton Series 2150 spectrometer with a 1200 g/mm grating was utilized by way of a fiber
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optic probe to collect the piezospectroscopic data. An image of the setup is presented in

Figure 3.11. For the aged specimen’s oxide scale, again four snake scans of 2000 points

each were collected to produce a high resolution map. The resolution in the vertical and

horizontal scan direction measured 400 µm, with 100 vertical scan rows and 20 horizontal

scan columns. This covered an area of 40 mm by 8 mm. Each scan was turned 90 ◦ which

provided 360 degrees of overlapping data.

The ceramic top coat was scanned with similar methodology to that for the oxide

scale, but under a less resolute scan. The scan increased to 50 vertical scan rows and 6

horizontal scan columns, to match the vertical depth of scan afforded to the thermally

grown oxide. An exposure time of 3 seconds was used to optimize the collection. The

resolution in both the vertical and horizontal scan direction measured 800 µm. Slight

overlap was provided as each scan covered 4.8 mm across and 40 mm in the vertical. This

methodology was used to be able to showcase the variation from long duration aging.

35



YSZ

Substrate

TGO

Bond Coat

8 mm 

40 mm

20 Horizontal 

scan locations

100 Vertical 

scan locations
A C 

D 

B 

Figure 3.12: Piezospectroscopic Scanning Zones for Aged Specimen

Similar to the early cycle specimen, the scan was focused on the midsection of the

primary heated zone and upward to the top of sample. This was designed to measure the

regions of variation induced by subtle changes in the thermal loading, and interactions

from the induced cooling flow on the inner wall of the tubular sample. Results of the

measurements are presented in Chapter 4.
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3.2 Kevlar R© Ballistic Panels

Kevlar R© composites have a wide range of application in both defense and commercial

industries. These applications, including ballistic armor and shielding, require balancing

weight minimization to the added strength afforded by the composite. These composites

allow for energy to be absorbed and deflected through elongation of the polymer fibers

as well as delamination in system with multiple stacked layers. [5, 20] These Kevlar R©

composites are commonly used due to their excellent strength to weight ratio, and their

ability to absorb a high degree of impact, even from ballistics.

Developing the ability to accurately model both the impact of ballistic materials, as

well as the response and behavior of the fiber composites, is of high importance to current

research. Understanding how the force and subsequent damage is propagating will allow

for the development of more robust composites. [30, 41, 99] The impact causes stress

contours which elongate the weave, dissipating energy.

3.2.1 Sample Design

Kevlar R© 29 is a polymer chain of Poly-paraphenylene terephthalamide, produced by

the reaction of para-phenylenediamine and terephthaloyl chloride. During manufactur-

ing, the fibers are pulled, thereby orienting the polymer chains in the loading direction.

Commonly the fibers are spun yielding very high tensile strength. [103, 132, 43] The
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polymer chain is presented in Figure 3.13, with a single chain denoted in bold. The

polymer chains are compiled into thin sheets, which are combined in a radial fashion to

form a cylindrical Kevlar R© Fiber. This build up, as well as a sample of the pristine fiber

weave, are presented in Figure 3.13.
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Figure 3.13: Molecular Structure of Kevlar R© (Left), its Orientation in a Kevlar R© Fiber

(Center), and Pristine Weave (Right)
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3.2.2 Material Properties

Table 3.2: Material and Mechanical Properties of Kevlar R© 29 and Kevlar R© 49 [43]
Spec. Density Tenacity Modulus Break Spec. Tensile CTE Decomp.
[lb/in−3] [103 psi] [10−6 psi] Elong.% Strength [106] [106/F] Temp. [F]

Kevlar 29 0.052 424 10.2 3.6 8.15 -2.2 800-900
Kevlar 49 0.052 435 16.3 2.4 8.37 -2.7 800-900

In Table 3.2, the material and mechanical properties for both Kevlar R© 29 and Kevlar R©

49 are presented. This study is focused on Kevlar R© 29 which has application in body

armor and ballistic resistant panels, though the analysis techniques are applicable for

both composites.

Table 3.3: Kevlar R© 29 Raman Properties, Theoretical vs. Experimental Results [20, 69,

101, 134]
Theoretical (cm−1) Experimental (cm−1)

Washer, Brooks and Saulsberry Cen et al.
Penn & Milanovich, Kim et al. Kevlar R© Yarn Kevlar R© Strand

647 nm 488 nm 647 nm 752 nm 1,064 nm 633 nm

1,615 1,615 1,613 1,612 1,613 1,612 1,615 1,611

1,649 1,654 1,649 1,649 1,649 1,649 1,651 –

3.2.2.1 Baseline Fiber Composite

The pristine Kevlar R© fibers are woven before impregnation with an epoxy resin. The

baseline Kevlar R© composite panel used in this study was developed with Rhino Epoxy
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1403 bisphenol-A, with a cycloaliphatic amine hardener. The manufacturing was con-

ducted in Dr. Jihua Gou’s research facility at The University of Central Florida. The

manufacturing utilized a Binks 18” impregnation machine, coupled with pinch rollers. An

image of the baseline fibers via scanning electron microscopy is presented in Figure 3.14.

Figure 3.14: Scanning Electron Microscopy of Baseline Kevlar R© Composite [51]. Image

Credit: Jason Gibson

The composite was then cured in an autoclave. The final product was formed into

ballistic resistant panels with dimensions of 18 inches by 18 inches with a depth of 0.310

inches as seen in Figure 3.15. The panels were comprised of 16 distinct plies of the fiber

weave with impregnated matrix.
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Figure 3.15: Baseline Kevlar R© 29 Panel Composite

3.2.2.2 Matrix Additives

To enhance the material strength and ballistic resistance performance of the composite,

two classes of additives were considered. This study utilized customized Kevlar R© com-

posites, with one doped with multi-walled carbon nanotubes (MWCNT) and another

with core shell rubber particles (CSR) in conjunction with the baseline Kevlar R© fiber
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weave and epoxy matrix. The Graphistrength R© nanotubes were supplied by Arkema

and were dispersed at 25% concentration. An image of the nanotubes embedded in the

composite via scanning electron microscopy is presented in Figure 3.16. The diameter

and lengths were approximately 100 nm and 100 µm respectively. Material properties

provided detailed a specific gravity of 2.90 g/cm3 and a tensile modulus of approxi-

mately 103 GPa. Kane Ace Core R© shell rubber particles were produced by Kaneka and

dispersed into the baseline epoxy matrix a concentration of 33%. Particle spheres had

approximately a 100nm diameter. An image of the nanoparticles dispersed in the matrix

via tunneling electron microscopy is presented in Figure 3.17.

