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ABSTRACT

Numerous spacecraft designs exist for exploring the surfaces of planetary bodies and each have

their own advantages and disadvantages. All successful landings have been made by stationary

landers or wheeled rovers that rely on one-time use mechanisms, such as crushable aluminum

honeycomb shock absorbers or inflatable airbags, to reduce shock loading to the spacecraft during

landing. The stationary lander is the simplest type of lander, but can only take data from one

location. Wheeled rovers add complexity in exchange for mobility to explore different locations.

Rovers are limited by the terrain they can traverse; rovers becoming stuck have ended missions. In

contrast to rovers and stationary landers, hoppers explore by making multiple launch and landing

hops. They have the advantage of being able to avoid terrain that would cause a rover to become

stuck. A hopper may require a landing shock absorber that can reliably operate multiple times in

harsh environments.

Most terrestrial shock absorbers use hydraulic fluid, allowing for compact and inexpensive devices.

Hydraulics have been used in space applications, but require thermal controls to maintain the

proper fluid viscosity. They also require dynamic seals which, in the case of a leak, can degrade

performance, shorten mission life, and contaminate sensitive science equipment. Leakage is also a

concern in pressurized systems in space because missions can take decades from when a system is

installed to when it actually is used.

To address these issues, a pressurized metal bellows shock absorber is proposed. This shock ab-

sorber could operate at nearly any expected spacecraft environment. Metal bellows are designed

to operate from cryogenic temperatures to several hundred degrees Celsius. A hermetically sealed

system eliminates the risks of a system with seals. Metal bellows are in common use for terres-

trial harsh environments and vacuum applications. Small metal bellows are used as dampers for
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pressure control systems with small displacements.

Models for the dynamics of this device are developed and presented here. Starting from the ideal

gas law, polytropic compression, and compressible flow through an orifice, differential equations

of motion and pressure are derived. These equations are nonlinear for the displacements under

consideration and are nondimensionalized to help provide insight. Equations for static equilibrium,

maximum initial displacement bounds, and estimated natural frequency are presented.

Metal bellows can operate as a passive damper with a simple orifice between the control volumes.

Optimization is performed for the nondimensional model of a passive damper. Because the re-

sponse is highly nonlinear, a method is developed to estimate a damping coefficient that is used as

the objective function for this optimization. Feasibility of this concept is investigated through an

example design problem using data from a metal bellows manufacturer as constraints. An optimal

mass configuration is found that meets the design constraints.

Performance can be improved over the passive system by adding control. The first control strategy

involves a check valve, such that the effective orifice size varies between compression and exten-

sion. The next control strategy replaces the orifice with a control valve. Varying the valve opening

and closing timing can achieve optimal performance. Finally, using the metal bellows as an ac-

tuator to help launch the hopper is investigated. While the valve is closed, the gas in the second

volume is compressed. Then the valve is opened the hopper is launched.

The results of this research show that a metal bellows device holds promise as a landing shock

absorber and launch actuator to extend the range of hopper spacecraft.
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CHAPTER 1: INTRODUCTION

1.1 Hopper Spacecraft

Exploring planetary bodies in our solar system is important for many reasons. Each body provides

it own laboratory to test theories on planet formation and biological evolution. Exploring small

bodies such as comets and asteroids allows us to travel back in time; geologic processes happen

much slower without the weathering found on Earth. Learning about these bodies can have prac-

tical benefits, the most important being how to redirect them if they are on a collision course with

Earth.

A hopper explores the surface of planetary bodies using a hopping motion, in contrast to traditional

rovers. A rover has the advantage of being able to accurately position the vehicle at points of

interest and move methodically over terrain. Roving works well if the location being explored is

relatively flat and free of obstacles and has sufficient gravity to give the rover wheels traction. In

contrast, a hopper is able to explore terrain a rover cannot. For example a hopper could scale large

cliffs or hop into a crater and then hop back out. Indeed, Mars’ Bonneville crater was not explored

because of risk to the rover [2]. A hopper does not rely solely on traction and is less likely to

get stuck in loose soil, which is what led to the end of mission for the MER-A Rover Spirit [3].

Finally, hopping is better than roving on bodies like asteroids, comets, dwarf planets, or small

moons, where the low gravity provides insufficient wheel traction.

Proposed mechanisms for hopping include springs, reaction wheels, and propellant or cold gas

thrusters. Some hopper are designed to crash land on very low gravity bodies and, once they

bounce and roll to a stop, reorient themselves to take measurements and prepare for the next hop.

Others use thrusters and soft land using shock absorbing landing gear. While preferable from
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a structural standpoint this requires longer thruster firing and thus consumes more fuel, limiting

mission life.

A pressurized metal bellows shock absorber is proposed as a way of increasing hopper range.

Metal bellows can be used as a shock absorber during landing as well as to initiate a hop. Be-

cause the metal bellows is hermetically sealed, no gas is lost during use. The shock absorber

could be designed to function as a spring with no damping, allowing the craft to travel by consec-

utive hops without using any fuel, terrain permitting, thereby reserving the thrusters for extreme

circumstances.

1.2 Shock Absorbers and Damping Mechanisms

Shock absorbers combine a spring and a damper to arrest motion. The spring allows the system

to oscillate around static equilibrium, while the damper converts the energy of motion to another

form of energy, such as heat and pressure. A typical hydraulic shock absorber is shown in Fig-

ure 1.1. Hydraulic shock absorbers are composed of piston submersed in hydraulic fluid. As the

device strokes, the fluid, typically assumed to be incompressible, is pushed between two reservoirs

through an orifice. The back pressure is a function of flow velocity, resulting in damping. Because

the piston rod displaces fluid as it enters the fluid reservoir, the fluid compresses the gas in the

bottom reservoir, which provides a pressure force. Hydraulic shock absorbers are used in terres-

trial applications such as airplane landing gears, automotive suspensions, and machine isolation

because of their compactness and reliability.

2



Figure 1.1: Hydraulic Shock Absorber Schematic [4]

Gas is typically not used as the working fluid in shock absorbers because the compressibility of

the gas requires a significant amount of motion before any damping occurs, which complicates

the dynamic analysis. Any gas remaining in the piston volume acts as a spring, sending energy

back into the system, causing oscillations. A passive gas damper can be designed to minimize

oscillation, but only for particular initial conditions. During a mission a hopper with thrusters will

expend propellant and lose mass, and it will impact at different speeds. An adaptive system is

required to minimize the bounce for these variable conditions.

For a hopper spacecraft, the compressibility of the gas can be exploited. For example, a valve could

replace the orifice and be kept closed while the pressure in the second volume increased. Then by

opening the valve the pressure on the bellows would launch the craft. By keeping the valve closed,

at impact, the metal bellows would act like a spring allowing consecutive hops.

3



1.3 Metal Bellows Shock Absorber

Metal bellows actuators are a standard product used when a hermetically sealed actuator is re-

quired, typically in a clean room or vacuum chamber. First, the bellows are formed from individual

stamped metal diaphragms (Figure 1.2a). Two diaphragms are welded together to make a convo-

lution (Figure 1.2b). Then, the convolutions are stacked and welded together to form a complete

bellows (Figure 1.2c). Finally, the bellows are welded into the actuator housing (Figure 1.2d).

(a) Diaphram (b) Convolution

(c) Bellows

(d) Bellows Actuator

Figure 1.2: Metal Bellows Actuator Construction

The proposed metal bellows shock absorber modifies a metal bellows actuator by adding a sec-

ond volume connected to the first through an orifice as shown in Figure 1.3. Metal bellows are

well suited to be used as landing shock absorbers. The extreme thermal environment that a lander
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would experience requires hydraulic shock absorbers to have active thermal management to main-

tain the required viscosity. Spacecraft thermal management requires power and mass allocations;

metal bellows would not require active thermal management, so would reduce power and mass

of the system. Furthermore, dynamic seals are problematic in the electrostatically charged dusty

environments found on most small planetary bodies. The dust is very abrasive and tends to stick

to surfaces causing seals to degrade and leak. Subsystems on spacecraft can be left unused for

more than a decade waiting for launch and during transit, requiring very small leak rates to ensure

sufficient gas remains when needed. In addition, seals can stick and fail to move after sitting for

long durations in harsh conditions. In contrast, hermetically sealed metal bellows eliminate these

problems.

(a) Extended (b) Retracted

Figure 1.3: Metal Bellows Shock Absorber
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1.4 Motivation

The motivation of this research is to investigate the feasibility of using metal bellows to extend

the range of hopper spacecraft. As a first effort in this investigation, the hopper is simplified as a

single degree of freedom system with the mass directly coupled to the shock absorber constrained

to vertical movement. On a real spacecraft the metal bellows would most likely be a component

in a landing gear, but the methods developed here should prove feasibility and provide a guide

regardless of the particular implementation.

The analysis starts by calculating the effective area for a metal bellows and comparing the effective

area to what the metal bellows industry uses. The differential equations of motion and pressure are

derived and normalized. Equations for static equilibrium solution, maximum initial displacement

bounds, and estimated natural frequency are presented. Then the input parameters to the nondi-

mensional model are varied around a set of initial parameters to see how the response changes.

The various responses provides considerable insight into the system with the acknowledgment that

the system is highly nonlinear and variations around one location are not assured to be general. A

method is developed to estimate a linear damping ratio that is used as the objective function for

optimization.

Metal bellows can operate as a passive damper with a simple orifice between the control volumes

as shown in Figure 1.4. Optimization is performed for the nondimensional model of a passive

damper. Feasibility of this concept is investigated through an example design problem using data

from a metal bellows manufacturer as constraints. An optimal configuration is found that meets

the design constraints.
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Figure 1.4: Metal Bellows Shock Absorber Schematic

Performance can be improved over the passive system by adding controls. The first control strategy

is adding a check valve to control the effective orifice size for the compression and extension stroke.

The next control strategy replaces the orifice with a control valve and by timing the opening and

closing of the valve, optimal performance can be achieved. Finally, the concept of compressing

the gas in the second volume is proposed so that, in combination with the control valve, the metal

bellows can be used to help launch the hopper.

1.5 Goals for Current Research

The primary goal of this research is to prove the feasibility of using pressurized metal bellows

shock absorber for a hopper spacecraft. It would act as a shock absorber on landing and can

initiate hops without using propellant, which could give a hopper essentially unlimited range. This
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device would be hermetically sealed and capable of operating in harsh environmental conditions

for extended mission durations without leaking or sticking. Active controls could be implemented

to provide the shock absorption required for landing on low gravity bodies.

The secondary goal is to provide a future hopper spacecraft designer with the theoretical back-

ground, analysis, and tools required to design this device. The sensitivity of the response to the

variation of input parameters is discussed, optimization techniques are presented, and control sys-

tems are proposed and evaluated. This analysis should give a designer a firm base from which to

move forward with implementation.
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CHAPTER 2: LITERATURE REVIEW

There is a large volume of research on shock absorbers and damping mechanisms that seems to

cluster by configuration. The first configuration is isolating a vibrating mass from the base, such as

for rotating machine supports. Another configuration is isolating a mass from base excitation, such

as for vehicle suspensions or building seismic isolation. Finally, there are impact absorbing cases,

such as airplane landing gear designs. The majority of the research I found was for the first two

cases which provided excellent examples for the model development and nondimensionalization

methodology used in this analysis. The impact absorbing cases either used hydraulics which is

not relevant here or those that did used pneumatic systems did not describe the models or used

linearization for small displacements. In addition, lander and hopper spacecraft were investigated

to evaluate landing mechanisms. While not immediately helpful in developing a model, they were

useful to determine the environmental and mission parameters such as gravity, vehicle mass, and

impact velocities for the target planetary bodies. Finally, research into the metal bellows industry

was conducted to see how these devices are typically designed and fabricated.

2.1 Planetary Landers and Hoppers

Many spacecraft have landed successfully. Several hopper spacecrafts have been proposed, and

some have even launched, but none have been been successfully landed. A summary of the plane-

tary lander mission data is shown in Table 2.1.
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2.1.1 Apollo

Since the Apollo Lunar Module (LM) only landed once during the mission it used a crushable Alu-

minum honeycomb impact absorber as shown in Figure 2.1 [5,6]. Because it takes a constant force

to crush the honeycomb through its entire stroke, the force displacement curve is a rectangular

profile and it absorbs the maximum energy for a given stroke and maximum allowable deceler-

ation. The landing data estimated that 60% of the landing energy was absorbed by the footpads

compressing the regolith.

Figure 2.1: Apollo Lunar Module Landing Gear Primary Strut. From [7]

2.1.2 PHOBOS

In 1988 and 1989 the former Soviet Union launched the two PHOBOS missions to study Mars and

it’s moons. PHOBOS 2 had a hopper named PROP-F to explore Mars’ moon Phobos [8]. The
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hopper is shown in Figure 2.2. The hopper was designed to launch itself in a particular direction

using a compressed spring, then crash land and roll to a stop. Arms would extend to orient the

hopper on its foot. Unfortunately the mission failed before the hopper could be deployed.

Figure 2.2: PROP-F. From [9]

2.1.3 Hayabusa

Japan’s Space Agency (JAXA) launched the Hayabusa mission to return a sample from the Near

Earth Asteroid 25143 Itokawa in 2003 [10]. This mission contained a minilander named MIN-

ERVA as seen in Figure 2.3. MINERVA was designed to hop over the surface of 25143 Itokawa

by using two reaction wheels. One would rotate the vehicle to the desired direction and the second

would cause the vehicle to rotate around its base launching it off the surface onto a ballistic trajec-

tory. Unfortunately, this part of the mission failed when the hopper was released from the orbiting

spacecraft with the incorrect velocity. Instead, it never made it to the surface of the asteroid and

became solar satellite.
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Figure 2.3: MINERVA. From [10]

2.1.4 Rosetta

The Rosetta mission launched in 2004. Ten years later it was inserted into orbit of the comet 67P/

Churyumov. In November of 2014, the Philae lander as shown in Figure 2.4 undocked from the

Rosetta orbiter on a ballistic trajectory with the comet [11]. To land in the low gravity the lander

was equipped with ice screws that would automatically screw into the surface upon impact. There

was a damper between the main body of the lander and the landing feet, to decouple the rotation

of the landing feet from the body. The lander also had thrusters and harpoons to attempt to force

the lander onto the surface. In the end, the thrusters, harpoon, and ice screws failed to keep the

lander on the surface. Philae inadvertently became the first hopper by bouncing at an estimated

4× 10−1 ms−1 away from the surface. This first bounce lasted for 1 hour and 50 minutes and
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covered approximately 1 km. During this bounce the data suggests that the lander hit the rim of a

crater before coming to rest near a cliff. There has only been intermittent contact since the landing.

Figure 2.4: Philae Lander. From [12]

2.1.5 Talaris Planetary Hopper

Draper Laboratory is working on designing a Lunar hopper for the Google X-prize [13, 14]. Their

design is using cold gas thrusters to perform the hopping maneuver. This type of system relies on

expendable fuel which limits the range their hopper can explore. This type of hopper could benefit

from using the proposed metal bellows shock absorber by allowing a higher landing speed and

providing assistance initiating hops, thereby reducing fuel use.
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Table 2.1: Planetary Lander Mission Data

Lander Mass (kg) Landing

Velocity

(ms−1)

Body Surface

Gravity

(ms−2)

Escape

Velocity

(ms−1)

Lunar Module 7000 3 Moon 1.62 2380

PROP-F 45 2 Phobos 5.7× 10−3 11.39

MINERVA 5.9× 10−1 5× 10−2 25143 Itokawa 1× 10−4 2× 10−1

Philae 100 1 Comet 67P 1× 10−3 1

2.2 Shock Absorbers and Dampers

2.2.1 Hydraulic Shock Absorbers

The majority of research on hydraulic shock absorbers stems from their widespread use in ter-

restrial applications. Duym et al. compare analytical and empirical models of hydraulics shock

absorbers [15]. Perhaps the closest application to the current project in space applications is Wang

et at. proposing adaptive controls of magnetorheological hydraulics dampers to reduce structural

vibration [16].

