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ABSTRACT 

This work aims to study the impact of a droplet on liquid pools of the same fluid 

to understand the formation of secondary drops from the central jet and crown splash that 

occur after the impact. The impact of droplets on a deep pool has applications in cleaning 

up oil spill, spray cooling, painting, inkjet printing and forensic analysis, relying on the 

changes in properties such as viscosity, interfacial tension and density. Despite the 

exhaustive research on different aspects of droplet impact, it is not clear how liquid 

properties can affect the instabilities leading to the Rayleigh jet breakup and the number 

of secondary drops formed after it pinches off. In this work, through systematic 

experiments, the droplet impact phenomena is investigated by varying viscosity and 

surface tension of liquids as well as impact speeds. Further, using a Volume-of-Fluid 

(VOF) method, it is shown that Rayleigh-Plateau instability is influenced by these 

parameters, and capillary timescale is the appropriate scale to normalize the breakup 

time. Increase in impact velocity increases the height of the thin column of fluid that 

emerges from the liquid pool. Under certain fluid conditions, the dissipation of this extra 

kinetic energy along with the surface tension forces produces instabilities at the neck of 

the jet. This could result in jet breakup and formation of secondary drops. In other words, 

both the formation of the jet and its breakup require a balance between viscous, capillary 

and surface tension forces. Based on Ohnesorge number (Oh) and impact Weber number 

(We), a regime map for no breakup, Rayleigh jet breakup, and crown splash is suggested 

for 0.0033 ≤ Oh ≤ 0.136. For Weber numbers beyond the critical value and Oh ≤ 0.091 

the jet breakup occurs (Rayleigh jet breakup regime). While for Oh > 0.091, the jet 
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breakup is suppressed regardless of the Weber number. In addition, high impact velocity 

initiates the crown formation and if further intensified it can disintegrate it into numerous 

secondary drops (crown splash) and it is observed to occur at all Ohnesorge numbers and 

high enough Weber numbers, however, at high Oh, a large portion of kinetic energy is 

dissipated, thus Rayleigh jet breakup is suppressed regardless of the magnitude of the 

impact velocity. Moreover, a correlation is proposed for normalized time with respect to 

the normalized maximum height of jet. 
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CHAPTER 1: INTRODUCTION 

The droplet impact has been a topic of vast interest over time. Many researchers 

have studied this phenomenon, enabling us today to have a good understanding. 

However, there are still many open-ended questions. The purpose of this work is to 

establish under what circumstances the Rayleigh jet (also known as Worthington jet) 

breaks up, allowing the formation of subsequent secondary (daughter) droplets, and when 

the crown splashes from the impact of a liquid drop on a deep pool of the same fluid, as 

well as to investigate the influence of physical properties of the fluids and impact 

velocity. 

The impact of a droplet may be classified according to the variety of target 

surface such as dry solid surface, thin liquid film, and deep liquid pool. Many variables 

determine the outcome of a droplet impact phenomenon, such as the drop size; the 

physical properties of the liquid such as density, viscosity, and surface tension; and the 

impact velocity. The present study focuses on droplet impact on deep liquid pool only.   

The study of droplet impact on deep liquid pool is important in the analysis of 

immiscible raindrop on oil slick, having application in cleaning up oil spill. Additionally 

it has applications in spray cooling and painting, inkjet printing, droplet manipulation, 

agriculture, etc. Figure 1-1 shows some common applications of droplet impact on deep 

liquid pools.   

There have been diverse studies that investigate the outcomes of droplet impact 

on solid surface and thin films, which will be reviewed in chapter II. Despite the 

exhaustive research on different aspects of droplet impact, it is not clear how liquid 
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properties can affect the instabilities leading to Rayleigh jet break-up and number of 

secondary droplets formed after its pinch-off. In this thesis, through systematic 

experimentation, the droplet impact on deep liquid pool is investigated by varying 

viscosity, surface tension of liquids and  the impact velocity of the droplet. To gain 

insight into the Rayleigh jet phenomenon, a numerical model is developed. 

To accomplish the objective of this thesis, experiments are conducted where the 

release height of the droplet is varied to generate a range of impact velocities. This allows 

for a large range of Weber number extending up to 1400. In order to investigate the 

influence of fluid properties such as viscosity, surface tension and density, a wide range 

of fluids are tested, resulting in Ohnesorge numbers in the range 0.0033 to 0.136 ( 0.0033 

≤ Oh ≤ 0.136). These experiments are complemented with two-dimensional axisymmetric 

simulations based on the Volume of Fluid (VOF) and Continuum Surface Force (CSF) 

methods. The combination of experimental and numerical studies is used to determine the 

critical Weber number at which the jet pinches off and secondary droplet formation takes 

place. These models are not only validated by the experiments, but they also serve the 

role of understanding the Rayleigh-Plateau instability in jet break-up through the pressure 

and velocity fields at the neck during stretching of the Rayleigh jet. 

In this thesis a literature review of the most relevant topics and research on 

droplet impact is presented in Chapter 2. The experimental procedure and set-up used to 

get the data for analysis is explained in Chapter 3. The numerical modeling performed for 

comparison to the experimental data and analysis of this phenomenon is introduced in 

Chapter 4. The results, along with the physics behind Rayleigh jet formation and beak-up 
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are discussed in Chapter 5. Finally, conclusion of the entire denouement observed in the 

previous sections is exhibited in Chapter 7. 

 

 

Figure 1-1: (a) Rain falls on oil sheen on the surface of the Gulf of Mexico near the site 

of the Deepwater Horizon oil well leak in 2010 (Photo source: Patrick Semansky 

Associate Press). (b) Drip irrigation (adapted from Agroquimica sostenible, 

http://agroquimica.es). (c) Spray atomization (applicable to spray cooling systems and 

spray painting).  

http://www.agroquimica.es/
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CHAPTER 2: LITERATURE REVIEW 

This section will cover a synopsis of droplet impact studies carried out throughout 

history until today and an overview of the most relevant subjects related to droplet impact 

on liquid pools. 

O. Reynolds [1] was the first to report that droplets falling gently onto a pool of 

water would sometimes come to rest on the surface and float there for a few seconds 

before suddenly coalescing into the pool. Based on these observations he wrote the article 

“On the action of rain to calm the sea” (Fig. 2-1). In 1908 A.M. Worthington [2] wrote 

the book “A study of splashes”, where he looked into the splash and crater formation 

upon droplet impact. He applied flash photography to the first consistent study of droplet 

impact (Fig. 2-2). The droplet impact studies can be classified according to the type of 

target surface such as dry solid surface, thin liquid film and deep liquid pool.  

 

 

Figure 2-1: Drops descending below the surface –figure reproduced from [1]. 
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Figure 2-2: (a) Arrangement of apparatus for photographing splashes. (b) Rayleigh jet 

photographs at different times – figure reproduced from [2]. 

 

M. Rein [3] studied the fluid dynamics of drop impact. He observed bouncing, 

spreading and splashing on solid surfaces, and bouncing, coalescence and splashing on 

liquid surfaces, as well as occasionally cavitation and entrainment of gas into the 

impacted liquid. Rioboo et al. [4] carried out a qualitative analysis of the various 

outcomes of a drop impact on solid surface with different roughness and wettability. 

