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ABSTRACT 
 This thesis is an experimental and numerical full-coverage film cooling study.  The 

objective of this work is the quantification of local heat transfer augmentation and adiabatic film 

cooling effectiveness for two full-coverage film cooling geometries.  Experimental data was 

acquired with a scientific grade CCD camera, where images are taken over the heat transfer 

surface, which is painted with a temperature sensitive paint.  The CFD component of this study 

served to evaluate how well the v2-f turbulence model predicted film cooling effectiveness 

throughout the array, as compared with experimental data.   

 The two staggered arrays tested are different from one another through a compound angle 

shift after 12 rows of holes.  The compound angle shifts from β=-45° to β=+45° at row 13.  Each 

geometry had 22 rows of cylindrical film cooling holes with identical axial and lateral spacing 

(X/D=P/D=23).    

 Levels of laterally averaged film cooling effectiveness for the superior geometry approach 

0.20, where the compound angle shift causes a decrease in film cooling effectiveness.  Levels of 

heat transfer augmentation maintain values of nearly h/h0=1.2.  There is no effect of compound 

angle shift on heat transfer augmentation observed.  The CFD results are used to investigate the 

detrimental effect of the compound angle shift, while the SST k-ω turbulence model shows to 

provide the best agreement with experimental results.  
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 

1.1 The Motivation to Study Gas Turbines 

Gas turbine technology is widely used throughout many applications, most notably in land 

based power generation, aviation, and marine applications.   The design of gas turbines represents one 

of the most exciting and challenging problems of the current age, utilizing experts of many disciplines.   

Research in gas turbine systems is driven by their economic and environmental impact, these machines 

which produce over 90% of the world's power and propel near 100% of commercial aviation [1].  Even 

though completely renewable energy has been given significant attention in recent years, gas turbines 

fired from coal and natural gas will continue to produce the majority of the world's power into the 

foreseeable future.  This suggests that a natural step towards efficiently utilizing our natural resources 

is improving gas turbine technology, both for land based power generation and aviation.  Such 

statements warrant the need for study and motivation to study. 

1.2 Basis of Gas Turbine Operation 

The basis of a gas turbine is to provide a thermodynamic system which results in a positive of 

transfer of work using air and fuel mixtures for combustion.  This positive work transfer is used in 

combination with generators for generating electricity, then distributed to the where the needs exists 

within the electrical grid network (e.g. houses, buildings, etc.).  The main components in a general, 

basic (open) gas turbine are a compressor, combustor, and turbine.  Work input is required by the 

compressor, as ambient air enters the gas turbine system through the compressor.  After carefully 

compressed, the air is introduced into combustion chambers with a foreign species (fuel) for 

combustion.  Upon combustion, the air-fuel mixture has a significant increase in temperature and 
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volume per unit mass, where it then enters and expands throughout the turbine section.  This 

expansion process through the turbine is the process by which the fluid does work on the turbine 

blades, thus creating a positive transfer of work.  Resources (e.g. work input to compressor, fuel, etc.) 

are successfully leveraged when the work provided through the turbine section exceeds the work 

required to elsewhere in the gas turbine configuration.       

   This process describing gas turbine operation is known as the Brayton cycle.  The ideal 

Brayton cycle consists of: 1. isentropic compression, 2. isobaric heat addition, 3. isentropic expansion, 

and 4. isobaric heat extraction. 

An increase in thermodynamic efficiency of the engine is dominated by engine pressure ratio 

and increasing the firing temperature.  It is the goal of gas turbine heat transfer research to enable this 

firing temperature to rise even higher than the already greater than melting temperature of the gas 

turbine components, such that higher efficiencies can be achieved.  This is a multi-discipline effort 

however, where many groups of experts are working to safely increase turbine firing temperatures 

with different technologies; new material technologies which better protect turbine walls/blades (e.g. 

thermal barrier coatings), various internal cooling techniques throughout turbine blade passages (e.g. 

impingement cooling), and several external cooling techniques over the blades (e.g. film cooling), to 

name a few. 

1.3 Gas Turbine Cooling and Heat Transfer 

 As described previously, there is a clear need to increase firing temperatures in gas turbines 

such that higher efficiencies can be achieved, and thus human resources can be spent slower at more 

sustainable rates.  As a result, the effort to increase firing temperatures in gas turbines is relentless and 

ever-growing. 
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 Earlier in the 20th century, gas turbine technology was such that operation could presume 

without the dedicated, elegant cooling systems that exist today.  At that time, the capabilities in high 

firing temperatures were lacking such that the alloys used in combustor and turbine sections could 

withstand thermal loads driven by the hot gas path.  Given the multidisciplinary effort of increasing gas 

turbine efficiency, and thus increasing combustion and hot gas path temperatures, eventually more 

advanced and dedicated cooling systems (in cooperation with metallurgical advances)  were required 

to maintain the integrity of the components within gas turbines. 

 Several popular cooling schemes are used for protecting critical regions subject to high 

temperatures; turbine blades, vanes, end walls, shroud, etc. [2].   

 

Figure 1: Various popular cooling schemes in gas turbines [2] 
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1.3.1 Convective Cooling 

 Until the late 1960’s, one of the most popular and few cooling systems in place for gas 

turbines was convective cooling systems [2].  Convective cooling is still in place and vital in 

modern gas turbine designs.  The basis of convective cooling is that air is bled from the 

compressor section, and forced into spaces within blades and/or vanes.  While this air from the 

compressor section is still hot relative to ambient conditions, it is still relatively cold compared to 

the hot gas path.  To maximize the convective cooling, it is needed to design the internal cavities in 

the blades/vanes in such a way that maximizes heat transfer from this cool air to the hot metal 

alloy within the blade/vane.  Such a situation yields an intuitive solution: to increase the 

convective heat transfer one can increase the cooled area.  To serve this purpose, narrow and 

winding passages (i.e. serpentine passages) are created within the blades to allow for a larger area 

being cooled, increasing the heat transfer from the cool air to the blades.  To further increase heat 

transfer from the cool air to the metal allow in the internal blade passages, designs have utilized features within the internal serpentine passages which ‘trip’ or disturb the flow such that the heat 

transfer coefficient is further increased.               

1.3.2 Impingement Cooling 

Impingement cooling is used to cool several sections in gas turbine engines, such as the 

walls in the combustion section, the case and lining throughout the turbine section, with special 

attention to cooling the turbine blades subject to critically high temperatures [3].  Air is bled from 

the compressor section and fed to the turbine and combustor for impingement cooling, its high 

source pressure and relatively cool temperature makes it useful for this application.  Impingement 

cooling occurs within the blades when the coolant is forced through the internal blade wall, where 

the flow thereafter impinges on the outside walls of the blade.  Impinging jets are used typically in 

arrays, in order to cover large surfaces, usually to cool mid chord areas within turbine blades.  
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Impingement cooling is not capable of cooling the external surfaces of turbine blades, as film 

cooling does, which provides an immediate buffer of protection against hot gas path thermal loads.  

1.3.3 Film Cooling 

Goldstein defines film cooling as the introduction of a secondary fluid (coolant or injected 

fluid) at one or more discrete locations along a surface exposed to a high temperature 

environment to protect that surface not only in the immediate region of injection but also in the 

downstream region [4].  In the last three decades, film cooling has received a large amount of 

attention in research and industrial application, due to its complexity and usefulness.  Well over 

2,000 publications have been made on film cooling since its inception.   

 

The film injected for cooling acts as an enthalpy sink to the hot main-flow and reduces the 

temperature potential driving heat into the part, thereby reducing the heat flux into the blade and 

maintaining the blade surface at safe operating temperatures.  In the near wake of a film cooling 

jet, there is a separation region which is a factory of turbulent kinetic energy.  In gas turbines the 

main stream is already highly turbulent.  The challenge is to predict the interaction of a stream 

jetting into a turbulent boundary layer and generating more turbulence.  One thing that is needed 

to better understand the complex nature of film cooling is more insight into the role of turbulence.  

Pietrzyk [5] insists the fundamental limitation to improving film cooling performance is a lack of 

understanding of the fluid mechanisms (and turbulence) governing the flow.  This issue remains, 

as Kohli [6] asserts additionally that our current knowledge still lacks a fundamental 

understanding of the mechanisms governing transport of heat and momentum.  The complexity of 

film cooling is well agreed accepted, thus warranting the need for study. 
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This study is on a full coverage film cooling array, which will be defined in later sections of 

this report.  This introductory and literature review chapter will be structured such that different 

aspects of film cooling will be discussed and compared with literature explicitly.  Such upcoming 

sections introducing concepts and reviewing literature are: 

 Geometric Parameters Influencing Film Cooling 

 Independent Parameters Used in Film Cooling 

 Full Coverage Film Cooling           

1.4 Film Cooling Basics and Literature Review 

1.4.1 Geometric Parameters Influencing Film Cooling 

 Before considering parameters specific to different test cases of the same geometric 

configuration, such as those parameters which may describe the thermal state or flow field in a 

film cooling study, let the discussion focus on geometric parameters which influence film cooling. 

 It is very common in film cooling studies published in literature to nondimensionalize the 

testing parameters which describe the study performed.  Such scaling allows for comparison of a 

real design used in industrial application to a study performed elsewhere (e.g. a research lab) on a 

smaller scale.  It is not feasible that a group creating a film cooling design for industrial application 

would find studies in literature conducted for their exact geometries and testing conditions (e.g. 

hole diameters used, Reynolds number present, etc.).  Therefore, this nondimensionlization of 

testing parameters allows for greater sharing of knowledge attained through study to those 

surveying literature. 

 The first important geometric parameter to discuss is hole diameter, D.  One popular 

metric to scale an experimental study by is the metering hole diameter, D.  The word metering 

refers to the round hole diameter of a film cooling hole, prior to any cross sectional area change 
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(e.g. a diffuser, a trench, a conical section, etc.).  This is a popular parameter to use in CFD for the 

relevant length scale of the flow field surrounding the film cooling holes.  

  Another important geometric parameter is hole length, L.  The total hole length, L, is 

described as the distance along the film cooling axis from the inlet hole area (plenum side) to the 

exit hole area (hot gas path, or primary flow side).  Shaped film cooling holes are not pertinent in 

this study; therefore all geometrical considerations for shaped holes will not be included in this 

work.   

 One large motivation to consider the length of a film cooling hole (i.e. in L/D) is the impact 

such length has on the sensitivity of the flow field at the exit of the film cooling to the entrance 

effects presents.  More specifically, a longer hole length will cause any flow disturbances at the 

entrance (plenum side) of the film hole to dampen out by the exit of the film hole.  Such 

disturbances can be things such as the vena-contracta effect, imperfections in the hole geometry 

due to machining, blockages near the film hole entrance, etc.  Motivation for study of the film hole 

length is also helpful when considering the specified wall thickness in a design application, 

through which the film holes will be machined.  Also, the momentum of the coolant jet leaving the 

film is hole is dependent on the length of the hole (i.e. wetted area and friction).                 

           Burd [6] performed a study investigating how different hole lengths and plenum 

configurations influenced the flow field throughout and leaving a film hole.  The main results of the 

study are energy content of the flow (through spectral distributions presented), dominant 

frequencies present in the exit plane of the film holes, dissipation frequency bandwidths of the 

flow, and length scale calculations for different L/D ratios.  A major conclusion for this work was 

that the length scales calculated were only marginally affected by the variation in L/D (2.3 < L/D < 

7.0).  Also, in general, the longer L/D cases exhibited smoother spectra data, where the short holes 

had more pronounced peaks corresponding to energy carried in the flow at certain wavelengths.  
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 A very large number of studies in film cooling literature involve variations of L/D in their 

test matrix.  Harrington [7] for example, conducts a study with short injection holes (both an 

experimental and CFD study), showing how short injection lengths affect correlations (e.g. Sellers 

superposition) agreement with data, how mainstream turbulence content interacts with the near 

hole flow field, and other characterizations of heat transfer throughout the film cooled surface. 

There are a large range of topics investigated in said literature, thus, all of which will not be 

included here for discussion on the impact of the L/D chosen for a film cooling design.  It is also 

common to include some L/D analysis in many CFD film cooling studies, as such data is already 

available in the flow field solution.  Examples of flow fields investigated with varying L/D include 

(extremely incomplete, just examples); Leylek [8, 11], and Thole [9].         

 The next geometric parameter to discuss is the inclination angle.  This is the angle that is 

also referred to as surface angle, where the angle that the axis of the film cooling hole makes with 

the heat transfer surface is defined as the inclination angle.  An inclination angle of 90° 

corresponds to a film cooling hole that is injecting perpendicular to plane of the heat transfer 

surface, and an inclination angle of 0° corresponds to the theoretical case of the hole axis being in-

line (parallel) to the heat transfer surface.  Much of the research community’s intent to studying 

the inclination angle is for determining the tendency of a film cooling hole to produce a film jet that 

may or may not be attached (or covering) the heat transfer surface, based on the inclination angle.  This corresponds to the principle of ‘jet lift off’, where a film cooling jet may pass through the 
coolant hole and be discharged into the primary flow (hot gas path) without ever touching the heat 

transfer surface.  It is important in most design situations to avoid this result, as no additional 

protection is offered by this injected film, yielding a waste of coolant routed from the compressor 

to the turbine section for cooling.   
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 Common inclination angles documented in literature typically range between 25° - 90°.  

Some studies, as in Metzger [10], generate comparisons of angled vs. normal injection, but most 

studies focus solely on injection cases with an acute inclination angle.  Although documenting 

shaped film cooling holes, Bunker [12] presents a technology review on shaped film cooling hole 

studies. Bunker’s [12] review finds its place in this work (pertaining to cylindrical holes only) by 

documenting popular shaped geometries (i.e. their inclination angles).  Most of the shaped 

geometries in this review have more significant lateral diffusion than wall normal diffusion.  