2.2.2 Pneumatic Cylinders

Wang et al. model the dynamics of a double acting pneumatic cylinder with pneumatic cushions

[17,18]. Pneumatic cushions work by restricting the exit orifice area when the piston nears the end

of stroke, thereby increasing back pressure, allowing the piston to slowly reach the end of stroke.
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These types of cylinders are adjusted once installed for the particular load and impact speed by

adjusting an exhaust valve. Maré et al. improves on this model by using ISO standards for flow

through the orifice, not assuming an ideal gas, and and taking seal friction into account [19].

However, they were unable to predict seal friction in experiments because it changes as the seals

degrade over time.

2.2.3 Linear Models for Gas Spring

Gas springs can also be used for vibration isolation. Most research concerning vibration isolation

assumes small displacements in relation to the volume which allows the equations to be linearized

for frequency analysis [20, 21]. Others investigate flow restrictions other than orifices such as

capillary tubes and porous plugs [22, 23]. These papers provided context on the ways researchers

analyze gas devices such as spring/dampers.

2.2.4 Nonlinear Models for Gas Spring

Andersen gives the equation for the nonlinear motion of a pneumatic spring mass system [1]; a

full derivation follows. Starting with the diagram of the spring in Figure 2.5 and with the variables

defined as shown in Table 2.2, the equation of motion is:

m
d2x

dt2
= (P3 − P2)Ap +mg (2.1)
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Figure 2.5: Nonlinear Pneumatic Mass/Spring. Reproduced from [1]

Table 2.2: Nonlinear Gas Spring Model Parameters

Variable Parameter Name

x Position

m Mass

L Gas Column Length

g Gravity

Ap Area of Diaphragm

P3 Ambient Pressure

P2 Cylinder Pressure

V2 Cylinder Volume
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The polytropic equation describes the pressure-volume relation:

P2 = P20

(

V20

V2

)n

(2.2)

with an initial volume of V20 = ApL and initial pressure P20. The system is in equilibrium when

P20 = P3 +mg/Ap (2.3)

The volume as a function of displacement x is

V2 = Ap(L− x) (2.4)

Substituting Equations 2.2, 2.3, and 2.4 into Equation 2.1 yields

d2x

dt2
=

Ap

m

[

P20 −
mg

Ap

− P20

(

Ap(L− x))

ApL

)

−n
]

+ g

d2x

dt2
=

ApP20

m

[

1−
(

L− x

L

)

−n
]

− mg

Ap

Ap

m
+ g

d2x

dt2
= −ApP20

m

[

(

1− x

L

)

−n

− 1

]

(2.5)

Andersen defines a linear pneumatic spring constant

kp =
nP20(Ap)

2

V20

(2.6)
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Which can be rearranged and combined with the initial volume V20 = ApL:

ApP20 =
kpL

n
(2.7)

Substituting Equation 2.7 into Equation 2.5 yields

d2x

dt2
= −kpL

mn

[

(

1− x

L

)

−n

− 1

]

(2.8)

It is convenient to nondimensionalize the displacement using the length

d2
(

x
L

)

dt2
= − kp

mn

[

(

1− x

L

)

−n

− 1

]

(2.9)

Finally substitute η = x
L

for the per unit stroke and τ = ωnt where ωn =
√

kp
m

.

d2η

dτ 2
= − 1

n

[

(1− η)−n − 1
]

(2.10)

Figure 2.6 show the phase portrait of Equation 2.10 for a maximum initial velocity of 0.62. The

phase portrait is a conveient way to display the response and mirrors that in the text to fit the con-

vention used in the rest of this paper. Negative position is considered compression. The dashed

vertical line represents the equilibrium position, to the left of the line, the system is being com-

pressed; to the right of the line, the system is being extended. Note the two different curves shapes

and that less displacement is required to stop the mass in compression compared to extension.
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Figure 2.6: Analytical Phase Portrait Nonlinear Spring. Reproduced from [1]

2.2.5 Nondimensionalization of Damped Pneumatic Shock Isolators

Hundal has the most complete work on the analysis of pneumatic shock absorbers and vibration

isolators [24–28]. These studies model the dynamics of damped pneumatic system with various

configurations and base inputs. Although none pertain to the system under investigation here, they

provide a guide for developing the nondimensional differential equations of motion and pressure.

2.2.6 Metal Bellows

One potential problem using long lengths of metal bellows under internal pressure is they can

become unstable. Ooka et al. present an analysis showing how constrained metal bellows can
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squirm under internal pressures [29]. Squirm is an instability similar to column buckling when a

member is in compression. Due to this possibility, metal bellows manufactures configure metal

bellows actuators such that the pressure is external to the bellows, eliminating the possibility of

buckling in a similar way that a member in tension will not undergo Euler buckling [30, 31] .

2.2.7 Adaptive Pneumatic Impact Absorber

Mikułowski et al. have modeled and tested adaptive pneumatic impact absorbers [32, 33]. These

devices consist of a piston with a piezoelectric valve built into the piston head that allows switching

of the valve on the order of milliseconds. They did not offer any insight into how the analytical

models were created. Instead, they showed the results of experiments and how well they matched

with predictions. This research seems to be the most relevant and recent work on using pneumatics

for impact absorption. It also shows the use of a fast switching valve as proposed in this research

is practical.
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CHAPTER 3: METHODOLOGY

Figure 3.1 shows the system under consideration. It consists of a mass on top of the metal bellows

shock absorber. Control volume 2 (CV2) has a fixed volume while the volume of control volume

1 (CV1) is a function of bellows position. The top of the bellows is connected to the landing pad

with a rod. The parameters are described in Table 3.1 and the nomenclature is similar to Hundal

for easy cross reference.

Figure 3.1: Pressurized Metal Bellows Shock Absorber
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Table 3.1: Metal Bellows Shock Absorber Parameters

Variable Parameter Name

x Mass Position

u Landing Pad Position

ls Bellows Stroke

sc Cylinder Area

s Bellows Effective Area

pi control volume i Pressure

vi control volume i Volume

a Orifice Area

m Mass

g Gravity

k Bellows Spring Constant

R Specific Gas Constant

n Heat Capacity Ratio

C0 Discharge Coefficient

θ Temperature

Subscript

i, 1, 2 control volume Number

u, d upstream,downstream control volume

0 Initial Value
′ Time derivative

3.1 Metal Bellow Effective Area

Figure 3.2 shows a schematic of the Metal Bellows. To calculate the force on the bellows the

effective area s of the bellows is required. The effective area is the area such that the force on

the bellows will equal the pressure difference times this area, which is not the same as the outside

dimension of the bellows.

Figure 3.2 is a typical diagram given by bellows manufacturers. Several manufacturers indicate

that the effective area is based on the average of the inside radius ri and outside radius ro of the

bellows [30, 31]. They use various justifications, such as pressure balance, but none are rigorous.

22



Figure 3.2: Metal Bellows Schematic

A better approach would be to calculate how the volume of the bellows changes with a change

in length and use this change in volume to calculate pressure volume work. Figure 3.3 shows the

dimensions for one diaphragm of an edge welded V shaped bellows. The volume of this section

can be found from the volume integral. Note that this analysis is only valid for a bellows with

diaphragms of this shape. There are many different diaphragm shapes and they would need to be

treated independently.

The radius, corresponding area, and volume of the diaphragm cross section as a function of z are:

r = ro

(

1 +
z

h

(

ri
r0

− 1

))

(3.1)
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Figure 3.3: Volume of Diaphragm

A = π

(

ro

(

1 +
z

h

(

ri
r0

− 1

)))2

(3.2)

V =

∫ h

0

πr2o

(

1 +
z

h

(

ri
r0

− 1

))2

dz

V =
1

3
πh
(

r2o + rori + r2i
)

(3.3)

Equating pressure volume work with force acting through a change in height reveals an expression

for the effective area.

PdV = Fdh

PdV = Psdh

s =
dV

dh
(3.4)

s =
dV

dh
=

1

3
π
(

r2o + rori + r2i
)

(3.5)
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However, the manufacturers provide an effective area as

s = π

(

ro + ri
2

)2

=
1

4
π
(

r2o + 2r0ri + r2i
)

(3.6)

These are clearly not equivalent. The results can be interpreted as the average of three terms r2o ,

rori, and r2i . The manufacturers’ equation includes the rori term twice. Letting C = ro
ri

%Error =
1

3
π (C2 + C + 1)− 1

4
π (C2 + 2C + 1)

1

3
π (C2 + C + 1)

(3.7)

Figure 3.4 shows the error as a function of C and asymptotes at 25% at extreme values of C.

Table 3.2 shows values for ID and OD of bellows from a vendors catalog. The manufacturer’s

effective area and the effective area derived above are listed. The smallest bellows has an 8% error

in the value. This analysis shows that care must be taken when calculating the effective area.
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Table 3.2: Manufacturers’ s vs Calculated s

ro ri Manufactures’ s Calculated s % Difference

mm mm cm2 cm2

4.75 1.6 0.316 0.343 −8%
6.35 2.4 0.60 0.642 −7%
9.5 3.2 1.26 1.371 −8%
13.1 7.0 3.16 3.271 −3%
19.05 12.3 7.68 7.838 −2%
20.7 9.5 7.10 7.492 −5%
24 17.65 13.61 13.73 −1%

Figure 3.4: Volume Calculation Error
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3.2 Metal Bellows Shock Absorber

The analysis on the dynamics of the metal bellows shock absorber follows the method used by

Hundal [24,27,28]. The bellows actuator is shown in Figure 3.5a. After nondimensionalization, it

is convenient to have an initial total volume of both control volumes equal to unity. The bellows is

thus replaced with a piston with an area the same as the effective area of the bellows s and a spring

with stiffness k as shown in Figure 3.5b.

(a) Initial (b) Simplified

Figure 3.5: Metal Bellows Shock Absorber Schematic

It is assumed that there is little gas between the convolutions when the bellows is compressed. To
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find the length l, we equate the volumes of the initial and simplified versions.

vtotal initial = vtotal simplified

v10 + v2 = scls + v2 = sl

l =
v2 + scls

s
(3.8)

However, this simplification creates a problem: in the initial schematic when the bellows reaches

the physical end of stroke at ls = 0, there will still be gas between the cylinder wall and bellows

convolutions. In the simplified schematic the piston can displace all of the gas in CV1, which can

never occur with the bellows. This will be addressed in Section 3.2.10.

3.2.1 Equation of Motion

The equation of motion for the mass position depends on whether the shock absorber landing pad

is in contact with the surface.

mx′′ =















−mg no surface contact

p1s− kd−mg surface contact

(3.9)

This piecewise function can alternately be expressed using the Heavyside function:

mx′′ = H (x ≤ 0) (p1s− kd)−mg (3.10)
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Where d = x − u is the relative displacement between the mass and the landing pad. In other

words, the pressure and spring force of the bellows will only put a force on the mass when the foot

is in contact with the ground.

Note that since the hopper is envisioned for small planetary bodies with no atmosphere, no external

pressure is included. If there were an atmosphere, the force due to the pressure would need to be

added to this equation. The sign of the kd term is also somewhat arbitrary. From communicating

with a bellows manufacturers, the free length of the bellows can be set anywhere from compressed

to extended [34]. In this analysis, it is assumed to be in the free state in the compressed configu-

ration. During ground contact as x becomes negative and u = 0, d becomes negative and the −kd

term is positive, indicating an upward force on the mass. If the free state was changed so the free

length was in the extended configuration the sign on the kd term would change to a positive.

3.2.2 Volume

The volumes of the control volumes are given as:

v1 = v10 + sd (3.11)

v2 = sl − v10 (3.12)

3.2.3 Ideal Gas Law

The gas is assumed to be ideal.

mi =
pivi
Rθi

(3.13)
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3.2.4 Adiabatic Compression

The process is assumed to be adiabatic which should hold if the compression is relatively quick.

θi
θ0

=

(

pi
p0

)
n−1

n

θi = θ0p
n−1

n

i p
1−n
n

0 (3.14)

3.2.5 Conservation of mass

The conservation of mass between the two control volumes is

m′

1 = −m′

2 (3.15)

3.2.6 Mass flow through an orifice

Mass flow of a compressible gas through an orifice is given by [35]

m′

d =
C0aC2pu√

Rθu
(3.16)

The mass flow depends upon the pressure ratios of the upstream to downstream pressure. Which

side is considered upstream and downstream depends upon which pressure is higher. If this ratio

is higher than a critical ratio, the flow velocity is sonic and the flow is choked. If it is less than

the critical ratio the velocity is sub-sonic and the flow is non-choked. Determining if the flow is

choked or non-choked is handled by the parameter C2 as follows:
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C2 =



















√

n

(n+1

2 )
n+1
n−1

choked if pu
pd

>
(

n+1

2

)
n

n−1

(

pd
pu

)
1

n

√

2n
n−1

(

1− pd
pu

)
n−1

n

non-choked if pu
pd

<
(

n+1

2

)
n

n−1

The goal now is to derive equations for the mass flows for each control volume in terms of the

initial values and instantaneous values of pressure. These equations will be used to derive the

differential equations for pressure.