They found that there are at least six distinct outcomes of a drop impact on a solid 

surface, which are deposition, prompt splash, corona splash, receding break-up, partial 

rebound, and rebound. Clanet et al. [5] studied the impact of a liquid drop of low 

viscosity (such as water) on a super-hydrophobic surface. They proposed that the 

maximal spreading Dmax scales as DoWe
1/4

, where Do is the droplet diameter and We is the 

Weber number. Manzello and Yang [6] conducted experiments for water impingement on 
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a liquid surface. They covered a range of impact Weber number of 5.5 to 206. Pan and 

Law [7] investigated the head-on collision of a droplet on a liquid layer (thin film) of the 

same material; they focused on the transition from bouncing of the droplet to its 

absorption by the film. Their experimental results showed that absorption is favored with 

increasing droplet Weber number, We. Zhang et al. [8] studied the crown splash 

originated from the impact of a drop onto a thin liquid film. They suggested that for a 

range of parameters in the crown splash regime, the origin of secondary droplets results 

from Rayleigh-Plateau instability of the rim. Banks et al. [9] found crown formation 

thresholds for drop impacts onto thin films. They considered the effect of drop and film 

viscosity on this study. Tran et al. [10] investigated the air entrainment during impact of 

droplet on a deep pool. They reported the dependence of the rupture position of the 

trapped air layer under the droplet, on the liquid viscosity and the impact velocity. 

Agbaglah et al. [11] studied droplet impact into a deep pool. They used high-speed X-ray 

imaging method to show that vortex separation within the drop leads to the formation of a 

second jet long after the formation of the ejecta sheet. Some of the most general aspects 

encompassed in droplet impact can be found in the review by Prosperetti and Og̃uz [12]. 

When a drop impinges on a bath of the same fluid, depending on the impact 

velocity U, a full or partial coalescence may occur. Full coalescence is known as the case 

where the drop fully merges with the interface. Partial coalescence is a more complex 

phenomenon, in which the merging does not complete; instead a secondary droplet is left 

behind. Mohamed-Kassim and Longmire [13] employed current optical methods such as 

high-speed imaging and particle image velocimetry (PIV) to study the rupture and 

coalescence of a drop through the liquid interface. They obtained continuously evolving 



7 

 

velocity fields within the drop and the surrounding liquids before and after the drop 

rupture. X. Chen et al. [14] did a study on partial coalescence; they found an intermediate 

range of drop sizes in which the merger is not complete but a secondary droplet was 

formed, and, that for drops that were too large or too small, partial coalescence was 

arrested by gravity or viscosity, respectively. Blanchette and Bigioni [15] proposed a 

criterion for partial coalescence based on Bond number, Bo, and Ohnesorge number, Oh. 

𝐵𝐵 =
∆𝜌𝑔𝑅2𝜎  ( 1 ) 𝑂ℎ =
𝜇�𝜎𝜌𝑅 ( 2 ) 

where µ , σ and ρ are the dynamic viscosity, surface tension and density of the liquids, 𝑔 

is the gravitational constant, and R is the radius of initial droplet. They suggested that 

pinch-off mechanism depends on the early dynamics of coalescence rather than Rayleigh-

Plateau instability. It is important to notice that the effect of impact velocity was not 

considered by Blanchette and Bigioni as liquid drops were deposited gently onto the 

surface of the liquid, so that the kinetic energy was low. Gilet et al. [16] studied the 

partial coalesce of droplet on a liquid-liquid interface by tuning the viscosities of both 

liquids. They investigated the ratio between the secondary droplet size and the mother 

droplet size as a function of Bond number, Ohnesorge number, and the density relative 

difference, as well as the propagation and damping of the wave’s convergence on the top 

of the droplet, and suggested that additional to Blanchette and Bigioni’s considerations, 

other viscous mechanisms have been suspected to enhance or to avoid partial 

coalescence. Blanchette et al. [17] examined the influence of surface tension gradients on 

the coalescence of a drop with a liquid reservoir of a miscible but distinct fluid. They 
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found three regimes, depending on the reservoir to drop surface tension ratio. Thoroddsen 

and Takehara [18] suggested that the surface tension time scale can be used to scale the 

time associated with partial coalescence and that the cascade of a drop is limited due to 

viscous effects. Aryafar and Kavehpour [19] studied droplet coalescence at a planar fluid-

fluid interface in the Stokes regime. They reported a hydrodynamic instability at the rim 

of the interfacial bridge that formed between the drop and the interface. 

For partial coalescence, there is lack of literature, nevertheless, it is popularly 

agreed that ratios of gravity to surface tension force (Bond number, Bo), inertia to viscous 

forces (Reynolds number, Re), inertia to surface tension (Weber number, We) and 

viscosity to surface tension (Ohnesorge number, Oh) are the main parameters that play an 

important role in determining the dynamics of instability on the liquid surface due to 

droplet impact. In spite of this knowledge, results for a wide range of these parameters 

are not generally available to date. 

𝑅𝑅 =
𝜌𝑈𝑅𝜇  ( 3 ) 

𝑊𝑅 =
𝜌𝑈2𝑅𝜎  ( 4 ) 

Contemporary studies related to the formation of secondary drops have been 

accomplished by others. Deegan et al. [20] looked into the distinct dynamical origins of 

the secondary droplets. They developed a regime map based on We and Re for crown 

splash (instability in Peregrine sheet that leads to large droplets) and found a power law 

relationship between those two numbers. Hoepffner and Paré [21] showed that the vortex 

rings created by viscous shear in the jet could delay the pinch-off and recoil as a liquid 

filament. Ghabache et al. [22] investigated the jet produced by bubble bursting, focusing 
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on the influence of viscosity and gravity. They correlated the initial shape and aspect 

ratio of the cavity to the height and thickness of the jet in bubble bursting. Walls et al. 

[23] focused on the special case when both gravitational and viscous effects are important 

in jet-drop formation as in sea slicks and metalworking fluid. In their work, air was 

injected into the bottom of a water-glycerol solution. 

Beside experimental works, numerical studies have been also used for 

investigation of the droplet impact phenomena. Rieber and Frohn [24] solved the Navier-

Stokes equations directly to capture the dynamics of splashing by simulating the impact 

of a single drop on a liquid film. In their work, Rayleigh instability is introduced as the 

dominant mechanism for cusp formation. Gupta and Kumar [25] employed a two 

dimensional lattice Boltzmann model to simulate droplet impingement on a dry surface. 

They established multiple phases that lead to break-up, for cases of low density ratio 

liquids. Berberović et al. [26] used volume of fluid method to detect the penetration far 

from the wall at early times after the impact of a drop on a liquid film. They analyzed the 

shape of the cavity due to droplet impact, the formation and propagation of a capillary 

wave in the crater, and the residual film thickness on the wall. Chen and Guo [27] 

employed volume of fluid in conjunction with the continuum surface force (CSF) model 

to investigate the viscosity effect on regular bubble entrapment during drop impact on a 

deep pool. Ray et al. [28] simulated the impact of a water drop on water to study gas 

bubble entrapment and jet formation. They developed regime maps, based on Weber 

number (We = 50 to 300), and Froude number (Fr = 25 to 600). 
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CHAPTER 3: EXPERIMENTAL SETUP 

Figure 3-1 shows the schematic of the experimental setup. A circular transparent 

petri dish with a diameter of 80 mm and thickness of 13 mm was used as the container. 

The container is large enough to minimize the wall effect. Drops were generated using a 

syringe pump (World Precision Instruments) at a flow rate of 100 µL/min, using a needle 

with a nominal outer diameter of 0.64 mm (hypodermic needle gauge 23. A high-speed 

camera (i-Speed 2, Olympus) connected to a zoom lens (Navitar) captured the events at 

2000 frames per second with a resolution of 576 x 432 pixels. The images were extracted 

from the videos and analyzed using a MATLAB code (included in Appendix A). The 

minimum resolution and maximum uncertainty of the measurements from the imaging 

were 0.06 mm (1 pixel) and 0.126 mm respectively. The illumination was provided by a 

1000-watt halogen lamp. The camera was set to capture the interface and droplet from the 

side. The heat generation caused by illumination was controlled to avoid thermal gradient 

between the two media [29,30]. The properties of different liquids along with the droplet 

diameter, Do, used in the experiment are presented in Table 3-1.  All the experiments 

were carried out at room temperature of 24.6°C +/-1°C, and were repeated at least three 

times to assure repeatability of the data. 