Therefore, crudely, one can consider the shaped hole inclination angles as ‘upper bounds’ on 
prospective inclination angles to be used.  This is justified given that any wall normal diffusion 

(through the use of trenches or diffusion in the shaped geometries) will provide better coverage 

and less jet lift off than in the cylindrical hole case at the same inclination angle.  That being said, 

Table 1 shows inclination angles presented in the technology review.   

Table 1: Inclination angles used in studies compiled in Bunker's [12] review 

α Occurances in Bunker [10] 

30 12 

35 10 

45 2 

50 2 

55 1 
          

 The next geometric parameter to discuss is the compound angle.  This last geometric 

parameter needed to fully define a single cylindrical hole, the compound angle, is defined as the 

angle the hole axis makes (projected onto the heat transfer surface) with the mean flow direction 

(primary flow, or hot gas path).  For this reason, the compound angle is commonly known as the 

flow angle.  Introducing a compound angle causes augmented spreading of the jet laterally, and 

significantly changes the local flow field.  This deviation from in-line injection causes further 
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induced turbulence, causing an immediately larger buffer of film.  Also, it is seen that the 

traditional (symmetric) counter rotating vortex pairs present in jet in crossflow (JICF) situations 

becomes highly asymmetric when a compound angle shift is used.   

 Certain attributes to the flow field are distinct once a compound angle shift is 

implemented.  Leylek [13] provides a novel computational technique documented and evaluated 

for film cooling holes over a range of compound angles.  Velocity contours are shown in a plane 

through the center axis of the film cooling hole, as well as in the exit plane of the film cooling hole.  

Contours of turbulence intensity just above (Y/D~.2) are documented for each compound angle 

tested.  With coefficients of pressure distribution over the surface near injection, this publication 

provides good physical insight into the change in flow field with respect to different compound 

angles. 

  An experimental study displaying the consequence of introducing a compound angle, in 

terms of resulting flow field, is provided by Lee [14].  This study utilizes heat transfer 

measurements and flow visualization techniques to characterization the flow field around 

compounded hole configurations.  This can be compared to the flow field resulting from inline 

injection.  From the flow visualization results, it is clear that the compound angle contributes to 

when the hot gas path (primary flow) is ingested into the film cooling hole (secondary flow).   

More discussion will follow later on the results expected from introducing a compound angle shift.    

 Figure 2 shows the sign convention and description for inclination and compound angle.  
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Figure 2: Description of inclination and compound angle with sign convention 

 Two geometric parameters are discussed here to describe the spacing of film holes within 

a large array or grid of film holes.  The lateral (or transverse) spacing between holes is called the 

lateral pitch, P.  The streamwise (or axial) spacing is known as the streamwise pitch, X.  Each 

spacing is measured from the center of one hole exit area (breakout) to another, whether lateral or 

streamwise.  Both spacing’s are traditionally nondimensionalized by hole diameter, such that 

comparisons can be made between studies with differing hole diameters.  Figure 3 below shows a 

description of the lateral and transverse spacing’s described.     
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Figure 3: Description of lateral pitch (P) and streamwise pitch (X) 

      

  

1.4.2 Independent Parameters Used in Film Cooling 

 

 The first film cooling parameter to discuss is the density ratio.  The term density ratio 

signifies the ratio of the secondary flow (coolant) density to that of the primary flow (crossflow), 

as in Equation 1 .  Typically laboratory film cooling studies utilize heated coolant due to 

convenience of test setup.  Such an action results in an inverted density ratio, where it is common 

that these studies have a density ratio of less than unity.  Although this is opposite from the 

situation found industrial application, this is a common practice in the experimental research 

setting.  This study uses heated air as the secondary fluid, maintaining an approximate density 

ratio of 0.8.  One noteworthy precaution to take with using air as both the primary and secondary 

fluid while heating the secondary flow is that conduction effects on the heat transfer surface 

become significant.  Wright et al. [15] investigates this occurrence with several different 

measurement techniques, the result being that PSP is the favorable technique to avoid conducting 

on the heat transfer surface.  To minimize this effect, this study utilizes a very low thermal 

conductivity material as the heat transfer surface.  The characteristics of which will be 

documented later in this report.        
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Equation 1: Density Ratio 

𝐷𝑅 =  𝜌𝑐𝜌∞ = 𝑇∞𝑇𝑐      (1) 

 The next film cooling parameter to discuss is the blowing ratio.  The term blowing 

ratio signifies the ratio of the secondary flow (coolant) mass flux to the primary flow (crossflow) 

mass flux, as in Equation 2 .  This term accounts for the amount of coolant mass injected for cooling 

the heat transfer surface, relative to the mainstream flow (or hot gas path).  This term involves the 

relative densities of the fluids, as well as the relative velocities of the fluid streams.  Velocity ratio 

is another common scaling factor used in film cooling, which is absorbed in the blowing ratio for 

this study.          

Equation 2: Blowing Ratio 𝑀 =  (𝜌𝑈)𝑐(𝜌𝑈)∞     (2) 

 The next film cooling parameter to discuss is the momentum flux ratio.  The term 

momentum flux ratio signifies the ratio of the secondary flow (coolant) momentum flux to the 

primary flow (crossflow) momentum flux, as in Equation 3.  The momentum flux ratio can be 

determined with knowledge of the density ratio and mass flux ratio.  For a given laboratory test at 

a specified M, the DR dictates the momentum flux ratio of the film cooling jet.  The momentum flux 

ratio is pivotal to the fluid mechanics of the coolant jet, as an increase in momentum yields a 

tendency for the jet to protrude through the boundary layer on the heat transfer surface, and into 

the mainstream of the primary flow.  This condition of ‘jet lift off’ is often kept in mind when 
performing film cooling studies, as jet lift off causes a very poor outcome in film cooling 

effectiveness over the surface.  A non-specific, general case of jet lift off is pictured in Figure 4, to 

show the different behaviors of film cooling jets in regards to momentum flux ratios.     
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 Goldstein [16] asserts different characteristics of each momentum flux ratio regime.  In the 

first regime, for low momentum flux ratios, Goldstein states that the film cooling effectiveness is 

increased with increases in coolant mass added.  At this point, the thermal inertia of the coolant is 

utilized fully, and because the film is so attached to the heat transfer surface, the film cooling 

performance is not regarded to the density ratio of the fluid streams.  After an increase in 

momentum flux ratio up to a sufficiently high amount, the film cooling effectiveness now depends 

on the flow properties present (e.g. DR, M, etc.).  This regime is described as the mixing regime, 

and the flow structures / jet lift off now play a more significant role in the effectiveness resulting.  

Lastly, Goldstein asserts a regime characterized by clear lift off of the coolant jet, off of the heat 

transfer surface.  This regime has complex turbulent structures present, as the turbulent jet 

penetrates into the turbulent mainstream.      

Equation 3: Momentum Flux Ratio 

𝐼 =  (𝜌𝑈2)𝑐(𝜌𝑈2)∞ = 𝑀2𝐷𝑅     (3) 

 

 

Figure 4: The general effect of momentum flux ratio on jet lift off 
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1.4.3 Full Coverage Film Cooling 

Throughout literature there are a very large number of film cooling studies, each of which 

may focus on a different quantity or arrangement of holes.  Lot of work has been focused on 

discrete, single film cooling holes.  Some of which focus greatly on the governing physics and flow 

field by using large scale film cooling holes, or even the effect of new, more complex geometries as 

compared to basic ones (e.g. shaped holes vs. cylindrical holes, etc.).  Other studies utilize only a 

few holes forming a single row, whether it be to investigate the effect of lateral hole spacing on 

film jet interaction, or any other geometrical configuration.  Many correlations and approximations 

can be found in literature which utilize single row data for conjecturing what the given result of 

interest (e.g. effectiveness, heat transfer coefficient augmentation, etc.) would be with the 

subsequent addition of rows of film cooling holes.  Such works are also performed for cases with 

several rows of film cooling holes, to both validate/generate correlations and also directly 

measure a given result first hand without the use of correlations.  As in the case for this study, only 

full coverage film cooling arrays are considered in the text matrix.  These arrays are composed of 

many rows of film cooling holes.        

Even though there is an extensive amount of literature on film cooling in general, there is a 

much less complete look at the field of full-coverage film cooling.  A majority of works in full-

coverage film cooling are plotted with their case parameters, Figure 5.  It is clear that the available 

literature focuses on relatively small hole spacings, <15D.  Also, many studies focus on very simple 

hole orientations, α=90°, β=0°.  The current study focuses on larger spacings, P/D=X/D=23, and 

angled holes, α=45°, β=-45°, +45°, described in more detail in a following section.  Further novelty 

is achieved through implementing a compound angle shift after 12 rows into the array.  
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Furthermore, much of the data sets from the studies below are incomplete; they do not present 

both adiabatic film cooling effectiveness and heat transfer augmentation. 

 

 

                                  

 Figure 5: Literature geometric parameters compared with current study [34 -50] 
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1.4.3.1 Multihole Cooling Film Effectiveness and Heat Transfer [17] 

 The effect of hole pitch-to-diameter ratio and blowing ratio is studied by determining 

adiabatic effectiveness and heat transfer augmentation.  All the holes are inclined at α=30° and 

compounded at β=45°.  The focus of the study is to provide more information on the influence of 

hole and row spacing on film cooling array performance.  Tests are run at a film-cooling Reynolds 

number, Re, of 3600, where measurements are taken in a span-averaged manner.  The reported 

uncertainty in heat transfer coefficient is 8%. 

Mayle concludes that the integrity of each individual jet can be seen in the adiabatic film-

cooling effectiveness.  This is universally agreed upon in the current understanding of film 

literature.  The interaction and coalescence of individual jets is found to have a detrimental impact 

upon downstream film-cooling effectiveness.  Average heat transfer augmentations up to 2.5 are 

measured, showing that heat transfer augmentation must be considered while designing a film-

cooling array. 

1.4.3.2 Full-Coverage Film Cooling Part I: Comparison of Heat Transfer Data for Three 

Injection Angles [18] 

 Heat transfer experiments are run with α=90°, β=0°, α=30°, β=0°, and α=30°, β=45°.  Zero 

degree inclination angle produces the greatest heat transfer augmentation. Increasing the number 

of rows increases the downstream recovery region affected area.  A compound angled, inclined 

hole at a mass flux ratio of 0.4 to 0.5 provides the lowest heat transfer augmentation.  The highest 

increase in heat transfer augmentation is seen by normal injection of coolant. An increase in heat 

transfer augmentation for all geometries is seen at mass flux ratios greater than 0.4.  Increasing 

the number of downstream rows keeps an elevated heat transfer coefficient while increasing the 

area being protected.  
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1.4.3.3 Full-Coverage Film Cooling Part I: Comparison of Heat Transfer Data for Three 

Injection Angles [19] 

 This study was aimed at characterizing the heat transfer augmentation produced by three 

film cooling hole orientations; normal injection with no compound angle, inclined at 30° with no 

compound angle, and finally inclined at 30° with a compound angle of 45°.  As expected, 

conclusions from the study indicated that heat transfer augmentation was maximized for the 

normal injection case, and any addition of film cooling rows yielded higher levels of heat transfer 

in the recovery region.  Relevant to this current body of work, comparing the results in heat 

transfer augmentation for 90° and 45° provides insight into the physical mechanics of the film 

cooling jets 

1.4.3.4 An Investigation of the Heat Transfer for Full Coverage Film Cooling [20] 

 This study is also a full coverage film cooling study, where ten rows of normally oriented 

film cooling holes, relative to the heat transfer surface, were tested to investigate the effect of 

altered levels of freestream turbulence and unheated/heated started lengths prior to the array of 

film cooling holes.  A chief result from this experimental study was that the high and low 

turbulence levels in the freestream did not indicate a change in heat transfer augmentation, likely 

due to the relatively large amount of disturbances and turbulence factored from the film cooling 

holes injecting in a normal configuration.  This result from the study by Kelly and Bogard [19, 20] 

alleviates concern in the present study of slightly varying turbulence levels effecting heat transfer 

result.      

1.4.3.5 Film Cooling Effectiveness for Injection from Multirow Holes [21] 

 This is a study investigating the comparison of full coverage array data to predictions of 

full coverage array data from single row data, and different methods to generate such predictions.  

The array tested experimentally was comprised of tightly spaced (P/D=3, X/D=5) holes, with 

compound angle configurations of 45°.  The general conclusions were that the traditional 
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superposition model, and the point source model only performed with reasonable accuracy at 

sufficiently low blowing ratios (M<0.15), for the tighter lateral and streamwise spacing’s.  The test 

matrix and geometric specimen in this current study exceed the low blowing conditions that were 

found to be accurately predicted with different models, and thus such models cannot be concluded 

as applicable directly (without modifications) to this current study.  

 

1.4.3.6 Turbulence intensity effects on film cooling and heat transfer from compound angle 

holes with particular application to gas turbine blades [22] 

This study concludes that the effect freestream turbulence has on film cooling effectiveness 

and heat transfer is not different for compound angled holes, compared to film cooling holes 

without compound angles.  The effect of freestream turbulence on film cooling effectiveness is 

most clearly prevalent at off-center locations in the immediate injection region of compounded 

film holes, where the film experiences significant lateral spreading.  Some more well-established 

links between freestream turbulence and film cooling performance are also validated in the study, 

such as that the freestream turbulence intensity tends to yield more uniform cooling over the heat 

transfer surface.  