Figure 3.16: Scanning Electron Microscopy of CNT Additive to Kevlar R© Composite [51].

Image Credit: Jason Gibson
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Figure 3.17: Tunneling Electron Microscopy of CSR Kevlar R© Composite [51]. Image

Credit: Jason Gibson

The final product was formed into ballistic resistant panels with dimensions of 18

inches by 18 inches as seen in Figure 3.18. The CNT panel is presented in Figure 3.18A

and the CSR panel is presented in Figure 3.18B.
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A B 

Figure 3.18: A) Carbon Nanotube Additive Panel and B) Core Polymer Ball Additive

Panel

3.2.3 Experimental Design, Loading Conditions, and Measurement Methods

for Kevlar R© Composites

The Kevlar R© ballistic baseline and additive panels were tested with a high velocity

ballistic round. The testing utilized a .44 Mag 240 grain Semi-Wadcutter Gas Check
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(SWCGC) bullet from a universal barrel holder with a 10 inch 1:20 barrel. The panels

were received for piezospectroscopic study after the conclusion of the colleagues’ ballistic

study. The post shot condition was then to be analyzed for the imparted residual stress

state around the bullet entrance and exit sites.

To scan the Kevlar R© ballistic samples, Raman spectroscopy was conducted. For the

baseline panel, a 6x6 map was measured encompassing the hole with a scanning area of

approximately 25x25 mm. The scanning region is presented in Figure 3.19. A Renishaw

RM-1000 Ramascope with a 1800 groove/mm grating was employed by way of a fiber

optic probe with a 50x Nikon objective. A green 532 nm diode laser with 9 mW of

power was utilized to excite a Raman response. Measurements were conducted following

calibration of the equipment with crystalline silicon, which has a sharp and well research

Raman band peak at 520 cm−1 of high intensity. A total of 36 data points were collected

of varying intensity and noise. Measurements conducted on the edge of the sample were

delineated to see the variance of the scanned region closer to the bullet.
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Impact Face Exit Face 

Figure 3.19: Mapping Routine for Ballistic Damage for Kevlar R© Panels

For the additive panels, collection of Raman spectra was considerably more challeng-

ing. The additives present in the matrix showcased a great deal of background fluores-

cence, particularly from the CSR polymer balls. As such small, tightly packed scans of 8

points were collected sufficiently away from the bullet hole to identify the residual stress

effects. Continuing to perfect the scanning techniques is continuing in the future work, in

an effort to develop complete contour maps of the impact region. This modified scanning

path is presented in Figure 3.20. Results of the measurements are presented in Chapter

6.

46



Impact Face 

Figure 3.20: Limitations in Scanning
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CHAPTER 4
PIEZOSPECTROSCOPIC STUDY OF THERMAL BARRIER COATING

SYSTEMS

4.1 Objectives

The objectives for the piezospectroscopic studies on the Thermal Barrier Coating System

were as follows. The primary objective was to collect piezospectroscopic data from the

thermally grown oxide layer and ceramic top coat, for an early cyclic aged specimen with

complex tubular geometry. The second objective was to identify variations in thermal

loading and their influence on system’s development ex-situ. Further objectives included

resolving a high resolution stress map of the thermally grown oxide and ceramic top

coat. A comparison of the specimen after early cyclic aging and long duration aging

is also for investigation, to identify variations in the stress field and damage associated

with prolonged exposure at high temperatures. A representation of the studies on the

specimen and the resulting optical spectra for analysis is presented in Figure 4.1.
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Figure 4.1: Scanning Schematic for Conducting Photoluminescence on Thermally Grown

Oxide and the Optical Spectra Collected

4.2 Photoluminescence of Thermally Grown Oxide From Early Cyclic

Aging

The results from the piezospectroscopic studies on the Thermal Barrier Coating System

are presented herein. Initial scans of the thermally grown oxide revealed the characteris-

tic optical spectra of α-alumina on the CCD. The finding is presented in Figure 4.2. The

clear and distinct doublet peak is present and is consistent with the expected photolu-

minescence of the material at 14,403 cm−1, approximately 633 nm. It can be noted from

the profile that the scan was completed in the absence of the majority of ambient light

to minimize noise in the data.
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Figure 4.2: Collected Optical Spectra on CCD
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Figure 4.3: A) Optical Spectra of Thermally Grown Oxide with Phase Identification B)

Fitted Doublet Peak for α-Phase Alumina

The collected spectra has been plotted in Figure 4.3. In Figure 4.3A, the characteristic

doublet of α-alumina is observed and marked in the highlighted region A. Further, trace

concentrations of θ-alumina were identified in highlighted region B by the characteristic

doublet at approximately 14,550 cm−1 and 14,620 cm−1. This was comparable with
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literature [133], with the peak spacing approximately at 70 cm−1. The peak shift was

similar to that of the α phase, suggesting both phases are under a high compressive

stress.

In Figure 4.3B, a measurement of an the α-phase doublet after the fitting procedure

is presented. The resolved peaks are approximately 14,387 cm−1 and 14419 cm−1. This

value is a shift from the known reference of 14,403 cm−1 and 14,433 cm−1 for stress free

α-alumina [11, 63]

Having collected the optical spectra for each map, the next aim was to convert the

change in wavenumber as seen in Figure 4.4A to its corresponding stress value. This is

done by using the Piezospectroscopic equation as presented in Equation 4.1.

∆ν = Π · σ (4.1)

For both the thermally grown oxide and the ceramic top coat, the thickness values

were idealized as thin films due to the geometry as showcased in Figure 4.4B.