First, take the time derivatives of Equations 3.13, 3.14, 3.11, and 3.12.

m′

i = R−1θ−1

i

(

p′ivi + piv
′

i − piviθ
′

iθ
−1

i

)

(3.17)

θ′i = θ0p
′

i

(

n− 1

n

)

p
n−1

n

0 p
−1

n

i (3.18)

v′1 = sd′ (3.19)

v′2 = 0 (3.20)

Substitute Equations 3.14 and 3.18 into Equation 3.17.

m′

i = R−1θ−1

0 p
1−n
n

i p
n−1

n

0

(

p′ivi + piv
′

i − piviθ0p
′

i

(

n− 1

n

)

p
n−1

n

0 p
−1

n

i θ−1

0 p
n−1

n

0 p
1−n
n

i

)

= R−1θ−1

0 p
1−n
n

i p
n−1

n

0

(

p′ivi + piv
′

i − vip
′

i

(

n− 1

n

))

= R−1θ−1

0 p
1−n
n

i p
n−1

n

0

(

piv
′

i + vip
′

in
−1
)

= R−1θ−1

0 p
n−1

n

0

(

p
1−n+n

n

i v′i + p
1−n
n

i vip
′

in
−1

)
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m′

i = R−1θ−1

0 p
n−1

n

0 n−1p
1

n

i

(

nv′i + vip
′

ip
−1

i

)

(3.21)

For i=1 and substituting in Equation 3.11 and 3.19

m′

1 = R−1θ−1

0 p
n−1

n

0 n−1p
1

n

1

(

nsd′ + (v10 + sd) p′1p
−1

1

)

(3.22)

For i=2 and substituting in Equation 3.12 and 3.20

m′

2 = R−1θ−1

0 p
n−1

n

0 n−1v2p
′

2p
1−n
n

2 (3.23)

3.2.7 Nondimensional Parameters

Before going forward with further simplification the equations will be cast in nondimensional form

using the following definitions where x′

0 and p0 are arbitrary scaling factors that can be chosen for

convenience.
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Displacements

X =
x

l
U =

u

l
D =

d

l

Velocities

Ẋ =
x′

x′

0

U̇ =
u′

x′

0

Ḋ =
d′

x′

0

Accelerations

Ẍ =
x′′l

x′2
0

Ü =
u′′l

x′2
0

D̈ =
d′′l

x′2
0

Volumes

V10 =
v10
sl

V2 =
v2
sl

= 1− V10

Pressures

Pi =
pi
p0

Ṗi =
ṗil

p0x′

0

Time Gravity Bellows Ratio

T =
tx′

0

l
G =

gl

x′2
0

B =
s

sc

Mass Stiffness Area Ratio

M =
mx′2

0

p0sl
K =

kl

p0s
S =

naC0

√
Rθ0

sx′

0

3.2.8 Nondimensional Equation of Motion

For the nondimensional equation of motion of the position of the mass, begin with Equation 3.10,

substitute in nondimensional terms, and simplify:
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Mp0slx
′−2

0 X ′′x′2

0 l
−1 = H (Xl ≤ 0)

(

P1p0s−Kp0sl
−1Dl

)

−Mp0slx
′−2

0 Gx′2

0 l
−1

MX ′′ = H (X ≤ 0) (P1 −KD)−MG (3.24)

3.2.9 Nondimensional Mass Flow

For the nondimensional equations for mass flow, begin with Equation 3.22, 3.23, 3.16 and 3.15,

substitute in nondimensional terms, and simplify:

m′

1 = R−1θ−1

0 p
n−1

n

0 n−1p
1

n

0 P
1

n

1

(

nsḊx′

0 + (V10sl + sDl) p0vel
−1Ṗ1p

−1

0 P−1

1

)

= R−1θ−1

0 sx′

0p0n
−1P

1

n

1

(

nḊ + (V10 +D) Ṗ1P
−1

1

)

m′

1 = aC0p0S
−1R

−1

2 θ
−1

2

0 P
1−n
n

1

(

nḊP1 + (V10 +D) Ṗ1

)

(3.25)

m′

2 = R−1θ−1

0 p
n−1

n

0 n−1V2slṖ2p0x
′

0l
−1P

1−n
n

2 p
1−n
n

0

= R−1θ−1

0 p0n
−1V2sṖ2x

′

0P
1−n
n

2

m′

2 = aC0p0S
−1R

−1

2 θ
−1

2

0 Ṗ2P
1−n
n

2 V2 (3.26)

m′

d = aC0C2R
−1

2 Pup0

(

θ0p
1−n
n

0 p
n−1

n
u

)

−1

2

= aC0C2R
−1

2 θ
−1

2

0 Pup0p
n−1

2n

0 p
1−n
2n

0 P
1−n
2n

u

m′

d = aC0C2R
−1

2 θ
−1

2

0 p0P
1+n
2n

u (3.27)

m′

u = −aC0C2R
−1

2 θ
−1

2

0 p0P
1+n
2n

u (3.28)

Now nondimensional equations for mass flow for CV1 and 2 have been derived from the time

derivatives of the Ideal Gas Law, Adiabatic Compression, and Volume equations. In addition, a

nondimensional equation represents the mass flow through an orifice. The next step is setting the
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mass flow equations from the time derivatives and from the flow through an orifice equal to each

other based on gas flow direction. There are two cases to consider for the flow between control

volumes. Consider first P1 > P2. In this case, gas will flow from CV1 to CV2, so Pu = P1 and

Pd = P2 (with u = 1 and d = 2).

Equating the two expressions for mass flow in CV1 (Equations 3.25 and 3.28) yields:

m′

1 = m′

1

aC0p0S
−1R

−1

2 θ
−1

2

0 P
1−n
n

1

(

nḊP1 + (V10 +D) Ṗ1

)

= −aC0C2R
−1

2 θ
−1

2

0 p0P
1+n
2n

1

nḊP1 + (V10 +D) Ṗ1 = −C2SP
1+n
2n

1 P
n−1

n

1

nḊP1 + (V10 +D) Ṗ1 = −C2SP
3n−1

2n

1 (3.29)

Similarly for the mass flow in CV2 (Equations 3.26 and 3.27) yields:

m′

2 = m′

2

aC0p0S
−1R

−1

2 θ
−1

2

0 Ṗ2P
1−n
n

2 V2 = aC0C2R
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2

0 p0P
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1

S−1Ṗ2P
1−n
n

2 V2 = C2P
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2n

1
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2n

1 P
n−1

n

2 (3.30)

Consider now the case P1 < P2. In this case gas, will flow from CV2 to CV1 so Pu = P2 and

Pd = P1 (with u = 2 and d = 1). Again begin by equating the two expressions for mass flow in

CV2 (Equations 3.25 and 3.27) yields:

m′

1 = m′

1

aC0p0S
−1R

−1

2 θ
−1

2

0 P
1−n
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1
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2n

2
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nḊP1 + (V10 +D) Ṗ1 = SC2P
n−1

n

1 P
1+n
2n

2 (3.31)

Similarly for the mass flow in CV2 (Equations 3.26 and 3.28) yields:

m′

2 = m′

2

aC0p0S
−1R

−1

2 θ
−1

2

0 Ṗ2P
1−n
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2 V2 = −aC0C2R
−1
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2

0 p0P
1+n
2n

2
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2 V2 = −C2P
1+n
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2

Ṗ2V2 = −C2SP
1+n
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2 P
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n

2

Ṗ2V2 = −C2SP
1+n+2n−2

2n

2

Ṗ2V2 = −C2SP
3n−1

2n

2 (3.32)

In summary, equations 3.24, 3.29, 3.30, 3.31, and 3.32 are the nondimensional differential equa-

tions for this system.

3.2.10 Boundary Conditions

For the numerical analysis of this problem, the base motion needs to be constrained. When the

system is not in contact with the surface, the relative velocity Ḋ = 0. When the system is in

contact with the ground the velocity U̇ = 0. When the system reaches the stroke limit the top

of the bellows will impact the housing and the device will ”bottom out” as shown in Figure 3.6.

To determine when the shock absorber will bottom out the minimum value of D needs to be

determined.
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Figure 3.6: Metal Bellows Shock Absorber Bottoming Out

Referring to Figure 3.1, the bellows will bottom out when d < −ls. In nondimensional terms, this

inequality is

D < − ls
l

< − sls
v2 + scls

< − Bscls
v2 + scls

< − Bv10
v2 + v10

< − BV10

V2 + V10

D < −BV10 (3.33)
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From this point on the terms bottoming out and stroke limit will refer to the situation described

in Equation 3.33. Therefore, when D < −BV10, a spring of stiffness Kb will come into effect to

simulate an impact of the bellows bottoming out. Adding this spring to the equation of motion

3.24 yields:

MX ′′ = H (X ≤ 0) (P1 −KD)−H (D < −BV10)Kb (BV10 +D)−MG (3.34)

3.3 Initial Design Equations

The differential equations are nonlinear, and in general need to be solved numerically to determine

the response. Estimating or providing bounds to the response before running the numerical analysis

can help determine parameters to make the numerical analysis more efficient and stable. These

equations are also required to select paramter values when implementing an active control system.

3.3.1 Static Equilibrium Solution

The static equilibrium solution is of interest to determine at what position the system will eventu-

ally come to rest. Starting with Equation 3.34, sum the forces acting on the mass and require them

to balance.

0 = P1 −KD −MG (3.35)

Note that P1 is a function of D. At steady state the pressure in both control volumes will be equal.

Using the polytropic Equation 2.2 for the total volume of both control volumes

P1 = P0

(

sl

s (l + d)

)n

= P0

(

1

(1 +D)

)n

(3.36)
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Substituting Equation 3.36 into Equation 3.35, the balance of forces is now

0 = P0

(

1

(1 +D)

)n

−KD −MG (3.37)

Equation 3.37 can be solved for D using a nonlinear solver such as MATLAB’s fzero. One interest-

ing case can be solved analytically. If it is assumed P0 = K = MG then Equation 3.37 simplifies

to

0 =

(

1

(1 +D)

)n

−D − 1

or

D + 1 =

(

1

(1 +D)

)n

(3.38)

For this special case, the equation only holds for D = 0, which provides a convenient check

for the numerical analysis. The static equilibrium equation provides a tool for the selection of

parameters. If there is a desired value of D for the static equilibrium (e.g., coming to rest bottomed

out) then D = −BV10 can be substituted into Equation 3.37, which provides a constraint on the

other parameters. Since most likely M and G will be given, P0 and K can be calculated for the

desired value of D.

3.3.2 Maximum Initial Displacement Bounds

The maximum initial displacement of the system, where Ḋ = 0 on the first cycle, is nonlinear

with no general analytical solution. However, the bounds can be found for two special cases, the

upper bound, when the orifice is closed (a = 0), and the lower bound, when the orifice is the

same as the effective area (a = s). The upper bound and only considers CV1 and will result in a

smaller displacement. The lower bound considers both control volumes and will result in a larger

39



displacement. The real stroke will be between these upper and lower bounds and depends on the

value of S.

To find these bounds work/energy is used. The change in kinetic energy, gravitational potential

energy, and spring potential energy from the initial conditions to the displacement that brings the

system to rest is set equal to the work required to compress the gas. First, the equations for energy

and work are derived and nondimensionalized. Change in kinetic energy from x′

0 to 0

∆KE =
1

2
mx′2

0 =
1

2

Mp0sl

x′2
0

(

Ẋ0x
′

0

)2

∆KE = (p0sl)
1

2
MẊ0

2

(3.39)

Change in potential energy from gravity

∆PEg = mg∆h = mg (x0 − d) =
Mp0sl

x′2
0

Gx′2
0

l
(X0l −Dl)

∆PEg = (p0sl)MG (X0 −D) (3.40)

The work compressing the gas from the initial volume (v0) to the final volume (vf ) is

Wc =

∫ vf

v0

pdv

Using polytropic compression Equation 2.2, substituting in nondimensional terms, and simplifying

yields:

p = p10v
n
0 v

−n

Wc =

∫ vf

v0

p10v
n
0 v

−ndv

=
p10v

n
0 v

1−n

1− n

∣

∣

∣

∣

vf

v0
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=
p10v

n
0

1− n

(

v1−n
f − v1−n

0

)

=
P10p0 (V0sl)

n

1− n

(

(Vfsl)
1−n − (V0sl)

1−n
)

=
P10p0V

n
0 (sl)n (sl)1−n

1− n

(

V 1−n
f − V 1−n

0

)

Wc = (p0sl)
P10V

n
0

1− n

(

V 1−n
f − V 1−n

0

)

(3.41)

Next, the nondimensional volumes for two cases are determined. When the orifice is closed the

initial volume is the volume of CV1 and when the orifice is fully opened the initial volume is the

volume of both control volumes. The final volume is the initial volumes plus the displacement D.

This can be written as

V0 =















V10 if a = 0

1 if a = s

Vf =















V10 +D if a = 0

1 +D if a = s

(3.42)

Substituting Equation 3.42 into Equation 3.41 yields:

Wc = (p0sl)
P10

1− n















(

(1 +D)1−n − 1
)

if a = 0

V n
10

(

(V10 +D)1−n − V 1−n
10

)

if a = s

(3.43)

Next, consider the change in the energy stored in the bellows spring. In this case, the free length is
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when the bellows is fully compressed.

∆PEsp =
1

2
k∆d2 =

Kp10s

2l
D2l2

∆PEsp = (p10sl)
1

2
KD2 (3.44)

Finally, the nonlinear static equilibrium equation in terms of D can be established. Note each term

has a p10sl term that can be eliminated from the equation leaving it nondimensional. The term

for potential energy in the spring is negative because as the shock absorber displacement increases

energy is stored in the spring. Equation 3.45 can be solved for D using numerical methods.

∆KE +∆PEg(D)−∆PEsp(D) +Wc(D) = 0 (3.45)

3.3.3 Estimated Natural Frequency

The numerical integration of the nonlinear differential equations needs to occur over a finite time.

If this time is too long and includes when the system has a small response, numerical errors will

start accumulating and the time to run the analysis will increase. It is therefore preferable to

integrate for a certain number of cycles; to do so, however requires an estimate of the natural

frequency. Start with the equation for natural frequency of a spring mass system, substitute in the

linear pneumatic spring constant given by Equation 2.6, substitute in nondimensional terms, and

simplify.

fn =

√

k

m

1

t
=

1

2π

√

kp + k

m
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=
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(3.46)

3.4 Control Concepts

Passive damping may be sufficient for some applications; however, several control concepts can

provide additional performance benefits and prompt an interesting analysis.

3.4.1 Check Valve and Orifice Concept

The first control system is to add a check valve of area ac between the control volumes as shown

in Figure 3.7. The idea is that restricting the flow during expansion will reduce the bounce by

lowering the pressure in CV1. The fixed orifice will allow the pressure to eventually stabilize

between the control volumes, allowing the system to return to static equilibrium. To model the

check valve, a non-dimensional parameter C is introduced as the ratio of the orifice area when

P2 > P1 to the total orifice area when P1 > P2:

C =
a

ac + a
(3.47)
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The default case of the same orifice area in both directions is when C = 1 and when C = 0 the

return orifice would be closed off and gas can only flow in one direction.

Figure 3.7: Bellows Actuator Schematic with Check Valve and Orifice

The control concept can be implemented in the equations of motion by modifying the area ratio S

as follows:

S =















S if P1 > P2

CS if P1 < P2
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3.4.2 On/Off Valve Control Concept

Another control concept replaces the orifice with an active valve, as depicted in Figure 3.8. The

valve would be opened and closed to achieve maximum damping and minimize bounce. This

control concept only operates twice during the compression stroke and so would require minimum

power; furthermore, it only requires the initial impact velocity as an input.

Figure 3.8: Bellows Actuator Schematic with Active Valve

The system will oscillate around static equilibrium with the valve open. System parameters need

to be chosen so the upper bound is above the static equilibrium which is above the bottom. If the

upper bound is below the static equilibrium, even if the valve is left closed, the shock absorber will

not stop before static equilibrium is reached and no control is possible.
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With the parameters selected, the timing of the valve needs to be found for each initial velocity.

The valve will initially be open and then closed at some time T1 such that the upper bound will

equal the static equilibrium position. Then near the static equilibrium position the valve will be

opened at T2, equalizing the pressure in the control volumes and bringing the system to rest.

3.4.3 Adaptive Control Concept

A final control concept opens and closes the valve multiple times during the compression stroke

to achieve the goal of bringing the system to rest at the static equilibrium. This control concept

requires instantaneous displacement, velocity, and acceleration as an input and, since the valve

is continuously operating, would require a more powerful and faster acting valve than the on/off

concept.

The control scheme is to take the current position and velocity of the system and calculate the

acceleration required to bring the system to rest at the static equilibrium along a predetermined

profile. This acceleration is compared to the actual acceleration and the valve is opened and closed

to try to maintain the correct acceleration.

The profile chosen here is the exponential decay such that the position, velocity, and acceleration

all end up at zero at the same time.

X = Ae−ζt

Ẋ = −Aζe−ζt

Ẍ = Aζ2e−ζt

(3.48)
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At each point in time during the compression stroke t = 0 the coefficient A and ζ are calculated

using the current distance from static equilibrium Xc and velocity Ẋc (A = Xc and ζ = −Ẋc/Xc).