1.4.3.7 Film cooling from two rows of holes with opposite orientation angles: injectant 

behavior and adiabatic film cooling effectiveness [23] 

Ahn, Jung and Lee investigate injectant behavior and adiabatic film cooling effectiveness 

for two rows of hole with opposite orientation angles.  Four configurations are investigated, inline, 

staggered and two arrangements between the inline and staggered, where z/D=6D, 3D, 1.5D and -

1.5D respectively.    Inclination angles for all configurations are set to 35°.  At lower blowing ratios, 

the injectant remains attached to the wall, therefore the spatial uniformity is seen to be a larger 

factor in determining the overall film cooling effectiveness than local film cooling effectiveness 

level.  Increasing blowing ratios to 1.0 and 2.0 increases the interaction between injectant from the 
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upstream and downstream holes.  At higher blowing ratios, inline holes provide higher adiabatic 

film cooling effectiveness when compared to the staggered configuration.  Lower blowing ratios, 

near M=0.5 provide the highest adiabatic film cooling effectiveness in the near-hole region, where 

the higher blowing ratios provides better coverage farther downstream. 

 

1.5 Scope and Objective of Current Study 

As from the literature survey, the current study utilizes larger lateral and larger 

streamwise hole spacings than found in the presented literature survey.  Most of the cases from 

the literature survey presented here are also only considering a large array of film holes with 

simple hole orientations, as in normal injection without compounding.  This study not only 

investigates arrays with larger hole-to-hole spacings, but also relatively unpopular hole 

configurations, such as compound angles of both ±45°.  The staggered pattern of positive/negative 

compound angle in this study also creates yet another unique characteristic in the film cooling 

arrays which is unique to cases found throughout literature.  In regards to the literature surveyed, 

it is clear that this study proves quite unique from other cases in literature due to large hole 

spacings within the array (lateral and streamwise), uncommonly large compound angles, and a 

compound angle shift within the array. 

 

The objective of this work is to consider the test specimen under the test conditions 

specified in the test matrix, Table 2, and quantify both film cooling effectiveness and heat transfer 

augmentation for each case.     

 

 

 



21 

CHAPTER 2: EXPERIMENTAL SETUP AND TESTING PREPARATION 

 

2.1 Geometries Tested 

 This chapter describes the physical setup for the experimental tests of film cooling arrays, 

performed at the Siemens Energy Center, the Center for Advanced Turbomachinery and Energy 

Research at the University of Central Florida.  A detailed description will be provided in this 

section on the fabrication and configuration of the geometry specimen tested, several technical 

details of the wind tunnel and crossflow environment, both experimental testing methodologies, 

and an uncertainty quantification. 

2.1.1 Independent Testing Parameters Which Influence Film Cooling 

 The fundamentals of film cooling necessary to the current study are presented below.  In a 

broad sense, there are geometric parameters and flow parameters which affect film cooling.  The 

hole geometry and orientation have a profound effect on the behavior of the jet leaving the wall.  

Also, several fluid mechanic parameters dominate the performance once a hole geometry is 

decided.   

 Some concepts and parameters discussed in the first chapter will be summarized and 

repeated here for clarity to those readers who wish for a brief description of test parameters. 

 Nomenclature adopted for this body of work describing the cylindrical hole geometry is 

diagramed in Figure 6.  Figure 7  details the geometric parameters describing multiple film cooling 

holes. 
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Figure 6: Coordinate system and nomenclature for angles describing film hole geometry 

 The inclination angle, or surface angle, α is typically between 15-90° for film cooling applications.  The effect of α is to adjust the wall normal component of momentum of the coolant 
jet as it leaves the wall.  The compound angle, or flow angle, β can vary anywhere between ±90°.  
Any deviation from 0° will cause an asymmetric vortex pair exiting the film hole.  This is beneficial 

because it disrupts the induced wall normal velocity, and instead promotes spreading of the jet.  

The length-scale used for film cooling studies is generally the hole diameter, D.  The lateral 

distance between two adjacent holes, measured from hole exit breakout to adjacent hole exit 

breakout, is known is the pitch, P.  Finally, the stream-wise pitch, X, is the stream-wise distance 

between two adjacent rows and is normalized to X/D.   
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Figure 7: Geometric parameters describing an array of film cooling holes 

 

Figure 8: Geometric parameters describing an array of film cooling holes 

 Up to this point, the geometric parameters relevant to this body of work which affect the 

film cooling performance have been briefly discussed.  The parameters pertaining to the flow of 

both the primary and secondary flow are now discussed, for this jet in crossflow situation. 
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 Shown in Equation 4, the blowing ratio (M) describes the ratio of coolant mass flux to 

mainstream hot gas mass flux. This ratio indicates the amount of mass injected into the boundary layer. Both the mainstream and coolant density (ρ) and average velocity magnitude (U) are used. 
Equation 4: Blowing Ratio 

𝑀 =  (𝜌𝑈)𝑐(𝜌𝑈)∞      (4) 

Other parameters often used to describe film cooling performance are the density ratio 

(DR) and the momentum flux ratio (I).These are calculated using Equation 5 and Equation 6, 

respectively.  The influence of momentum flux ratio on the dynamics of the jet is shown in Figure 

9. 
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Equation 5: Density Ratio 

𝐷𝑅 =  𝜌𝑐𝜌∞ = 𝑇∞𝑇𝑐       (5) 

Equation 6: Momentum Flux Ratio 

𝐼 =  (𝜌𝑈2)𝑐(𝜌𝑈2)∞ = 𝑀2𝐷𝑅     (6) 

 

Figure 9: The general effect of momentum flux ratio, describing lift off 

2.1.2 Test Matrix 

 The focus of the current study is the quantification of local heat transfer augmentation and 

adiabatic film-cooling effectiveness for two full-coverage film cooling surfaces. All specimen have 

22 rows of holes in the streamwise direction.  In the lateral direction, all full coverage film cooling 

rows have a total of 10 holes.  All specimens have an L/D of approximately 14 for holes within the 

regular array.  The test matrix can be seen in Table 2. 

Table 2: Geometric test speciman matrix for current study 

Specimen α (ᵒ) β (ᵒ) X/D P/D Nx 

FC.V 45 +45/-45 23 23 12  /  10 

FC.VI 45 +45 23 23 22 

 



26 

2.1.3 Machining Process 

 The fabrication process for the test geometries began with creating CAD drawings.  A CAD 

drawing for one of the geometries used in heat transfer augmentation testing can be seen in Figure 

10.  A CNC machine is used to machine all test geometries.  Prior to machining the Rohacell plates, 

several fine grades of sandpaper are used to create a smooth flow side surface.  Flanges are 

machined on the edges of the test section, as in Figure 11, such that the test plate’s surface would 
be flush with the surface of the wind tunnel.  The spindle angle of the CNC machine was altered to vary the end mill’s angle relative to the surface, as in Figure 12.  This enabled different inclination 

angles to be cut, in intervals of 15°.  For each spindle orientation, several adapter plates had to be 

fastened to secure the angle of the cutting axis relative to the test surface.  The spindle angle is set 

with an accuracy of ±0.1°, measured with a standard digital level.  Gage blocks with an accuracy of 

±40 seconds were also used to verify the hole angles machined.  To achieve the desired set of 

compound angles for the test geometries, a fixture is made to change the orientation of the plate 

relative to the table.  Figure 13 shows the fixture, where slots are made for all compound angles 

included in the test matrix.  

Figure 10: CAD drawings for a HTC test geometry with 
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Figure 11: Plates were machined using a CNC 

 

Figure 12: The spindle was rotated to achieve the desired hole inclination angle 
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Figure 13: A fixture was made to hold the plates at the appropriate orientation angles (for machining 

the compounding angle) 

After machining, the geometries are measured for uncertainty.  Pin gauges are used to 

check each hole diameter as well as smooth any roughness caused from the milling process.  The 

uncertainty of the pin gauges is 0.0025mm.   

 Due to the test sections being large, 1.2m in the flow direction, the large test surfaces were 

broken into streamwise segments for testing.  A sample CAD drawing of such breakup of the test 

section can be seen in Figure 14.  These segmented test section pieces were installed into the wind 

tunnel flush with one another, so that no physical flow trips were present between plates at their 

transitions.  This required great attention to detail when installing the plates, and sometimes 

required rigid metal tape or wood putty to be placed at the transition.   
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Figure 14: Test surface composed of three sections (plates) 

 

2.1.4 Geometric Uncertainty 

 

 Two different cases are tested for film cooling effectiveness, and one case is tested for heat 

transfer augmentation.  The geometric uncertainty table can be seen in Figure 15, where the 

uncertainty in each geometry fabricated and tested is listed.  A cartoon image for clarity on 

experimental test setup of the heat transfer surface can be seen in  

 

Figure 15: Geometric uncertainty table 
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Figure 16: Experimental setup of heat transfer surface, comprised of three separate plates 

 

2.2 Wind Tunnel 

 A wind tunnel is designed for the study to accommodate the large (1.2m x 0.55m) test section.  

This allows for a tunnel tailored for studying large arrays of film holes.  The cross-section of the cross 

flow duct at the test section is 6”x 42”.  This corresponds to a height of 73D for the film holes of 

D=2.06mm.  This ensures the dynamics of the jets leaving the film holes are not affected by the duct.  

The cross section of the tunnel is sized so that the added mass due to injection is insignificant 

compared to the main flow; hence, the study is conducted in a nominally zero pressure gradient 

boundary layer (until pressure insert is put in). 

A model of the tunnel is shown in Figure 17.  There is a 45cm conditioning section upstream of 

the test section.  There are 2 honeycombs of 1.3cm cell size and L/D=6.  There are also 3 screens.  

These were installed to reduce the turbulence intensity of the main flow.  After the conditioning 

section there is a slight 1-D nozzle with an area ratio of 2 leading up to the test section. 



31 

 

Figure 17: Wind tunnel (crossflow) and plenum (secondary flow) for large film cooling array studies 

2.2.1 Blowers 

 The coolant flow is supplied by an 11kW Spencer Vortex blower capable of 35kPa and 0.3m3/s.  

The main flow is driven by a 5kW Ziehl-Abegg fan capable of -1.5kPa and 6.6m3/s.  The flow originated 

from the blowers is routed to the plenum through PVC piping. 

2.2.2 Wind Tunnel Flow Measurements 

 Several static pressure readings are taken along the test section to verify there is not a 

significant pressure gradient imposed on the flow for tests which do not utilize the pressure 

gradient wedge.  Over the length of the 1.2m test section there is approximately a 15Pa pressure 

drop corresponding to a -12.5Pa/m favorable pressure gradient.  Figure 18 shows the static 

pressure development in the streamwise direction for zero pressure gradient testing.   
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Figure 18: Static pressure variation in the stream-wise direction of the duct without the pressure 

insert in the wind tunnel 

The freestream velocity, turbulence intensity, and several other flow measurements are 

quantified with a constant temperature anemometer (CTA), and displayed in Table 3.  Two free 

stream velocities were tested to provide flow measurements for low and high freestream 

velocities.  This is significant because the freestream velocity will be lowered for several cases 

involving a significant pressure gradient.  The root mean square of the turbulent fluctuations for 

both freestream velocities is obtained from this data and the turbulence intensity (TI) of the 

mainstream is quantified at less than 1% for both cases. 

Figure 19 shows the outer scaled velocity profile normalized by the freestream velocity of 

27.2 m/s.  Similarly, Figure 20 shows the boundary layer thickness for a free-stream velocity of 

10.3 m/s.  The data was acquired at a rate of 10kHz for 3 seconds per wall normal location.  The 
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measurements started from a location of .13mm away from the wall, allowing for resolving as 

close to the wall as y+=10.   

Table 3: Flow measurements for wind tunnel with constant temperature anemometry 

Freestream Velocity (m/s) U 10.3 27.2 

99% Boundary Layer Thickness (mm) δ.99 9.1 8.8 

Displacement Thickness (mm)  δ1 1.25 1.04 

Momentum Thickness (mm)  δ2 0.82 0.75 

Shape Factor  H=δ1/δ1 1.52 1.39 

Reynolds Number on δ2 Re2=Uδ2/ν 500 1300 

Reynolds Number on D ReD=UD/ν 1300 3400 

Freestream Turbulence Intensity TI=u'RMS/U <0.01 <0.01 

99% Boundary Layer Thickness to Hole 

Diameter Ratio δ.99 /D 
4.6 4.4 

Displacement Thickness  to Hole Diameter Ratio δ1 /D 0.62 0.52 

Momentum Thickness to Hole Diameter Ratio δ2 /D 0.41 0.38 

        

Friction Velocity (m/s) Uτ 0.52 1.25 

Outer-inner length scale ratio δ+=δ.99Uτ/ν 298 694 

Cole's Wake Strength Π 0.265 0.27 

Constant in van Driest's damping function A+ 26 26 

von Karman's constant κ 0.41 0.41 

 

The velocity profiles for the two free stream velocities are matched with the law of the wall 

in order to determine the friction velocity.  The profiles are then integrated to determine the 

integral thicknesses for the wind tunnel.  The two inner scaled plots of the upstream boundary 

layer are shown in Figure 21 and Figure 22.  Since the true wall normal distance is unknown for 

the first measurement point, part of initial processing to generate such plots requires regression 

between the friction velocity and the distance of the first measurement point.  More specifically, 

the data is matched to the law of the wall for a range of values of both the initial wall normal 
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position of the measurement, and the shear stress term inside the friction velocity.  After 

considering all physical combinations of both unknowns with a routine in MATLAB, the 

combination with the best fit to the law of the wall is chosen.  Some physical insight can be made, 

as specifications of the boundary layer probe from the manufacturer allows for an initial guess at 

the distance from the wall.  A modified wake function [31] is then added to the van Driest profile.  