Droplets were generated using a syringe pump, needle and plastic tubing. The 

release height was controlled using a 1D stage which had millimeter size precision. The 

release height was varied (0.1 m - 2.5 m) in order to generate a rage of impact velocities. 

The size of droplets was consistent for a given fluid as the gravitational force overcomes 

the capillary force. After each test, the syringe, tubing and container were changed. 
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Figure 3-1: Experimental set-up. 

 

Table 3-1: Physical properties of tested liquids at room temperature. 

Liquids 
𝑫𝒐 

(mm) 

𝝂 

(cSt) 

𝝆 

(𝑔/𝑐𝑚3) 

𝝈 

(𝑚𝑁 /𝑚) 

𝑶𝒉 

 

Water 2.50 1.0 1.0 72.0 0.0033 

Potassium hydroxide  2.70 1.05 1.0 72.1 0.0033 

Ethanol 1.93 1.4 0.79 22.0 0.0085 

Ethylene glycol 2.20 17.8 1.1 47.7 0.0815 

Silicone  oil 5 cSt 1.80 5.0 0.91 19.7 0.0360 

Silicone  oil 10 cSt 1.80 10.0 0.93 20.1 0.0716 

Silicone  oil 13 cSt 1.90 13.0 0.94 20.2 0.0907 

Silicone  oil 14 cSt 1.90 14.0 0.94 20.3 0.0952 

Silicone  oil 16 cSt 1.96 16.0 0.94 20.4 0.1087 

Silicone  oil 18 cSt 1.98 18.0 0.95 20.5 0.1222 

Silicone  oil 20 cSt 2.0 20.0 0.95 20.6 0.1358 
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CHAPTER 4: NUMERICAL FORMULATION 

4.1 Numerical Model and Governing Equations 

The volume of fluid method (VOF) is used in combination with the continuum 

surface force model (CSF) and implemented in the open-source platform, OpenFOAM 

[31]. OpenFOAM utilizes a cell center based finite volume method on the grid. 

Specifically, the InterFoam solver is employed to perform the numerical simulation of the 

droplet impact process. The pressure implicit with splitting of operators (PISO) algorithm 

[32] is used as the solution procedure for coupling between pressure and velocity in 

transient flow.  

VOF method considers two different phases as one fluid in the entire domain, 

where the phases within the domain are tracked by variable 𝛾 that is based on the volume 

fraction (Hirt and Nichols, [33]). The volume fraction takes on values between 0 and 

1.Then the physical properties of the mixture are defined using volume fraction as 

follows: 

𝜌 = 𝛾𝜌𝑙 + (1 − 𝛾)𝜌𝑔 ( 5 ) 𝜇 = 𝛾𝜇𝑙 + (1 − 𝛾)𝜇𝑔 ( 6 ) 

where 𝜌𝑔, 𝜇𝑔 are the density and viscosity of the gaseous phase, and 𝜌𝑙, 𝜇𝑙 represent the 

density and viscosity of the liquid phase. When solving the problem in the gaseous phase, 

the volume fraction is 𝛾 = 0, which makes  𝜌 = 𝜌𝑔 and 𝜇 = 𝜇𝑔. When solving in the 

liquid phase, 𝛾 = 1, 𝜌 = 𝜌𝑙 and 𝜇 = 𝜇𝑙. At the interface, 𝛾 takes on values between 0 and 

1, and the weighted values are used. The physical properties such as density and viscosity 

are considered constant within each phase, but they vary at the gas-liquid interface.  
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Equations governing the fluid mechanics of the droplet impact phenomenon are 

the continuity, momentum, and transport of the volume fraction equation. It must be 

mentioned that the case studied in this thesis correspond to an unsteady, incompressible, 

viscous, immiscible two-phase flow problem and that the flow conditions caused by the 

drop impact on a liquid surface are considered to be laminar and axisymmetric. 

The conservation of mass for both fluids (liquid and gas), is described by the 

continuity equation. The differential form of the continuity equation is shown [34] as 

follows (Vectors are set in boldface type): 

𝜕𝜌𝜕𝑡 + 𝜵 ∙ (𝜌𝑽) = 0 ( 7 ) 

where, V is the velocity field, t is the time, and ρ is the density. Fluids are considered 

incompressible in this work, thus, Eq. (7) can lead to Eq. (8) for this special case. 

𝜵 ∙ (𝜌𝑽) = 0 ( 8 ) 

The momentum equation with Newton’s viscosity law can be expressed [35] as 

follows: 

𝜕(𝜌𝑽)𝜕𝑡 + 𝜌(𝑽 ∙ 𝜵)𝑽 = −𝜵𝑝 + 𝜌𝒈 − 23𝛁(𝜇𝛁 ∙ 𝑽) + 2𝛁 ∙ (𝜇𝑺) ( 9 ) 

Eq. (9) can also be shown in a more compact form (Eq. 10) by using the definition of the 

deviatoric stress tensor, T. 

𝜕(𝜌𝑽)𝜕𝑡 + 𝜌(𝑽 ∙ 𝜵)𝑽 = −𝜵𝑝 + 𝜌𝒈 + 𝛁 ∙ 𝑻 ( 10 ) 

where, the deviatoric stress tensor is defined by, 𝑻 = − 23𝜇𝛿𝑖𝑗𝛁 ∙ 𝑽 + 2𝜇𝑺, the mean rate 

of strain tensor is 𝑺 = 0.5[𝜵𝑽 + (𝜵𝑽)𝑇], and, 𝛿𝑖𝑗 is the Kronecker delta tensor, which is 

also known as the substitution or the identity tensor. Finally the same momentum 
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equation, but with the addition of the surface tension force is shown in Eq. (11), where 

the pressure, viscosity, and gravity are denoted by p, µ , and g, respectively. 𝑭𝝈 is the 

surface tension force that is taken into account in the momentum equation . 

𝜕(𝜌𝑽)𝜕𝑡 + 𝜌(𝑽 ∙ 𝜵)𝑽 = −𝜵𝑝 + 𝜵 ∙ (𝜇[𝜵𝑽 + (𝜵𝑽)𝑇]) + 𝜌𝒈 + 𝑭𝝈 ( 11 ) 

The CSF model (Brackbill et al. [36]) is used to evaluate the surface tension force 

in the momentum equation. The surface tension force is defined by the Eq. (12) as 

follows: 

𝑭𝝈 = 𝜎𝜎𝛁𝛾 ( 12 ) 

where the interfacial tension between phases is 𝜎, and 𝜎 the interfacial curvature. The 

term 𝛁𝛾 acts only at the gas-liquid interface, where volume fraction changes. The 

interfacial curvature is expressed by the CSF model as Eq. (13). 