These values are then substituted into the acceleration equation and compared to the current accel-

eration to determine if the valve should be opened or closed.

Ẍ = Aζ2

Ẍ = Xc

(

Ẋc

−Xc

)2

Ẍ =
Ẋc

2

Xc

(3.49)

3.4.4 On/Off Valve Hopping

Another use for an on/off valve is for initiating a hop. This technique can be simulated using the

equations of motion developed, though with different initial conditions. In general, the numerical

analyses start at X = 0, Ẋ = −1, and P10 = P20, which is the device just in contact with

the surface with some downward velocity and the pressure in both control volumes identical. To

initiate a hop, the initial conditions will start with the device at static equilibrium with zero velocity

and the pressure in P1 in static equilibrium and P2 higher.

It should be noted that actual maximum height reached during launch is based, in this model, on

uniform gravity. If this technique were used on a very low gravity body where the gravitational

force changed significantly during the hop, the constant gravity model would need to be replaced

with the actual gravitational field. The more accurate value in this analysis would be the velocity as

the system leaves the surface which could then be used at the initial value for the orbital mechanics

analysis.
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3.5 Optimization

If passive shock absorbers are used it is important to select the parameter values, that the designer

has control over, to achieve the design goals and maximize performance. Most likely, things like

gravity, mass, and maximum initial velocity will be given. The designer will have control over

pressure, stroke, areas, and bellows stiffness. A method to optimize these parameter values will be

developed.

3.5.1 Nondimensional Optimization

In order to optimize the design parameters in nondimensional terms, an objective function and

criteria are defined and shown in Table 3.3. The objective function is to maximize the damping

coefficient ζ , and the criteria are that the system will not rebound off the surface and the shock

absorber will not bottom out.

Table 3.3: Optimization Criteria

Criteria Condition

Maximize Damping max(ζ)

No Rebound max(X) ≤ 0

No Bottoming Out min(X) > −BV10

The objective function will be used to rank the results. Since this system is nonlinear, picking the

peaks and fitting an exponential curve using a linear regression does not work well. The initial

response is very nonlinear and then decays, oscillating around the static equilibrium at a constant

amplitude. Therefore, the proposed damping model is used.
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X = A sinωt
(

e−ζt +B
)

Trying to directly fit this equation to the peaks is problematic because the first few peaks tend to

be very nonlinear and result in a poor fit. To help compensate for this, the absolute value of the

distance between the position and static equilibrium value is integrated. Then using MATLAB’s

nonlinear fit function fitln the coefficients of the equation are determined. Figure 3.9 shows this

process with an example viscous damping response. First, the absolute value of the response is

plotted. Then the equation is integrated and plotted. MATLAB fitln is called on this numerical

data with the model given above. Then the models are plotted with the coefficients from the fit

which show a good correlation.
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Figure 3.9: Illustration of Damping Model Methodology

3.5.2 Dimensional Optimization Using Vendors Data

This analysis will be similar to the nondimensional optimization except that given dimensional

parameter values will be used. The goal will be to find a solution that meets the criteria, and

the objective function will be the lowest mass system. Vendors give information on the bellows

in terms of one capsule and actual values depend on the number of capsules selected. In this

optimization the program will loop for each size capsule, through the number of capsules, until

an acceptable solution is reached. In order to speed up the calculations, before the numerical

integration, a check of the upper bound is made. If the upper bound is greater than the available
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stroke the program is looped without running the numerical integration. Also, because the natural

frequencies of this system vary considerably with the parameters, the numerical integration is run

for two cycles at first, which allows the criteria to be checked. If the criteria are fulfilled, the

numerical integration is run for ten cycles and the response will be used to determine the damping

coefficient. Then the mass for each solution will be compared and the one with the lowest mass

will be selected.
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CHAPTER 4: FINDINGS

The objective of this chapter is to try to verify the models created in the previous chapter. No

physical experiments were conducted in this research. Verification will consists of comparing the

results with previous work, varying the parameters to see if the response changes in a logical way,

and determining if the numerical simulations agree with the analytical results for special cases.

4.1 Initial Verification

To verify the code and dynamics model, the first run was taken with initial conditions similar to

the case in Andersen nonlinear pneumatic spring analysis. The equations of motion integrated

numerically. The initial conditions were X0 = 0 and Ẋ = 0 An initial volume V10 = 1 ensured

the system did not bottom out. The orifice was closed so there would be no damping S = 0.

The results are plotted in a phase portrait in Figure 4.1. The minimum displacement was used for

the Andersen solution and this was plotted as well. The difference between the two plots in the

velocity axis is due to the difference in the nondimensional time terms. Andersen scales time with

the natural frequency and this analysis uses the initial impact velocity. Anderson’s solution also

has an external pressure which is why the maximum displacement is lower than for this analysis.

Even with these differences the general shape of being a larger radius curve in compression than

in extension is evident.
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Figure 4.1: Non Damped Phase Diagram

To show the effect of varying each parameter value, plots of displacement, acceleration and phase

portrait are shown for nominal values shown in Table 4.1. The response is shown in Figure 4.2.

The initial displacement is when the base just contacts the ground and there is an initial downward

velocity X0 = 0, Ẋ0 = −1. Negative displacements correspond to compression of the device;

positive displacements correspond to the hopper above the surface (not in contact). The hopper

leaving the surface can be seen where the acceleration jumps to a constant value of G = −1. That

is, the hopper is not in contact with the surface when X > 0, so the only applied force is due to

gravity. These parameter values are the ones discussed in the static equilibrium solution section

that resulted in a static equilibrium value of D = 0. The phase portrait shows a decreasing spiral

towards equilibrium, which gives a qualitative way of comparing damping ratios. The faster the

spiral approaches equilibrium the higher the damping ratio. Finally, the point where the shock
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absorber bottoms out for the default case will be BV10 = 0.5.

Table 4.1: Nominal Parameter Values

Parameter n M S B V10 G K X0 Ẋ0 P0

Value 1.4 1 .5 1 .5 1 1 0 -1 1
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Figure 4.2: Response for Nominal Values
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Next, one by one each parameter value is varied while the others are left at their nominal values, to

demonstrate how the parameters effect system response around this particular point. The nominal

response will be in a black solid line while the varied parameter will be in color: blue or green if

the parameter is less than its nominal value and red or purple if greater than its nominal value.
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Figure 4.3: Varying Mass M
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Figure 4.3 shows an increasing mass has a larger displacement in the first cycle. In addition,

each response oscillates around its own static equilibrium value, which decreases as the mass is

increased. This conforms with intuition that a larger mass will compress the shock absorber more.

The response for M = 2 is very close to bottoming out which will happen at X = −0.5. The

results show a very sharp response in displacement and a peak in acceleration. For M = 2 the

device never leaves the ground and in the phase portrait heads towards equilibrium the quickest.
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Figure 4.4: Varying Area Ratio S

Figure 4.4 shows the responses as the area ratio S is varied. Since S = 0 is the case when the

orifice is fully closed, the displacement response shows no damping – as seen in the phase portrait

there is no decay. At S = 2, there is low damping as indicated by a spiral than converges less than

the default case. As S increases further the response approaches the case where the orifice is the
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size of the piston, the volume is the whole cylinder, and there is no corresponding damping. In

this case, the response would be the same magnitude as the S = 0 case but with a longer period,

which is what we see. It can be seen that the most damped response is for S = 0.5. However,

optimization is required to find the value of S to produce the highest damping.
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Figure 4.5: Varying Bellows Area Ratio B
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Figure 4.5 shows the effect of having a small bellows area ratio B. Lower ratios mean more residual

gas is left in CV1 when the bellows bottoms out. There are no other effects in the response that

can be seen by the initial response: all values of B follow the same path until each bottoms out.

The bottoming out can be seen in the displacement plot by a sharp v which corresponds to the

impact at X = −BV10, of course the acceleration is very large at that point also. The peaks are

arbitrary since the spring stiffness once bottomed out was chosen simply as large to allow the

numerical integration to run quickly, and is justified by deciding that bottoming out the bellows is

not permissible so the response afterwards is not important. Bottoming out can also be seen clearly

as vertical lines in the phase portrait, showing a sharp change in velocity while at the displacement

where it bottoms out. In the cases shown here, the only response that does not bottom out initially

is the nominal value B = 1. However, for B = 0.75 the second impact does not bottom out which

shows there may be a value 0.75 < B < 1 that does not bottom out.
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Figure 4.6: Varying Initial Volume Ratio V10

Figure 4.6 shows the effect of varying the initial volume ratio V10. The nominal case V10 = 0.5

means CV1 and CV2 begin with equal values. When V10 = 0.25 there is less volume in CV1 so

the stiffness is higher and the acceleration is higher. It can be seen in the displacement response

that the device very nearly bottoms out, which would happen at X = BV10 = 0.25. This response
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is also more damped than the other cases, which can be seen in the phase portrait having a spiral

that tends towards equilibrium the quickest.

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

Time T

D
is
p
la
ce
m
en
t
X

G=0.25
G=0.50
G=1.00

(a) Displacement

0 2 4 6 8 10

−1

0

1

2

3

4

5

Time T
A
c
c
e
le
r
a
t
io
n
Ẍ
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Figure 4.7: Varying Gravity G

Figure 4.7 shows the response for varying gravity G. Similar to the effect of varying mass, increas-

ing gravity causes a larger displacement in the first cycle. Compared to the effect of varying mass,
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the effect of varying gravity is more pronounced after the device leaves contact with the surface.

As gravity is reduced, the bounce is higher and has a longer duration, a characteristic of landing

on a low gravity planetary body. Leaving contact with the surface may yield a long distance travel

before recontact. It should be noted here that this analysis uses the assumption that gravitational

acceleration is constant since the goal was to model what happens during contact. For a very low

gravity body, this assumption is not valid and the model of gravity falling off with distance squared

should be used if one is interested in the actual bounce trajectory or orbit.
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Figure 4.8: Varying Bellows Stiffness K

Figure 4.8 shows the response to varying stiffness K. As expected, lower stiffness values result

in larger displacement responses and longer periods. At least for the nominal parameter values

the change in stiffness does not produce a large change in response. The reason for this lack of

sensitivity is likely due to the force from the dimensionless pressure, which is significantly larger
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than the dimensionless stiffness. In addition, the lower stiffness has higher damping, due to less

energy stored in the spring and more non-conservative work done on the gas.
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Figure 4.9: Varying Initial Velocity Ẋ0

Figure 4.9 shows the response to varying the initial impact velocity Ẋ0. As expected, faster initial

velocities lead to greater compression and require higher acceleration to stop the mass. The more
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interesting finding is that the damping increases as the initial impact velocity increases so that,

after a couple of cycles the responses are similar in magnitude. This increased damping is very

noticeable for the cases of Ẋ0 = 1 and Ẋ0 = 2 where the height of the initial bounces are nearly

identical. Impact velocity is a parameter that will certainly vary during a mission; this analysis

shows that if the parameters are selected for the maximum velocity, the device will have similar

long term responses at lower velocities.
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Figure 4.10: Varying Initial Pressure P0

Figure 4.10 shows the response while varying the initial pressure P0. The results are fairly straight-

forward. Higher pressures result in less compression. In the case P0 = 0.25, the device bottoms

out. Lower initial pressures yields higher damping and lower static equilibrium values.
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Figure 4.11: Varying Check Valve Area Ratio C

Figure 4.11 shows the response when using a check valve where the return area is reduced by a

fraction of the initial area. The case where C = 0 shows the smallest bounce but also the lowest

damping because once the gas enters CV2, it can not leave so there is no damping. The case where

C = 1 is the same as the default case. The highest damping from these plots is C = 0.50 which
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has a small bounce but damps out quickly, however optimization would be required to find the

value for C that produces the highest damping.

A general observation from all of these responses is that damping is higher when the initial re-

sponse is close to bottoming out. This makes sense because gas flowing between the control

volumes is what produces the damping and the flow is larger when the pressure ratio is higher.

The final variation is to simulate a hop by setting the parameters to the values shown in Table 4.2.

The main difference compared to the nominal values is the initial position is bottomed out (X0 =

−BV10) and the velocity is zero (Ẋ0 = 0). To simulate a hop by a valve opening, the initial pressure

in CV1 is set to 1 (P10 = 1) and CV2 is set to a larger value to simulate the gas starting compressed

to a higher value. The lowest simulated value (P20 = 2) is the maximum pressure P2 reaches in

the nominal case. The results are displayed in Figure 4.12 and as expected, higher pressures result

in higher maximum altitudes. The nominal case barely leaves the surface which shows that for a

relatively small orifice (S = 0.5) the system will experience damping on extension.

Table 4.2: Hop Parameters

Parameter n M S B V10 G K X0 Ẋ0 P10

Value 1.4 1 .5 1 .5 1 1 -0.5 0 1
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Figure 4.12: Hopping
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4.2 Initial Design Equations Verification

The initial design equations for static equilibrium and initial displacement bounds were compared

to the results of the numerical integration. The parameter values were set to the default values

with the exception of V10 = 0.75 and P0 = 0.6. Then S was varied and the results are shown in

Figure 4.13a. It can be seen that for the case where S = 0.35, the oscillations are converging on

the static equilibrium value and the initial displacement is between the upper and lower bounds.

When S = 0, the displacement reaches the upper bound and when S = 4 (or for any larger value)

the displacement reaches the lower bound

The natural frequency estimate is used to determine how long to run a numerical analysis to include

the desired number of cycles. To verify the natural frequency estimate, the default displacement

response is shown in Figure 4.13b. Then error bars are drawn between the zero crossings of the plot

and the period determined by the natural frequency estimate. In this case, the natural frequencies

are overestimated, but are sufficiently accurate for the intended purpose.

70



0 2 4 6 8 10
−0.75

−0.5

−0.25

0

0.25

0.5

0.75

Time, T

D
is
p
la
ce
m
en
t
X

S=0.00
S=0.35
S=4.00
Static Equilibrium
Upper Bound
Lower Bound

(a) Static Equilibrium and Stroke Bounds

0 4 8
−0.5

−0.25

0

0.25

Time T

D
is
p
la
ce
m
en
t
X

(b) Natural Frequency Estimate

Figure 4.13: Initial Design Equations Verification

4.3 On/Off Control

Active control requires choosing the system parameters such that the upper bound is above the

static equilibrium, which is in turn above the stroke limit. In this example the two parameters that

are able to be adjusted are P0 and V10. The upper bound, static equilibrium, and stroke limit were

calculated for various values of P0 and V10. The points that failed the criteria were eliminated and

the difference between the upper bound and the stroke limit are plotted in Figure 4.14a. The point

selected was P0 = 0.4 and V10 = 0.51.

On/Off control starts with the valve opened. Next, at some time T1 the valve is closed when

the the instantaneous upper bound is equal to the static equilibrium. Then, at some time T2 near

the steady state, the valve is opened allowing the pressures in the control volumes to equalize

at the equilibrium. The actual times are found using optimization where the objective function
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is to minimize the numerical integration of the difference between the response and the static

equilibrium value. The results of this are shown in Figure 4.14b. Each line on the plot corresponds

to a different initial velocity. Starting from the left with Ẋ0 = −1 to the right where Ẋ0 = 0. The

individual points indicate T1, or where the valve is first closed. The valves are opened very close

to the static equilibrium and are omitted for clarity. Since T1 and T2 were solved numerically there

is some error and the responses are brought to rest exactly at static equilibrium, which results in

small long term oscillations.
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Figure 4.14: Active Control
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4.4 Adaptive Control

The adaptive control uses the same parameter values as the On/Off control. In this analysis, the

control is implemented in the differential equation file. Where the acceleration is calculated, it is

checked against the control acceleration and the valve opening is set. Putting the control in the

differential equation means that the control system has no lag, which is not realistic. In a real

analysis the lag between taking measurements, performing calculations, adjusting outputs, and

having the valve actually open and close would need to be determined and included in the model.