51



Figure 4.4: Biaxial Assumption for Thin Films and Thermal Expansion Mismatch [59]

This allowed the use of the biaxial assumption, and led to a modified Piezospectro-

scopic equation presented in Equation 4.2. It can also be seen that the thermal expansion

mismatch is quite large, and this leads to large residual stresses after cool-down from

high temperature. A piezospectroscopic coefficient of 7.59 cm−1/GPa for R1 and 7.61

cm−1/GPa for R2 respectively was used in conjunction with the zero stress reference

peak center of 14403 cm−1 and 14433 cm−1. [11, 63, 118]

∆ν = (2/3) · Π · σ (4.2)
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The stress map by method of the R1 optical peak center is presented in Figure 4.5

using the biaxial stress assumption.
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Figure 4.5: Stress Map of the Thermally Grown Oxide on an Early Aged Specimen by

Photoluminescence via R1 Optical Peak

The loading conditions that drove the residual stresses are presented as well. Each

scanned face, A, B, C, and D, are presented with a 2000 point stress contour map, with

varying stress of approximately 3.25 GPa to 2.75 GPa. The primary heated zone center

is located as well, and from the map a stark comparison can be identified. It can be
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observed that the thermal drop due to heater focusing is influencing the stress value in

the thermally grown oxide.

This is due to the mechanics of oxide growth, where during early aging the oxide

grows very quickly [59, 131]. The stress values for the primary heated zone, which was

held at 1000 ◦C, is substantially lower than rest of the map. This suggests that the

initial growth of the oxide is reducing the stress observed by the Photoluminescence

spectroscopy method under the biaxial assumption, which is not unexpected [129].
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Figure 4.6: Linking Thermal Variations with TGO Stress

Figure 4.6 condenses the four face maps to just Face B and D. This can be done

due to the 360 ◦ of overlap taken by the map. This was beneficial as Face A may have

been impacted due to stray ambient light and a shutter timing mismatch. Face B and D

provide a full map of the circumference of the specimen scanned area, with height of 40

mm. A growth variation zone is also detected in the middle of the scanned zone, marked
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in the green circle. Here stress values are significantly higher, 250 MPa greater than the

background zone, and 500 MPa greater than the primary heated zone.

Figure 4.7 presents the stress map for the early aged specimen via the R2 optical

peak. This compliments the findings presented in Figure 4.5, and it can be observed that

the stress values are in line with one another. Furthermore, the same trends are visible

including the uniformity of the primary heated zone and the presence of the anomalous

growth variation in the center of the map.
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Figure 4.7: Stress Map of the Thermally Grown Oxide on an Early Aged Specimen by

Photoluminescence via R2 Optical Peak
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A comparison of the stress values as determined from both the R1 and R2 optical

peaks is presented, showing approximately an 8% deviation in the calculated value. A

map of the deviation corresponding to the full measurement scan is presented in Fig-

ure 4.8. The deviation was seen to be overall rather uniform. This investigation was

done in part to identify if there were any local regions exhibiting a higher degree peak

splitting, which is known to be a sign of damage. [53]
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4.3 Raman Spectroscopy of Yttria-Stabilized Zirconia Top Coat From

Early Cyclic Aging

Initial scans of the thermally grown oxide revealed the characteristic optical spectra of

Yttria-stabilized Zirconia on the CCD. The finding is presented in Figure 4.9. Several

peaks can be identified from the CCD with varying intensity. The intensity from the

Raman effect is not as powerful as the α-alumina luminescence. It can be noted that the

scan was completed in the absence of majority of ambient light to maximize the collected

intensity.

Figure 4.9: Collected Optical Spectra of Yttria-Stabilized Zirconia on CCD

The collected Raman spectra for Yttria-stabilized Zirconia has been plotted in Fig-

ure 4.10.
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Figure 4.10: The Raman Spectra of Yttria-Stabilized Zirconia

A total of five peaks were identified, with three peaks being available for fitting. These

spectra matched well with literature, with the selected peaks representing the 258 cm−1,

463 cm−1, and 638 cm−1 bands from literature [78, 50]. The approximate values collected

in the map were 255 cm−1, 470 cm−1, 641 cm−1. The fitting of these peaks is showcased

in Figure 4.11.
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Figure 4.11: Peak Fitting for Yttria-Stabilized Zirconia

The collected spectra was compared with literature for phase identification. [21]

Chambers et al. performed a study varying the percentage of phase composition for

stabilized zirconia. This allowed a comparison with the spectra collected, of which it was

observed to have only tetragonal prime zirconia. All other phases, including monoclinic

and cubic, were ruled out.

These bands at 258cm−1 and at 638 cm−1 are expected to shift in opposite directions

due to compressive stress [78]. This is likely due to softening of the mode due to hy-

drostatic stress of the 258cm−1. [17] This peak at 258cm−1 corresponds to the Eg lattice
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vibration. [84]. One peak found in literature was not evident in the collected scan pre-

sented in Figure 4.10. The location of the 145 cm−1 peak from literature was too close to

the laser line for the Princeton Instrument’s spectrometer. A Renishaw RM-1000 Ram-

ascope with a 1800 groove/mm grating was employed by way of a microscope with a 10x

Nikon objective. This proved to be effective, capturing a distinct peak at 144 cm−1. This

completed the literature comparison with all the reference peaks. The captured peaks

from the Ramanscope is presented in Figure 4.12.
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Figure 4.12: Collected Optical Spectra of Yttria-Stabilized Zirconia via Micro-Raman

for Identification of Peak Close to Laser Line
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For fitting, the 638 cm−1 peak has been traditionally used for accurate results due to

its sensitivity to stress and excellent signal to noise ratio. [111, 126, 130, 78] For turbine

coatings deposited by atmospheric plasma spray, this method is not advised as the less

intense peak at 608 cm−1 is more prominent. [81] Herein, plots of the 258 cm−1 and 638

cm−1 peaks will be presented, as the sample was mapped circumferentially using Raman

spectroscopy.
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Figure 4.13: Raman Peak Shift Map from Zero Reference of 258 cm−1

The results herein present the peak shift contour maps for the Raman study of the

zirconia top coat. Stress values were not able to be calculated, however, due to the role of
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heat treatment in influencing both the zero stress reference peak center and the piezospec-

troscopic coefficient. [87, 79] Because the collected spectra only varies approximately 3

cm−1 to 5 cm−1, the selection of a zero reference center would cause the calculated stress

value to near double due to variation in the reported references. [84, 87, 79, 81] Here the

presented peak shift is representative of the variations in the stress value, and as such

can be utilized in the study.