𝜎 = −𝛁 ∙ � 𝛁𝛾
|𝛁𝛾|

� ( 13 ) 

In the conventional VOF method, the transport equation for the volume fraction 

of one phase is solved simultaneously with the continuity equation (8) and the 

momentum equation (11), and is defined by Eq. (14) as follows: 

𝜕(𝛾)𝜕𝑡 + 𝜵 ∙ (𝑽𝛾) = 0 ( 14 ) 

In computational fluid dynamics (CFD) solution of this two-phase flow problem, 

the interface is affected due to numerical diffusion and the discretization of the 

convective term is of most importance. To maintain the sharp resolution of the interface, 

Weller [37] added an artificial convective term, which is also known as compression 

term, 𝜵 ∙ (𝑽𝒓𝛾[1 − 𝛾]), into the transport equation of volume fraction. The numerical 
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diffusion could be limited by adding the additional convective term, while “𝜵 ∙ ” 

guarantees conservation and “γ(1-γ)” guarantees boundedness. Therefore the artificial 

convective term is present only at the interface, where γ takes on values between 0 and 1. 

Thus, the new transport equation for the volume fraction is shown in Eq. (15) as follows:  

𝜕(𝛾)𝜕𝑡 + 𝜵 ∙ (𝑽𝛾) + 𝜵 ∙ (𝑽𝒓𝛾[1 − 𝛾]) = 0 ( 15 ) 

where, 𝑽𝒓 is the relative velocity at the interface and it was defined by [37] as: 

𝑽𝒓 = 𝑛𝑓𝑚𝑚𝑛�𝑐𝑓|𝑽|,𝑚𝑚𝑚(|𝑽|)� 𝛁𝛾
|𝛁𝛾|

 ( 16 ) 

where,  𝑛𝑓 is the unit normal flux on a cell face at the interface region, 𝑐𝑓 is the 

compression constant (𝑐𝑓 = 1 for this problem), |𝑽| is obtained by the pressure-velocity 

coupling algorithm, and 𝑚𝑚𝑚|𝑽| is the largest value of |𝑽| anywhere in the domain.  

 

4.2 Initial and boundary conditions 

As mentioned earlier, drop impact followed by secondary drop formation is 

assumed to be axisymmetric. Note that droplet and liquid pool are both the same liquid 

and are surrounded by air. The computational domain is shown in Fig. 4-1. The z-axis 

accounts for symmetry axis in which the gravity force acts. The bottom and right 

boundaries are walls with no-slip condition, while the top boundary is an open boundary 

where fluids can flow freely. The domain size is 40 mm x 40 mm. In the beginning of the 

simulation, the drop and liquid pool are set within the domain by establishing an initial 

volume fraction. The initial volume fractions in the two phases are: Air: γ = 0; Liquid: γ = 1. The capillary pressure difference across the droplet interface is considered as 
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initial condition. The original droplet is considered spherical and the capillary pressure 

difference is obtained according to the Young-Laplace equation (Eq. 17). In addition, the 

static pressure is offset by the hydrostatic pressure 𝜌𝑔𝑧 so that the initial pressure at the 

walls is 0. 

∆𝑝 =
2𝜎𝑅𝑜 ( 17 ) 

  

 

Figure 4-1: Computational domain and boundary conditions for 2D axisymmetric CFD 

analysis. 

 

4.3 Grid independence 

A standard mesh size of 0.16 mm x 0.16 mm is used to create the entire domain, 

except near the liquid interface where the mesh is refined. Since OpenFOAM does not 

work with 2D geometries, a wedge of 5° angle is modeled, where the faces on the x-z 
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plane are set symmetric and only one element is present along the y-axis. Five different 

mesh types are tested to check for grid independence. The cell sizes used within the 

refined region are 50 µm x 50 µm, 25 µm x 25 µm, 15 µm x 15 µm, 10 µm x 10 µm, and 

5 µm x 5 µm. The computational grid is shown in Fig. 4-2. 

 

 

Figure 4-2: Computational grid 

 

The numerical simulation of silicone oil 5 cSt is used to investigate the grid 

dependence of the solution (Do = 1.8 mm, U = 1.8 m/s) for We = 135 and Re = 324. In 

order to evaluate the grid resolution effect, the height of the cylindrical column from 

droplet impingement up to jet breakup is examined (Fig. 4-3). The crater formation after 

impact (region A), Rayleigh jet before pinch-off and the recession of the jet back into the 

pool (region B) as well as the subsequent secondary droplet (region C) are shown in Fig. 
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4-4a. It is clear that in region A, there is no significant variation in height for all cases. 

However, in regions B and C, grid independence is achieved for 10 µm x 10 µm, which is 

selected as the final grid.  

 

 

Figure 4-3: Tracking of crater depth and height of jet along axis of symmetry. 

 

4.4 Experimental validation of numerical results 

The variation of the height of the cylindrical column up to the pinch-off is 

compared quantitatively with experimental results in Fig. 4-4b. The experimental result 

for validation of the numerical simulation is obtained after repeating experiments fifteen 

times, where the maximum sample standard deviation is Sx = 0.059 mm, which leads to a 

maximum uncertainty of 0.126 mm at 95% probability (shown as error bars in Fig. 4-4b). 

The numerical simulations are compared qualitatively with the experimental results in 

Fig. 4-5, where the secondary drop pinches off after 52.6 ms from the initial droplet 

impact. The results from the CFD simulation match well with the experimental results. 

The errors in the maximum height of the jet and secondary droplet diameter are 2.2% and 

3.4%, respectively. 
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Figure 4-4: (a) Grid convergence based on the variation of the height of the cylindrical 

column for a silicone oil 5cSt droplet, 1.8 mm diameter, impact on liquid pool (Re =  324, 

We = 135, and Oh = 0.36). (b) Quantitative comparison of the numerical results with 

experiments. 
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The CFD model predicted the critical Weber number for combinations of liquid 

properties and droplet diameter that led to Ohnesorge numbers of 0.007, 0.014, 0.044, 

and 0.060. In order to find out the transition boundaries between the jet formation and its 

breakup with subsequent formation of secondary drops, different impact velocities were 

tested. Nearly 30 numerical simulations, supplemented by 50 experiments (run three 

times for each We-Oh combination for repeatability) were carried out. A high-

performance computing cluster was used to run all simulations. 

 

 

Figure 4-5: Quantitative comparison of the numerical and experimental results. Time 

evolution of the Rayleigh jet for the impact of a silicone 5 cSt droplet with its own pool 

(Re = 324, We = 135, Oh = 0.036). 
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CHAPTER 5: RESULTS AND DISCUSSION 

The content of this chapter has been published in article: “E. Castillo-Orozco et 

al., Droplet impact on deep liquid pools: Rayleigh jet to formation of secondary droplets, 

Phys. Rev. E, 2015” [38]. 

5.1 Image processing results  

The sequences of stages, registered by the high speed camera, involve the initial 

droplet impact, crater formation, central (Rayleigh) jet evolution, subsequent jet breakup, 

and pinch-off of the secondary drops. In order to analyze the images more efficiently, a 

MATLAB code was developed for image processing (included in Appendix A). This 

code converts the gray scale images into binary and allows for extraction of impact 

characteristics mentioned earlier. The proper calibration factor is employed to convert 

pixel to millimeter. Figure 5-1 shows four binary images from MATLAB, which are used 

to track the variation of the central column in time. These images correspond to silicone 

oil 5 cSt, Do = 1.8 mm, and U = 1.8 m/s (Table 5-1). 

 

Table 5-1: Information extracted from experiments using in-house developed MATLAB 

code for the same case shown in Fig. 5-1. (t = 0 is when the droplet contacts the pool 

surface). 