10,000 points from y+ = 10^-2 to y+ = 10^3, spaced logarithmically, are integrated from y/δ=0 to 1 
with a rectangle rule for estimating the integral (integral thickness). 

 

Figure 19: CTA velocity measurements of the boundary layer for the maximum tunnel free stream 

velocity 
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Figure 20: CTA velocity measurements of the boundary layer for a low tunnel free stream 

 

Figure 21: Inner scaling of boundary layer for the tunnels maximum free stream velocity 
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Figure 22: Inner scaling of boundary layer for a lower tunnel free stream velocity 

2.3 Measurement Techniques 

2.3.1 Testing Methodology – Adiabatic Film Cooling Effectiveness 

 To obtain values of adiabatic film cooling effectiveness, a low thermal conductivity test 

surface is machined with the full-coverage geometry into the material.  The flow side is coated 

with TSP, seen in Figure 23.  The temperatures are obtained from thermocouples in the freestream 

and in the holes, and adiabatic wall temperatures measured with TSP.  These values are combined 

to yield local contours of effectiveness. 
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Figure 23: Adiabatic film cooling effectiveness experimental setup 

The Adiabatic Wall – Rohacell RIMA 

 The material chosen for the test surface has a significant effect on the final adiabatic film 

cooling effectiveness results.  Acrylic, a relatively low thermal conductivity material (k=0.2W/m-K) 

provides very poor quality effectiveness data.  Hence, the current study uses Rohacell RIMA, low density closed cell foam as the ‘adiabatic’ test surface.  The RIMA specification is suited especially 
for painting applications; hence, the roughness of the wall is minimal with the RIMA series.  The 

thermal conductivity of Rohacell is k=0.029W/m-K. Due to the low strength of the material, 

aluminum brackets are cold-welded to the backside; these brackets improve data quality by 

minimizing the deflection of the test section during testing.   

Temperature Sensitive Paint (TSP) 

Pictures gathered with the CCD camera, and processed using in house codes which take the 

raw image files and process them into temperature distributions.  A 1200x1600pixel resolution 

picture is taken with the camera.  The calibration curve for TSP is based off of an intensity ratio as 
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a function of a temperature difference.  Two pictures are needed to gather a temperature 

distribution, Figure 24.  One picture is needed as a reference, the cold picture, with a known 

temperature over the entire surface being measured, along with the hot picture of the unknown 

temperature profile.  This method of taking intensity ratios leads to a technique which is rather 

insensitive to lighting and paint variations, a huge strength of TSP.  Eight pictures are taken for 

both the hot and cold set and are averaged into one picture.  This multiple sampling is used to 

reduce the noise of the pictures. 

 

Figure 24: Process of processing temperature from raw data using TSP 

By means of in house MATLAB codes developed specifically for processing TSP into usable 

heat transfer data, the intensity values of the cold pictures are read and averaged; the same 

procedure takes place for the hot images taken at steady state. Then through the use of calibration 

curves of the TSP, temperature values are obtained from the ratio of the intensity values of the hot 

to cold images.  These calibration curves are obtained through experiment, Figure 25.  A 1.3cm 

thick sheet of acrylic is painted with approximately 6 layers of TSP, at the same time as the test 

section, as the calibration piece.  This piece is placed on a copper block on top of a small electric 
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heater which is used to heat the test piece to 10 different temperatures.  With a thermocouple 

monitoring the temperature on the surface, steady state is monitored and temperatures are 

recorded.  This calibration allows the use of the formula above to obtain temperature as a function 

of an intensity ratio. 

 

Figure 25: Typical calibration curve for TSP (in-house)  

2.3.2 Testing Methodology – Heat Transfer Augmentation 

 The measurement of heat transfer augmentation requires an experimental setup different 

from the effectiveness testing.  In concept, it is a steady state method for obtaining the heat 

transfer coefficient.  Constant heat flux heaters are mounted on an acrylic test surface and coated 

with TSP, Figure 26.  From an energy balance it is clear that in order to obtain the heat transfer 

coefficient, quantification of all the heat flow in, out and across the convective surface is necessary.  

The heat rate information for a 1-D process is quantified including the heat generated by Joule 

heating, heat conducted through the acrylic, and heat radiated to the tunnel.  With these heat rates 

quantified, the heat removed through convection can be determined.  First the heat transfer 
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

(T
-T

R
)/

1
0
0

I/IR



40 

coefficient defined by the temperature difference between the wall and the freestream is 

determined from this convected heat rate.  Then the film effectiveness distribution, previously 

obtained, is overlaid on the data and used to define a heat transfer coefficient in the presence of 

the film.  Finally, this corrected heat transfer coefficient is scaled by the heat transfer coefficient 

distribution without blowing, finally resulting in local heat transfer augmentation values. 

 

Figure 26: Heat transfer augmentation experimental setup 

A constant heat flux condition is desired from the surface of interest. Since the heated 

surface has features that cannot be covered by the heaters such as film cooling holes, the heaters 

are installed around them without disturbing the flow that each feature has. The area if interest is 

heated as much as possible in order to obtain an acceptable temperature difference between the 

wall and the fluid.  These foil heaters are made out of t=5.08*10-5m thick stainless steel type 321.  

Using data from Chu [32], a plot of temperature vs. electrical resistivity is created, seen in Figure 

27.  A curve is fitted to the plot over temperature range of interest, between 293K and 350K.  This 
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curve fit is used in the data processing to help attain a higher degree of accuracy.  These steel 

sheets are painted and then baked at a temperature close to 90°C for half an hour.  Kapton tape is 

used on both sides of each heater because it is electrically isolative, thin and it is intended for high 

temperature environments.  This helps ensure good heater performance.  The heaters are then 

applied to the acrylic test surfaces in series.  The series installation allows the heat rate to be 

determined by the current, providing a much more accurate method of calculation than installing 

them in parallel and measuring the voltage drops.   

Several methods for measuring the current are used to provide the highest confidence in 

circuit current.  This experimental parameter is one of the most important ones measured, which 

nearly everything is contingent on.  For the first method of measuring current, A shunt resistor, R=1mΩ and i=30A maximum, is installed in-line with the heaters.  Keithley model 2000 multimeter 

is used to measure the voltage drop across the shunt resistor, and from this voltage and the 

resistance of the shunt, the current through the circuit is calculated.  The Keithley multimeter 

features a 0.1µV resolution with bias of ±(0.06%) the reading.  The voltage drop across the shunt 

during testing is on the order of mV.  The benefit of using this method to calculate current is that 

the shunt resistance is very controlled, and unchanging. 

The second method for current measurement involves using a clamp meter.  The meter is placed over a segment of the circuit’s wire, and current measurements are directly made.  This 
method is very beneficial because all of the circuits components are wired in series and it is easy to 

perform.  To reduce the effect of the clamp meters inaccuracy, several sections of the circuits wire 

are bundled into loops.  For each test, current measurements are taken over a section of a single 

wire, a three wire bundle, and a ten wire bundle.  This inherently results in a smaller effect of the 

clamp meters uncertainty.  Typically, the circuits measured current converged to the reading from 

the ten wire bundle (clamp meter reading divided by ten), which provides the most accurate 
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reading of all the methods used.  One disadvantage of this method though however, is that the 

meters reading strongly depends on the tools orientation to the wire(s).  This problem was 

averted by recording values for several orientations, and using an average. 

The last method used to calculate the current was less robust, however serves as a double 

check and initial evaluation of circuit current.  Prior to making the circuit live, a Keithley model 

2000 multimeter was used to determine the circuit resistance.  Using this resistance value, and the 

voltage across the variac, an initial determination for the needed voltage from the variac was 

made.  The main limitation to this method is that the bias in the circuit resistance is significant 

relative to the overall circuit resistance.  Even though the Keithley multimeter has very small bias, 

the contact resistance on the multimeter leads is inconsistent (because it is measured by hand 

over the circuit). 

 

Figure 27: Stainless steel type 321 temperature vs. electrical resistivity 
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A 1-D control volume is placed at the convective surface of the heaters, Figure 28. 

 

Figure 28: Control volume and energy balance of heater surface 

In terms of Joule Heating, In order to determine the heat transfer coefficient, the electrical 

current (i) and heater resistance (R) are converted into an input heat flux. This is shown in 

Equation 7, where As represents the surface area of the heater exposed to the mainstream flow. 

Equation 7: Input Heat Flux 

𝑞𝑔𝑒𝑛′′ = 𝑖2𝑅𝐴𝑠       (7) 

The heater resistance is calculated using the resistivity (ρel) of stainless steel and the 

dimensions of the heater, as seen in Equation 8. The length (l) is measured in the span direction 

while the width (w) is measured in the stream direction. The thickness (t) is the thickness of the 

stainless steel foil, measured in the wall normal direction. 
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Equation 8: Electrical Heater Resistance 

𝑅 =  𝜌𝑒𝑙𝑙𝑤𝑡      (8) 

In terms of data reduction for heat loss, Necessary for determining the heat transfer 

coefficient are the other modes of heat transfer from the surface.  Heat loss is correlated 

experimentally to determine what generated portion is lost to conduction and radiation, the 

remaining heat is taken to be convected away by the boundary layer. 

 Conduction loss, q’’cond is quantified as a function of the temperature difference between 

the wall temperature Tw and the average backside acrylic temperature Tb. This also accounts for a 

small amount of radiation loss through the back surface. A schematic of this test setup is shown in 

Figure 29. 

 

Figure 29: Conduction heat loss test setup 
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Figure 30: Conduction heat loss test results 

 

 Figure 30 shows the result of the conduction heat loss test. The resulting relationship between Tw and q’’cond is described by Equation 9. Note that this loss is applied locally, as 

described in the 1-D heat loss correction section. The measured Tw profile and average Tb are 

easily combined to determine the q’’cond at each pixel of captured data. 
Equation 9: Heat loss as a Function of Wall Temperature 

𝑞𝑐𝑜𝑛𝑑′′ = 17.994[𝑇𝑤(𝑥, 𝑧) − 𝑇𝑏]     (9) 

Heat lost by radiation to the environment is also quantified through a separate experiment. 

This is achieved by insulating the backside of an acrylic plate and sealing the mainstream flow 

tunnel to prohibit air from flowing over the plate. A foil heater, coated with TSP, is attached to the 

acrylic plate to reproduce the conditions of a heat transfer experiment.  

The results of this test, seen in Figure 31, show that there is a radiation loss of 

approximately 87% of the blackbody radiation exchange. The results of this experiment are in 
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agreement with estimates of radiation loss based on the emissivity of white paint. The radiation 

heat loss is therefore evaluated by Equation 10, where σ is the Stephan-Boltzmann constant. 

 
Figure 31: Radiation heat loss results 
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Equation 10: Radiation Heat Loss of the Experimental Rig 

𝑞𝑟𝑎𝑑′′ = 0.873𝜎[𝑇𝑤4 − 𝑇∞4 ]     (10) 

 The heat transfer coefficient is corrected for with the film temperature.  Using this 

information, the local uncorrected heat transfer coefficient is calculated by Equation 11, where 

q_conv'' is determined by Equation 12. 

Equation 11: Local, Uncorrected Heat Transfer Coefficient 

ℎ𝑢 = 𝑞𝑐𝑜𝑛𝑣′′ (𝑥,𝑦)𝑇𝑤(𝑥,𝑦)−𝑇∞      (11) 

Equation 12: Corrected Convective Heat Flux 

𝑞𝑐𝑜𝑛𝑣′′ = 𝑞𝑔𝑒𝑛′′ − 𝑞𝑐𝑜𝑛𝑑′′ − 𝑞𝑟𝑎𝑑′′      (12) 

 Note that this heat transfer coefficient is “uncorrected” because it is determined using the 
mainstream flow temperature, which differs from the coolant temperature by 2-10°C.  Once 

evaluated, the local effectiveness data is used with Equation 13 to account for this difference. 

 

Equation 13: Corrected Heat Transfer Coefficient (Effectiveness Utilized) 

ℎ𝑓 = ℎ𝑢[1 − 𝜂𝜃]−1     𝑤ℎ𝑒𝑟𝑒     𝜃 = 𝑇∞−𝑇𝑐𝑇∞−𝑇𝑤    (13) 

The electric current measurement in processing the heat transfer data was very crucial to 

minimixing uncertainty, as the uncertainty in the current measurement was one of the most 

sensitive parameters.  Thus as discussed earlier, there were three techniques used to ensure an 

accurate measurement was achieved.  Figure 32 shows a cartoon image of the circuit with heaters 

in series.  The conlcusion was that the shunt will be used for measurement in data processing 
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processing, while the voltmeter and clamp meter will be used to verify the shunt meter reading.  In 

summary: 

Shunt 

Procedure: Voltage and resistance are measured across shunt 

Benefits: Ideally most accurate (most controlled resistance) 

Complication: Values of current are 2 orders of magnitude off, but match macro circuit 

calculation otherwise 

Clamp Meter 

Procedure: Placed over cable and reads current 

Benefits: Easiest method, provides best  

Complication: susceptible to orientation of reader, measurement bias not quantified by 

manufacturer 

Clamp Meter 

Procedure: Measure output voltage of the variac and total circuit resistance 

Benefits: Mainly as a double check 

Complication: Resistance measurement uncertainty (bias is on the order of circuit 

resistance) 
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Figure 32: Cartoon image of circuit measurement devices 

 Additionally, the heat transfer data is more useful when presented as heat transfer 

enhancement, hf/h0, where h0 is the flat plate heat transfer coefficient in the absence of film 

cooling.  h0 is determined analytically so that numerous heater geometries may be accounted for 

with a single equation.  This analytical result is validated with a flat plate with various heated and 

unheated portions. These results are provided in a following section. 