Figure 4.13 presents the contour map of the variation in peak center from the 258

cm−1 reference peak. It can be seen that the zone below .03 meters of the y axis,

corresponding with the primary heated zone, appears to have a uniform peak shift from

stress free reference of approximately -3 cm−1. A region of interest presents itself in the

center of the map, matching the area of higher stress found in the thermally grown oxide

stress map. The presence of both of these features suggests that the development of the

thermally grown oxide has a marked effect on the stress profile of the zirconia top coat.
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Figure 4.14: Raman Peak Shift Map from Zero Reference of 638 cm−1

Figure 4.14 presents the contour map of the variation in peak center from the 638

cm−1 reference peak. Congruent with the 258 cm−1 peak’s results, the primary heated

zone appears to have a uniform peak shift from reference at approximately +3 cm−1. A

similar region of interest presents itself in the center of the map, matching the area of

higher stress found in the thermally grown oxide stress map and the 258 cm−1 peak’s

results. The presence of both of these features in both peak’s maps suggests that the

development of the thermally grown oxide has a marked effect on the stress profile of the

zirconia top coat.
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4.4 Comparison of Early Cycling vs. Aged Specimen

The specimen was aged in a furnace at the German Aerospace for 264 additional hours

at high temperature. The role of long duration aging on the stress state and damage

mechanisms of the thermally grown oxide and ceramic top coat is the focus of this

investigation.

4.4.1 Photoluminescence of Thermally Grown Oxide Following Long Dura-

tion Aging

The stress map by method of the R1 optical peak center, after the aging process, is

presented in Figure 4.15 using the biaxial stress assumption. The loading conditions

that drove the residual stress are presented as well. Thermal loads applied are not

influenced by heater focus inciting a thermal drop, nor the effect of cooling gradients. It

was hypothesized that the variations of the stress profile would fade away due to long

duration uniform heating.

Each scanned face, A, B, C, and D, are presented with a 2000 point stress contour map,

with varying stress of approximately 2.75 GPa to 3 GPa. From the map it is evident that

the degree of uniformity has increased due to long duration isothermal heating. There

are unique features which deviate the uniform stress field, likely due to subtle variations

in the furnace.
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Figure 4.15: TGO Stress Map (R1) of an Aged Specimen with Identified Microdamage

Variations in the map would be driven by the mechanics of the oxide growth. The

growth mechanism slows as diffusion is limited due to the increase in oxide scale thickness.

Thermal loading was near uniform at 1000 ◦C. The stress values were determined by the

modified piezospectroscopic equation, with the biaxial assumption. Comparing with the

early cyclic aged stress map in Figure 4.5, it can be observed that the stress state of the

sample continued to decline slightly from the highest regions representing minimum TGO

growth. As the loading conditions were nearly uniform, the previous effects of thermal

gradients appear to be removed. However, under service conditions non-uniform loading
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due to aerodynamic influences and forces may in fact have a long duration effect on the

stress state development and the material’s response.

GPa

Figure 4.16: Dual Stress States Presented in Scan Over Micodamaged Zone with 3GPa

Variation

Highlighted is also a region where micro-damage has occurred in the oxide. A dual

stress state is suggested by the broadening and presence of smaller secondary character-

istic optical peaks for α-alumina. Presented in Figure 4.16, the effect is understood to be

caused by micro-damage with a size falling inside the laser scanning diameter, yielding

a dual stress state of both 3 GPa and 0 GPa for the measurement location.
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Figure 4.17: Observed Micro Damage

The possible micro-damage is focused on in Figure 4.17 marked in A. A region of

higher stress can be identified on one side of the stress free zone, accompanied by a

reduction in stress on the other front from the local average. Close by, a pocket of

considerably higher stress is observed marked in B. The nondestructive technique has

shed light on the mechanisms of damage in the specimen due to aging. This image

provides a look into the mechanics of thermally grown oxide micro spallation, whereby a

small segment of approximately 500 µm appears to be lifted. This micro damage is seen

to have an impact on the coating directly around the damaged zone.
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Figure 4.18: Stress Map of Aged Oxide via R2 Optical Peak

The stress map using the R2 optical peak was also presented in Figure 4.18 for

comparison. The profile has a similar distribution as with the R1 stress map. Micro

damage is again observed in the R2 peak with a similar stress profile.

For comparison the deviation between the R1 and R2 stress map values was pre-

sented in Figure 4.19. The profile was observed to be quite uniform with variations of

approximately 150 MPa.
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Figure 4.19: Difference of the Resulting Stress Values from R1 and R2 Peaks of α-Alumina

via Photoluminescence

4.4.2 Raman Spectroscopy of Yttria-Stabilized Zirconia Top Coat Following

Long Duration Aging

Stress maps for the zirconia ceramic top coat for peaks 258 cm−1 and 638 cm−1 were

generated and presented in Figure 4.20 and Figure 4.21. The outer most column of data

was removed due to edge effects from the scanning method, where the laser scanned to

the edge or off the specimen. Both maps are nearly uniform with variations of 0.1 cm−1

to 0.4 cm−1. This small deviation is approaching the limitations of the spectrometer and
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the fitting certainty, and could be considered in large part uniform. This is expected

from the long duration aging of the specimen.
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Figure 4.20: Peak Location Map for Aged Zirconia (Peak 258 cm−1 )
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The change observed from the early cycled map to the long duration aged map of

the peak shift for the YSZ was plotted in Figure 4.22 and Figure 4.23. Here it is to be

noted that the scan conducted on the aged specimen was lengthened to match the 40

mm height covered by the luminescent scan. As such, the area in which the early aged

specimen was not scanned is presented in gray.
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Figure 4.22: Map of the Shift in Peak Center from Early Cycled to Long Duration (Peak

at 258 cm−1)