Figure 4.15 shows that for all initial velocities the system follows an exponential decay towards

static equilibrium, as desired.
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Ẋ0 = −1..0

(a) Displacement

0 1 2 3
−1

0

1

2

3

4

5

Time T
A
c
c
e
le
r
a
t
io
n
Ẍ
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Figure 4.15: Adaptive Control
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4.5 Nondimensional Optimization

This example analysis will optimize the passive design with the assumed input parameters given

in Table 4.3a and criteria given in Table 3.3. The variable parameters and their ranges are given in

Table 4.3b. Since there are 4 parameters decreasing the step size will exponentially increase the run

time. Preliminary runs with larger ranges and coarser resolution were run to find where the highest

damping ratios were clustered. These ranges are a refinement of those runs. A MATLAB program

was written to loop through all of the parameters and their ranges. A numerical simulation for

each set of parameters was run for one period. The results were checked ensure the criteria were

met. If so, a numerical simulation was run for ten periods and the damping model fit to the data as

described in Section 3.5.1.

The results are sorted by damping ratio and the top five results are shown in Table 4.3c. Figure 4.16

shows the displacement and fit, acceleration curves, and phase portrait are shown for the first

and fifth highest damping ratio. The displacement plots include the nonlinear fit line and their

corresponding damping ratio. It can be seen that it relatively difficult to determine just from this

plot which system has higher damping. The acceleration plots do not show much difference.

The phase portrait provides the most insight in the plot with the higher damping ratio appears

to converge to equilibrium more quickly. This helps verify the methodology used to select the

objective function.
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Table 4.3: Nondimensional Optimization Parameters

(a) Assumed

Parameter Value

M 10

G 1

X0 0

Ẋ0 -1

B .9

n 1.4

(b) Optimized

Parameter Range Step Size

S .1-.5 .05

V10 .3-.6 .05

K 0-1 .1

P0 .5 .9 .05

(c) Results sorted by ζ

S V10 K P A B ζ

0.25 0.50 0.0 0.65 0.163 0.007 0.232

0.25 0.50 0.1 0.65 0.166 0.007 0.227

0.25 0.55 0.2 0.60 0.177 0.008 0.207

0.30 0.40 0.1 0.80 0.104 0.010 0.193

0.30 0.40 0.0 0.80 0.119 0.011 0.187
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Figure 4.16: Nondimensional Optimization
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4.6 Optimization using Vendor Data

This analysis uses vendor provided data for the metal bellows to design the minimum mass shock

absorber that meets the criteria in Table 4.4a. The vendor has a standard range of bellows capsules.

The actuators are made by stacking and welding these capsules into the desired length. The data

for the different sized bellows are given in Table 4.5.

Since the bellows parameters are now dimensional and all analysis has been nondimensional, val-

ues for the dimensional parameters need to be selected. These values are based on the environment,

such as gravity and atmospheric pressure, and on the lander, such as mass, temperature, initial ve-

locity, and position above the surface. Table 4.4b provides a summary where the inputs are chosen

for a small hopper landing on the moon. The practical design, the designer of this subsystem will

have control over stroke length ls, initial pressure p0, bellows spring rate k, and effective area of

the bellows s. Not all of these parameters are independent; for example the bellows spring rate

and maximum internal pressure will be related because the thickness of the bellows and number

of convolutions will determine the stroke and maximum pressure the bellows can withstand. Since

in the nondimensional analysis the choice of p0 is arbitrary, it is set to the maximum allowable

pressure for each bellows size, which allows for an additional nondimensional pressure criteria

P1 > 1.
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Table 4.4: Dimensional Optimization Parameters

(a) Criteria

Criteria Condition

No rebound max(X) ≤ 0

No Bottoming Out min(X) > −BV10

Max Pressure < Allowable max(P1) < 1

(b) Inputs

Parameter Value

g 1.622m s−2

m 100 kg

x0 0

x′

0 −1m s−1

n 1.4

R 288 J kg−1

θ0 300K

C0 .7

(c) Results

Code Capsules V10 P0 S ζ mass (kg)

50 24 0.15 0.35 0.65 0.54 0.77

55 35 0.10 0.25 0.45 1.57 2.24

60 21 0.10 0.20 0.50 2.72 1.94

70 25 0.25 0.15 0.40 1.03 2.90

80 16 0.10 0.10 0.50 1.49 3.60

The optimization was performed in a manner similar to the nondimensional optimization, with the

difference that the parameters need to be converted to nondimensional form. The program loops

through each size bellows, adjusting the length by incrementing the number of capsules until an

acceptable solution is found.
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The results for the least number of capsules for the bellows that had solutions that met all criterai

are shown in Table 4.4c. The responses for the two lightest configurations are shown in Table 4.4c

and Figure 4.17. The larger bellows is 2.5 times heavier, but it has a damping ratio that is 5 times

larger. Note that the mass is just that of the bellows, but seems appropriate for a 100 kg hopper.

0 1 2 3 4 5
−0.15

−0.1

−0.05

0

0.05

Time, T

D
is
p
la
ce
m
en
t
X

ζ =0.54
ζ =2.72

(a) Displacement

0 1 2 3 4 5
−4

−2

0

2

4

6

8

10

12

Time T

A
c
c
e
le
r
a
t
io
n
Ẍ
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Figure 4.17: Dimensional Optimization
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Table 4.5: Metal Bellows Vendor Data From [31]

per capsule

Code Do Di Ae Pmax Ls Lmax Lmin kb
mm mm cm2 KPa mm mm mm N/mm

5 9.5 3.2 0.3 689 3.6 5.3 1.8 2.3
10 12.7 4.8 0.6 1034 8.4 11.7 3.3 9.6
20 19.0 6.4 1.3 345 7.6 9.9 2.3 4.2
30 26.2 14.0 3.2 207 13.5 16.8 3.3 4.4
35 38.1 24.6 7.7 276 7.4 10.9 3.6 3.9
40 41.4 19.0 7.1 297 7.9 10.9 3.0 2.1
50 48.0 35.3 13.6 310 21.8 26.7 4.8 2.6
55 57.2 38.1 17.7 345 12.7 18.3 5.6 3.7
60 64.8 44.4 23.4 345 18.0 24.6 6.6 4.7
70 75.9 50.8 31.6 276 23.9 29.7 5.8 5.1
80 101.3 68.3 56.5 276 25.4 31.8 6.4 8.8
85 108.0 81.3 71.0 310 20.3 28.7 8.4 13.1
90 126.2 101.6 101.9 345 20.3 29.2 8.9 13.1
93 177.3 126.5 181.3 172 25.4 30.2 4.8 7.4
95 279.4 241.3 532.1 138 25.4 29.0 3.6 43.8
98 457.2 406.4 1463.9 138 25.4 29.7 4.3 113.8
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CHAPTER 5: CONCLUSION

The goal of this research was to prove the feasibility of using metal bellows shock absorbers to

extend the range of hopper spacecraft by increasing landing velocity and initiating hops, thereby

reducing the use of propellants. The work presented here shows this system can provide the per-

formance required to land and launch a spacecraft on a planetary surface. More importantly, it has

built upon the work already done in pneumatic damping and has provided methods and tools for

further investigation.

5.1 Effective Area

The analysis of the effective area of the bellows shows that the industry estimation can have signif-

icant errors for bellows where the bellows area ratio is high. It should be noted that the triangular

shaped bellows used in this analysis are not the only shape of bellows and if accurate effective area

is required it should be calculated for the exact bellow geometry.

5.2 Equations of Motion

Nondimensional differential equations of motion and pressure were derived for a vacuum environ-

ment for the system impacting against a relatively stiff surface. The nondimensional bottoming

out criteria was derived. The nondimensional static equilibrium was derived shown to equal 0

when the nondimensional parameters were normalized to 1. This can be used to select parameter

relationships if a predetermined static equilibrium value is desired.
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5.3 Analytical Estimations

Analytical solution for the bounds of stroke were found. These equations facilitate the initial

sizing of a system, selecting parameter values for an active system, or tuning system parameters.

The equations speed up calculations by providing a quick check if there will be a solution before

running a computationally expensive numerical simulation.

The natural frequency estimate is provided to save optimization time and is shown to be sufficiently

accurate for this purpose. Limiting the length of the numerical simulation can be especially helpful

for systems that quickly damp out the numerical solver will adjust to very small time steps to

provide the required accuracy. By limiting the run to the first few cycles, all of the criteria can be

determined in a short amount of time.

5.4 Response to Parameter Variation

Intuition of the system was gained by varying the parameter values one at a time, in the range of

interest, and visualizing the change in response. Some of these parameter values will be known a

priori such as gravity and mass. Impact velocities are likely to change between each hop, but the

analysis has shown, for a passive case, the system will perform well for velocities less than the

maximum design velocity. The system designer has control over the remaining parameter values

and can use this analysis to select values to meet system requirements.

One important parameter sensitivity had to do with the bellows area ratio B. This effects the resid-

ual volume in the cylinder. Damping is maximized as B approaches 1. The commercial bellows

area ratios varied from .44 for the smallest bellows to .89 for the largest. The simulations show that

low bellows ratios make it difficult to achieve high damping. At one point during optimization, B
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was included as a parameter, but every optimal result was returned with B = 1 so it was discarded

from further optimizations.

5.5 Control Concepts

The first control concept used a check valve to vary the orifice size depending on the pressure

differential between the control volumes. This improved the damping performance with only me-

chanical flow controls.

The second control concept used an on/off valve to bring the system to rest with minimal oscil-

lation. The valve was initially open and then closed at the time required for the system to come

to rest at static equilibrium. Finally the valve would open slightly before coming to rest to allow

time to vent the pressure so the system arrives at static equilibrium with near zero velocity. This

analysis was done over all velocities. A polynomial could be fit to these timing values so that a

control system could measure impact velocity and determine the required timing.

The final control concept used the current position and velocity to determine the exponential decay

constants to reach static equilibrium at zero velocity. The instantaneous acceleration is compared

to the required acceleration, and the valve is opened or closed as required.

All of these control concepts improved performance over the purely passive orifice system. Which

concept is used would be based on system requirements. The passive system is the simplest,

lightest, and requires no power. The check valve is only a mechanical addition and does not

requires control or power. The on/off control requires power and control, but since it only turns on

and off one time it requires less power than the adaptive control which is continuously operating.
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5.6 Linear Equivalent Damping Coefficient for Nonlinear Response

A novel way of determining an equivalent damping coefficient was derived using the time inte-

gration of the absolute value of the distance from equilibrium, which proved to be a robust way

to fit the model to the data. It successfully neglected the initial nonlinear spike and fit the entire

response well. In addition the model provided a parameter for the magnitude of the long term

oscillations about the static equilibrium that would exist if there was no friction on the system.

This method was verified using an example of a viscous damped system with residual oscillation

around static equilibrium and the parameters were recovered. Most importantly, maximizing the

estimated damping coefficient was successfully used as the objective function for optimization.

5.7 Optimization

Two different optimizations were conducted. The first was for a passive case. Parameter values,

that a designer would typically have control of, were allowed to vary to find a solution that pro-

duced maximum damping while meeting the criteria of not bottoming out and not rebounding off

the surface.

The second optimization used dimensional parameter values to simulate a 100 kg lunar hopper

and vendor provided bellows data. The data was nondimensionalized and each size bellows was

incrementally increased in length and tested to ensure it met the criteria of not bottoming out, not

rebounding, and not exceeding the allowable pressure. Then the configuration with the lowest

mass of 0.77 kg was selected.
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5.8 Future Work

Future work should include experiments to verify the models presented here. These should be

conducted in a vacuum chamber and with gravity offload devices to simulate the types of planetary

bodies hoppers would be used. Research should continue on ways to actively and semi-actively

control the system. Effort should be put into designing a system to compress the gas in CV2 in

a way that can be hermetically sealed and actuated with a high force, low power actuator to be

used for powered hops. Valves that can be integrated into a sealed design need to be explored.

Experiments should be conducted to determine if the actively controlling the valve as proposed

here is feasible in practice.
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APPENDIX A: ANDERSON NONLINEAR SPRING
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A.1 MATLAB: Section4 7diff.m

clear all;

close all;

x0=linspace(-2.4,.9,100);

dx0=0;

n=[1 1.4 1.66];

[t,y]=ode45(@Section4_7ODE,[0 20],[0 -.5],[],1.4);

for i=1:length(n)

for j=1:length(x0)

[t,y]=ode45(@Section4_7ODE,[0 20],[x0(j) dx0],[],n(i));

% y(:,3)=-1/n*(1./(1-y(:,1)).ˆn-1)

figure(1)

hold on

plot(y(:,1),y(:,2))

% legend('Pos','Vel','Acc')

Xmax(j)=max(y(:,1));

Xmin(j)=min(y(:,1));

Vmax(j)=max(y(:,2));

Xzero=fzerodiscrete(t,y(:,1));

Vzero=fzerodiscrete(t,y(:,2));

Per(j)=Vzero(3);

QPerI(j)=Xzero(2)-Vzero(2);

QPerD(j)=Vzero(1);

end

figure(2)
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subplot(3,1,1)

axis([0 2 0 2.4])

hold on;

plot(Vmax,Xmax);

plot(Vmax,-Xmin);

plot([0 2],[0 2])

subplot(3,1,2)

axis([0 2 6 9])

hold on;

plot(Vmax,Per)

line([0 2.0],[pi*2 pi*2])

subplot(3,1,3)

axis([0 2 0 4])

hold on;

plot(Vmax,QPerI)

line([0 2.0],[pi/2 pi/2])

end

A.2 MATLAB: Section4 7ODE.m

function dx=Section4_7ODE(t,x,n);

dx=zeros(2,1);%This is a pre-initialization.

%x(1)= Position

%x(2)= Velocity

dx(1)= x(2);% Velocity

dx(2)= -1/n*(1/(1-x(1))ˆn-1); % Acceleration

end
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APPENDIX B: OBJECTIVE FUNCTION DEMONSTRATION
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B.1 MATLAB: Objective Function Demonstration.m

% John Trautwein jktrautwein@gmail.com 2015/10/14

clear all

close all

% Time Series

t=0:.01:10;

% Damping ratio

zeta=.2;

% Non zero limit

offset=.01;

% Model Data Exponential Decay to non zero value

x=sin(pi*t).*(exp(-zeta*t)+offset);

% Cumulative Trapazoid Integration of abs(x)

sum=cumtrapz(t,abs(x));

% Model Function

modelFun=@(b,t) cumtrapz(t,b(1)*(exp(-b(2)*t)+b(3)));

% Start values

start=[.1 .1 .1];

% Nonlinear fit

nlm=fitnlm(t,sum,modelFun,start);
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% Coefficient Estimates

b=nlm.Coefficients.Estimate;

% Plots

figure('Position',[0 0 1000 1000])

hold all

% Abs Position Data from Steady State

plot(t,abs(x),'b','LineWidth',2)

% Cumulative Integration

plot(t,sum,'b','LineWidth',2)

% Model fit to Cumulative Integration

plot(t,cumtrapz(t,b(1)*(exp(-b(2)*t)+b(3))),'r--','LineWidth',2)

% Analytical Fit to Peaks with fit parameters

plot(t,pi/2*b(1)*(exp(-b(2)*t)+b(3)),'r--','LineWidth',2)

ftsz=36;

xlabel('Time, T','FontSize',ftsz); ylabel('Displacement X','FontSize',ftsz)

axis([0 10 0 5])

set(gca,'XTick',[0 2 4 6 8 10])

set(gca,'YTick',[0 1 2 3 4 5])

set(gca,'FontSize',ftsz)

Leg_st=legend('$ \left| \sin(\pi*t)eˆ{-0.2*t}+0.1 \right|$',...