Equation 15, the unheated starting length equation for turbulent flow over a flat plate, is 

used to superimpose the effect of multiple constant heat flux surfaces and adiabatic surfaces to 

simulate the alternating thermal boundary conditions on the test surface. Figure 36 describes the 

heated and unheated surface conditions. 

The following equations are used to evaluate h0: 
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Equation 14: Nusselt Number Flat Plate Correlation 𝑁𝑢𝑥 = 0.0308𝑅𝑒𝑥4/5𝑃𝑟1/3    (14) 

Equation 15: Nusselt Number Correlation Involving an Unheated Starting length 𝑁𝑢𝑥 = 𝑁𝑢𝑥|𝜉=0[1−(𝜉/𝑥)9/10]1/9     (15) 

Equation 16: Uncorrected Heat Transfer Coefficient Without Blowing ℎ0 = 𝑁𝑢𝑥 ∗ 𝑘𝑓𝑥       (16) 

 

Figure 33: Heated and unheated surfaces and the effect on heat transfer 

 

Equation 17: Heat Transfer Coefficient Augmentation Factor 

𝐻𝑇𝐶 𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 = ℎ𝑓ℎ0    (17) 

2.4 Uncertainty Quantification 

Quantification of uncertainty for the experiment has been conducted.  Resultants can be 

seen at the top of each “tree”.  The calculated values are broken down into each measurand and the 
last values seen are the uncertainties in each measured value.  These trees allow a view at each 

parameter contributing to the uncertainty of the final calculated value.   

From Figure 34, one can see the contributing factor to uncertainty in the numerator of heat 

transfer enhancement.  There is a large amount of measurands contributing to the experimental 

uncertainty in heat transfer enhancement leaving the final uncertainty in heat transfer 
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augmentation much larger than the uncertainty in adiabatic film-cooling effectiveness, whose 

uncertainty tree can be seen in Figure 35. 

 

Figure 34: Contributions to uncertainty in heat transfer coefficient 

 

Figure 35: Contributions to uncertainty in adiabatic film-cooling effectiveness 
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Figure 36: Contributions to uncertainty in blowing ratio 

 The propagation of error effect on the absolute error of the resultant, Ω, is quantified 
through Equation 18.  The uncertainty trees shown above represent the j measurands, xj.  In the 

case of adiabatic film cooling effectiveness and blowing ratio, the partials of the resultant with 

respect to each measurand are calculated analytically based off of the appropriate relationships.  

In the case of calculating the partials for the heat transfer coefficient, a singular perturbation 

method is used due to the complexity of the relationships. 

Equation 18: Experimental Uncertainty 

𝑢𝛺 = √∑ ( 𝜕𝛺𝜕𝑥𝑗 𝑢𝑥𝑗)2𝑛𝑗=1      (18) 

 Uncertainties are shown for film cooling effectiveness and blowing ratio in Table 4, where intermediate parameters necessary for the calculation of η and M are shown in Table 5 with their 

typical value and associated experimental uncertainties.  
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Table 4: Experimental uncertainty for heat transfer coefficient and augmentation, and 

effectiveness 

Parameter 

Typical 

Value Total Uncertainty (20:1) 

Percent 

Uncertainty 

Heat Transfer Coefficient 100 9.6 9.6 

Heat Transfer Augmentation 1.200 0.18 15 

Effectiveness 0.2 0.02 10 

Blowing Ratio  0.63 0.0567 9 

 

Table 5: Experimental uncertainty in intermediate parameters 

Parameter Units 

Typical 

Value Bias Precision 

Total 

Uncertainty 

(95% C.I.) 

Percent 

Uncertainty 

Coolant 

Temperature °C 50.49 0.05 1.399 1.4 2.8 

Mainstream 

Temperature °C 25.15 0.05 0.595 0.597 2.4 

Adiabatic Wall 

Temperature °C 29.51 0.005 0.447 0.447 1.5 
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CHAPTER 3: ADIABATIC FILM COOLING EFFECTIVENESS RESULTS 

3.1 Benchmark 

The experimental procedure for evaluating local film cooling effectiveness used in the 

current project has been previously compared with literature and shown to produce results 

corroborating with published data.  Here, the comparison with Mayle [3] is shown, Figure 37, with 

the current study experiment matching literature within experimental uncertainty. 

 

Figure 37: Comparison of in-house data vs. Mayle (1975) 

 

3.2 Local Physics 

 Local representations of the adiabatic film cooling effectiveness are presented here.  For each 

of the sets of images that are presented, the vertical axis represents the z/D axis (lateral/transverse 

dimension) and the horizontal axis represents the streamwise position within the array.  All of the 

images are taken will a wall-normal reference to the heat transfer surface from a CCD camera, as 

described earlier in the experimental setup description of the report.  It should be noted that the 
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streamwise segments that are blank between plates represent regions where the data acquired is 

discarded, as such locations are where the plate transitions occur.  Such transitions are smoothed with 

woody putty and/or rigid metal tape, to ensure there are no disturbances (i.e. artificial flow trips) to 

the flow field, and thus the data acquired in such regions are void.    

FC.VI and FC.V are identical until row 13.  FC.V shows a very strong re-attachment after jet lift-off at 

M=2.0.  At the compound angle change, the laterally averaged effectiveness decreases, this follows 

the same trend seen throughout all testing.  Following the decrease in the laterally averaged 

effectiveness at the compound shift, the array recovers and begins to pick up.  The average 

effectiveness profile flattens out when the alternating compound angle begins.  Figure 38 shows the 

adiabatic film cooling effectiveness for the FC.V geometry at all blowing ratios, and similarly Figure 39 

for FC.VI.

 

Figure 38: Adiabatic film cooling effectiveness (local data) for FC.V at all blowing ratios 
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Figure 39: Adiabatic film cooling effectiveness (local data) for FC.VI at all blowing ratios 

 

3.3 Laterally Averaged Film Cooling Effectiveness 

 The temperature matrix from the CCD camera images is processed as described in the 

Temperature Sensitive Paint section, and is assumed to be equivalent to the adiabatic wall temperature 

(failing the assumption negligibly due to the very low thermal conductivity of the Rohacell used).  The 

film cooling effectiveness can be seen defined in Equation 19.  The effectiveness is dependent on the 

coolant temperature (secondary flow) and the freestream temperature (primary flow).  The placement 

of thermocouples for each measurement can be found in earlier sections of the report.  In short, 

thermocouples for measuring these two temperatures were placed ‘floating’ in the plenum, on the 

backwall of the Rohacell (in the plenum), at the entrance to the film cooling holes (plenum side), within 

the film cooling holes, at the exit of the film cooling holes, on the surface of the TSP on the heat 

transfer surface, and far away from the heat transfer surface in the freestream of the wind tunnel.  In 
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excess of 20 thermocouples was used and averaged to yield the freestream wind tunnel temperature 

and the coolant temperature.  The laterally averaged expression of adiabatic film cooling effectiveness 

can be seen in Equation 20. 

Equation 19: Film Cooling Effectiveness 

    (19) 

Equation 20: Laterally Averaged Film Cooling Effectiveness 

   (20) 

Film cooling effectiveness data has been presented in the form of local contour images, 

however, in this section the result discussed will be the laterally averaged adiabatic film cooling 

effectiveness. 

Laterally averaged measurements of film cooling effectiveness were taken for each full coverage 

film cooling geometry at M=0.5, 1.0, 1.5, and 2.0.  Data was taken on the test surface with TSP, where 

the segmented test section was made up of three separate plates. 

In order to readily compare film cooling performance of different geometries and blowing 

ratios, η was laterally averaged for each test case.  The region of averaging was not the full width of the 

test surface, but rather only the portion that would best simulate the performance of an infinitely wide 

film cooling array.  Local data was used to best discern what portion of the array would be used for 

lateral averaging.  The region averaged for laterally averaged effectiveness varied between tests, but 

was always an integer multiple of the pitch, and was always as wide as possible. 
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In Figure 40, a sample local data image of effectiveness is shown, where the averaging window 

is approximately highlighted as dashed black lines.  The bounds of the averaging window were always 

measured and carefully taken to be exactly half the lateral spacing between two holes, equally 

bisecting the space between two holes.  Data inside the film cooling holes was not considered, the film 

cooling holes were not painted with TSP, as the intensity readings from measurements would be 

skewed due to the surface curvature.  For each geometry, the full range of blowing ratios were 

tested between M=0.5 and M=2.0. 

 

Figure 40: Sample data (from this work) with contours and the averaging window for laterally 

averaged effectiveness shown 

3.3.1 FC.V 

The FC.V adiabatic film cooling effectiveness can be seen in Figure 41.  This geometry 

tested includes a compound angle shift mid-array.  Noteworthy discussion can be directed to the 

expected how levels of coverage relative to the other cases.  These relatively low values of 

coverage would be an inferior design to that with rows of shaped holes, for in cases where large 

thermal loads are locally present.  Also, the M=2.0 case starts low and does not surpass any of the 

lower blowing ratio cases in effectiveness through the entire array, a trend that is slightly more 

pronounced here than in other geometries.   
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Figure 41: FC.V Adiabatic Film Cooling Effectiveness 

 

 Effectiveness testing was conducted at different freestream conditions (i.e. freestream 

velocity).  As a result, two different Reynolds number, based on hole diameter, can be defined.  

Effectiveness results can be seen in , as the laterally averaged data is compared for each freestream 

velocity condition.  The laterally averaged film effectiveness has a qualitatively similar trend with 

respect to the Reynolds number based on hole diameter and freestream velocity.  As blowing ratio 

increases for each of the data sets, the Reynolds number dependence has less effect.  
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Figure 42: Comparison of effectiveness data for different freestream velocities, for FC.V, M=0.5 

 

Figure 43: Comparison of effectiveness data for different freestream velocities, for FC.V, M=1.0 
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Figure 44: Comparison of effectiveness data for different freestream velocities, for FC.V, M=2.0 

3.3.2 FC.VI 

The FC.VI adiabatic film cooling effectiveness can be seen in Figure 45.  This test specimen 

differs from FC.V due to FC.VI not having a compound angle shift present in the array.  The impact 

of this is clear, as the cooling effectiveness downstream in the array continues to rise and does not 

plateau as compared.  The effectiveness at the end of the array is considerably higher than for the 

cause without a compound angle shift.  This conclusion that the compound angle shift is 

detrimental to the global (not local) performance in heat transfer is consistent with other tests in 

this study.  Also, one can notice that the M=2.0 starts low in both the FC.V and FC.VI case, however, 

for the case without a compound angle shift the effectiveness continues to rise above the other 

cases, sufficiently far downstream.     
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Figure 45: FC.VI Adiabatic Film Cooling Effectiveness 

 

3.3.3 Direct Comparisons between Geometries 

 Several conclusions can be made when comparing FC.V and FC.VI, however, the largest 

conclusion is in regards to the compound angle change throughout the array.  The compound angle 

shift can be locally helpful towards increasing the film effectiveness, by virtue of a large layer of film 

quickly accumulating around the holes of alternating compound angle.  This aid to increasing 

effectiveness though does not persist downstream past the first row where the compound angle is 

shifted, as seen in the local effectiveness data.  As in Figure 38 and Figure 39, one can see that jet 

coalescence is much less prevalent in the case where the compound angle shifts in the middle of the 
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array.  These results are agreeable when looking to the laterally averaged film effectiveness results 

when analyzing the change in compound angle shift.  

 

Figure 46: FC.V and FC.VI effectiveness compared for all blowing ratios 
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CHAPTER 4: HEAT TRANSFER AUGMENTATION RESULTS 

4.1 Benchmark 

 The method of measuring heat transfer coefficient was validated in two ways: first, the 

method of determining h0 was tested using a flat plate with alternating heated and adiabatic 

portions. The results of this, seen in Figure 47 and Figure 51, showed that the measured heat 

transfer coefficients were in good agreement to the h0 prediction. This experiment also validated 

the method of calculating the heat transfer coefficient based on the electrical power input to the 

heaters. 

 

Figure 47: Flat plate h0 validation 

Additionally, the film cooling geometry tested for validation was identical to the geometry 
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uncertainty of the experiment. A comparison of this work and Mayle’s data for M = 0.5 is found in 
Figure 48, while M = 1.0 and M = 1.5 are found in Figure 49 and Figure 50, respectively. 

 

Figure 48: Validation of the M=0.5 case with (identical geometry) Mayle [3] 

 

Figure 49: Validation of the M=1.0 case with (identical geometry) Mayle [3] 
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Figure 50: Validation of the M=1.5 case with (identical geometry) Mayle [3] 

 

Figure 51 shows additional validation work that was conducted prior to heat transfer 

coefficient testing.  Uncorrected heat transfer coefficient measurements over a flat plate without 

film injection was measured over 6 heaters, as opposed to Figure 47, and heater spacing was 

identical to that in the test matrix.  The streamwise origin is equal to 20 cm, where two coordinate 

systems were used.  One is the virtual origin of the hydrodynamic boundary layer, the other is the 

first row of holes.  The distance between the two is x0.  The augmentation values are within 1+/- 

0.1, and experimental uncertainty of 14%.  Also, a slight 2D effect was present at the trailing edge 

of heater strips (due to an apparent increase in HTC at trailing edge, implying a lower temperature, 

a result of 2D conduction).    
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Figure 51: h0 testing, comparing of experiment and correlation     

4.2 Local Heat Transfer Augmentation 

Local heat transfer augmentation data plots are shown in this section, which will be 

followed by quantitative comparisons.  New experimental practices have been implemented 

throughout the development and preparation of this study, to ensure high quality local heat 

transfer data.  More specifically, methods of preparing and installing the test sections to maintain 

smooth surfaces and test specimen integrity, use of high quality plates and heaters to increase 

temperatures and reduce uncertainties, and other such test preparation practices.  Improvements 

to the data processing techniques have also been made, such as using curve fits for backside 

temperature, changing resistance as a function of temperature, and other similar changes.  