In both maps it is evident that greatest change lies in the zones that were less dramat-

ically shifted in the pre-aging due to thermal drop and induced cooling. This showcases

that the zones that had experienced less intense aging were brought to be uniform with
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the rest of the specimen, suggesting that the long duration at near uniform high temper-

ature has undone the variation in development from the complex and deviating loading

conditions. This also suggests that if left in non-uniform thermal conditions during aging,

effects may remain on the sample having a marked effect on the residual stress state in

the coating layers.
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Figure 4.23: Map of the Shift in Peak Center from Early Cycled to Long Duration (Peak

at 638 cm−1)
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4.5 Conclusions

In this chapter several significant conclusions can be taken from the experiments and

results. Nondestructive testing techniques were able to perform phase and constituent

identification and shed light on the response to loading conditions. It was found that the

development of the thermally grown oxide, under varying thermal loads, is non-uniform

and subject to high stress gradients over small distances. Stress maps showcase a sharp

0.5 GPa stress variation over a few millimeter region. Further, the variations in the oxide

layer’s stress profile was seen to have marked effects on the ceramic top coat’s stress

distribution.

Raman spectroscopy probed the ceramic top coat and allowed for phase identification

of the Yttria-stabilized Zirconia. The variation of the stress field was observed through

the deviation in peak center following peak fitting. The stress profile was seen to fol-

low the trends found through the Photoluminescence spectroscopy of the oxide scale,

suggesting the oxide development has a marked influence of the ceramic top coat.

Aging of the specimen for long duration at near uniform thermal loading was shown

to unify the stress profile for both the thermally grown oxide and the zirconia top coat.

The aged oxide presented a decrease in stress, calculated under the biaxial assumption,

due to growth and development with its highest stress value being during early stages of

growth.
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Micro damage was observed in the thermally grown oxide, suggesting the onset of

damage from the aging process. These zones were seen to have an effect on the at-

tached coating around them, as complex stress gradients were observed. The findings

also suggest that long duration aging under dynamic and varying loading conditions

may establish stress profile variations that lead to changes in material response, damage

propagation, and failure mechanics.
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CHAPTER 5
X-RAY DIFFRACTION FOR STRAIN ANALYSIS OF THERMAL

BARRIER COATING SYSTEMS

Synchrotron X-Ray Diffraction is an effective nondestructive testing approach that in

conjunction with piezospectroscopy can provide a more complete investigation of a multi-

layer coating system.High energy X-Rays afford the throughput to measure the as-coated

specimen’s strain in each of the thermal barrier coating system’s layers.

5.1 Objectives

The objectives of the X-Ray Diffraction experiments included identification of the coat-

ing’s constituents and phases, as understanding variations in a material’s phases due to

thermal loads and cycling, sheds light on the stability of the coating. The loading con-

ditions’ representative of the effect of service conditions of a turbine on the strain profile

during ambient conditions, ramp-up, and high temperature holds were investigated. Re-

sults from this method in conjunction with the piezospectroscopic measurements are to

be used to more completely understand the material response, damage mechanisms, and

influence of loading conditions over the lifetime of the samples.
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5.2 Discussion of Results

The setup and measurement location for the as-coated specimen is presented in Figure 5.1.

The measurement was conducted utilizing the grazing method as shown in Figure 2.4.

The scan averages the measurement through the material it passes through en-route to the

detector. Small effects from double diffraction due to the change in material composition

resulting from the cylindrical specimen were expected and observed, with minimal peak

broadening. The measurement zone was located in the center of the gauge section,

appropriately in the region assumed to be uniform in thermal loading. This expectation

was validated following the synchrotron measurement by utilizing piezospectroscopy as

seen in Figure 4.6.

YSZ Top Coat 

Bond Coat 

Superalloy 
TGO 

X-Ray Scan Zone 

Figure 5.1: X-Ray Diffraction Scanning Location and Applied Loading Conditions
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The thermal cycle investigated was that of a representative flight cycle: ramping up

from the ambient condition for 20 minutes, a high temperature hold at 1000 ◦C for 40

minutes, and concluding with thermal ramp down for 20 minutes. The conditions are

presented in Figure 5.2, which shows the loading conditions during the experiment.

Figure 5.2: Representative Flight Cycle for in-situ Measurements

Each cycle scan was conducted with 5 frames per measurement location, with 10

measurement locations over the sample thickness. The step size was 30µm per discrete

measurement location. A schematic detailing the locations are is presented in Figure 5.3

This scanning methodology is further explained in Chapter 3. Due to the geometry, the

resulting diffraction rings had multiple layers present. Strain analysis techniques are able
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to determine strain profiles for multiple phases and crystallographic planes that appear

on the same ring pattern without concern of interaction.

Figure 5.3: Scanning Locations Across the Coating System

5.2.1 Phase Identification

The collected Debye-Scherrer diffraction rings for the Thermal Barrier Coating system are

presented in Figure 5.4. Several phases and constituents are identified in the MCrAlY

bond coat and the zirconia topcoat. Tetragonal prime Yttria-stabilized Zirconia was

identified in the top coat. This was confirmed with the piezospectroscopy study presented

79



in Figure 4.10. Raman spectroscopy also allows for identification of tetragonal double

prime, whereas X-Ray diffraction cannot observe changes due to oxygen vacancies. [137,

84, 138]

β-NiAl (100) 

22
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t’ YSZ (311) 
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t’ YSZ (002) 

 

t’ YSZ (200) 

 

β-NiAl (110) 

t’ YSZ (113) 

 

t’ YSZ (202) 

 

11
e

Figure 5.4: Phase Identification Conducted for a TBC Specimen [71]

To determine the zero strain reference for diffraction measurements, two methods

can be conducted. Powder diffraction can be conducted, where the powder form of

the material is the reference zero strain. [56] However, this method can be challenging

depending on the material or composite. When investigating high temperature phase

changes, it becomes difficult to determine a zero reference. A second method that is
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feasible is measuring the invariant strain crossing angle, denoted by η∗. [2] This is of

great use to the study as the crossing point is also invariant to temperature. In this

study, the laboratory coordinates align with the principal strain axis. However, with

varying loading conditions, shear strain caused the ellipsoidal axis to rotate and further

analysis has to be done to resolve the principal axis.