Event Details 

Droplet impact velocity 1.8 m/s 

Evolution of crater depth 14 ms, from formation up to maximum depth 

Critical height of Rayleigh jet 6.69 mm after t = 42 ms 

Size of secondary droplet 1.45 mm diameter (pinch-off occurs at t = 54 ms) 
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Figure 5-1: Binary images used for image processing. Sequence of stages of a silicone oil 

5 cSt droplet (We = 135, Oh = 0.036). (a) Droplet 0.5 ms before impact upon liquid pool, 

(b) maximum depth of crater, (c) maximum height of Rayleigh jet, and (d) pinch-off of 

the secondary droplet. 

 

5.2 Physics behind Rayleigh jet formation and breakup 

When a droplet impacts the pool with high kinetic energy, the impact causes large 

disturbances to the pool which forms a deep crater followed by a Rayleigh jet. The 

Rayleigh jet has the potential to breakup due to Rayleigh-Plateau instability, as shown in 

Fig. 5-2. The Rayleigh-Plateau instability occurs when surface waves begin to form under 

the influence of surface tension. When the surface waves are of varicose mode and are 

long waves, a pinched region forms on the jet as shown in Fig. 5-2 b. As the amplitude of 

the long wave (λ=2πRjet) begins to grow, pressure begins to build up within the pinched 

region as shown in Fig. 5-2c. The jet breaks up once the growth rate peaks. It should be 

noted that the wavelength is approximately the circumference of the jet and the growth 

rate for a jet has a capillary time scale, tcap ∼ (ρRjet
3
/σ)

1/2
, where Rjet  is the radius of the jet 
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[39]. The current experiments suggested that Rjet is of the same order of magnitude as the 

initial radius of the droplet (Ro), therefore tcap ∼ (ρRo
3
/σ)

1/2
. The viscosity of the jet plays 

no significant role on the range of unstable wavelengths. However, at higher Oh, 

viscosity can slow down the growth rate of the unstable waves with a viscous time scale 

of tvisc ∼ μRjet/σ  [40]. Additionally, the ratio of tvisc to tcap represents the Ohnesorge 

number. Therefore, Oh is an indicator of how much the breakup time has lagged. As is 

seen in Table 5-2, that capillary time scale and breakup time are of the same order, even 

though the former is approximately 3 to 10 times smaller than the latter. Thus, the 

capillary time scale is the appropriate scale to normalize breakup time. The breakup time 

is calculated from the time at which the jet emerges from the interface until it reaches the 

maximum height where it pinches off (Fig. 5-3). The non-dimensional time, t*breakup, is 

seen to increase linearly with Oh up to Oh = 0.06, beyond which the curve becomes non-

linear. 

 

Table 5-2: Time scales of the problem sorted based on the Ohnesorge number (fluids). 

Liquids 
Oh tbreakup 

(ms) 

tcap 

(ms) 

tvisc 

(ms) 

Water 0.0033 22.7 5.21 0.02 

Potassium hydroxide 0.0033 18.0 5.94 0.02 

Silicone  oil 1 cSt 0.0070 24.7 5.81 0.04 

Ethanol 0.0085 28.7 5.68 0.05 

Silicone  oil 2 cSt 0.0140 27.0 5.81 0.08 

Silicone  oil 5 cSt 0.0360 30.0 5.81 0.21 

Silicone  oil 5 cSt 0.0440 28.0 3.99 0.18 

Silicone  oil 8 cSt 0.0600 35.0 5.80 0.35 

Silicone  oil 10 cSt 0.0716 36.0 5.81 0.42 

Ethylene glycol 0.0815 38.7 5.54 0.45 

Silicone  oil 13 cSt 0.0907 65.5 6.32 0.57 
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Figure 5-2: Pressure buildup in the pinched region after the impact of a silicone  oil 1.8 

mm droplet (10 cSt) with impact velocity of  2.5 m/s (We = 261, Oh = 0.0716). Pressure 

field is shown on each image and velocity vectors of the central Rayleigh jet are shown 

on right side of each image. Some vectors have been removed for clarity. 

 

Along with viscosity, the fluid motion of the jet can lag the breakup time as well. 

Since the emerging jet opposes gravity, the velocity of the jet reverses such that the fluid 

motion is directed towards the pool, as shown in Fig. 5-2. This reverse motion causes 

fluid to displace into the pinched section. While the velocity of the reverse fluid motion is 

not high enough to stabilize the jet, the reverse motion lags the breakup time. If the 

pinched section recedes back into the pool in a shorter time than the breakup time, 

breakup will not occur. Therefore there is a critical height that the jet must reach for 
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breakup to occur. These critical heights are visualized in Fig. 5-4 and later quantified 

non-dimensionally in Fig. 5-5 and Fig. 5-6.  

 

 

Figure 5-3: Normalized breakup time of the Rayleigh jet vs. Ohnesorge number. The 

filled and unfilled symbols represent the experimental and numerical data respectively. 

 

In addition to the above phenomenon, it is observed that the reverse motion also 

occurs inside the droplet and the droplet has no distortion as the pinched section recedes 

back into the deep pool. The wavelength of the long wave does not significantly change 

while the amplitude grows.  Therefore, the breakup of the pinched region is due to the 

Raleigh-Plateau instability caused by the temporal growth rate of the long wave. For 

partial coalescence to have occurred, the capillary waves would have traveled up the 

droplet causing the droplet to be distorted and pulled upward which leads to a pinch-off 

by stretching separation [14, 15].  
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Figure 5-4: Visualization of droplet impact process for a 5 cSt silicone oil drop at selected 

times for (a) U = 1.8 m/s (We = 135), (b) U = 2.1 m/s (We = 184), and (c) U = 2.3 m/s (We 

= 221). All cases correspond to Oh = 0.036. 
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Typically, increase in impact velocity causes larger depth of crater and height of 

jet. It is also reasonable to conclude that the probability of jet breakup increases with 

impact velocity. Viscosity of fluids tends to damp down the effect of the impact. For 

silicone oil 5 cSt, if U = 1.8 m/s (We = 135, Oh = 0.036), only one secondary drop is 

formed. At 2.1 m/s (We = 184), two secondary drops are formed, and at 2.3 m/s (We = 

221) three secondary drops are formed (Fig. 5-4). Interestingly for silicone oil 20 cSt, 

even at velocities three times greater than critical impact velocity of silicone 5 cSt, no 

pinch-off was observed. 

In the particular case shown in Fig. 5-4, where different numbers of secondary 

drops are formed, the secondary droplets display sizes (diameters) of 0.58Do to 0.94Do. It 

was observed that the size of secondary droplets varies for the different fluids and impact 

velocities that were tested in this study, but the order of magnitude for these drops 

remains the same as the mother droplet.  

Among the cases that result in Rayleigh jet breakup and subsequent secondary 

droplet formation, the height of the Rayleigh jet was tracked up to the point where the 

first secondary droplet pinches off. Figure 5-5 depicts the variation of the normalized 

maximum height of Rayleigh jet as a function of impact We.   

The higher the Ohnesorge number is, the lower the height of the Rayleigh jet. 

When Oh number increases, viscous forces become dominant over surface tension forces, 

which hinder the development of the jet as the capillary waves are not able to vertically 

stretch the droplet. The normalized height is also compared with its respective 

normalized time in Fig. 5-6a, and 5-6b. Properties of the liquid pool have an important 

role here. Higher Oh number tends to retard the evolution of the jet and subsequently the 
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pinch-off process, in other words it takes longer time for the jet to reach a specific height 

compared to low Oh number fluids. It is noticeable that for silicone oil 13 cSt, which has 

the critical Ohnesorge number, the variation of maximum height of the jet with time is no 

longer linear. Moreover, Figure 5-6b shows that there is a direct relationship between the 

non-dimensional maximum height of the Rayleigh jet to form its first secondary droplet 

and the time associated with it. This relation is presented in Eq. (18), where t*hmax  is the 

normalized time required for the jet to reach its maximum height, and h*max is the 

normalized maximum height of Rayleigh jet. 