Figure 52 shows local heat transfer augmentation data for all blowing ratios of the FC.VI 

test specimen.  From the lowest blowing ratio case, the jets remain very distinct and have not 

coalesced, almost completely independent of one another.  There is no signs of flow detachment 

due to heater strips poorly adhered to the heat transfer surface.  This effect is seen to disappear at 
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higher blowing ratios though however, especially when comparing the jets distinct and 

independent nature at low x/D over the heater strips.  Even at large x/D the jets seem to be 

separated for the M=0.50 case.  Another interesting observation is that increasing the blowing 

ratio results in a direct increase in heat transfer augmentation, as compared with effectiveness 

heat transfer data, where some of the increases in blowing ratio results in only marginal increases 

in effectiveness.  However, the heat transfer augmentation data does qualitatively look to the 

effectiveness data, since the effectiveness profile is used to correct for the film temperature.    

 

Figure 52: Local HTC augmentation values for FC.VI at all blowing ratios 
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4.3 Span Average Heat Transfer Augmentation 

4.3.1 FC.VI 

Span average plots for heat transfer augmentation are presented here for all blowing ratios 

of the FC.VI specimen, as in Figures Figure 53 through Figure 55.  The defining features for this 

geometry is the absence of a compound angle shift in the array geometry.  Contrary to previous 

cases, this array shows that the heat transfer coefficient augmentation shows little or no 

dependence on the blowing ratio.  The heat transfer coefficient augmentation increases down the 

array in a nearly linear fashion.  Average augmentation to the heat transfer coefficient over the 

array for the M=0.5, 1.0, and 1.5 cases is 1.15, 1.11, and 1.18, respectively.     

 

Figure 53: FC.VI heat transfer data for M=0.50 
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Figure 54: FC.VI heat transfer data for M=1.0 

 

Figure 55: FC.VI heat transfer data for M=2.0 
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CHAPTER 5: COMPUTATIONAL EFFORTS 

5.1 Fluid Domain 

5.1.1 Geometry 

Figure 56 shows the computational fluid domain.  The geometry of choice is the fluid 

volume in a wind tunnel experiment of a flat plate with an array of cooling holes.   Figure 57 and 

Figure 58show the different orientation of the array within the computational domain. 

 

Figure 56: Isometric view of the fluid domain 

 

 

Figure 57: Top view of geometry 

 

Figure 58: Side view of geometry 



72 

 

This model was specifically setup in an effort to match the experimental data, as it is by 

comparing the results of the simulation to the experimental data that we will judge the success of 

the model.  Although the geometry length matches the experiment in the streamwise direction, the 

width has been reduced so that the full array of holes in the transverse direction are not included 

in the domain.  Essentially, the fluid domain represented here is a thin slice out of the wider 

geometry of the experiment.  In order to ensure a reasonable comparison of the simulation results 

with experimental data, boundary conditions will be set to mimic this repeating pattern in the 

transverse direction.  This periodic boundary condition is used to greatly reduce the 

computational resources required to obtain a solution, while not affecting the predictions in film 

cooling performance for an infinite array of holes. 

Within STAR-CCM+, boundary conditions are defined for each boundary surface within the 

region in the simulation.  Specifically defined are the crossflow inlet and exit, the top “wall” 
(outside the boundary layer), the heat transfer surface, the left and right lateral wall, the inlet to 

the each film cooling hole, and the walls of each film cooling hole.   

Table 6 shows the boundary condition type assigned to each boundary of the fluid domain, 

with some sample quantities in place, which were used for the FC.VI M=1.0 case tested.  The 

boundary conditions for this simulation will be covered in much more detail in later sections of 

this report. 
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Figure 59: Region defined for fluid domain 

 

Table 6: Sample quantities used for FC.VI, M=1 computation 
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5.2 Mesh 

Many issues with a volumetric mesh can be traced back to a poor surface mesh.  In order to 

improve the initial surface mesh and help produce a good volumetric mesh for the model, it is wise 

to choose the surface remesher option within STAR-CCM+.  The surface remesher is recommended 

by STAR-CCM+ always prior to volume meshing. 

A polyhedral mesher is used to populate the volume of the fluid domain.  It uses an 

arbitrary polyhedral cell shape with an average of 14 cell faces to build the core mesh.  The 

polyhedral mesh is considered to produce more accurate results than other mesh types available, 

but it requires additional memory and time for the solution to converge.   

The prism layer mesher is used to generate orthogonal prismatic cells near wall surfaces 

and boundaries, which improves near wall flow solutions.  As the main area of interest for this 

simulation is near the heat transfer wall, the prism layer mesher is ideal to use to ensure accurate 

heat transfer results along the surface.   

Standard industry practice typically requires a sufficiently small y+ value (<5) to properly 

resolve the boundary layer and heat transfer.  A properly conditioned group of prism layer cells is 

essential in heat transfer studies, as computing heat transfer near walls is a procedure that begins 

and relies on standard wall functions (e.g. law of the wall, boundary layer theory, user specified, 

etc.).  This computational study utilized up to 30 prism layers in critical regions, such as where the 

coolant jets were introduced.  A full list of the details of the mesh can be seen in Table 7.       

The mesh generated had cells of variable size in order to reduce computational expenses 

and retain higher fidelity in regions of most interest.  The scheme implemented refined meshing 

around the hole several diameters downstream and normal to the surface in order to obtain 

proper accuracy in the highly turbulent region.  A coarser mesh is applied progressively 
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downstream up to the next row of holes and upwards into the free-stream.  Figure 60 shows the 

transition into a coarse mesh in the free-stream, while Figure 61 shows the recursive pattern in 

the streamwise direction. 

 

Figure 60: Fluid domain showing mesh transition from fine near heat transfer surface to coarse in 

free-stream 

 

 

Figure 61: Domain showing recursive pattern of fine and coarse mesh in streamwise direction 
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To generate the mesh, blocks were made and stacked one after the other in the streamwise 

direction.  Each block occupied the full lateral space in the domain with a height that ranged from 

6-10 hole diameters tall so that it would completely encompass the interaction of the jet in 

crossflow.  Initial simulations and correlations were utilized for determining the most appropriate 

height of the blocks, such that all coolant jet interactions with the mainstream could be captured.  

Figure 62 shows the blocks directly over the holes as well as the filler blocks located between each 

row of holes. 

 

Figure 62: Image on left shows filler block located between rows of holes, and image on right 

shows block located directly above holes 

 

The blocks located over the holes were assigned specific settings, as were the filler blocks 

located between each row of holes.  The remaining volume of the computational domain was 

meshed with its own separate settings.  The full list of values for all three sections are located in 

Table 7 which includes the mesh base size, number of prism layers, prism layer stretching, and 

prism layer thickness. 
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Table 7: Mesh settings 

 

 

Before running the simulation, the first check was to the validity and quality of the volume 

mesh.  A java script was written and implemented to generate mesh plots and scenes, to evaluate 

the quality of the mesh within the computational domain after each mesh iteration.  It was also 

important to search through the domain to ocularly search for regions where poorly conditioned 

cells exist. Such cells may exist between different meshing regions, sharp transitions in the 

geometry (e.g. from the film cooling hole to the heat transfer surface), and need to be addressed 

individually in order to prevent and difficulty in proper computation.  The four metrics chosen to 

assess the mesh are cell quality, skewness angle, volume change, and wall y+ values. 

The cell quality metric is based on a hybrid of the Gauss and least-squares methods for cell 

gradient calculations.  It is a function of both the distribution of cell centroids of a cell to its 
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neighbors and the orientation of the cell faces.  Cells of good quality are highly orthogonal, such as 

a cubic cell, and have a cell quality of 1.0.  Poor quality cells, such as a flat cell, have a cell quality 

metric approaching zero and will likely negatively impact the accuracy of the solution.  Figure 

63and Figure 64 show a visual representation of the cell quality in the fluid domain. 

 

Figure 63: Cell quality over the heat transfer surface (from 0 to 1) 

 

Figure 64: Cell quality over wall normal plane to heat transfer surface (from 0 to 1) 

 

Figure 65 shows a histogram for the cell quality metric.  It demonstrates that in the volume 

mesh, the vast majority of cells have a cell quality metric of close to the perfect value of 1.0.  Most 

importantly, it shows that there is no significant number of degenerate cells in the volume. 
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Figure 65: Histogram of cell quality (quality ranging from 0 to 1, and number of cells ranging from 

106 to 1.2*107) 

The skewness angle is the angle between the face normal vector of two neighboring cells and the vector that connects those cell’s centroids.  A perfectly orthogonal mesh would have a skewness angle of 0˚, while a concave cell would have an angle greater the 90˚.  Skewness angles of 90˚ or greater lead to problems with the solver due to the use of the dot product of these two 
vectors in the denominator of the diffusion term formulation for transported variables.  In this 

case quantities become unbounded and inaccuracies are introduced into the solution.  Ideally skewness angles greater than 85˚ should be avoided.  Figure 66 shows that the overwhelming majority of cells in the mesh that are well below the 85˚ threshold, indicating a good quality mesh. 
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Figure 66: Histogram of skewness angle (skewness angle from 0 to 90, number of cells from 2*106 

to 22*106) 

The volume change metric represents the ratio of the volume of one cell to its largest 

neighboring cell.  Large changes in volume from one cell to the next can cause inaccuracies and 

instability in the solvers.  A volume change value of 1.0 is ideal, indicating a cell has an equal or 

higher volume then its neighboring cells.  Values less than 0.01 are a typical indicator of poor 

quality cells and may need to be addressed.  Figure 67 shows that most cells in the computational 

domain have an acceptable volume change value.  Although some cells fall below the established 

threshold, they are relatively few in number and special care was taken to ensure that they occur 

only in areas that are not of interest for our simulation. 
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Figure 67: Histogram of volume change metric (volume change from 0.001 to 1, number of cells 

from 100 to 1*108) 

A check the y+ value was also done for the first grid point along the heat transfer surface 

(nearest to the wall).  If the wall y+ value is too large, it will fall outside of the boundary layer or 

outside the viscous sub layer region, and the simulation may not correctly calculate flow 

properties at this location and then introduce errors into the results.  Standard industry practice 

suggest that for accurate results an ideal wall y+ value should be less than 5.  As can be seen in 

Figure 68, the y+ values for our heat transfer surface are sufficiently low enough to suggest 

accurate results. 

 

Figure 68: Wall y+ value distribution on the heat transfer surface 
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5.3 Boundary Conditions For the top “wall” of the fluid domain, a symmetry plane boundary is applied.  The solution 
obtained in this manor is the same as if the fluid domain was mirrored about that plane.  The 

gradient across a symmetry plane is zero, which makes it appropriate to use in this simulation, as 

free stream flow is expected at this height away from the heat transfer surface. 

 

Figure 69: Side view of fluid domain indicating location of the select boundaries 

 

Along the heat transfer surface wall and wall boundary is applied.  These are impermeable 

walls, and the shear stress specification was set to no-slip.  The surfaces were considered smooth 

and adiabatic.  In experiments, these walls are not truly adiabatic, but it is a common assumption 

to make in evaluating film cooling effectiveness.  However, for this experiment, a specialty grade of 

insulation (Rohacell) was used with an extremely low thermal conductivity to closely mimic an 

adiabatic wall.    

All the jet hole inlets are specified as velocity inlets, where the exact values will match the 

experimental work that this simulation was intended to replicate.  As in Table 8, the velocity 

components were specified in the simulation based on the measured blowing ratios of the testing 

conditions.  Because local pressure measurements were made throughout the array from within 

the plenum, specific pressure and temperature boundary conditions could be prescribed at almost 

every row of holes within the simulation.  The turbulence is specified by intensity and length scale, 
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where the length scale value chosen matches the jet hole diameter.  The main array holes are 

broken up into three sections, each with a different static temperature value at their respective 

inlets.  The exact values used for hole boundary conditions are found in the following tables.  Table 

8 shows the location of the three main array hole sections. 

Table 8: Tabulated quantities for boundary conditions 

Main Array Holes 1-12 

Static Temperature (K) 340.05 

Turbulence Intensity  0.01 

Turbulent Length Scale (m) 0.0021 

Velocity (m/s) [0.0, -14.5997, -25.2874] 
 

Main Array Holes 13-28 

Static Temperature (K) 342.55 

Turbulence Intensity  0.01 

Turbulent Length Scale (m) 0.0021 

Velocity (m/s) [0.0, -14.5997, -25.2874] 
 

Main Array Holes 29-44 

Static Temperature (K) 333.65 

Turbulence Intensity  0.01 

Turbulent Length Scale (m) 0.0021 

Velocity (m/s) [0.0, -14.5997, -25.2874] 
 

 

Figure 70: Top view of domain with location of hole sections highlighted 

 

Similarly, the crossflow inlet is also set as a velocity inlet, with values prescribed to match 

the thorough boundary layer characterization that was performed experimentally.  More thorough 
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information on the boundary layer characterization can be found in previous sections of this 

report.  The turbulent length scale is set as approximately 10% of the fluid domain inlet height.  

Unlike the hole inlets, where velocity was assumed as uniform, the crossflow inlet is set to match a 

known velocity profile.  A user defined field function is set within the program to replicate this 

profile, and the boundary condition uses this function to set the inlet velocity.  The boundary layer 

profile was specified in STAR-CCM+ with three piecewise functions, in order to minimize any error 

in curve fitting the experimental data.   