A Matlab routine specific to the loading conditions in the experiment was developed

in-house to determine the crossing angles for use in strain analysis. In Figure 5.5, a

representation of this method is presented. The parameter η∗ is determined as an angle

around the azimuth, and is used as the zero strain reference angle.

 

Figure 5.5: Strain Invariant Angle Determination for Strain Analysis

81



The averaged intensity value around the azimuth is presented in the form of intensity

vs. d-spacing plot in Figure 5.6, where d-spacing represents the inter-atomic spacing

in the crystal in Angstroms. Here visible undulations are present, a marked sign that

thermal expansion is affecting the material crystallographic plane of the constituent or

phase. Variations in phase composition can be noted where additional peaks will rise in

intensity due to thermal loading.
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Figure 5.6: Intensity vs. D-Spacing Plot Through Thermal Cycle with Visible Undula-

tions Due to Thermal Expansion in Response to Thermal Loading
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5.2.2 Strain Profiles of MCrAlY Bond Coat

The full cycle plot of strain for the MCrAlY bond coat is presented in Figure 5.7. Two

phases of the bond coat are presented, β-NiAl and γ Ni solid solution. The e11 and

e22 strains are plotted for β-NiAl 100, β-NiAl 110, and γ Ni solid solution 111. The 80

minute scan was conducted under 64 MPa of mechanical loading, a surface temperature

held at 1000 ◦C, and with induced thermal cooling on the internal substrate wall with

75% of the maximum 100 SLPM flow rate.

Figure 5.7: In-Situ Strain Profile for MCrAlY Bond Coat in Response to Representative

Flight Cycle [70]

The effect on the strain due to the thermal load is clearly evident. At room tempera-

ture the e22 direction experiences tensile strain on the order of 2·[10−3] to 6·[10−3], while

the e11 direction experiences compressive strain on the order of -3·[10−3] to -14·[10−3].
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Anisotropy is visible in the variation of strain between the planes, which is variable with

temperature. Strain relief is observed at high temperatures in the e11 and e22 profiles,

with the strain response for e22 turning slightly compressive and the e11 becoming slightly

tensile. The strains return to their higher state during ramp down. Another finding of

interest is that the bond coat strain converges to its high temperature strain relief value

before the thermal cycle has time to reach the hold temperature of 1000 ◦C, which would

suggests a non-linear behavior response. This is an important finding for advancing

numerical modeling, and will be investigated further in the future work.

5.2.3 Strain Profiles of Yttria-Stabilized Zirconia Top Coat

The full cycle plot of strain for the Yttria-stabilized Zirconia top coat is presented in

Figure 5.8. One plane is presented, t’-YSZ 111, for the zirconia and the β-NiAl 100.

These peaks were fit as a doublet due to their proximity. The e11 and e22 strains are

plotted for the full 80 minute scan. Loading conditions were held at 64 MPa of mechanical

loading, external surface temperature held at 1000 ◦C, and an induced thermal cooling

on the inner substrate wall of 75% of the maximum 100 SLPM flow rate.
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Figure 5.8: Strain Profile for YSZ in Response to a Representative Flight Cycle [70]

The effect on the strain due to the thermal load is clearly evident for the YSZ.

At room temperature the e22 direction experiences compressive strain on the order of

-2·[10−3] while the e11 direction experiences tensile strain on the order of 0.75·[10−3]. At

high temperature strain relief is observed for both the e11 and e22 planes, with the strain

response for e22 remaining slightly compressive and the e11 remaining slightly tensile.

The strains return to their higher strain state during ramp down.

5.3 Conclusions

The X-Ray diffraction measurements afforded an investigation into the strain response

of both the bond coat and top coat of the thermal barrier coating system. The thermally

grown oxide was unable to be used for strain measurements in the as-coated condition,
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as the diffraction volume was insufficient to stand out above a neighboring peak from the

bond coat. This will be a study in the future work to conclude the cycle of testing with

X-Ray diffraction studies on the long duration aged specimen.

From the piezospectroscopic studies conducted, the scanning location methodology

for the diffraction measurements was validated as it identified that the region was uniform

in the oxide scale development. Effects due to thermal loading during the representative

loading cycle are distinct. At ambient temperature, both the bond coat and top coat

phases showcase a high residual strain due to the thermal expansion mismatch from the

coating temperature to the ambient. Upon returning to high temperature the strain

state is reduced, and actually changes state from compressive to tensile or tensile to

compressive. Anisotropic effects are also observed by measuring the strain in multiple

crystallographic planes. Variation in the strain due to temperature was not observed to be

equivalent between different phases in the bond coat, showcasing changes in anisotropy.

These results are beneficial to advancing material response models as high resolution,

in-situ data was collected on a rapid time scale for thermal gradient and mechanical

loading on a complex tubular geometry.
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CHAPTER 6
PIEZOSPECTROSCOPIC STUDY OF KEVLAR R© BALLISTIC PANELS

The nondestructive techniques techniques utilized for thermal barrier coatings can be

applied for a variety of other aerospace materials. Of particular interest is that of fiber

composites, which have application in ballistic armor and under high impact loading.

The results herein will be presented for the piezospectroscopic study of Kevlar R© ballistic

panels following ballistic impact.

6.1 Objectives

The primary objective for this study was to map the region of a ballistic impact post

ballistic testing. A scan of 25 mm by 25 mm was set to map the residual stress around the

impact zone as seen in Figure 6.1. This allows for a more complete understanding of how

impact and damage propagate through the fiber weave composite. The effects of different

classes of nano-particle additives in the matrix of the composite will be investigated to

understand how these features change the material response.

Impact Face Exit Face 

Figure 6.1: Scanning Objectives of Ballistic Damage on Kevlar R© Composite Panel
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6.2 Discussion of Results

The first consideration for examining Kevlar R© 29 by Raman Spectroscopy was to capture

the optical spectra from the pristine fibers, without matrix and additive effects, and to

compare them with literature. The collected optical spectra from the pristine fiber is

presented in Figure 6.2. This was compared with literature values found in Figure 3.3 [20,

69, 101, 134].