'$\int \left| \sin(\pi*t)eˆ{-0.2*t}+0.1 \right| dt$',...

'$\int \left| A eˆ{-\zeta*t}+B \right| dt$',...

'$\frac{\pi}{2}A eˆ{-\zeta t}+B$');

h= legend(Leg_st);

set(h,'Interpreter','latex')
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APPENDIX C: RESPONSE TO PARAMETER VARIATION
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C.1 MATLAB: Dimensionless Damped Bellows D.m

% John Trautwein jktrautwein@gmail.com 2015/10/14

% Calculated and Plots Displacement, Velocity, and Acceleration for

% impact with surface for parameter variation

clear all;

close all;

% System non dimensional Parameters

% Put varied Parameter values in [] for only one parameter

n= 1.4;% Ratio of specific heats

M= 1; % Moving Mass

S= .5; % Area Ratio

B= .99;% Bellows Ratio (effective area/cylinder area)

V10=.5; % Volume Ratio

G= 1; % Gravity

K= 1; % Bellows Stiffness

X0= 0; % Position

Xd0=-1; % Velocity

P0= 1; % Pressure

T0= 0; % Valve Open Time

C= 1; % Check Valve %S

ts= 10; %Simulation Time

Kb= 1e6;% Bellows Bottom Out Stiffness

%x(1)= X

%x(2)= Xd

%x(3)= P1
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%x(4)= P2

% Create Figures

figure('Position',[0 0 1000 1000])

figure('Position',[0 0 1000 1000])

figure('Position',[0 0 1000 1000])

figure('Position',[0 0 1000 1000])

% Set Plot Line color and values

ftsz=36;

LinSt={'-', '-', ':', '-.'};

LinCl={'k','k','r','g'};

% Loop for the variable under consideration

for i=1:length(M)

% Run ODE

% ***Insert (i) after varied parameter***

opt = odeset('RelTol',1e-14);

[t,y]=ode45(@Dimensionless_Damped_Bellows_ODE,[0 ts],...

[X0 Xd0 P0 P0],[opt],M(i),K,Kb,G,n,V10,S,T0,B,C);

X= y(:,1);

Xd= y(:,2);

P1= y(:,3);

P2= y(:,4);

% Calculate D

D=X;

D(D>=0)=0;
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% Calculate Acceleration

% ***Insert (i) after varied parameter***

Xdd = ((X<=0).*(P1-K.*D)-(X<=-B*V10).*Kb.*(B*V10+D)-M(i).*G)./M(i);

% Plot Figures

figure(1)

hold all

plot(t,X,'LineWidth',2,'Color',LinCl{i},'LineStyle',LinSt{i})

figure(2)

hold all

plot(t,Xd,'LineWidth',2,'Color',LinCl{i},'LineStyle',LinSt{i})

figure(3)

hold all

plot(t,Xdd,'LineWidth',2,'Color',LinCl{i},'LineStyle',LinSt{i})

figure(4)

hold all

plot(X,Xd,'LineWidth',2,'Color',LinCl{i},'LineStyle',LinSt{i})

% Calculate Steady State

% ***Insert (i) after varied parameter***

SteadyState=@(Dv)P0./(1+Dv).ˆn-K.*Dv-M(i)*G;

Xss(i)=fzero(SteadyState,-V10/2);

end

% Legend Creattion

% ***Insert Parameter to include in Legen***

Leg_st=strcat('$C$=',cellstr(num2str(C', '%.2f')));
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set(0,'DefaultTextInterpreter', 'latex')

figure(1)

xlabel('Time T','FontSize',ftsz);

ylabel('Displacement X','FontSize',ftsz)

axis([0 ts -.5 .5])

set(gca,'XTick',[0 2 4 6 8 10])

set(gca,'YTick',[-.5 -.25 0 .25 .5])

set(gca,'FontSize',ftsz)

figure(2)

xlabel('Time T','FontSize',ftsz);

ylabel('Velocity $\dot{X}$','FontSize',ftsz)

axis([0 ts -1 1])

set(gca,'FontSize',ftsz)

figure(3)

xlabel('Time T','FontSize',ftsz);

ylabel('Acceleration $\ddot{X}$','FontSize',ftsz)

axis([0 ts -1.5 5])

set(gca,'XTick',[0 2 4 6 8 10])

set(gca,'FontSize',ftsz)

figure(4)

hold all

ylabel('Velocity $\dot{X}$','FontSize',ftsz);

xlabel('Displacement $X$','FontSize',ftsz)

axis([-.5 .5 -1 1 ])

set(gca,'XTick',[-.5 -.25 0 .25 .5])

set(gca,'YTick',[-1 -.5 0 .5 1])

set(gca,'FontSize',ftsz)
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for i=1

plot([Xss(i) Xss(i)],[-1 1],'LineWidth',2,...

'Color',LinCl{i},'LineStyle',LinSt{i})

end

C.2 MATLAB: Dimensionless Damped Bellows ODE.m

function dx=Dimensionless_Damped_Bellows_ODE(T,x,M,K,Kb,G,n,V10,S,T0,B,C)

dx=zeros(4,1);

% Parameters

V2 = 1-V10;

X=x(1);

Xd=x(2);

P1 = x(3);

P2 = x(4);

% Valve Closed

if T<T0

S=0;

end

% Check for Choked Flow

Pu=max([P1 P2]);

Pd=min([P1 P2]);

% Calculate C2

if Pu/Pd > ((n+1)/2)ˆ(n/(n-1))
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C2= sqrt(n/(((n+1)/2 )ˆ((n+1)/(n-1))));

else

C2= (Pd/Pu)ˆ(1/n)*sqrt((2*n/(n-1))*(1-(Pd/Pu)ˆ((n-1)/n)));

end

% Contact Base Input

if X<=0

D=X;

Dd=Xd;

else

D=0;

Dd=0;

end

% Equation of Motion

Xdd = ((X<=0)*(P1-K*D)-(X<=-B*V10)*Kb*(B*V10+D)-M*G)/M;

% Pressure Diferential Equations

if P2>P1

S=C*S;

P1d=(C2*S*P1ˆ((n-1)/n)*P2ˆ((n+1)/(2*n))-n*Dd*P1)/(V10+D);

P2d= -C2*S*P2ˆ((3*n-1)/(2*n))/V2;

else

P1d=(-C2*S*P1ˆ((3*n-1)/(2*n))-n*Dd*P1)/(V10+D);

P2d= C2*S*P2ˆ((n-1)/n)*P1ˆ((n+1)/(2*n))/V2;

end

% Differentials

dx(1)=Xd;

dx(2)=Xdd;

dx(3)=P1d;
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dx(4)=P2d;

end
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APPENDIX D: INITIAL DESIGN EQUATIONS
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D.1 MATLAB: Dimensionless Damped Bellows SS Bound.m

% John Trautwein jktrautwein@gmail.com 2015/10/14

% Calculated and Plots Displacement with steady staet and Stroke Limits

clear all;

close all;

% System non dimensional Parameters

n= 1.4; % Ratio of specific heats

M= 1; % Moving Mass

S= [0 .35 4]; % Area Ratio

B= .99; % Bellows Ratio (effective area/cylinder area)

V10=.75; % Volume Ratio

G= 1; % Gravity

K= 1; % Bellows Stiffness

Kb= 1e6; % Bellows Bottom Out Stiffness

T0= 0; % Valve Open Time

C= 1; % Check Valve %S

% Initial Values

X0= 0; % Position

Xd0=-1; % Velocity

P0= .6; % Pressure

ts= 10; % Simulation Time

%x(1)= X

%x(2)= Xd

%x(3)= U
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%x(4)= P1

%x(5)= P2

figure('Position',[0 0 1000 1000])

LinSt={'-', '--', ':', '-.'};

LinCl={'g','b','r',[.5 0 1]}

for i=1:length(S)

% Run ODE

opt = odeset('RelTol',1e-14);

[t,y]=ode45(@Dimensionless_Damped_Bellows_ODE,[0 ts],...

[X0 Xd0 P0 P0],[opt],M,K,Kb,G,n,V10,S(i),T0,B,C);

X= y(:,1);

Xd= y(:,2);

P1= y(:,3);

P2= y(:,4);

% Calculate D

D=X;

D(D>=0)=0;

% Calculate Acceleration

Xdd = ((X<=0).*(P1-K.*D)-(X<=-B*V10).*Kb.*(B*V10+D)-M.*G)./M;

figure(1)

hold all

plot(t,X,'LineWidth',3,'Color',LinCl{i},'LineStyle',LinSt{i})

end
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% Calculate Steady State

SteadyState=@(Dv)P0./(1+Dv).ˆn-K.*Dv-M*G;

Xss=fzero(SteadyState,-V10/2);

% Calculate Stroke Limits

% Change in Kinetic Energy

KE=1/2*M*Xd0ˆ2;

% Change in Potential Gravitational Energy

PE=@(Dv)M*G*(X0-Dv);

% Change in Potential Spring Energy

SE=@(Dv)1/2*K*Dv.ˆ2;

% Compression work for lower limit

PWl=@(Dv)(P0/(1-n))*((1+Dv).ˆ(1-n)-1);

% Compression work for upper limit

PWu=@(Dv)(P0*V10ˆn/(1-n))*((V10+Dv).ˆ(1-n)-V10ˆ(1-n));

% Solve for Stroke Limits

Xsl=fzero(@(Dv) KE+PE(Dv)-SE(Dv)+PWl(Dv),-V10/2);

Xsu=fzero(@(Dv) KE+PE(Dv)-SE(Dv)+PWu(Dv),-V10/2);

% Plot Steady State and Stroke Limits

plot([0 ts],[Xss Xss], 'b-.','LineWidth',3)

plot([0 ts],[Xsu Xsu], 'g-.','LineWidth',3)

plot([0 ts],[Xsl Xsl], 'r-.','LineWidth',3)

% Configure Plots

set(0,'DefaultTextInterpreter', 'latex')

Leg_st=strcat('$S$=',cellstr(num2str(S', '%.2f')));

Leg_st(4)=cellstr('Steady State');

Leg_st(5)=cellstr('Upper Limit');

Leg_st(6)=cellstr('Lower Limit');
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ftsz=36;

xlabel('Time, T','FontSize',ftsz);

ylabel('Displacement X','FontSize',ftsz)

axis([0 ts -.75 .5])

set(gca,'XTick',[0 2 4 6 8 10])

set(gca,'YTick',[-.75 -.5 -.25 0 .25 .5])

set(gca,'FontSize',ftsz)

h= legend(Leg_st);

set(h,'Interpreter','latex')

D.2 MATLAB: Dimensionless Damped Bellows Natural Freq.m

% John Trautwein jktrautwein@gmail.com 2015/10/14

% Calculated and Plots Natural Frequency Estimate

clear all;

close all;

% System non dimensional Parameters

n= 1.4; % Ratio of specific heats

M= 1; % Moving Mass

S= .35; % Area Ratio

B= .99; % Bellows Ratio (effective area/cylinder area)

V10=.5; % Volume Ratio

G= 1; % Gravity

K= 0; % Bellows Stiffness

Kb= 1e6; % Bellows Bottom Out Stiffness

T0= 0; % Valve Open Time
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C= 1; % Check Valve %S

% Initial Values

X0= 0; % Position

Xd0=-1; % Velocity

P0= 1; % Pressure

ts= 10; % Simulation Time

%x(1)= X

%x(2)= Xd

%x(3)= U

%x(4)= P1

%x(5)= P2

% Natural Frequency Estimate

omega=(1/2/pi)*sqrt((n*P0/V10+K)/M);

ts=4/omega;

% Run ODE

opt = odeset('RelTol',1e-14);

[t,y]=ode45(@Dimensionless_Damped_Bellows_ODE,[0 ts],...

[X0 Xd0 P0 P0],[opt],M,K,Kb,G,n,V10,S,T0,B,C);

X= y(:,1);

Xd= y(:,2);

P1= y(:,3);

P2= y(:,4);

% Calculate D

D=X;

D(D>=0)=0;
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% Calculate Acceleration

Xdd = ((X<=0).*(P1-K.*D)-(X<=-B*V10).*Kb.*(B*V10+D)-M.*G)./M;

% Calculate index of X zero crossing

ind=1:length(X)-1;

inz=find ((X(ind)>0 & X(ind+1)<0) | (X(ind)<0 & X(ind+1)>0));

% Calculate Actual and estimated natural frequency

t_a=t(inz(2:2:end));

t_e=[1:5]'*ts/5;

% Plot Results

figure('Position',[0 0 1000 1000])

hold all

plot(t,X,'k','LineWidth',2);

set(0,'DefaultTextInterpreter', 'latex')

Leg_st=strcat('$M$=',cellstr(num2str(M', '%.2f')));

ftsz=36;

xlabel('Time T','FontSize',ftsz); ylabel('Displacement X','FontSize',ftsz)

axis([0 8 -.5 .25])

set(gca,'XTick',[0 4 8 12])

set(gca,'YTick',[-.5 -.25 0 .25 .5])

set(gca,'FontSize',ftsz)

% Plot x error bars

plot([t_e t_e],[-.02 .02],'k','LineWidth',2)

plot([t_a t_a],[-.02 .02],'k','LineWidth',2)

plot([t_a t_e],[0 0],'k','LineWidth',2)
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APPENDIX E: CONTROL CONCEPTS

108



E.1 MATLAB: Dimensionless Damped Bellows On Off.m

% John Trautwein jktrautwein@gmail.com 2015/10/14

% Use to Find T1 and T2 to being system to rest at steady state

clear all;

close all;

% System non dimensional Parameters

n= 1.4; % Ratio of specific heats

M= 1; % Moving Mass

S= 4; % Area Ratio

B= .95; % Bellows Ratio (effective area/cylinder area)

V10=.42; % Volume Ratio

G= 1; % Gravity

K= 0; % Bellows Stiffness

Kb= 1e6; % Bellows Bottom Out Stiffness

optODE = odeset('RelTol',1e-12);

optfmin = optimset('Display','off','DiffMinChange',.001);

% Initial Values

X0= 0; % Position

Xd0= -1:.1:0; % Velocity

P0= .5; % Pressure

% Find Steady State

SteadyState=@(Dv)P0./(1+Dv).ˆn-K.*Dv-M*G;

Xss=fzero(SteadyState,-V10/2);
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% Time Increment

inc=.001;

for iX=1:length(Xd0)

% Time of Simulation set to half period

ts=inv((1/2/pi)*sqrt((n*P0/V10+K)/M));

% Nonlinear solver to find T1

fun=@(T0) Min_T1_Find(T0,X0,Xd0(iX),P0,M,K,Kb,G,n,V10,S,B);

T1=fzero(fun,.16,optfmin);

% Run ODE with new T1

[t,y]=ode45(@Dimensionless_Damped_Bellows_On_Off_ODE,[0 ts],...