Table 9: Crossflow inlet quantities for boundary condition specification 

Crossflow Inlet 

Static Temperature (K) 300 

Turbulence Intensity  0.01 

Turbulent Length Scale (m) 0.01 

Velocity (m/s) User defined field function 
 

The crossflow exit is specified as a pressure outlet, where the experimental testing 

provided static pressure values all throughout the array, including at the very trailing edge.  The 

pressure is set as per the experimental set up, and the turbulence is once again defined by 

intensity and length scale.  Since the mass flow rate and temperature entering the domain through 

the crossflow inlet and the hole inlets is known, a mass weighted average is used to provide a 

value for the temperature at the exit.  The specific values are located in the following table. 

Table 10: Crossflow exit quantities for boundary condition specification 

Crossflow Exit 

Pressure (Pa) -764.5 

Static Temperature (K)  302.15 

Turbulence Intensity 0.08 

Turbulent Length Scale (m) 0.0255 
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As mentioned previously, the simulation geometry did not contain the entire array of jets, 

as in the experiment.  This pattern of holes repeats in the direction perpendicular to the crossflow 

(lateral).  The decision to not include the full array of holes in the lateral direction was made to 

improve the computational efficiency of the simulation, since a finer mesh can be applied to the 

smaller fluid domain.  To simulate this repeating geometry, a periodic interface is set along the 

lateral walls.  The interface represents a repeat of information across the boundaries, so fluxes that 

cross one boundary are tabulated and applied to the other identically.  To set this boundary 

condition, the lateral walls are first defined as walls like the heat transfer surface.  Then, an 

internal interface is applied to both lateral wall regions with periodic topology.  When using a 

periodic interface, a conformal mesh is produced on both sides of the interface so that the vertex 

locations and face topologies match identically.  This is necessary because essentially all that the 

periodic interface does it take one value at one wall, and push it across the interface to the 

appropriate cell, thus requiring an identical set of cells. 

 

Figure 71: Top view of domain showing location of internal interface for periodic boundary 

condition 

 

5.4 Generic Physics Models 

In this part of the report, some of the main modules of the software used for prescribing 

the physics in the continuum will be discussed.  Figure 72 illustrates the physics models used in 

the simulation, as seen from the STAR-CCM+ simulation tree.  
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Figure 72: General tree line of the simulation 

5.4.1 Gradients 

The computation of gradients is a very import important aspect of the simulation, which 

allows for calculation of the data values at each cell with ensuring accuracy.  Usually gradient 

computation plays a role within the transport equation solution methodology in reconstructing 

field values at the cell faces, secondary gradients of diffusion terms, pressure gradients for 

pressure-velocity coupling in the segregated flow model, and strain-rate and rotation-rate 

calculations for turbulence models. In this study, it was most vital to take care of the convection 

field values at faces, accounting for higher order diffusion terms, and pressure gradients.  

Gradient computation can be specified as limited or unlimited within the STAR-CCM+ 

interface. Unlimited gradients do not prohibit the reconstructed field variables on the cell faces 

from exceeding the minimum and maximum values of the neighboring cells whereas limited 

methods does the reverse. In this simulation, limited gradient computation was implemented.  

Hybrid Gauss LSQ method was used to compute gradients and the Venkatakrishnan method was 
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implemented to limit them.  These methods dictate how to calculate the gradients of different 

terms at cell centroids. 

5.4.2 Hybrid LSQ Method 

The unlimited gradient reconstruction was calculated at the cell-0 face by using following 

weighted least squares formula: 

Equation 21: Weighted Least Squares Formula for Gradient Reconstruction 
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5.4.3 Ventkatakrishnan Limiter Method 
The model uses the maximum and minimum values of the neighboring cells at which the 

reconstructing is being calculated and limits the gradient computation. The detailed calculation 

procedure is given below: 

Minimum and maximum value calculations: 
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The limits are defined as: 



88 





















0

0

min

max

f

f

f

f

f

for

for

r  

Finally, the limiter equation is defined as: 
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5.4.4 Segregated Flow 

The Segregated Flow model solves the flow equations (one for each component of velocity, 

and one for pressure) in a segregated, or uncoupled, manner. The linkage between the momentum 

and continuity equations is achieved with a predictor-corrector approach.  

Equation 22: Discretized Momentum 
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Equation 23: Discretized Continuity 
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Where the term denoted by * is computed after discretized momentum equations are 

solved.  The term denoted with this is corrected mass flow rate and required to satisfy continuity. 

Generally, this model has its roots in constant-density flows.  Although it can handle mildly 

compressible flows and low Rayleigh number natural convection, it is not suitable for shock-

capturing, high Mach number, and high Rayleigh-number applications. 
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5.4.5 Segregated Fluid Temperature 

The Segregated Fluid Temperature model solves the total energy equation with 

temperature as the solved variable.  Enthalpy is then computed from temperature according to the 

equation of state. 

Equation 24: Total Energy 

 
V

u

VAAA

gg

V

dVsvdVfvdadaqdapvvvHEdV
dt

d .
''])([

 (24) 

Since there is no heat flux or heat source used, all of the related terms in the above 

equation will be cancelled to zero.  Ideal gas enthalpy relationships will be used to determine 

required information. 

5.4.6 Miscellaneous Models 

 Other models that were applied to this simulation, but have yet to be discussed are; steady 

sate, and three dimensional.  The calculations performed during the simulation were independent 

of the time and were computed in 3D space. 

5.4.7 Initial Conditions 

 Initial conditions were used to prevent the residual from rapidly increasing at the early 

iterations and to aid in smooth convergence.  Figure 73 shows the initial condition node in the 

STAR-CCM+ simulation tree, where sub nodes indicate initial conditions which were specified.   

An initial velocity of 24 m/s was specified in the streamwise direction, as linear ramps in place 

for changes in velocity and pressure with subsequent iteration ensures that the respective 

transport variable do not have exponential growth in residuals at early iterations.  Similarly, many 

other ramps were implemented for the energy and turbulent solvers.  The main purpose of the 
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ramps is to prevent large changes in the monitored variables (e.g. turbulent kinetic energy, 

temperature, etc.) between iterations. 

For initial values in pressure and temperature, values very close to the steady value from 

experimental were used. This is justifiable as values of pressure and temperature in the wind 

tunnel (i.e. at the inlet, the freestream, in the plenum, etc.) should not change throughout each test 

cases ran or as the film cooling effectiveness develops with initialization of initial conditions.  

 

Figure 73: Initial Conditions listed in STAR-CCM+ 

5.5 Turbulence Models 

The v2f variant of the traditional k-ε turbulence model is the primary turbulence model to be 
tested for this study.  The need for modeling validation and comparison between other models 

compels the implementation of a secondary turbulence model; SST (Shear Stress Transport).  The 

elliptic blending variant of the traditional k-ε turbulence model is also used as a third comparison, 
without serious investigation though however into the mechanics of the model.  Both secondary 
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models, based on literature, are widely used schemes in both academia and industry.  Further, 

primary validation will be provided by the available experimental data. 

In any fluid flow problem whether the investigator aims at studying heat transfer or mass 

transfer, every solution finds its origin in the continuity, momentum and energy equations 

(presented here in 2-D form). 

Equation 25: Continuity 

     (25) 

Equation 26: Momentum 

    (26) 

Equation 27: Energy 

    (27) 

By applying the Reynolds decomposition, which separates any transport variable into its 

average and fluctuation components in conjunction with the concept of time averaging, the 

resulting equation of interest, namely the former Navier-Stokes equations, finds a new form. More 

specifically, this form expresses the transport variables in an average and fluctuating manner 

separately within the Reynolds Averaged Navier-Stokes (RANS) and average energy equations. 
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Equation 28: RANS 

   (28) 

Equation 29: Energy with RANS Decomposition 

   (29) 

A new term has appeared in each equation, the turbulent shear stress and the turbulent 

heat flux. Whereas all familiar terms can readily be evaluated and quantified, the equation cannot 

be solved now, since there are more unknowns than equations available, hence there is a closure 

problem. This type of issue can be tackled by modeling the additional terms and relating them to 

known quantities. By observing turbulent flow it is plausible that turbulent shear stress and 

normal turbulent heat flux would tend to zero if there were no mean velocity and mean 

temperature gradients (in the normal direction) hence the following formulation would be 

reasonable: 

Equation 30: Reynolds Stress (Fluctuations in Momentum due to Turbulence) 

      (30) 

Equation 31: Turbulent Heat Flux from RANS Decomposition 

      (31) 
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As a proportionality factor, the eddy diffusivity for momentum and heat transfer are 

included in the expressions: 

Equation 32: Reynolds Stress Defined in Terms of Eddy Diffusivity 

     (32) 

Equation 33: Turbulent Heat Flux from RANS Decomposition in Terms of Eddy Diffusivity 

     (33) 

The final forms of the RANS equations hence take shape: 

Equation 34: RANS with Eddy Diffusivity Incorporated 

   (34) 

Equation 35: Energy Equation with RANS Decomposition and Eddy Diffusivity Incorporated 

   (35) 

The first attempts at providing closure by modeling the eddy diffusivities exploited the 

concept of mixing length, which either discretized the boundary layer or fully described it through 

functions. More modern approaches bring closure by defining additional equations based on other 

transport variables characteristic of turbulent flow such as turbulent kinetic energy, turbulent 
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dissipation energy (ε), specific dissipation (ω) and similar quantities. These schemes are known 

are 2, 3 and 4 equations models. 

Despite the tremendous amount of ingenuity put in these complex formulations, each 

model tends to target a specific flow region and successfully solves with sizable error only that 

region. As mentioned, it all depends on how the RANS turbulent features are modeled.  The models 

chosen to solve and validate a jet in cross flow problem are particularly appropriate for near wall 

turbulence transport representation. 

5.5.1 V2-f Variant of the Traditional K-ε Model 

The traditional k- ε model suffers from strong free stream sensitivity and prediction ability 
in adverse pressure gradients. The k-ε model was specifically designed to tackle the issue of slow 
adjustment of the free-stream section of the boundary layer to changing boundary conditions that 

would otherwise lead the solver to under predict. This particular approach is particularly effective 

in free shear flow with small pressure gradients and mildly accelerating flows. It performs poorly 

in flow fields where large adverse pressure gradients drive the flow. 

 As before initially, eddy viscosity will now be defined: 

Equation 36: Eddy Viscosity 

     (36) 

 Equation 36 is based on turbulent kinetic energy and turbulent dissipation which are 

determined by the scales of turbulence. The turbulent transport equations take the following form: 
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Equation 37: Turbulent Transport Equation No. 1 for V2f 

  (37) 

Equation 38: Turbulent Transport Equation No. 2 for V2f 

  (38) 

Similarly to the k-ω models, we find the convective, turbulence production, dissipation 

terms and in addition there is a buoyancy term. The coefficients present mostly affect turbulence 

production and buoyancy effects in the dissipation transport equation. 

The V2f variation of the k- ε model works well at low Reynolds numbers and near wall as it 

incorporates equations treating turbulence anisotropy, which typically causes model stiffness due 

to high non-linearity increasing computational inefficiency in the domain. The additional 

equations allow modeling the entire boundary layer from free stream all the way to the wall 

through the viscous sub-layer without the need for wall functions. 

It models the eddy viscosity using the averaged squared velocity fluctuation normal to the 

streamlines, which provides the right scaling for the proper representation of turbulent transport 

damping near walls.  
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Equation 39: V2f Definition of Eddy Viscosity 

      (39) 

Anisotropic wall effects are then modeled by an elliptic relaxation function, f, embedded in an elliptic equation. In addition to the traditional k and ε, a transport equation for the new variable 
can be obtained in the following form where we have the typical form including convective, kinetic, 

dissipation and diffusion terms. Note that the effective viscosity expression remains intact: 

Equation 40: Transport Equation No. 3 for V2f 

   (40) 

and the elliptic equation for the relaxation function: 

Equation 41: Elliptic Relaxation for 'f' in V2f Model 

    (41) 

When defining the turbulent viscosity and deriving the transport equations, it is imperative 

to define the time scales and length scales which drive the degree of accuracy of the model. Note 

that the time scale directly affects the expression for the turbulent viscosity, which in turn defines 

the transport equations. Time and length scales are defined as: 
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Equation 42: Length Scale (V2f Specific) 

     (42) 

Equation 43: Time Scale (V2f Specific) 

    (43) 

Keep in mind that these values for length and time are bounded by the Kolmogorov 

definitions, which mark the smallest turbulent element the model can track. 

For modeling purposes these equations are implemented into finite differencing codes, which 

allow the user to manipulate the solver through the coefficients embedded in the transport 

equations.  Note that these coefficients mainly handle the turbulence generating and the 

dissipation terms, this may generate more specific turbulence models appropriate to a particular 

flow field. 

The coefficients used in the V2-f turbulence model are controlled from within the STAR-

CCM+ user interface, and are up to the user to vary.  The coefficients used are found below in Table 

11.  
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Table 11: Coefficients used for the V2f turbulence model testing 

Coefficients  

Cµ 0.09 

C1,e 1.14 

C2,e 1.9 

Ct 6.0 σ,k 1.0 σ,e 1.3 

A 0.045 

C1 1.4 

C2 

Cl 

Cµ,v2 

0.3 

0.23 

0.22 

 

5.5.2 SST Variant of the K-ω Model 

The traditional k-ω model is a two-equation model that uses two transport variables, the 

turbulent kinetic energy and the specific dissipation, which provides turbulence scaling.  Unlike 

the k-ε model it does not involve non-linear damping functions that require higher resolution near 

the wall in the order of y+<0.2.  Such low values result in radical computational inefficiencies.  The 

lack of such functions allows to increase reduce the resolution by an order of magnitude to y+<2. 