ℎ𝑚𝑎𝑥∗ = 0.91𝑡ℎ𝑚𝑎𝑥∗  ( 18 ) 

 

 

Figure 5-5: Normalized maximum height of the Rayleigh Jet, ℎ𝑚𝑎𝑥∗  up to the pinch-off of 

the first secondary drop vs. impact Weber number, We. 
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Figure 5-6: (a) Normalized maximum height of the Rayleigh jet up to the pinch-off of the 

first secondary drop vs. normalized Time, (b) Maximum height of Rayleigh jet for critical 

cases (at which pinch-off of the first secondary drop occurs) normalized by initial drop 

radius vs. normalized time 
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Figure 5-7 demonstrates the evolution of cavity and the subsequent central jet for 

cases that show the Rayleigh jet breakup. The time is normalized with capillary time 

while the height of the jet and depth of penetration are normalized with droplet size. 

From Fig. 5-7a it can be seen that the depth of cavity at the time of jet eruption and 

pinch-off of first secondary drop decreases with Oh. In general, the fluids of lower 

viscosity show deeper crater. This behavior was also observed by Ghabache et al. [22] in 

the jet formation from bursting of bubble. The evolution of the height of the central jet up 

to the pinch-off of first secondary drop is shown in Fig 5-7b. Indeed, Oh number plays an 

important role in retarding the pinch-off process. By relating the dynamics of the cavity 

(Fig. 5-7a) to the height of the jet (Fig. 5-7b), it can be concluded that for higher Oh 

numbers (for fluids of higher viscosity), the effective size of the cavity is smaller. On the 

other hand, the critical height of the jet to pinch-off for fluids of higher viscosity is larger. 

Figure 5-8 compares the shape of crater for ethanol, silicone oil 5 cSt, and 10 cSt.  

As observed by Ghabache et al. [22], it can also be noticed here that as viscosity 

increases, the edges of the crater become smoother, particularly for silicone oil 10cSt 

(Fig. 5-8c). Figure 5-8d compares the overlap of collapsed cavity for the aforementioned 

fluids. 



31 

 

 

Figure 5-7: Tracking interface of (a) cavity and (b) central jet. The horizontal axis is 

normalized by capillary time and the vertical axis by initial droplet radius.  
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Figure 5-8: Dynamics of cavity for three fluids at selected times. (a-c) depth of crater for 

ethanol, silicone oil 5 cSt, and silicone oil 10 cSt, (d) overlap of collapsed cavity for these 

fluids. 

 

5.3 Effects of impact velocity, surface tension and viscosity 

The experiments were performed using distilled water, potassium hydroxide 

(KOH), ethanol, ethylene glycol, silicone oils 5, 10, 13, 14, 16, 18 and 20 cSt, as 

summarized in Table 3-1. The silicone oils have similar surface tension (~ 20 mN/m) and 

densities (~ 940 kg/m3), but different viscosities. Except for water, the results were 

highly repeatable for the abovementioned fluids. Water did not display consistent results 

under the same conditions, perhaps due to its impurities, an observation that was also 

made by others [41]. In order to confirm the water results, potassium hydroxide was 

tested since it has similar properties leading to the same Ohnesorge number as water 

(Table 3-1). Among these fluids, the silicone oils showed the best repeatability at all 

stages, from the height of Rayleigh jet to the number of secondary droplets at a certain 

impact Weber number.  
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The impact velocities were measured using image processing techniques and 

compared with U = (2gH)
1/2

 from conversion of potential energy into kinetic energy, 

where H is the release height. It is important to note that the values of U from 

experiments were always lower than that of theory, especially if the height exceeded 1 m. 

This is due to the drag force acting on the droplet. Therefore for consistency, the 

experimentally obtained impact velocities were used to calculate the non-dimensional 

parameters shown in this study.   

When a droplet impacts the pool of the same fluid, it penetrates through the 

interface and forms a crater. If the impact velocity is high enough, a central Rayleigh jet 

will form. Under certain conditions, the tip of the jet pinches off due to Rayleigh-Plateau 

instability and the secondary droplet forms. Many parameters can affect this behavior of 

which viscosity, surface tension and impact velocity are the most important. The 

parameter of particular significance to identify the boundaries of transitions between no 

breakup and Rayleigh jet and later into crown splash is the Weber number. The impact 

Weber, We, at which the jet breaks up and the secondary droplet forms is called the 

critical Weber number. When viscous effects are under consideration to study instability, 

Oh is a more appropriate parameter as it isolates the property effects more. Re has also 

been used to classify the morphologies of crown droplets on a We-Re map [8]. In Fig. 5-

9a and 5-9b, regime maps for Rayleigh jet breakup, crown splash and subsequent 

formation of secondary droplets are plotted both as We vs Re and We vs Oh respectively. 

Each Ohnesorge number represents a distinct fluid, whereas the variation in Weber 

number is due to changes in release height of the droplet. 
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Figure 5-9: (a) and (b) Regime maps for Rayleigh jet breakup and subsequent secondary droplets formation based on Re and Oh 

respectively. Filled markers represent the cases where breakup took place and single or multiple secondary droplets were observed. 

Blank and star symbols represent no breakup and crown splash respectively. Ohnesorge number of 0.007, 0.014, 0.044, and 0.060 

were obtained from numerical simulations. The rest of the cases were obtained from experimental results. Videos S2 and S3 can be 

found as supplementary material representing each of these flow regimes both experimentally and numerically. 
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For a combination of Oh ≤ 0.091 and Weber numbers beyond the critical value, 

the jet breakup leads to one or multiple secondary droplets that are on the order of 0.5Do 

to 2Do. At low impact We number, the kinetic energy cannot overcome the surface 

tension forces. Depending on the impact velocity, in some cases, both Rayleigh jet 

breakup and crown splash can occur (e.g. Oh = 0.0815 and We = 440).  

As viscosity increases, the kinetic energy at impact dissipates quicker, causing 

smaller disturbance to the pool, which decreases the height of the jet. In addition, the 

growth rate of Rayleigh-Plateau instability becomes smaller as viscosity increases [42]. 

Smaller growth rate further lags the breakup time. Therefore, for breakup to occur, the 

impact velocity or Weber number must increase as Oh number increases. However, if the 

Weber number increases high enough, the surface waves on the Rayleigh jet become 

short wave dominant. Short waves tend to stabilize the pressure fluctuations in the jet 

such that breakup does not occur [43] Therefore; there is a cutoff Oh at which Rayleigh-

Plateau instability will no longer occur. From Fig. 5-9, it is observed that the cutoff Oh is 

≈ 0.091. Existence of a critical Ohnesorge number is also confirmed by Blanchette and 

Bigioni [15], even though the size and impact velocity of droplets were not comparable 

with this study. 

Interestingly, crown splash is observed to occur regardless of the cutoff Oh. Upon 

coalescence, the kinetic energy of the droplet is partially dissipated due to the viscous 

forces, the rest being transformed into surface energy distributed over a large surface 

area. At high impact velocities, the remainder of the kinetic energy results in the 

detachment of the lamellas from the liquid periphery. Typically, lower surface tension 
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and viscosity combined with high impact velocity facilitate the crown formation. 

Viscosity is important since it determines the splash morphology. For high viscosity 

fluids, the secondary drops detach only after the complete development of crown but not 

in the early stages. However, for fluids with relative low viscosity the crown splash can 

take place at early stages. The sequence of crown formation is presented in Fig. 5-10.  