[X0 Xd0(iX) P0 P0],[optODE],M,K,Kb,G,n,V10,S,B,T1,ts);

X=y(:,1);

Xd=y(:,2);

% Find index for zero crossings of Xd to pick T2 and trim ts.

ind=1:length(Xd)-1;

inz=find ((Xd(ind)>0 & Xd(ind+1)<0) | (Xd(ind)<0 & Xd(ind+1)>0));

T2=t(inz(1));

ts=t(inz(2));

% Calculate trapazoid integration for minimization

intc=trapz(t,abs(X-Xss));

% Start T2 refinement - Loop until integration does not get better

while 1

% Decrement T2 by increment
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T2=T2-inc;

% Run ODE

[t,y]=ode45(@Dimensionless_Damped_Bellows_On_Off_ODE,[0 ts],...

[X0 Xd0(iX) P0 P0],[optODE],M,K,Kb,G,n,V10,S,B,T1,T2);

X= y(:,1);

% Set prior integration to current

intp=intc;

% Calculate new current integration

intc=trapz(t,abs(X-Xss));

% Test for integration not improving

if intc>intp, break, end

end

while 1

% Increment T2 by 1/5 increment

T2=T2+inc/5;

% Run ODE

[t,y]=ode45(@Dimensionless_Damped_Bellows_On_Off_ODE,[0 ts],...

[X0 Xd0(iX) P0 P0],[optODE],M,K,Kb,G,n,V10,S,B,T1,T2);

X= y(:,1);

% Set prior integration to current

intp=intc;

% Calculate new current integration

intc=trapz(t,abs(X-Xss));

% Test for integration not improving

if intc>intp, break, end

end

% Update solutions

sol(iX,:)=[Xd0(iX) T1 T2]

end
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%% Plotting

figure('Position',[0 0 1000 1000])

hold all

ftsz=36;

set(0,'DefaultTextInterpreter', 'latex')

plot([0 ts],[Xss Xss],'g-.','LineWidth',3)

plot([0 ts],[-B*V10 -B*V10],'r-.','LineWidth',3)

for i=1:length(sol)

[t,y]=ode45(@Dimensionless_Damped_Bellows_Adapt_ODE,[0 ts],...

[X0 sol(i,1) P0 P0],[],M,K,Kb,G,n,V10,S,B,sol(i,2),sol(i,3));

X=y(:,1);

plot(t,X,'k','LineWidth',2)

[~,it]=min(abs(sol(i,2)-t));

plot(sol(i,2),X(it),'k.','markersize', 30)

end

xlabel('Time T','FontSize',ftsz);

ylabel('Displacement X','FontSize',ftsz)

set(gca,'FontSize',ftsz)

E.2 MATLAB: Dimensionless Damped Bellows On Off ODE.m

function dx=Dimensionless_Damped_Bellows_On_Off_ODE(T,x,M,K,Kb,G,n,V10,S,B,T0,T1)

% John Trautwein jktrautwein@gmail.com 2015/10/14

% ODE using On/Off control with T1 and T2

dx=zeros(4,1);%This is a pre-initialization.
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V2 = 1-V10;

X=x(1);

Xd=x(2);

P1 = x(3);

P2 = x(4);

% Valve Closed

if T0<T && T<T1

S=0;

end

% Check for Choked Flow

Pu=max([P1 P2]);

Pd=min([P1 P2]);

if Pu/Pd > ((n+1)/2)ˆ(n/(n-1))

C2= sqrt(n/(((n+1)/2 )ˆ((n+1)/(n-1))));

else

C2= (Pd/Pu)ˆ(1/n)*sqrt((2*n/(n-1))*(1-(Pd/Pu)ˆ((n-1)/n)));

end

% Contact Base Input

if X<=0

D=X;

Dd=Xd;

else

D=0;

Dd=0;

end
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% Equation of Motion

Xdd = ((X<=0)*(P1-K*D)-(X<=-B*V10)*Kb*(B*V10+D)-M*G)/M;

% Differential Equations of Pressure

if P2>P1

P1d=(C2*S*P1ˆ((n-1)/n)*P2ˆ((n+1)/(2*n))-n*Dd*P1)/(V10+D);

P2d= -C2*S*P2ˆ((3*n-1)/(2*n))/V2;

else

P1d=(-C2*S*P1ˆ((3*n-1)/(2*n))-n*Dd*P1)/(V10+D);

P2d= C2*S*P2ˆ((n-1)/n)*P1ˆ((n+1)/(2*n))/V2;

end

% Differentials

dx(1)=Xd;

dx(2)=Xdd;

dx(3)=P1d;

dx(4)=P2d;

end

E.3 MATLAB: Active P0 V10 Finder.m

% John Trautwein jktrautwein@gmail.com 2015/10/14

% Contour plot for solutions to Upper Stroke Limits > Bottom

clear all;

close all;

% System non dimensional Parameters
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n= 1.4; % Ratio of specific heats

M= 1; % Moving Mass

B= .95; % Bellows Ratio (effective area/cylinder area)

G= 1; % Gravity

K= 0; % Bellows Stiffness

X0= 0; % Position

Xd0=-1; % Max Velocity

% Test Range for P0 and V10

P0=.3:.01:.8;

V10=.1:.01:.6;

opt = optimset('Display','off');

% Preallocate

sol=zeros(length(P0),length(V10));

% Loop over iP and iV

for iP=1:length(P0)

for iV=1:length(V10)

% Steadt State Calculation

SteadyState=@(Dv)P0(iP)./(1+Dv).ˆn-K.*Dv-M*G;

% Calculate Stroke Limits

% Change in Kinetic Energy

KE=1/2*M*Xd0ˆ2;

% Change in Potential Gravitational Energy

PE=@(Dv)M*G*(X0-Dv);

% Change in Potential Spring Energy

SE=@(Dv)1/2*K*Dv.ˆ2;
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% Compression work for upper limit

PWu=@(Dv)(P0(iP)*V10(iV)ˆn/(1-n))*((V10(iV)+Dv).ˆ(1-n)-V10(iV)ˆ(1-n));

% Solve for Stroke Limits

Xsu=fzero(@(Dv) KE+PE(Dv)-SE(Dv)+PWu(Dv),-V10(iV)/2,opt);

% Solve for Steady State

Xss=fzero(SteadyState,-V10(iV)/2);

% Solve for Bottom

Xbt=-B*V10(iV);

% Create Solution that meets critera

sol(iP,iV)=(Xsu-Xbt)*(Xss<Xbt && Xsu>Xbt);

end

end

%%

% Create Contour Plot

ftsz=36;

figure('Position',[0 0 1000 1000])

hold all

[C, H]=contourf(P0,V10,sol');

set (H, 'LineWidth',0.1);

colorbar('northoutside');

xlabel('$P_0$','FontSize',ftsz)

ylabel('$V_{10}$','FontSize',ftsz)

set(0,'DefaultTextInterpreter', 'latex')

% Change background color to white
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myColorMap = jet; % Make a copy of jet.

myColorMap(1, :) = [1 1 1];

colormap(myColorMap); % Apply the colormap

set(gca,'FontSize',ftsz)

% Plot X at maximum point

[pmax,vmax]= find(sol==max(sol(:)));

plot(P0(pmax),V10(vmax),'kx','MarkerSize',30,'Linewidth',8)

plot(P0(pmax),V10(vmax),'x','MarkerSize',26,'Linewidth',4,'Color',[1 1 1])

E.4 MATLAB: Min T1 Find.m

function F=Min_T1_Find(T1,X0,Xd0,P0,M,K,Kb,G,n,V10,S,B)

% John Trautwein jktrautwein@gmail.com 2015/10/14

% Use to find T1 and return difference with minimum of X

% Time of Simulation set to one period

ts=inv((1/2/pi)*sqrt((n*P0/V10+K)/M));

T2= ts; % Valve Open Time

SteadyState=@(Dv)P0./(1+Dv).ˆn-K.*Dv-M*G;

Xss=fzero(SteadyState,-V10/2);

% Run ODE

opt = odeset('RelTol',1e-14);

[~,y]=ode45(@Dimensionless_Damped_Bellows_On_Off_ODE,[0 ts],...

[X0 Xd0 P0 P0],[opt],M,K,Kb,G,n,V10,S,B,T1,T2);
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X= y(:,1);

% Function Return

F=min(X)-Xss;

end
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APPENDIX F: OPTIMIZATION
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F.1 MATLAB: Nondimensional Optimization Nonlin Obj.m

% John Trautwein jktrautwein@gmail.com 2015/10/14

% Find Optimum Parameters for S, V10, K, P0 to maximize damping ratio

clear all;

close all;

% System non dimensional Parameters

n=1.4; % Ratio of specific heats

% Fixed Paramters

M= 1; % Moving Mass

G= 1; % Gravity

Kb=1e6; % Bellows Bottom Out Stiffness

X0= 0; % Initial Position

Xd0= -1; % Initial Velocity

T0= 0; % Valve Open Time

C= 1; % Check Valve %S

B= .9; % Bellows Ratio (effective area/cylinder area)

S= .1:.05:.5; % Orifice Ratio (orifice area/cilinder area)

V10=.3:.05:.6; % Volume Ratio (Initial Volume 1/Total Initial Volume)

K= 0:.1:1; % Bellows Stiffness

P0= .5:.05:.9; % Initial Pressure

iSn=length(S);

iVn=length(V10);

iKn=length(K);

iPn=length(P0);
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sol=ones(1,7);

soli=2;

%% Loops

for iS=1:iSn

for iV=1:iVn

for iK=1:iKn

for iP=1:iPn

% Period of one cycle estimate

ts=inv((1/2/pi)*sqrt((n*P0(iP)/V10(iV)+K(iK))/M));

% Run ODE for 2 cycles

options = odeset('RelTol',1e-14);

[t,y]=ode45(@Dimensionless_Damped_Bellows_ODE,[0 2*ts],...

[X0 Xd0 P0(iP) P0(iP)],[],M,K(iK),Kb,G,n,V10(iV),S(iS),T0,B,C);

X= y(:,1);

% Criteria and Objective Function

c1=(min(real(X))>-B*V10(iV));

c2=(max(real(X))<=0);

if c1&&c2

% Run for 10 cyles to get damping ratio

[t,y]=ode45(@Dimensionless_Damped_Bellows_ODE,[0 10*ts],...

[X0 Xd0 P0(iP) P0(iP)],[],M,K(iK),Kb,G,n,V10(iV),S(iS),T0,B,C);

X=y(:,1);

% Steady State Calculation

SteadyState=@(Dv)P0(iP)./(1+Dv).ˆn-K(iK).*Dv-M*G;

Xss=fzero(SteadyState,-B*V10(iV)/2);

% Damping Model

modelFun=@(b,t) cumtrapz(t,b(1)*exp(-b(2)*t)+b(3));
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% Numerically Integrate Data

sum=cumtrapz(t,abs(X-Xss));

start = [.1 .1 .1];

% Fit Model to Data

nlm = fitnlm(t,sum,modelFun,start);

% Save results to output

sol(soli,:)=[iS iV iK iP nlm.Coefficients.Estimate(1) ...

nlm.Coefficients.Estimate(3) ...

nlm.Coefficients.Estimate(2)];

% Index solution

soli=soli+1;

end

end

end

% Set up Time Status

clc

percom=((iS-1)*iVn*iKn*iPn+(iV-1)*iKn*iPn+(iK-1)*iPn+(iP-1))...

/(iSn*iVn*iKn*iPn);

fprintf('%3.0f percent complete: %4.2f min remaining \n',...

100*percom,toc/60/percom-toc/60)

end

end

%% Finding Optimum Solutions

sol=sortrows(sol(2:end,:),[-7]);

%% Plotting First Two Solutions

122



set(0, 'DefaultAxesFontSize',36);

set(0,'DefaultTextInterpreter', 'latex')

close all

Var_Names = {'S' 'V_10' 'K' 'P' 'A' 'B' 'zeta'};

% Solutions to compare in plots

comp=[1 5];

T = table(S(sol(comp,1))',V10(sol(comp,2))',K(sol(comp,3))'...

,P0(sol(comp,4))',sol(comp,5),...

sol(comp,6),sol(comp,7),'VariableNames',Var_Names')

ftsz=36;

LinSt={'-', '--', ':', '--'};

LinCl={'b','r','g','r'};

figure('Position',[0 0 1000 1000])

figure('Position',[0 0 1000 1000])

figure('Position',[0 0 1000 1000])

figure('Position',[0 0 1000 1000])

% Calculate Optimal Solution

ilin=1;

for iplot=1:length(comp)

iS=sol(comp(iplot),1);

iV=sol(comp(iplot),2);

iK=sol(comp(iplot),3);

iP=sol(comp(iplot),4);

% Parameters update for new Solution
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opt = odeset('RelTol',1e-14);

[t,y]=ode45(@Dimensionless_Damped_Bellows_ODE,[0 10*ts],...

[X0 Xd0 P0(iP) P0(iP)],[opt],M,K(iK),Kb,G,n,V10(iV),S(iS),T0,B,C);

X= y(:,1);

Xd= y(:,2);

P1= y(:,3);

D=nan(length(X),1);

Dd=nan(length(X),1);

for j=1:length(X)

if X(j)<0

D(j)=X(j);

Dd(j)=Xd(j);

else

D(j)=0;

Dd(j)=0;

end

end

% Calculate Accelerations

Xdd = ((X<=0).*(P1-K(iK).*D)-(X<=-B*V10(iV)).*Kb.*(B*V10(iV)+D)-M.*G)./M;

SteadyState=@(Dv)P0(iP)./(1+Dv).ˆn-K(iK).*Dv-M*G;

modelFun=@(b,t) cumtrapz(t,b(1)*(exp(-b(2)*t)+b(3)));

Xss=fzero(SteadyState,-B*V10(iV)/2);

sum=cumtrapz(t,abs(X-Xss));

start = [.1 .1 .1];

nlm = fitnlm(t,sum,modelFun,start);
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b=nlm.Coefficients.Estimate;

XSS(ilin)=Xss;

figure(1)

hold all

plot(t,X,'LineWidth',2,'Color',LinCl{ilin},'LineStyle',LinSt{ilin})

plot(t,Xss-pi/2*b(1)*(exp(-b(2)*t)+b(3)),...

'LineWidth',2,'Color',LinCl{ilin},'LineStyle',...

'-.','handlevisibility','off')

figure(2)

hold all

plot(t,abs(Xd),'LineWidth',2,'Color',LinCl{ilin},...