Figure 6.2: Pristine Kevlar R© Fiber’s Optical Spectra and Identification of Molecular

Structure
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A Renishaw RM-1000 Ramascope with a 1800 groove/mm grating was employed by

way of a microscope with a 10x Nikon objective was utilized for measurements of the

pristine fibers. The pristine Raman peak centers and standard deviation for the reference

peaks at 1611 cm−1 and 1649 cm−1 are tabulated in Table 6.1.

Table 6.1: Tabulated Raman Readings for Pristine Fibers

Pristine Fiber

Peak A Center [cm−1] 1610.942

Standard Deviation of Peak A .098

Peak B Center [cm−1] 1648.512

Standard Deviation of Peak B .300

From literature [134], it was able to be determined the molecular chain that incites

the Raman response for each peak. The peak present at 1611 cm−1 results from the

stretching of the C-C phenyl ring, while the peak centered at 1649 cm−1 results from

primarily the C==O with a small percentage from the N-H [38]. The C==O and N-H

bonds are held together loosely by the hydrogen bond and intermolecular forces [43],

whereas the phenol ring stretches due to axial loads on the fiber chain. This knowledge

of the molecular structure, coupled with the optical readings, allows for an in-depth

examination of the load transfer throughout the fiber and the composite.
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6.3 Additive Effects of Load Transfer

The effects of load transfer on the Kevlar R© fiber was investigated using Raman spec-

troscopy. In Figure 6.3 the loading condition on a single fiber is idealized, and the

molecular chains inciting the Raman response are marked. As the fibers are spun during

manufacturing, they develop into long fiber chains. From the stretching of the phenol

ring, the axial stress of fiber can be examined using the spectroscopic techniques. The

weak bonding by the intermolecular forces that incite the secondary band at 1649 cm−1

represent the connection between each primary axially aligned fiber. The Raman re-

sponse is comprised of the stretching of both bonds on each side of the connection. Here

we can infer the intermolecular tearing stress on a single Kevlar R© molecular sheet. These

sheets are built up radially, until the entire packet forms a cylindrical fiber. Thus the

measured Raman response has shed light on the internal radial stress of the fiber.
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Figure 6.3: Linking the Molecular Structure and Piezospectroscopic Measurements to

Load Transfer Throughout the Composite

The Baseline panel was scanned using the methodology outlined in Figure 3.19. Of

the 36 points collected, 24 points were examined immediately around the impact zone to

measure the residual stress state. The resulting peak center and shift was observed to be

quite uniform.

The two additional panels, with either CSR and CNT micro particles, were scanned

with the modified methodology presented in Figure 3.20 due to the high levels of back-

ground fluorescence. Increased background intensity diminished the ability to distinguish

the peaks, which limited the data points able to be collected. 8 points were able to be

utilized, packed in a small region to the lower left of the impact zone. The findings
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showed a marked difference on the Raman response as compared to the baseline ballistic

panel due to both of the additives. The resulting peak centers and standard deviation

are presented in Table 6.2 with the literature comparison from Cen et al. [20]

Table 6.2: Resulting Peak Centers for Pristine, Literature, Baseline, and Additive Panels

with Statistical Data

Sample Pristine Cen et al. Baseline CSR CNT

Peak A Center 1610.942 1611 1609.875 1611.22 1609.52

Standard Dev.: Peak A 0.098 NA 0.179 0.279 0.755

Shift from Pristine 0 -0.058 1.066 -0.278 1.422

Peak B Center 1648.512 NA 1647.213 1647.845 1647.991

Standard Dev.: Peak B 0.3 NA 0.66 0.809 0.421

Shift from Pristine 0 NA 1.299 0.667 0.52

The findings from the piezospectroscopic study of the baseline and additive panels

were quite unexpected. The additives’ Raman response was compared to their ballistic

performance, where the CSR additive improved ballistic performance by 8% and the

CNT additive improved performance by 7.3%. The expectation was that the additive

panels Raman results would show a similar shift in peak center, with a marked difference

from the baseline. However, the true findings showed that the Raman response for the

primary band at 1611 cm−1 had an upshift for the CSR panel and a downshift for the

CNT panel , as compared to the baseline panel. The response for the secondary band at
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1648 cm−1 both has slight upshifts as compared with the baseline panel. The findings

are presented in a bar graph in Figure 6.4 for clarity.

Figure 6.4: Additive’s Effect on Piezospectoscopy Compared with Ballistic Resistance

Performance

Interestingly, the CNT appears to allow for the Kevlar R© fibers to experience greater

axial stress than the baseline panel. This may account for part of the increase in ballistic
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resistance. It can be suggested that this is due from influence of the nano-tubes on

the Kevlar R© fibers, and how they run parallel to the fiber’s length. Conversely, the

CSR panel experience less axial stress in comparison with the baseline, yet with greater

ballistic performance. This is attributed to the nano-particle dispersed in the epoxy resin

matrix, where cavitation may impede the damage propagation and absorb a great deal

of energy.

Comparing the secondary band’s results, it can be observed that both additives result

in a reduction of the internal radial stress of the fiber, as seen in the peak up-shift. This

suggests that the additives are absorbing part of the energy wave as it sweeps through the

composite weave, whereby protecting the Kevlar R© fibers from the tearing radial stress.

6.4 Conclusions

The CSR nano-particle additive appears to be more effective in reducing the force ex-

perienced by the Kevlar R© fibers, while providing a marked improvement in ballistic

performance. CNT additives appear to focus the loads in the direction the fibers are

oriented and reduce the loads that result in the fibers tearing. It too provided a marked

improvement in ballistic performance. For future consideration, both additives in con-

junction should be implemented to the baseline composite to test for further increases

in ballistic performance. This is likely, as the additives appear to have different effects

on the damage mechanisms and the material response to dynamic loading. Due to their
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minimal weight additions and likelihood for great increases in ballistic performance, this

further testing is planned in the future work.
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CHAPTER 7
CONCLUSIONS AND FUTURE OUTLOOK

Throughout this study, nondestructive techniques have been used to investigate material

behavior and damage mechanisms for aerospace materials. The techniques of piezospec-

troscopy and synchrotron radiation worked well in conjunction with one another to shed

light onto the material’s characteristics.