 

 

Figure 5-10: Visualization of crown splash and Rayleigh jet formation for a silicone oil 

20 cSt droplet impingement upon pool of same liquid. Re = 250, We = 1153, Oh = 

0.1358. Time after initial droplet impact (Do = 2.0 mm, U = 5.01 m/s) is shown in each 

snapshot. 
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CHAPTER 6: CONCLUSIONS 

In summary, the influence of fluid properties and impact velocity upon Rayleigh 

jet and pinch-off of secondary droplets have been studied within the impact of a liquid 

droplet on a pool of identical fluid. To better understand the physical phenomena and 

confirm our observations, numerical simulations based on VOF and CSF methods were 

deployed. Increase in impact velocity (Weber number) increases the height of the thin 

column of fluid that emerges from the liquid pool. Under certain fluid conditions, the 

dissipation of this extra kinetic energy along with the surface tension forces produces 

instabilities in the neck of the jet. This could result in jet breakup and formation of 

secondary droplets. However, if the fluid has a high viscosity (i.e. high Ohnesorge 

number), a large portion of kinetic energy is dissipated thus Rayleigh jet breakup may 

never occur. In other words, both the formation of the jet and its further breakup require a 

balance between viscous, capillary and surface tension forces. A We-Oh plot shows three 

regimes for 0.0033 ≤ Oh ≤ 0.136. For Weber numbers beyond the critical value and Oh ≤ 

0.091 the jet breakup occurs (Rayleigh jet breakup regime). While for Oh > 0.091, the jet 

breakup is suppressed regardless of the Weber number. In addition, high impact velocity 

initiates the crown formation and if further intensified it can disintegrate it into numerous 

secondary droplets. Since more viscous fluids tend to dampen the impact, they mitigate 

the occurrence of crown splash except at higher impact velocities. In addition, a 

correlation is proposed for normalized time with respect to the normalized maximum 

height of jet. 
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APENDIX A: MATLAB CODE FOR IMAGE PROCESSING 
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%%%%%%%%%%%%% ROUTINE FOR IMAGE PROCESSING OF PHOTOGRAPHS %%%%%%%%%%%%% 
    
   clc; 
   clear all; 
   close all; 
 
  
%% DATA AND IMPUT 
 
   nOD = 0.82  % needle OD (mm) 
   fps = 2000  % frames per second (1/s) 
   % Specify x-poitions where you want to track the interface 
     xTrack1 = 369         % Outside of pool 
     xTrack2 = 400         % Inside of pool 
   % Specify y-interface 
     yInter = 244  
   % To limit the usage of factor 1 & 2 
   firstPic = 10         % first picture to analyze (it must be 2 
pictures before impact) 
   impactPic = 12        % picture that corresponds to impact (initial 
time) 
   firstTrackPic = 15    % track the interface from this picture 
   limitPic = 85         % first picture, where the factor 1 must be 
used 
   numZeros = firstTrackPic-impactPic; 
   numUsedForImpact = impactPic-firstPic; 
   numFactorLim = limitPic-firstPic;   % factor limit 
   numFactorLimCor = numFactorLim-numUsedForImpact; 
 
 
  
%% GET CONVERSION FACTOR mm/px 
 
   nRef = imread('needleRef.jpg'); 
   bI = imread('needleBackGround.jpg'); 
   nRefSub = imsubtract(bI,nRef); 
   nGray = rgb2gray(nRefSub); 
   nGrayAdj = imadjust(nGray); 
   n = im2bw(nGrayAdj); 
   n = bwareaopen(n,1000); % Area segmentation (A<1000) 
   [nr,nc] = size(n); 
   y1 = round(0.45*nr) 
   y2 = round(0.8*nr) 
   x1 = round(nc/3);       % region 1. Outside of pool 
   x2 = round(nc*2/3);     % region 2. Inside of pool 
   zeros1 = find(n(y1,x1:x2)==1); 
   zeros2 = find(n(y2,x1:x2)==1); 
   nDiaPx1 = zeros1(end)-zeros1(1); 
   nDiaPx2 = zeros2(end)-zeros2(1); 
   factor1 = nOD/nDiaPx1   % factor mm/px for surface outside liquid 
pool 
   factor2 = nOD/nDiaPx2   % factor mm/px for surface inside liquid 
pool 
   % Plot figure 1 
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     g1 = figure (1); 
     
subplot(2,2,1),imshow(nRefSub);subplot(2,2,2),imshow(nGrayAdj);subplot(
2,2,3),imshow(n); 
     title('Get factor mm/px'); 
 
 
  
%% DROP DIAMETER AND IMPACT VELOCITY 
 
   bI = imread('backGroundRef.jpg'); 
   pdir = dir('*m*.jpg'); 
  
   for jj=1:2 
       pfullname = pdir(jj).name; 
       imagename = pfullname; 
       I = imread(imagename);            % Read image 
       Z = imsubtract(bI,I);             % Subtract back ground from 
image 
       picGray = rgb2gray(Z);            % Get gray scale image 
       picGrayAdj = imadjust(picGray);   % Adjust the gray scale image 
       picBw = im2bw(picGrayAdj);        % Convert to binary image 
       picBw = imclearborder(picBw);     % Clear borders 
       picBw = bwareaopen(picBw,800); 
       picBwFil = medfilt2(picBw, [3,3]);% Apply filter 
       [nr,nc] = size(picBwFil); 
       % Find ones of droplet 
       dropLength = find(picBwFil(1:yInter,xTrack1)==1); 
       % Get drop center 
       dropCenter = round((dropLength(1)+dropLength(end))/2); 
       % Find ones of drop diameter 
       dropD = find(picBwFil(dropCenter,1:nc)==1); 
       dropD = (dropD(end)-dropD(1));    % Get drop diameter in pxs 
       dropDiam(jj) = dropD;             % Save drop diameter 
       dropYpos(jj) = dropLength(1);     % Save drop position 
  end 
     dropDiam_mm =dropDiam*factor1                          % mm  
     dropDiam_m = dropDiam_mm/1000 
     dropVel = (dropYpos(1)-dropYpos(2))*factor1*0.001*fps  % m/s 
  % Plot figure 2 
    g2 = figure (2); 
    
subplot(2,2,1),imshow(Z);subplot(2,2,2),imshow(picGrayAdj);subplot(2,2,
3),imshow(picBw);subplot(2,2,4),imshow(picBwFil); 
    title('Drop impact diameter and velocity'); 
      
 
 
%% TRACK INTERFACE 
 
   totalTime = 0:length(pdir)-1-numUsedForImpact; 
  
   for ii=1:numZeros;  
       filmPos(ii)=0; 
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   end 
 
%% Track the interface inside of pool  
   for jj=numZeros+1:numFactorLimCor; 
       pfullname = pdir(jj+numUsedForImpact).name; 
       imagename = pfullname; 
       I = imread(imagename); 
       Z = imsubtract(bI,I);   
       picGray = rgb2gray(Z); 
       picGrayAdj = imadjust(picGray); 
       picBw = im2bw(picGrayAdj); 
       %picBw = imclearborder(picBw); 
       picBw = medfilt2(picBw, [5,5]); 
       figure (jj) 
       imshow(picBw) 
       filmdepth = find(picBw(yInter:nr,xTrack2)==1); 
       filmPos(jj) = -filmdepth(end)*factor2; 
  end 
 