Similarly to other models we start by expressing the eddy viscosity in the following way based on k and ω: 
Equation 44: Eddy Viscosity (Specific to the K- ω Model) 

      (44) 
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Equation 45: Relationship of Specific Dissipation and Other Turbulent Transport variables 

      (45) 

Following there are the fully derived transport equations for the k-ω model: 
Equation 46: Transport Equations for the K-ω Model 

 

  (46)

 

These equations include convective turbulence production, dissipation, and diffusion 

terms. 

The SST variation of the traditional k-ω model is a widely used and very robust 2-equation 

eddy viscosity model in academia and in the industry capable of solving turbulent flow both near 

wall and in free stream.  It combines the k-ε model and the k-ω model.  The k-ω formulation allows 
for using the model in the inner regions of the boundary layer all the way to the wall, while the SST 

formulation can then switch to k-ε treatment in free stream to prevent enhanced k-ω sensitivity to 
inlet free stream boundary conditions, reducing model’s stiffness.  Due to this formulation the 
model can be directly applied without the use of any damping function near the wall. 

This model tends to over predict in regions of large normal stress or strong acceleration, 

however theses effects are largely reduced compared to the traditional models.  In addition it 
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provides good solutions in adverse pressure gradients and separating flow.  In this case for jet in 

cross flow these qualities make this model appropriate for validation purposes. 

Combining the k-ε and the k-ω models under the SST formulation, the transport equations 

turn out as: 

Equation 47: Transport Equation No. 1 for the SST K- ω Model 

   (47) 

Equation 48: Transport Equation No. 2 for the SST K- ω Model 

 (48) 

also known as the SST k-ω model as the two equations make use of the turbulent kinetic energy 
and specific dissipation transport variables. The eddy viscosity is expressed as: 

Equation 49: Eddy Viscosity for the SST K- ω Model 
     (49) 

Through blending functions the model interpolates through the boundary layer all the way 

to the wall reducing the equations to the k-ω formulation. 
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The coefficients used in the SST k- ω turbulence model are controlled from within the 

STAR-CCM+ user interface, and are up to the user to vary.  The coefficients used are found below in 

Table 12.  

 

Table 12: Coefficients used for the SST K- ω turbulence model testing 

Coefficients  

K 0.41 β* 0.09 β1 0.075 β2 0.0828 σ,k1 0.85 σ,w1 0.5 σ,k2 1.0 σ,w2 0.856 

A1 0.31 

 

5.6 Resources 

The software of choice was Star-CCM+ 9.04.011, a powerful CFD tool capable of turbulence 

modeling and great flow visualization. In addition it has user friendly modes which allow the user 

to run each simulation in either serial or in parallel on servers with virtually limitless computing 

power for faster solving. 

A total of 5 nodes were used for calculation, with 16 cpus per node.  On a per cpu basis, 

there were 3.125 GB ram.  This program served ideal for simulation as batch testing and 

monitoring of the solution was ideal through Star-CCM+ in Linux based operating systems. 

5.7 Results and Discussion (FC.VI, M=1.0) 

 As discussed earlier, the main result for this study is the film cooling effectiveness, which 

speaks to the heat transfer occurring at the heat transfer surface based on the design tested.  This 
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is a user defined field function within STAR-CCM+, based on the temperatures measured within 

the rig, as per the definition of effectiveness.  When running the computation, the results for film 

cooling effectiveness in STAR-CCM+ are natively presented as contours over each specified section.  

This puts any specified scalar or vector to each cell, such that the user can toggle values through 

the domain.  This works for qualitative comparison, but a more quantitative comparison is 

required, as seen throughout literature and industry practice.  This derived result is called laterally 

averaged film cooling effectiveness. 

 The laterally averaged film cooling effectiveness is a means to turn a contour type plot of 

local effectiveness data into a two dimensional line plot.  The horizontal axis of said plot is 

streamwise position, where each data point represents the effectiveness data averaged over the 

entire pitch.  It should be noted that the lateral distance averaged at each streamwise location 

must be an integer of the pitch. This is such to ensure that the lateral average film cooling 

effectiveness accurately represents the effectiveness prediction over an infinite array. 

 The laterally averaged film cooling effectiveness is a derived quantity in STAR-CCM+.  The 

film cooling effectiveness derived result is calculated by the user through creating a user defined 

field function, and then creating and running a java applet to average laterally at each streamwise 

location.  It has the same physical meaning as effectiveness, it is just a means to concisely express 

the result. 

 As discussed earlier in this report, three turbulence models are tested in this study, all of 

which are compared against the experimental data acquired for the FC.VI case, for a blowing ratio 

of unity.     

The first turbulence model which will be compared with experimental data is the V2f 

model, as seen in Figure 74.  The V2f model possesses distinction from the standard k-ε models by 
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virtue of its accommodation for near-wall turbulence anisotropy and on-local pressure-strain 

effects, the results of which in this film cooling study are compared with V2f’s performance seen 
otherwise in literature for film cooling application [25].  Kassab [25] demonstrated the tendency 

for  the V2f turbulence model to over predict film cooling effectiveness by up to 17% in the region 

where the two fluid streams mix in the immediate vicinity of injection (X/D<4).  This result seems 

consistent with the results, as local to the blowing ratios, where mixing of the two fluid streams is 

significant, the V2f model over predicts film cooling effectiveness.  The V2f prediction of 

effectiveness is best predicted in the first ~200 diameters of the array, where thereafter a steady 

over prediction of heat transfer is predicted throughout the array.  The general physical trend of 

the CFD data and experimental data match however, in that the effectiveness is low throughout the 

start of the array, then it is ramps up distinctly around 175 diameters, and therefore a very slight 

increase occurs with further streamwise position.    
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Figure 74: Comparison of experimental data and V2f CFD predictions (FC.VI, M=1) 

 The second turbulence model which will be compared with experimental data, is the SST 

model, as seen in Figure 75.  Consistent with other computational studies [25], the SST CFD model 

performs marginally better than the V2f model in heat transfer predictions over the film cooled 

surface.  The SST predictions for laterally averaged effectiveness are within experimental 

uncertainty at most streamwise positions, where especially good predictions are calculated 

concerning the highly turbulent flow field surrounding the beginning of the array.  The nature of 

the SST model to blend the k-ω model and the k-ε model based on wall normal position proves 
ideal for heat transfer predictions throughout this film cooling array.  Like the V2f results, the SST 

model also tends to over predict heat transfer downstream at the end of the array.  Care should be 
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taken in CFD mesh design so that diffusion of scalars are not over predicted, resulting in cases that 

could resemble this over prediction of heat transfer presented here, although that source of error 

was mitigated in the mesh generated for this study.                

 

Figure 75: Comparison of experimental data and SST CFD predictions (FC.VI, M=1) 

 The third turbulence model which will be compared with experimental data, is the EBKE 

model, as seen in Figure 76.  This model performs the worst amongst the three turbulence models 

utilized in CFD efforts.  Heat transfer is marginally over predicted in the immediate vicinity of the 

start of the array relative to the SST and V2f model predictions, however the EBKE turbulence 

model severely over predicts heat transfer at downstream (~X/D>250) locations.  This model is 
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not known for its triumphant success in film cooling applications, but is included in this test matrix 

due to its fundamental development based on the traditional k-ε turbulence model.       
 

 

Figure 76: Comparison of experimental data and EBKE CFD predictions (FC.VI, M=1) 

 For a means of comparison, the resulting predictions in film cooling effectiveness by each 

turbulence model can be seen in Figure 77.  As in Kassab [25], the SST model performs better than 

the V2f model by a slight margin, where both models are seen to over predict heat transfer.  The SST 

model performs better than the V2f model most noticeably within the region of the end of the array, 

where the SST model handles the large mixing of the two fluid streams with better accuracy.  The 
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general physical trend captured experimental is captured in all three CFD model predictions.  All three 

turbulence model appear to over predict heat transfer downstream as well.  

 

Figure 77: Comparison of 3 turbulence models performance with experimental data 

The SST model is based on a combination and joining of the k-ω model and the k-ε model, and 
thus comparisons of its performance are made against the other two k- ε based models chosen.  
The distinct characteristics of each model provides non-straightforward conclusions about what 

features in a turbulence model prove most ideal for film cooling predictions.  Some important 

differences between these turbulence models include, but are not limited to; the differing 

definitions of eddy viscosity, the use (or lack of) of relaxation functions amongst the transport 
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equations, wall functions, and adaptation/combination of models used based on wall normal 

position.  

 

5.8 Convergence Results and Discussion 

The last set of results to be shown here are in regards the convergence of the solution.  The 

residual as per iteration can be seen plotted in Figure 78 for one test case which is similar and 

representative of the other simulations residuals.  Residual plots will not presented for all of the 

simulations ran in this study.  This residual type was relative, meaning the residual plotted with 

each subsequent iteration was relative to the beginning iterations. 

 

 

Figure 78: FC.II M=1.0 residual per iteration for the first 7k iterations in the simulation 

A more aggressive way to decipher convergence is to track driving potentials in the problem, 

and ensure that they are steady with respect to further iterations.  One example of this is the mass 

flow throughout the rig.  One can track that the solution is no longer predicting any changes of 
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mass flow calculated at the rig exit, to ensure that this is a steady result.  This was tracked at the 

inlet to the crossflow duct, the outlet to the cross flow duct, and the inlet to the film cooling holes.  

Plots are not shown here, as the solution quickly converged (after only about 1k iterations).   Other 

variables were also tracked and similarly flat after 1k iterations, such as static temperature mass 

averaged at the outlet and inlet, static pressure at the inlet/outlet to the crowssflow duct, and also 

static pressure at the inlet to the film cooling holes.  Without changes in these variables, the 

calculation is very unlikely to change at the heat transfer surface, with driving potentials such as 

pressure unchanging. 

 The last major means to justify convergence, was to average the entire static temperature 

on the heat transfer surface.  This value was plotted with every iteration, and can be seen in Figure 

34 for one particular simulation, indicative of such behavior present in other simulations.  This 

value converged after about 6k iterations, where the last 500 to 1,000 iterations yielded only an 

approximate 1 degree change over the entire surface.  This is substantially converged.  Also, this 

result was done so in MATLAB on the experimental data, where the average static temperature 

was calculated over the experimental data images.  The values were close between experimental 

and simulation. 
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Figure 79: Average static temperature over the heat transfer surface as per iteration 
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CHAPTER 6: CONCLUDING REMARKS 

The objective of this work is quantification of local heat transfer augmentation and adiabatic 

film cooling effectiveness for two full-coverage film cooling geometries with several operating 

condition variations.  The geometries are distinct from one another by a compound angle shift in the 

film cooling holes, midway through the streamwise length of the array.  Each of the geometries are 

tested for a range of blowing ratios between 0.5 and 2.0, corresponding to momentum flux ratios as 

large as 4.5. 

Each array is composed of staggered cylindrical holes.  The full-coverage array holes have a 

different hole orientation based on their position within the array (α=45° β=±45°), while the hole-

to-hole spacing is significantly larger than often seen in literature (P/D=X/D=23).  The effect of a 

compound angle shift is tested within the array; e.g., the holes are compounded in the positive lateral 

direction, then after twelve rows, the compounding angle changes sign to direct the coolant in the 

negative lateral direction.  

6.1 Film Cooling Effectiveness 

The full-coverage surfaces are composed of cylindrical holes, with and without varying 

alternating compound angles, tested with a negligible freestream acceleration, for adiabatic film cooling 

effectiveness.  A low conductivity (k=0.029 W/m-K) material is used to imitate an adiabatic wall.  

Temperature sensitive paint yields local film recovery temperatures throughout the arrays of 24 rows.  

This spatially resolved data is then average laterally to yield an average film cooling effectiveness, such 

as that seen in Figure 80, which represents an infinitely wide array of film cooling.  Figure 81 shows local 

data for FC.V, at the compound angle shift.  
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Figure 80: Comparison of laterally averaged effectiveness for several test cases at all blowing 

ratios 

At these very large hole-to-hole spacings, the physics remain the same as has been reported 

and surveyed in literature.  An increase in blowing ratio/momentum flux ratio causes the jets to lift 

from the surface at a critical momentum flux ratio, which is a function of hole geometry and hole 

orientation.  Over these large streamwise distances tested, these lifted jets inevitably return to cool 

the wall.  
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Figure 81: Local film cooling effectiveness at the compound angle shift for FC.V at the high and low 

blowing ratios 

A novel effect studied presently is the effect of changing the compound angle after several 

rows.  Literature has shown a benefit of such a shift, but for geometries composed of only two rows.  

For these full-coverage arrays it is clear that this compound angle shift has detrimental effects on 

cooling, and hence, should be avoided in designs if possible.  It is this compound angle shift that 

causes the effectiveness curves in to decrease following x/D=300.  Cases without this compound 

angle shift continue to rise in effectiveness throughout the entire array.   

6.2 Heat Transfer Augmentation at Zero Pressure Gradient 

Local and averaged heat transfer augmentation of the film cooling surfaces is also measured.  

Thin foil heaters are adhered to acrylic surfaces in order to impose a constant heat flux boundary 

condition for steady state measurement of heat transfer.  TSP is used to obtain local temperature 

distribution of the heated surfaces.  With heat loss corrections obtained experimentally, the heat 

transfer coefficient is then calculated.  This heat transfer coefficient in the presence of film is then 

normalized by the heat transfer coefficient without film to yield an augmentation factor.  The local heat 

transfer augmentation data is laterally averaged, then area averaged over a single pitch, which 
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compares area averaged heat transfer augmentation for each geometry.  The area average is taken 

over a single pitch.  A sample of this data can be seen in Figure 82. 

 

Figure 82: Heat transfer augmentation for FC.VI at M=1.0 
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