'LineStyle',LinSt{ilin})

figure(3)

hold all

plot(t,Xdd,'LineWidth',2,'Color',LinCl{ilin},'LineStyle',LinSt{ilin})

figure(4)

hold all

plot(X,Xd,'LineWidth',2,'Color',LinCl{ilin},'LineStyle',LinSt{ilin})

ilin=ilin+1

end

%% Plot Configuration

figure(1)

xlabel('Time, T','FontSize',ftsz);

ylabel('Displacement X','FontSize',ftsz)
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axis([0 20 -.6 .1])

set(gca,'XTick',[0 5 10 15 20])

set(gca,'YTick',[-.5 -.25 0])

set(gca,'FontSize',ftsz)

Leg_st=legend(strcat('$\zeta=$',num2str(sol(comp,7),3)));

h= legend(Leg_st);

set(h,'Interpreter','latex')

figure(2)

hold all

xlabel('Time T','FontSize',ftsz);

ylabel('Velocity $\dot{X}$','FontSize',ftsz)

axis([0 10 -1 1])

set(gca,'FontSize',ftsz)

Leg_st=legend(strcat('$\zeta=$',num2str(sol(comp,7),3)));

h= legend(Leg_st);

set(h,'Interpreter','latex')

figure(3)

hold all

xlabel('Time T','FontSize',ftsz);

ylabel('Acceleration $\ddot{X}$','FontSize',ftsz)

axis([0 20 -1 8])

set(gca,'XTick',[0 5 10 15 20])

set(gca,'FontSize',ftsz)

Leg_st=legend(strcat('$\zeta=$',num2str(sol(comp,7),3)));

h= legend(Leg_st);

set(h,'Interpreter','latex')

figure(4)

hold all
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ylabel('Velocity $\dot{X}$','FontSize',ftsz);

xlabel('Displacement $X$','FontSize',ftsz)

axis([-.5 0 -1 .6 ])

set(gca,'XTick',[-.50 -.25 0])

set(gca,'YTick',[-1 -.5 0 .5 1])

Leg_st=legend(strcat('$\zeta=$',num2str(sol(comp,7),3)));

h= legend(Leg_st);

set(h,'Interpreter','latex')

for i=length(comp)

plot([XSS(i) XSS(i)],[-1 1],'LineWidth',2,'Color',...

LinCl{i},'LineStyle','-.','handlevisibility','off')

end

F.2 MATLAB: Bellows initial sizing nonlin Opt.m

% John Trautwein jktrautwein@gmail.com 2015/10/14

% Find lightest COTS Bellows Length of each size that meets goal

clear all

close all

set(0, 'DefaultAxesFontSize',36);

set(0,'DefaultTextInterpreter', 'latex')

filename = 'bellows_data.csv';

[num] = csvread(filename,2,0);

% Data Input

ro=num(:,3)/2/1000; % (m) Outside Radius m

ri=num(:,4)/2/1000; % (m) Inside Radius m
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Ae=pi/3*(ro.ˆ2+ro.*ri+ri.ˆ2); % (mˆ2) Effective Area mˆ2

Ae2=pi/4*(ro.ˆ2+2*ro.*ri+ri.ˆ2); % (mˆ2) Efffective Area Vendor Calc

Aed=num(:,5)*100/1e6; % (mˆ2) Effective Area Vendor Data

Pmax=num(:,6)*1000; % (Pa) Max Pressure

Ls_c=num(:,7)/1000; % (m) Stroke per Capsule

Lf_c=num(:,8)/1000; % (m) Free Length per Capsule

Lc_c=num(:,9)/1000; % (m) Compressed Length per Capsule

kb_c=num(:,10)/1000; % (N/m) Spring Rate per Capsule

% Given Problem Data

g=9.8/6; % (m/sˆ2) Gravitational Acceleration

n=1.4; % (1) Gas Constant

m=100; % (kg) Payload Mass

xd0=1; % (m/s) Initial velocity at ground contact

x0=0; % (m) Intial heigh above ground contact

R=288; % (J/kg) Gas Constant

theta=300; % (K)

C0=.7; % Discharge Coeffficient

cd= 7:12; % Diameter Code (row number in table)

N= 15:35; % Number of capsules

V10=.1:.05:.3; % Volume Ratio (Initial Volume 1/Total Initial Volume)

P0= .1:.05:.5; % Initial Pressure

S= .1:.05:.7; % Orifice Ratio (orifice area/cilinder area)

% Set Constant Nondimensional Parameters

Kb=1e6; % Bottoming Sitffness

C=1; % No Check Valve

T0=0; % No Valve Dealy

Xd0=-1; % Initial Velocity (Always -1 due to xd0 being

% reference velocity)
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% Set loop lengths

icdn=length(cd);

iNn=length(N);

iVn=length(V10);

iPn=length(P0);

iSn=length(S);

% Set Status Display

Var_Names = {'ID' 'Capsules' 'V_10' 'P_0' 'S' ...

'zeta' 'mass'};

sol=ones(1,7);

soli=2;

iS=1;

tic

% Loop over cd and number of capsules

%%

for icd=1:icdn

sc=ro(cd(icd))ˆ2*pi; % Cylinder Area

s=Aed(cd(icd)); % Effective Area

B=s/sc; % Bellows Area Ratio

p10=Pmax(cd(icd)); % Allowable Pressure used for scaling

% max nondimensional pressure = 1

fbreak=0; % Used to break out of loops once solution found

for iN=1:iNn;

ls=Ls_c(cd(icd))*N(iN); % Stroke Length

k=kb_c(cd(icd))/N(iN); % Spring Rate

mass=8000*pi*(ro(cd(icd)).ˆ2-ri(cd(icd)).ˆ2).*Lc_c(cd(icd)).*N(iN);
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for iV=1:iVn

l=sc*ls/V10(iV)/s; % Simplified Cylinder length

X0=x0/l; % Non Dim Initial Height

M=m*xd0ˆ2/(p10*s*l); % Non Dim Mass

K=k*l/p10/xd0; % Non Dim Stiffness

G=g*l/xd0ˆ2; % Non Dim Gravity

for iP=1:iPn

clc

[cd(icd) N(iN) iV iP iS]

% Energy Equation used as time saver to only fun ODE when a solution

% doesn't bottom out

% Calculate Stroke Limits

% Change in Kinetic Energy

KE=1/2*M*Xd0ˆ2;

% Change in Potential Gravitational Energy

PE=@(Dv)M*G*(X0-Dv);

% Change in Potential Spring Energy

SE=@(Dv)1/2*K*Dv.ˆ2;

% Compression work for upper limit

PWu=@(Dv)(P0(iP)*V10(iV)ˆn/(1-n))*((V10(iV)+Dv).ˆ(1-n)-V10(iV)ˆ(1-n));

% Energy at Upper Stroke Limit

Eu=@(Dv) KE+PE(Dv)-SE(Dv)+PWu(Dv);

% Energy when bottomed. Will be negative if cylinder won't bottom out

% May also produce complex solutions which need to be handled.

Eut=Eu(-B*V10(iV));

if Eut*isreal(Eut)<0
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for iS=1:iSn

% Period of one cycle estimate

ts=inv((1/2/pi)*sqrt((n*P0(iP)/V10(iV)+K)/M));

% Run ODE for 2 cycles

[t,y]=ode45(@Dimensionless_Damped_Bellows_ODE,[0 2*ts],...

[X0 Xd0 P0(iP) P0(iP)],[],M,K,Kb,G,n,V10(iV),S(iS),T0,B,C);

X=y(:,1);

P1=y(:,3);

% Check Criteria

c1=(max(t)==2*ts);

c2=(min(real(X))>-B*V10(iV));

c3=(max(real(X))<=0);

c4=(max(P1)<=1);

if c1&&c2&&c3&&c4

% Run for 10 cycles to get damping ratio

[t,y]=ode45(@Dimensionless_Damped_Bellows_ODE,[0 10*ts],...

[X0 Xd0 P0(iP) P0(iP)],[],M,K,Kb,G,n,V10(iV),S(iS),T0,B,C);

X=y(:,1);

% Steady State Calculation

SteadyState=@(Dv)P0(iP)./(1+Dv).ˆn-K.*Dv-M*G;

Xss=fzero(SteadyState,-B*V10(iV)/2);

% Damping Model

modelFun=@(b,t) cumtrapz(t,b(1)*(exp(-b(2)*t)+b(3)));

% Numerically Integrate Data

sum=cumtrapz(t,abs(X-Xss));

start = [.1 .1 .1];
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% Fit Model to Data

nlm = fitnlm(t,sum,modelFun,start);

% Save results to output

sol(soli,:)=[icd iN iV iP iS nlm.Coefficients.Estimate(2) mass]

% Index solution

soli=soli+1;

fbreak=1;

end

% Break from iS loop

if fbreak==1

break;

end

end

%------------------

end

% Break from iP loop

if fbreak==1

break;

end

end

%------------------

% Break from iV loop

if fbreak==1

break;

end

end

%------------------

% Break from iN loop

% Comment out if want several N for each id

if fbreak==1

break;
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end

end

%----------------------

end

% Sort by mass and remove header row

sol=sortrows(sol(2:end,:),[7 -6]);

%% Plot Results

close all

T = table(cd(sol(:,1))',N(sol(:,2))',V10(sol(:,3))',...

P0(sol(:,4))',S(sol(:,5))',sol(:,6),sol(:,7),...

'VariableNames',Var_Names')

ftsz=36;

LinSt={'-', '--', ':', '--'};

LinCl={'b','r','g','r'};

figure('Position',[0 0 1000 1000])

figure('Position',[0 0 1000 1000])

figure('Position',[0 0 1000 1000])

figure('Position',[0 0 1000 1000])

comp=[1 2];

% Plot first two solutions

for iplot=1:length(comp)

icd=sol(comp(iplot),1);

iN=sol(comp(iplot),2);

iV=sol(comp(iplot),3);

iP=sol(comp(iplot),4);

iS=sol(comp(iplot),5);
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% Parameters update for new Solution

sc=ro(cd(icd))ˆ2*pi;

s=Aed(cd(icd));

p10=Pmax(cd(icd));

ls=Ls_c(cd(icd))*N(iN);

l=sc*ls/V10(iV)/s;

k=kb_c(cd(icd))/N(iN);

K=k*l/p10/xd0;

B=s/sc;

M=m*xd0ˆ2/(p10*s*l);

G=g*l/xd0ˆ2;

Tp=2*pi*sqrt(M*V10(iV)/n/P0(iP));

ts=5*Tp;

opt = odeset('RelTol',1e-14);

[t,y]=ode45(@Dimensionless_Damped_Bellows_ODE,[0 20],...

[X0 Xd0 P0(iP) P0(iP)],[opt],M,K,Kb,G,n,V10(iV),S(iS),T0,B,C);

X= y(:,1);

Xd= y(:,2);

P1= y(:,3);

D=nan(length(X),1);

Dd=nan(length(X),1);

for j=1:length(X)

if X(j)<0

D(j)=X(j);
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Dd(j)=Xd(j);

else

D(j)=0;

Dd(j)=0;

end

end

% Calculate Accelerations

Xdd = ((X<=0).*(P1-K.*D)-(X<=-B*V10(iV)).*Kb.*(B*V10(iV)+D)-M.*G)./M;

SteadyState=@(Dv)P0(iP)./(1+Dv).ˆn-K.*Dv-M*G;

modelFun=@(b,t) cumtrapz(t,b(1)*(exp(-b(2)*t)+b(3)));

Xss=fzero(SteadyState,-B*V10(iV)/2);

sum=cumtrapz(t,abs(X-Xss));

start = [.1 .1 .1];

nlm = fitnlm(t,sum,modelFun,start);

b=nlm.Coefficients.Estimate;

XSS(comp(iplot))=Xss;

figure(1)

hold all

plot(t,X,'LineWidth',2,'Color',LinCl{comp(iplot)},...

'LineStyle',LinSt{comp(iplot)})

plot(t,Xss-pi/2*b(1)*(exp(-b(2)*t)+b(3)),...

'LineWidth',2,'Color',LinCl{comp(iplot)},...

'LineStyle','-.','handlevisibility','off')

figure(2)

hold all

plot(t,abs(Xd),'LineWidth',2,'Color',LinCl{comp(iplot)},...
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'LineStyle',LinSt{comp(iplot)})

figure(3)

hold all

plot(t,Xdd,'LineWidth',2,'Color',LinCl{comp(iplot)},...

'LineStyle',LinSt{comp(iplot)})

figure(4)

hold all

plot(X,Xd,'LineWidth',2,'Color',LinCl{comp(iplot)},...

'LineStyle',LinSt{comp(iplot)})

end

%% Plot Configuration

figure(1)

xlabel('Time, T','FontSize',ftsz);

ylabel('Displacement X','FontSize',ftsz)

axis([0 5 -.15 0])

set(gca,'XTick',[0 1 2 3 4 5])

set(gca,'YTick',[-.15 -.1 -.05 0 .05])

set(gca,'FontSize',ftsz)

Leg_st=legend(strcat('$\zeta=$',num2str(sol(1,6),2))...

,strcat('$\zeta=$',num2str( sol(2,6),3 )) );

h= legend(Leg_st);

set(h,'Interpreter','latex')

figure(2)

hold all

xlabel('Time T','FontSize',ftsz);

ylabel('Velocity $\dot{X}$','FontSize',ftsz)
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axis([0 10 -1 1])

set(gca,'FontSize',ftsz)

Leg_st=legend(strcat('$\zeta=$',num2str(sol(1,6),2))...

,strcat('$\zeta=$',num2str( sol(2,6),3 )) );

h= legend(Leg_st);

set(h,'Interpreter','latex')

figure(3)

hold all

xlabel('Time T','FontSize',ftsz);

ylabel('Acceleration $\ddot{X}$','FontSize',ftsz)

axis([0 5 -4 12])

set(gca,'XTick',[0 1 2 3 4 5])

set(gca,'FontSize',ftsz)

Leg_st=legend(strcat('$\zeta=$',num2str(sol(1,6),2))...

,strcat('$\zeta=$',num2str( sol(2,6),3 )) );

h= legend(Leg_st);

set(h,'Interpreter','latex')

figure(4)

hold all

ylabel('Velocity $\dot{X}$','FontSize',ftsz);

xlabel('Displacement $X$','FontSize',ftsz)

axis([-.125 0 -1 1 ])

set(gca,'XTick',[-.1 -.050 0])

set(gca,'YTick',[-1 -.5 0 .5 1])

set(gca,'FontSize',ftsz)

Leg_st=legend(strcat('$\zeta=$',num2str(sol(1,6),2))...

,strcat('$\zeta=$',num2str( sol(2,6),3 )) );

h= legend(Leg_st);

set(h,'Interpreter','latex')
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for i=[1 2]

plot([XSS(i) XSS(i)],[-1 1],'LineWidth',2,'Color',...

LinCl{i},'LineStyle','-.','handlevisibility','off')

end
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Table F.1: bellows data.csv

per capsule

Code Do Di Ae Pmax Ls Lmax Lmin kb
mm mm cm2 KPa mm mm mm N/mm

5 9.5 3.2 0.3 689 3.6 5.3 1.8 2.3
10 12.7 4.8 0.6 1034 8.4 11.7 3.3 9.6
20 19.0 6.4 1.3 345 7.6 9.9 2.3 4.2
30 26.2 14.0 3.2 207 13.5 16.8 3.3 4.4
35 38.1 24.6 7.7 276 7.4 10.9 3.6 3.9
40 41.4 19.0 7.1 297 7.9 10.9 3.0 2.1
50 48.0 35.3 13.6 310 21.8 26.7 4.8 2.6
55 57.2 38.1 17.7 345 12.7 18.3 5.6 3.7
60 64.8 44.4 23.4 345 18.0 24.6 6.6 4.7
70 75.9 50.8 31.6 276 23.9 29.7 5.8 5.1
80 101.3 68.3 56.5 276 25.4 31.8 6.4 8.8
85 108.0 81.3 71.0 310 20.3 28.7 8.4 13.1
90 126.2 101.6 101.9 345 20.3 29.2 8.9 13.1
93 177.3 126.5 181.3 172 25.4 30.2 4.8 7.4
95 279.4 241.3 532.1 138 25.4 29.0 3.6 43.8
98 457.2 406.4 1463.9 138 25.4 29.7 4.3 113.8
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