In Chapter 4, piezospectroscopic testing techniques were able to perform phase and

constituent identification and shed light on the response to loading conditions. It was

found that the development of the thermally grown oxide, under varying thermal loads,

is non-uniform and subject to high stress gradients over small distances. Stress maps

revealed a 0.5 GPa stress variation in response to small changes in thermal loading.

Variations in the oxide layer’s development and stress profile were observed to have

marked effects on the thermal barrier coating system. Aging of the specimen over long

duration was shown to unify the stress profile for both the thermally grown oxide and

the zirconia top coat. The aged oxide presented a decrease in stress in comparison to the

early cycled aged specimen, due to growth and development with its highest stress value

being during early stages of growth. Micro damage was observed in the thermally grown

oxide, revealing the initiation of damage due to the aging process. These zones were seen

to have an effect on the attached coating around them. The findings also suggest that

long duration aging under dynamic and varying loading conditions may establish stress
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profile variations that lead to changes in material response, damage propagation, and

failure mechanics.

In Chapter 5, X-Ray diffraction measurements afforded an investigation into the strain

response of both the bond coat and top coat of the thermal barrier coating system with

the high energy radiation afforded by the synchrotron. The piezospectroscopy studies

validated that the scanning location of the diffraction measurements, as the region was

nearly uniform in thermal loading and the thermally grown oxide’s development. Effects

due to thermal loading during the representative cycle are evident from the diffraction

studies of multiple constituents and crystallographic planes. At room temperature, both

the bond coat and top coat phases showcase a high residual strain due to the thermal

expansion mismatch from the coating temperature to the ambient. Upon returning to

high temperature the strain state is reduced, and the bond coat is observed to change from

compressive to slightly tensile for e11 and tensile to slightly compressive. The zirconia

showed a reduction of compressive strain to near zero during high temperature as well.

Anisotropic effects are also observed by measuring the strain in multiple crystallographic

planes, and deviation due to changes in temperatures was noted. These results can be

used to advance and validate material response models as transient trends were able to

be observed. The findings showcase the necessity and challenge of incorporating complex

realistic geometry and representative service loads and aging conditions.

In Chapter 6 piezospectroscopic studies on Kevlar R© ballistic panels shed light on

the load transfer and damage propagation mechanics for fiber composites. Performance
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enhancing additives were compared for their ballistic performance and their effect on

the Raman response. It is suggested that the additives are absorbing part of the energy

wave in response to impact loads as it sweeps through the composite weave, whereby

protecting the Kevlar R© fibers from the tearing radial stress. The CSR nanoparticle

additive appears to be more effective in reducing the force transfered to the Kevlar R©

fibers, while providing a marked improvement in ballistic performance. CNT additives

appear to focus the loads in the direction the fibers and reducing the loads that result in

the fibers tearing.

The CNT additive appears to allow for the Kevlar R© fibers to experience greater

axial stress than the baseline panel. This may account for part of the increase in ballistic

resistance. It can be suggested that this is due from influence of the nanotubes on

the Kevlar R© fibers, and how they run parallel to the fiber’s length. Conversely, the

CSR panel experience less axial stress in comparison with the baseline, yet with greater

ballistic performance. This is attributed to the nanoparticle dispersed in the epoxy resin

matrix, where cavitation may impede the damage propagation and absorb a great deal

of energy.

Future work will provide piezospectroscopic and diffraction studies on thermal barrier

coated samples with different stages of aging, for additional investigations into the effects

of long duration under complex loading. Samples near their end of life failure modes will

be considered to demonstrate how a lifetime of non-uniform loading conditions influences

the failure behavior. Of particular interest is the study of the influence of cooling holes,
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their role on the stress field’s development, and understanding their influence of damage

mechanisms. A combination of additives will be introduced to the Kevlar R© ballistic

composites to test for further increases in ballistic performance with minimum weight

addition, and to better understand how the additives influence damage mechanisms and

the material response to dynamic loading by means of Raman spectroscopy. Additional

scanning parameters will be tested to provide high resolution stress contour maps of the

ballistic impact site to better map the response to damage by the composite.

Photo Credit: Dave Thomas

Figure 7.1: Application of Customized Stress and Damage Sensitive Composite Coatings

for Use in Non-Destructive Testing of Aerospace Vehicles. [54] Image Credit: Dave

Thomas
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The success of these nondestructive testing techniques and their effectiveness to inves-

tigating damage mechanisms and material response on a variety of aerospace materials

allows for more rapid characterization of novel composites for application in aerospace

environments and additional fields. An area of work to be investigated is incorporating

nano-scale additives into coatings for the development of smart sensor as described in

Figure 7.1. Applications of these smart sensors and remote portable testing are very ex-

citing for the fields of aerospace, structural health monitoring, and remotely identifying

damage in hostile environments of which it is costly or not feasible to send an inspection

team.
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[105] J. Rösler, M. Bäker, and K. Aufzug. A parametric study of the stress state of
thermal barrier coatings: part i: creep relaxation. Acta materialia, 52(16):4809–
4817, 2004.

[106] J. Rosler, B. M., and M. Volgmann. Stress state and failure mechanisms of thermal
barrier coatings: Role of creep in thermally grown oxide. Acta Materialia, 49:3659–
3670, 2001.

[107] R. L. Sanford. Non-destructive testing of steel hoisting rope. Mining and Metal-
lurgy, 4(199), 1923.

[108] S. Saunders, J. Banks, G. Chen, and C. Chunnilal. Measurement of residual stress
in thermally grown oxide layers in thermal barrier coating systems - development
of non-destructive test methods. Materials Science Forum, 461-464:383–390, 2004.
.pdf ok.

[109] U. Schulz, C. Leyens, K. Fritscher, M. Peters, B. Saruhan-Brings, O. Lavigne,
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