%% Track interface outside of pool     
   for kk = numFactorLimCor+1:length(pdir)-numUsedForImpact; 
       pfullname = pdir(kk+numUsedForImpact).name; 
       imagename = pfullname; 
       I = imread(imagename);            % Read image 
       Z = imsubtract(bI,I);             % subtract back ground from 
image 
       picGray = rgb2gray(Z);            % Get gray scale image   
       picGrayAdj = imadjust(picGray);   % Adjust the gray scale image 
       picBw = im2bw(picGrayAdj);        % Convert to binary image 
       %picBw = imclearborder(picBw);    % Clear borders 
       picBw = medfilt2(picBw, [3,3]);   % Apply filter 
       %picBw = bwareaopen(picBw,5000);  % Area segmentation (A<5000) 
       figure (kk) 
       imshow(picBw) 
       % Find ones from Central Jet 
       filmheight = find(picBw(yInter:-1:1,xTrack1)==1); 
       % Save Film position 
       filmPos(kk) = filmheight(end)*factor1; 
   end 
       % Additional point for numZeros =2 
         if numZeros == 2; 
         filmPos(2)=filmPos(3)/2; 
         end 
   % Maximum jet height 
     [maxHeight,i] = max(filmPos(:)); 
     maxHeight 
     time_maxHeight = totalTime(i)/fps 
     % Plot figure 3 (Interface evolution) 
       totalTime_s = totalTime/fps; 
       g3 = figure (3); 
       plot(totalTime_s,filmPos,'-
or','LineWidth',1.0,'MarkerEdgeColor','r','Markersize',5); 
       legend('Experiment'); 
       title('Interface-capturing at axisymmetric axis'); 
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       xlabel([{'\itTime(s)'}],'FontSize',14,'FontName','Times New 
Roman'); 
       ylabel([{'\itdh(mm)'}],'Fontsize',14,'FontName','Times New 
Roman'); 
   
 
   
%% MEASURE DROP DIAMETER 
 
   analyzeImage = 100; % Select image number to analize 
   pfullname = pdir(analyzeImage+1-firstPic).name; 
   imagename = pfullname; 
   I = imread(imagename); 
   Z = imsubtract(bI,I);        
   Igray = rgb2gray(Z); 
   IgrayAdj = imadjust(Igray); 
   Ibw = im2bw(IgrayAdj); 
   Ibw = imclearborder(Ibw);   
   Ibw = medfilt2(Ibw, [3,3]); 
   Ibw = imfill(Ibw,'holes');    
   dropLoc = find(Ibw(:,xTrack1)==1);      
   s = 1; 
   i = 1; 
   secondDropPx = 1; 
   while s==1 & i<length(dropLoc); 
         cond = dropLoc(i+1)-dropLoc(i); 
         if cond==1; 
            s = 1; 
            secondDropPx = secondDropPx+1; 
         else 
               s = 0; 
         end 
         i = i+1; 
   end 
   secondDrop = secondDropPx*factor1 
   % Plot figure 4     
     figure (4); 
     subplot(1,2,1),imshow(I);subplot(1,2,2),imshow(Ibw); 
 

% Note:  
% If get error: Attempted to access filmheight(0); index must be a 
positive integer or logical. Error in ImageProcessing_picturesRev0 
(line 133) filmPos(kk) = filmheight(end)*factor1; 
% Solution: It will be needed to delete some pictures that give problem 
or suppress “clear borders”. 
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APENDIX B: BLOCK MESH AND BOUNDARY CONDITIONS - 

OPENFOAM 
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/*-------------------------*- C++ -*---------------------------*\ 
| =========                 |                                                 
| 
| \\      /  F ield         | OpenFOAM: The Open Source CFD 
Toolbox           | 
|  \\    /   O peration     | Version:  2.3.1                                 
| 
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      
| 
|    \\/     M anipulation  |                                                 
| 
\*-------------------------------------------------------------*/ 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       dictionary; 
    object      blockMeshDict; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
convertToMeters 1; 
halfAngle 2.5; 
radius 0.04; 
radHalfAngle    #calc "degToRad($halfAngle)"; 
y               #calc "$radius*sin($radHalfAngle)"; 
minY            #calc "-1.0*$y"; 
z               #calc "$radius*cos($radHalfAngle)"; 
minZ            #calc "-1.0*$z"; 
 
vertices 
( 
    (0.0    0.0   0.0)    //0 
    (0.04   0.0   0.0) 
    (0.04   0.0   0.0)    //2 
    (0.0    0.0   0.0) 
 
    (0.0    $minY   $z)   //4 
    (0.04   $minY   $z) 
    (0.04   $y      $z)   //6 
    (0.0    $y      $z) 
); 
 
blocks 
( 
    hex (0 1 2 3 4 5 6 7) (250 1 250) simpleGrading (1 1 1) 
); 
 
edges 
( 
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    arc 4 7 (0.0   0  $radius) 
    arc 5 6 (0.04  0  $radius) 
); 
 
boundary 
( 
    wallBottom 
    { 
        type wall; 
        faces 
        ( 
            (0 4 7 3) 
        ); 
    } 
    atmosphere 
    { 
        type patch; 
        faces 
        ( 
            (1 2 6 5) 
        ); 
    } 
    walls 
    { 
        type wall; 
        faces 
        ( 
            (4 5 6 7) 
            (3 2 1 0) 
        ); 
    } 
    side1 
    { 
        type wedge; 
        faces 
        ( 
            (0 1 5 4) 
        ); 
    } 
    side2 
    { 
        type wedge; 
        faces 
        ( 
            (7 6 2 3) 
        ); 
    } 
); 
 
// *********************************************************** // 
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\*-------------------------------------------------------------*/ 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       volScalarField; 
    location    "0"; 
    object      alpha1; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
dimensions      [0 0 0 0 0 0 0]; 
 
internalField   uniform 0; 
 
boundaryField 
{ 
    wallBottom 
    { 
        type           zeroGradient; 
    } 
 
    atmosphere 
    { 
        type            inletOutlet; 
        inletValue      uniform 0; 
        value           uniform 0; 
    } 
 
    walls 
    { 
        type           zeroGradient; 
    } 
 
    side1 
    { 
        type            wedge; 
    } 
    side2 
    { 
        type            wedge; 
    } 
} 
 
 
// *********************************************************** // 
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\*-------------------------------------------------------------*/ 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       volScalarField; 
    object      p_rgh; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
dimensions      [1 -1 -2 0 0 0 0]; 
 
internalField   uniform 0; 
 
boundaryField 
{ 
    wallBottom 
    { 
        type            zeroGradient; 
    } 
 
    atmosphere 
    { 
        type            totalPressure; 
        p0              uniform 0; 
        U               U; 
        phi             phi; 
        rho             rho; 
        psi             none; 
        gamma           1; 
        value           uniform 0; 
    } 
 
    walls 
    { 
        type            zeroGradient; 
    } 
 
    side1 
    { 
        type            wedge; 
    } 
    side2 
    { 
        type            wedge; 
    } 
} 
 
 
// *********************************************************** // 
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\*-------------------------------------------------------------*/ 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       volVectorField; 
    location    "0"; 
    object      U; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
dimensions      [0 1 -1 0 0 0 0]; 
 
internalField   uniform (0 0 0); 
 
boundaryField 
{ 
    wallBottom 
    { 
        type            fixedValue; 
        value           uniform (0 0 0); 
    } 
 
    atmosphere 
    { 
        type            pressureInletOutletVelocity; 
        value           uniform (0 0 0); 
    } 
 
    walls 
    { 
        type            fixedValue; 
        value           uniform (0 0 0); 
    } 
 
    side1 
    { 
        type            wedge; 
    } 
    side2 
    { 
        type            wedge; 
    } 
} 
 
 
// *********************************************************** // 
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